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Abstract

We show that the unit area Liouville quantum gravity sphere can be con-
structed in two equivalent ways. The first, which was introduced by the authors
and Duplantier in [DMS14], uses a Bessel excursion measure to produce a Gaus-
sian free field variant on the cylinder. The second uses a correlated Brownian loop
and a “mating of trees” to produce a Liouville quantum gravity sphere decorated
by a space-filling path.

In the special case that γ =
√

8/3, we present a third equivalent construction,
which uses the excursion measure of a 3/2-stable Lévy process (with only upward
jumps) to produce a pair of trees of quantum disks that can be mated to produce
a sphere decorated by SLE6. This construction is relevant to a program for
showing that the γ =

√
8/3 Liouville quantum gravity sphere is equivalent to the

Brownian map.
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6.2 Comparison of Bessel and Lévy measures . . . . . . . . . . . . . . . . . 52
6.3 Tip is uniformly random and law of the unexplored region . . . . . . . 54

7 Exploring a quantum sphere with SLEκ′(κ
′ − 6) 58

References 59

2



Acknowledgements. We have benefited from conversations about this work with
many people, a partial list of whom includes Omer Angel, Itai Benjamini, Nicolas
Curien, Hugo Duminil-Copin, Amir Dembo, Bertrand Duplantier, Ewain Gwynne, Nina
Holden, Jean-François Le Gall, Gregory Miermont, Rémi Rhodes, Steffen Rohde, Oded
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1 Introduction

1.1 Overview

Suppose that h is an instance of the Gaussian free field (GFF) on a planar domain D
and γ ∈ [0, 2) is fixed. Then the γ-Liouville quantum gravity (LQG) surface associated
with h is described by the measure µh which is formally given by eγh(z)dz where dz
denotes Lebesgue measure on D. Since the GFF h does not take values at points, one
has to regularize in some way to make this definition precise. Let hε(z) be the average
of h on ∂B(z, ε), a quantity that is a.s. well defined for each ε > 0 and z ∈ D such that
B(z, ε) ⊆ D [DS11, Section 3]. The process (z, ε) 7→ hε(z) is jointly continuous in (z, ε)
and one can define eγh(z)dz to be the weak limit as ε→ 0 along negative powers of 2 of
εγ

2/2eγhε(z)dz [DS11]. We will often write µh for the measure eγh(z)dz. LQG surfaces
have also been constructed and analyzed for γ > 2 [DS09, BJRV13, DMS14] and for
γ = 2 [DRSV14a, DRSV14b] but this paper will only be concerned with the case that
γ ∈ [0, 2).

The regularization procedure used to construct µh leads to the following change of
coordinates formula [DS11, Proposition 2.1]. Suppose that D, D̃ are planar domains

and ϕ : D → D̃ is a conformal map. If h̃ is a GFF on D̃ and

h = h̃ ◦ ϕ+Q log |ϕ′| where Q =
2

γ
+
γ

2
, (1.1)

then
µh(A) = µh̃(ϕ(A)) (1.2)
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for all Borel sets A. This allows us to define an equivalence relation on pairs (D, h)

by declaring (D, h) and (D̃, h̃) to be equivalent if h and h̃ are related as in (1.1). An
equivalence class of such (D, h) is then referred to as a quantum surface [DS11]. A
representative (D, h) of such an equivalence class is referred to as an embedding of the
quantum surface. In many situations, it is natural to consider quantum surfaces with
one or more marked points or paths. In this case, the equivalence relation is defined in
the same way except we require in addition that the conformal map in (1.1) takes the
marked points and paths associated with the first surface to the corresponding marked
points and paths associated with the second surface.

As described above, LQG has a number of variants because the GFF has a number of
variants (e.g., free boundary, fixed boundary, free boundary plus a harmonic function).
And this brings us to a natural question: what is the right way to define Liouville
quantum gravity on the sphere, which has no boundary? More precisely, how do we
describe the object that one would expect to see as the scaling limit of the most natural
discrete random planar map models on the sphere? The most obvious answer (sample
the ordinary GFF on the sphere — which is defined modulo additive constant — and
adjust the constant a posteriori to make the total µh area 1) appears to be wrong.

In fact, this problem is more subtle than one might initially guess. It turns out that
there are a number of ways to describe the right answer mathematically, but they all
require at least a page or two of text to properly motivate and explain. One somewhat
less explicit approach is to describe the answer using limits,1 an idea suggested and
briefly sketched in [She16a]. Another more explicit construction, appearing in [DMS14],
uses the cylinder as a parameter space (mapping one “quantum typical” point to each
of its two endpoints), and makes use of a reparameterized Bessel excursion measure
to describe the averages of h on cylinder slices. It is shown in [DMS14] that the
limit suggested in [She16a] is well-defined and equivalent to the object constructed in
[DMS14].

A third approach, presented by David, Kupiainen, Rhodes, and Vargas in [DKRV16],
uses the complex plane C as a parameter space, fixes the location of three “quantum
typical points,” and describes the law in terms of an integral over the space of possible
averages of the field h w.r.t. a fixed background measure. Although it is not obvious from
their construction, a work of Aru, Huang, and Sun [AHS17] shows that the construction
of [DKRV16] is equivalent to the ones we mentioned above. We note that [DKRV16]
(see also [HRV15, DRV16]) closely follows similar constructions that appeared in the
physics literature some decades ago; it also surveys and recovers a number of explicit
calculations from that literature, which is quite extensive and which prefigures much of
the recent mathematical work in this area.2 We will not attempt to survey the physics
literature here.

1Short version: one defines a fixed boundary GFF h on a fixed domain D, conditions on µh(D) = C,
rescales to make µh(D) = 1, and then considers the C →∞ of the resulting law on surfaces.

2Both [DMS14] and [DKRV16] also discuss “non-unit-area” LQG spheres. One way to describe a
general quantum surface with finite area is via a pair (S, A) where A is the total area, and S is the
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In [DMS14], the authors along with Duplantier explain how to construct and interpret
infinite-volume LQG surfaces as conformal matings of pairs of trees. Along the way,
[DMS14] develops a number of connections between different types of LQG surfaces and
random curves related to the Schramm-Loewner evolution (SLE) [Sch00]. These results
build on the imaginary geometry theory derived in [MS16c, MS16d, MS16e, MS17] and
the conformal welding theory derived in [She16a]. The goal of the present article is
to extend these results and connections to the unit area quantum sphere described in
[DMS14].

Let us stress however that this is far from a straightforward extension of [DMS14],
and that the work in this paper is very different in character from what appears in
[DMS14]. As we outline in Section 1.5, the main work in the current paper involves
making sense of various types of “bottleneck conditioning,” which are conceptually
clean but technically quite subtle.

We also remark that it remains an important open problem to establish higher genus
analogs of the statements in this paper (where the sphere is replaced by a genus g
torus). Figure 1.1 illustrates how the results of the present paper fit into the existing
literature, and the higher genus analogs of most of the boxes and arrows shown there
have not yet been established. Exceptions include the Brownian map box (work in
preparation by Bettinelli and Miermont [BM18]) and the triple-fixed-point construction
box (work of Guillarmou, Rhodes and Vargas [GRV16], which builds on physics literature
constructions).

1.2 Scaling limit motivation

The unit area quantum sphere is significant in part because when γ2 ∈ [2, 4) it has been
conjectured to be the scaling limit of the FK-weighted random planar map on the sphere,
as discussed for example in [She16b, Section 4.2]. But why do we expect this conjecture
to be true? In other words, how do we know that the LQG sphere definition (in any
of its equivalent forms) is the right one for the purpose of understanding FK-scaling
limits? There are various ways to answer this question, but our strongest answer is
that there is one version of this conjecture that has actually been proved in work by
Gwynne and Sun [GS17, GS15], as indicated by one of the arrows in Figure 1.1.

As explained in [She16b], one may encode a loop-decorated quadrangulation of the
sphere by a spanning tree and dual tree pair, which are in turn encoded by a walk
on Z2

+. The two coordinate functions in this walk are the contour functions of the

unit area surface obtained by “rescaling” the original (i.e., by adding a constant to h to make the
total µh mass 1). If dS is a measure on unit area quantum spheres, then for any measurable function
f : R+ → R+, there is a measure dS ⊗ f(A)dA on (S, A) pairs. In [DMS14] this f is a taken to be
a power of A. In [DKRV16], it is a power of A times e−µA, where µ is the so-called cosmological
constant. In both papers, it turns out to be sometimes easier to first construct the non-constant-area
measure, and then obtain the unit area measure as the conditional law of S once A is given.
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Triple-fixed-pointBessel-excursion-basedLarge area limit

Mating of two Mating of two finite

FK-decorated planar Brownian mapBipolar orientation decorated

construction [DKRV14]construction [DMS14]

planar map scaling limit

Lévy LQG-surface treesfinite-diameter CRTs

map scaling limit

(γ =
√

8/3 case)

and various variants

construction [She16a]

[DMS14]

This paperThis paper

[GS15a], [GS15b], etc.

[AHS15]

[KMSW15], [KMSW16], [GHS16], etc. [MS15a], [MS15b], [MS16a], [MS16b]

Various physics
constructions

[DKRV14]

Figure 1.1: Several constructions of the Liouville quantum gravity sphere and their
relationships. The boxes represent equivalent LQG-sphere definitions.

trees, and the loop-decorated map is viewed as a gluing of this pair of trees along a
space-filling path. The work in [GS17, GS15] establishes a precise form for the scaling
limit of this pair of trees: it is a particular pair of correlated finite-diameter trees, each
closely related to the continuum random tree (CRT).

In this paper, we show in Theorem 1.1 that the unit area quantum sphere constructed
in [DMS14] can be understood as a “conformal mating” of the same pair of trees. Thus,
together with [GS17, GS15], this implies that the FK-decorated random planar maps
converge to CLE-decorated LQG spheres in a topology where two decorated spheres are
considered close when their corresponding trees are close. Although the topology may
not be the first that would come to mind when formulating a scaling limit conjecture,
this is already an “honest” scaling limit result in the sense that in both the discrete and
continuum settings, the pair of trees encodes the entire structure of the surface. The
infinite volume version of this story is developed and explained in much more detail in
[She16b, DMS14].

A work in progress is [GM16], which builds on [GS17, GS15] in order to strengthen this
topology of convergence. The work in [GM16] aims to show that the entire discrete
loop structure (lengths of loops, areas of regions surrounded by loops, locations along
loops—as measured by loop length—where self-intersections and intersections with other
loops appear) converges to the analogous continuum loop structure. This “continuum
loop structure” is a countable collection of measure-endowed loops, together with
a set of intersection points and a planar embedding defined up to homeomorphism.
It is essentially the object one gets by looking at a CLEκ′-decorated γ-LQG sphere
(κ′ = 16/γ2) and remembering all the loop lengths and intersection points but “forgetting”
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how the whole structure is conformally embedded. It is shown in [GM16] that the
continuum loop structure a.s. uniquely determines the embedding, so this forgetting
involves no actual loss of information.

A similar convergence result for bipolar oriented maps of the sphere towards the
√

4/3-
LQG sphere decorated by SLE12 has been established in [KMSW15] and extended in
[GHS16]. (See also [KMSW17] for more on bipolar orientations on a planar lattice.)

The works mentioned above do not address the (still open) question of whether the nat-
ural conformal embeddings of the discrete models in the sphere (circle parkings, square
tilings, Riemannian uniformizations of glued-together unit squares, etc.) approximate
the analogous embeddings of the continuum models. (See [GMS17] for a statement of
this type for a random planar map model defined out of the mating of trees construction
of LQG. See also [GMS18] for a statement of this type for the adjacency graph formed
by the cells in the Poisson-Voronoi tessellation of a Brownian surface.)

1.3 Brownian map motivation

In the special case γ =
√

8/3, the current work will also play an important role in a
program announced by the authors in [MS16f] to use the so-called QLE(8/3, 0) to put a
metric on

√
8/3-Liouville quantum gravity, and to show that the resulting metric space

agrees in law with the Brownian map, the scaling limit of uniformly random maps on
the sphere [LG13, Mie13]. Indeed, the current paper shows that a whole-plane SLE6

drawn on top of an independent
√

8/3-LQG sphere satisfies the correct symmetries

so that we can make sense of a form of QLE(8/3, 0) on the
√

8/3-LQG sphere. In
particular, we will show that:

• The holes cut out by an SLE6 are given by a Poissonian collection of quantum
disks,

• The law of the region which contains the target point of an SLE6 is equal to that
of a quantum disk weighted by its quantum area, and

• The law of the tip of an SLE6 is distributed according to the quantum length
measure on the boundary of the unexplored region.

The final point mentioned above implies that the reshuffling operation introduced in
[MS16f] when applied in the present setting has the interpretation of being a continuum
analog of the Eden model on a

√
8/3-LQG sphere. These three properties will in fact

be critical in [MS15b], in which the metric for
√

8/3-LQG is constructed.

The rest of the program for connecting the Brownian map and the
√

8/3-LQG sphere is
carried out in [MS15a, MS15b, MS16a, MS16b]. We refer the reader to the introduction
of [MS15b] for an overview of how the different articles fit together.
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1.4 Main results

When stating our results (and throughout the paper) we assume that γ ∈ (0, 2) and

κ = γ2 ∈ (0, 4), κ′ =
16

κ
=

16

γ2
∈ (4,∞), and Q =

2

γ
+
γ

2
∈ (2,∞). (1.3)

We also assume that the reader is familiar with the definitions of

• LQG surfaces for γ ∈ (0, 2) (briefly described above; see also [DS11]) and the
GFF [She07].

• SLE and SLEκ(ρ) processes. See [Sch00, Law05, Wer04] for more on SLE and
[LSW03, Section 8.3] as well as [SW05] and the preliminaries sections of [MS16c,
MS16d, MS16e, MS17] for more on SLEκ(ρ) processes.

• Space-filling SLE. See the introduction of [MS17]. (We will provide an additional
review in Section 2.2.)

We further assume that the reader is familiar with the tree-mating constructions as
they are described in the introduction of [DMS14]. That is, since this paper is in some
sense a follow up to [DMS14], we will not replicate the introduction here. It is, however,
not necessary for the reader to have digested all of [DMS14] in order to understand
the present paper. For the convenience of the reader and to set notation we will recall
below some constructions that are used repeatedly.

First let us briefly recall the construction of the unit area quantum sphere given in
[DMS14]. In order to do so, we first need to introduce some Hilbert spaces. For
functions f, g : C→ R with L2 gradients, we define their Dirichlet inner product to be

(f, g)∇ =
1

2π

∫

D

∇f(x) · ∇g(x)dx. (1.4)

For a domain D ⊆ C, we let H(D) be the Hilbert space closure of the subspace of
C∞(D) with L2 gradients with respect to (·, ·)∇. Let C = R × [0, 2π] denote the
infinite cylinder with the lines R and R + 2πi identified. We then let H1(C ) (resp.
H2(C )) denote the subspace of H(C ) given by those functions which are constant on
vertical lines (resp. have mean-zero on vertical lines). Then H1(C ) ⊕H2(C ) gives a
(·, ·)∇-orthogonal decomposition of H(C ); see [DMS14, Lemma 4.3].

The starting point for the construction of the unit area quantum sphere is a certain in-
finite measure MBES on doubly-marked quantum surfaces (C , h,−∞,+∞). To describe
the measure, we assert that one may sample from the measure via the following steps:

8



• Take the projection of h onto H1(C ) to be given by the process 2
γ

logZ reparame-
terized to have quadratic variation du where Z is picked from the Itô excursion
measure νBES

δ of a Bessel process of dimension δ = 4 − 8
γ2 . (We review the

construction of νBES
δ in Section 2.1.1. Even though δ ≤ 0 for γ ∈ (0,

√
2], νBES

δ

still makes sense.)

• Sample the projection of h onto H2(C ) independently from the law of the corre-
sponding projection of a whole-plane GFF on C .

Since νBES
δ is an infinite measure, so is MBES. However, if one conditions on the

quantum area of MBES being a particular positive and finite value, then the conditional
law is a well-defined probability measure.3 The unit area quantum sphere is the
measure which is given by sampling (C , h,−∞,+∞) as above conditioned on having
unit quantum area.

As mentioned earlier, it is also shown in [DMS14] that the law of the unit area quantum
sphere can be constructed using the limiting procedure suggested in [She16b]. It is
shown in [DMS14, Proposition A.13], which follows from the limiting construction, that
the points which correspond to ±∞ conditionally on (C , h) as a quantum surface are
uniformly and independently distributed according to µh. That is, the law of the field h
(modulo a horizontal translation and global rotation about ±∞) is invariant under the
operation of picking x, y ∈ C independently from µh, letting ϕ : C → C be a conformal
transformation with ϕ(+∞) = x, ϕ(−∞) = y, and then replacing h with the field
h ◦ ϕ+Q log |ϕ′|.
The infinite volume companion of the unit area quantum sphere is the so-called γ-
quantum cone described in [She16a, DMS14]. Just as in the case of the former, the
latter can also be constructed using Bessel processes; we will recall its construction in
Section 2.3 as it will play an important role in this paper. Two of the main results of
[DMS14], namely [DMS14, Theorem 1.9 and Theorem 1.11], give that a γ-quantum
cone can be constructed and described entirely in terms of a certain (correlated) two-
dimensional Brownian motion. In particular, if (C , h,+∞,−∞) is a γ-quantum cone
with γ ∈ [

√
2, 2) where −∞ (resp. +∞) is the marked point about which neighborhoods

have infinite (resp. finite) mass and η′ is a space-filling SLEκ′ process [MS17] from −∞ to
−∞ sampled independently of h and then reparameterized so that µh(η′([s, t])) = t− s
for all s < t then the change in the quantum lengths (L,R) of the left and right
boundaries of η′ relative to time 0 evolve as a correlated two-dimensional Brownian

3This point is justified carefully in [DMS14, Section 4] for the quantum disk measures that describe
the pieces of so-called thin quantum wedges. The quantum disk measures in [DMS14, Section 4] are
constructed from Bessel excursions the same way as MBES but with a different range of choices for the
parameter δ. The conditioning argument used in [DMS14, Section 4] also applies to MBES.
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motion with (up to a linear reparameterization of time) 4

var(Lt) = |t|, var(Rt) = |t|, and cov(Lt, Rt) = − cos(πγ2/4)|t| ≥ 0. (1.5)

Moreover, (L,R) a.s. determines both η′ and the quantum surface (C , h,+∞,−∞).
It is in fact shown in [DMS14] that the quantum lengths (L,R) of η′ evolve as a
two-dimensional Brownian motion for all values of γ ∈ (0, 2) and that (L,R) a.s.
determines the path decorated quantum surface (C , h,+∞,−∞), η′. It was later shown
in [GHMS17] that the covariance matrix for (L,R) is the same function of γ as in (1.5)
for all γ ∈ (0, 2).

Our first main result (stated just below) serves to extend this result to the setting of
the unit area quantum sphere. In this setting, the pair (L,R) is no longer a correlated
Brownian motion but rather a correlated Brownian loop. Fix γ ∈ (0, 2) and suppose
that (X, Y ) is a two-dimensional Brownian motion starting from the origin with the
same covariance as in (1.5). Let (L,R) be given by the law of (X, Y ) conditioned on
X1 = Y1 = 0 and Xt, Yt ≥ 0 for all t ∈ [0, 1]. (This involves conditioning on an event of
measure zero; we explain how to make this precise in Section 3.)

Theorem 1.1. Suppose that γ ∈ (0, 2) and that (C , h,−∞,+∞) is a unit area quantum
sphere. Let η′ be a space-filling SLEκ′ process from −∞ to −∞ sampled independently
of h and then reparameterized by quantum area. That is, we take η′(0) = −∞ and we
parameterize time so that for 0 ≤ s < t ≤ 1 we have that µh(η

′([s, t])) = t− s. Let Lt
(resp. Rt) denote the quantum length of the left (resp. right) side of η′([0, t]). Then the
law of (L,R) is as described just above. Moreover, the path-decorated quantum surface
(C , h,−∞,+∞), η′ is a.s. determined by (L,R).

In [DMS14, Theorem 1.17], it is shown that it is also natural to explore a γ-quantum
cone (C, h, 0,∞) with a whole-plane SLEκ′(κ

′−6) process η̃′ from 0 to∞. The quantum
surfaces which correspond to the complementary components of C \ η̃′ are described by
so-called forested lines. In the case that κ′ = 6 so that η̃′ is an ordinary whole-plane
SLE6, it is shown in [DMS14, Corollary 10.2] that the evolution of the quantum length
of the boundary of the unbounded component of C \ η̃′([0, t]) is given by a totally
asymmetric 3/2-stable Lévy process with only negative jumps conditioned to be non-
negative when η̃′ is parameterized by quantum natural time (quantum natural time is
introduced just before the statement of [DMS14, Theorem 1.18]). In our next theorem,
we describe the analog of this latter statement in the case of a unit area quantum sphere
with γ =

√
8/3.

Suppose that Xt is a totally asymmetric 3/2-stable process with only upward jumps
and let It = inf{Xs : s ≤ t} be the running infimum of X. Let N be the excursion

4Space-filling SLEκ′ from ∞ to ∞ in C is constructed in [MS17]. The process in C from −∞ to
−∞ is defined in the same way with a whole-plane GFF on C . Alternatively, it can be constructed by
taking the process on C and then applying a conformal transformation which takes ∞ to −∞.
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measure associated with the excursions that Xt − It makes from 0. We note that N
is an infinite measure (we will recall its construction in Section 2.1.2; see also [Ber96,
Chapter VIII.4]), though for each ε > 0 we have that N assigns finite mass to those
excursions which have length at least ε. Let MLEV be the infinite measure on collections
of oriented, marked quantum disks such that sampling from MLEV amounts to:

• Sampling a stable Lévy excursion e from N.

• Given e, sampling a collection of conditionally independent quantum disks (we
will review the definition of a quantum disk in Section 2.3.2) indexed by the jumps
of e whose boundary length is equal to the size of the jump made by e and then
orienting each by the toss of an i.i.d. fair coin.

• Marking the boundary of each quantum disk with a conditionally independent
point chosen from its quantum boundary measure.

Theorem 1.2. Let (C , h,−∞,+∞) be a unit area quantum sphere with γ =
√

8/3. Let
η̃′ be a whole-plane SLE6 process in C from −∞ to +∞ sampled independently of h and
then parameterized by quantum natural time. For each t ≥ 0, let Xt denote the length
of the boundary of the connected component of C \ η̃′([0, t]) which contains +∞. Then
the joint law of X and the oriented (by the order in which η̃′ draws the disk boundary),
marked (by the last point on the disk boundary visited by η̃′) quantum disks cut out
by η̃′ is equal to the time-reversal of a sample produced from MLEV conditioned on the
total quantum area of the quantum disks being equal to 1. Moreover, the path-decorated
quantum surface (C , h,−∞,+∞), η̃′ is a.s. determined by the ordered sequence of
oriented, marked components cut out by η̃′ viewed as quantum surfaces.

We will show in Lemma 6.1 that for each a > 0, MLEV assigns finite mass to those
configurations for which the sum of the area of the quantum disks is at least a.

Remark 1.3. By [DMS14, Proposition A.13], the points which correspond to −∞ and
+∞ in the unit area quantum sphere as constructed above are independent and uniformly
distributed according to the quantum measure conditional on the surface. In particular,
Theorem 1.2 applies if one starts with a unit area quantum sphere, picks points x, y ∈ S
independently and uniformly at random using the quantum area measure, and then
lets η̃′ be a whole-plane SLE6 on S from x to y.

Remark 1.4. We expect statements analogous to Theorem 1.2 to also hold for other
values of γ ∈ (

√
2, 2). Namely, we expect it to be possible to describe a certain kind of

doubly-marked quantum sphere decorated with a whole-plane SLEκ′ process in terms
of a κ′/4-stable Lévy excursion where each of the jumps correspond to conditionally
independent quantum disks whose boundary length is equal to the size of the jump. The
case γ =

√
8/3 is special because the surface is given by the unit area quantum sphere.

For other values of γ, the law on spheres should be constructed in the same manner
as the unit area quantum sphere except with a different Bessel process dimension. In
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particular, for γ 6=
√

8/3, the starting and ending points of the SLEκ′ process are
not uniformly distributed according to the quantum area measure. It should also be
possible to describe a (standard) unit area quantum sphere with γ ∈ (

√
2, 2) decorated

by an independent whole-plane SLEκ′(κ
′ − 6) process connecting two points chosen

uniformly from the quantum measure in terms of finite volume analogs of the forested
lines considered in [DMS14]. We will describe some extensions in this direction in
Section 7.

Theorem 1.2 implies that MLEV can be thought of as an infinite measure on path-
decorated doubly-marked quantum spheres. More generally, Theorem 1.2 implies that
a sample produced from MLEV conditioned on having a given quantum area A > 0 has
the same law as a sample produced from MBES conditioned on the quantum area being
equal to the same value A. It therefore follows that the Radon-Nikodym derivative of
MLEV with respect to MBES is a function of quantum area alone. Our final main result
is the explicit identification of this function.

Theorem 1.5. There exists a constant cLB > 0 such that

dMLEV

dMBES

= cLB. (1.6)

Let A denote the quantum area of a quantum surface S sampled from MLEV or MBES.
For γ =

√
8/3, it turns out that the density of A under MBES with respect to Lebesgue

measure is given by a constant times A−3/2; see Proposition 6.3. Theorem 1.5 then
implies that the density of A under MLEV with respect to Lebesgue measure is given by
a constant times A−3/2. It is not a coincidence that this is the same exponent that one
encounters in the “grand canonical” doubly marked Brownian map measure µ2

SPH, as
discussed for example in [MS15a].

The equivalence of MLEV with MBES implies that the conditional law of the two marked
points of MLEV given the underlying surface are uniformly random from the quantum
measure. For this reason, in the subsequent papers [MS15b, MS16a, MS16b] we will
refer to this measure as M2

SPH. We can generate spheres with fewer or more marked
points by unweighting or weighting M2

SPH by quantum area. In particular, the infinite
measure on quantum spheres M1

SPH with only one marked point can be sampled by
first picking A from the infinite measure A−5/2dA where dA denotes Lebesgue measure
on R+ and then, given A, picking a quantum sphere with area equal to A, and then
finally picking the marked point from the quantum area measure. This measure is in
correspondence with µ1

SPH from [MS15a]. More generally, we define the infinite measure
Mk

SPH on quantum spheres with k marked points by first picking A from the measure
A−7/2+kdA, and then, given A, picking a quantum sphere with area equal to A, and
then finally picking the k marked points conditionally independently from the quantum
area measure. This measure is in correspondence with µkSPH from [MS15a].
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1.5 Outline

The remainder of this article is structured as follows. We will review some preliminary
facts about Bessel and stable Lévy processes, quantum surfaces, and conformal maps in
Section 2. In particular, we will recall in Theorem 2.1 how to describe a quantum disk in
terms of a correlated two-dimensional Brownian excursion; this result already appeared
in [DMS14]. Next, in Section 3 we will give a rigorous construction of the measure
on correlated Brownian loops described just before the statement of Theorem 1.1.
This measure essentially corresponds to a correlated two-dimensional Brownian bridge,
starting and ending at the origin and conditioned to stay in the positive quadrant. We
construct and make some basic observations about this process. In Section 4 we will
explain how one can construct a unit area quantum sphere from a γ-quantum cone. We
will then make use of this result in Section 5 and Section 6, where we will respectively
establish Theorem 1.1 and Theorems 1.2 and 1.5. We will discuss extensions of our
results for γ =

√
8/3 to general values of γ ∈ (

√
2, 2) in Section 7.

All of the results in this paper build on the infinite volume constructions that appear in
[DMS14]. Intuitively, one way to get from an infinite volume quantum surface to a unit
area quantum sphere is to condition the former to have a small “bottleneck,” so that
the area to one side of the bottleneck is about 1. One can take a limit as the bottleneck
is required to be, in some sense, smaller and smaller. For each of the different ways to
describe the infinite volume surface that are shown to be equivalent in [DMS14] (via
the Bessel process, the correlated 2D Brownian motion, or the stable Lévy process)
there is natural way to define a bottleneck and to make sense of the sphere obtained in
the “small bottleneck” limit. The technical challenge, which the bulk of this paper is
devoted to addressing, is to show that all of these different approaches actually agree in
the limit.

Before addressing these challenges, we will recall that a quantum cone is a random surface
with two marked points, an “infinite mass” point (about which every neighborhood has
infinite mass) and a “finite mass” point (about which small neighborhoods have finite
mass). We will then consider various ways to explore this random surface from the
infinite mass point toward the finite mass point—either deterministically (parameterizing
the surface by a cylinder and exploring the cylinder from left to right) or randomly
(drawing a whole plane SLE from one endpoint to another). With each approach, we
may stop the exploration when (in some sense) the boundary of the unexplored region
is small and then consider the conditional law of the unexplored region—in particular,
we would like to understand the law of the unexplored region conditioned on the event
that its quantum area is much larger than one would expect.

This analysis will require some work, and a number of careful estimates, but there are
a few tricks that make the job more pleasant than it might otherwise be. One involves
using some basic conformal map estimates, similar to those that appear in [DMS14],
to argue that certain fairly drastic local operations on a quantum surface (such as
cutting out a disk with a very small quantum area and then gluing in a disk with the
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same boundary length but a much larger quantum area) actually have little effect on
the global conformal embedding. Another involves using the “target invariance” of
certain types of SLE along with properties of the quantum cone to show that one can
sometimes partially “forget” the location of the finite-mass endpoint of a quantum cone

— and resample it from the LQG measure on some specified region — without changing
the overall law of the path decorated surface.

2 Preliminaries

In this section, we will review some preliminary facts about random processes and
quantum surfaces. We will begin in Section 2.1 with a short review of Bessel and stable
Lévy processes. Next, in Section 2.2 we will give a review of space-filling SLEκ′ as
constructed in [MS17]. Then in Section 2.3 we will remind the reader of the various
types of quantum surfaces which were constructed in [DMS14] and are relevant for
the present article. Finally, in Section 2.4, we will record an elementary estimate for
conformal maps which will be used when we perform cutting/gluing operations on
quantum surfaces.

2.1 Bessel and stable Lévy processes

We will now collect a few facts about Bessel and stable Lévy processes. For the former,
we refer the reader to [RY99, Chapter XI] for a more detailed introduction; see also
[DMS14, Section 3.2]. For the latter, we refer the reader to [Ber96].

2.1.1 Bessel processes

A Bessel process Xt of dimension δ ∈ R, denoted by BESδ, is described by the SDE

dXt =
δ − 1

2
· 1

Xt

dt+ dBt, X0 ≥ 0 (2.1)

where B is a standard Brownian. Standard results for SDEs imply that a unique
strong solution to (2.1) exists up until the first time t that Xt ≤ 0 for all δ ∈ R. For
δ ≥ 2, a BESδ a.s. does not hit 0 (except possibly at its starting point) while for
δ < 2, a BESδ a.s. hits 0 in finite time. This can be seen by observing that X2−δ

t is a
continuous local martingale. For δ ∈ (1, 2), a BESδ process can be defined for all times,
is instantaneously reflecting at 0, is a semimartingale, and satisfies the integrated form
of (2.1). For δ ∈ (0, 1], there is also a unique way of defining a BESδ for all times which
is instantaneously reflecting at 0. In this case, the process is not a semimartingale and
satisfies (2.1) only in those intervals in which it is not hitting 0. In order to make sense
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of the integrated version of (2.1) in this case, it is necessary to introduce a principal
value correction.

For δ ∈ (0, 2), one can use Itô excursion theory to decompose a BESδ into its excursions
from 0. In order to describe this, we let Eh be the set of continuous functions φ : [0, h]→
R and E = ∪h>0Eh. We then let νBES

δ be the (infinite) measure on E which can be
sampled from by:

• Picking a sample t from the measure cδt
δ/2−2dt where dt denotes Lebesgue measure

on R+ and cδ > 0 is a constant.

• Given t, picking an excursion of a BESδ from 0 to 0 of length t.

Note that a Bessel process can be constructed as a chain of excursions: precisely, a
sample from the law of a BESδ can be produced by first picking a Poisson point process
(p.p.p.) Λ with intensity measure du⊗ νBES

δ on R+ ⊗ E , where du is Lebesgue measure
on R+, and then concatenating together the second component of the elements (u, e)
of Λ with (u, e) coming before (u′, e′) if and only if u < u′.

One can also generate a p.p.p. Λ with intensity measure du⊗ νBES
δ when δ ≤ 0. In this

case, however, it is not possible to string together the excursions chronologically to
form a continuous process. As explained in the introduction, the excursion measure
associated with a BESδ is the starting point for the construction of the unit area
quantum sphere given in [DMS14].

Another way to generate a Bessel process is by exponentiating a Brownian motion
with linear drift and then reparameterizing it to have quadratic variation dt. Namely,
if Xt = Bt + at where B is a standard Brownian motion, then the process which
arises by setting Zt = eXt and then changing time so that d〈Z〉t = dt is a BESδ with
δ = 2 + 2a (stopped at the first time that it hits 0). Conversely, if Z is a BESδ, then
Xt = logZt reparameterized to have quadratic variation d〈X〉t = dt is a standard
Brownian motion with linear drift at with a = (δ − 2)/2. (See [RY99, Chapter XI] or
[DMS14, Proposition 3.4].)

2.1.2 Stable Lévy processes

Fix α ∈ (0, 2) and recall that a Lévy process X is said to be α-stable if for each u > 0

fixed it has the property that (t 7→ u−1/αXut)
d
= (Xt).

Suppose that X is an α-stable process with α ∈ (1, 2) with only positive jumps. Let
It = inf{Xs : s ∈ [0, t]} be the running infimum of X. Then the process X − I can be
decomposed into a Poissonian collection of excursions from 0 [Ber96, Chapter VIII.4].
Let N be the measure which is sampled from using the following steps:
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• Pick a lifetime t from the measure cαt
ρ−2dt where ρ = 1− 1/α is the positivity

parameter of the process [Ber96, Chapter VIII.1], dt denotes Lebesgue measure
on R+, and cα > 0 is a constant.

• Given t, pick a sample from the normalized excursion measure of an α-stable Lévy
process and then rescale it spatially and in time so that it has length t.

One can then produce a sample from the law of the process X − I by sampling a p.p.p.
Λ with intensity measure du ⊗ dN, with du given by Lebesgue measure on R+, and
then concatenating the second component of the elements (u, e) ∈ Λ where (u, e) comes
before (u′, e′) if and only if u < u′.

The collection of jumps made by X up to a given time T also has a Poissonian structure.
Namely, if Λ is a p.p.p. on [0, T ]×R+ sampled with intensity measure dt⊗ c̃αu−1−αdu
where dt denotes Lebesgue measure on [0, T ], du denotes Lebesgue measure on R+,
and c̃α > 0 is a constant, then the elements (t, u) are in correspondence with the jumps
made by X up to time T where t gives the time at which the jump occurred and u
gives the size of the jump.

We finish by recording one final useful fact about α-stable Lévy processes with only
positive jumps. Suppose that Xt is an α-stable process with only positive jumps, X0 > 0,
and let τ = inf{t ≥ 0 : Xt = 0}. Then the time-reversal Xt−τ has the law of an α-stable
process with only negative jumps conditioned to be non-negative and stopped at the
last time that it hits X0 [Ber96, Chapter VII, Theorem 18].

2.2 Space-filling SLE

Fix κ′ > 4. In this section, we will recall the construction of space-filling SLEκ′ from
[MS17] and also explain how it is related to chordal and radial SLEκ′ . Roughly speaking,
space-filling SLEκ′ for κ′ ∈ (4, 8) is an SLE process which iteratively fills up the bubbles
as it cuts them off from ∞ (or its target point) and for κ′ > 8 it is the same as ordinary
SLEκ′ . The particular variant of space-filling SLEκ′ which is most important for this
article is the version which is defined on C and is an infinite path from ∞ back to itself.
The starting point for its construction in [MS17] is a whole-plane GFF h with values
defined up to a global multiple of 2πχ where

χ =
2√
κ
−
√
κ

2
and κ =

16

κ′
∈ (0, 4).

It is shown in [MS17] that it is possible to construct the flow lines of the formal vector
field eih/χ (this only requires us to have defined the field values modulo a global multiple
of 2πχ). For z ∈ C, the flow line ηz of h from z to ∞ is a whole-plane SLEκ(2 − κ)
process from z to ∞. More generally, for θ ∈ R we can define the flow line ηθz of h from
z to ∞ as the flow line of h+ θχ and ηθz is a whole-plane SLEκ(2− κ) process from z
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to ∞. If θ̃ = θ + 2πχ then ηθz = ηθ̃z but otherwise ηθz , η
θ̃
z are distinct paths. In other

words, we have a 2π range of angles for flow lines starting from each z ∈ C. It is shown
in [MS17, Theorem 1.9] that for z, w ∈ C distinct we a.s. have that the flow lines ηz,
ηw starting from z, w, respectively, a.s. merge with each other and do not subsequently
separate. The same is also true for the ηθz , η

θ
w for each value of θ. This means that we

can use the flow lines to define a space-filling tree and a space-filling dual tree.

More precisely, for each z ∈ C we let ηLz (resp. ηRz ) be the flow line of h starting from
z with angle π

2
(resp. −π

2
). The paths ηLz are the branches of the tree and the paths

ηRz are branches of the dual tree. Given a countable dense set (zn) of C, we can define
an ordering on the zn by saying that zn comes before zm if ηLzn merges with ηLzm on its
right side. This turns out to be equivalent to ηRzn merging with ηRzm on its left side.
Whole-plane space-filling SLEκ′ from ∞ to ∞ is a continuous, non-self-tracing and
non-self-crossing path η′ which fills all of C and visits the points of (zn) according to
the above order. It is not difficult to see from the construction that the resulting path
is a.s. the same for any two fixed choices of countable dense sets. Space-filling SLEκ′

can thus be thought of as the peano curve which traces between the tree and dual tree
defined above.

If z ∈ C is fixed, then we can consider η′ targeted at z, which means that we parameterize
the path by capacity as seen from z. Call this path η̃′z. In other words, η̃′z does not fill
in the bubbles that it disconnects from z. It turns out that the law of η̃′z is that of a
whole-plane SLEκ′(κ

′ − 6) process from ∞ to z and is the counterflow line of h from ∞
to z. For different points z, w, the paths η̃′z, η̃

′
w agree with each other until z and w are

separated and afterwards their evolution continues independently.

2.3 Quantum cones and disks

We are now going to give a brief overview of the types of quantum surfaces which will
be important for this article. We refer the reader to [DMS14, Sections 1 and 4] for a
much more detailed introduction and motivation for the definitions we give here.

Throughout, we let S = R× [0, π] and S± = R± × [0, π]. We also let C = R× [0, 2π]
and C± = R± × [0, 2π] with the top and bottom identified in both cases. When
X ∈ {S ,S±,C ,C±}, we let H1(X) be the subspace of H(X) consisting of those
functions which are constant on vertical lines and let H2(X) be the subspace of H(X)
consisting of those functions which have mean zero on vertical lines. As explained in
the introduction (see also [DMS14, Lemma 4.3]), we have that H1(X)⊕H2(X) gives
an orthogonal decomposition of H(X).

2.3.1 Quantum cones

Fix α < Q. An α-quantum cone C = (C , h,+∞,−∞) is the quantum surface whose
law can be sampled from using the following steps:
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• Take the projection of h onto H1(C ) to be given by 2γ−1 logZ parameterized
to have quadratic variation du where Z is the time-reversal of a BESδ with
δ = 2 + 4

γ
(Q− α) > 2 starting from 0. This determines the projection of h onto

H1(C ) up to horizontal translation; we can fix the horizontal translation by taking
it so that the projection first hits 0 at u = 0.

• Sample the projection of h onto H2(C ) independently from the law of the corre-
sponding projection of a GFF on C .

In many instances, it is also natural to parameterize a quantum cone by C rather
than C . For the purposes of this article, however, we will always parameterize our
cones by C .

The reason that we take the time-reversal of Z in place of Z itself is so that every
neighborhood of −∞ a.s. contains an infinite amount of quantum area and every
sufficiently small neighborhood of +∞ (i.e., bounded away from −∞) a.s. contains a
finite amount of quantum area; at times it will be useful to explore from the “infinite
area” end to the “finite area” end of the cylinder, so it is mildly more convenient to
orient time that way.

As explained in [DMS14], it is natural to explore a γ-quantum cone with an independent
space-filling SLEκ′ process. When parameterized by C as above, we take η′ to be a space-
filling SLEκ′ from −∞ to −∞ sampled independently of h and then reparameterized
by γ-LQG area with time normalized so that η′(0) = +∞. [DMS14, Theorem 1.9]
implies that the processes (L,R) which describe the change in the quantum length
of the left and right boundaries of η′ relative to time 0 (i.e., L0 = R0 = 0) evolve as
a pair of correlated Brownian motions with covariance as in (1.5) (the covariance for
γ ∈ (0,

√
2) is identified in [GHMS17]) and [DMS14, Theorem 1.11] implies that (L,R)

a.s. determines both the quantum cone and η′, up to a rotation and translation (i.e.,
conformal transformation of C which fix ±∞).

By [DMS14, Corollary 10.2], it is also natural to explore an α-quantum cone,

α =
γ2 + 8

4γ
, (2.2)

with an independent whole-plane SLEκ′ process η̃′ from +∞ to −∞ when γ ∈ (
√

2, 2)
so that κ′ ∈ (4, 8). When η̃′ is parameterized by quantum natural time, the quantum
length X of its outer boundary evolves as a κ′/4-stable process with only downward
jumps starting from 0 and conditioned to be non-negative. Given the realization of X,
the regions cut out are conditionally independent quantum disks (a type of finite-volume
surface described in the next subsection) whose boundary lengths are given by the jump
sizes of X. Moreover, by [DMS14, Theorem 1.17] the quantum cone is a.s. determined
by X, the quantum disks, their orientation (whether or not they are surrounded on the
left or right side of η̃′), and the marked boundary point on each which corresponds to the

18



first (resp. equivalently last) point visited by η̃′. The value γ =
√

8/3 (corresponding
to κ′ = 6) is special because it is the unique positive solution to (γ2 + 8)/(4γ) = γ.
More generally, by [DMS14, Theorem 1.17] it is natural to explore a γ-quantum cone
with an independent whole-plane SLEκ′(κ

′ − 6) process η̃′ from −∞ to +∞ though for
κ′ 6= 6 the process which gives the quantum length of the outer boundary of η̃′ is more
complicated to describe.

2.3.2 Quantum disks

As in the case of the unit area quantum sphere described in the introduction, the
starting point for the construction of the unit boundary length quantum disk is an
infinite measure on quantum surfaces which is derived from the (infinite) excursion
measure for a certain Bessel process. As in [DMS14], we will take our quantum disks
to be parameterized by S (with “marked” points at the two endpoints). A natural
infinite measure M on quantum disks with two marked boundary points can be sampled
from by:

• Taking the projection h onto H1(S ) to be given by 2γ−1 logZ where Z is sampled
from the excursion measure of a Bessel process of dimension 3− 4

γ2 parameterized
to have quadratic variation 2du.

• Sampling the projection of h onto H2(S ) from the law of the corresponding
projection of a free boundary GFF on S .

The unit boundary length quantum disk is the law on quantum surfaces that one
gets by sampling from the measure M conditioned to have quantum boundary length
equal to 1.

As in the case of γ-quantum cones, it is shown in [DMS14] that it is also natural to
explore a unit boundary length quantum disk using a space-filling SLEκ′ process. We
are going to give a precise statement of this result below for the convenience of the
reader. Before we do so, we first need to remind the reader of the definition of so-called
π/2-cone times and excursions. Suppose that Z = (X, Y ) is a continuous process. Then
a time t is said to be a π/2-cone time for Z if there exists h > 0 such that Zs ≥ Zt
(i.e., this inequality holds coordinate-wise) for all s ∈ [t, t+h]. We call the restriction of
Z to an interval of time [s, t] a π/2-cone excursion if it has the property that Zr ≥ Zs
for all r ∈ [s, t] and Xs = Xt or Ys = Yt. We refer to the quantity max(Xt−Xs, Yt−Ys)
as the terminal displacement of the π/2-cone excursion. In the case that Z is a
two-dimensional Brownian motion, it is not difficult to see that it is possible to represent
Z as a Poissonian collection of π/2-cone excursions sampled using a certain infinite
measure on π/2-cone excursions (this is essentially carried out in the proof of [DMS14,
Proposition 10.3]). We will give a direct construction of the law of a π/2-cone excursion
for a correlated Brownian motion of either unit length or terminal displacement in
Section 3.
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Theorem 2.1. Fix γ ∈ [
√

2, 2) and suppose that (S , h,−∞,+∞) is a unit boundary
length quantum disk. Let η′ be a space-filling SLEκ′ process from −∞ to −∞ sampled
independently of h and then reparameterized by quantum area. Let Lt (resp. Rt) denote
the length of the left (resp. right) side of η′([0, t]). Then (L,R) evolves as a π/2-cone
excursion with terminal displacement 1 of a two-dimensional Brownian motion with
covariance as in (1.5). Moreover, (L,R) a.s. determines both h and η′, up to a conformal
transformation of S which fixes −∞.

Remark 2.2. Theorem 2.1 describes the behavior of (L,R) when one conditions on the
quantum boundary length of the quantum disk. What happens when one conditions on
both the quantum area and boundary length? The process (L,R) is a function of the
quantum disk and the independent space-filling SLEκ′ process η′. We know that if we
fix the boundary length of the disk, then (L,R) evolves as a π/2-cone excursion with
terminal displacement given by the boundary length. If we condition further on the
quantum area of the disk, then this has the effect of fixing the length of the π/2-cone
excursion. Since this extra conditioning only depends on the quantum disk and not on
η′, it follows that when we explore a quantum disk of a given quantum boundary length
and area with an independent space-filling SLEκ′ process then the left/right boundary
lengths evolve as a correlated Brownian excursion of the given length and terminal
displacement.

2.4 Distortion estimate for conformal maps on the cylinder

In our proofs of Theorem 1.1 and Theorem 1.2, we will perform a number of “cutting”
and “gluing” operations for quantum surfaces. The following elementary estimates for
conformal maps tell us how much these operations distort the embedding of the rest of
the surface. Recall that a set K ⊆ C is said to be a hull if it is compact and Ĉ \K is

simply connected, where Ĉ denotes the Riemann sphere. We begin with a restatement
of [DMS14, Lemma 9.6].

Lemma 2.3. There exist constants C1, C2 > 0 such that the following is true. Let
K1 ⊆ C be a hull of diameter at most r and K2 ⊆ C another hull such that there exists
a conformal map F : C \K1 → C \K2 with |F (z)− z| → 0 as z →∞. Then whenever
dist(z,K1) ≥ C1r we have that

|F (z)− z| ≤ C2r
2|z − b1|−1

where b1 is the harmonic center of K1. That is, if F1 : C \D→ C \K1 is the unique
conformal map fixing ∞ and with positive derivative at ∞ then b1 is equal to the average
of F on ∂B(0, r) for any r > 1. (It is elementary to check that this definition does not
depend on the choice of r.)

We say that a set K ⊆ C is a hull if the image of K under the map C → C given by
z 7→ ez is a hull as defined above. We are now going to use Lemma 2.3 to deduce a similar
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estimate in the setting of hulls in C . As in Section 2.3, we let C− = {z ∈ C : Re(z) ≤ 0}
and C+ = {z ∈ C : Re(z) ≥ 0}.
Lemma 2.4. There exist constants C1, C2 > 0 such that the following is true. Suppose
that K1 ⊆ C− is a hull and K2 ⊆ C is another hull such that there exists a conformal
map F : C \K1 → C \K2 with |F (z)− z| → 0 as z → +∞. Then we have that

|F (w)− w| ≤ C2 exp(−Re(w)) for all w ∈ C+ + C1. (2.3)

Proof. Let G(z) = exp(F (log(z))). Then G is a conformal transformation of C \ K̃1

to C \ K̃2 where K̃i = exp(Ki) for i = 1, 2 with |G(z) − z| → 0 as z → ∞. Note

that diam(K̃1) ≤ 1 since K1 ⊆ C−. Consequently, Lemma 2.3 implies that there exist

constants C̃1, C̃2 > 0 such that |G(z)− z| ≤ C̃2 whenever |z| ≥ C̃1. Suppose that z ∈ C

with |z| ≥ C̃1 and let w = log(z) ∈ C . Then this implies that

| exp(F (w))− exp(w)| ≤ C̃2.

Equivalently,
| exp(F (w)− w)− 1| ≤ C̃2| exp(−w)|. (2.4)

By the triangle inequality, this implies that

exp(Re(F (w)− w)) ≤ C̃2 exp(−Re(w)) + 1.

Taking logs of both sides, we get for a constant C2 > 0 that

Re(F (w)− w) ≤ log(C̃2 exp(−Re(w)) + 1) ≤ C2 exp(−Re(w)). (2.5)

Similarly, we also have that

1 ≤ C̃2 exp(−Re(w)) + exp(Re(F (w)− w))

which implies that

1− C̃2 exp(−Re(w)) ≤ exp(Re(F (w)− w)).

This gives us that, by possibly increasing the value of C2, we have

Re(F (w)− w) ≥ −C2 exp(−Re(w)) (2.6)

and therefore combining (2.5) and (2.6) we have

|Re(F (w)− w)| ≤ C2 exp(−Re(w)). (2.7)

Inserting (2.7) into (2.4), we see that by possibly increasing the value of C2 we have

| exp(iIm(F (w)− w))− 1| ≤ C2 exp(−Re(w)). (2.8)

Combining (2.7) with (2.8) implies (2.3) with C1 = log C̃1.
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3 Correlated Brownian loops and excursions

We are now going to give a rigorous construction of the correlated Brownian loop which
was described just before the statement of Theorem 1.1. We will at the same time
give the construction of the law of a π/2-cone excursion of length 1 and given terminal
displacement. We will then show that the correlated Brownian loop can be constructed
as the limit of a π/2-cone excursion of a correlated Brownian motion of length 1 and
terminal displacement tending to 0. This is natural in the context of relating quantum
disks and spheres.

Theorem 3.1. Fix α ∈ (−1, 1) and (x1, y1) ∈ ∂R2
+. There exists a unique law on pairs

of continuous processes Z = (X, Y ) defined on [0, 1] with X0 = Y0 = 0 and X1 = x1,
Y1 = y1 such that the following hold.

(i) P[Xt, Yt > 0] = 1 for all t ∈ (0, 1).

(ii) For each 0 < s < t < 1, the conditional law of Z|[s,t] given Z|[0,s] and Z|[t,1]

is given by that of a two-dimensional Brownian motion (A,B) on [s, t] with
var(Au) = var(Bu) = u−s and cov(Au, Bu) = α(u−s) conditioned on Au, Bu ≥ 0
for all u ∈ [s, t] and on (As, Bs) = Zs and (At, Bt) = Zt.

Throughout, we let Z = (X, Y ) be a two-dimensional Brownian motion with var(Xt) =
var(Yt) = t and cov(Xt, Yt) = αt for α ∈ (−1, 1) fixed. For z ∈ C, we let Pz denote the
law under which Z0 = z and let Ez be the corresponding expectation. The first step
in the proof of the existence component of Theorem 3.1 is to prove the existence of a
process taking values in R2

+ which corresponds to Brownian motion conditioned to stay
in R2

+. This process was constructed by Shimura in [Shi85] and the next two lemmas
can be found in [Shi85].

For each δ ≥ 0, we let Pδ be the event that Xt, Yt ≥ −δ for all t ∈ [0, 1].

Lemma 3.2. There exists a law ν on continuous processes W : [0, 1]→ R2
+ with W0 = 0

such that:

(i) P[Wt > 0] = 1 for all t ∈ (0, 1),

(ii) For each t ∈ (0, 1), the conditional law of W |[t,1] given W |[0,t] is that of a Brownian
motion (A,B) on [t, 1] with var(Au) = u− t, var(Bu) = u− t, and cov(Au, Bu) =
α(u− t) conditioned (on the positive probability event) to stay in R2

+ in [t, 1] and
starting from Wt, and

(iii) With respect to the topology of uniform convergence, we have both

(a) The law of Z|[0,1] under P0[· |Pδ] converges weakly to ν as δ → 0.
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(b) The law of Z|[0,1] under Pz[· |P0] converges weakly to ν as z → 0 in R2
+.

Lemma 3.3. For 0 ≤ s ≤ t ≤ 1, we let ps,t(z, w) be the transition density for the process
constructed in Lemma 3.2. Then (s, t, z, w) 7→ ps,t(z, w) is bounded and continuous in
z, w ∈ R2

+. Moreover, ps,t(z, w) > 0 for all 0 ≤ s < t ≤ 1 and z, w ∈ R2
+.

We direct the reader to [Shi85] for an explicit formula for ps,t(x, y). By combining
Lemma 3.2 and Lemma 3.3, we obtain the following.

Lemma 3.4. Fix w ∈ R2
+, s, t ∈ (0, 1) with s < t, and let ν be as in Lemma 3.2. Then

both of the following hold with respect to the topology of uniform convergence.

(i) The law of Z|[0,s] under P0[· |Pδ, Zt = w] converges weakly as δ → 0 to ν[· |Zt = w].

(ii) The law of Z|[0,s] under Pz[· |P0, Zt = w] converges weakly as z → 0 in R2
+ to

ν[· |Zt = w].

Proof. We are going to prove the first assertion of the lemma. The second assertion is
proved similarly. Fix s, t ∈ (0, 1) with s < t and w ∈ R2

+. By a Bayes’ rule calculation
and the Markov property, the Radon-Nikodym derivative of the law of Z|[0,s] under
P0[· |Pδ, Zt = w] with respect to P0[· |Pδ] is given by

Zs,tw,δ =
ps,tδ (Zs, w)

p0,t
δ (0, w)

(3.1)

where ps,tδ is the transition density for Z given Pδ. Moreover, the Radon-Nikodym
derivative Zs,tw of ν[· |Zt = w] with respect to ν takes the same form. Lemma 3.3 implies
that Zs,tw,δ is bounded and continuous as a function of Zs and it follows from [Shi85]

that Zs,tw,δ → Zs,tw uniformly as δ → 0. Therefore the result follows from Lemma 3.2.

Proof of Theorem 3.1. We are first going to show that there is at most one such law.

Suppose that Z and Z̃ are two processes which satisfy the hypotheses of the proposition.
Fix t ∈ (0, 1) and note that the Markovian hypothesis implies that both Zt and Z̃t have
continuous densities with respect to Lebesgue measure which are everywhere positive
in R2

+. Moreover, Lemma 3.4 implies that for each t ∈ (0, 1) and w ∈ R2
+ we have that

the laws of Z|[0,t] given Zt = w and Z̃|[0,t] given Z̃t = w are the same. Similarly, the

laws of Z|[t,1] given Zt = w and Z̃|[t,1] given Z̃t = w are the same.

Fix 0 = t0 < t1 < t2 < t3 = 1 and fix R > 0. Consider the Markov chain which in
each step sequentially resamples Ztj given Ztj−1

and Ztj+1
for j = 1, 2 conditioned on

Ztj ≤ R (i.e., each coordinate is at most R). Then we have that the laws of both

(Zt1 , Zt2) conditioned on Ztj ≤ R for j = 1, 2 and (Z̃t1 , Z̃t2) conditioned on Z̃tj ≤ R
for j = 1, 2 are invariant for this chain (i.e., the same resampling kernel). Note that
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the conditional law of Zt1 conditioned on Zt1 ≤ R given any value of Zt2 has a density
with respect to Lebesgue measure on [0, R]2 which is positive on (0, R)2. The same is

likewise true with the roles of t1 and t2 swapped and with Z̃ in place of Z. It thus
follows that by running this chain for one step, we can couple Z and Z̃ conditioned
on both coordinates being at most R at times t1, t2 so that Ztj = Z̃tj for j = 1, 2 with
positive probability (since the conditional law of each given its neighbors is the same).
Therefore it follows from [Geo11, Theorem 14.10] that the law of (Zt1 , Zt2) conditioned

so that Ztj ≤ R for j = 1, 2 is the same as the law of (Z̃t1 , Z̃t2) conditioned so that

Z̃tj ≤ R for j = 1, 2. Indeed, the above implies that this chain cannot have distinct
ergodic measures because distinct ergodic measures are necessarily singular. Since
R > 0 was arbitrary, we therefore have that the law of (Zt1 , Zt2) is the same as the law

of (Z̃t1 , Z̃t2). Uniqueness follows since the Markov hypothesis for Z and Z̃ implies that

we can sample the rest of Z and Z̃ to be a.s. the same given that the two processes
agree at times t1 and t2.

We will now prove existence. Let Ẑ have the law of the process constructed in Lemma 3.2.
We are now going to construct the law of Ẑ conditioned on X̂1 = x1 and Ŷ1 = y1 and
then argue that the resulting conditioned process satisfies the properties listed in the
proposition. This will complete the proof of existence.

Let w1 = (x1, y1). In order to construct this process, we first fix ε > 0 and consider

the law of Ẑ conditioned on the positive probability event that Ẑ1 ∈ B(w1, ε). By an
application of Bayes’ rule, the Radon-Nikodym derivative of the conditioned law of
Ẑ|[0,t] with respect to the unconditioned law is given by

Ẑεt (y) =
P
[
Ẑ1 ∈ B(w1, ε) | Ẑt = y

]

P
[
Ẑ1 ∈ B(w1, ε)

] for y ∈ R2
+. (3.2)

We define

P
[
Ẑ1 ∈ B(w1, ε) | Ẑt = 0

]
= lim

w→0
P
[
Ẑ1 ∈ B(w1, ε) | Ẑt = w

]
.

It is easy to see from the explicit form of ps,t given in [Shi85] that there exists a constant
c0 > 0 such that

Ẑεt (y) ≤ c0




P
[
Ẑ1 ∈ B(w1, ε) | Ẑt = 0

]

P
[
Ẑ1 ∈ B(w1, ε)

]


 for all y ∈ R+

2 . (3.3)

Fix h > 0 so that t < t+ h < 1 and let

Q̂t,h =

{
z ∈ R2

+ : P
[
Ẑ1 ∈ B(w1, ε) | Ẑt+h = z

]
≥ 1

2
P
[
Ẑ1 ∈ B(w1, ε) | Ẑt = 0

]}
.
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The Markov property together with Lemma 3.3 implies that Q̂t,h has positive Lebesgue
measure. Applying Lemma 3.3 again implies that there exists pt,h > 0 depending only
on t and h such that

P
[
Ẑt+h ∈ Q̂t,h

]
= pt,h > 0. (3.4)

Combining (3.4) with the Markov property for Ẑ implies that

P
[
Ẑ1 ∈ B(w1, ε)

]
≥ pt,h

2
P
[
Ẑ1 ∈ B(w1, ε) | Ẑt = 0

]
. (3.5)

Inserting (3.5) into (3.3) implies that

sup
y∈R2

+

Ẑεt (y) ≤ 2c0

pt,h
<∞. (3.6)

Therefore the random variables Ẑεt = Ẑεt (Ẑt) are uniformly integrable. Therefore there

exists a positive sequence (εk) decreasing to 0 such that the law of Ẑεkt (Ẑt) converges

weakly to a limit Ẑt which has expectation 1. By passing to a further (diagonal)

subsequence if necessary, we can arrange so that Ẑεkt converges weakly as k →∞ to a
limit which has expectation 1 for all rational t ∈ (0, 1). It is easy to see that the family

of measures obtained by weighting the law of Ẑ|[0,t] by Ẑt for t ∈ (0, 1) is consistent
and the measure obtained from the t→ 1 limit satisfies the Markov property described
in the statement of the lemma. The continuity of the process at the terminal point can
be seen by a time-reversal argument.

As recalled in Theorem 2.1, it is shown in [DMS14] that when α ∈ [0, 1), a π/2-cone
excursion of Z of terminal displacement ε > 0 naturally encodes a quantum disk with
γ ∈ [

√
2, 2) with quantum boundary length ε where α and γ are related as in (1.5). We

are now going to show that if one generates such a π/2-cone excursion conditioned
further on the event that its length is equal to 1, then the conditional law converges as
ε→ 0 to the law constructed and characterized in Theorem 3.1. This is natural in view
of Theorem 1.1 because it is natural to expect that the law of a quantum disk with
boundary length ε and area 1 converges to that of a unit area quantum sphere as ε→ 0.

Proposition 3.5. Fix ε > 0 and suppose that Z has the law of a π/2-cone excursion
of length 1 and terminal displacement equal to ε. Then the law of Z converges weakly
as ε→ 0 to the law constructed in Theorem 3.1 with respect to the topology of uniform
convergence.

Proof. Let Z = (X, Y ) be a π/2-cone excursion with length 1 and terminal displacement

equal to ε and let Z̃ be the time-reversal of Z. Then arguing as in the proof of
Theorem 3.1 we can view Z̃ as a correlated Brownian motion conditioned to stay in R2

+

and conditioned to terminate at the origin. The argument of the proof of Theorem 3.1
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gives that the Radon-Nikodym derivative between the law of Z̃|[0,t], t ∈ (0, 1) fixed, and

the law of a correlated Brownian motion in [0, t] starting from Z̃0 and conditioned to be
in R2

+ is bounded from above by a constant which depends only on t. For the latter law,

the results of [Shi85] imply that we have a limiting process as Z̃0 → 0. This limiting
process clearly satisfies the hypotheses of Theorem 3.1, which completes the proof.

We end this section with the following estimate for the probability of a bi-infinite
correlated Brownian motion having a π/2-cone excursion with terminal displacement at
most 1 and starting time in the interval [−k − 1,−k].

Proposition 3.6. Fix α ∈ (−1, 1). Suppose that Z = (X, Y ) is a Brownian motion
R→ R2 normalized so that Z0 = 0 with

var(Xt) = var(Yt) = |t| and cov(Xt, Yt) = α|t|.

There exist constants c0 > 0, β > 1 depending only on α such that the following is
true. For each k ∈ N, let Ek be the event that Z has a π/2-cone excursion starting in
[−k − 1,−k] of length at least k + 1 and terminal displacement at most 1. Then

P[Ek] ≤ c0k
−β. (3.7)

In particular, the number of k ∈ N such that Ek occurs is finite a.s.

Proof. Fix ε > 0; we will adjust its value at the end of the proof. We first note
that the reflection principle for Brownian motion implies that there exist constants
c1, c2 > 0 such that the probability of the event Fk that sups,t∈[−k−1,−k] |Zs − Zt| ≥ kε

is at most c1e
−c2k2ε

. It therefore suffices to establish (3.7) with Ek ∩ F c
k in place of Ek.

The probability of the event Ek ∩ F c
k is bounded from above by the probability of the

event Gk that a Brownian motion Z̃ in R2 with the same covariance as Z starting from
kε(1 + i) stays in R2

+ for all t ∈ [0, k] and hits ∂B(0, 2kε) after time k before exiting R2
+.

We note that there exist constants c3, c4 > 0 such that the probability of the event
that Z̃|[0,k] stays in B(0, k1/2−ε)∩R2

+ is at most c3e
−c4k2ε

. Indeed, the reason for this is

that in each round of time of length k1−2ε, we have that Z̃ has a positive of chance of
leaving B(0, k1/2−ε) which is uniform in its starting point in B(0, k1/2−ε) at the start of

the round. It therefore suffices to bound the probability of the event G′k that Z̃ hits
∂B(0, k1/2−ε) ∩R2

+ and then hits B(0, 2kε) before exiting R2
+.

Let

Λ =
1

(1− α2)1/2

(
(1− α2)1/2 0
−α 1

)
.

Then Ẑ = ΛZ̃ is a standard Brownian motion in R2. Moreover, Λ takes R2
+ to a

Euclidean wedge Wθ of opening angle θ = arccos(−α) ∈ (0, π). Let ζ = π/θ > 1. Fix
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a ∈ C with |a| = 1 so that the map z 7→ azζ takes Wθ to H and let Ź be the image of

Ẑ under this map.

The event that Z̃ hits ∂B(0, k1/2−ε) before exiting R2
+ corresponds to the event that Ź

escapes to distance of order kζ(1/2−ε) before exiting H. Since Ź starts with imaginary
part of order kζε, it follows that there exists a constant c5 > 0 such that the probability
of this event is at most

c5k
ζ(2ε−1/2). (3.8)

Conditional on this event, it is clear from the explicit form of the Poisson kernel on H
that there exists a constant c6 > 0 such that the probability that Ź hits a ball centered
at the origin with size proportional to kζε after reaching distance of order kζ(1/2−ε) and
before exiting H is at most

c6k
ζ(2ε−1/2). (3.9)

By taking ε > 0 sufficiently small, (3.7) follows by combining (3.8) and (3.9).

The second assertion of the proposition is an immediate consequence of the first and
the Borel-Cantelli lemma.

4 Constructing a unit area quantum sphere from a

γ-quantum cone

The purpose of this section is to show how to construct a unit area quantum sphere by
pinching off a unit of quantum area from a γ-quantum cone. This construction will
be important for our proofs of Theorem 1.1 and Theorem 1.2. We remark that this
result is similar to [DMS14, Proposition A.11], though the present setting turns out to
be simpler.

Proposition 4.1. Fix γ ∈ (0, 2) and suppose that C = (C , h,+∞,−∞) is a γ-quantum
cone. Let X be the projection of h onto H1(C ). For each r ∈ R and ε > 0, let

τr = inf{u ∈ R : Xu ≤ r} and Er,ε = {1 ≤ µh(C+ + τr) ≤ 1 + ε} . (4.1)

The laws of the quantum surfaces (C+ + τr, h) given Er,ε converge weakly in the space
of distributions to that of the unit area quantum sphere when we take a limit first as
r → −∞ and then as ε → 0. More precisely, if we start with the quantum surface
(C+ + τr, h) given Er,ε and then embed it by taking the horizontal translation so that
the amount of quantum mass in C+ is equal to 1/2, then its law converges weakly in
the space of distributions as r → −∞ and then ε→ 0 to that of the unit area quantum
sphere with the embedding taken so that the amount of mass assigned C+ is 1/2.

Moreover, for any fixed S > 0, the conditional law of the surfaces (C+ + τr, h) given
Er,ε and the restriction of h to Ur = (−∞, τr + S]× [0, 2π] converges in probability to
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that of the unit area quantum sphere with respect to the topology of weak convergence in
the space of distributions (over the realization of the restriction of h to Ur) when we
take a limit first as r → −∞ and then ε→ 0.

The idea of the proof of Proposition 4.1 is to introduce the auxiliary event (defined in
the statement of Lemma 4.2 just below) that X takes on the value γ−1 log(β−1) after
time τr for a fixed value of β > 0. Standard facts about Bessel processes imply that
the law of X conditioned on this event converges as r → −∞ to the log of the same
type of Bessel excursion used to construct the unit area quantum sphere conditioned to
take on a large value and then reparameterized by quadratic variation. We will then
argue that this event occurs with probability tending to 1 given Er,ε as we decrease β
and that, conversely, Er,ε occurs with positive probability for each fixed choice of β
uniformly in r (Lemma 4.3). Combining these two results will lead to the first assertion
of Proposition 4.1. The second assertion follows from a similar argument.

Lemma 4.2. Suppose that we have the setup described in Proposition 4.1. Let

E ′r,β =

{
sup
u≥τr

Xu ≥ γ−1 log
(
β−1
)}

. (4.2)

Let X̃ be given by 2γ−1 logZ reparameterized to have quadratic variation du where Z
is sampled from the excursion measure of a Bessel process of dimension δ = 4 − 8

γ2

conditioned on having maximum at least β−1/2. Then the law of u 7→ Xu+τr conditioned
on E ′r,β converges as r → −∞ weakly with respect the topology of local uniform conver-

gence to the law of X̃, where we have taken the horizontal translation for both so that
they hit β−1/2 for the first time at u = 0.

Proof. This follows from some standard properties of Bessel processes, which can be
found in [DMS14, Section 3]. (See, for example, [DMS14, Lemma 3.6].) In particular,

• If B is a standard Brownian motion and a ∈ R, then the process given by eBt+at

reparameterized to have quadratic variation dt is a Bessel process of dimension
2 + 2a. Applying this to the process X, we see that e(γ/2)Xt reparameterized to
have quadratic variation dt is a Bessel process of dimension 4− 8/γ2. Sending
r → −∞ corresponds to taking the starting point of the Bessel process to be
equal to 0.

• Conditioning X to exceed the value γ−1 log(β−1) is equivalent to conditioning
e(γ/2)Xt to exceed the value β−1/2.
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Lemma 4.3. Suppose that we have the same setup as described in Proposition 4.1. Let
Er,ε be as in (4.1) and E ′r,β be as in (4.2). Then we have both

P
[
E ′r,β |Er,ε

]
→ 1 as β →∞ uniformly in r ≤ 0 and (4.3)

P
[
Er,ε |E ′r,β

]
> 0 uniformly in r ≤ 0 for ε, β > 0 fixed. (4.4)

Proof. This follows from the same argument used to prove [DMS14, Lemma A.4].

Proof of Proposition 4.1. By Lemma 4.2 and Lemma 4.3, it follows that the law of h
conditioned on both Er,ε and E ′r,β converges as r → −∞ and then as ε → 0 to that
of a unit area quantum sphere conditioned on the positive probability event that the
supremum of its projection onto H1(C ) exceeds γ−1 log(β−1). Taking a further limit
as β → ∞ yields the law of a unit area quantum sphere. The first assertion of the
proposition then follows because Lemma 4.3 implies that the conditional law of h given
both Er,ε and E ′r,β is close to the law conditioned on only Er,ε when β > 0 is large.

We are now going to justify the second assertion. Fix S > 0. Let hr be the distribution
on C+ + τr which is given by harmonically extending h from Ur to C+ + τr +S. We first
claim that, given both Er,ε and E ′r,β, hr restricted to C+ +τr+S+T is close to a constant
with respect to the uniform topology for large T . Lemma 4.2 implies that this is the
case when we only condition on E ′r,β. Indeed, we can write this harmonic extension
as the sum f1 + f2 where fi is the part which comes from harmonically extending the
projection of h onto Hi(C ) for i = 1, 2. The restriction of f1 to τr + S + T is constant
as it is given by the harmonic extension of a function which is constant on vertical
lines. The law of f2 restricted to C+ + τr + S + T converges weakly to a constant with
respect to the uniform topology because conditioning on E ′r,β does not affect h2, h2 is
independent of τr, and the law of h2 is translation invariant. Lemma 4.3 implies that
the same convergence holds when we condition on both Er,ε and E ′r,β. The remainder of
the proof of the second assertion thus follows from the same argument used to establish
the first assertion.

5 Equivalence of Bessel and Brownian constructions

The purpose of this section is to give the proof of Theorem 1.1. A variant of this
argument, which we will explain in Section 6, gives Theorem 1.2.

5.1 Setup and strategy

Before we proceed to the proof, we will first give an overview of the steps (and introduce
many of the objects and events). We will first consider the case that γ ∈ (

√
2, 2). We

suppose that we are working on a γ-quantum cone C = (C , h,+∞,−∞) and that η′ is
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a space-filling SLEκ′ process in C from −∞ to −∞ sampled independently of h and
then reparameterized by quantum area. In other words, for each s < t we have that
µh(η

′([s, t])) = t− s with the normalization that η′(0) = +∞. Let η̃′ : R→ C be the
SLEκ′(κ

′ − 6) process from −∞ to +∞ which arises by taking η′ and reparameterizing
it according to capacity as seen from +∞. Equivalently, η̃′ is the counterflow line from
−∞ to +∞ of the GFF used to generate η′. For each time t, we let θt be equal to 2π
times the harmonic measure of the left side of η̃′([0, t]) as seen from +∞. Since θt is

continuous in t we have that the set T̃ of times t such that θt = 0 or θt = 2π is closed in
R. Hence we can write R \ T̃ as a countable disjoint union of open intervals ∪j(sj, tj).
We then let T be the countable and discrete subset (i.e., without limit points) of T̃
which consists of those tj such that θtj 6= θsj . These times correspond to when η̃′ makes
loops which disconnect +∞ from −∞ with alternating clockwise and counterclockwise
orientation.

Let L (resp. R) denote the change in the quantum boundary length of the left (resp.

right) side of η′((−∞, t]) relative to time 0. Each of the times in T , T̃ corresponds to

a π/2-cone excursion of the time-reversal (L̃, R̃) of (L,R) on intervals of time which
contain 0. Recall that the definition of a π/2-cone time is given in Section 2.3.2 and the

connection between π/2-cone times for (L̃, R̃) and the behavior of space-filling SLEκ′ is
explained in the introduction of [DMS14]; see in particular [DMS14, Figure 1.13].

For r ∈ R− and C > 1, we let ζr,C be the first time t ∈ T that the quantum boundary
length of the component containing +∞ is at most C−1eγr/2. We note that a first such
time t a.s. exists by Proposition 3.6 as the complementary component containing +∞ of
η̃′ drawn up to such a time corresponds to a π/2-cone excursion of (L̃, R̃) with terminal
displacement at most C−1eγr/2. Let Ur,C be this component and let `r,C be its quantum
boundary length.

Let Fr,ε,C be the event that `r,C is contained in Ir,C := [1
2
, 1] ·C−1eγr/2 and the quantum

area of Ur,C is in [1, 1 + ε]. Throughout, we let τr and Er,ε be as in (4.1).

The first step (carried out in Section 5.3) is to show that the conditional probability
of Er,ε given Fr,ε,C converges to 1 as C →∞ uniformly in r and that the conditional
probability of Fr,ε,C given Er,ε is uniformly positive in r when C is fixed. This implies
that we can view the joint law of h and η′ conditioned on Fr,ε,C as arising by first
conditioning on Er,ε and then subsequently conditioning the resulting law on the
uniformly positive conditional probability event Fr,ε,C .

The second step (carried out in Section 5.4) is to show that the conditional law of h and
η′ given Er,ε is close to the law which results when we condition further on Fr,ε,C . The
idea to establish this is first to take the horizontal translation of the embedding of C
into C so that the quantum area of C+ is equal to 1/2. Whether or not the event Fr,ε,C
occurs is determined by the behavior of η′ and h in C− + u for u < 0 very negative.
Since the conditional law of η′ and h in C+ + v for v much larger than u given their
behavior in C− + u is not far from their unconditioned law (both h and η′ “forget their

30



past” quickly), it follows that their joint conditional law converges to that of a unit
area quantum sphere decorated by an independent space-filling SLEκ′ process upon
taking limits.

The result then follows for γ ∈ (
√

2, 2) because by Proposition 3.5 the law of (L̃, R̃)
conditional on Fr,ε,C restricted to the interval Jr,C of time in which η′ is filling Ur,C
converges when we take appropriate limits to a correlated Brownian loop as constructed
in Section 3.

At the end of this section, we will explain how a variant of this argument gives the case
that γ ∈ (0,

√
2].

5.2 Exploring a γ-quantum cone

We are now going to identify the conditional law of the unexplored region in a γ-quantum
cone, γ ∈ (

√
2, 2), when one draws a whole-plane SLEκ′(κ

′ − 6) in C from −∞ to +∞
up to the first time t ∈ T that the quantum boundary length of the complementary
component containing the origin falls below 1. This result will in particular imply that
the surface parameterized by this component is conditionally independent of the outside
surface given its quantum boundary length.

Proposition 5.1. Suppose that γ ∈ (
√

2, 2) and let τ be the first time t ∈ T that
the quantum boundary length of the component U of C \ η̃′([0, t]) containing +∞ falls
below 1. Then the conditional law of the quantum surface (U, h) given its quantum
boundary length is that of a quantum disk weighted by its quantum area. That is, if b
denotes the quantum boundary length of ∂U and Mb denotes the law of a quantum disk
with boundary length b, then the conditional law of (U, h) given b has Radon-Nikodym
derivative with respect to Mb equal to the quantum area of U times a normalization
constant to make it a probability measure. Moreover, given its quantum boundary length,
the quantum surface (U, h) is conditionally independent of the quantum surface (C \U, h)
and the ordered sequence of marked, oriented quantum surfaces separated by η̃′ from
+∞ before time τ . Finally, η̃′(τ) is uniformly distributed from the quantum boundary
measure on ∂U .

Recall that weighting the law of a quantum disk by its quantum area corresponds to
adding a marked point to the interior of the disk which is sampled from its quantum
area measure. In the setting of Proposition 5.1, the role of the marked point will
be played by the origin of the quantum cone (C , h,+∞,−∞), i.e., the point at +∞.
Before we proceed to the details of the proof of Proposition 5.1, let us briefly review the
strategy. We first recall from [DMS14] that if we draw an independent SLEκ′(κ

′ − 6)
process on top of a quantum cone, then the structure of the components (viewed as
quantum surfaces) that it cuts out is described by a Poissonian collection of quantum
disks. We will combine this fact with the target invariance of SLEκ′(κ

′ − 6) processes
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where the new target point will come from moving the marked point at +∞ of the
quantum cone using an independent space-filling SLEκ′ .

It is natural in view of considerations from the discrete models that in the statement
of Proposition 5.1 we require that τ ∈ T . Indeed, τ ∈ T is the continuous analog of
having the boundary conditions for the discrete model on ∂U all having “the same
color.” Proposition 5.1 will be a consequence of the following two observations. The
first is a version of [DMS14, Lemma 8.3].

For each z ∈ C , we let ψz : C → C be the unique conformal transformation with
ψz(z) = +∞ and ψ′z(−∞) > 0. Explicitly, ψz(u) = − log(e−u − e−z). We note that ψz
is the analog of the map C→ C which corresponds to translating a point z ∈ C to the
origin in the setting in which we represent C by C with +∞ (resp. −∞) corresponding
to 0 (resp. ∞).

Lemma 5.2. Suppose that we have the same setup as in Proposition 5.1. Conditionally
on h and η̃′, we suppose that w ∈ U is picked uniformly from the quantum area measure
on U and let η̃′w be a whole-plane SLEκ′(κ

′ − 6) process from −∞ to w coupled so as to
agree with η̃′ until w and +∞ are first separated and then taken to continue conditionally
independently afterwards. Then we have as path decorated surfaces that

(C , h ◦ ψ−1
w +Q log |(ψ−1

w )′|,+∞,−∞, ψw(η̃′w))
d
= (C , h,+∞,−∞, η̃′).

Proof. We take η̃′ and η̃′w to be coupled together so that they both correspond to taking
the whole-plane space-filling SLEκ′ process η′ from −∞ to −∞, respectively targeted
at +∞ and w. The idea of the proof is to generate a marked point z chosen uniformly
from the quantum measure on η′([−R,R]) for R > 0 large. Since η′ is parameterized
according to quantum area, this is equivalent to taking z = η′(V ) where V is chosen
uniformly in [−R,R] according to Lebesgue measure independently of everything else.
It is convenient to work with the point z in place of w because [DMS14, Lemma 9.3]
implies that the quantum surface (C , h,+∞,−∞) decorated by η′ has the same law
as the quantum surface (C , h ◦ ψ−1

z +Q log |(ψ−1
z )′|,+∞,−∞) decorated by the path

ψz(η
′). Since ψz(η̃

′
z) is generated from ψz(η

′) in the same deterministic manner as η̃′

is generated from η′, it follows that the quantum surface (C , h,+∞,−∞) decorated
by η̃′ has the same law as the quantum surface (C , h ◦ ψ−1

z +Q log |(ψ−1
z )′|,+∞,−∞)

decorated by the path ψz(η̃
′
z). As we will see momentarily, the lemma will follow by

considering the latter conditioned on the event ER that z ∈ U .

Let A be any positive probability event for (C , h◦ψ−1
z +Q log |(ψ−1

z )′|,+∞,−∞, ψz(η̃′z)).
By Bayes’ rule, we have that

P[A |ER] =
P[ER | A]

P[ER]
P[A]. (5.1)

As explained above, by [DMS14, Lemma 8.3], we have that P[A] is equal to the
probability of the same event with (C , h,+∞,−∞, η̃′) in place of (C , h ◦ ψ−1

z +
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Q log |(ψ−1
z )′|,+∞,−∞, ψz(η̃′z)). Assume that A is an event of the form Ã ∩ {a ≤

µh(U) ≤ a + δ} for some a ≥ 0 and δ > 0. Then sending R → ∞, we see that
the right hand side of (5.1) is bounded from below by a constant times aP[A] and
from above by the same constant times (a+ δ)P[A]. Therefore the conditional law of
(C , h◦ψ−1

z +Q log |(ψ−1
z )′|,+∞,−∞, ψz(η̃′z)) given ER converges as R→∞ to the law of

(C , h,+∞,−∞, η̃′) weighted by the quantum area of U . We note that if we fix the quan-
tum area of U , then the conditional law of (C , h◦ψ−1

z +Q log |(ψ−1
z )′|,+∞,−∞, ψz(η̃′z))

given ER converges as R→∞ to that of (C , h ◦ψ−1
w +Q log |(ψ−1

w )′|,+∞,−∞, ψw(η̃′w))
(with the quantum area of U for the latter fixed to be the same as the former). Therefore
the law of (C , h ◦ ψ−1

w +Q log |(ψ−1
w )′|,+∞,−∞, ψw(η̃′w)) given the quantum area of U

is equal to the law of (C , h,+∞,−∞, η̃′) given the quantum area of U . This implies
the result because both laws induce the same law on the quantum area of U .

Lemma 5.3. Suppose that we have the same setup as in Proposition 5.1 and let η̂′

be given by η̃′|[τ,∞). Suppose that w is picked uniformly in U from the quantum area
measure conditionally independently of everything else and let Uw be the component of
U \ η̂′ which contains w. Suppose that we condition on the following:

1. The event that ∂Uw is entirely contained in either the left or the right side of η̂′,

2. The quantum area and boundary length of (Uw, h), and

3. The quantum areas and boundary lengths of all of the components of U \ η̂′.

Then we have that the quantum surface (Uw, h) has the law of a quantum disk with
the given quantum boundary length and area. In particular, (Uw, h) is conditionally
independent of the other components of U \ η̂′ (viewed as quantum surfaces) given its
quantum boundary length and area.

Proof. This follows because we know from [DMS14, Theorem 1.17] (see also [DMS14,
Figure 1.18]) that the quantum surfaces parameterized by the components of U \ η̂′
whose boundary is entirely contained in either the left or right side of η̂′ are conditionally
independent quantum disks given their boundary length.

Suppose that I = [s, t] is an interval of time in which (L̃, R̃) has a π/2-cone excursion.

Then we say that the π/2-cone excursion has a left (resp. right) orientation if L̃t = L̃s
(resp. R̃t = R̃s). This terminology is motivated because a left (resp. right) cone excursion

exits R2
+ + (L̃s, R̃s) in its left (resp. right) boundary; see [DMS14, Figure 1.13]. We

note that the left (resp. right) π/2-cone excursions of (L̃, R̃) whose time-interval I
contains 0 correspond to the clockwise (resp. counterclockwise) loops made by the
SLEκ′(κ

′ − 6) process η̃′ around +∞. We say that such a π/2-cone excursion (on the
interval I) is orientation changing if it has the property that if I ′ ⊇ I is any interval of

time during which (L̃, R̃) has a π/2-cone excursion, there exists an interval of time I ′′
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Figure 5.1: Left: A whole-plane SLEκ′(κ
′ − 6) process from ∞ to 0 stopped at a time

that it has just closed a clockwise bubble around 0. The time-reversal of the associated
space-filling SLEκ′ will enter this bubble and then fill it up before exiting, which is why
it corresponds to a π/2-cone excursion of the corresponding boundary length process.
Middle: More of the SLEκ′(κ

′ − 6) process is drawn. The component containing 0
is surrounded by one side of the SLEκ′(κ

′ − 6) so again corresponds to a π/2-cone
excursion (which is nested inside the previous one). Right: The SLEκ′(κ

′ − 6) drawn
up until finishing the first bubble with a counterclockwise orientation after the time
shown in the left panel. This bubble corresponds to an orientation changing π/2-cone
excursion.

during which it is having another π/2-cone excursion of the opposite orientation of that
on I with I ⊆ I ′′ ⊆ I ′. We note that orientation changing π/2-cone excursions whose
time-interval contains 0 cannot cluster. Indeed, this follows because η̃′ is continuous
and orientation changing π/2-cone excursions correspond to the times when η̃′ makes a
loop around +∞ with the opposite orientation of the previous loop. See Figure 5.1 for
an illustration of these definitions in the context of an SLEκ′(κ

′ − 6) (but in this with
the quantum cone parameterized by C with marked points at 0 and ∞). (However, an
orientation changing π/2-cone excursion is typically preceded by a cluster of π/2-cone
excursions with the opposite orientation.)

Lemma 5.4. Let Ĩ be the collection of π/2-cone excursions of (L̃, R̃) whose time

interval contains 0. For A1, A2 ∈ Ĩ, we say that A1 comes before A2 if the interval of
time for A1 contains that for A2. Let I consist of those π/2-cone excursions in Ĩ which

are orientation changing. (As remarked above, the elements in Ĩ are in correspondence

with the times in T̃ and the elements in I are in correspondence with the times in T .)
Let A be the largest element in I whose terminal displacement d is at most 1. Given d,
the conditional law of A is that of a π/2-cone excursion with terminal displacement d
weighted by its length. That is, the Radon-Nikodym derivative between the law of A
given d and the law of a π/2-cone excursion with terminal displacement d is given by
the length of A times a normalization constant.
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Proof. We begin by noting that the following is true. Fix L0 > 0 large. We will
eventually take a limit as L0 →∞. Pick V in [0, L0] uniformly at random. Then

(L̃V+t − L̃V , R̃V+t − R̃V )
d
= (L̃t, R̃t).

Therefore the π/2-cone excursions of (L̃, R̃) which contain V have the same law as
those which contain 0.

Fix M0 > 0 large. We will eventually take a limit as M0 →∞ after taking a limit as
L0 →∞. We begin by making two observations:

• The probability of the event that the outermost orientation changing π/2-cone
excursion which contains V of terminal displacement at most M0 is distinct from
the outermost orientation changing π/2-cone excursion of terminal displacement
at most 1 tends to 1 as M0 →∞.

• For M0 fixed, the probability that the outermost orientation changing π/2-cone
excursion E0 of terminal displacement at most M0 containing V is contained in
the time-interval [0, L0] tends to 1 as L0 →∞.

Consequently, if we let Ṽ be chosen uniformly in the time interval for E0 and let Ẽ
be the outermost orientation changing π/2-cone excursion of terminal displacement at
most 1 contained in E0, then we have that the total variation distance between the
laws of Ẽ and A (as in the statement of the lemma) tends to 0 as L0 →∞ and then
M0 →∞.

Let (Ej) be the collection of outermost orientation changing π/2-cone excursions of

terminal displacement at most 1 in E0. We let T̃ (resp. Tj) be the terminal displacement

of Ẽ (resp. Ej). We assume that the Ej are ordered so that T1 ≥ T2 ≥ · · · . Fix an
event A such that P[Ej ∈ A] is positive for all j. Fix d, δ > 0 and let I = [d, d + δ].
We have that,

P[Ẽ ∈ A | T̃ ∈ I] =
P[Ẽ ∈ A, T̃ ∈ I]

P[T̃ ∈ I]
=
∑

j

P[Ẽ = Ej, Ej ∈ A, Tj ∈ I]

P[T̃ ∈ I]

=
∑

j

P[Ẽ = Ej |Ej ∈ A, Tj ∈ I]P[Ej ∈ A |Tj ∈ I]
P[Tj ∈ I]

P[T̃ ∈ I]
. (5.2)

Fix ζ > 0 and assume that A is an event of the form Ã ∩ {` ≤ l ≤ ` + ζ} where l is
the length of the time-interval for the π/2-cone excursion. Then we note for a constant
c0 > 0 that

P[Ẽ = Ej |Ej ∈ A, Tj ∈ I] = c0`(1 +O(ζ)). (5.3)

Combining (5.2) and (5.3), we have that

P[Ẽ ∈ A | T̃ ∈ I] = `(1 +O(ζ))

(
c0

∑

j

P[Ej ∈ A |Tj ∈ I]
P[Tj ∈ I]

P[T̃ ∈ I]

)
. (5.4)
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It is not difficult to see that if we take a limit as L0 → ∞, M0 → ∞, and δ → 0, we
have that the term in the parenthesis on the right hand side of (5.4) converges to a
constant times the probability of A under the law on π/2-cone excursions with terminal
displacement equal to d. Thus taking a further limit as ζ → 0 implies the result.

Proof of Proposition 5.1. We begin by picking w ∈ U uniformly from the quantum area
measure conditionally independently of everything else. Let η̂′ be as in the statement
of Lemma 5.3 and let η̂′w be an SLEκ′(κ

′ − 6) process in U starting from the same
point on ∂U as η̂′ and coupled to be the same as η̂′ until the first time that +∞ and
w are separated and to evolve conditionally independently afterwards. Let U0 be the
component of U \ η̂′w which contains +∞. Let F be the σ-algebra which is generated by
the quantum area and boundary length of (U0, h) and the quantum areas and boundary
lengths of all of the components of U \ η̂′w. Lemma 5.3 implies that conditional on
the event that ∂U0 is entirely contained in either the left or right side of η̂′w (i.e., η̂′w
separates +∞ from ∂U) and given F , we have that the quantum surface (U0, h) has
the law of a quantum disk with its given quantum boundary length and area. Let τ̂
be the first time t ∈ T strictly after time τ . As the event that the component V0 of
U \ η̂′([0, τ̂ ]) containing +∞ is equal to U0 is measurable with respect to the σ-algebra
that we have conditioned on, it follows that the same holds when we further condition
on the event that V0 = U0. Throughout the rest of the proof, we shall assume that we
have conditioned on this event.

We are now going to show that:

1. The conditional law of the quantum area of the quantum surface (U0, h) given its
quantum boundary length is conditionally independent of the quantum areas and
boundary lengths of all of the other components of U \ η̂′w and that

2. The conditional law of the quantum area of (U0, h) given its quantum boundary
length is equal to that of a quantum disk weighted by its quantum area with the
given quantum boundary length.

Recall that the quantum surface (U, h) corresponds to the first π/2-cone excursion of

the time-reversal (L̃, R̃) of (L,R) which contains 0 with terminal displacement at most 1
such that the previous cone excursion has the opposite orientation. The quantum
surface (U0, h) corresponds to the next π/2-cone excursion of (L̃, R̃) with the opposite
orientation as for (U, h) and the other components of U \ η̂′w correspond to other π/2-

cone excursions of (L̃, R̃) which occur in intervals of time which are disjoint from the
one which corresponds to (U0, h). The first claim is obvious from this representation of
the joint law of the quantum areas and boundary lengths. The second claim follows
from this representation together with Lemma 5.4.

We have shown so far that the conditional law of (U0, h) given its quantum boundary
length is given by that of a quantum disk weighted by its quantum area. The proof
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works verbatim if we take U instead to correspond to the component containing +∞ at
the first time t ∈ T that its quantum boundary length falls below R > 0 where R > 0
is fixed. By taking R > 0 very large, the result follows by successively exploring the
components which contain +∞ until first reaching the one with quantum boundary
length at most 1.

5.3 Comparison of pinched quantum cones

In Section 4 we exhibited one way of constructing a unit area quantum sphere by
pinching a unit of quantum area off a γ-quantum cone. In both this subsection as
well as the next, we will be interested in another way of pinching a unit area quantum
sphere off a γ-quantum cone by conditioning on the event that an SLEκ′(κ

′− 6) process
cuts out a quantum disk with small quantum boundary length and area close to 1. The
purpose of the following proposition, which is the main result of this subsection, is to
compare this type of conditioning with that used in Section 4. We will make use of the
same notation as in Section 4.

Proposition 5.5. Fix γ ∈ (
√

2, 2) and suppose that C = (C , h,+∞,−∞) is a γ-
quantum cone. Let η̃′ be an SLEκ′(κ

′−6) process from −∞ to +∞ sampled independently
of h. For each ε, δ > 0 there exists C0 ≥ 1 such that for all r ∈ R− and C ≥ C0 the
following is true. Let T , ζr,C, Ur,C, and `r,C be as described in the beginning of the
section and let Ar,C be the quantum area of Ur,C. Let

Ir,C = [1
2
, 1] · C−1eγr/2 (5.5)

and let
Fr,ε,C = {`r,C ∈ Ir,C , 1 ≤ Ar,C ≤ 1 + ε}. (5.6)

Then
P[Er,ε |Fr,ε,C ] ≥ 1− δ. (5.7)

Moreover, for each fixed choice of C > 1 and ε > 0 there exists p0 > 0 such that

P[Fr,ε,C |Er,ε] ≥ p0 for all r ∈ R−. (5.8)

Fix C > 1 and r ∈ R−. We are going to prove Proposition 5.5 by considering three
different laws:

• The joint law m of a γ-quantum cone C = (C , h,+∞,−∞) and an SLEκ′(κ
′ − 6)

process η̃′ in C from −∞ to +∞ sampled independently of h.

• The law mF given by m conditioned on Fr,ε,C .

• The law mG on pairs consisting of a quantum surface and a path whose joint law
can be sampled from by:
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1. Sampling a γ-quantum cone and an independent SLEκ′(κ
′ − 6) process

conditioned on Fr,ε,C as in the definition of mF .

2. Resampling D = (Ur,C , h) (which on the event Fr,ε,C has boundary length
`r,C ∈ Ir,C and quantum area Ar,C ∈ [1, 1 + ε]) according to its m-conditional

law given `r,C to yield D̃.

The laws m and mF correspond to the laws considered in the statement of Proposition 5.5.
The law mG is an auxiliary law that will be used in the proof of Proposition 5.5 (but
does not appear in the statement).

The first step is to compare m and mG.

Lemma 5.6. Let

Zr,ε,C =
dmG

dm
(5.9)

be the Radon-Nikodym derivative of mG with respect to m. For each ε, δ > 0 there exists
K > 1 such that

m[Zr,ε,C ≥ K] ≥ 1− δ for all r ∈ R− and C > 1.

We will first need to collect Lemmas 5.7–5.11 before completing the proof of Lemma 5.6.
Before we proceed with the details, we will give an overview of the different steps used
to prove Lemma 5.6. First, we will prove in Lemma 5.7 that the Radon-Nikodym
derivative Zr,ε,C from Lemma 5.6 is a function of the boundary length `r,C , so that
it suffices to compare the law of `r,C under mG and m. This will involve controlling
how likely it is that `r,C ∈ Ir,C under m. This will be accomplished by observing in
Lemma 5.9 that the log of the successive loop boundary lengths are i.i.d. and have a
density with respect to Lebesgue measure, which reduces the problem to an overshoot
analysis for random walks carried out in Lemma 5.8 and Lemmas 5.10, 5.11. The density
of `r,C under mG is then given by weighting its density under m by the probability that
the quantum area of Ur,C is in [1, 1 + ε] and noting that this probability is comparable
for different values of `r,C in Ir,C .

Lemma 5.7. The Radon-Nikodym derivative Zr,ε,C in (5.9) is equal to the Radon-
Nikodym derivative between the laws of the boundary length `r,C under mG and m. In
particular, it depends only on `r,C.

Proof. This follows because Proposition 5.1 implies that, under m, the quantum surface
parameterized by Ur,C is conditionally independent of the quantum surface parameterized
by C \ Ur,C given `r,C . The same is therefore true under mF and mG, which implies the
result.

We next collect the following elementary fact about random walks.
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Lemma 5.8. Let (Xj) be an i.i.d. sequence in R and assume that the law of X1 has
a density f with respect to Lebesgue measure on R which is positive Lebesgue almost
everywhere. For each j, let Yj = X1 + · · · + Xj. Fix A ⊆ R with positive Lebesgue
measure, let τA = inf{j ≥ 1 : Yj ∈ A}, and assume that P[τA <∞] = 1. Then the law
of YτA has a density with respect to Lebesgue measure on A which is positive Lebesgue
almost everywhere on A.

Proof. Let fk be the conditional density of Yk given τA > k. An elementary calculation
implies that the conditional density of (YτA−1, YτA) given τA = k is equal to

gk(x, y) = Z−1
x 1A(y)f(y − x)fk−1(x) where Zx =

∫

R

1A(y)f(y − x)dy. (5.10)

Therefore the conditional density of YτA given τA = k is equal to

gk(y) =

∫

R

Z−1
x 1A(y)f(y − x)fk−1(x)dx. (5.11)

Letting pk = P[τA = k + 1] we thus have that the density of YτA is given by

g(y) =

∫

R

Z−1
x 1A(y)f(y − x)

(∑

k

fk−1(x)pk−1

)
dx. (5.12)

The result therefore follows from our assumptions on f .

In the next series of lemmas, we will make use of the following notation. Fix R ∈ R.
We let (UR

j )j∈Z be the sequence of components of C \ η̃′((−∞, t]) which contain +∞
for t ∈ T where we take UR

0 to be the first such component with quantum boundary
length at most R. For each j, we let Y R

j be the log of the quantum boundary length of
UR
j and we let XR

j = Y R
j − Y R

j−1. In the next two lemmas, we are going to check that
the criteria of Lemma 5.8 hold for the sequence (Y R

j )j∈N where we will take A to be an
interval of the form (−∞, x] for x ∈ R.

Lemma 5.9. The (XR
j )j∈N are i.i.d. and XR

1 has a density with respect to Lebesgue
measure on R which is positive Lebesgue almost everywhere.

Proof. That the (XR
j )j∈N are i.i.d. follows from Proposition 5.1. Alternatively, this

follows since the corresponding quantum surfaces (UR
j , h) correspond to a certain subset

of the π/2-cone excursions of (L̃, R̃) whose time interval contains 0. Consequently, we
just need to show that XR

1 has an almost everywhere positive density with respect to
Lebesgue measure on R. To see this, we pick a (·, ·)∇-orthonormal basis (φj) of H2(C )
consisting of C∞0 (C ) functions such that φ1|C \UR1 ≡ 0 and φ1|∂URj ≡ 0 for j 6= 1 and

φ1|∂UR1 > 0. Since φ1 ∈ H2(C ), we can write h = (h− α1φ1) + α1φ1 so that h− α1φ1

and α1φ1 are conditionally independent given η̃′ and the restriction of h to C \UR
0 . Let
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ν (resp. ν1) be the γ-LQG boundary length measure associated with h (resp. h− α1φ1).
Then we have that

dν

dν1

(x) = eγα1φ1(x)/2.

Consequently, we have that

XR
1 = log

(∫

∂UR1

eγα1φ1(x)/2dν1(x)

)
− Y R

0 . (5.13)

Note that XR
1 is smooth and strictly increasing viewed as a function of α1. Moreover,

Y R
0 is determined by h − α1φ1. Applying the change of variables formula using the

representation of XR
1 as in (5.13) implies the result.

Let Y = Ce−γr/2`r,C . Combining Lemma 5.8 and Lemma 5.9 we obtain the following.

Lemma 5.10. The law of Y under m has a density with respect to Lebesgue measure
on [0, 1] which is almost everywhere positive on [0, 1] and which does not depend on C
or r.

Proof. Since the law of a γ-quantum cone is invariant under the operation of adding
a constant to the field, it follows that the law of Y is independent of r and C. The
result then follows in the case that we condition on the event PR

j that the first j such

that Y R
j ≤ C−1eγr/2 is at least 1 by combining Lemma 5.8 and Lemma 5.9. The result

follows more generally using that the probability of PR
j tends to 1 as R→∞.

We are now going to establish an analog of Lemma 5.10 for mF .

Lemma 5.11. The law of Y under mG has a density with respect to Lebesgue measure
on [1/2, 1] which is almost everywhere positive in [1/2, 1] and bounded from above by a
constant times the density of Y under m on [1/2, 1].

Proof. Let J ⊆ [1/2, 1] be an open interval. We have by Bayes’ rule that

mG[Y ∈ J ] = m[Y ∈ J |Fr,ε,C ] =
m[Fr,ε,C |Y ∈ J ]

m[Fr,ε,C ]
m[Y ∈ J ] := P1m[Y ∈ J ]. (5.14)

Lemma 5.10 implies that m[Y ∈ [1/2, 1]] > 0, which in turn implies that P1 � 1 as the
conditional probability of Fr,ε,C given Y is comparable for each value of Y ∈ [1/2, 1].
Indeed, this latter claim follows as the conditional probability of Fr,ε,C given Y is
the probability of having a π/2-cone excursion of length in [1, 1 + ε] with terminal
displacement C−1eγr/2Y .

We can now complete the proof of Lemma 5.6.
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Proof of Lemma 5.6. By Lemma 5.7, we have that Zr,ε,C is equal to the Radon-Nikodym
derivative of the law of the quantum boundary length `r,C of Ur,C under mG with
respect to its law under m. Thus the result follows by combining Lemma 5.10 and
Lemma 5.11.

Let ur,C (resp. vr,C) be the infimum (resp. supremum) of Re(∂Ur,C). In other words,
[ur,C , vr,C ]× [0, 2π] is the smallest annulus in C which contains ∂Ur,C .

uGr,C

R1

R2

(C , hG)

ϕ

(C , hF )

D

D̃

vGr,C

uFr,C vFr,C

ϕ(R1)

τGr+s

Figure 5.2: Illustration of the setup of the proof of Lemma 5.13. Top: a surface
sampled from the law mG. The red region is the part of the surface separated from +∞
up until the first time that the SLEκ′(κ

′ − 6) process η̃′ makes a loop with boundary
length at most C−1eγr/2. Bottom: the surface sampled from mF after resampling D
to yield D̃. The superscripts F and G are used to indicate quantities associated with
hF and hG, respectively.

Lemma 5.12. Let H be the average of h on ur,C + [0, 2πi] in C . For any fixed s ∈ R−
we have that

m[H ≥ r + s]→ 0 as C →∞ uniformly in r ∈ R−.

Proof. Suppose that H̃ has the law as described in the statement of the lemma for r = 0
and C = 1. Then H = H̃ + r − 2

γ
logC has the law described in the statement of the

lemma with the given value of r and C. The result then follows since m[H̃ <∞] = 1.
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We are now going to establish an analog of Lemma 5.12 for mF .

Lemma 5.13. Let H be the average of h on ur,C + [0, 2πi]. For any fixed s ∈ R− we
have that

mF [H ≥ r + s]→ 0 as C →∞ uniformly in r ∈ R−.

We will deduce Lemma 5.13 from the corresponding result with mG in place of mF , which
in turn follows from Lemma 5.6 and Lemma 5.12. The idea of the proof will be to assume
that we have samples from mF and mG coupled together on a common probability space
so that one can transform from the former to the latter by cutting out the surface
parameterized by Ur,C and then gluing in one sampled from the m-conditional law given
`r,C . This cutting and gluing operation involves applying a conformal transformation to
the complement of Ur,C in C . As we have just mentioned above, we have already proved
that under mG, the average considered in Lemma 5.13 is very likely to be smaller than
r + s when C is large. The difficulty is that if we apply a conformal transformation
to the circle ur,C + [0, 2πi] in C we will not get another circle. In order to deal with
this challenge, we will first prove an intermediate result in which we have replaced
the average over the circle ur,C + [0, 2πi] in C with the worst-case average of the field
when integrated against all smooth functions with compact support with support at
most a bounded distance of ur,C + [0, 2πi] (and with bounded derivative). As we will
see, averages of this type work well when applying conformal transformations because
precomposing such a function with a conformal transformation leads to a function of
the same type. See Figure 5.2 for an illustration of how we will implement this idea.
Before we give the proof of Lemma 5.13, we will need the following.

Lemma 5.14. Fix a, b > 0 and let Φ1
a,b be the set of C∞0 (C ) functions which are

supported in the annulus [0, a]× [0, 2π] with φ ≥ 0,
∫
φ(x)dx = 1, and ‖φ′‖∞ ≤ b. Fix

r, s ∈ R− and let
M(h) = sup

φ∈Φ1
a,b

(h, φ(·+ τr+s)).

We have that

m[M(h) ≥ r]→ 0 as s→ −∞ uniformly in r ∈ R−.

Proof. We will first assume that r = 0 and we take our quantum cone to be embedded
so that the horizontal translation is so that the projection of h onto H1(C ) first hits
r+s = s at u = 0. Then we have that the restriction of h to C+ has the same law as the
sum of the function (γ−Q)Re(z) and a whole-plane GFF on C restricted to C+ with the
additive constant fixed so that its average on [0, 2πi] is equal to s. Therefore it suffices
to prove the result in the case that h is the sum of (γ − Q)Re(z) and a whole-plane
GFF on C with this normalization. The argument explained in the paragraph just after
[DMS14, Proposition 9.19] implies that, in this setting, M(h)− s is a.s. finite with law
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which does not depend on s. This proves the result for r = 0. The result then follows
for other values of r because one can switch from the r = 0 setting to the setting of
general r ∈ R− by adding r to the field.

Proof of Lemma 5.13. In the proof, we will be working with samples from both mG and
from mF , coupled onto a common probability space. We will add an extra subscript F
or G in order to clarify to which law each will be associated.

Suppose that (C , hG,+∞,−∞) and η′G are sampled from the law mG. We think of
the embedding of the surface into C as taking place in two steps. Namely, we first
embed the surface as usual for quantum cones as described in Section 2.3.1 so that the
horizontal translation is such that the projection of hG onto H1(C ) first hits 0 at u = 0
and then we adjust the horizontal translation so that ur,C,G = 0.

Suppose that (C , hF ,+∞,−∞) is a sampled from mF . We take the embedding into C
to be the same as for (C , hG) described above (but with ur,C,F in place of ur,C,G). We
assume that (C , hF ,+∞,−∞) and (C , hG,+∞,−∞) are coupled together as in the
definition of mG. That is, we can transform from the former to the latter by cutting
out the quantum surface (Ur,C,F , hF ) and then gluing in a conditionally independent
copy sampled from the m-conditional law with given boundary length `r,C,F (without
any conditioning on its quantum area). Let ϕ be the conformal transformation which
corresponds to this cutting and gluing operation. That is, ϕ : C \ Ur,C,G → C \ Ur,C,F
is a conformal transformation fixing −∞ with hG = hF ◦ ϕ+Q log |ϕ′| in C \ Ur,C,G.

It follows from Lemma 5.6 and Lemma 5.12 that the mG-probability that the average
of hG on [0, 2πi] is at most r tends to 1 as C →∞ uniformly in r ∈ R−. Our goal is to
use this to deduce that the same is true with hF in place of hG. The difficulty is that
ϕ([0, 2πi]) is not a circle in C . To deal with this, we will instead work with the field
integrated against smooth test functions rather than on circles. In order to do this, we
will need to make sure we are working with test functions which are on a domain in
which the distortion which arises by applying ϕ is bounded and this is where we will
make use of the distortion bound Lemma 2.4.

Let C1, C2 be the constants from Lemma 2.4. By Lemma 5.6, the modulus of continuity
for the projection of hG onto H1(C ) is the same as that for a standard Brownian motion
as this is also true under m. Fix s ∈ R−. It thus follows that τr+s,G ≤ −C1 − 3C2 with
mG-probability tending to 1 as C →∞ uniformly in r ∈ R−. Let Φ1

a,b and M(h) be as
in the statement of Lemma 5.14 with a = 3C2 and b > 1 very large but fixed. Then
Lemma 5.6 and Lemma 5.14 together imply that for each δ > 0 there exists s0 ∈ R−
such that for each s ≤ s0 there exists C0 > 1 such that C ≥ C0 implies

mG[M(h) ≥ r] ≤ δ uniformly in r ∈ R−. (5.15)

Let R1 be the annulus in C which is given by τr+s + [0, 3C2]× [0, 2π].
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Lemma 2.4 implies that ϕ(R1) contains a non-empty rectangle R2 = [p, q]× [0, 2π] in C .
Let φR2 ∈ C∞0 (C ) with φR2 ≥ 0 be a function which is rotationally symmetric about
±∞ with

∫
φR2(x)dx = 1 and support contained in R2 and let φ = |(ϕ−1)′|2φR2 ◦ ϕ−1.

Then φ ∈ C∞0 (C ) is supported in R1, φ ≥ 0, and
∫
φ(x)dx = 1. Moreover, by taking

b > 1 large enough relative to C1, C2, we have that ‖φ′‖∞ ≤ b. Consequently, it follows
from (5.15) that we can make the probability that (hG, φ) ≤ r as close to 1 as we like
by choosing s ∈ R− small enough and C > 1 large enough, uniformly in r ∈ R−. Since
Q log |(ϕ−1)′| restricted to R2 is bounded by a deterministic constant it thus follows
that we can make the probability of the event that (hF , φR2) ≤ r as close to 1 as we like
by choosing s ∈ R− small enough and C > 1 large enough, uniformly in r ∈ R−. As
φR2 is rotationally symmetric about ±∞ with support contained in R2, it follows that
on the event that (hF , φR2) ≤ r we have that the projection of hF onto H1(C ) first hits
r to the left of the right side of R2.

Proof of Proposition 5.5. By the definition of ur,C , under mF the quantum area of Ur,C
is in [1, 1 + ε]. Recall from the statement of Lemma 5.13 that H is the average of h
on the vertical line ur,C + [0, 2πi]. Lemma 5.13 thus implies that under mF , we can
make the probability that τr ≤ ur,C arbitrarily close to 1 by making C large. Thus
to finish proving that (5.7) holds, we need to explain why the quantum area of the
part of C \ Ur,C which is to the right of τr tends to 0 in probability under mF provided
r ∈ R− is small enough (uniformly in the choice of C). This holds since the amount
of quantum area in C which is to the right of τr tends to 0 in probability as r → −∞
under m hence also under mG by Lemma 5.6. Therefore the claim for mF holds because
of the natural coupling between mF and mG.

We now turn to explain why (5.8) holds. Let Er,ε and E ′r,β be as in Lemma 4.3. We
have that

P[Fr,ε,C |Er,ε] =
P[Fr,ε,C , Er,ε]

P[Er,ε]
≥

P[Fr,ε,C , Er,ε, E
′
r,β]

P[Er,ε]
=

P[Fr,ε,C , Er,ε |E ′r,β]

P[Er,ε]/P[E ′r,β]

Lemma 4.3 implies that the denominator is bounded above by a constant c0 > 0
which depends only on ε and β. Therefore it suffices to give a lower bound for
P[Fr,ε,C , Er,ε |E ′r,β], but this is easy to see from the definitions. This proves (5.8).

5.4 Extra conditioning does not affect the limiting law

Proposition 5.5 implies that we can think of conditioning on Fr,ε,C as taking place in
two steps: we first condition the surface on Er,ε and then condition the result on the
uniformly positive probability event Fr,ε,C . The purpose of this section is to argue that
this second conditioning step does not have a significant effect on the resulting law.
This, in turn, will complete the proof of Theorem 1.1.
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Lemma 5.15. Fix r ∈ R. Suppose that (C , h,+∞,−∞) is a γ-quantum cone. Let τr
be as in Proposition 4.1 and vr,C as defined just before the statement of Lemma 5.12.
Then we have that

P[vr,C ≥ τr + S |Er,ε, Fr,ε,C ]→ 0 as r → −∞ and then S →∞

at a rate which only depends on ε, C.

Proof. Let H be the average of h on ur,C + [0, 2πi]. Then we have that

P[H ≥ r +M |Er,ε, Fr,ε,C ] =
P[H ≥ r +M,Er,ε |Fr,ε,C ]

P[Er,ε |Fr,ε,C ]
.

Using (5.7) of Proposition 5.5, we see that the probability is at most a constant times
P[H ≥ r + M |Fr,ε,C ]. By Lemma 5.13, we know that the probability of this event
decays to 0 as M →∞ uniformly in r ∈ R−. Therefore it suffices to show that for each
fixed M we have that

P[vr,C ≥ τr + S,H ≤ r +M |Er,ε, Fr,ε,C ]→ 0 as r → −∞ and then S →∞.

Using (5.8) of Proposition 5.5 in the inequality, we see that there exists a constant
c0 > 0 depending only on C and ε such that

P[vr,C ≥ τr + S,H ≤ r +M |Er,ε, Fr,ε,C ] =
P[vr,C ≥ τr + S,H ≤ r +M,Fr,ε,C |Er,ε]

P[Fr,ε,C |Er,ε]
≤ c0P[vr,C ≥ τr + S,H ≤ r +M,Fr,ε,C |Er,ε].

Let E ′r,β be as in Lemma 4.2. We also have that

P[vr,C ≥ τr + S,H ≤ r +M,Fr,ε,C |Er,ε]
≤P[vr,C ≥ τr + S,H ≤ r +M,Fr,ε,C , E

′
r,β |Er,ε] + P[(E ′r,β)c |Er,ε].

By Lemma 4.3, the second term above can be made arbitrarily small by choosing β > 0
to be sufficiently large. By Bayes’ rule, the first term on the right hand side above is
bounded from above by

P[vr,C ≥ τr + S,H ≤ r +M,Fr,ε,C , Er,ε |E ′r,β]

P[Er,ε |E ′r,β]
.

By Lemma 4.3, the ratio is bounded from above by a constant times the numerator.
Therefore it suffices to show that P[vr,C ≥ τr + S,H ≤ r + M,Fr,ε,C |E ′r,β] → 0 as
r → −∞ then S →∞. We will deduce this from Lemma 4.2.

Let σβ be the first u ≥ τr that the projection X of h onto H1(C ) hits γ−1 log β−1. We
consider two possibilities: either ur,C ≤ σβ or ur,C > σβ. We will first argue that the
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second possibility is very unlikely, so that we can exclude it. We note that the event
that H ≤ r + M , ur,C ≥ σβ, and Fr,ε,C all hold is contained in the event that the
quantum area in the part of C which is to the right of where X first hits r +M after
σβ is at least 1. It is easy to see that the conditional probability of this given E ′r,β tends
to 0 as r → −∞ as claimed.

We are thus left to bound

P[vr,C ≥ τr + S,H ≤ r +M,ur,C ≤ σβ |E ′r,β].

Note that on H ≤ r + M and ur,C ≤ σβ (and given E ′r,β), we have that vr,C is (non-
strictly) to the left of the first loop of η̃′ around +∞ which is completed after X attains
its infimum on [τr, σβ]. Since the conditional law of X given E ′r,β in [τr, σβ] is that of a
Brownian motion with positive drift starting from r and run until the first time it hits
γ−1 log β−1, it follows that the length of time it takes after time τr for the infimum to
be attained has an exponential tail. Thus the result easily follows.

Lemma 5.16. Suppose that r ∈ R, ε > 0, and C > 1. Suppose that (C , h,+∞,−∞)
is sampled from mF . Then we have that the quantum surfaces (C+ + vr,C , h) converge
weakly to the unit area quantum sphere (in the same sense as in Proposition 4.1) when
we take a limit as r → −∞, C →∞, and then ε→ 0.

Proof. Proposition 5.5 implies that the conditional law of (C+ + vr,C , h) given Fr,ε,C is
close in total variation to its conditional law given both Fr,ε,C and Er,ε as the conditional
probability of the latter given the former can be made arbitrarily close to 1. Lemma 5.15
implies that, conditional on these two events, we can fix a value of S large so that with
high probability we have that vr,C ≤ τr + S, given both Fr,ε,C and Er,ε. Whether this
occurs is determined by the values of the field and the path in (−∞, τr + S]× [0, 2π].
Therefore the result follows by applying the final assertion of Proposition 4.1.

Proof of Theorem 1.1, γ ∈ (
√

2, 2). Suppose that (C , h,+∞,−∞) and η′ are sampled
from mF . Then Lemma 5.16 implies that the laws of the surfaces (C+ +vr,C , h) converge
weakly to the law of the unit area quantum sphere when we take a limit as r → −∞,
then C → ∞, and then ε → 0. Moreover, by Proposition 3.5 we have that the joint
law of (L,R) restricted to the interval Jr,C of time in which η′ is filling the component
Ur,C converges weakly with respect to the topology of uniform convergence as r → −∞,
then C →∞, and then ε→ 0 to that of a correlated Brownian loop of unit length.

We next claim that η′ converges to a space-filling SLEκ′ from −∞ to −∞ which is
independent of the limiting surface. We know that for each fixed r, C, and ε that the
conditional law of η′ in Jr,C given h, Ur,C , and η′(ζr,C) is that of a space-filling SLEκ′
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in Ur,C from η′(ζr,C) to η′(ζr,C). Moreover, Lemma 5.15 implies that vr,C → −∞ in
probability as r → −∞ and then C →∞. In particular, this implies that the law of
the GFF used to generate η′ restricted to Ur,C converges to a whole-plane GFF on
C in the sense that for each fixed x ∈ R its restriction to the half-infinite cylinder
[x,∞)×[0, 2π] converges in the total variation to the law of the corresponding restriction
of a whole-plane GFF (see [MS17, Proposition 2.10]). This implies the claim.

Suppose that (C , h,−∞,+∞) has the law of a unit area quantum sphere and that η′

is an independent space-filling SLEκ′ process from −∞ to −∞ reparameterized by
quantum area. Let (L,R) be the quantum boundary length of the left/right side of η′.
We have shown so far that (L,R) evolves as a correlated Brownian loop. To finish
proving the result, we need to show that (L,R) a.s. determines (C , h,−∞,+∞) and η′

up to a conformal transformation. We let η̃′ be the SLEκ′(κ
′ − 6) process which arises

by reparameterizing η′ by capacity as seen from +∞, let T̃ be the set corresponding
to η̃′ as defined in the beginning of the section, and let τε be the first t ∈ T̃ that the
component Uε of C \ η̃′([0, t]) which contains +∞ has quantum boundary length at
least ε. Then it follows from the first part of the proof that the conditional law of the
quantum surface (Uε, h) given its quantum boundary length, quantum area, and η̃′(τε)
is the same as in the setting of an exploration of a γ-quantum cone by an independent
SLEκ′(κ

′− 6) process. Also, as in the setting of a γ-quantum cone, we have that (Uε, h)
corresponds to a π/2-cone excursion Aε of the time-reversal of (L,R). By the limiting
construction, we know that the joint law of (Uε, h) and Aε is the same as in the setting
of a γ-quantum cone, conditional on quantum boundary length and area. It therefore
follows that both (Uε, h) and η′ restricted to the interval of time in which it is filling Uε
are a.s. determined by Aε since we know this to be true in the case of a γ-quantum cone.
The claim follows since Lemma 2.4 implies that the effect of resampling (C \ Uε, h)
given (Uε, h) tends to 0 as ε→ 0.

We are now going to explain how a variant of the argument given above handles the
case that γ ∈ (0,

√
2].

Proof of Theorem 1.1, γ ∈ (0,
√

2]. We suppose that (C , h,+∞,−∞) has the law of a
γ-quantum cone and that η′ is a space-filling SLEκ′ on C from −∞ to −∞ sampled
independently of h and then reparameterized by quantum area. We normalize time so
that η′(0) = +∞. Let Ar be the first time t (if it exists) that the quantum boundary
length of the boundary of Ut = η′([0, t]) is equal to eγr/2. Let Fr,ε be the event that
Ar (which is equal to the quantum area of UAr) is in [1, 1 + ε]. Let (L,R) denote the
change in the quantum boundary length of the left/right side of η′ relative to time 0 so
that L0 = R0 = 0. Conditional on Ar and (LAr , RAr), and the length L (resp. R) of the
left (resp. right) side of η′((−∞, 0]) up until it merges with the left (resp. right) side of
η′([Ar,∞)) (see Figure 5.3 for an illustration when the quantum cone is parameterized
by C) we have that (L,R) in [0, Ar] evolves as a (correlated) two-dimensional Brownian
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η′(0)

η′(Ar)

Figure 5.3: Illustration of the setup for the proof of Theorem 1.1 for γ ∈ (0,
√

2] and
κ′ ≥ 8. Shown is a space-filling SLEκ′ process η′ on an γ-quantum cone parameterized
by C normalized so that η′(0) = 0. The blue (resp. dark blue) path represents the left
(resp. right) side of η′ stopped at time 0 and the green (resp. dark green) show the left
(resp. right) side of η′ stopped at the time Ar up until merging with the blue (resp. dark
blue) path. The light blue region is η′([0, Ar]). The left/right boundary length process
(L,R) is normalized so that L0 = R0 = 0 and LAr (resp. RAr) is equal to the length of
the green (resp. dark green) path minus the length of blue (resp. dark blue) path up
until they merge and Lt, Rt are defined similarly for general t values. In particular, for
t ∈ [0, Ar], we have that Lt (resp. Rt) is at least −1 times the length of the blue (resp.
dark blue) path up until merging with the green (resp. dark green) path.

motion starting from (0, 0), conditioned to be in (L,R) + R2
+, and conditioned to take

the value (LAr , RAr) at time Ar.

This process is characterized by a certain Markovian resampling property. Namely, if
we condition on part of its initial and terminal segments, then the conditional law of
the remaining part is that of a (correlated) two-dimensional Brownian motion with
given starting and ending points conditioned to stay in (L,R) + R2

+. Conditional on
Fr,ε, we have that (L,R) converges to 0 as r → −∞ and we have that Ar → 1 as
r → −∞ and ε → 0. Arguments analogous to those in Section 3 imply that the law
of (L,R) in [0, Ar] conditional on Fr,ε converges weakly with respect to the topology
of uniform convergence when we take a limit as r → −∞ and then ε→ 0 to that of a
correlated Brownian loop of length 1. Indeed, this follows because any subsequential
limit will satisfy the Markovian resampling property that conditional on an initial and
terminal segment, the conditional law of the remaining part is that of a (correlated)
two-dimensional Brownian motion with the given starting and ending points conditioned
to stay in R2

+. Moreover, this resampling property uniquely characterizes the limiting
law.

The same argument given in the case that γ ∈ (
√

2, 2) implies that the conditional law
of the quantum surface (UAr , h) given Fr,ε converges as r → −∞ and ε→ 0 to that of
the unit area quantum sphere and η′ in [0, Ar] converges to an independent space-filling
SLEκ′ process from −∞ to −∞.
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Suppose that (C , h,+∞,−∞) has the law of a unit area quantum sphere, η′ is an
independent SLEκ′ process from −∞ to −∞ reparameterized by quantum area, and
(L,R) is the quantum length of the left/right side of η′. To finish the proof, it is left
to show that (L,R) a.s. determines (C , h,+∞,−∞) and η′. Fix δ > 0. Then the
conditional law of the quantum surface parameterized by C \ (η′([0, δ]) ∪ η′([1− δ, 1]))
given (Lδ, Rδ) and (L1−δ, R1−δ) is the same as the corresponding conditional law in
the case of a γ-quantum cone. In the latter setting, we know that (L,R) restricted to
[δ, 1− δ] a.s. determines both the surface and η′|[δ,1−δ] (viewed as a path in the surface)

Thus arguing as in the end of the proof in the case that γ ∈ (
√

2, 2), the result follows
because the distortion estimates from Section 2.4 imply that the effect of resampling
the part of the surface which is parameterized by η′([0, δ]) and η′([1− δ, 1]) a.s. tends
to 0 as δ → 0.

6 Lévy excursion construction for γ =
√

8/3

In this section, we are going to complete the proof of Theorem 1.2. We will then show
that the conditional law of the tip of the SLE6 grown up to a given time conditional on
the region it has cut off from its target point (as a path-decorated quantum surface) is
uniformly distributed on the hull boundary according to the quantum length measure
and identify the law of the surface component containing the target point of the SLE6.
We will end by completing the proof of Theorem 1.5.

One notion which will be important for this section is the so-called quantum natural
time, constructed in [DMS14]. It is a quantum analog of the natural parameterization
first defined in [LS11]. We now review its definition and basic construction. Its existence
is implied by [DMS14, Theorem 1.15], which considers a quantum wedge of weight

2− γ2

2
. This is the quantum surface that one obtains by considering a γ-quantum cone

(C, h, 0,∞) decorated by an independent space-filling SLEκ′ curve η′ from ∞ to ∞
normalized so that η′(0) = 0 and then taking the quantum surface parameterized by
η′([0,∞)). If κ′ ∈ (4, 8), then this surface is not homeomorphic to H and is described
by a Poissonian string of beads (and this is the case were interested in) while for κ′ ≥ 8
it is homeomorphic to H. If we assume we are in the former setting, then we can draw
on top of the surface a concatenation of independent SLEκ′(κ

′/2− 4;κ′/2− 4) processes,
one for each bead. This divides the surface parameterized by η′([0,∞)) into a collection
of quantum disks and it is shown in [DMS14, Theorem 1.15] that the path decorated
surfaces can be represented as a gluing of a pair of independent forested lines. A forested
line is a forest of stable looptrees which is defined out of a κ′/4-stable Lévy process. In
particular, there is a natural time parameterization associated with a forested line which
corresponds to the time parameterization of the underlying Lévy process. Recall that
for a stable Lévy process, one can recover its time parameterization as a measurable
function of its jumps. Indeed, one can recover the time elapsed by counting the number
of jumps between ε and 2ε, normalizing by an appropriate power of ε, and then sending
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ε→ 0 (we will remind the reader of this in the proof of Theorem 1.5 in additional detail).
In the case of SLEκ′ on top of an LQG surface, the jumps correspond to quantum disks
which the SLE separates from its target point.

We begin by collecting the following which implies that we can make sense of MLEV

conditioned on having quantum area in a given interval [a, b] with 0 < a < b ≤ +∞.

Lemma 6.1. Let A be the total quantum area of the quantum disks associated with a
sample produced from MLEV. For each a > 0 we have that MLEV[A > a] <∞.

We will identify MLEV[A > a] explicitly in Section 6.2 below.

Proof of Lemma 6.1. Suppose for contradiction that there exists a > 0 such that
MLEV[A > a] =∞. Let Xt be a 3/2-stable Lévy process with only upward jumps and
let It be its running infimum. Assume that X0 = 1 and let τ = inf{t ≥ 0 : Xt = 0}.
Given X|[0,τ ], we sample a family A1 of conditionally independent quantum disks
indexed by the jumps of X|[0,τ ] where the boundary length of the disk associated with
a given jump has boundary length equal to the size of the jump. Let A1 be the total
quantum area of the quantum disks in A1. Note that the jumps of (X−I)|[0,τ ] are equal
to those of X|[0,τ ]. By the Poissonian representation of the excursions that X − I makes
from 0, it follows from the assumption that MLEV[A > a] = ∞ that P[A1 = ∞] = 1.
It therefore suffices to show that P[A1 < ∞] = 1. One can either see this using a
direct computation or, alternatively, noting by [DMS14, Corollary 10.2] and [Ber96,
Chapter VII, Theorem 18] that A1 is equal in law to the amount of quantum area cut
out by a whole-plane SLE6 from a

√
8/3-quantum cone stopped at the last time that

the quantum length of its outer boundary hits 1.

6.1 Proof of Theorem 1.2

We know from [DMS14, Corollary 10.2] that the quantum boundary length of the
complementary component containing −∞ of a whole-plane SLE6 process η′ from
+∞ to −∞ drawn on top of a

√
8/3-quantum cone (C , h,+∞,−∞) evolves as a

totally asymmetric 3/2-stable Lévy process with negative jumps and conditioned to
be non-negative (see [Ber96, Chapter VII.3] for more on this process). Moreover, the
components viewed as quantum surfaces separated by η′ from −∞ are conditionally
independent quantum disks with quantum boundary length equal to the size of the
corresponding jump made by the boundary length process and the ordered sequence of
quantum disks together with whether they were surrounded on the left or right side of
η′ and the marked point corresponding to the last point on the disk boundaries visited
by η′ a.s. determine both η′ and the quantum cone. This implies that we can sample
from the law of a

√
8/3-quantum cone decorated with an independent whole-plane

SLE6 using the following steps:
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• Sample a totally asymmetric 3/2-stable Lévy process X with only downward
jumps conditioned to be non-negative.

• Given X, sample a collection of conditionally independent quantum disks D with
boundary lengths equal to the size of the jumps made by X and orient each such
disk either clockwise or counterclockwise by the result of an i.i.d. fair coin flip.

• For each quantum disk in D, sample a uniformly chosen point in its boundary
from its quantum boundary measure.

(S̃, η̃′|[0,ζr,C ]) (S, η′|[0,ξs,∆])

Figure 6.1: Illustration of the setup of the last four steps of the proof of Theorem 1.2.
Shown in light red is the path-decorated surface (S̃, η̃′|[0,ζr,C ]) which consists of the part
of S and η̃′ up until the time ζr,C defined in Section 5.3. Shown in light blue is the path
decorated surface (S, η′|[0,ξs,∆]) which consists of the part of S and η′ up until time ξs,∆,

the first time t that the quantum boundary length of the hull of η′|[0,t] as seen from

−∞ falls below eγs/2 after first hitting ∆. On the event that S̃ and S are disjoint, the
three surfaces are conditionally independent (S, S̃, and the part of S not in S, S̃).

Fix δ,∆ > 0 and s ∈ R−. We let ξs,∆ be the first time t that X falls below eγs/2 after

exceeding ∆ and let Qs,∆,δ be the event that ξs,∆ < ∞ and the area separated from
−∞ by η′ is in [1− δ, 1]. See Figure 6.1 for an illustration of the setup. We want to
show that the surface S separated from −∞ by η′|[0,ξs,∆] conditional on Qs,∆,δ converges

to that of the unit area quantum sphere decorated with an independent SLE6 from
−∞ to +∞ when we take a limit as s → −∞, ∆ → 0, and then δ → 0. This is a
consequence of the following sequence of observations. We let Fr,ε,C and η̃′ be as in
Section 5.3, where we take η̃′ and η′ to be time-reversal of each other.

1. The conditional probability of Qs,∆,δ given Fr,ε,C tends to 1 when we take a limit
first as r → −∞, then ε→ 0, then s→ −∞, then ∆→ 0, and then δ → 0.

2. The conditional probability that η′|[0,ξs,∆] is disjoint from η̃′|[0,ζr,C ] given Fr,ε,C and

Qs,∆,δ tends to 1 when we take the same sequence of limits as in the previous
item.

3. Let S̃ be the surface separated from +∞ by η̃′|[0,ζr,C ]. Then the path decorated

surfaces (S̃, η̃′|[0,ζr,C ]) and (S, η′|[0,ξs,∆]) are conditionally independent given their
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boundary lengths on Fr,ε,C , Qs,∆,δ, and the event that S̃ and S are disjoint. In

particular, the conditional law of (S, η′|[0,ξs,∆]) given its boundary length and

conditional on Qs,∆,δ does not change when we further condition on Fr,ε,C and
that the two surfaces are disjoint.

4. By the proof of Theorem 1.1 given in Section 5 we have in the setting of the
previous item that the surface parameterized by the complement of S̃ converges
to a unit area quantum sphere when we take a limit as r → −∞ and ε → 0.
As remarked above, the conditional probability that S is contained inside of the
complement of S̃ tends to 1 when we take the further limits as s→ −∞, ∆→ 0,
and then δ → 0. In particular, when we take this sequence of limits, the limit
of η′|[0,ξs,∆] yields a path on top of a unit area quantum sphere. Recall that we

took η̃′ and η′ to be time-reversals of each other. From the construction, η̃′ in
the limit yields an independent whole-plane SLE6 on top of the quantum sphere.
Therefore η′ also yields an independent whole-plane SLE6 on top of the quantum
sphere by the reversibility of whole-plane SLE6. By Proposition 6.2 stated and
proved below, the joint law of its boundary length process and the quantum disks
it separates from ±∞ converges to the time-reversal of the type of 3/2-stable
Lévy excursion described in the statement of Theorem 1.2.

Proposition 6.2. Let X, Qs,∆,δ, and ξs,∆ be as earlier in this section. For each t ≥ 0,

let At be the collection of marked, oriented quantum disks cut out by η′|[0,t]. The joint
law of the time-reversal of X|[0,ξs,∆] and Aξs,∆ cut out by η′|[0,ξs,∆] conditional on Qs,∆,δ

converges as s → −∞, ∆ → 0, and then δ → 0 weakly to MLEV conditioned on the
total quantum area of the quantum disks being equal to 1 (as described just before the
statement of Theorem 1.2).

Proof. [Ber96, Chapter VII, Theorem 18] implies that the conditional law of the time-
reversal of X|[0,ξs,∆] and Aξs,∆ given ξs,∆ < ∞ converges to the law given by MLEV

conditioned on the maximum of the Lévy excursion being at least ∆ when we take
a limit as s → −∞. Therefore the conditional law of the time-reversal of X|[0,ξs,∆]

and Aξs,∆ given Qs,∆,δ converges as s → −∞ to the law given by MLEV conditioned

on the maximum of the Lévy excursion being at least ∆ and the quantum area of the
quantum disks being between 1− δ and 1. Taking a further limit as ∆→ 0 yields MLEV

conditioned on the quantum area being in [1− δ, 1], so the result follows by sending
δ → 0.

6.2 Comparison of Bessel and Lévy measures

We are now going to complete the proof of Theorem 1.5. Before we do so, we first
collect the following result which gives the distribution of the quantum area associated
with the Bessel construction of the unit area quantum sphere.
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Proposition 6.3. There exists a constant c0 > 0 such that the density of the distribution
of the quantum area A of a

√
8/3-quantum sphere sampled from MBES with respect to

Lebesgue measure on R+ is given by c0A
−3/2.

Proof. We first recall that the Bessel dimension used in the construction is given by
δ = 4− 8/γ2 = 1. Consequently, the result follows from [DMS14, Proposition 4.18].

Proof of Theorem 1.5. We assume throughout that γ =
√

8/3. We are going to derive
the result using scaling. Namely, we consider the transformation given by multiplying
the quantum area of the surface by a constant. This, in turn, corresponds to adding a
constant to the field used to parameterize the surface. If we add the constant C to this
field, then the total quantum area is multiplied by eγC .

We are now going to determine how the quantum natural time of the SLE6 path is
scaled under this operation. First, we suppose that X is a 3/2-stable process with
only upward jumps. Fix T > 0. We recall that there exists a constant c0 > 0 such
that the following is true. Let Λ be a p.p.p. on [0, T ] × R+ with intensity measure
c0dt⊗u−5/2du where dt (resp. du) denotes Lebesgue measure on [0, T ] (resp. R+). Then
Λ is equal in law to the set of jump time/size pairs for X in [0, T ], i.e., the set of pairs
(t,Xt− −Xt) with t ∈ [0, T ] and Xt− −Xt 6= 0. (Recall that X has downward jumps so
that Xt− −Xt ≥ 0.) Using this fact, we can a.s. determine the amount of time that
such a 3/2-stable Lévy process has been run if we only observe its jumps in that time
interval (and not the length of the interval). Indeed, for 0 < x1 < x2, we let N(x1, x2)
be the number of jumps made by X in that interval with size contained in [x1, x2].
Then the almost sure limit as j →∞ of

N(e−j−1, e−j)
2
3
c0e3/2j(e3/2 − 1)

(6.1)

is equal to the length of the interval.

Using the same principle, we can a.s. determine the length of a 3/2-stable Lévy excursion
if we only observe its jumps. Suppose that we have a sample (S, x, y) produced from
MLEV. Let T be the length of the Lévy excursion used to generate the surface. Now
suppose that we add C to the field used to parameterize the surface and let TC be
the length of the resulting Lévy excursion. Then the quantum boundary lengths
of each of the components cut out by the SLE6 path are scaled by the factor eγC/2.
Therefore the number of quantum disks with boundary length between e−j−1 and e−j

after adding C to the field is given by N(e−j−1−γC/2, e−j−γC/2). If we divide this quantity
by 2

3
c0e

3/2j(e3/2 − 1) as in (6.1) and then send j →∞, the almost sure limit that we
obtain is TC = e3γC/4T .

Letting MLEV( | t) be the probability measure under which we have conditioned the
length of the Lévy excursion to be equal to t, we therefore have that

MLEV(A ∈ [a, a+ ε] | t) = MLEV(A ∈ [1, 1 + ε/a] | a−3/4t). (6.2)
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Thus,

MLEV(A ∈ [a, a+ ε]) = c

∫ ∞

0

MLEV(A ∈ [a, a+ ε] | t)t−5/3dt (Section 2.1.2; c = c3/2)

= c

∫ ∞

0

MLEV(A ∈ [1, 1 + ε/a] | a−3/4t)t−5/3dt (by (6.2))

= ca−1/2

∫ ∞

0

MLEV(A ∈ [1, 1 + ε/a] | t)t−5/3dt

= a−1/2MLEV(A ∈ [1, ε/a])

Dividing both sides by ε and sending ε→ 0 implies that the density of A with respect to
Lebesgue measure on R+ is given by a constant times A−3/2. (The constant is explicitly
given by the density of A with respect to Lebesgue measure evaluated at 1.) Combining
this with Proposition 6.3 proves (1.6).

6.3 Tip is uniformly random and law of the unexplored region

We are now going to show that if one performs an SLE6 exploration on a γ =
√

8/3
unit area quantum sphere (S, x, y) from x to y where x, y are sampled independently
from the quantum measure on S then:

• The location of the tip of the path is uniformly distributed according to the
quantum boundary measure on its hull relative to its target point y and

• The conditional law of the complement of the hull given its boundary length is
that of a quantum disk weighted by its quantum area.

These results will be important in [MS15b] in which we construct a version of QLE(8/3, 0)
on a quantum sphere. We will then deduce from this the analogous results in the setting
of a

√
8/3-quantum cone.

Both of these statements hold if we explore the SLE6 up to any stopping time τ for the
filtration (Ft) which is defined as follows. For each t, we let Ft be the σ-algebra which
is generated by the collection of quantum disks that η̃′|[0,t] has separated from y, each
marked by the last point on their boundary visited by η̃′ and oriented by the direction
in which η̃′ has traced their boundary. Here, we assume that η̃′ has the quantum natural
time parameterization. (Note that the quantum boundary length of the component of
S \ η̃′([0, t]) is Ft-measurable for each deterministic t since the boundary length process
is absolutely continuous to a 3/2-stable Lévy process and Ft determines the jumps
made up to time t. The same holds if t is replaced by a stopping time.)

Proposition 6.4. Fix t > 0 and suppose that (S, x, y) is distributed according to MLEV

conditioned on the event that the amount of quantum natural time for η̃′ to go from x to
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y is at least t. Let τ be a stopping time for (Ft) as defined just above with P[τ ≥ t] = 1.
Then the conditional law of the component Uy of S \ η̃′([0, τ ]) containing y, viewed as
a quantum surface, given its boundary length is that of a quantum disk with the given
boundary length weighted by its quantum area. Moreover, η̃′(τ) is uniformly distributed
from the quantum boundary measure on ∂Uy.

Proof. This follows from an argument which is very similar to that used to prove
Proposition 5.1, though the present case is actually simplified because we are working
with a finite volume surface rather than an infinite volume surface. In particular, we can
resample the target point y by picking another independent point from the quantum
measure. We are going to prove the result first for deterministic times s > t, then
deduce that the result holds for stopping times which take on dyadic rational values,
and then finally by continuity deduce the result for general stopping times.

Fix s > t deterministic. Let w be a point on S picked from the quantum area measure
independently of everything else. Using an argument which is analogous to that in the
proof of Proposition 5.1, it is easy to see that if w lands in one of the bubbles that η̃′

separates from y, then the conditional law of that bubble given its boundary length is
that of a quantum disk weighted by its quantum area with the given boundary length.
By the symmetry of w and y, it thus follows that if we run η̃′ until the first time τ
that it separates y from w, then the conditional law of the component of S \ η̃′([0, τ ])
containing y given Fτ is that of a quantum disk weighted by its quantum area with the
given boundary length. This holds even if we condition further on which component
contains w. The claim thus follows for the deterministic time s by conditioning on the
event that w is contained in a component which is separated by η̃′ from y in the time
interval [s, s+ ε] for ε > 0 fixed and then taking a limit as ε→ 0.

Now suppose that τ is a stopping time for (Ft) with P[τ ≥ t] = 1. Fix k ∈ N and let
τk be the first multiple of 2−k which occurs after time τ . Then the conditional law is as
above at the time τk. Finally, we note that the law of a quantum disk weighted by its
quantum area with given boundary length is a continuous function of the boundary
length since we can change the boundary length by adding a constant to the field.
Therefore the form of the conditional law at the time τ follows by taking a limit as
k →∞.

We are now going to use Proposition 6.4 to deduce the conditional law of the region
with infinite quantum area when we explore a

√
8/3-quantum cone with an independent

whole-plane SLE6 parameterized by quantum natural time. We will not give an explicit
description of this law, but rather describe it in terms of certain resampling properties.

Proposition 6.5. Suppose that (C , h,+∞,−∞) is a
√

8/3-quantum cone and that η̃′

is a whole-plane SLE6 process from +∞ to −∞ sampled independently of h and then
reparameterized by quantum natural time. Let τ be an a.s. finite stopping time for the
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filtration generated by the quantum surfaces separated by η̃′ from −∞. Let ϕ be the
unique conformal transformation from the component of C \ η̃′([0, τ ]) containing −∞
to C− with ϕ(−∞) = −∞ and ϕ′(−∞) > 0, let h̃ = h ◦ ϕ−1 +Q log |(ϕ−1)′|, and let b

be the quantum boundary length of ∂C− assigned by νh̃. Then the law of h̃ possesses the
following properties:

1. For each r > 0, the conditional law of h̃ in the annulus [−r, 0] × [0, 2π] ⊆ C−
given its values on C− − r is that of a GFF with free boundary conditions on ∂C−
and Dirichlet boundary conditions on ∂C− − r given by those of h̃, conditioned so
that the quantum boundary length of ∂C− is equal to b.

2. The conditional law of h̃ given its values on ∂C− is equal to that of the sum of
the function z 7→ (γ −Q)Re (z) and a GFF on C− with boundary conditions on

∂C− which agree with h̃.

Proof. Step 1: Local behavior of a quantum sphere at its marked points is described by
quantum cone. Suppose that (S, x, y) = (C , h,−∞,+∞) is a doubly-marked quantum
sphere sampled from MLEV = cLBMBES conditioned so that its mass is at least 1. We
are first going to explain why the local behavior of the surface near +∞ (hence also
near −∞ by symmetry) is described by a γ-quantum cone. Since the amount of mass
that a quantum sphere contains has a density with respect to Lebesgue measure, it
follows that (S, x, y) a.s. has mass which is strictly larger than 1. Suppose that we
take the horizontal translation for the embedding into C so that C− has quantum area
equal to 1. Then the conditional law of h in C+ given its values in C− is that of a GFF
with the given boundary values on ∂C+ plus the function (γ −Q)Re(z). By [DMS14,
Proposition 4.13], the following is true. Let τC be the smallest u ≥ 0 so that the average
of h + C on u + [0, 2πi] is equal to 0. Then h(· + τC) + C converges as C → ∞ to a
γ-quantum cone.

Step 2: Resampling property for quantum sphere conditioned on both quantum natural
time and area. Suppose that we fix ε > 0 and we now let (S, x, y) = (C , h,−∞,+∞)
be a doubly-marked quantum sphere sampled from MLEV = cLBMBES. Let η̃′ be an
independent whole-plane SLE6 from +∞ to −∞ parameterized by quantum natural
time. We assume that (S, x, y) is conditioned so that the amount of quantum natural
time for η̃′ to go from +∞ to −∞ is at least ε (without conditioning on the quantum area
for the moment). By Proposition 6.4, we know that the quantum surface parameterized
by the component of C \ η′([0, ε]) containing −∞ is a quantum disk weighted by its
quantum area. Let ϕ be the unique conformal transformation from this component to
C− which fixes and has positive derivative at −∞. By [DMS14, Proposition A.9], we

know that the conditional law of h̃ = h ◦ ϕ−1 +Q log |(ϕ−1)′| in [−r, 0]× [0, 2π] given
its values in (−∞,−r] × [0, 2π] is that of a GFF with the given Dirichlet boundary
conditions on −r+ [0, 2πi] and free boundary conditions on [0, 2πi] conditioned to have
quantum boundary length equal to that of the component of C \ η′([0, ε]) containing
−∞.
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Now suppose that we condition further on the quantum area of (S, x, y) being at least 1.

On the event that the quantum area assigned to (−∞,−r]× [0, 2π] by h̃ is at least 1
we have the same form for the conditional law for the field in [−r, 0]× [0, 2π] as above,
even with this extra conditioning. We also note that the probability of this event tends
to 1 as ε→ 0.

Step 3: Completion of proof of property 1. We now want to combine the observations
made in Step 1 and Step 2 in order to complete the proof of property 1 in the case of
the γ-quantum cone. We suppose that (S, x, y) = (C , h,−∞,+∞) is a doubly marked
quantum sphere with quantum area conditioned to be at least 1 and let η̃′ be an
independent whole-plane SLE6 from +∞ to −∞ which is subsequently reparameterized
by quantum natural time. Recall from the proof of Proposition 6.3 that replacing
h with h + C has the effect of multiplying the quantum natural time by e3γC/4. So,
if we run η̃′ for εe−3γC/4 units of quantum natural time measured using h then the
amount of quantum natural time elapsed measured using h+ C is ε. Suppose that we
condition further on the quantum natural time required by η̃′ to go from +∞ to −∞
to be at least εe−3γC/4. We note that the probability of this event tends to 1 as C →∞.
Therefore in the limit as C →∞, the first observation implies that (after horizontally
translating) we obtain a γ-quantum cone decorated by an independent whole-plane
SLE6. Combining this with the second observation implies that property 1 holds for a
quantum cone.

Step 4: Completion of the proof of property 2. Suppose that (C , h,+∞,−∞) is
a γ-quantum cone and η̃′ is an independent whole-plane SLE6 from +∞ to −∞,
reparameterized according to quantum natural time. Let h̃ be the field which describes
the unexplored region after mapping back to C− as in the statement of the proposition.
We first claim that the average of h̃ on ∂C−− r multiplied by r−1 converges to γ−Q in
probability as r →∞. We are going to deduce this from the corresponding property of
a γ-quantum cone parameterized by C . Since we will be applying a conformal mapping,
it will be more convenient to consider the field integrated against a smooth test function
and then make use of the argument used to prove Lemma 5.13. In order to accomplish
this, we will consider two annuli on our quantum cone which differ by a horizontal
translation of r along C and then use that they are transformed into approximate
annuli by the conformal map using Lemma 2.4.

To make the idea sketched above more precise, we begin by letting C1, C2 be the constants
from Lemma 2.4. Let v0 = inf{Re(z) : z ∈ η̃′([0, ε])}, R1 = −C1 +[v0, v0−3C2]× [0, 2π],
and R2 = −r + [v0, v0 − 3C2]× [0, 2π]. It follows from the definition of a γ-quantum
cone that the difference in the average of the field on R2 and R1 multiplied by r−1

converges in probability to γ −Q as r →∞. Lemma 2.4 implies that ϕ(Ri) for i = 1, 2

contains a non-empty rectangle R̃i in C− where the distance of R̃1 from ∂C− is bounded
and the distance between R̃2 and R̃1 is given by r up to a constant error which does
not grow with r. It follows from the argument used to prove Lemma 5.13 that the
difference in the average of h̃ on R̃2 and R̃1 multiplied by r−1 converges in probability
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to γ −Q as r →∞.

Fix u > 0 and consider z ∈ C− with Re(z) = −u. Let φ0 (resp. φr) be the function

which is harmonic in C− (resp. C+ − r) with boundary values given by those of h̃ on
∂C− (resp. ∂C+ − r). Finally, let φ be the function which is harmonic in the annulus
[−r, 0]× [0, 2π] ⊆ C− with boundary values given by those of h on ∂C− and ∂C− − r.
Then we know that

φ(z) =
(

1− u

r

)
φ1(z) +

u

r
φ2(z) + o(1) as r →∞.

We note that φ1(z) converges as r → ∞ to the harmonic extension of the boundary
values of h from ∂C− to C− and the previous claim implies that

u

r
φ2(z)→ (Q− γ)u as r →∞.

This completes the proof.

7 Exploring a quantum sphere with SLEκ′(κ
′ − 6)

We will now establish some generalizations of our earlier results to the case of γ ∈ (
√

2, 2).

Theorem 7.1. Let (C , h,−∞,+∞) be a unit area quantum sphere with γ ∈ (
√

2, 2).
Let η̃′ be a whole-plane SLEκ′(κ

′ − 6) process in C from −∞ to +∞. Let U1 be the
collection of components of C \ η̃′ which are cut off by η̃′ from +∞ by η̃′ (viewed as
a path in the universal cover of C \ {+∞}) and let U2 be the remaining components
of C \ η̃′ which are cut off by η̃′ from +∞. (The elements of U1 are marked by the
first, equivalently last, boundary point visited by η̃′ and the elements of U2 are doubly
marked by the first and last boundary point visited by η̃′.) Conditional on their quantum
boundary lengths and areas, the elements of U1,U2 are conditionally independent. The
elements of the former are quantum disks and the elements of the latter are surfaces
sampled from the infinite measure on quantum surfaces used to construct a weight
2− γ2/2 quantum wedge with the given conditioning.

Moreover, (C , h,−∞,+∞) and η̃′ are a.s. determined up to horizontal translation and a
global rotation of C about ±∞ by the ordered sequence of oriented, marked components
cut out by η̃′ viewed as quantum surfaces.

We note that in Theorem 7.1 we do not describe the evolution of the boundary length
of the component containing +∞. However, the proof of Theorem 7.1 follows from the
same argument used to prove Theorem 1.2.

We now state the analog of Proposition 6.4 in the general case of γ ∈ (
√

2, 2).
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Proposition 7.2. Suppose that (C , h,−∞,+∞) is a unit area quantum sphere with
γ ∈ (

√
2, 2) and that η̃′ is a whole-plane SLEκ′(κ

′ − 6) process in C from −∞ to +∞
which is sampled independently of h and then reparameterized by quantum natural time.
Let τ be a stopping time for the filtration generated by the bubbles cut out by η̃′|[0,t] such
that a.s. the boundary of the component U of C \ η̃′([0, τ ]) containing +∞ is contained
in one side of η̃′. Conditional on its quantum boundary length and area, the quantum
surface (U, h) has the law of a quantum disk. Moreover, η̃′(τ) is uniformly distributed
from the quantum boundary measure on ∂U .

Proof. This follows from the same argument used to prove Proposition 5.1.

By combining Theorem 7.1 and Proposition 7.2, we can determine the law of the
components which are cut off when we perform an exploration by a radial SLEκ′(κ

′− 6)
on a disk.

Theorem 7.3. Suppose that (C+, h,+∞) is a quantum disk (where +∞ is uniform
from the area measure given the quantum surface (C+, h)), x ∈ ∂C+ is chosen uniformly
from the quantum boundary measure on ∂C+, and η̃′ is a radial SLEκ′(κ

′ − 6) starting
from x and targeted at +∞ which is sampled conditionally independently of h given x.
Let U1 be the collection of components of C+ \ η̃′ which are cut off by η̃′ from +∞ by
η̃′ viewed as a path in the universal cover of C+ \ {+∞} and let U2 be the remaining
components of C+ \ η̃′ which are cut off by η̃′ from +∞. (The elements of U1 are
marked by the first, equivalently last, boundary point visited by η̃′ and the elements of
U2 are doubly marked by the first and last boundary point visited by η̃′.) Conditional
on their quantum boundary lengths and areas, the elements of U1,U2 are conditionally
independent. The elements of the former are quantum disks and the elements of the
latter are surfaces sampled from the infinite measure on quantum surfaces used to
construct a weight 2− γ2/2 quantum wedge with the given conditioning.

Moreover, (C+, h,+∞) and η̃′ are a.s. determined up to a global rotation of C+ about
+∞ by the ordered sequence of oriented, marked components cut out by η̃′ viewed as
quantum surfaces.
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