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1 Introduction

Precise theoretical predictions are in high demand for the current Large Hadron Collider
(LHC) experiments which are aiming to look for tiny deviations from the Standard Model
(SM). Due to the relatively large size of the strong coupling constant, next-to-next-to-
leading order (NNLO) corrections in quantum chromo-dynamics (QCD) are desirable for
a wide variety of final state processes. In particular, a class of 2 → 3 scattering processes
with many kinematic scales have presented a considerable challenge to the theoretical
community and there has been a good deal of activity leading to new methods able of
overcoming their algebraic and analytic complexity [1–11].

The production of a pair of high energy photons is an important experimental signa-
ture at hadron colliders and can be used for example to study the Higgs boson through its
decay to photons. The SM backgrounds are dominated by QCD corrections and a precise
description of the kinematics of these observables requires the theoretical predictions to
include perturbative information from the production in association with additional jets.
NNLO corrections to the process pp→ γγ+ j, which is initiated at LO by quark-antiquark
and quark-gluon processes, have been considered a high priority for current and future
experiments for several years [12–14], and were computed most recently [15]. The Born-
level amplitude for gluon-initiated diphoton plus jet production contains a closed quark
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loop coupling to both photons. Consequently, this type of process starts to contribute
to the cross section only from NNLO onwards. Owing to the large gluon luminosity, it
yields a dominant contribution to the NNLO corrections and dominates their scale uncer-
tainty [15]. To improve upon this uncertainty requires the NLO corrections to the closed
quark-loop contributions, which amount to the two-loop virtual amplitudes for gg → γγg

that we derive in this article. Curiously, the gluon channel has the opposite structure to
the conventional expansion in the number of colour charges, Nc. The dominant, leading
colour, contributions to the quark-initiated process contain only planar diagrams, while
in the gluon-initiated case the leading-colour limit contains both planar and non-planar
graphs at two loops. Graphs with the highest complexity are thus unavoidable.

The last few years have seen rapid progress in our ability to compute two-loop 2→ 3
scattering processes in QCD which had been intractable for a long time. The analytic
computation of the scattering amplitudes in a form suitable for phenomenological applica-
tions requires a number of major technical bottlenecks to be overcome. A basis of special
functions must be identified that can be evaluated efficiently over the full phase space.
For massless five-point scattering, such a basis has been identified [16–20] and became
recently available as a fast and stable implementation in C++ valid in the physical scatter-
ing region [21]. Secondly, the amplitude must be reduced from tensor Feynman integrals
onto a basis of master integrals that can subsequently be expanded in terms of special
functions. Currently, the only viable approach to this task is through the solution of
enormous systems of integration-by-parts (IBP) identities [22–24] of which many public
implementations now exist [25–30]. There has been success in simplifying this problem
using syzygy relations [7, 31–34], module intersection [35, 36], intersection theory [37–40],
η expansion [41–45], direct solution of IBPs through recursive relations [46], multivari-
ate partial fractioning [36], and by-passing complicated algebraic steps through finite field
arithmetic [47–51]. The latter method can be applied more broadly [48, 50], in particular to
a complete reduction of the amplitudes into a representation using special functions. In this
article, we approach the problem through a direct analytic reconstruction of the amplitudes
at the level of the pentagon functions performing all intermediate steps numerically over
finite fields. This technique has been applied successfully to leading-colour (planar) five-
parton amplitudes first numerically [52–55] and then analytically [56–60]. Leading-colour
three-photon production has also been completed and cross checked by two independent
groups both at the level of the amplitudes [61, 62] and of differential cross sections [63, 64].
Very recently, NNLO QCD predictions for a number of three-jet observables and differen-
tial three-to-two jet ratios have been computed at leading colour as well [65]. The process
gg → gγγ contains the most complicated non-planar topologies with up to rank five tensor
numerators even at leading colour.

Diphoton production has been known at NNLO for some time [66, 67] and the two-loop
scattering amplitudes were among the first complete 2→ 2 process to be calculated [68, 69].
The first results for the amplitudes for pp → γγj appeared in the last few months both
for the amplitudes [70, 71] and NNLO differential cross section [15] in the leading-colour
approximation. Very recently, the full-colour two-loop QCD corrections for the quark-
initiated channels to pp→ γγj were presented [72].
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We obtain sufficiently compact analytic expressions for the complete set of helicity
amplitudes for which the ultraviolet (UV) and infrared (IR) poles have been subtracted,
and implement them into an efficient and stable C++ code as part of the NJet library [73].
These expressions take the form of rational coefficients multiplied by pentagon functions.
The code provides colour- and helicity-summed expressions for the two-loop amplitudes
interfered with the one-loop amplitudes, which can be used directly in phenomenological
applications.

Our paper is organised as follows. We first introduce the notation and describe the
colour decomposition of the amplitudes. We then describe the methodology used to perform
the integration-by-parts reduction and reconstruction of the finite remainders over finite
fields. In particular we describe a method for performing a univariate partial fractioning
of the rational coefficients of the special functions on the fly. This approach can be used
inside the finite field workflow, reducing significantly the number of sample points required
to complete the analytic reconstruction and yielding compact analytic expressions. In
particular, we show explicitly some remarkably simple analytic forms we obtained for the
all-plus helicity amplitude, which highlight its conformal properties. Finally, we present the
implementation in the NJet library [73] and the performance of the code using a realistic
set of phase-space points before concluding with a few remarks on future applications of
the results and methods. We also include an appendix with some details of the momentum
twistor formalism used to provide a rational parametrisation of the kinematics.

2 Kinematics and amplitude conventions

We consider the production of a pair of photons in association with a gluon from gluon
fusion,

g(−p1) + g(−p2)→ g(p3) + γ(p4) + γ(p5) , (2.1)

up to two-loop order in QCD. All particles are massless, p2
i = 0, and we take all momenta

as outgoing, so that
5∑
i=1

pi = 0 . (2.2)

Without loss of generality, we assume that the external momenta pi live in a four-dimen-
sional Minkowski space-time, whereas the Feynman loop integrations are done in d =
4 − 2ε to regulate the divergences. The kinematics are described by five independent
scalar invariants, which can be chosen as {s12, s23, s34, s45, s15} with sij = (pi + pj)2, and
a pseudo-scalar invariant,

tr5 = 4iεµνρσpµ1p
µ
2p

µ
3p

µ
4 = [12]〈23〉[34]〈41〉 − 〈12〉[23]〈34〉[41] . (2.3)

The square of tr5 can be expressed in terms of the scalar invariants through the Gram
determinant of the external momenta,

tr25 = ∆ := det (2pi · pj)i,j=1,...,4 , (2.4)
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which is a degree-4 polynomial in the sij . The pseudo-scalar invariant tr5 therefore intro-
duces an algebraic dependence on the kinematics, since tr5 = ±

√
∆. We emphasise that

the sign of tr5 changes under parity conjugation, which acts by flipping the sign of the
spatial momentum components,

P :
(
p0
i , ~pi

)
−→

(
p0
i ,−~pi

)
, (2.5)

and under odd-signature permutations of the external momenta.
We work in the s12 physical scattering region, which is delimited by the requirements

that all s-channel invariants are positive and all t-channel invariants are negative,

s12, s34, s35, s45 > 0 , (2.6)
s13, s14, s15, s23, s24, s25 < 0 , (2.7)

together with the negativity of the Gram determinant, ∆ < 0, which follows from the
real-valuedness of the momenta [18].

The scattering of gluons and photons is a one-loop process at leading order. We
decompose the scattering amplitude as

A(1g, 2g, 3g, 4γ , 5γ) = gsg
2
e

(
Q2
uNu +Q2

dNd

)
fa1a2a3

∞∑
`=1

(
nε
αs
4π

)`
A(`)(1g, 2g, 3g, 4γ , 5γ) ,

(2.8)

where nε = i(4π/µ2
R)εe−εγE with µR being the renormalisation scale. In eq. (2.8), gs and

ge are the strong and electromagnetic coupling constants, αs = g2
s/(4π), Nq and Qq are

the number of quarks of type q and their electric charge in units of the electron charge,
and ai is the adjoint SU(Nc) colour index of the ith gluon. The one-loop amplitude can be
obtained from permutations of pure gluon scattering [74, 75].

We further expand the loop amplitudes in powers of Nc and nf (the number of light
flavour fermions),

A(1)(1g, 2g, 3g, 4γ , 5γ) = A
(1)
1 (1g, 2g, 3g, 4γ , 5γ) ,

A(2)(1g, 2g, 3g, 4γ , 5γ) = NcA
(2)
1 (1g, 2g, 3g, 4γ , 5γ)

+ 1
Nc
A

(2)
2 (1g, 2g, 3g, 4γ , 5γ) + nfA

(2)
3 (1g, 2g, 3g, 4γ , 5γ) .

(2.9)

Surprisingly, the subleading-colour two-loop amplitudes contain only planar integrals, while
the leading colour contains all of the four independent families shown in figure 1. This
pattern is the opposite to that of the quark-initiated channels computed in refs. [70–72], for
which the leading-colour contributions involve only the planar integrals and are therefore
simpler to compute. Providing a prediction for the gluon-initiated channel necessarily
requires handling the most complicated integral families. A simple analysis of the colour
factors of each of the three-gluon vertex diagrams shown in figure 2 illustrates how this
pattern arises. Photons couple to any of the fermion propagators, and the colour factors
remain the same. It can then be seen that non-planar contributions can come from the
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Figure 1. Independent integral families for the gg → gγγ amplitude. The non-planar topologies
appear only in the leading-colour amplitude.

(a) Nc. (b) Nc. (c) Nc. (d) 1
Nc

. (e) Nc − 1
Nc

.

Figure 2. The colour factor of each diagram in the gg → gγγ follows from the representative
three-gluon, two-loop diagrams with a closed fermion loop shown here.

diagrams (a)–(c) only. Diagrams (d)–(e), which contribute to the subleading colour, remain
planar (allowing for permutations of the external momenta).

In our setup, we reduce directly to the finite remainder where the UV and IR poles
have been subtracted analytically. The poles take a particularly simple form since there is
no tree-level process and the one-loop amplitudes are finite in ε. The one- and two-loop
finite remainders are given in terms of the bare amplitudes by [76–80],

F (1) = A(1)(1g, 2g, 3g, 4γ , 5γ) ,

F (2) = A(2)(1g, 2g, 3g, 4γ , 5γ)−
(
I(1) + 3

2
β0
ε

)
A(1)(1g, 2g, 3g, 4γ , 5γ) ,

(2.10)

where β0 = 11Nc/3− 2nf/3 and

I(1) = −nΓ(ε)
{
Nc

ε2

[(
µ2
R

−s12

)ε
+
(
µ2
R

−s23

)ε
+
(
µ2
R

−s31

)ε]
+ 3γg

ε

}
, (2.11)

with nΓ(ε) = eεγE/Γ(1− ε) and γg = β0/2 in the ’t Hooft-Veltman scheme. The logarithms
arising from the ε-expansion of I(1) can be analytically continued to the s12 channel by
adding a small positive imaginary part to each sij . The β0 term in the definition of the
two-loop finite remainder accounts for the strong coupling renormalisation. The finite
remainders inherit from the amplitudes the decomposition in powers of Nc and nf given
by eq. (2.9),

F (1)(1g, 2g, 3g, 4γ , 5γ) = F
(1)
1 (1g, 2g, 3g, 4γ , 5γ) ,

F (2)(1g, 2g, 3g, 4γ , 5γ) = NcF
(2)
1 (1g, 2g, 3g, 4γ , 5γ)

+ 1
Nc
F

(2)
2 (1g, 2g, 3g, 4γ , 5γ) + nfF

(2)
3 (1g, 2g, 3g, 4γ , 5γ) .

(2.12)

Our final results are presented in the ’t Hooft-Veltman scheme, although we make the
distinction between the dimension d of the loop integration and the dimension ds = gµµ
arising from the numerator algebra. Amplitudes with ds = 2 have a much simpler algebraic
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structure and contain information that can then be used to reduce the complexity of the
more difficult ds − 2 component (see e.g. section 4.1). The one-loop finite remainder has
only the ds = 2 term, and we expand the two-loop finite remainder around ds = 2 as

F
(2)
k = F

(2)
k;0 + F

(2)
k;1 (ds − 2) . (2.13)

The ’t Hooft-Veltman scheme is obtained by setting ds = d = 4− 2ε.

3 Computational setup and amplitude reduction

We take a diagrammatic approach to the calculation of the amplitude along the lines of pre-
vious work [81, 82]. Here we briefly summarise the steps and refer the reader to ref. [82] for
details. All Feynman diagrams are generated using QGRAF [83] and subsequently processed
using a combination of in-house Mathematica and FORM [84, 85] scripts. In total, including
contributions from ghost diagrams, we find 50 diagrams at one loop and 1527 at two loops.
Aided by the Spinney [86] package to perform the ’t Hooft algebra, the numerators are
written for each independent helicity configuration. From the loop denominator structure
we assign an integral topology to each diagram. At this point, the diagram numerators are
linear combinations of monomials in loop-momenta dependent scalar and spinor products
with coefficients depending only on external momenta. These coefficients are loaded into a
dataflow graph using FiniteFlow [50]. This enables numerical sampling over finite fields,
thus sidestepping analytically complicated intermediate expressions in further steps. We
rewrite loop-momenta dependent monomials into inverse propagator denominators and a
choice of irreducible scalar products (ISPs). The required mapping of the coefficients is
performed numerically within the dataflow framework. After summing all diagrams and
dropping scaleless integrals, we arrive at an expression ready for integration-by-parts (IBP)
reduction.

The reduction to master integrals has been obtained using an improved version of the
Laporta algorithm [24]. For most integral families we generated identities containing no
higher power of propagators with respect to those appearing in the amplitude, following
ideas proposed in [7, 31, 33]. These identities have been found using the Baikov repre-
sentation of loop integrals, for which identities (i) without higher powers of propagators
and (ii) without dimension-shifted integrals can be found by solving polynomial equations
called syzygy equations. Closed form solutions to both these constraints are separately
known. Indeed, the solution of (i) is almost trivial and the solution for (ii) has been found
in ref. [34]. The two syzygy solutions need to be combined for generating identities that
satisfy both constraints. For this purpose we used a custom syzygy solver that implements
the algorithm in ref. [32] using FiniteFlow [50]. More details on this method can be found
in refs. [7, 31, 33, 34]. The application of the syzygy technique leads to a substantial re-
duction in the size of the IBP system in the planar sector, which improves both the speed
of solving the system and memory usage. This improved performance in the planar sectors
by almost a factor 10, which was sufficient for the current calculation, without the need
of extending it to the non-planar families — though we expect this will be necessary for
future applications.
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For each integral family, we generated integral identities only for one permutation of
the external legs. Numerical solutions for all the permutations contributing to an amplitude
have been found by solving the systems of equations several times, with different numerical
inputs for the invariants. Mappings between master integrals with different permutations
of external legs are applied afterwards to obtain a result in terms of a minimal set of them.

As an additional improvement, for each phase-space point evaluated on a finite field,
we reconstruct the full dependence on the dimensional regulator ε of the amplitude reduced
to master integrals before substituting their expressions in terms of special functions and
computing the Laurent expansion in ε. With this setup, fewer numerical solutions of
the integration-by-parts identities are needed in order to reconstruct analytic results for
the amplitude. This is due to the fact that the expansion of the integrals into pentagon
functions, before performing the Laurent expansion in ε of the final coefficients, complicates
the dependence on ε of the result in this intermediate stage.

To make use of the finite field arithmetic we must have a rational parametrisation of
the external kinematics. We parameterise the kinematics using momentum twistors [8, 87]
where,

s12 = x1 ,

s23 = x1x4 ,

s34 = x1
x2

(x4 + x3x4 + x2x3x5 − x2x3) ,

s45 = x1x5 ,

s15 = x1x3(x2 − x4 + x5) ,

tr5 = −x
2
1
x2

[
x2x4(1 + 2x3)− x4(1 + x3)(x4 − x5) + x2

2x3(−1 + x5)
]
.

(3.1)

We stress that the pseudo-scalar invariant tr5, and hence the square root of the Gram
determinant ∆, is a rational function of the xi variables. Moreover, since x1 is the only
dimensionful variable, we can set it to 1 and recover the dependence on it after the recon-
struction by dimensional analysis. Further details on the momentum twistor parameterisa-
tion are presented in appendix A. In the following sections, we will consider all coefficients
of the special functions to be rational functions of the variables xi.

4 Analytic reconstruction over finite fields

In this section, we present three general strategies to optimise the reconstruction over finite
fields of the rational coefficients in the finite remainders. At this stage, each component
F (x) of the two-loop finite remainder is expressed as

F (x) =
∑
i

ri(x)moni (f) , (4.1)

where ri are rational functions of the variables x which parameterise the momentum
twistors, and moni(f) are linearly independent monomials of the pentagon functions. The
entire chain of operations is implemented over finite fields in the framework FiniteFlow.
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We therefore have a numerical algorithm which evaluates the rational coefficients ri(x) mod-
ulo some prime number. The final step consists in reconstructing the analytic expression
of the rational coefficients from a sufficient number of numerical evaluations. We employ
FiniteFlow’s multi-variate functional reconstruction algorithms, supplemented with three
strategies to reduce the number of required sample points: we determine the linear relations
among the rational coefficients and an ansatz, use univariate slices to identify the factors
belonging to another ansatz, and perform a univariate partial fraction decomposition on
the fly. In the following subsections we discuss thoroughly each of these procedures, and
their application to two-loop diphoton finite remainders.

4.1 Linear relations among the rational coefficients

The representation of the finite remainders in terms of rational coefficients and special func-
tion monomials given by eq. (4.1) is in a sense not optimal. The special function monomials
in fact do not all appear independently. They are present only in a number of independent
combinations that is typically much smaller than the total number of monomials. As a
result, the rational coefficients ri in the finite remainders are not linearly independent. Ex-
pressing the finite remainders in terms of a set of linearly independent rational coefficients
not only leads to more compact expressions, but may also simplify their reconstruction.

We can determine the linear relations among the rational coefficients {ri(x)} of the
special function monomials by solving a linear fit problem,∑

i

ai ri(x) = 0 . (4.2)

Since the coefficients of the linear relations ai are rational numbers, they require sub-
stantially fewer sample points to be reconstructed with respect to the rational coefficients
themselves. We can then use these relations to express the rational coefficients in terms of
a set of linearly independent ones, which remain to be reconstructed. Choosing the latter
to be the simplest — i.e. the ones with the lowest polynomial degrees — may reduce the
number of sample points required for the reconstruction.

This strategy can be further refined by supplying an ansatz for the rational coefficients.
We then fit the linear relations among the rational coefficients of the finite remainders and
the coefficients of the ansatz, which we denote by {ej(x)},∑

i

ai ri(x) +
∑
j

bj ej(x) = 0 , (4.3)

with ai, bj ∈ Q. In the best case scenario, all the rational coefficients ri can be expressed
in terms of the ansatz coefficients ej and no further reconstruction needs to be performed.
Even when the ansatz does not entirely cover the rational coefficients, it may still lower
the degrees of the linearly independent coefficients which have to be reconstructed. The
ansatz can be constructed from the tree-level amplitude and the rational coefficients of the
one-loop amplitudes up to order ε2 from the analysis of the leading singularities [88–91] or
from other related amplitudes. In the diphoton case, we can use the two-loop five-gluon
amplitudes. At one loop, the 3g2γ amplitudes can be expressed in terms of permutations

– 8 –
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of the five-gluon ones [74, 75]. While this is no longer true at two loops, we find there is
an important overlap between the rational coefficients of the 3g2γ amplitudes and those
of the five-gluon ones. We use as ansatz in the linear relations the rational coefficients
of the leading-colour two-loop five-gluon amplitudes (all two-loop five-parton amplitudes
are available analytically at leading colour [56–58, 60, 92–95]; we made use of independent
results, which are being prepared for publication).

4.2 Matching factors on univariate slices

The pole structure of the pentagon functions is determined by the letters of the pentagon
alphabet [16]. The pentagon functions (or their discontinuities) may in fact have loga-
rithmic singularities in the phase-space points where one of the letters vanishes. For this
reason, it is natural to expect that the poles of the rational coefficients should be similarly
linked to the pentagon alphabet. Indeed, we observe that the denominators of the ratio-
nal coefficients in front of the pentagon functions factorise into a product of letters of the
pentagon alphabet. In other words, each rational coefficient r(x) has the form

r(x) = n(x)∏
k `k

ek(x) , (4.4)

where ek are integers, n(x) is a polynomial in the variables x, and {`k} is an ansatz of
factors from the pentagon alphabet. The exponents ek in eq. (4.4) may in general be
negative, corresponding to factors in the numerator. We use the following ansatz for the
factors,1

{`k(x)} =
{
〈12〉 , 〈13〉 , 〈14〉 , 〈15〉 , 〈23〉 , 〈24〉 , 〈25〉 , 〈34〉 , 〈35〉 , 〈45〉 , [12] , [13] , [14] , [15] ,
[23] , [24] , [25] , [34] , [35] , [45] , s12 − s34 , s12 − s35 , s12 − s45 , s13 − s24 ,

s13 − s25 , s13 − s45 , s14 − s23 , s14 − s25 , s14 − s35 , s15 − s23 , s15 − s24 ,

s15 − s34 , s23 − s45 , s24 − s35 , s25 − s34 , tr5
}
.

(4.5)
The exponents ek in the ansatz (4.4) can be determined by reconstructing r(x) on a univari-
ate slice modulo some prime number [58]. The univariate slice is defined by parameterising
the variables by a single parameter t,

{xi(t) = ai + bit} , (4.6)

for constant ai and bi. The latter are chosen randomly in the finite field to avoid artificial
simplifications. The dependence on t is chosen to be linear so that the degrees of the
numerator and denominator of r(t) := r (x(t)) correspond to the total degrees of r in x.
Matching the reconstructed r(t) with the ansatz (4.4) evaluated on the same slice allows
to determine the exponents ek straightforwardly. With a univariate reconstruction on
just one prime field we can thus infer a lot of information about the analytic form of the

1Note that the ansatz in eq. (4.5) is independent of the rational parametrisation of the kinematics. The
list of independent polynomials used in the factor matching on the univariate slice is generated by evaluating
this list using the specific parametrisation.
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rational coefficients: the denominators are entirely fixed, and typically some factors of the
numerators are determined as well. What remains to be reconstructed therefore requires
fewer sample points.

4.3 Univariate partial fraction decomposition over finite fields

Partial fraction decomposition is a standard and powerful tool for the simplification of
rational functions. The decomposition in partial fractions is however not unique in the
multivariate case. Its application to the multivariate rational functions in scattering am-
plitudes is therefore not straightforward. The necessity to simplify the rational coefficients
of two-loop five-particle scattering amplitudes has recently spurred several approaches to
handle the multivariate case efficiently [36, 59, 96], based upon Leinartas’ algorithm [97, 98].
These algorithms rely on algebraic geometry techniques, such as multivariate polynomial
division and Gröbner bases, and require the arbitrary choice of a monomial ordering.

Our main goal in this work is actually to simplify the reconstruction of the rational
coefficients over finite fields. In other words, we want to reconstruct the rational coefficients
on the fly, directly in a form which is decomposed in partial fractions. The simplification
of the ensuing analytic expressions comes as a welcome by-product. We observe that a
univariate partial fraction decomposition is sufficient for this purpose. The advantage is
that it can be straightforwardly implemented over finite fields, avoiding all algebraic geom-
etry complications. The only arbitrary choice that remains to be done is which variable to
partial fraction with respect to. The latter can be chosen by observing the impact of the
partial fraction decomposition with respect to each variable separately on the lower order
amplitudes. With the parameterisation of the kinematics in terms of momentum twistors,
eq. (A.3), we find it most convenient to partial fraction with respect to x4.

We now discuss our algorithm to reconstruct the univariate partial fraction decompo-
sition of a multivariate rational function r from its numerical evaluations over finite fields.
The algorithm requires as input an ansatz for the factors which may appear in the denom-
inator of r. Only those factors which depend on the variable with respect to which the
partial fraction decomposition is being performed are strictly necessary. Guessing other
factors may further simplify the reconstruction. In the application to massless two-loop
five-particle scattering amplitudes, the factor ansatz can be inferred from the letters of the
pentagon alphabet [16]. We use the factors in eq. (4.5).

Let r be a rational function of the variables x = {xi}ni=1. In this work the xi’s are the
momentum twistor variables defined by eq. (3.1), so n = 5, but we outline the algorithm in
general. The goal is to decompose r in partial fractions with respect to one of the variables,
say xk. To simplify the notation, we denote the latter by y = xk, and the remaining
variables by x̄ = {xi}ni=1\xk. We may not know the analytic expression of r, but we must
be able to evaluate it numerically modulo some prime number through some algorithm.
Let {`i(x̄, y)}mi=1 be an ansatz for the factors which may appear in the denominator of r.
Without loss of generality, we assume that the `i’s are irreducible polynomials over Q. In
other words, we assume that r has the form

r (x̄, y) = N (x̄, y)∏m
i=1 `

ei
i (x̄, y) , (4.7)
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where ei ∈ Z, and N (x̄, y) is a function which depends polynomially on y and rationally
on x̄. The ansatz {`i (x̄, y)}mi=1 may catch some of the factors in the numerator of r (x̄, y),
corresponding to negative values of the exponents ei in eq. (4.7). This lowers the total
degrees of N (x̄, y) and eventually simplifies its reconstruction, but is not necessary for
the partial fraction decomposition with respect to y. Similarly, the ansatz may cover all
the factors in the denominator of r, so that N (x̄, y) is a polynomial in x̄ and y. What
is necessary for the partial fraction algorithm to work is that the ansatz contains all the
factors in the denominator of r which depend on y. We denote this subset by

Λy =
{
i ∈ {1, . . . ,m} : ei > 0 ∧ degy [`i (x̄, y)] > 0

}
, (4.8)

where degy [h] is the degree in y of the polynomial h.
The first step consists of fixing the exponents ei in the ansatz (4.7). We do this through

the procedure discussed in section 4.2. In the second step we determine the degree in y

of the numerator N (x̄, y) in the ansatz (4.7). We recall that N (x̄, y) is by construction
polynomial in y. We compute its degree in y by reconstructing it on another univariate
slice, this time where only y varies,

{xi(t) = ai ∀i 6= k , y(t) = t} , (4.9)

with ai chosen randomly in the finite field. Clearly, the degree in t of N(t) := N (x̄ = ā, y = t)
gives the degree in y of N (x̄, y). We introduce the short-hand notation

dN = degy [N (x̄, y)] , di = degy [`i (x̄, y)] , dΛy =
∑
i∈Λy

eidi (4.10)

for the degrees of N (x̄, y) and of the denominator factors `i (x̄, y) in y.
Using the information about the factors in the denominator of r and the degree in y

of its numerator, we construct the following ansatz for the partial fraction decomposition
of r with respect to y:

r (x̄, y) =
∑
i∈Λy

ei∑
j=1

di−1∑
k=0

Uijk (x̄) yk

`ji (x̄, y)
+R (x̄) +

dN−dΛy∑
h=1

Vh (x̄) yh , (4.11)

where Uijk (x̄), R (x̄) and Vh (x̄) are unknown rational functions of x̄. The right-most term
in eq. (4.11) is required only if dN > dΛy , i.e. only if the numerator of r has a higher degree
in y than the denominator.

The last step of the algorithm consists of reconstructing the analytic dependence on x̄ of
the unknown coefficients in the ansatz (4.11) from the numerical evaluations of r (x̄, y). To
solve this linear fit problem, we use the algorithm implemented in the FiniteFlow frame-
work [50]. The solution comes in the form of an algorithm which numerically evaluates
Uijk (x̄), R (x̄) and Vh (x̄). The rational reconstruction may be simplified by first recon-
structing the coefficients on a univariate slice where all the remaining variables x̄ vary, and
using that to match them with those factors in the ansatz {`i (x̄, y)}mi=1 which depend only
on x̄. This may lower the total degrees of the functions that need to be reconstructed.
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In addition to the factors in the original ansatz {`i (x̄, y)}mi=1, the coefficients of the par-
tial fraction decomposition (4.11) may also contain spurious factors. Consider for instance
the toy example

1
(y − a)(y − b) = 1

(a− b)(y − a) −
1

(a− b)(y − b) , (4.12)

where a and b are arbitrary constants such that a 6= b. In this example, the inspection of
the left-hand side indicates {y−a, y− b} as ansatz for the irreducible denominator factors.
The partial fraction decomposition however contains a factor of a− b in the denominator,
which arises from the residue of the function at the zero of either of the denominator
factors. Clearly a = b is a spurious singularity, manifestly absent on the left-hand side and
produced by the partial fraction decomposition. In general, we can determine the potential
spurious factors by evaluating the factors in the ansatz `i (x̄, y) which depend on y at their
zeros,

{`i (x̄, y∗k)}i∈Λy , k∈Λ1
y , i 6=k , (4.13)

where y∗k is the zero of `k (x̄, y),

`k (x̄, y∗k) = 0 , (4.14)

and Λ1
y is the subset of factors which depend linearly on y,

Λ1
y =

{
i ∈ Λy : degy [`i (x̄, y)] = 1

}
. (4.15)

The restriction to zeros of linear functions of y is due to the facts that the `i’s are irreducible
polynomials over Q and that we are factoring over Q. The zeros of higher-degree irreducible
polynomials would introduce algebraic and/or complex dependence.

In practice, we observe that determining the spurious factors does not simplify the
reconstruction. The greatest part of the denominators of the coefficients in the partial
fraction decomposition (4.11) is in fact determined by the original ansatz {`i (x̄, y)}mi=1.
What remains after they are multiplied away has a total degree which is typically lower
than that of the numerators, which therefore dominates the determination of the number of
sample points required for the reconstruction. While it is possible to determine entirely the
denominators of the coefficients in eq. (4.11), it would not reduce the number of required
sample points substantially, and for this reason we refrain from doing it.

Having determined as many factors as possible in the coefficients of the partial fraction
decomposition, we multiply them away and reconstruct the remainder using the multivari-
ate rational reconstruction algorithms implemented in FiniteFlow. It is important to
stress that the algorithm which evaluates the coefficients of the partial fraction decomposi-
tion contains the solution of a linear fit. For each numerical value of x̄, eq. (4.11) is sampled
for several numerical values of y, roughly as many times as the number of unknowns. This
generates a linear system of equations for the unknowns evaluated at the chosen value of
x̄. The redundant equations are removed after the learning phase. The reconstruction on
the univariate slices in the intermediate steps of the algorithm, because it requires several
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evaluations of the original functions, obviously has a higher computational cost with re-
spect to directly evaluating r. On the other hand, the coefficients of the partial fraction
decomposition depend on one fewer variable than the original function r, and may have
substantially lower degrees. As a result of all these aspects, the partial fraction decompo-
sition may be outperformed by a direct reconstruction for simple functions, but becomes
more and more convenient as the complexity of the functions increases.

4.4 Summary and impact of the reconstruction strategy

The techniques discussed in the previous sections are general and can be applied to any
rational reconstruction problem, in combination or separately. In order to reconstruct the
rational coefficients of the two-loop diphoton finite remainders we apply them consecutively
as follows.

Stage 1. We fit the linear relations among the rational coefficients with an ansatz, as
discussed in section 4.1. We begin with the (ds − 2)1 components and use the co-
efficients of the two-loop leading-colour five-gluon finite remainders as ansatz. For
the (ds − 2)0 components, which are more complicated, we add to the ansatz the
(ds − 2)1-coefficients already reconstructed.

Stage 2. We guess the factors from the ansatz (4.5) by reconstructing a univariate slice
and multiply them away, as explained in section 4.2.

Stage 3. We partial fraction on the fly with respect to x4, applying the algorithm pre-
sented in section 4.3. The coefficients to be reconstructed after this stage are those
in the ansatz for the partial fraction decomposition (4.11), and depend on one fewer
variable.

Stage 4. We reconstruct another univariate slice and perform an additional factor guess-
ing, as in the second stage.

The drop in the complexity of the rational coefficients after each stage for the most
complicated two-loop diphoton finite remainders, which are in the Maximally-Helicity-
Violating (MHV) configurations, is illustrated in table 1. As proxy for the complexity of
the coefficients we use the maximal numerator/denominator polynomial degrees, which can
be evaluated by reconstructing univariate slices as discussed in section 4.3.

Interestingly, we observe that the coefficients of the subleading-colour 3g2γ two-loop
finite remainders F (2)

2 can be expressed in terms of those of the leading-colour two-loop five-
gluon finite remainders. The coefficients of the leading-colour 3g2γ two-loop remainders
F

(2)
1 instead are not entirely fixed by the five-gluon ones, but using the latter as ansatz in

the linear relations reduces significantly the maximal polynomial degrees of the coefficients
which remain to be reconstructed.

As can be appreciated in table 1, our strategy leads to a substantial drop in the
polynomial degrees. Furthermore, the coefficients to be reconstructed after the partial
fraction decomposition (stage 3) depend on one fewer variable. This makes the decrease
in the number of sample points required for the reconstruction even more pronounced.
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finite remainder original stage 1 stage 2 stage 3* stage 4*
F

(2)
1;1 (1−, 2−, 3+, 4+, 5+) 69/60 28/20 24/0 19/10 11/5
F

(2)
1;0 (1−, 2−, 3+, 4+, 5+) 78/69 44/35 43/0 21/10 16/9
F

(2)
1;1 (1−, 2+, 3+, 4−, 5+) 59/55 30/27 29/0 18/15 17/4
F

(2)
1;0 (1−, 2+, 3+, 4−, 5+) 89/86 38/36 38/0 20/16 17/3
F

(2)
1;1 (1+, 2+, 3+, 4−, 5−) 40/42 25/27 25/0 15/18 15/0
F

(2)
1;0 (1+, 2+, 3+, 4−, 5−) 66/66 32/33 32/0 13/13 12/3

Table 1. Maximal numerator/denominator polynomial degrees of the rational coefficients of the
most complicated finite remainders at each stage of our reconstruction strategy. The column “orig-
inal” refers to the rational coefficients prior to any optimisation. The asterisk * highlights that,
after the partial fraction decomposition in stage 3, the coefficients to be reconstructed depend on
one fewer variable.

The price to pay for this is that performing the partial fraction decomposition increases
the evaluation time per point, as discussed at the end of section 4.3. With our setup
we observe that, for the most complicated finite remainders, the evaluation times grows
roughly by one order of magnitude, while the number of sample points required for the
reconstruction decreases by two orders of magnitude. This leads to an overall gain of
roughly one order of magnitude in the reconstruction time.2 We stress that the evaluation
time relevant here is that of the algorithm which evaluates the rational coefficients over
finite fields, not the final evaluation time of the finite remainders. Once the reconstruction
is completed, in fact, the rational coefficients are evaluated from their analytic expressions.
For the evaluation time of the finite remainders, we refer to section 6.

Our approach therefore leads to an important simplification in the reconstruction of
the rational coefficients. Moreover, the ensuing analytic expressions are dramatically more
compact. This makes them suitable for compilation in a C++ library, an essential step for
future phenomenological applications.

5 Compact analytic expressions for the all-plus configuration

Prior to discussing the numerical implementation of all two-loop helicity amplitudes, we
would like to comment on the all-plus amplitude, which displays a particularly simple
analytic form. We find that the structures appearing are closely related to those appearing
in the five-gluon all-plus amplitudes at one [99–102] and two loops [56, 92–94]. We present
the finite remainders in the expansion around ds = 2.

2To give a sense of the absolute scale of the improvement, we quote the explicit number of sample points
required for the − + + − + helicity configuration for ds = 0, F

(2)
1;0 . Reconstructing after stage 2 would have

required 57291 sample points in four variables while reconstrucing after stage 4 requires 518 sample points
in 3 variables. Note that each of the 518 points requires a univariate fit in the additional variable and so
the overall improvement is around a factor of 10.
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The all-plus amplitude is finite and rational at one loop. The finite remainder can be
written as

F
(1)
1;0 (1+, 2+, 3+, 4+

γ , 5+
γ ) = −2 [45]2

〈12〉〈23〉〈31〉 . (5.1)

Remarkably, this amplitude is invariant under conformal transformations, and the expres-
sion given here exhibits this property in a manifest way [102]. If all masses are neglected,
the SM Lagrangian is conformally invariant. This symmetry is obscured at loop level by the
appearance of scales associated with the divergences and it is therefore rather surprising to
observe it in a one-loop amplitude. One might naïvely suppose that this is a consequence
of the finiteness of the all-plus one-loop amplitudes. Yet, the single-minus one-loop am-
plitudes are equally finite, but they are not conformally invariant. This phenomenon still
calls for an explanation. These properties are discussed in detail in ref. [102], where the
authors prove that the n-gluon amplitudes in QCD are conformally invariant at one loop.
Since the diphoton amplitudes can be expressed as permutations of pure gluon scatter-
ing [74, 75] and the conformal generators commute with permutations, all considerations
regarding conformal symmetry trivially extend to the diphoton case.

At two-loop order, the ds = 2 contribution is the only one involving transcendental
functions. Its expression is remarkably simple,

F
(2)
1;0 (1+, 2+, 3+, 4+

γ , 5+
γ ) = [45]2

〈12〉〈23〉〈31〉
∑

cyclic(123)
Fbox(s12, s23; s45) , (5.2)

where the sum runs over the cyclic permutations of (1, 2, 3), and

Fbox(s12, s23; s45) = Li2
(

1− s12
s45

)
+ Li2

(
1− s23

s45

)
+ log2

(
s12
s23

)
+ π2

6 (5.3)

is the finite part of the one-loop box with an off-shell leg. The analytic continuation of the
box functions to any scattering region can be easily achieved by adding a small positive
imaginary part to each two-particle Mandelstam invariant, sij → sij + i0+. The other
partial amplitudes at two loops are rational,

F
(2)
1;1 (1+, 2+, 3+, 4+

γ , 5+
γ ) = − [45]2

〈12〉〈23〉〈31〉 −
1
2F

(2)
3;0 (1+, 2+, 3+, 4+

γ , 5+
γ ) ,

F
(2)
2;0 (1+, 2+, 3+, 4+

γ , 5+
γ ) = 0 ,

F
(2)
2;1 (1+, 2+, 3+, 4+

γ , 5+
γ ) = −3 [45]2

〈12〉〈23〉〈31〉 −
1
2

tr5 (p1, p2, p3, p4 − p5) 〈45〉
〈14〉〈15〉〈24〉〈25〉〈34〉〈35〉 ,

F
(2)
3;0 (1+, 2+, 3+, 4+

γ , 5+
γ ) = 1

3 tr5 (p1, p2, p3, p4 − p5)
∑

cyclic(123)

1
〈23〉2〈14〉〈15〉〈45〉 , (5.4)

where tr5(pi, pj , pk, pl) = tr(γ5/pi/pj/pk/pl). The peculiar simplicity of this amplitude at two
loops follows from the fact that it vanishes at tree level and it is rational in four dimensions
at one loop. The one-loop amplitude can in fact be used as an effective on-shell vertex in
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four-dimensional unitarity [92, 103, 104]. In this way, the cuts of the two-loop amplitude
become one-loop cuts with an insertion of the effective vertex. The one- and two-loop
all-plus finite remainders are thus treated as tree-level and one-loop objects, respectively.
As a result, the special functions appearing in the finite remainder at two loops can have at
most transcendental weight two (up to order ε0). Moreover, the rational coefficients of the
transcendental functions can be shown through four-dimensional unitarity to be given by
(permutations of) the one-loop all-plus finite remainder. They thus inherit the symmetry
under conformal transformations from the one-loop amplitude. These beautiful properties
are manifest in our explicit expressions (5.2) and (5.1). Complementing four-dimensional
unitarity with recursion relations for the rational terms allows to compute the two-loop
all-plus finite remainders in the purely gluonic case avoiding altogether the computation
of the two-loop integrals [92, 94]. Some results are available even for amplitudes involving
more than five plus-helicity gluons [105–110].

Amplitudes with a single minus helicity share some of the simplicity of the all-plus case.
They also vanish at tree level, and are finite and rational at one loop. As a result, they
also have maximum transcendental weight two at two loops. Differently from the all-plus
amplitudes, however, they do not have the structure that F (2)

1;0 has uniform transcendental
weight two with all other contributions being rational. For the amplitudes with two negative
helicities, instead, the finite remainders have maximum weight two and four at one and
two loops, respectively.

6 Implementation and performance

The finite remainders are coded up into the NJet C++ library, which is linked to the
PentagonFunctions++ library [21] for the evaluation of the special functions. The six
independent helicity amplitudes (shown in table 2) are permuted analytically onto the
global basis of pentagon functions defined in the 12 → 345 scattering region to provide a
complete list of 16 “mostly-plus” helicity amplitudes required for the sum. This task is
performed using the permuted coefficients from the six fully reconstructed amplitudes as
an ansatz into the linear relations so additional reconstruction time is avoided (see sec-
tion 4.1). Having identified a global basis of pentagon functions for the complete colour
and helicity sum, we formulate the partial amplitudes as

F h = chiM
h
ijf

h
j , (6.1)

where h is the helicity configuration, fhj is a list of integers corresponding to the global
list of pentagon function monomials, Mh

ij are sparse matrices of rational numbers, and
chi are the independent rational coefficients written in terms of independent polynomials
in the momentum twistor variables xi. The pentagon function monomials are split into
parity-odd and -even components, which allows the remaining 16 “mostly-minus” helicities
to be computed by simply flipping the parity of the special functions and applying com-
plex conjugation to the coefficients. The colour- and helicity-summed matrix element is
constructed numerically from these ingredients. The sparse matrix multiplication is imple-
mented using the Eigen library [111]. Evaluation with 128-bit and 256-bit floating-point
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numbers (f128 and f256) is provided via the QD library [112]. The code is available through
https://bitbucket.org/njet/njet, where we provide additional installation instructions and
example programs demonstrating the usage.

The C++ code returns the values of the one- and two-loop hard functions, H(1) and
H(2), obtained by squaring eq. (2.8), substituting the decomposition in Nc and nf from
eq. (2.9), subtracting the IR and UV poles, and finally summing over colour and helicity,

H = α2α3
s

(4π)5

(
H(1) + αs

4π H
(2)
)

+O(α5
s) ,

H(2) = NcH(2)
1 + 1

Nc
H(2)

2 + nf H
(2)
3 .

(6.2)

The sum over colours for each helicity can also be returned if required. We find the
evaluation time is dominated by the special functions, particularly when higher precision
is required. In order to ensure fast and stable numerical evaluation, we adopt the following
evaluation strategy.

1. The user-provided phase-space point is checked for the precision of the on-shell con-
straints. Points are adjusted in case the precision is not acceptable for the requested
number of digits: 64-bit floating-point numbers (f64) ∼ 15; f128 ∼ 31; f256 ∼ 62.

2. The colour- and helicity-summed amplitude is computed using f64 precision at two
points which differ only by overall dimension scaling factor. After accounting for the
overall dimension of the squared amplitude, the two evaluations should only differ
due to rounding errors at intermediate stages in the evaluation of the coefficients.
This accuracy scaling test has been used extensively at one loop. We refer to this
accuracy as f64/f64 since both coefficients and special functions use f64 precision.

3. If the estimated number of correct digits from the scaling tests falls below a user-
defined threshold, the coefficients only are recomputed using f128 precision after
the original point is corrected to f128 precision (as in step 1). We refer to this as
f128/f64 precision.

4. The scaling test is performed again and if it fails the special functions are re-evaluated
in f128 precision. This is f128/f128 precision.

5. These steps can be repeated to obtain up to f256/f256 precision. In practice these
steps are rather expensive and unnecessary for standard phenomenological applica-
tions, so they are omitted from our strategy.

While the dimension scaling test has been used successfully at one loop, we need
to be more careful in our applications when linking the PentagonFunctions++ library,
which also makes use of the dimension re-scaling internally. To validate the reliability
of the scaling test as an estimate of the error of the result, we evaluate both with a
direct f128/f128 computation and via a scaling test with an error cutoff of four digits
at f64/f64 for a set of 60 000 points. To ensure a realistic validation, we use “physical”
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points with a phase-space sampling density determined by the one-loop process, obtained
from NNLOJET. We compare the estimated error provided by the f64/f64 scaling test to
the relative difference between the f64/f64 and f128/f128 evaluations, which is taken as
the true error. In the following, percentages are always with respect to the entire set of
points.

The scaling test returns a negative for 2.8 % of the points. According to true error,
an additional 0.2 % of the points should be failed and are missed by the scaling test (false
positive). Of these points, almost all have true error of four digits, the remaining 0.008 %
with three digits, so the effect on stability is small. The scaling test also fails some points
unnecessarily (false negative), this subset comprising 0.7 % of all points, which incurs a
small performance penalty in the evaluation strategy. The effects of the false estimates are
considered to be allowably small.

We note that the dimension scaling test is statistical and therefore one will always
find anomalies in a sufficiently large sample. Care should be taken when integrating over
extreme regions of phase space.

To assess the stability of our implementation (figure 3) and measure timings, we eval-
uate the amplitude squared over 100 000 points of the physical phase space. We find a
single f64/f64 call has a mean time of 9 s, with 99 % of that time spent evaluating the
pentagon functions. Using the full evaluation strategy with a target minimum accuracy of
three digits, we obtain a mean timing per phase-space point of 26 s.

We present a benchmark evaluation at a point taken from the physical phase space.
We choose a generic configuration where the momentum invariants (GeV2) and tr5 (GeV4)
take the values, quoted to four significant figures,

s12 = 14 120 , s23 = −1405 , s34 = 7667 ,
s45 = 5493 , s15 = −4404 , tr5 = −17 600 000i .

(6.3)

High precision f128/f128 evaluations are given in the supplementary material. The values
for the finite remainders and the two-loop hard function, normalised by the leading order,
are shown in tables 2 and 3 respectively. The subleading-colour corrections are 645 times
smaller than the leading colour at this point, while the closed fermion loop corrections are
133 times smaller. These ratios do change as we sample different points. Averaging over
100 physical points, the ratio |NcH(2)

1 /H(1)| :
∣∣∣ 1
Nc
H(2)

2 /H(1)
∣∣∣ : |nfH

(2)
3 /H(1)| is 2061:1:14.

While the evaluation is considerably more difficult than the massless planar five-gluon
scattering owing to the more complicated set of pentagon functions, our tests show the
amplitudes are clearly ready for phenomenological applications.

7 Conclusions

In this paper we have presented a complete, full colour, five-point amplitude at two loops in
QCD. All helicity configurations have been implemented into the NJet C++ library, which
provides an efficient and stable evaluation over the physical scattering region. Though the
algebraic complexity of the amplitude is considerable, the direct analytic reconstruction
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helicity NcF
(2)
1 /F (1) 1

Nc
F

(2)
2 /F (1) nfF

(2)
3 /F (1)

+ + + + + −27.76− 10.17i −1.673− 0.2396i −5.228− 4.034i
−+ + + + −25.76 + 27.83i 0.3571− 0.3213i 0.3363− 4.424i
+ + +−+ −24.16 + 14.59i 0.3698− 0.5539i −4.951 + 0.6672i
−−+ + + −20.23 + 0.8204i −0.4055− 0.3549i 0.053 55 + 0.000 247 8i
−+ +−+ −28.58 + 32.90i 0.3917− 0.000 548 9i 3.022 + 1.475i
+ + +−− −20.94− 15.34i −0.3080− 0.4558i −4.880− 0.005 862i

Table 2. Numerical values of the partial amplitudes for the six independent helicities at the
benchmark point in eq. (6.3). Values are quoted with Nc = 3 and nf = 5, to four significant figures.

NcH(2)
1 /H(1) 1

Nc
H(2)

2 /H(1) nfH
(2)
3 /H(1)

52.75 0.081 76 0.3956

Table 3. Numerical values for the components of the two-loop hard function normalised to the
one-loop hard function defined in eq. (6.2) at the benchmark point of eq. (6.3). Values are quoted
with Nc = 3 and nf = 5, to four significant figures.
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Figure 3. Histogram of the error estimate on the two-loop evaluations as given by the scaling test.
We use the evaluation strategy with a target accuracy of three digits and show errors for all precision
levels. We see 1.8 % of points failing f64/f64 evaluation, with 1.2 % passing at f128/f64 and 0.6 %
passing at f128/f128. The evaluation strategy achieves target accuracy for all of the 100 000
physical phase-space points tested.
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of the finite remainders was possible by making use of linear relation amongst the coeffi-
cients and partial fractioning in one variable, which could be done without any analytic
knowledge of the intermediate steps in the reduction. We expect these techniques will have
applications to other important high-multiplicity two-loop calculations with more external
scales such as five-particle scattering with an off-shell leg, for which there has also been
recent progress [17, 81, 113–117]. We have found a form that is suitable for phenomeno-
logical applications and look forward to new precision predictions for diphoton production
at hadron colliders including the dominant N3LO corrections we have computed here.
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A Momentum twistor parametrisation

Following [8, 52, 87], the construction begins with

Zi =
(
λi
µi

)
, (A.1)

where λi is the negative-helicity spinor, and µi is related to the positive-helicity spinor
λ̃i via

λ̃i = 〈i, i+ 1〉µi−1 + 〈i+ 1, i− 1〉µi + 〈i− 1, i〉µi+1
〈i, i+ 1〉〈i− 1, i〉 , (A.2)

with the indices defined modulo 5. Using the Poincaré and U(1) symmetries it is possible
to fix all but 5 of the entries of the momentum twistor matrix Z = (Zi)i=1,...,5. Explicitly
we choose the form,

Z =
(
λi
µi

)
i=1,...,5

=


1 0 1

x1
1+x2
x1x2

1+x3(1+x2)
x1x2x3

0 1 1 1 1
0 0 0 x4

x2
1

0 0 1 1 x4−x5
x4

 . (A.3)
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The parameterisation used in this work has some benefits: the only dimensionful quantity
is x1 and all holomorphic quantities are described using only x1, x2, x3. For real kinematics
only x2 and x3 are complex. Notice that the conversion between the momentum twistor
coordinates and spinor-helicity expressions is only invertible for phase-free quantities. For
this purpose we may use the following relations,

x1 = s12 ,

x2 = −tr+(p1, p2, p3, p4)
s12s34

,

x3 = −tr+(p1, p3, p4, p5)
s13s45

,

x4 = s23
s12

,

x5 = s45
s12

,

(A.4)

with tr+(pi, pj , pk, pl) = tr[(1 + γ5)/pi/pj/pk/pl]/2 = [ij]〈jk〉[kl]〈li〉.
In our work we express the helicity amplitudes in terms of the momentum twistors

variables xi. The phase information can be restored by multiplying and dividing by a
suitable phase factor,

A = Φ(λi, λ̃i)
(A(xi)

Φ(xi)

)
, (A.5)

where A is an helicity amplitude — or in general some object with a non-trivial phase —
and Φ is an arbitrary factor with the same helicity weights as A. The quantities in the
parentheses in eq. (A.5) are both written in terms of momentum twistors. Their ratio is
phase-free and can thus be expressed in terms of the scalar and pseudo-scalar invariants
sij ’s and tr5, e.g. through eqs. (A.4). The factor outside the parenthesis is instead written
in terms of the spinor helicity variables and carries all the phase information of A.

For the aid of comparisons with the data presented in this article, the specific choices
of the amplitude phases, Φ, were,

Φ(1+, 2+, 3+, 4+, 5+) = 1
〈12〉〈23〉〈34〉〈45〉〈51〉 , (A.6)

Φ(1−, 2+, 3+, 4+, 5+) = [23]〈31〉
〈23〉〈34〉〈45〉〈51〉 , (A.7)

Φ(1+, 2+, 3+, 4−, 5+) = [51]〈14〉
〈12〉〈23〉〈34〉〈51〉 , (A.8)

Φ(1−, 2−, 3+, 4+, 5+) = 〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉 , (A.9)

Φ(1+, 2+, 3+, 4−, 5−) = 〈45〉4

〈12〉〈23〉〈34〉〈45〉〈51〉 , (A.10)

Φ(1−, 2+, 3+, 4−, 5+) = 〈14〉2

〈12〉〈23〉〈34〉〈45〉〈51〉 . (A.11)

– 21 –



J
H
E
P
1
1
(
2
0
2
1
)
0
8
3

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] D.A. Kosower and K.J. Larsen, Maximal Unitarity at Two Loops, Phys. Rev. D 85 (2012)
045017 [arXiv:1108.1180] [INSPIRE].

[2] P. Mastrolia and G. Ossola, On the Integrand-Reduction Method for Two-Loop Scattering
Amplitudes, JHEP 11 (2011) 014 [arXiv:1107.6041] [INSPIRE].

[3] S. Badger, H. Frellesvig and Y. Zhang, Hepta-Cuts of Two-Loop Scattering Amplitudes,
JHEP 04 (2012) 055 [arXiv:1202.2019] [INSPIRE].

[4] Y. Zhang, Integrand-Level Reduction of Loop Amplitudes by Computational Algebraic
Geometry Methods, JHEP 09 (2012) 042 [arXiv:1205.5707] [INSPIRE].

[5] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Scattering Amplitudes from
Multivariate Polynomial Division, Phys. Lett. B 718 (2012) 173 [arXiv:1205.7087]
[INSPIRE].

[6] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Integrand-Reduction for Two-Loop
Scattering Amplitudes through Multivariate Polynomial Division, Phys. Rev. D 87 (2013)
085026 [arXiv:1209.4319] [INSPIRE].

[7] H. Ita, Two-loop Integrand Decomposition into Master Integrals and Surface Terms, Phys.
Rev. D 94 (2016) 116015 [arXiv:1510.05626] [INSPIRE].

[8] S. Badger, H. Frellesvig and Y. Zhang, A Two-Loop Five-Gluon Helicity Amplitude in
QCD, JHEP 12 (2013) 045 [arXiv:1310.1051] [INSPIRE].

[9] S. Badger, G. Mogull, A. Ochirov and D. O’Connell, A Complete Two-Loop, Five-Gluon
Helicity Amplitude in Yang-Mills Theory, JHEP 10 (2015) 064 [arXiv:1507.08797]
[INSPIRE].

[10] S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page and M. Zeng, Two-Loop
Four-Gluon Amplitudes from Numerical Unitarity, Phys. Rev. Lett. 119 (2017) 142001
[arXiv:1703.05273] [INSPIRE].

[11] S. Abreu et al., Caravel: A C++ framework for the computation of multi-loop amplitudes
with numerical unitarity, Comput. Phys. Commun. 267 (2021) 108069 [arXiv:2009.11957]
[INSPIRE].

[12] J.R. Andersen et al., Les Houches 2015: Physics at TeV Colliders Standard Model Working
Group Report, in proceedings of the 9th Les Houches Workshop on Physics at TeV
Colliders, Les Houches, France, 1–19 June 2015, arXiv:1605.04692 [INSPIRE].

[13] J.R. Andersen et al., Les Houches 2017: Physics at TeV Colliders Standard Model Working
Group Report, arXiv:1803.07977 [INSPIRE].

[14] S. Amoroso et al., Les Houches 2019: Physics at TeV Colliders: Standard Model Working
Group Report, in proceedings of the 11th Les Houches Workshop on Physics at TeV
Colliders: PhysTeV Les Houches, Les Houches, France, 10–28 June 2019,
arXiv:2003.01700 [INSPIRE].

– 22 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.85.045017
https://doi.org/10.1103/PhysRevD.85.045017
https://arxiv.org/abs/1108.1180
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.1180
https://doi.org/10.1007/JHEP11(2011)014
https://arxiv.org/abs/1107.6041
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1107.6041
https://doi.org/10.1007/JHEP04(2012)055
https://arxiv.org/abs/1202.2019
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1202.2019
https://doi.org/10.1007/JHEP09(2012)042
https://arxiv.org/abs/1205.5707
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.5707
https://doi.org/10.1016/j.physletb.2012.09.053
https://arxiv.org/abs/1205.7087
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.7087
https://doi.org/10.1103/PhysRevD.87.085026
https://doi.org/10.1103/PhysRevD.87.085026
https://arxiv.org/abs/1209.4319
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.4319
https://doi.org/10.1103/PhysRevD.94.116015
https://doi.org/10.1103/PhysRevD.94.116015
https://arxiv.org/abs/1510.05626
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.05626
https://doi.org/10.1007/JHEP12(2013)045
https://arxiv.org/abs/1310.1051
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.1051
https://doi.org/10.1007/JHEP10(2015)064
https://arxiv.org/abs/1507.08797
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.08797
https://doi.org/10.1103/PhysRevLett.119.142001
https://arxiv.org/abs/1703.05273
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.05273
https://doi.org/10.1016/j.cpc.2021.108069
https://arxiv.org/abs/2009.11957
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.11957
https://arxiv.org/abs/1605.04692
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.04692
https://arxiv.org/abs/1803.07977
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.07977
https://arxiv.org/abs/2003.01700
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.01700


J
H
E
P
1
1
(
2
0
2
1
)
0
8
3

[15] H.A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to
diphoton production with an additional jet at the LHC, arXiv:2105.06940 [INSPIRE].

[16] D. Chicherin, J.M. Henn and V. Mitev, Bootstrapping pentagon functions, JHEP 05 (2018)
164 [arXiv:1712.09610] [INSPIRE].

[17] C.G. Papadopoulos, D. Tommasini and C. Wever, The Pentabox Master Integrals with the
Simplified Differential Equations approach, JHEP 04 (2016) 078 [arXiv:1511.09404]
[INSPIRE].

[18] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Pentagon functions for massless planar
scattering amplitudes, JHEP 10 (2018) 103 [arXiv:1807.09812] [INSPIRE].

[19] D. Chicherin, T. Gehrmann, J.M. Henn, N.A. Lo Presti, V. Mitev and P. Wasser, Analytic
result for the nonplanar hexa-box integrals, JHEP 03 (2019) 042 [arXiv:1809.06240]
[INSPIRE].

[20] D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, All Master
Integrals for Three-Jet Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett. 123
(2019) 041603 [arXiv:1812.11160] [INSPIRE].

[21] D. Chicherin and V. Sotnikov, Pentagon Functions for Scattering of Five Massless
Particles, JHEP 12 (2020) 167 [arXiv:2009.07803] [INSPIRE].

[22] F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group
Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].

[23] K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate
β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

[24] S. Laporta, High precision calculation of multiloop Feynman integrals by difference
equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

[25] C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order
perturbative calculations, JHEP 07 (2004) 046 [hep-ph/0404258] [INSPIRE].

[26] C. Studerus, Reduze-Feynman Integral Reduction in C++, Comput. Phys. Commun. 181
(2010) 1293 [arXiv:0912.2546] [INSPIRE].

[27] A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction,
arXiv:1201.4330 [INSPIRE].

[28] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685
[INSPIRE].

[29] A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular
Arithmetic, Comput. Phys. Commun. 247 (2020) 106877 [arXiv:1901.07808] [INSPIRE].

[30] J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, Integral reduction with Kira 2.0 and
finite field methods, Comput. Phys. Commun. 266 (2021) 108024 [arXiv:2008.06494]
[INSPIRE].

[31] J. Gluza, K. Kajda and D.A. Kosower, Towards a Basis for Planar Two-Loop Integrals,
Phys. Rev. D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].

[32] R.M. Schabinger, A New Algorithm For The Generation Of Unitarity-Compatible
Integration By Parts Relations, JHEP 01 (2012) 077 [arXiv:1111.4220] [INSPIRE].

[33] K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic
geometry, Phys. Rev. D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].

– 23 –

https://arxiv.org/abs/2105.06940
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.06940
https://doi.org/10.1007/JHEP05(2018)164
https://doi.org/10.1007/JHEP05(2018)164
https://arxiv.org/abs/1712.09610
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.09610
https://doi.org/10.1007/JHEP04(2016)078
https://arxiv.org/abs/1511.09404
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.09404
https://doi.org/10.1007/JHEP10(2018)103
https://arxiv.org/abs/1807.09812
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.09812
https://doi.org/10.1007/JHEP03(2019)042
https://arxiv.org/abs/1809.06240
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.06240
https://doi.org/10.1103/PhysRevLett.123.041603
https://doi.org/10.1103/PhysRevLett.123.041603
https://arxiv.org/abs/1812.11160
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.11160
https://doi.org/10.1007/JHEP12(2020)167
https://arxiv.org/abs/2009.07803
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.07803
https://doi.org/10.1016/0370-2693(81)90288-4
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB100%2C65%22
https://doi.org/10.1016/0550-3213(81)90199-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB192%2C159%22
https://doi.org/10.1142/S0217751X00002159
https://arxiv.org/abs/hep-ph/0102033
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0102033
https://doi.org/10.1088/1126-6708/2004/07/046
https://arxiv.org/abs/hep-ph/0404258
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0404258
https://doi.org/10.1016/j.cpc.2010.03.012
https://doi.org/10.1016/j.cpc.2010.03.012
https://arxiv.org/abs/0912.2546
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0912.2546
https://arxiv.org/abs/1201.4330
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1201.4330
https://arxiv.org/abs/1212.2685
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.2685
https://doi.org/10.1016/j.cpc.2019.106877
https://arxiv.org/abs/1901.07808
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.07808
https://doi.org/10.1016/j.cpc.2021.108024
https://arxiv.org/abs/2008.06494
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.06494
https://doi.org/10.1103/PhysRevD.83.045012
https://arxiv.org/abs/1009.0472
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1009.0472
https://doi.org/10.1007/JHEP01(2012)077
https://arxiv.org/abs/1111.4220
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.4220
https://doi.org/10.1103/PhysRevD.93.041701
https://arxiv.org/abs/1511.01071
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.01071


J
H
E
P
1
1
(
2
0
2
1
)
0
8
3

[34] J. Böhm, A. Georgoudis, K.J. Larsen, M. Schulze and Y. Zhang, Complete sets of
logarithmic vector fields for integration-by-parts identities of Feynman integrals, Phys. Rev.
D 98 (2018) 025023 [arXiv:1712.09737] [INSPIRE].

[35] J. Böhm, A. Georgoudis, K.J. Larsen, H. Schönemann and Y. Zhang, Complete
integration-by-parts reductions of the non-planar hexagon-box via module intersections,
JHEP 09 (2018) 024 [arXiv:1805.01873] [INSPIRE].

[36] J. Boehm, M. Wittmann, Z. Wu, Y. Xu and Y. Zhang, IBP reduction coefficients made
simple, JHEP 12 (2020) 054 [arXiv:2008.13194] [INSPIRE].

[37] P. Mastrolia and S. Mizera, Feynman Integrals and Intersection Theory, JHEP 02 (2019)
139 [arXiv:1810.03818] [INSPIRE].

[38] H. Frellesvig, F. Gasparotto, M.K. Mandal, P. Mastrolia, L. Mattiazzi and S. Mizera,
Vector Space of Feynman Integrals and Multivariate Intersection Numbers, Phys. Rev. Lett.
123 (2019) 201602 [arXiv:1907.02000] [INSPIRE].

[39] H. Frellesvig et al., Decomposition of Feynman Integrals on the Maximal Cut by
Intersection Numbers, JHEP 05 (2019) 153 [arXiv:1901.11510] [INSPIRE].

[40] H. Frellesvig et al., Decomposition of Feynman Integrals by Multivariate Intersection
Numbers, JHEP 03 (2021) 027 [arXiv:2008.04823] [INSPIRE].

[41] X. Liu, Y.-Q. Ma and C.-Y. Wang, A Systematic and Efficient Method to Compute
Multi-loop Master Integrals, Phys. Lett. B 779 (2018) 353 [arXiv:1711.09572] [INSPIRE].

[42] X. Liu and Y.-Q. Ma, Determining arbitrary Feynman integrals by vacuum integrals, Phys.
Rev. D 99 (2019) 071501 [arXiv:1801.10523] [INSPIRE].

[43] X. Guan, X. Liu and Y.-Q. Ma, Complete reduction of integrals in two-loop five-light-parton
scattering amplitudes, Chin. Phys. C 44 (2020) 093106 [arXiv:1912.09294] [INSPIRE].

[44] P. Zhang, C.-Y. Wang, X. Liu, Y.-Q. Ma, C. Meng and K.-T. Chao, Semi-analytical
calculation of gluon fragmentation into 1S

[1,8]
0 quarkonia at next-to-leading order, JHEP 04

(2019) 116 [arXiv:1810.07656] [INSPIRE].

[45] Y. Wang, Z. Li and N. Ul Basat, Direct reduction of multiloop multiscale scattering
amplitudes, Phys. Rev. D 101 (2020) 076023 [arXiv:1901.09390] [INSPIRE].

[46] D.A. Kosower, Direct Solution of Integration-by-Parts Systems, Phys. Rev. D 98 (2018)
025008 [arXiv:1804.00131] [INSPIRE].

[47] A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction,
Phys. Lett. B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].

[48] T. Peraro, Scattering amplitudes over finite fields and multivariate functional
reconstruction, JHEP 12 (2016) 030 [arXiv:1608.01902] [INSPIRE].

[49] J. Klappert and F. Lange, Reconstructing rational functions with FireFly, Comput. Phys.
Commun. 247 (2020) 106951 [arXiv:1904.00009] [INSPIRE].

[50] T. Peraro, FiniteFlow: multivariate functional reconstruction using finite fields and
dataflow graphs, JHEP 07 (2019) 031 [arXiv:1905.08019] [INSPIRE].

[51] J. Klappert, S.Y. Klein and F. Lange, Interpolation of dense and sparse rational functions
and other improvements in FireFly, Comput. Phys. Commun. 264 (2021) 107968
[arXiv:2004.01463] [INSPIRE].

– 24 –

https://doi.org/10.1103/PhysRevD.98.025023
https://doi.org/10.1103/PhysRevD.98.025023
https://arxiv.org/abs/1712.09737
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.09737
https://doi.org/10.1007/JHEP09(2018)024
https://arxiv.org/abs/1805.01873
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.01873
https://doi.org/10.1007/JHEP12(2020)054
https://arxiv.org/abs/2008.13194
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.13194
https://doi.org/10.1007/JHEP02(2019)139
https://doi.org/10.1007/JHEP02(2019)139
https://arxiv.org/abs/1810.03818
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.03818
https://doi.org/10.1103/PhysRevLett.123.201602
https://doi.org/10.1103/PhysRevLett.123.201602
https://arxiv.org/abs/1907.02000
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.02000
https://doi.org/10.1007/JHEP05(2019)153
https://arxiv.org/abs/1901.11510
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.11510
https://doi.org/10.1007/JHEP03(2021)027
https://arxiv.org/abs/2008.04823
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.04823
https://doi.org/10.1016/j.physletb.2018.02.026
https://arxiv.org/abs/1711.09572
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.09572
https://doi.org/10.1103/PhysRevD.99.071501
https://doi.org/10.1103/PhysRevD.99.071501
https://arxiv.org/abs/1801.10523
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.10523
https://doi.org/10.1088/1674-1137/44/9/093106
https://arxiv.org/abs/1912.09294
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.09294
https://doi.org/10.1007/JHEP04(2019)116
https://doi.org/10.1007/JHEP04(2019)116
https://arxiv.org/abs/1810.07656
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.07656
https://doi.org/10.1103/PhysRevD.101.076023
https://arxiv.org/abs/1901.09390
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.09390
https://doi.org/10.1103/PhysRevD.98.025008
https://doi.org/10.1103/PhysRevD.98.025008
https://arxiv.org/abs/1804.00131
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.00131
https://doi.org/10.1016/j.physletb.2015.03.029
https://arxiv.org/abs/1406.4513
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.4513
https://doi.org/10.1007/JHEP12(2016)030
https://arxiv.org/abs/1608.01902
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.01902
https://doi.org/10.1016/j.cpc.2019.106951
https://doi.org/10.1016/j.cpc.2019.106951
https://arxiv.org/abs/1904.00009
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.00009
https://doi.org/10.1007/JHEP07(2019)031
https://arxiv.org/abs/1905.08019
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.08019
https://doi.org/10.1016/j.cpc.2021.107968
https://arxiv.org/abs/2004.01463
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.01463


J
H
E
P
1
1
(
2
0
2
1
)
0
8
3

[52] S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop
five-gluon scattering in QCD, Phys. Rev. Lett. 120 (2018) 092001 [arXiv:1712.02229]
[INSPIRE].

[53] S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar Two-Loop Five-Gluon
Amplitudes from Numerical Unitarity, Phys. Rev. D 97 (2018) 116014 [arXiv:1712.03946]
[INSPIRE].

[54] S. Badger et al., Applications of integrand reduction to two-loop five-point scattering
amplitudes in QCD, PoS LL2018 (2018) 006 [arXiv:1807.09709] [INSPIRE].

[55] S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Planar Two-Loop
Five-Parton Amplitudes from Numerical Unitarity, JHEP 11 (2018) 116
[arXiv:1809.09067] [INSPIRE].

[56] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar
five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett. 116 (2016) 062001 [Erratum
ibid. 116 (2016) 189903] [arXiv:1511.05409] [INSPIRE].

[57] S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, Analytic helicity amplitudes
for two-loop five-gluon scattering: the single-minus case, JHEP 01 (2019) 186
[arXiv:1811.11699] [INSPIRE].

[58] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita and B. Page, Analytic Form of Planar
Two-Loop Five-Gluon Scattering Amplitudes in QCD, Phys. Rev. Lett. 122 (2019) 082002
[arXiv:1812.04586] [INSPIRE].

[59] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Analytic Form
of the Planar Two-Loop Five-Parton Scattering Amplitudes in QCD, JHEP 05 (2019) 084
[arXiv:1904.00945] [INSPIRE].

[60] S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Leading-color two-loop QCD
corrections for three-jet production at hadron colliders, JHEP 07 (2021) 095
[arXiv:2102.13609] [INSPIRE].

[61] S. Abreu, B. Page, E. Pascual and V. Sotnikov, Leading-Color Two-Loop QCD Corrections
for Three-Photon Production at Hadron Colliders, JHEP 01 (2021) 078
[arXiv:2010.15834] [INSPIRE].

[62] H.A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, Two-loop leading-color helicity
amplitudes for three-photon production at the LHC, JHEP 06 (2021) 150
[arXiv:2012.13553] [INSPIRE].

[63] H.A. Chawdhry, M.L. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to
three-photon production at the LHC, JHEP 02 (2020) 057 [arXiv:1911.00479] [INSPIRE].

[64] S. Kallweit, V. Sotnikov and M. Wiesemann, Triphoton production at hadron colliders in
NNLO QCD, Phys. Lett. B 812 (2021) 136013 [arXiv:2010.04681] [INSPIRE].

[65] M. Czakon, A. Mitov and R. Poncelet, Next-to-Next-to-Leading Order Study of Three-Jet
Production at the LHC, Phys. Rev. Lett. 127 (2021) 152001 [arXiv:2106.05331] [INSPIRE].

[66] S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at
hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 108 (2012)
072001 [Erratum ibid. 117 (2016) 089901] [arXiv:1110.2375] [INSPIRE].

[67] J.M. Campbell, R.K. Ellis, Y. Li and C. Williams, Predictions for diphoton production at
the LHC through NNLO in QCD, JHEP 07 (2016) 148 [arXiv:1603.02663] [INSPIRE].

– 25 –

https://doi.org/10.1103/PhysRevLett.120.092001
https://arxiv.org/abs/1712.02229
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.02229
https://doi.org/10.1103/PhysRevD.97.116014
https://arxiv.org/abs/1712.03946
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.03946
https://doi.org/10.22323/1.303.0006
https://arxiv.org/abs/1807.09709
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.09709
https://doi.org/10.1007/JHEP11(2018)116
https://arxiv.org/abs/1809.09067
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.09067
https://doi.org/10.1103/PhysRevLett.116.062001
https://arxiv.org/abs/1511.05409
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.05409
https://doi.org/10.1007/JHEP01(2019)186
https://arxiv.org/abs/1811.11699
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.11699
https://doi.org/10.1103/PhysRevLett.122.082002
https://arxiv.org/abs/1812.04586
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.04586
https://doi.org/10.1007/JHEP05(2019)084
https://arxiv.org/abs/1904.00945
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.00945
https://doi.org/10.1007/JHEP07(2021)095
https://arxiv.org/abs/2102.13609
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.13609
https://doi.org/10.1007/JHEP01(2021)078
https://arxiv.org/abs/2010.15834
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.15834
https://doi.org/10.1007/JHEP06(2021)150
https://arxiv.org/abs/2012.13553
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.13553
https://doi.org/10.1007/JHEP02(2020)057
https://arxiv.org/abs/1911.00479
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.00479
https://doi.org/10.1016/j.physletb.2020.136013
https://arxiv.org/abs/2010.04681
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.04681
https://doi.org/10.1103/PhysRevLett.127.152001
https://arxiv.org/abs/2106.05331
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.05331
https://doi.org/10.1103/PhysRevLett.108.072001
https://doi.org/10.1103/PhysRevLett.108.072001
https://arxiv.org/abs/1110.2375
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.2375
https://doi.org/10.1007/JHEP07(2016)148
https://arxiv.org/abs/1603.02663
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.02663


J
H
E
P
1
1
(
2
0
2
1
)
0
8
3

[68] C. Anastasiou, E.W.N. Glover and M.E. Tejeda-Yeomans, Two loop QED and QCD
corrections to massless fermion boson scattering, Nucl. Phys. B 629 (2002) 255
[hep-ph/0201274] [INSPIRE].

[69] Z. Bern, A. De Freitas and L.J. Dixon, Two loop amplitudes for gluon fusion into two
photons, JHEP 09 (2001) 037 [hep-ph/0109078] [INSPIRE].

[70] B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, Two-loop leading colour QCD
corrections to qq̄ → γγg and qg → γγq, JHEP 04 (2021) 201 [arXiv:2102.01820]
[INSPIRE].

[71] H.A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, Two-loop leading-colour QCD
helicity amplitudes for two-photon plus jet production at the LHC, JHEP 07 (2021) 164
[arXiv:2103.04319] [INSPIRE].

[72] B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, Two-loop helicity amplitudes
for diphoton plus jet production in full color, arXiv:2105.04585 [INSPIRE].

[73] S. Badger, B. Biedermann, P. Uwer and V. Yundin, Numerical evaluation of virtual
corrections to multi-jet production in massless QCD, Comput. Phys. Commun. 184 (2013)
1981 [arXiv:1209.0100] [INSPIRE].

[74] D.A. Dicus and S.S.D. Willenbrock, Photon Pair Production and the Intermediate Mass
Higgs Boson, Phys. Rev. D 37 (1988) 1801 [INSPIRE].

[75] D. de Florian and Z. Kunszt, Two photons plus jet at LHC: The NNLO contribution from
the gg initiated process, Phys. Lett. B 460 (1999) 184 [hep-ph/9905283] [INSPIRE].

[76] S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427
(1998) 161 [hep-ph/9802439] [INSPIRE].

[77] T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory
Amplitudes, JHEP 06 (2009) 081 [Erratum JHEP 11 (2013) 024] [arXiv:0903.1126]
[INSPIRE].

[78] T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative
QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905]
[arXiv:0901.0722] [INSPIRE].

[79] E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD
scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].

[80] E. Gardi and L. Magnea, Infrared singularities in QCD amplitudes, Nuovo Cim. C 32N5-6
(2009) 137 [Frascati Phys. Ser. 50 (2010) 137] [arXiv:0908.3273] [INSPIRE].

[81] H.B. Hartanto, S. Badger, C. Brønnum-Hansen and T. Peraro, A numerical evaluation of
planar two-loop helicity amplitudes for a W-boson plus four partons, JHEP 09 (2019) 119
[arXiv:1906.11862] [INSPIRE].

[82] S. Badger, E. Chaubey, H.B. Hartanto and R. Marzucca, Two-loop leading colour QCD
helicity amplitudes for top quark pair production in the gluon fusion channel, JHEP 06
(2021) 163 [arXiv:2102.13450] [INSPIRE].

[83] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279
[INSPIRE].

[84] J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput.
Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].

– 26 –

https://doi.org/10.1016/S0550-3213(02)00140-2
https://arxiv.org/abs/hep-ph/0201274
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0201274
https://doi.org/10.1088/1126-6708/2001/09/037
https://arxiv.org/abs/hep-ph/0109078
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0109078
https://doi.org/10.1007/JHEP04(2021)201
https://arxiv.org/abs/2102.01820
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.01820
https://doi.org/10.1007/JHEP07(2021)164
https://arxiv.org/abs/2103.04319
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.04319
https://arxiv.org/abs/2105.04585
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.04585
https://doi.org/10.1016/j.cpc.2013.03.018
https://doi.org/10.1016/j.cpc.2013.03.018
https://arxiv.org/abs/1209.0100
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.0100
https://doi.org/10.1103/PhysRevD.37.1801
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD37%2C1801%22
https://doi.org/10.1016/S0370-2693(99)00734-0
https://arxiv.org/abs/hep-ph/9905283
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9905283
https://doi.org/10.1016/S0370-2693(98)00332-3
https://doi.org/10.1016/S0370-2693(98)00332-3
https://arxiv.org/abs/hep-ph/9802439
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9802439
https://doi.org/10.1088/1126-6708/2009/06/081
https://doi.org/10.1007/JHEP11(2013)024
https://arxiv.org/abs/0903.1126
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0903.1126
https://doi.org/10.1103/PhysRevLett.102.162001
https://arxiv.org/abs/0901.0722
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0901.0722
https://doi.org/10.1088/1126-6708/2009/03/079
https://arxiv.org/abs/0901.1091
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0901.1091
https://doi.org/10.1393/ncc/i2010-10528-x
https://doi.org/10.1393/ncc/i2010-10528-x
https://arxiv.org/abs/0908.3273
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0908.3273
https://doi.org/10.1007/JHEP09(2019)119
https://arxiv.org/abs/1906.11862
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.11862
https://doi.org/10.1007/JHEP06(2021)163
https://doi.org/10.1007/JHEP06(2021)163
https://arxiv.org/abs/2102.13450
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.13450
https://doi.org/10.1006/jcph.1993.1074
https://inspirehep.net/search?p=find+J%20%22J.Comput.Phys.%2C105%2C279%22
https://doi.org/10.1016/j.cpc.2012.12.028
https://doi.org/10.1016/j.cpc.2012.12.028
https://arxiv.org/abs/1203.6543
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.6543


J
H
E
P
1
1
(
2
0
2
1
)
0
8
3

[85] B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453 [INSPIRE].

[86] G. Cullen, M. Koch-Janusz and T. Reiter, Spinney: A Form Library for Helicity Spinors,
Comput. Phys. Commun. 182 (2011) 2368 [arXiv:1008.0803] [INSPIRE].

[87] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013)
135 [arXiv:0905.1473] [INSPIRE].

[88] R. Eden, P. Landshoff, D. Olive and J. Polkinghorne, The Analytic S-Matrix, Cambridge
University Press, Cambridge U.K. (2002).

[89] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4
super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

[90] F. Cachazo, Sharpening The Leading Singularity, arXiv:0803.1988 [INSPIRE].

[91] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar
Scattering Amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

[92] D.C. Dunbar and W.B. Perkins, Two-loop five-point all plus helicity Yang-Mills amplitude,
Phys. Rev. D 93 (2016) 085029 [arXiv:1603.07514] [INSPIRE].

[93] S. Badger et al., Analytic form of the full two-loop five-gluon all-plus helicity amplitude,
Phys. Rev. Lett. 123 (2019) 071601 [arXiv:1905.03733] [INSPIRE].

[94] D.C. Dunbar, J.H. Godwin, W.B. Perkins and J.M.W. Strong, Color Dressed Unitarity and
Recursion for Yang-Mills Two-Loop All-Plus Amplitudes, Phys. Rev. D 101 (2020) 016009
[arXiv:1911.06547] [INSPIRE].

[95] G. De Laurentis and D. Maître, Two-Loop Five-Parton Leading-Colour Finite Remainders
in the Spinor-Helicity Formalism, JHEP 02 (2021) 016 [arXiv:2010.14525] [INSPIRE].

[96] M. Heller and A. von Manteuffel, MultivariateApart: Generalized partial fractions, Comput.
Phys. Commun. 271 (2022) 108174 [arXiv:2101.08283] [INSPIRE].

[97] E.K. Leinartas, Factorization of rational functions of several variables into partial fractions,
Izv. Vyssh. Uchebn. Zaved. Mat. 47 (1978) 47.

[98] A. Raichev, Leinartas’s partial fraction decomposition, arXiv:1206.4740.

[99] Z. Bern, L.J. Dixon and D.A. Kosower, New QCD results from string theory, in proceedings
of the International Conference on Strings 93, Berkeley, CA, U.S.A., 24–29 May 1993,
hep-th/9311026 [INSPIRE].

[100] G. Mahlon, Multi-gluon helicity amplitudes involving a quark loop, Phys. Rev. D 49 (1994)
4438 [hep-ph/9312276] [INSPIRE].

[101] Z. Bern, G. Chalmers, L.J. Dixon and D.A. Kosower, One loop N gluon amplitudes with
maximal helicity violation via collinear limits, Phys. Rev. Lett. 72 (1994) 2134
[hep-ph/9312333] [INSPIRE].

[102] J.M. Henn, B. Power and S. Zoia, Conformal Invariance of the One-Loop All-Plus Helicity
Scattering Amplitudes, JHEP 02 (2020) 019 [arXiv:1911.12142] [INSPIRE].

[103] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory
amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226]
[INSPIRE].

[104] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes
into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

– 27 –

https://arxiv.org/abs/1707.06453
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.06453
https://doi.org/10.1016/j.cpc.2011.06.007
https://arxiv.org/abs/1008.0803
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.0803
https://doi.org/10.1007/JHEP05(2013)135
https://doi.org/10.1007/JHEP05(2013)135
https://arxiv.org/abs/0905.1473
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0905.1473
https://doi.org/10.1016/j.nuclphysb.2005.07.014
https://arxiv.org/abs/hep-th/0412103
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0412103
https://arxiv.org/abs/0803.1988
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0803.1988
https://doi.org/10.1007/JHEP06(2012)125
https://arxiv.org/abs/1012.6032
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.6032
https://doi.org/10.1103/PhysRevD.93.085029
https://arxiv.org/abs/1603.07514
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.07514
https://doi.org/10.1103/PhysRevLett.123.071601
https://arxiv.org/abs/1905.03733
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.03733
https://doi.org/10.1103/PhysRevD.101.016009
https://arxiv.org/abs/1911.06547
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.06547
https://doi.org/10.1007/JHEP02(2021)016
https://arxiv.org/abs/2010.14525
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.14525
https://doi.org/10.1016/j.cpc.2021.108174
https://doi.org/10.1016/j.cpc.2021.108174
https://arxiv.org/abs/2101.08283
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.08283
https://arxiv.org/abs/1206.4740
https://arxiv.org/abs/hep-th/9311026
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9311026
https://doi.org/10.1103/PhysRevD.49.4438
https://doi.org/10.1103/PhysRevD.49.4438
https://arxiv.org/abs/hep-ph/9312276
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9312276
https://doi.org/10.1103/PhysRevLett.72.2134
https://arxiv.org/abs/hep-ph/9312333
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9312333
https://doi.org/10.1007/JHEP02(2020)019
https://arxiv.org/abs/1911.12142
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.12142
https://doi.org/10.1016/0550-3213(94)90179-1
https://arxiv.org/abs/hep-ph/9403226
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9403226
https://doi.org/10.1016/0550-3213(94)00488-Z
https://arxiv.org/abs/hep-ph/9409265
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9409265


J
H
E
P
1
1
(
2
0
2
1
)
0
8
3

[105] D.C. Dunbar, G.R. Jehu and W.B. Perkins, The two-loop n-point all-plus helicity
amplitude, Phys. Rev. D 93 (2016) 125006 [arXiv:1604.06631] [INSPIRE].

[106] D.C. Dunbar, G.R. Jehu and W.B. Perkins, Two-loop six gluon all plus helicity amplitude,
Phys. Rev. Lett. 117 (2016) 061602 [arXiv:1605.06351] [INSPIRE].

[107] S. Badger, G. Mogull and T. Peraro, Local integrands for two-loop all-plus Yang-Mills
amplitudes, JHEP 08 (2016) 063 [arXiv:1606.02244] [INSPIRE].

[108] D.C. Dunbar, J.H. Godwin, G.R. Jehu and W.B. Perkins, Analytic all-plus-helicity gluon
amplitudes in QCD, Phys. Rev. D 96 (2017) 116013 [arXiv:1710.10071] [INSPIRE].

[109] D.C. Dunbar, W.B. Perkins and J.M.W. Strong, n-point QCD two-loop amplitude, Phys.
Rev. D 101 (2020) 076001 [arXiv:2001.11347] [INSPIRE].

[110] A.R. Dalgleish, D.C. Dunbar, W.B. Perkins and J.M.W. Strong, Full color two-loop
six-gluon all-plus helicity amplitude, Phys. Rev. D 101 (2020) 076024 [arXiv:2003.00897]
[INSPIRE].

[111] G. Guennebaud et al., Eigen v3, (2010) http://eigen.tuxfamily.org.

[112] Y. Hida, X.S. Li and D.H. Bailey, libqd: quad-double/double-double computation package,
(2010) https://www.davidhbailey.com/dhbsoftware/.

[113] C.G. Papadopoulos and C. Wever, Internal Reduction method for computing Feynman
Integrals, JHEP 02 (2020) 112 [arXiv:1910.06275] [INSPIRE].

[114] S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, Two-Loop Integrals for
Planar Five-Point One-Mass Processes, JHEP 11 (2020) 117 [arXiv:2005.04195]
[INSPIRE].

[115] D.D. Canko, C.G. Papadopoulos and N. Syrrakos, Analytic representation of all planar
two-loop five-point Master Integrals with one off-shell leg, JHEP 01 (2021) 199
[arXiv:2009.13917] [INSPIRE].

[116] N. Syrrakos, Pentagon integrals to arbitrary order in the dimensional regulator, JHEP 06
(2021) 037 [arXiv:2012.10635] [INSPIRE].

[117] S. Badger, H.B. Hartanto and S. Zoia, Two-Loop QCD Corrections to Wbb¯ Production at
Hadron Colliders, Phys. Rev. Lett. 127 (2021) 012001 [arXiv:2102.02516] [INSPIRE].

– 28 –

https://doi.org/10.1103/PhysRevD.93.125006
https://arxiv.org/abs/1604.06631
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.06631
https://doi.org/10.1103/PhysRevLett.117.061602
https://arxiv.org/abs/1605.06351
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.06351
https://doi.org/10.1007/JHEP08(2016)063
https://arxiv.org/abs/1606.02244
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.02244
https://doi.org/10.1103/PhysRevD.96.116013
https://arxiv.org/abs/1710.10071
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.10071
https://doi.org/10.1103/PhysRevD.101.076001
https://doi.org/10.1103/PhysRevD.101.076001
https://arxiv.org/abs/2001.11347
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.11347
https://doi.org/10.1103/PhysRevD.101.076024
https://arxiv.org/abs/2003.00897
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.00897
http://eigen.tuxfamily.org
https://www.davidhbailey.com/dhbsoftware/
https://doi.org/10.1007/JHEP02(2020)112
https://arxiv.org/abs/1910.06275
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.06275
https://doi.org/10.1007/JHEP11(2020)117
https://arxiv.org/abs/2005.04195
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.04195
https://doi.org/10.1007/JHEP01(2021)199
https://arxiv.org/abs/2009.13917
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.13917
https://doi.org/10.1007/JHEP06(2021)037
https://doi.org/10.1007/JHEP06(2021)037
https://arxiv.org/abs/2012.10635
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.10635
https://doi.org/10.1103/PhysRevLett.127.012001
https://arxiv.org/abs/2102.02516
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.02516

	Introduction
	Kinematics and amplitude conventions
	Computational setup and amplitude reduction
	Analytic reconstruction over finite fields
	Linear relations among the rational coefficients
	Matching factors on univariate slices
	Univariate partial fraction decomposition over finite fields
	Summary and impact of the reconstruction strategy

	Compact analytic expressions for the all-plus configuration
	Implementation and performance
	Conclusions
	Momentum twistor parametrisation

