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RESEARCH ARTICLE

How much do model organism phenotypes contribute to the
computational identification of human disease genes?
Sarah M. Alghamdi1 and Paul N. Schofield 2 and Robert Hoehndorf1

Summary statement: We investigate the use of model organ-
ism phenotypes in the computational identification of disease
genes. We identify several data biases and conclude that mouse
model phenotypes contribute most to computational disease gene
identification whereas other model organisms do not contribute
significantly to this task.

ABSTRACT

Computing phenotypic similarity has been shown to be use-
ful in identification of new disease genes and for rare disease
diagnostic support. Genotype–phenotype data from ortholo-
gous genes in model organisms can compensate for lack of
human data to greatly increase genome coverage. Work over
the past decade has demonstrated the power of cross-species
phenotype comparisons, and several cross-species phenotype
ontologies have been developed for this purpose. The relative
contribution of different model organisms to computational iden-
tification of disease-associated genes is not yet fully explored.
We use methods based on phenotype ontologies to semanti-
cally relate phenotypes resulting from loss-of-function mutations
in different model organisms to disease-associated phenotypes
in humans. Semantic machine learning methods are used to
measure how much different model organisms contribute to the
identification of known human gene–disease associations. We
find that mouse genotype-phenotype data is the most important
dataset in the identification of human disease genes by seman-
tic similarity and machine learning over phenotype ontologies.
Data from other model organisms does not improve identifica-
tion over that obtained by using the mouse alone, and therefore
does not contribute significantly to this task. Our work has
implications for the future development of integrated phenotype
ontologies, as well as for the use of model organism phenotypes
in human genetic variant interpretation.

KEYWORDS: model organism, phenotype, disease gene discov-
ery, ontology, semantic similarity, machine learning

INTRODUCTION
Discovering and building models of human phenotypes in non-
human animals has, over the last half century, proved to be of
substantial importance in improving our understanding of human
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disease and its underlying biology (Aitman et al., 2011; Wangler
et al., 2017; Brown, 2021; Baldridge et al., 2021), and is providing
insights that may be used to develop new therapeutic and diagnos-
tic capabilities. The amount of data available that relates genetics,
in particular genetic variation, to phenotypes associated with dis-
ease, is increasing rapidly. For example, the Monarch Initiative
lists more than 2M phenotypic associations over more than 100
species from dozens of public resources (Shefchek et al., 2020).
By comparing the similarities between phenotypic profiles this
data can be used to help understand gene function and to iden-
tify the genotypic origins of phenotypic variation, which has wide
applications in the discovery of the etiology of disease and the
identification of candidate disease genes.

The challenge of relating phenotypes accross different species
is very significant. The ontologies and controlled vocabularies
used to describe phenotypes are species-specific and often struc-
tured in markedly different ways (Gkoutos et al., 2017). In order
to compare phenotypic profiles between species, several different
approaches have been developed to create an overarching pheno-
type ontology allowing the integration of phenotype-genotype data
from multiple species. This can then be used for measuring pheno-
typic similarity between an instance of one species, for example
a human with a genetic disorder, and phenotypes annotated to
multiple species and genotypes. This approach mobilises the huge
amount of genotype-phenotype data available in public databases
such as Mouse Genome Informatics (MGI) (Eppig et al., 2017;
Ringwald et al., 2021), Flybase (Larkin et al., 2020) and Online
Mendelian Inheritance in Man (OMIM) (Amberger et al., 2018),
and maximizes the possibility of finding a phenotype annotation
to a potential disease gene where such a relationship has not yet
been reported in humans.

The development of a phenotype ontology covering both
humans and model organisms has been essential to this task.
The main approaches use evolutionary homology (and analogy)
between anatomical structures (Mungall et al., 2012) and physio-
logical processes, formalize these in a knowledge base or ontology,
and infer relations between phenotypes using automated reasoning
(Matentzoglu et al., 2019; Hoehndorf et al., 2011).

Loss-of-function phenotypes are available for several model
organisms. These phenotypes have been generated through both
hypothesis-driven experiments and large-scale reverse genetics
experiments (Brown et al., 2018; Peterson and Murray, 2021). The
genotype–phenotype data from model organisms has been used to
discover human disease-associated genes using measures of phe-
notype similarity (Smedley and Robinson, 2015; Meehan et al.,
2017; Hoehndorf et al., 2011). For this purpose, cross-species phe-
notype ontologies have been developed that systematically relate
phenotypes of different organisms to each other (Gkoutos et al.,
2017). The underlying assumption of phenotype-based methods
to discover disease-associated genes is that genes function in
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evolutionary conserved pathways or modules, and phenotypes
associated with a loss or change of function in a gene, are sim-
ilar to phenotypes observed in a loss or change of function in
the human ortholog of that gene (Oti and Brunner, 2007; McGary
et al., 2010; Oti et al., 2008; Barabási et al., 2010). These methods
are not only used to identify disease-associated genes but also to
interpret and prioritize genomic variants associated with disease in
tools that combine variant pathogenicity prediction with ranking
of candidate genes (Cipriani et al., 2020; Boudellioua et al., 2017).

Phenotype-based methods to identify candidate genes associ-
ated with a set of phenotypes in humans are highly successful
when the human gene has already been identified as a disease gene
and is therefore associated with phenotypes (Köhler et al., 2009),
and there are many examples where mouse phenotypes closely
resemble human phenotypes and have therefore been used to iden-
tify disease-associated genes in humans (Meehan et al., 2017;
Brommage et al., 2019; Smedley et al., 2021). Identification of
candidate Mendelian disease genes using high-throughput screen-
ing suggests that this strategy might be able to identify candidates
for inherited diseases of unknown genetic etiology. For example,
out of 3,328 genes screened in the mouse, potential models for
360 diseases were reported including novel candidates (Meehan
et al., 2017). More recently, IMPC reported knockouts of 1,484
known disease genes, approximately half of which showed pheno-
typic similarity to human diseases using the Phenodigm platform
(Cacheiro et al., 2019). It is estimated that of the 16,847 mouse
genes with a human ortholog, 79.9% have a null allele, either
derived from hypothesis-driven experiments or large-scale screens
such as the IMPC (Peterson and Murray, 2021); there are currently
3,381 genes with mouse–human orthologs for which there are no
corresponding mouse loss-of-function phenotypes. MGI reports
1,694 human diseases with one or more mouse models and 7,142
mouse genotypes modeling human diseases (MGI version 6.17;
14 December 2021), but their interpretation is complicated by the
inclusion of dominant inheritance and multigenic or humanized
models. It has been suggested that the “phenotype gap” might be
filled with genotype-phenotype associations from non-mammalian
organisms with complementary coverage to the mouse and where
loss-of-function mutations in mouse–human orthologs have no
phenotype data (Mungall et al., 2016). To date, the contribution
of different model organisms to the computational phenotype-
driven identification of human disease genes has not been critically
evaluated, an assessment that is important for the continued devel-
opment of strategies and computational approaches to disease gene
discovery. It is important to understand and quantify the contribu-
tion of more evolutionarily distant model organisms to discovering
human disease-associated genes using the methods that have so
successfully been applied to the mouse, in particular as, for exam-
ple, zebrafish phenotypes are used in methods for disease gene
discovery and human genetic variant interpretation (Wangler et al.,
2017; Smedley et al., 2015; 2016).

We use two different cross-species ontologies and several state
of the art methods for phenotype-based identification of disease-
associated genes to evaluate the contribution of mouse, zebrafish,
fruitfly, and fission yeast loss-of-function phenotypes to discover-
ing human disease genes. We find that only the mouse consistently
predicts disease genes whereas the organisms that are more distant
do not contribute. As part of our analysis, we find that our eval-
uation is affected by several biases in how orthologs of disease-
associated genes are annotated in model organism databases as
well as how phenotype-based methods exploit these annotations;

we analyze and correct for some of these biases to support future
work in relating phenotype data to human disease.

RESULTS
Contribution of model organisms to disease gene discovery

We collected phenotypes associated with loss-of-function muta-
tions in the mouse, zebrafish, fruitfly, and fission yeast, from
model organism databases. The phenotypes are described using
different organism-specific phenotype ontologies and we combine
the phenotypes using the integrated phenotype ontologies uPheno
(Shefchek et al., 2020) and our extension of the PhenomeNET
ontology (Hoehndorf et al., 2011) (Pheno-e). Both phenotype
ontologies combine the classes that represent phenotypes in dif-
ferent model organisms within a single ontology, thereby allowing
us to exploit relations between the phenotypes and compare them.
Pheno-e and uPheno also include human phenotypes from the
Human Phenotype Ontology (HPO) (Köhler et al., 2021) thereby
allowing us to relate mutant model organism phenotypes to human
disease-associated phenotypes.

We used the Pheno-e and uPheno ontologies and the phenotypes
associated with loss-of-function mutations and human Mendelian
diseases to test whether, and how much, different model organ-
isms contribute to the phenotype-based computational discovery
of disease-associated genes. For the purpose of evaluating the
predictive performance, we used two datasets of gene–disease
association: a “human” dataset which includes associations of
human genes with Mendelian diseases reported in the Online
Mendelian Inheritance in Man (OMIM) (Online Mendelian Inher-
itance in Man (OMIM), 2020) database, and a “mouse” evaluation
set which consists of associations of mouse genes with human dis-
ease and represents mouse models of human disease in the MGI
database (Ringwald et al., 2021). Then, we measure the semantic
similarity between the phenotypes resulting from a gene’s loss of
function and human diseases (see Supplementary Figure S1). For
each disease, we rank all genes by their phenotypic similarity to the
disease; we then determine at which rank we identify orthologs of
known disease-associated genes.

This approach has repeatedly been successfully applied to dis-
cover disease-associated genes from model organisms through
ontology–based computation of phenotype similarity (Meehan
et al., 2017; Washington et al., 2009; Smedley et al., 2021), and
further forms the foundation of several computational methods for
finding disease-associated genomic variants (Smedley and Robin-
son, 2015; Smedley et al., 2016; Boudellioua et al., 2017). Multiple
different approaches for determining phenotypic similarity have
been developed, ranging from hand-crafted semantic similarity
measures (Köhler et al., 2009; Smedley et al., 2013; Pesquita
et al., 2009) to machine learning approaches (Smaili et al., 2018a;
Chen et al., 2020). We used four different approaches to com-
pute phenotype similarity between model organism phenotypes
and human disease. First, we use Resnik’s semantic similarity
measure (Resnik, 1999) which relies on the taxonomic relations
in the phenotype ontology to determine similarity between two
sets of phenotypes. Resnik’s similarity compares two phenotype
classes whereas we need to compare two sets of phenotype classes
(i.e., all the phenotypes associated with the disease and all the
phenotypes observed in the model organism). Consequently, we
use the “best match average” strategy (Pesquita et al., 2009) (see
Materials & Methods) to combine multiple pairwise similarity
measurements into a similarity between two sets of phenotypes.
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Table 1. Comparison of the performance of predicting gene-disease associations evaluated on diseases associated with genes which have
orthologs with at least one phenotype annotation in mouse, fish, fly, and yeast (255 genes). Results are bold if they are significantly different from

random (i.e., the confidence intervals does not overlap with the ROCAUC 0.5 of a random classifier).

Overlapping Dataset Mouse Fish Fly Yeast
Resnik similarity 0.663± 0.069 0.558± 0.072 0.572± 0.085 0.475± 0.069
OPA2Vec 0.599± 0.072 0.585± 0.072 0.526± 0.074 0.544± 0.069
OWL2Vec* 0.624± 0.071 0.479± 0.073 0.472± 0.076 0.483± 0.069
DL2Vec 0.607± 0.071 0.517± 0.073 0.486± 0.075 0.594± 0.068

Resnik’s similarity uses only the ontology taxonomy whereas phe-
notype ontologies contain a large amount of additional information
in the form of axioms that provide a computational description
of the intended meaning of phenotype classes (Hoehndorf et al.,
2015; Gkoutos et al., 2017). Therefore, we use the unsupervised
machine learning method OPA2Vec (Smaili et al., 2018a) which
is a deep learning method that learns a “representation” of sets of
phenotypes based on ontology axioms as well as natural language
information contained in ontologies such as labels and definitions.
As a third and fourth approach, we use the deep learning methods
OWL2Vec* (Chen et al., 2021) and DL2Vec (Chen et al., 2020)
which first converts ontology axioms into a graph, applies a ran-
dom walk to explore the neighborhood of nodes in that graph, and
then generates a feature vector using Word2Vec. The aim of using
these methods based on random walks is to exploit more “distant”
relations that arise through connecting multiple ontology classes.
Figure 1 illustrates the different approaches.

In our first experiment, we focus only on the groups of
orthologous genes that have phenotype annotations in the mouse,
zebrafish, fruitfly, and fission yeast; the aim is to compare the con-
tributions of different model organism to discovering gene–disease
associations on the same set of associations from the “human”
dataset. There are 255 human genes with orthologous genes anno-
tated with phenotypes in all organisms we consider, and of these,
88 have a human ortholog associated with a Mendelian disease;
several genes are associated with more than one Mendelian dis-
ease, and, in total, the 88 genes are associated with 173 Mendelian
diseases.

We compare the phenotypic similarity of these genes to human
disease phenotypes and, within each organism, we rank the genes
by their similarity to each disease. We then evaluate the ranks
at which we discover the “correct” gene (i.e., the gene with the
human ortholog that is associated with the disease) and quantify
the results using the ROCAUC measure (see Materials & Meth-
ods). Table 1 summarizes the resulting performance. The results
indicate that mouse mutant phenotypes can be used to reliably
detect human disease-associated genes by all methods, whereas
the other organisms do not consistently show a positive signal, and
the quality of the signal is very dependent on the method used.

However, our observations are based on a relatively small set of
88 disease-associated genes that have orthologs with phenotypes in
all organisms we study. Therefore, we analyze all genes with phe-
notypes in the different model organisms separately, incorporating
genes that may lack phenotype annotations in other model organ-
isms. We were able to test on 11,672 human genes which have an
ortholog in the mouse with phenotype annotations; 3,418 genes
in the fish; 6,462 in the fruitfly; and 1,871 in yeast. As in our first
experiment, we determine the phenotypic similarity using different
semantic similarity measures and evaluate how well-established
associations can be recovered.

Table 2 summarizes the ROCAUC values for each organ-
ism using the four approaches (Resnik similarity, OPA2Vec,
OWL2Vec*, and DL2Vec), and Supplementary Tables S1 and S2
shows the results for the Alliance dataset (Agapite et al., 2022).
Similar to the first experiment, mouse phenotypes show the high-
est performance across all methods we consider and the mouse
is the only organism where all four methods to compute pheno-
type similarity show a predictive performance that is better than
random. Resnik similarity shows better-than-random performance
for zebrafish and fruitfly phenotypes, but other methods predict
disease-associated genes no better than a random classifier (except
DL2Vec in fission yeast using human gene–disease associations);
in evaluations based on ontology embedding methods the pre-
dicted performance is even significantly “worse than random” (i.e.,
significantly below the ROCAUC 0.5 of a random classifier); this
indicates that increased phenotypic dissimilarity between a gene
and disease is associated with a higher chance of the gene and dis-
ease being associated, a rather counter-intuitive result that requires
further exploration. We tested the hypothesis that these results are
due to a study bias which results in an increased (phenotypic)
distance due to the ontology structure. We break this hypothe-
sis into two parts; first, we hypothesize that genes that have an
ortholog that is associated with a Mendelian disease in humans
have more, and more specific, phenotype annotations than genes
whose ortholog is not associated with a Mendelian disease (or for
which no human ortholog is known); this hypothesis tests for a
form of study bias within the phenotype annotations. We find that
disease-associated genes have a significantly higher total informa-
tion content compared to non-disease associated genes (mouse:
p = 1.361 · 10−43, fish: p = 6.793 · 10−20, fly: p = 1.115 · 10−12,
yeast: p = 0.003; one-tailed t-test).

If these phenotypes do not match human disease-associated
phenotypes well, the distance between these specific (i.e., “deep”
within the ontology hierarchy) phenotypes and general (i.e.,
“shallow” within the ontology hierarchy) human phenotypes is
higher than for less specific phenotypes; for example, the dis-
tance between the very general human phenotype class Phenotypic
abnormality (HP:0000118) and the general fly phenotype Phe-
notypic abnormality of organism (FBbtAB:00000001) is less
than the distance between Phenotypic abnormality of organism
(FBbtAB:00000001) and the more specific class Phenotypic
abnormality of eye dorsal compartment (FBbtAB:00111608).
To further test whether this holds true across all genes with
disease-associated and non-associated homologs in human, we cal-
culate the absolute difference in information content between the
phenotypes of the fly model and the most informative human phe-
notype superclass; the average difference in information content
for genes with disease-associated human orthologs is 44 whereas
the average difference in information content is 14 for genes with
non-associated orthologs (p ≤ 1 · 10−60, Student’s t-test; see Sup-
plementary Materials Section 2). The only method that is not based
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Fig. 1. Illustration of the approaches that we used to calculate phenotypic similarity. Resnik’s similarity uses the taxonomy of the ontology. OPA2Vec generates
vector representations by using the axioms of the ontologies propagated over the subsumption hierarchy along with the natural language information available
in the ontology. DL2Vec and OWL2Vec generate a graph from the ontologies axioms then perform random walks to generate vector representations for genes
and diseases, with some differences including that the graphs are directed in OWL2Vec and undirected in DL2Vec.

on distances in our test is Resnik’s similarity (which relies on the
information content of the most informative shared ancestor), and
this is also the only method not showing ROCAUCs below 0.5.
Overall, these tests demonstrate that the ROCAUC results signif-
icantly lower than 0.5 are due to study bias combined with how
the similarity methods utilize the ontology structure to determine
similarity (i.e., based on distances traversed between classes).

As the mouse is the only model organism that consistently
predicts gene–disease associations, we tested whether combin-
ing mouse phenotypes with other organism phenotypes would
change the prediction results, i.e., whether combining informa-
tion from multiple model organisms can improve predictions (i.e.,
test whether phenotypes of different organisms complement each
other). We tested this on varying sets of genes depending on
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Table 2. Predicting gene-disease associations

Human evaluations data set
Mouse Fish Fly Yeast

Resnik’s 0.786± 0.011 0.598± 0.018 0.595± 0.018 0.525± 0.032
OPA2Vec 0.630± 0.013 0.459± 0.017 0.306± 0.016 0.517± 0.032
OWL2Vec* 0.711± 0.012 0.449± 0.018 0.418± 0.018 0.500± 0.032
DL2Vec 0.761± 0.011 0.473± 0.018 0.389± 0.017 0.557± 0.032

Mouse evaluations data set
Mouse Fish Fly Yeast

Resnik’s 0.942± 0.009 0.592± 0.026 0.639± 0.039 0.525± 0.061
OPA2Vec 0.696± 0.017 0.462± 0.025 0.304± 0.035 0.406± 0.060
OWL2Vec* 0.817± 0.014 0.447± 0.026 0.435± 0.038 0.479± 0.061
DL2Vec 0.887± 0.012 0.460± 0.026 0.404± 0.037 0.447± 0.061

whether they have phenotypes in two model organisms. Supple-
mentary Table S3 shows the results. We find that combining mouse
phenotypes with phenotypes of other model organisms does not
significantly change the prediction results.

So far, we performed our analysis only using the Pheno-e ontol-
ogy. It was unclear whether our results demonstrated an inability
of the Pheno-e ontology to compare phenotypes adequately or if
they reflect a property of the underlying data and the methods
used to analyze it. Consequently, we used the cross-species phe-
notype ontology uPheno (Shefchek et al., 2020) and repeated the
same analysis of predicting gene–disease associations using the
four phenotype similarity computation methods; the results and
comparison to Pheno-e are shown in Table 3. The results indicate
that Pheno-e and uPheno have comparable performance and do not
consistently show significant differences in predictive performance
across different model organism and analysis methods.

We explored the characteristic scope of input data from differ-
ent organisms, and how intrinsic bias in coverage of the genome-
phenome space cognate with humans might affect the contribution
of each organism to computational prediction. For example some
species lack organ systems present in humans, and others have
quite distant physiology, for example in the immune system.
There may also be biases in the selection of experimental systems
between different model organisms, dependent partly on previ-
ously demonstrated value of those systems and on the historical
development of study; furthermore, tractability, proven value for
a particular area of investigation, or cost may also explain differ-
ences between model organisms. Consequently, we investigated
the predictive performance for different types of diseases sep-
arately, using the top-level classification of diseases in the DO
(Schriml et al., 2021) (see Supplementary Tables S4–S51). Our
analysis of the disease classes to which different model organisms
contribute most show that, for example, fly and fish contribute to
disease of the brain, central nervous system and nervous system
diseases. The fruitfly demonstrates substantial predictive perfor-
mance for mental diseases and behavioral diseases, whereas yeast
is predictive mainly for metabolic disorders.

Supervised prediction

One advantage of similarity measures that rely on embeddings is
that they can be used as input to “supervised” machine learning
approaches and thereby give rise to supervised similarity mea-
sures (Smaili et al., 2018b). In supervised machine learning, some
examples of existing and absent associations between genes and
diseases are used to train a model that can determine whether

a new gene–disease pairs is associated or not. Using the ontol-
ogy embeddings as input to supervised machine learning methods
has previously resulted in significantly improved prediction of
gene–disease associations (Smaili et al., 2018a).

We train a machine learning model (an artificial neural net-
work), and use the output of this model to classify pairs of gene-
and disease-embedding into two classes, depending on whether the
gene is associated with the disease (positives) or not (negatives).
We evaluate the performance using a 10-fold cross-validation strat-
egy (see Materials & Methods); Table 4 shows the results. We find
that the supervised machine learning approach improves the pre-
dictive performance significantly over the unsupervised similarity-
based approach, not only when using mouse model phenotypes but
also for all other organisms. Furthermore, the supervised model is
able to predict gene–disease associations significantly better than
a random classifier using all embedding methods and organisms,
and further improves significantly over all unsupervised prediction
approaches.

However, while the predictive performance is substantially
higher than random, it is somewhat surprising that the predic-
tive performance when using phenotypes from distant organisms
such as fly or fish matches the performance of using mouse phe-
notypes, and that even yeast phenotypes apparently are able to
identify a large number of gene–disease associations quite accu-
rately when there are so few orthologous genes (estimated to be
around 2,000 (O'Brien, 2004)), many without known disease asso-
ciations in OMIM, the evaluation dataset. Neural networks may
be able to exploit non-biological signals in training datasets to
achieve relatively high predictive performance without produc-
ing biologically meaningful prediction results. For example, genes
that are well studied and have a higher number of annotations
may be associated with more diseases, or more likely be asso-
ciated with diseases; ranking genes higher solely based on the
number of annotations they received could therefore improve pre-
diction performance even without a specific biological signal. To
test this hypothesis, we design a “naïve” classifier that predicts
gene–disease associations solely based on the sum of the informa-
tion content of phenotypes within a gene, i.e., it can be used to
test whether genes that are annotated with more and more specific
phenotypes are more likely associated with any disease. The naïve
classifier ranks all genes based on the sum of the information con-
tent of their phenotype annotations, and predicts, for each disease
D, the genes in descending order ranked by their information con-
tent; this prediction is independent of the disease D, i.e., the same
list of genes is predicted in the same order for each disease (see
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Table 3. Comparison of the performance of the Pheno-e and the uPheno ontologies to predict gene-disease associations using mouse, fly and
yeast on the human evaluation data set. Note that Fish data are not included in this comparison as uPheno uses the zebrafish phenotype ontology

and Pheno-e defines fish phenotype classes axiomatically.

Mouse Fly Yeast
Pheno-e uPheno Pheno-e uPheno Pheno-e uPheno

Resnik’s 0.786± 0.011 0.746± 0.011 0.593± 0.018 0.645± 0.018 0.525± 0.032 0.509± 0.032
OPA2Vec 0.626± 0.013 0.590± 0.013 0.375± 0.018 0.326± 0.017 0.522± 0.032 0.519± 0.032
OWL2Vec 0.711± 0.012 0.751± 0.011 0.418± 0.018 0.488± 0.018 0.500± 0.032 0.514± 0.032
DL2Vec 0.755± 0.011 0.756± 0.011 0.444± 0.018 0.436± 0.018 0.550± 0.032 0.538± 0.032

Table 4. Predicting gene-disease associations using supervised methods and our proposed naïve classifier

Human evaluations data set
Mouse Fish Fly Yeast

MLP - OPA2Vec 0.898± 0.007 0.836± 0.013 0.872± 0.012 0.763± 0.0275
MLP - OWL2Vec 0.875± 0.009 0.826± 0.013 0.874± 0.012 0.775± 0.027
MLP - DL2Vec 0.897± 0.007 0.880± 0.012 0.893± 0.011 0.781± 0.0267
Naïve Classifier 0.722± 0.011 0.689± 0.016 0.753± 0.014 0.510± 0.031

Materials & Methods). The result of the prediction by the machine
learning model, together with the naïve classifier results, are shown
in Table 4. The results demonstrate that there is substantial bias in
the underlying data that can be exploited by the naïve classifier,
and is likely exploited by the machine learning models as well.

DISCUSSION
We have evaluated the contribution of different model organism
phenotypes to the computational identification of human gene–
disease associations through the use of a variety of semantic
similarity and machine learning methods. We find that the main
contribution towards discovering human disease-associated genes
using these methods comes from mouse phenotypes, whereas other
model organism data do not contribute significantly to this task.
The premise that pooling genotype–phenotype data from multiple
organisms to enhance the phenotype-driven prediction of human
disease genes, or interpret human genetic variants, is in principle
sound, and has driven the development of multiple cross-species
phenotype ontologies. The assumption has been that, as long as
the knowledge contained in the ontology is “true”, then this should
help bridge the “phenotype gap”, i.e., the human genes that have no
phenotype associations in human but do have in model organisms.
However, a critical evaluation of the main types of methods in use,
machine learning and semantic similarity, indicates that the contri-
bution of the non-mammalian model organism phenotypes to this
task is computationally insignificant in comparison to mouse data.
We identify two problems with the inconsistency of the results
obtained by different methods; the first is bias generated by the
use of the structure of the cross-species ontologies available, and
the second we have identified as issues such as annotation density;
however, there may be further biases that affect the results.

We tested the impact of a number of different parameters on
our finding. First, our results hold true across two cross-species
phenotype ontologies, Pheno-e and uPheno (Matentzoglu et al.,
2019). Both ontologies have similar content and goals but are
based on different ontology design patterns (Gkoutos et al., 2017;
Alghamdi et al., 2019). We compared the two ontologies in our
analyses to test whether the underlying ontology design patterns
have a significant impact but we did not consistently identify sig-
nificant differences between both ontologies, indicating that our
results hold true independent of the choice of phenotype ontology.

Further, we used different analysis methods, focusing both on tra-
ditional semantic similarity measures (Pesquita et al., 2009) that
are largely defined based on explicit assumption of how similar-
ity should be computed, as well as methods based on unsupervised
and supervised machine learning with ontologies (Kulmanov et al.,
2020). An increased number of, and more specific, annotations will
bias estimates of semantic similarity. The effect of these biases has
been demonstrated when comparing between model organism and
human disease phenotypes (Kulmanov and Hoehndorf, 2017), and
also when predicting gene–disease associations where this bias can
be corrected when detected (Cornish et al., 2018). The machine
learning methods we employed are largely based on “paths” in
graph-based representations of the ontologies, whereas the seman-
tic similarity we used is based on information content of classes
without considering “paths” explicitly; in particular, “distance”
is not a relevant consideration in our chosen semantic similar-
ity measure whereas distance is relevant in the machine learning
methods we consider. We find that the notion of distance intro-
duces a bias in prediction results, similar to biases found in some
semantic similarity measures (Kulmanov and Hoehndorf, 2017;
Cornish et al., 2018); using these methods should consequently be
considered carefully, in particular as their blackbox nature makes
it challenging to identify the reason for a prediction.

We identified and tested the impact of different biases within
phenotype-based methods for finding candidate genes. We found
a general study bias where disease-associated genes (or genes
whose human ortholog is disease-associated) have generally more,
and more specific, annotations than non-associated genes, and this
affects not only semantic similarity measures but also machine
learning methods; even more concerning, supervised machine
learning methods can exploit biases in the data to make accurate
predictions based on non-biological properties of the data (such as
number and type of phenotype annotations). Again, use of black-
box models such as neural networks presents the danger of hiding
the biases and how they are utilized in decision making.

We demonstrate here that assessment of the contribution of
different model organisms to disease gene identification depends
critically on the methods used, and we present evidence that
supervised machine learning methods systematically overestimate
the contribution of some model organisms, mainly by exploit-
ing biases in phenotype data. Similar biases affect the evaluation
of gene–disease and variant pathogenicity prediction methods
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(Grimm et al., 2015), and are challenging to detect and correct for.
In the future, evaluation datasets and methods need to be devel-
oped that are less likely to overfit to biases in training and testing
data, generalize well across different organisms, and are robust to
noise in phenotype annotations.

The use of model organisms for understanding genotype–
phenotype relations in humans is well established as a valuable
strategy. Few organisms present a complete model of the human
(Sundberg et al., 2013), but aspects of, for example, a disease phe-
notype might be studied more conveniently and with good fidelity
in certain species or strains, yielding valuable insights from several
model organisms (Hmeljak and Justice, 2019). While the mouse
is anatomically and physiologically closest to humans and there-
fore phenotypes are more likely to be easily related, we know that
in particular systems or metabolic pathways valuable information
can come from much more distant organisms, for example insights
into cell cycle control or ageing from yeast (Pardo and Boriek,
2020). The computational use of model organism phenotypes to
identify the underlying genetics of disease is a recent develop-
ment, based on the premise that, as we do not have functional
information for all genes in humans, combining this knowledge
from model organisms can massively increase the knowledge that
can be brought to bear (Mungall et al., 2010). Based on our data,
there are 13,789 human genes that have an ortholog in the model
organisms we investigate which have been assigned one or more
phenotypes (11,672 human genes have an ortholog in the mouse
with phenotype annotations; 3,418 genes in the fish; 6,462 in the
fruitfly; and 1,871 in yeast), and therefore over 63% of human
genes have orthologs in model organisms with phenotype anno-
tations (Willyard, 2018). Figure 2 shows the pairwise overlap of
genes with phenotypes in mouse, fish, fly and yeast.

A question not so far addressed is which of these annotations
add to the power of computational approaches to discover disease-
associated genes. By using two cross-species phenotype ontologies
we are able to show that the data from the mouse explains the
majority of the human disease gene associations and that very lit-
tle, if any, data from other models organisms contributes to this
task. A previous focused study comparing mouse and fish pheno-
types to predict disease genes in different disease categories for
the Phenodigm algorithm (Oellrich et al., 2014) also showed the
mouse to be overall more useful but suggested that the zebrafish
made contributions in specific disease areas. The authors sug-
gested that this may be due to increased coverage of cardiovascular
diseases in the data from mutant fish. Our findings are consistent
with this, and also suggest that, as a consequence, the result-
ing performance is due to biases in the number and specificity
of annotations and not due to the intrinsic relatedness between
phenotypes.

We further analyzed the broader disease classes to which model
organisms contribute (Supplementary Tables S4–S51). Our results
are consistent with the common selection of model organisms for
different disease groups. For example, Zebrafish are widely used in
models of cardiovascular disease (Dahme et al., 2009; Prykhozhij
and Berman, 2018; Narumanchi et al., 2021), and yeast as a model
of metabolic disorders (Cervelli and Galli, 2021). Interestingly, we
did not identify model organisms besides the mouse for immune
system or eye disease including the retina. Our analyses reflect
the intrinsic strengths of each model organism and the bias in
the choice of organism to use when investigating particular types
of disorders, either as a consequence of the utility of the models
developed, or the importance of the diseases modeled.

A deeper consideration of the differences and commonalities
between phenotype–genotype relations in model organism species
indicates why an analysis at a phenotypic level may be particularly
sensitive to evolutionary distance. Intuitively, different organisms
have different ontogeny and anatomy; for example, fish have fins
which are homologous to mammalian limbs but differ in organi-
zation, and flies have wings and legs which have no homologs
in mammals. Mutations in genes associated with phenotypes in
fish and flies are often not associated with comparable phenotypes
in humans simply because the structures are lacking or are pro-
foundly different. For example, the human ortholog of the dishev-
elled gene (Dsh) in Drosophila, which affects segment polarity,
causes autosomal dominant Robinow syndrome (OMIM:616331)
(Patton and Afzal, 2002); yet, the phenotypes are not readily relat-
able because most of the structures affected in the human have no
homologs in the fly. Nevertheless, decades of experimental inves-
tigation show that the underlying molecular processes in which
these genes are involved are highly conserved but have evolved
to be used in different morphogenetic or physiological processes
(Wangler et al., 2017). Recognition of this problem has lead to
the concept of orthologous phenotypes or phenologs relating dif-
ferent phenotypes in different organisms resulting from mutation
in the orthologous gene, but these are very difficult to identify
in a phenotype-led approach (McGary et al., 2010). For simi-
lar reasons, it is challenging to predict phenotypic pleiotropy in
genetically distant organisms due to the inevitable differences in
genome, genetic interactions, anatomy, and physiology (Wagner
and Zhang, 2011; Chesmore et al., 2017) and the fact that pheno-
types are emergent properties of an organism (Varela et al., 1974).
This means that model organisms can be extremely valuable in
understanding and investigating the molecular mechanisms under-
lying normal physiology as well as patho-physiology, but iden-
tifying the participants in such processes from whole organism,
or often even cellular, phenotypes can be extremely difficult and
species-dependent (Kulmanov and Hoehndorf, 2020). Conversely,
we have examples where careful phenotypic characterization of
mouse models has identified the genetic origin of human diseases
and in some cases expanded the phenotypic characterization of
quite familiar disorders (Brommage et al., 2019; Thiele et al.,
2012), emphasizing the power of phenotypic homology in closely
related organisms.

Our study illustrates some of the limitations in the utility of non-
mammalian phenotype–genotype data in computational discovery
of genes responsible for human disease. It highlights more broadly
intrinsic problems in “black box” methods for machine learning,
the weaknesses of both phenotype ontologies and methods for
estimating semantic similarity, data overfitting, and the intrinsic
biases in data collection. We hope that understanding these prob-
lems will help in the development of new approaches, possibly new
ontological tools, and inform the collection and annotation of new
data.

MATERIALS AND METHODS
Ontologies

Several foundational ontologies are used for the axiomatisation of
species-specific phenotype ontologies, and we reused them for the
construction of the Pheno-e ontology. We used the Gene Ontol-
ogy (GO) (Ashburner et al., 2000) downloaded from http://purl.
obolibrary.org/obo/go.owl ; the Cell Ontology (CL) (Diehl et al.,
2016) downloaded from http://purl.obolibrary.org/obo/cl-basic.
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Fig. 2. This figure present human genes with model organism orthologs. The pairwise intersection of model organisms with phenotypes is illustrated in
sub-graphs. Each of these sub-graphs represents 18,508 human genes in total.

owl; Phenotype and Trait Ontology (PATO) (Gkoutos et al.,
2005) downloaded from http://purl.obolibrary.org/obo/pato.owl;
Uber Anatomy Ontology (UBERON) (Mungall et al., 2012) down-
loaded from http://purl.obolibrary.org/obo/uberon.owl; Zebrafish
Anatomy and Development Ontology (ZFA) (Van Slyke et al.,
2014) downloaded from http://purl.obolibrary.org/obo/zfa.owl;
Neuro Behavior Ontology (NBO) (Gkoutos et al., 2012) down-
loaded from http://purl.obolibrary.org/obo/nbo.owl; Biological
Spatial Ontology (BSPO) (Dahdul et al., 2014) downloaded
from http://purl.obolibrary.org/obo/bspo.owl; Drosophila Gross
Anatomy Ontology (FB-BT) (Costa et al., 2013) downloaded from
http://purl.obolibrary.org/obo/fbbt.owl.

The phenotype ontologies used were: Mammalian Phenotype
Ontology (MP) (Smith and Eppig, 2012) downloaded from http:
//purl.obolibrary.org/obo/mp.owl; Human Phenotype Ontology
(HP) (Köhler et al., 2018) downloaded from http://purl.obolibrary.
org/obo/hp.owl; Drosophila Phenotype Ontology (DPO) (Osumi-
Sutherland et al., 2013) downloaded form http://purl.obolibrary.
org/obo/dpo.owl and Fission Yeast Phenotype Ontology (FYPO)
(Harris et al., 2013) downloaded from http://purl.obolibrary.org/
obo/fypo.owl. The latest version of the ontologies is used for
every update of Pheno-e; the results reported here use ontologies
downloaded in February 2021.

Data Sets and Phenotype Annotations

For constructing the model organism phenotype classes we used
the following:

• From the ontologies MP (Smith and Eppig, 2012), HP (Köhler
et al., 2018), DPO (Osumi-Sutherland et al., 2013) and FYPO
(Harris et al., 2013), we reconstructed the phenotype classes for
mice, human, fly and yeast respectively.

• From FlyBase (Thurmond et al., 2018) we used allele_phe-
notypic_data_fb_2021_01.tsv, which provides the
alleles phenotypes association using controlled vocabulary for
Drosophila melanogaster. We used this file to create the abnor-
mal anatomy classes (FBabAB).

• From ZFIN, we used phenoGeneCleanData_fish.txt
which contains zebrafish gene–phenotype associations to create
classes representing zebrafish phenotypes.

For generating representations of genes and diseases and for
predicting gene–disease associations we used the following files
downloaded on 07-Feb-2021:

• Human disease–phenotype annotations were obtained from the
HPO database (Köhler et al., 2018) phenotype_annota-
tion.tab. comprising manual and semi-automated anno-
tations representing disease identifiers from three databases
OMIM (Amberger and Hamosh, 2017), Orphanet (Weinreich
et al., 2008) and DECIPHER (Firth et al., 2009).

• Mouse gene–phenotype annotations were obtained from the
Mouse Genome Informatics (MGI) database (Ringwald et al.,
2021) MGI_GenePheno.rpt which use MP (Smith and Eppig,
2012).
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• We generated the fly gene–phenotype annotations using
files from FlyBase (Thurmond et al., 2018), allele_-
phenotypic_data_fb_2021_01.tsv which represents
the allele–phenotype annotations and fbal_to_fbgn_fb_-
2021_01.tsv which contains allele–gene mappings.

• We obtained yeast gene–phenotype annotations from Pombase
(Harris et al., 2013) which represent the phenotypes annotations
for fission yeast Schizosaccharomyces pombe phenotype_-
annotations.pombase.phaf.gz .

For evaluation purposes, we used two gene-disease association
datasets from MGI (Ringwald et al., 2021). The first dataset is a
“human” dataset that includes associations of human genes with
Mendelian diseases using identifiers from OMIM database (Online
Mendelian Inheritance in Man (OMIM), 2020). MGI acquire this
dataset for human gene–disease associations from OMIM and
additional data from other sources including NCBI’s Gene Review
(Eppig et al., 2017). This dataset includes 2,848 human gene,
3644 OMIM disease and 11,778 human gene–disease associa-
tions. The second dataset is a “mouse” evaluation set that includes
associations of mouse genes with human disease and represents
mouse models of human disease in the MGI database. This dataset
contains 2,459 mouse genes, 2,157 disease and 8,101 mouse gene–
disease associations. This dataset is acquired by curating data
on mouse models from the scientific literature and high through-
put experiments (Eppig et al., 2017). Both datasets are included
in the file MGI_DO.rpt available from MGI. Gene–phenotype
and gene–disease annotations are derived by manual curation
(Bello et al., 2016). The version we used was downloaded in
February 2021. Additionally, we utilised data on gene–disease
associations from the Alliance of Genome Resources (Alliance of
Genome Resources Portal: unified model organism research plat-
form, 2020), an effort to integrate data resources among the major
model organism databases. We mapped Disease Ontology (DO)
(Schriml et al., 2022) identifiers to OMIM using the DO and MGI
database cross references. As a result, we identified 4,022, 2,366,
2,681, and 406 OMIM diseases that were associated with mouse,
fish, fly, and yeast genes, respectively.

To find orthologous genes between different organisms we
used several files. Human–mouse orthology was obtained from
HMD_HumanPhenotype.rpt from MGI. Human–zebrafish
and mouse–zebrafish orthologs were obtained from human_-
orthos.txt and mouse_orthos.txt from ZFIN. We

obtained human–fly orthology from dmel_human_orthologs_-
disease_fb_2020_06.tsv from FlyBase. Human–yeast
orthologs were obtained from pombeorthologs. We obtained
mouse–fly and mouse–yeast orthologs from OMA (Train et al.,
2017).

Pheno-e and integration of model organism phenotypes

The PhenomeNET Ontology was developed by utilizing exist-
ing phenotype ontology class descriptions and reformulating them
according to a set of ontology design patterns so that different phe-
notype ontologies can be integrated (Hoehndorf et al., 2011). The
uPheno ontology similarly establishes bridging axioms to connect
phenotypes from different species-specific ontologies (Matent-
zoglu et al., 2019). The current version of the PhenomeNET
ontology does not contain classes for yeast and fly phenotypes
while these two species are covered in uPheno. We therefore
expanded PhenomeNET to include phenotypes from fly and yeast.
We obtained the phenotype class descriptions from the DPO and
FYPO ontologies, and reformulated them using the PhenomeNET
design patterns. The new classes we created use the pattern

?Phenotype ≡ ∃has_part.(?E u ∃has_quality.?Q) (1)

In this pattern, ?E characterizes the entity underlying the phe-
notype (either from an anatomy ontology or the GO) and ?Q is a
quality from the PATO ontology. We use relations from the OBO
Relation Ontology (Smith et al., 2005) ; the relations we use in
constructing PhenomeNET and Pheno-e include part-of, results-
from, during, has-quality, has-central-participant, occurs-in, and
towards.

FlyBase has two types of abnormal phenotype classes; it asso-
ciates alleles with classes from the DPO as well as with classes
from the fly anatomy ontology, indicating that an anatomical or
developmental structure was found to be abnormal in a mutant
fly. In order to integrate those anatomical abnormalities in the
PhenomeNET ontology and therefore use them in cross-species
phenotype analysis, we added the abnormal anatomical structures
as new classes in PhenomeNET and associated the alleles with
these classes:

?FBbtAB ≡ ∃has_part.(∃part_of.?FBbt u ∃has_quality.(Quality u ∃has_modifier.Abnormal)) (2)

Quality and Abnormal are classes from the PATO ontology. For
example, FBal0148512 is an allele associated with wing abnor-
malities (Végh and Basler, 2003), and we associate the allele with
the newly defined class Phenotypic abnormality of wing, defined
accordingly to the pattern in 2 where ?FBbt is the class Wing from
the fly anatomy ontology.

Similarly to PhenomeNET, we define homologous and analo-
gous anatomical structures as equivalent (for the purpose of the
ontology). For example, we defined the nervous system in fly
(FBbt:00005093) to be equivalent to the nervous system in the
zebrafish (ZFA:0000396), and the nervous system in the Uberon

multi-species anatomy ontology (UBERON:0001016). Through
these equivalence class assertions, we can deductively infer an
equivalence between nervous system phenotype (MP:0003631),
abnormal neuroanatomy (FBcv:0000435), and Abnormality of
the nervous system (HP:0000707), thereby enabling the direct
comparison of mouse, fly, and human phenotypes.

The extended PhenomeNET ontology (Pheno-e) contains
16,083 human phenotype (HP) classes, 13,698 mammalian pheno-
type (MP) classes, 35,954 Zebrafish phenotype classes (PHENO
classes, defined in Pheno-e), 3,111 fly phenotype classes (FBcv

9



1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

RESEARCH ARTICLE Journal of Experimental Biology (2019) 00, jebxxxxxx. doi:10.1242/jeb.xxxxxx

∃has-part. ((∃has-quality. (  process quality ⊓ ∃has-modifier. abnormal ))⊓ T cell activation )

∃ has-part. ((∃has-quality. (quality ⊓(∃has-modifier. abnormal))) ⊓(∃part-of. (Thing ⊓(∃part-of. T cell differentiation )))) MP:0002145
abnormal T cell differentiation

PHENO:32859
Phenotypic abnormality of cellular process

FYPO:0003037
abnormal cell phenotype

HP:0410035
Abnormal T cell activation

abnormal T cell activation

∃has-part. ((∃has-quality. (quality ⊓(∃has-modifier.abnormal))) ⊓(∃part-of. cell phenotype ))

∃has-part.((∃has-quality.( quality ⊓(∃has-modifier.abnormal))) ⊓(∃part-of. cellular process )

From MP

From FYPO
Cellular processes phenotypesEquivalent to

is-a

is-a

Equivalent to

From GOis-a
From 
PATO

Fig. 3. Example of inferred hierarchy relating classes from different organisms phenotypes.

Table 5. Pheno-e summary of direct and indirect inferred sub-classes and
super-classes axioms between different organisms phenotype classes

Subclass Matrix
Human Mammalian Zebrafish Drosophila Yeast

Human Phenotypes 5484 2086 1189 79 54
Mammalian phenotypes 2669 5806 2132 98 110
Zebrafish phenotypes 4016 6155 17617 398 937
Drosophila phenotypes 120 173 209 4143 28
Fission yeast phenotpes 62 128 332 25 2457

Superclass Matrix
Human Mammalian Zebrafish Drosophila Yeast

Human Phenotypes 15795 15389 15573 15573 7804
Mammalian phenotypes 13166 14096 13160 13160 7797
Zebrafish phenotypes 35954 30793 35951 35951 17916
Drosophila phenotypes 3017 2530 3016 19153 153
Fission yeast phenotpes 5807 3987 5807 5807 7322

classes and abnormal anatomy FBbtAB classes), and 7,636 classes
of yeast phenotype (FYPO) classes.

We use phenotype datasets consisting of 8,031 OMIM diseases
annotated with HP classes, 14,210 mouse genes annotated with
MP classes, 6,182 zebrafish genes annotated with PHENO classes,
13,512 fly genes annotated with FBbtAB and FBcv classes , and
4,443 yeast genes annotated with FYPO classes.

Using automated reasoning over the Pheno-e ontology, we are
able to infer relations between classes from different organisms; in
particular, we are able to automatically infer whether two classes
are equivalent or whether one class is a subclass of another class.
We show the number of inferred relations in Pheno-e between the
different species in Table 5, and for uPheno in Table 6. The tables
show that it is possible to relate a large number of model organism
phenotypes to human phenotypes through the Pheno-e and uPheno
ontologies.

Figure 3 illustrates an example of inferred relations between
phenotype classes of different organisms and resources. In this
example, the class Abnormal T cell activation (HP:0410035)
has as a (zebrafish) superclass Phenotypic abnormality of cellu-
lar process (PHENO:32859) . This inference was made because
of the background available from PATO and GO as the class
process quality (PATO:0001236) is a subclass of quality
(PATO:0000001), and T cell activation (GO:0042110) is a
subclass of cellular process (GO:0009987).

Phenotype similarity

We apply a set of different methods to compare the similarity
of phenotypes associated with a loss of function model organism
mutant and human disease phenotypes.

Resnik semantic similarity
We calculated Resnik similarity (Resnik, 1995) between genes
and diseases annotated with phenotype classes; the use of inte-
grated phenotype ontologies enables the direct comparison of
phenotypes.

Resnik’s similarity is a similarity measure based on information
content, defined as

IC(class) = −log(p(class)) (3)

where the probability of a class is defined as the frequency of anno-
tation with the class. The similarity between two ontology classes
is defined as the information content of the most informative
common ancestor (MICA) of two classes:

simResnik(gi, dj) = IC(MICA(gi, dj)) (4)
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Table 6. uPheno summary of direct and indirect inferred shared ancestor generic
class count between different organisms phenotype classes

Shared Ancestor Generic class count
Human Mammalian Zebrafish Drosophila Yeast

Human Phenotypes 6414 2903 1426 91 67
Mammalian phenotypes 2903 7786 2007 87 75
Zebrafish phenotypes 1426 2007 6446 139 142
Drosophila phenotypes 91 87 139 177 53
Fission yeast phenotpes 67 75 142 53 177
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As we compare groups of classes, we use the best match
average method (BMA) (Pesquita et al., 2009) to calculate the sim-
ilarity between genes and diseases:

simBMA(gene, disease) =

∑gn
i=1 max1≤j≤dn

(simResnik(gi, dj))

2 ∗ gn
+

∑dn

i=1 max1≤j≤gn(simResnik(di, gj))

2 ∗ dn
(5)

OPA2Vec
As second method, we “embed” phenotypes in a real-valued vector
space using OPA2Vec (Smaili et al., 2018a); an embedding is a
structure-preserving map from one algebraic structure (ontology
axioms) into another (vector space), i.e., an embedding preserves
(some) properties of the first structure within the second. OPA2Vec
is mainly based on preserving syntactic relations in asserted and
inferred ontology axioms.

We generated embeddings for diseases and genes using
OPA2Vec based on the phenotypes associated with the diseases
and genes and the axioms in the phenotype ontology. For the
training, we use the skip gram, set mincount to 0, embedding
size to 100, and window size to 5. We then compute similarity
between genes and diseases based on the cosine similarity of their
embeddings.

DL2Vec and OWL2Vec*
Another method we used to generate feature embeddings is the
DL2Vec (Chen et al., 2020) method. DL2Vec converts description
logic axioms into an undirected graph representations and uses
a random walk to explore the graph; the walks are then treated
as sentences and encoded using a language model. The graph is
generated from the ontology axioms, and each phenotype class
becomes one node in this graph; we add the gene and disease iden-
tifiers to this graph and connect them to the phenotype classes with
which they are annotated. To generate the walks we choose the
walk length to be 30, with 50 number of walks, and we used a skip
gram method with window size set to 10, mincount to 1, and
embedding size 100.

OWL2Vec*(Chen et al., 2021) is an embedding method sim-
ilar to DL2Vec and based on a similar graph representation.
OWL2Vec* graphs are directed and do not include equivalence
or disjoint class axioms. We use random walker with walk depth
7 and 30 iterations with projection on structure document. and
we used a skip gram method with window size set to 5, min-
count to 1, and negatives to 5 and embedding size 100. For both
DL2Vec and OWL2Vec* embeddings, we compare the phenotypic
similarity between genes and diseases using cosine similarity.

Prediction of gene–disease associations
In addition to predicting gene–disease associations based on phe-
notypic similarity, we also use supervised prediction of these
associations. For this purpose, we use a multilayer perceptron
(MLP) with a single hidden layer. The input of the MLP is the
concatenated embeddings of a disease and a gene. We use a hidden
layer half the size of the input and a binary output using a sigmoid
function, indicating whether the gene and disease are associated

through a gene–disease relation or not; we further use the value of
the sigmoid to rank genes for a disease. We randomly generated
five negatives to each positive. For the training, we use the Adam
optimizer (Kingma and Ba, 2014) with a learning rate of 0.001
and maximum number of iterations of 300. To evaluate, we used
10-fold cross validation, stratified by diseases.

Naïve classifier
We hypothesize that some of our results are due to imbalanced or
biased data. To test this hypothesis, we define a “naïve” classifier
that predicts gene-disease associations on the basis of the informa-
tion content of phenotypes of a gene alone; this “classifier” ranks
all genes based on the sum of the information content of their phe-
notype annotations, sorts genes in descending order, and predicts
the same ranked list of genes for each disease (i.e., the classifier
is independent of the disease). The aim of this “naïve” classifier is
to test whether genes annotated with more and more specific phe-
notypes are generally more likely to be associated with a disease,
i.e., it tests for a kind of annotation bias.

Evaluating predictive performance

Our evaluation is based on estimating how well the different
approaches rank disease-associated genes given a set of disease-
associated phenotypes, for phenotypes from different organisms.
Higher phenotypic similarity between a gene and a disease indi-
cates higher likelihood that the gene (or its human ortholog) is
associated with that disease. We evaluated two data sets from the
MGI file MGI_DO.rpt, one for human gene–disease associations
from OMIM and another MGI-curated dataset of mouse models of
human disease.

For the evaluation, for each disease Di in our evaluation set,
we rank all genes G1, ..., Gn based on their phenotypic similarity
to Di. For each disease Di, we determine the rank (or ranks) at
which the associated gene (or genes) appear in this ranked list. We
use this information to determine the false positive and true posi-
tive rate at each rank; we average the true and false positive rates
across all diseases and use this to determine the receiver operat-
ing characteristic (ROC) curve and the area under the ROC curve
(ROCAUC).

When using supervised methods to predict gene–disease asso-
ciations, we use the same evaluation in a 10-fold cross validation
setting, and we rank genes based on the output of the sigmoid unit
of our machine learning model.

Implementation

We used several tools and libraries, such as the OWLAPI for gener-
ating the ontology groovy and python scripts for data processing.
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We also used several python libraries like sklearn, numpy, pan-
das, PyTorch (Paszke et al., 2017) for the supervised learning.
For calculating Resnik semantic similarity we used the Semantic
Measures Library (SML) (Harispe et al., 2013).
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