
Predictive Simulation of
Musculoskeletal Models Using

Direct Collocation

Samuel George Brockie

Department of Engineering
University of Cambridge

This thesis is submitted for the degree of
Doctor of Philosophy

Gonville & Caius College September 2021

Declaration

I hereby declare that except where specific reference is made to the work of others,

the contents of this dissertation are original and have not been submitted in whole

or in part for consideration for any other degree or qualification in this, or any

other university. This dissertation is my own work and contains nothing which is

the outcome of work done in collaboration with others, except as specified in the

text and Acknowledgements. This dissertation contains fewer than 71,500 words

including footnotes, tables and equations and has fewer than 150 figures.

Sam Brockie, September 2021

iii

Predictive Simulation of Musculoskeletal Models

Using Direct Collocation

Samuel George Brockie

Applications of biomechanical predictive simulation are wide ranging, with the

technique used to provide insights into movement disorders, sports performance,

and injury prevention. However, current software provision has limitations. Users

are restricted from leveraging state-of-the-art methods and algorithms. Alterna-

tively, they are required to develop bespoke implementations of direct collocation,

or laboriously manually link multiple software packages. In order to address these

limitations, this research aims to develop and critically evaluate a software suite

that enables both expert and non-expert users to construct and solve predictive

simulation optimal control problems (OCPs) involving musculoskeletal models.

Solving OCPs is a critical part of predictive simulation. Algorithms for tran-

scription, scaling, mesh refinement, and derivative generation are presented, along

with their implementations in an open-source software package for numerically solv-

ing OCPs, Pycollo. Benchmarking of Pycollo against an industry-standard commer-

cial software package, GPOPS-II , by solving five known OCPs from the literature

demonstrates comparable convergence and computational performance, with Pycollo

requiring fewer mesh iterations and sparser discretisation meshes to meet defined

error tolerances in four out of five cases.

Biomechanical predictive simulations also require the ability to derive multi-

body dynamics and implement musculotendon models. Furthermore, these need to

be formulated in a way suitable for OCPs. Two software packages, Pynamics and

Pyomechanics, which formulate multibody dynamics and musculoskeletal OCPs re-

spectively, are presented. Comparison of explicit and implicit formulations of multi-

body dynamics shows that solution accuracies, solve times, convergence rates, and

discretisation errors are improved when implicit dynamics are used. Similarly, com-

parison of multiple musculotendon formulations and their numerical sensitivity finds

that implicit musculotendon equations o↵er the best numerical properties for OCPs

and should be preferred. Testing of solution sensitivity to the sigmoidal smooth-

ing coe�cient in continuous activation dynamics suggests a value of 100 should be

preferred over the previously published recommendation of 10.

v

Acknowledgements

I would like to express my profound gratitude to my supervisor, Dr David Cole, for

his invaluable advice, continuous support, and vital academic guidance. This thesis

owes greatly to his insights and encouragement over the past five years, and I am

particularly grateful for his caring pastoral support throughout the duration of my

postgraduate studies.

I would like to sincerely thank Professor Tony Purnell, whose mentorship and

guidance fostered a critical and innovative approach to my research, and has taught

me to not shy away from ambitious projects. His consistent and enthusiastic support

in both my academic and professional life is greatly appreciated.

I am grateful to my examiners, Professor Garth Wells and Professor Mark King,

for their invaluable feedback and suggestions, which helped shape the final version

of this thesis into something I could be even more proud of.

I would like to thank Dr Geo↵ Parks, for setting such an excellent example of a

proactive and engaged supervisor throughout our collaboration, from which I could

learn.

I owe a great thanks to Dr Digby Symons, for starting me o↵ on my academic

journey by asking whether cyclists should pedal backwards.

I would also like to thank Billy Fitton, whose collaboration was not only aca-

demically valuable, but showed me that you can love the subject matter of your

research.

I am grateful to Dr Paul Barratt and Paul Mullan, for supporting my continued

involvement with the Great Britain Cycling Team.

Finally, I owe great thanks to British Cycling, the English Institute of Sport,

and the Engineering and Physical Sciences Research Council, for their financial

support, which made this thesis possible.

vii

Contents

List of Figures xi

List of Tables xiii

Nomenclature xv

Acronyms xxi

1 Introduction 1

1.1 Overview of Current Research . 1

1.2 Key Conclusions from the Literature 7

1.3 Research Aim and Objectives . 8

1.4 Thesis Overview . 9

2 Orthogonal Collocation 11

2.1 Background, Theory and Review . 11

2.2 Research Objectives . 24

2.3 Implicit K-Stage Runge-Kutta Collocation 24

2.4 Sparse Nonlinear Programming Problem Formulation 38

2.5 Mesh Refinement . 48

2.6 Software Implementation: Pycollo . 55

2.7 Pycollo Benchmarking Investigations 58

2.8 Discussion . 81

2.9 Conclusions . 84

3 Derivative Generation 87

3.1 Background, Theory and Review . 87

3.2 Research Objectives . 101

3.3 Hybrid-Symbolic-Algorithmic Di↵erentiation 101

3.4 Complexity and Properties . 113

3.5 Algorithm Performance Optimisations 123

3.6 Software Implementation: Dash . 136

3.7 Dash Investigations . 145

3.8 Discussion . 155

ix

CONTENTS

3.9 Conclusions . 157

4 Multibody Dynamics 161

4.1 Background, Theory and Review . 161

4.2 Research Objectives . 175

4.3 Software Implementation: Pynamics 176

4.4 Pynamics Investigations . 190

4.5 Discussion . 205

4.6 Conclusions . 209

5 Musculoskeletal Modelling 211

5.1 Background, Theory and Review . 211

5.2 Research Objectives . 225

5.3 Software Implementation: Pyomechanics 226

5.4 Pyomechanics Validation . 250

5.5 Discussion . 270

5.6 Conclusions . 272

6 Conclusions and Future Work 277

6.1 Conclusions . 277

6.2 Recommendations for Future Work 280

Bibliography 283

x

List of Figures

2.1 Locations of LG, LGR and LGL points 25

2.2 Block structures of matrices for constructing the defect constraints . . 42

2.3 Oscillatory interpolation of a hypersensitive problem 49

2.4 UML diagram of Pycollo architecture 56

2.5 Solving a hypersentive OCP using Pycollo 62

2.6 Hypersensitive problem optimal state and control 63

2.7 Hypersensitive problem mesh refinement 65

2.8 Space shuttle reentry trajectory optimal state and control 68

2.9 Space station attitude control optimal state 71

2.10 Space station attitude control optimal control 72

2.11 Free-flying robot optimal state . 76

2.12 Free-flying robot optimal control . 77

2.13 Tumour anti-angiogenesis optimal state and control 80

3.1 Lighthouse geometry . 90

3.2 Lighthouse DAG . 104

3.3 Lighthouse DAG using hSAD with function nodes 126

3.4 Lighthouse DAG using hSAD with tier checkpointing 133

3.5 UML diagram of Pycollo’s Dash backend. 137

3.6 Hypersensitive problem Pycollo backend performance 150

3.7 Space station attitude control Pycollo backend performance 152

3.8 Tumour anti-angiogenesis Pycollo backend performance 154

4.1 Diagram of the simple pendulum system 165

4.2 Free body diagram of forces applied to the pendulum bob 165

4.3 Module structure of Pynamics . 177

4.4 Pynamics model components . 180

4.5 Pynamics Point classes . 180

4.6 Pynamics Body classes . 181

4.7 Pynamics Joint classes . 181

4.8 Pynamics Constraint classes . 182

4.9 Pynamics Interaction classes . 183

4.10 Pynamics Controller classes . 183

xi

LIST OF FIGURES

4.11 Pynamics NoncontributingInteraction classes 184

4.12 Cart-pole model and OCP in Pynamics 192

4.13 System diagram of the cart-pole . 193

4.14 Cart-pole swing-up optimal state . 196

4.15 Cart-pole swing-up optimal control 197

4.16 Illustration of the optimal cart-pole swing-up trajectory 198

4.17 System diagram of the five-link walker 199

4.18 Five-link biped walker optimal angle state 204

4.19 Five-link biped walker optimal angular velocity state 204

4.20 Five-link biped walker optimal joint torque control 205

4.21 Illustration of the optimal five-link walker trajectory 206

5.1 Typical musculotendon force-length and -velocity characteristics . . . 215

5.2 Hill-type musculotendon model . 219

5.3 Simplified diagram of a modelled musculotendon 227

5.4 Pyomechanics rigid tendon musculotendon model 228

5.5 Pyomechanics elastic tendon equilibrium musculotendon model 230

5.6 Pyomechanics tendon force-length characteristics 235

5.7 Pyomechanics muscle fibre passive force-length characteristics 237

5.8 Pyomechanics muscle fibre active force-length characteristics 238

5.9 Pyomechanics muscle fibre force-velocity characteristics 242

5.10 Pyomechanics inverse muscle fibre force-velocity characteristics 242

5.11 First-order activation dynamics. 243

5.12 Sigmoidal smoothing used in OCP-suitable activation dynamics . . . 244

5.13 Creation of a simple arm using Pyomechanics 246

5.14 Illustration of a simple arm model in Pyomechanics 247

5.15 Creation of nonlinear musculotendon pathways in Pyomechanics . . . 248

5.16 Illustration of a simple musculotendon pathway in Pyomechanics . . . 248

5.17 Tug of war model . 251

5.18 Musculotendon state derivative computations in Pyomechanics 253

5.19 Comparison of Pyomechanics and OpenSim force calculations 254

5.20 Musculotendon pathway for test case M1 256

5.21 Musculotendon pathway approximation for test case M1 257

5.22 Musculotendon pathway for test case M2 258

5.23 Musculotendon pathway approximation for test case M2 259

5.24 Tug of war model and OCP in Pyomechanics 260

5.25 Tug of war OCP solutions . 261

5.26 Tug of war OCP solution sensitivity to l
M
opt 264

5.27 Tug of war OCP solution sensitivity to c1 265

5.28 Tug of war OCP solution using di↵erent musculotendon curves 269

xii

List of Tables

2.1 Butcher tableaus for Gaussian methods 31

2.2 Integration matrices for Gaussian methods 31

2.3 Butcher tableaus for Radau I methods 33

2.4 Integration matrices for Radau I methods 33

2.5 Butcher tableaus for Lobatto IIIA methods 34

2.6 Integration matrices for Lobatto IIIA methods 35

2.7 Hypersensitive problem mesh refinement performance 64

2.8 Space shuttle reentry trajectory mesh refinement performance 69

2.9 Space station attitude control mesh refinement performance 73

2.10 Free-flying robot mesh refinement performance 78

2.11 Tumour anti-angiogenesis mesh refinement performance 80

3.1 Lighthouse evaluation trace . 92

3.2 Lighthouse Jacobian evaluation trace: forward-mode AD 96

3.3 Lighthouse Jacobian evaluation trace: reverse-mode AD 98

3.4 Lighthouse Jacobian evaluation trace: hSAD 114

3.5 Lighthouse Jacobian evaluation trace: hSAD with function nodes . . 131

3.6 Operations supported by the Dash backend. 138

3.7 Hypersensitive problem Pycollo backend performance 148

3.8 Space station attitude control Pycollo backend performance 151

3.9 Tumour anti-angiogenesis Pycollo backend performance 153

4.1 Software packages for solving multibody OCPs 175

5.1 flT
⇣
l̃
T
⌘
constants in Pyomechanics 235

5.2 flM
pas

⇣
l̃
M
⌘
constants in Pyomechanics 237

5.3 flM
act

⇣
l̃
M
⌘
constants in Pyomechanics 239

5.4 fvM
�
ṽ
M
�
constants in Pyomechanics 241

5.5 Sensitivity of the tug of war OCP . 274

5.6 Sensitivity to biomechanical modelling decisions 275

xiii

Nomenclature

Orthogonal Collocation

p phase

J objective function

t time

⌧ nondimensionalised time

y(p) (t) state in phase p

u(p) (t) control in phase p

q(p) integral in phase p

t
(p)
0 initial time of phase p

t
(p)
F final time of phase p

s static parameter

�(p) path constraints in phase p

b endpoint constraints

y (t) state variable

u (t) control variable

q integral variable

s static parameter variable

g integrand function

xv

NOMENCLATURE

z decision variables

g (z) equality constraints

h (z) inequality constraints

c (z) constraints

S mesh

J transcribed NLP objective function

X transcribed NLP decision variables

C transcribed NLP constraints

Y transcribed NLP state variables

U transcribed NLP control variables

� transcribed NLP defect constraints

� transcribed NLP path constraints

⇤ transcribed NLP integral constraints

w transcribed NLP quadrature weights

� transcribed NLP endpoint constraints

E state di↵erence matrix

A integration matrix

g objective gradient

G constraints Jacobian

H Lagrangian Hessian

L Lagrangian

� objective factor

� Lagrange multiplier

x̃ scaled variable

V decision variable stretching weights

r decision variable translation weights

xvi

NOMENCLATURE

W constraint scaling weights

wJ objective scaling weight

h mesh section width

↵ stage coe�cient

� step coe�cient

⇢ stage fraction

◆ stage collocation start index

 stage collocation end index

Derivative Generation

x function input

y function output

w auxiliary (primal) variables

ẇ tangent variable

w̄ adjoint variable

Ti tier i

�Ti delta matrix for tier i

K number of mesh sections

T derivative preprocessing time during OCP setup

P derivative preprocessing time per mesh iteration

I NLP function evaluation time per NLP iteration

Multibody Dynamics

n̂ unit vector

q generalised coordinate

u generalised speed

a generalised acceleration

M mass matrix

xvii

NOMENCLATURE

k forcing vector

Musculoskeletal Modelling

l
MT musculotendon length

v
MT musculotendon shortening velocity

l
T tendon length

v
T tendon shorting velocity

l
M muscle fibre length

v
M muscle fibre shortening velocity

F
T tendon force

F
M muscle fibre force

↵ pennation angle

� muscle fibre damping

a activation

e excitation

l
T
slack tendon slack length

l
M
opt optimal muscle fibre length

v
M
max muscle fibre maximum shortening velocity

F
M
max muscle fibre maximum isometric force

↵opt pennation angle at optimum muscle fibre length

⌧act activation time constant

⌧deact deactivation time constant

l̃
T normalised tendon length

ṽ
T normalised tendon shortening velocity

l̃
M normalised muscle fibre length

ṽ
M normalised muscle fibre shortening velocity

F̃
T normalised tendon force

xviii

NOMENCLATURE

F̃
M normalised muscle fibre force

flT
⇣
l̃
T
⌘

normalised tendon force-length characteristic

flM
pas

⇣
l̃
M
⌘

normalised muscle fibre passive force-length characteristic

flM
act

⇣
l̃
M
⌘

normalised muscle fibre active force-length characteristic

fvM
�
ṽ
M
�

normalised muscle fibre velocity-length characteristic

J optimal cost

N number of NLP iterations

xix

Acronyms

2D two-dimensional

3D three-dimensional

ABC abstract base class

AD algorithmic di↵erentiation

API application programming interface

BFGS Broyden-Fletcher-Goldfarb-Shanno

BPST Biomechanics Predictive Simulation Toolkit

BVP boundary value problem

CAS computer algebra system

CMG control moment gyroscope

CPU central processing unit

CT computed tomography

DAE di↵erential-algebraic system of equations

DAG directed acyclic graph

DFS depth-first search

DoF degree of freedom

EoM equation of motion

xxi

Acronyms

ET evaluation trace

FBD free body diagram

FD finite di↵erencing

hSAD hybrid-symbolic-algorithmic di↵erentiation

IP interior-point

IVP initial value problem

JIT just-in-time

LG Legendre-Gauss

LGL Legendre-Gauss-Lobatto

LGR Legendre-Gauss-Radau

LHS left hand side

LLOC logical lines of code

MD manual di↵erentiation

MRI magnetic resonance imaging

NaN not a number

NLP nonlinear programming problem

NRMSE normalised root-mean-square error

OCP optimal control problem

ODE ordinary di↵erential equation

OO operator overloading

OOP object-oriented programming

PCSA physiological cross-sectional area

PDE partial di↵erential equation

QP quadratic programming problem

xxii

Acronyms

RAM random-access memory

RHS right hand side

RMSE root-mean-square error

SD symbolic di↵erentiation

SIMD single instruction, multiple data

SLOC source lines of code

SQP sequential quadratic programming

ST source transformation

UML Unified Modelling Language

xxiii

Chapter 1

Introduction

1.1 Overview of Current Research

1.1.1 Practical Application of Musculoskeletal Simulation

Simulation of musculoskeletal models is becoming an increasingly applied and im-

portant tool in the field of biomechanics. Applications are wide-ranging. Muscu-

loskeletal simulation is used to better understand movement in able-bodied humans,

showing how the various muscles contribute to propulsion in walking [22, 277] and

running [145, 146]. Musculoskeletal simulation also gives insight into movement

disorders. Its application discovers ways to reduce knee loading in those with os-

teoarthritis [117, 119], shows that individuals with cerebral palsy exhibit simplified

motor control strategies [311], demonstrates that muscle weakness a↵ects gait [108,

257], and highlights the increased likelihood of injury from walking with a crouch

gait [160, 166]. Biomechanical models contribute to medical treatments and in-

jury prevention. The understanding of joint forces from simulations helps to inform

surgical interventions such as knee replacements [127]. Further injury prevention ap-

plications include minimising the e↵ects of low-gravity environments [118], designing

exoskeletons that can assist with the lifting of heavy objects [225], and investigating

knee injuries in football players [317].

An extensive range of sports are studied using musculoskeletal simulation, iden-

tifying factors that enhance performance. Applications range across gymnastics [334,

337], tennis [195, 196], swimming [207], diving [336], trampolining [335], golf [92],

ski jumping [174], cricket [347] and cycling [53, 280].

Musculoskeletal modelling and simulation is not limited to humans. Researchers

1

CHAPTER 1. INTRODUCTION

in the field of zoology simulate the motion of horses [26], chimpanzees [255], mice [76]

and ostriches [181, 281]. Even dinosaur locomotion has been simulated [180, 296],

allowing the study of extinct creatures’ movement, which would not be possible

without these computational methods.

1.1.2 Methods and Software for Musculoskeletal Simulation

In the early years of musculoskeletal modelling, researchers were required to develop

bespoke models and simulation frameworks for each individual study [150]. To meet

the needs of the biomechanics research community, a number of software packages

and frameworks for musculoskeletal modelling and simulation were developed. These

include the proprietary software package AnyBody [285], the MATLAB analysis

toolbox Biomechanics of Bodies [231], and the open-source software package Open-

Sim [87]. All three deliver high-performance multibody dynamics and simulation

capabilities (OpenSim uses the open-source, C++ dynamics engine, Simbody [299]).

AnyBody and OpenSim provide extensive, high level of abstraction component li-

braries of musculoskeletal modelling elements, which allow users to easily develop,

save and share their models. OpenSim is the most widely-used software package for

musculoskeletal simulation due to its permissible open-source license [87]. It also

provides a suite of analysis tools, including visualisation capabilities, and scripting

application programming interfaces (APIs) for C++, MATLAB and Python. APIs

are particularly important as they allow researchers to modify or extend the package,

interface with other software packages, and run investigations programmatically [87].

Musculoskeletal simulation can involve using data describing the kinematics of

a movement to estimate the forces and moments responsible. This is known as

inverse dynamics [6, 346]. In inverse dynamics, the kinematics data can first be

determined by experiments involving real participants [272, 301]. A torque-driven

musculoskeletal model can then used to determine the joint moments that produce

the prescribed motion [27, 346]. Alternatively, a muscle-driven model can be used

to estimate the contributions of individual muscles [301, 346]. Inverse dynamics has

also been extended to account for impact forces [46].

An alternative methodology in movement simulation is forward dynamics [6,

346]. Here, the motion is determined by a prescribed control strategy and a set of

initial conditions. Forward dynamics simulations can be conducted without the need

for experimental kinematic data. As they are not biased or constrained by predeter-

mined movement patterns, they can be used as a prediction tool to help determine

cause-e↵ect relationships [251, 280] and to design treatment interventions [257, 265].

2

1.1. OVERVIEW OF CURRENT RESEARCH

1.1.3 Musculoskeletal Simulations as Optimal Control Prob-

lems

Musculoskeletal simulations are often well suited to being posed as optimal control

problems (OCPs) [57], in which a system’s time-dependent dynamics and control are

determined to minimise an objective function [36]. Inverse dynamics simulations can

be formulated as OCPs. An example is the muscle redundancy problem, in which

the objective is to estimate the muscle forces that produce a given movement. This

problem is di�cult because there are more unknown muscle forces than kinematic

constraints. Framing the muscle redundancy problem as an OCP and prescribing a

cost for minimisation, such as muscular e↵ort, allows it to be solved e�ciently [85].

Forward dynamics problems posed as OCPs are termed predictive simulations [59].

Kinematics are unspecified in forward dynamics, so in this type of OCP it is the

control strategy that is determined in order to minimise the objective function. The

kinematic trajectory is a result of the optimised control, and thus motion is pre-

dicted. Motion tracking can also be conducted by making the objective function

the error between the simulated motion and a motion prescribed by experimental

kinematic data [218].

Direct shooting methods have been used to solve predictive simulation OCPs

with some success [257, 300, 307]. Using this method, just the control is param-

eterised as part of the OCP and a forward simulation is conducted at every iter-

ation during solving [36]. The open-source biomechanical optimisation framework

SCONE [126] allows users to solve predictive simulation OCPs involving OpenSim

models using direct shooting. This method is well known to exhibit high sensitivity

between the variables and the constraints [36]. As such, predictive simulations that

employ this method exhibit long solve times (multiple hundreds of hours of com-

pute time [257]) and poor convergence properties [57]. Furthermore, when direct

shooting is used, the musculoskeletal models are often simplified by assuming pla-

nar two-dimensional (2D) motion [225, 300], reducing the number of muscles and

simplifying their pathways [84, 333], or using a simplified control scheme, such as

on-o↵ excitations [251, 307].

The direct collocation method is widely used to solve OCPs involving muscu-

loskeletal models [57, 85, 108, 212, 241, 269]. This method, predominantly developed

in the field of aerospace [67, 268], uses polynomial splines to approximate a system’s

state and control [36, 194]. The system’s dynamics are enforced by collocating the

time derivatives of the state splines with the system’s di↵erential dynamic equations

at a set of knot points [23, 143]. Direct collocation produces a nonlinear program-

ming problem (NLP), with a discretisation of the system’s state and control as the

3

CHAPTER 1. INTRODUCTION

decision variables and the system’s dynamics enforced as constraints. This can con-

tain many more decision variables and constraints than an equivalent direct shooting

formulation. However, the constraints enforcing the system’s dynamics only depend

on a small number of the decision variables. The resulting large, sparse NLP is

tractable to solve, which can be done by existing methods and software [43, 129].

The advantages of direct collocation has led to its use solving the muscle redun-

dancy problem [85], tracking motions [218], and optimising the design of prosthe-

ses [290]. It has also been applied to predict maximal jumping [269], running [243],

and walking gait in both healthy [6] and impaired individuals [108]. This research

has led to important methodological advances for the application of direct collo-

cation to musculoskeletal simulation. Implicit formulation of dynamic equations

has been investigated [57], di↵erentiable algebraic expressions for musculotendon

properties have been suggested [85], and algorithmic di↵erentiation (AD) has been

shown to allow complex models to be simulated more rapidly [108]. Methodological

advances accompany discoveries in practical areas, including identifying skipping as

the preferred locomotion strategy in low-gravity environments [5], and ways that

amputees can improve gait symmetry [203].

Direct collocation is complex and di�cult to implement, requiring:

1. the continuous-time OCP to be discretised into a finite-dimensional NLP sub-

problem using a collocation scheme [36, 121];

2. a number of first- and second-order derivatives to be computed so that gradient-

based methods can be used to solve the NLP subproblem [43, 129]; and

3. the implementation of musculoskeletal modelling to meet requirements, such

as any functions associated with the OCP be at least second-order continu-

ous [36].

As such, the method is not as widely used as might be expected given its advantages.

Predictive simulation studies, where OpenSim is used with a bespoke implementa-

tion of direct collocation, prove to be laborious for the researchers, do not employe

state-of-the-art methods and exhibite slow convergence times [212, 269].

For researchers to solve musculoskeletal OCPs in practice, it is desirable to use

an established optimal control software package, which can handle the complexities

of direct collocation on behalf of the user. Examples of such packages include the

proprietary software GPOPS-II [263] and the open-source software PSOPT [29].

The primary advantage of such packages is that they abstract the complexity of

formulating OCPs using direct collocation away from the user. By not requiring the

4

1.1. OVERVIEW OF CURRENT RESEARCH

user to understand the theory of, or implement, direct collocation, the methodology

becomes more widely accessible. Optimal control software packages are also advan-

tageous in that they implement state-of-the-art methods from the field of optimal

control. High-order orthogonal collocation methods [38, 122], mesh error calcula-

tion [36], and mesh refinement [7, 262] ensure that the OCP is solved to a high

degree of accuracy. Performant and accurate derivative-taking algorithms [10, 113,

325] and sparsity exploitation [8, 36, 264] enable OCPs to be solved e�ciently. Au-

tomatic scaling of the OCP [29, 36] and sensible default solver settings [263] improve

ease-of-use for non-expert users.

However, as the general-purpose optimal control software packages described

above have not been designed with biomechanical modelling software in mind, they

present a number of barriers to the integration of the two. Beyond the inconvenience

and challenge of the user having to manually link multiple software packages in

potentially multiple programming languages [212], they:

1. do not natively support the implicit formulation of dynamical equations, re-

quiring the user to formulate these manually using additional control variables

and path constraints [111];

2. cannot natively di↵erentiate the equations governing a multibody system, re-

quiring inaccurate di↵erencing methods to be used to generate the OCP deriva-

tives [9, 108]; and

3. can struggle to automatically detect the OCP sparsity when linked to external

software, resulting in suboptimal performance [263].

GPOPS-II has been used with OpenSim to apply direct collocation to muscu-

loskeletal predictive simulations [110], as well as other musculoskeletal OCPs [85,

241]. While these studies brought novel insight, laborious manual integration of

the biomechanical and optimal control software packages was required. Further-

more, aspects of OpenSim needed to be customised in order to enable GPOPS-II

to successfully solve the OCPs. These included implementing bespoke musculo-

tendon models with suitable numerical properties [85] and manually approximating

musculotendon lengths using smooth polynomials [241].

Moco is a software toolkit, and native extension to OpenSim, for the optimisa-

tion of the motion and control of musculoskeletal models [91]. It was first released

in November 2019 and first published in December 2020 [91]. It is an easy-to-use,

customisable and extensible software package that natively formulates musculoskele-

tal OCPs. Beyond defining their biomechanical model, the user is only required to

5

CHAPTER 1. INTRODUCTION

supply Moco with limited information defining their OCP, such as a choice of ob-

jective function and optional bounds on variables. It provides a set of predefined,

selectable, biomechanics-specific, objective functions and utilities for imposing con-

straints on joint angles and periodicity. Moco is capable of solving OCPs that

involve motion tracking, motion prediction, parameter optimisation, model fitting,

and device design [91]. It has been used to predict a squat-to-stand motion while

also optimising an assistive device [91], and investigate knee loads and injury risk

in single leg jumping [140].

Moco is, however, limited in its scope by a number of design decisions imposed

by Simbody and OpenSim. Firstly, the numerical nature of Simbody and OpenSim

means that Moco can only utilise di↵erencing methods to estimate, rather than de-

termine exactly, OCP derivatives [87, 90, 299]. This is well-known to be less accurate

and e�cient than recent methods based on AD, resulting is worse convergence prop-

erties and longer solve times [10, 108]. It also, by default, relies on a quasi-Newton

approximation for the second-order OCP derivatives, which is again less accurate

and e�cient than if this is provided exactly [36, 43]. Secondly, only certain OpenSim

model components are supported for use in Moco OCPs [90]. Users are required to

manually replace these with OCP-suitable ones [90], reducing ease-of-use. Finally,

limitations of the C++ architecture mean that it is not possible to provide a number

of user-customisable options that would otherwise be desirable. For example, cus-

tom objective functions cannot be defined using the scripting APIs [91], meaning

that if the provided options do not meet the needs of a user’s research problem then

Moco cannot be used.

Moco also does not support some advantageous features that are available with

general-purpose optimal control software. For example, it only implements low-order

collocation schemes (trapezoidal and Hermite-Simpson transcription schemes [91]),

which are less accurate and e�cient than orthogonal collocation [38, 122]. This, in

combination with Moco not providing mesh error calculation and automatic mesh

refinement [90], limits the accuracy of solutions that can be obtained. Moco does

not support multiphase OCPs. This prohibits users from conducting simulations

involving:

1. changes in system dynamics, such as the changes in ground contact at foot-o↵

in jumping (e.g. [269]); and

2. constraints at intermediate times, such as enforcing a joint position or velocity

at a specified time (e.g. [212]).

All previous attempts to apply direct collocation to musculoskeletal OCPs have

been implemented by attempting to retrofit optimal control functionality to existing

6

1.2. KEY CONCLUSIONS FROM THE LITERATURE

biomechanics software [85, 91, 108, 212, 241, 269]. As outlined above, this prohibits

the full application of state-of-the-art methods and algorithms from the field of

optimal control, as compatibility with existing musculoskeletal modelling software

has to be considered. Furthermore, it has the e↵ect of constraining the way that

musculoskeletal models are constructed and analysed.

1.2 Key Conclusions from the Literature

A number of points are clear from the reviewed literature (section 1.1):

1. Tools such as OpenSim andMoco greatly facilitate the ease with which muscu-

loskeletal models can be constructed and predictive simulations can be formu-

lated and solved. However, the methods and architectures they employ limit

the extent to which state-of-the-art and novel algorithms can be leveraged.

2. Where it has been possible to apply direct collocation to biomechanical OCPs,

this has lead to significant breakthroughs in the computational performance

of predictive simulation.

3. Where it has been possible to utilise exact derivatives (e.g. through AD) when

solving biomechanical OCPs, this has lead to significant breakthroughs in the

computational performance of predictive simulation.

4. Studies where such progress has been made involve bespoke implementations

and the complex integration of multiple software packages, which have often

undergone modification, in potentially multiple programming languages. Such

labour intensive and specialised approaches do not make them accessible to

most practitioners and researchers.

In addition, research among practitioners has identified the following require-

ments:

1. Modelling tools need to be flexible so that musculoskeletal models can easily be

modified or reparameterised. This is to enable the creation of athlete-specific

models, including those of para-athletes.

2. Predictive simulation capability needs to be computationally performant so

that sensitivity analyses, which require repeated computation of similar prob-

lems, can be conducted e�ciently.

7

CHAPTER 1. INTRODUCTION

3. Software tools need to be user-friendly and accessible to biomechanics prac-

titioners and researchers (who may not have expert knowledge in multibody

and musculoskeletal dynamics, and optimal control theory).

1.3 Research Aim and Objectives

Based on the literature review and motivation for research in sections 1.1 and 1.2

respectively, the research aim of this thesis is to:

Develop and critically evaluate a comprehensive toolkit, to be known as the

Biomechanics Predictive Simulation Toolkit (BPST), that enables both expert

and non-expert users to construct and solve predictive simulation trajectory

optimisation and OCPs involving musculoskeletal models using state-of-the-art

theory and methods in the field of optimal control.

To meet this aim, the following research objectives have been identified:

1. Develop and critically evaluate a highly performant, easy-to-use, open-source

software package to solve general OCPs, using state-of-the-art theory and

methods, which can be used as a foundation element of the BPST.

2. Investigate methods for determining first- and second-order derivative infor-

mation that reduce computational cost and maximise derivative evaluation

speed during an OCP solve, and where practicable implement these as part of

the BPST.

3. Develop and critically evaluate a highly-performant, easy-to-use, open-source

software package for modelling multibody systems and their dynamics, specif-

ically tailored for use in OCPs, which can be used as a core element of the

BPST.

4. Develop and critically evaluate a highly-performant, easy-to-use, open-source

software package capable of formulating and solving musculoskeletal predictive

OCPs, by adding musculoskeletal modelling functionality and leveraging the

capabilities of the other BPST packages.

8

1.4. THESIS OVERVIEW

1.4 Thesis Overview

This thesis contains four main chapters, each addressing one of the four research

objectives laid out in section 1.3. Each chapter begins with a section reviewing the

related literature and background knowledge relevant to the content. Chapter 2

addresses the first research objective, detailing the development of a number of

algorithms related to direct collocation and a general-purpose software package for

solving OCPs. In chapter 3, a derivative-taking algorithm suited specifically for

application to OCPs is developed and evaluated. Chapter 4 addresses the third

research objective by developing a software package for formulating and solving

multibody OCPs, along with investigating the performance of a number of OCP

formulations. The fourth research objective is addressed in chapter 5, in which the

work of chapter 4 is extended to musculoskeletal modelling, the BPST is validated

and a number of recommendations about formulating musculoskeletal predictive

simulations are made. Chapter 6 summarises the key contributions of this thesis

and discusses possible directions for future work.

9

Chapter 2

Orthogonal Collocation

Solving optimal control problems (OCPs) is an important part of predictively sim-

ulating musculoskeletal models. The chapter begins with a review of the methods

used to numerically solve OCPs and the available software packages. The first

objective from section 1.3 is restated, along with a number of sub-objectives, moti-

vated by the review of the literature, that are required to achieve it. A framework

and algorithm for treating Gaussian-, Radau- and Lobatto-based collocation as spe-

cific cases of a general collocation scheme are presented in section 2.3. Details of

an approach to formulating a nonlinear programming problem (NLP) subproblem,

along with a methodology for algorithmically scaling it, are presented in section 2.4.

Section 2.5 describes a mesh refinement algorithm that is designed for use with

Lobatto-based collocation. These features, together with state-of-the-art theory,

are brought together in a new software package designed for numerically solving

OCPs in section 2.6. This is then validated and benchmarked against industry stan-

dard software by solving a range of OCPs with known solutions from the literature.

This chapter concludes with a discussion of the work presented, within the context

of the literature, and recommends areas for further research and development.

2.1 Background, Theory and Review

OCPs arise in many fields including aerospace [32, 67, 267], chemical process-

ing [213], manufacturing [314], medicine [187, 211] and robotics [294]. Solving an

OCP (or trajectory optimisation problem) involves finding the control for a contin-

uous dynamical system that minimises some objective function, while satisfying a

set of constraints. OCPs can contain one or more phases, with a phase being a

portion of the problem description within which there are consistent dynamics and

11

CHAPTER 2. ORTHOGONAL COLLOCATION

constraints. An OCP with more than one phase is a multiphase problem.

Trajectory optimisation first appeared in the late 17th century with the intro-

duction of the Brachistochrone problem by Bernoulli [34] in which the objective is to

find the trajectory of a point mass that minimises the time spent travelling between

two points under the influence of gravity. The mathematical theory underpinning

the solving of OCPs was established in the middle of the 20th century [52, 268].

Following the invention of the digital computer, real world OCPs became practical

to investigate and solve. As a result, the solving of OCPs has been widely studied

in recent years with many approaches and advancements reported in the academic

literature [35, 105, 282].

2.1.1 The Multiphase Optimal Control Problem

Amultiphase OCP with phases p 2 [1, . . . , P] involves determining the state y(p)(t) 2

Rn
(p)
y , control u(p)(t) 2 Rn

(p)
u , integrals q(p)

2 Rn
(p)
q , phase initial times t(p)0 2 R and

phase final times t(p)F 2 R in each p along with the global parameters s 2 Rns that

minimise the objective function

J = �
�⇥
e(1), . . . , e(P)

, s
⇤�

, (2.1)

subject to the dynamical constraints

ẏ(p) = a(p)
�⇥
y(p)(t),u(p)(t), t, s

⇤�
, (p = 1, . . . , P) , (2.2)

the path constraints

�(p)
min  �(p)

�⇥
y(p)(t),u(p)(t), t, s

⇤�
 �(p)

max , (p = 1, . . . , P) , (2.3)

the integral constraints

q(p)
min  q(p)

 q(p)
max , (p = 1, . . . , P) (2.4)

and the endpoint constraints

bmin  b
�⇥
e(1), . . . , e(P)

, s
⇤�
 bmax , (2.5)

where

e(p) =
h
y(p)

⇣
t
(p)
0

⌘
,y(p)

⇣
t
(p)
F

⌘
,q(p)

, t
(p)
0 , t

(p)
F

i
, (p = 1, . . . , P) (2.6)

and with the integrals in p

q
(p)
i =

Z t
(p)
F

t
(p)
0

g
(p)
i

�⇥
y(p)(t),u(p)(t), t, s

⇤�
dt ,

�
i = 1, . . . , n(p)

q

�
, (p = 1, . . . , P) .

(2.7)

12

2.1. BACKGROUND, THEORY AND REVIEW

J is a Bolza objective function [51, 60] as it may be a function of both event

variables e(p) and s (Mayer terms [49, 232]), and may contain integrand terms

through also being a function of integral variables q(p) (Lagrange terms [50]). The

dynamical constraints (eq. (2.2)) are ordinary di↵erential equations (ODEs) of the

independent variable t.

Solution of the OCP defined by eqs. (2.1) to (2.7) has historically depended on

the application of the calculus of variations [268] to derive the first-order necessary

conditions for optimality (or Euler-Lagrange equations) [68, 201, 215]. The necessary

conditions specify values for the variables where the objective function is at a turning

point and all of the constraints are satisfied [268]. The second-order su�ciency

conditions can be derived and evaluated to determine whether the solution to the

necessary conditions (the extremal solution) is a maximum or a minimum [268]. A

mathematical description of the optimality conditions for OCPs can be found in [36,

268].

2.1.2 Solving Optimal Control Problems

While the simplest of OCPs can be solved analytically, as problem complexity in-

creases, finding an analytical solution becomes intractable, if not impossible [36].

Therefore, numerical methods must be used to solve most OCPs. The use of numer-

ical methods is caveated by the fact that they must be applied to finite-dimensional

problems; an OCP is continuous by nature and therefore infinite-dimensional [23].

One practical numerical method involves recasting the problem in terms of a finite

set of variables and constraints, such that it can then be characterised as a NLP [23,

36].

The highest-level categorisation of numerical methods contains two approaches:

direct methods [215], which find a minimum of the objective function J ; and indirect

methods [68], which solve for a root of the necessary conditions. Direct methods

construct a discrete approximation to the state and control, which is then solved

numerically [36, 282]. The approach (the transcription method [36]) involves:

1. converting the continuous-time OCP to a NLP finite-dimensional approxima-

tion (the transcription step);

2. solving the NLP (the optimisation step); and

3. assessing the accuracy of the finite approximation, and repeating the tran-

scription and optimisation steps if required (the refinement step).

13

CHAPTER 2. ORTHOGONAL COLLOCATION

Instead, indirect methods utilise solutions to the optimality conditions to find

optimal solutions [36, 282]. A root of the necessary conditions yields a boundary

value problem (BVP) that can be solved numerically [23]. Indirect methods present

the advantage that the state and costate (the necessary conditions relating to the dy-

namical constraints (eq. (2.2)) and their Lagrange multipliers) are explicitly solved,

meaning that the optimal solution can be readily verified [35, 282].

Direct methods are typically preferred as a number of di�culties arise when

practically implementing indirect methods [35, 36, 105, 282]:

1. indirect methods require the necessary conditions to be derived, a process

which typically cannot be automated and so places additional demands on the

user [68, 282];

2. the solution to the BVP generated by an indirect method is very sensitive to

the initial guess [35] and ill-conditioned costate equations [68]; and

3. inequality path constraints require accurate initial guesses when they are active

for only a portion of the problem’s time duration [35, 36].

Due to these practical di�culties with indirect methods, this thesis focuses solely

on direct methods.

Numerical Integration

Numerical integration methods are concerned with the numerical solving of di↵eren-

tial equations [23, 71]. As OCPs contain di↵erential dynamical constraints (eq. (2.2))

and quadrature constraints (eqs. (2.4) and (2.7)), optimal control and numerical in-

tegration are closely tied. Specifically, the multiphase OCP considered in this thesis

(section 2.1.1) involves dynamical constraints that are first-order ODEs. Therefore,

only numerical methods for solving ODEs are considered.

Two general classes of numerical integration schemes exist: multistep methods,

where the solution at time tk+1 is obtained from a series of adjacent times tk, . . . , tk�j

with j 2 Z; and multistage methods, where each time interval [tk, tk+1] is divided

into a number of subintervals [23, 71, 282]. Multistep methods have the general

form

yi+k =
k�1X

j=0

↵jyi+j + h

kX

j=0

�jẏi+j , (2.8)

where ↵j and �j are constants associated with the specific method [71]. A method

is explicit if �k = 0 such that the value for a timepoint only depends on values

14

2.1. BACKGROUND, THEORY AND REVIEW

that have been calculated prior [23, 71]. If �k 6= 0, the method is implicit because

it depends on information relating to timepoints after the current time. While ex-

plicit and implicit methods have the potential to be equally accurate, the latter are

more numerically stable and provide greater accuracy for a given order or size of

timestep [124]. However, due to the fact that implicit methods depend on informa-

tion after the current time, all times must be solved simultaneously (often termed

predictor-corrector) which necessitates the use of a nontrivial iterative approach to

generate their solution [35, 282]. As such they are generally more computationally

demanding per timestep than explicit methods [35, 282]. Whether an explicit or

implicit method will be more computationally e�cient for a whole simulation will

therefore depend on a number of factors, including: the sti↵ness of the ODE, the

order of the numerical method, and the size of the timesteps.

Multistep methods also require information at the preceding k� 1 times which

can be problematic at the initial timepoint for a method of order k 6= 1 as this

suggests the need for timepoints before the initial time [23, 71]. In these cases

the order of the method used at the initial timestep must be reduced to a one-

step method which may come with a significant penalisation in accuracy [71]. The

general multistep method in eq. (2.8) assumes that the timestep h is constant [71].

In cases where h is not constant, careful consideration must be given to the values

of the coe�cients as they will di↵er from the case with constant h and may lead to

the method being ine�cient or ill-conditioned [36, 71]. The commonly used Adams-

Bashforth method [28] and Adams-Moulton method [249] are examples of an explicit

and implicit method respectively.

Multistage methods integrate over a single timestep [tk, tk+1] at a time, but

subdivide the interval into K stages

ti,j = ti + hi⇢j , (j = 1, . . . , K) , (2.9)

with 0  ⇢0  ⇢1  . . .  ⇢K�1  1 and hi = ti�ti�1 [71]. TheK-stage Runge-Kutta

family of methods are defined as

yi+1 = yi + hi

KX

j=1

�jfi,j , (2.10)

where

fi,j = f

"
yi + hi

KX

l=1

↵j,lfi,l

!
, (ti + hi⇢j)

#
(2.11)

for 1  j  K [71]. For a specific Runge-Kutta method, the constants {⇢j, �j,↵j,l}

15

CHAPTER 2. ORTHOGONAL COLLOCATION

are known and are usually conveniently described in a Butcher array [71]

⇢0 ↵0,0 · · · ↵0,K

...
...

...

⇢K ↵K,0 · · · ↵K,K

�0 · · · �K

.

Multistage methods are advantageous because the same order of method can

be used across the time domain, even at the boundaries where problems with mul-

tistep methods arise [36, 71]. They are, however, more computationally demanding

because they require intermediate values at the stages to be computed [36, 71, 282].

Runge-Kutta methods are explicit only if ↵j,l = 0 for l � j, otherwise they are

implicit [71]. There are many well-known explicit numerical integration schemes

including the Euler method (K = 1) and the classic Runge-Kutta method (K = 4),

as well as well known implicit schemes including the Trapezoidal method (K = 2)

and the Hermite-Simpson method (K = 3) [71].

Runge-Kutta methods can also be motivated by using a polynomial ỹ (t) to

approximate a di↵erential equation ẏ (t) = a (y (t) , t) [143]. A polynomial of degree

K (order K + 1) can be used to approximate ẏ (t) over each timestep tk  t  tk+1

such that

ỹ (t) = ↵0 + ↵1 (t� tk) + . . .+ ↵K (t� tk)
K

. (2.12)

The polynomial coe�cients (↵0,↵1, . . . ,↵K) are chosen so that the approximation

matches the true function at the initial timepoint

ỹ (tk) = y (tk) (2.13)

and the gradient matches at each of the stages (eq. (2.9))

ỹ (tk,i)

dt
= a (ỹ (tk,i) , tk,i) . (2.14)

Equation (2.14) is the collocation condition and resulting methods are collocation

methods [23].

Collocation methods are useful in trajectory optimisation as the collocation con-

dition ensures that the state and state derivatives are approximated correctly [35,

105, 282]. All Runge-Kutta schemes are collocation methods (although the inverse is

not true) [71]. With multistep and multistage methods there is a trade-o↵ between

the computational demands of a method, and its accuracy and stability. Explicit

multistep methods are the easiest to implement and least computationally demand-

ing to propagate. They are also the least accurate and stable, especially when

16

2.1. BACKGROUND, THEORY AND REVIEW

dealing with sti↵ or nonlinear di↵erential equations. Conversely, implicit multistage

methods, with their requirements for intermediate values at the stages and use of

predictor-correctors, appear the most complex. However, due to their numerical

stability and accuracy, particularly in higher-order methods, large timesteps can be

used while maintaining accuracy [71]. Consequently, they can actually be less com-

putationally demanding [36]. For these reasons, implicit multistage Runge-Kutta

methods are typically preferred for solving OCPs [35, 36, 105, 282].

Single Shooting

Single shooting is the simplest technique for formulating a trajectory optimisation

problem [35, 282]. Shooting refers to the fact that the approach is very similar to

how one would manually shoot at a target:

1. guess the initial conditions;

2. propagate the state from initial to final time;

3. calculate the error in the final time boundary condition; and

4. use a NLP to find decision variables that satisfy the endpoint boundary con-

straint, repeating the initial steps as required.

Explicit numerical (typically Runge-Kutta) integration schemes are used to propa-

gate the state forward in time [282]. Single shooting formulations lead to problems

with very few decision variables (i.e. small dense problems), which makes them

practical to implement. However, the final time defect constraint can be highly

nonlinear with respect to the initial guess. It can, therefore, be very di�cult to

force the endpoint constraint to meet the specified solving tolerance [36, 282]. In

cases where the OCP in question is simple and a good initialisation is available,

single shooting may perform well. Otherwise, achieving converge can be di�cult.

Multiple Shooting

Multiple shooting splits the problem into multiple shorter shooting problems and

chains them together [282]. Doing this adds an additional continuity constraint at

the boundary between adjacent segments. It also demands an initial guess for the

state at the beginning of all segments, not just at the initial time. Multiple shoot-

ing increases the size of the resulting NLP; additional variables and constraints are

17

CHAPTER 2. ORTHOGONAL COLLOCATION

required to describe the state, and enforce continuity, at the segment boundaries re-

spectively. While multiple shooting NLPs are larger than single shooting ones, the

NLP derivative matrices are sparse. Furthermore, sparsity increases as the number

of multiple shooting segments increases. Sparsity is important for computational

performance because the algorithmic complexity associated with sparse matrix op-

erations is significantly less than that of dense matrix operations [36]. Multiple

shooting can result in performant computational implementations thanks to the un-

coupling of the di↵erent segments. All segments are independent and can, therefore,

be forward-propagated in parallel [36].

Direct Collocation

In direct collocation the state is approximated using a collocation method [35, 282].

This is powerful as the system’s dynamical constraints are automatically enforced by

the collocation condition [282]. As such, the majority of research into using direct

methods to solve OCP has focussed on direct collocation [36, 39, 105, 282]. When

implementing direct collocation, the choice of stages and which nodes to collocate

are two important considerations [23, 71]. There is significant prior work discussing

the advantages and disadvantages of di↵erent collocation methods and their most

appropriate applications [71, 105, 282]. Choosing evenly-spaced stages results in the

lowest possible accuracy [71]. This is because such schemes are subject to Runge’s

phenomenon whereby large oscillations of the polynomial interpolant are present at

the domain edges [71]. The most numerically-stable schemes are based on Gaussian

quadrature. These involve choosing the stages such that they lie at the roots of the

orthogonal Legendre polynomials [71, 143]. The Legendre polynomials lie on the

interval [�1, 1] and di↵erent families of methods exist depending on whether the

endpoints of this domain are collocated or not [143]. The nth-order Legendre poly-

nomial is denoted by P
⇤
n (x). Such schemes are described as orthogonal collocation.

The three main families of orthogonal collocation methods are [23, 71, 143]:

1. Legendre-Gauss (LG) methods, in which the nodes are given by the roots

of P ⇤
n (x) and where the nodes in (�1, 1) (i.e. only the interior nodes) are

collocated;

2. Legendre-Gauss-Radau (LGR) methods, in which the nodes are given by the

roots of P ⇤
n�1 (x) + P

⇤
n (x) as well as the endpoint 1, and where the nodes in

[�1, 1) are collocated; and

3. Legendre-Gauss-Lobatto (LGL) methods, in which the nodes are given by the

roots of
dP ⇤

n�1(x)

dx as well as the endpoints �1 and 1, and where the nodes in

18

2.1. BACKGROUND, THEORY AND REVIEW

[�1, 1] (i.e. all the nodes) are collocated.

LG [33, 179], LGR [106, 121, 188] and LGL collocation methods [38, 100, 104] have

all been extensively studied.

LGL presents the benefit that both endpoints are collocated, which automat-

ically enforces the dynamics for the entire duration of the problem [38]. All three

collocation methods lead to predictable formulations of the defect constraints, all

of which are sparse [105, 122]. This sparsity information can be exploited when

forming and solving the NLP [36, 264].

Optimal Control Software Packages

Recent research has focused on formulating and solving increasingly large OCPs ef-

ficiently. Many software packages exist for the solving of OCPs via the transcription

method, the overwhelming majority of which implement direct methods [282]. Well

known examples include: ACADO (Automatic Control and Dynamic Optimiza-

tion) [172], DIRCOL [313], GPOPS [283], GPOPS-II [263], ICLOCS [109], JMod-

elica [12], OTIS (Optimal Trajectories by Implicit Simulation) [322], PSOPT [29],

SOCS (Sparse Optimal Control Software) [40] and SOS (Sparse Optimization Suite) [37].

The most widely-used and performant of these is GPOPS-II , which is capable

of solving multiphase OCPs and implements an LGR collocation method with al-

gorithmic problem scaling and mesh refinement while exploiting problem sparsity.

CGPOPS, an updated version of GPOPS-II implemented in C++, was released in

November 2020. Both GPOPS-II and CGPOPS are proprietary software and re-

quire a licence to be used [9, 263]. There is currently no easy-to-use, open-source,

high-performance, general-purpose software package for solving OCPs that o↵ers a

feature set similar to GPOPS-II or CGPOPS.

2.1.3 Solving Nonlinear Programming Problems

The NLP arising from a transcribed OCP can be mathematically generalised as:

determine the vector of decision variables z 2 Rnz that minimise the objective

function

J (z) , (2.15)

subject to the constraints

g (z) = 0 (2.16)

h (z)  0 (2.17)

19

CHAPTER 2. ORTHOGONAL COLLOCATION

where the equality constraints g 2 Rng and the inequality constraints h 2 Rnh . The

vector of all constraints vertically concatenated is

c (z) 2 Rnc (2.18)

where

nc = ng + nh . (2.19)

The NLP defined by eqs. (2.15) to (2.17) can be solved using nonlinear optimisa-

tion [131].

Optimisation algorithms fall in to two categories: heuristic methods and gra-

dient methods [131]. Heuristic methods take a stochastic approach to probe the

search space, while gradient methods make an informed decision about search di-

rection based on information from the NLP about the magnitude of the objective

function and violation of the constraints [42]. As such, heuristic methods are global

methods while gradient methods are local methods. While the global methods may

appear superior because they should not get stuck in local minima, their unguided

stochastic search means that they exhibit slow convergence properties and are, there-

fore, not practical for application to OCPs [35]. Gradient methods are preferred for

the nonlinear optimisation in this application [36, 39, 105, 282].

Gradient Methods

The general approach of a gradient method is to: evaluate the problem at the initial

guess; decide on a search direction and step distance; step to a new location in the

search space; and repeat the process until the termination conditions are met [36,

131]. Gradient methods are either sequential quadratic programming (SQP) meth-

ods [129] or interior-point (IP) methods [43]. SQP methods approach solving the

NLP by treating it as an approximate quadratic programming problem (QP) at each

iteration to determine the search direction [129, 131]. IP methods use a merit

function to assist with global convergence [36, 43]. A merit function typically lin-

early combines the object function and the infeasibility of the constraints with some

weighting µ (the barrier parameter) [36]. The barrier function is then minimised

with µ being gradually reduced to 0 from above as the NLP solver progresses. This

assists convergence to a global optimum by allowing the initial guess of the solution

to contain infeasible dynamics and other constraint violations. Due to the use of

the merit function and barrier parameters, IP methods can generally converge to

a solution more reliably than SQP methods, especially when a poor initial guess is

provided [36]. This can make IP methods preferable when solving the NLP arising

from a transcribed OCP as it places less demand on the user to provide an accurate

initial guess [36].

20

2.1. BACKGROUND, THEORY AND REVIEW

Derivative Generation

To determine their search direction and step size, NLP solvers typically require first-

and second-order gradient information [35]. The first-order gradient information in-

cludes the partial derivatives of the objective function J with respect to the decision

variables z (the objective gradient)

g =
@J

@z
, (2.20)

and the partial derivatives of the constraints c with respect to z (the constraints

Jacobian)

G =
@c

@z
. (2.21)

Some NLP solvers also require the second-order Lagrangian Hessian [43]. The

Lagrangian is

L = �J + � · c , (2.22)

where � is the objective factor and � is the vector of Lagrange multipliers (�i cor-

responds to the ith constraint ci in c). The Lagrangian Hessian is the matrix of

second-order partial derivatives of L with respect to z

H =
@
2
L

@z2
. (2.23)

The Hessian can be expensive to compute. One commonly used computa-

tional approach to reduce this cost is to use a quasi-Newton approximation to the

Hessian [36]. This can significantly reduce the computation time spent evaluating

derivatives for the NLP [282], however using an exact Hessian rather than a quasi-

Newton approximation has been shown to significantly reduce the number of NLP

iterations required for convergence [43]. Therefore, exact second derivative informa-

tion should be obtained when solving OCPs by the transcription approach [36]. As

each of g, G and H may need to be computed one or more times per NLP iteration

it is important that they can be evaluated quickly and e�ciently when requested by

the NLP solver [131]. One important point for consideration is that the NLP gen-

erated by the transcribed OCP is large and sparse and therefore exploitation of this

sparsity can be used to significantly improve the performance of the computation of

any derivate information [36, 264]. E�cient derivative generation for OCPs is the

subject of chapter 3 and so is discussed in detail there.

Nonlinear Programming Problem Solvers

Extensive research has been conducted into how best to solve NLPs via SQP and

IP methods [129]. Many highly-performant software implementations of the devel-

21

CHAPTER 2. ORTHOGONAL COLLOCATION

oped algorithms exist, including the SQP solver SNOPT [130], and the IP solvers

Ipopt [323] and KNITRO [72]. The software package WORHP [70] o↵ers both

SQP and IP solvers. Of these packages, Ipopt is the only one with a permission

open-source license.

2.1.4 Scaling

While the general approach to solving OCPs works well in theory, there are a number

of intricacies related to the approach that can, in practice, result in di�culties in

converging on a feasible optimal solution. One such area relates to the scaling of

both the OCP and the resulting NLP [36, 131]. Relative scaling of the variables,

objective and constraints influences the convergence rate, termination tests and

numerical conditioning of the problem [36]. Good relative scaling is, therefore,

important [36, 43].

Constructing a reliable method to automatically scale all problems is complex

because a scaling approach that works well for one problem may not perform well

for all others [36]. Typical approaches try to automatically scale the variables such

that they lie on the same domain or allow users to specify their own scaling [37, 263].

General rules for scaling certain components of OCPs have been suggested [36] and

implemented with success [29, 38, 263]. However, no author has published details

of a comprehensive approach to scaling all aspects of an OCP.

2.1.5 Mesh Refinement

Mesh refinement is the third step in the transcription approach to solving an OCP.

It generally involves:

1. a mesh error calculation to determine regions of the discretisation domain

where the accuracy of the solution does not meet a specified tolerance; and

2. a rediscretisation step where a new mesh is generated, on which a subsequent

NLP will be solved [36].

Historically, h-methods, where h refers to the width of a given mesh sections,

have been widely used for mesh refinement [36, 348]. In an h-method, a fixed-order

quadrature scheme is used uniformly across the whole problem (both for all mesh

sections and for all mesh iterations). Convergence is then achieved by subdivid-

ing mesh sections between mesh iterations to increase the density of mesh nodes

22

2.1. BACKGROUND, THEORY AND REVIEW

where accuracy needs improving. Another family of mesh refinement methods are

p-methods, where p refers to the order of the interpolating polynomial within a given

mesh section [133]. p-methods use a global approach in which the number and width

of mesh sections remains the same over successive NLP iterations, while the order of

the interpolating polynomials (and therefore number of collocation nodes in a given

mesh section) are adjusted in relation to the accuracy of the solved NLP. Easy to

implement, h-methods tend to result in requiring fine meshes with high mesh densi-

ties, particularly in nonlinear regions of the solution, for convergence to be achieved.

p-methods on the other hand can themselves require impractically high-order inter-

polating polynomials to achieve convergence, particularly if mesh sections of a fixed

width contain both nonlinear and linear artefacts.

hp-methods, which combine both h- and p-methods, are possible with orthog-

onal collocation due to the state and control being discretised by piecewise polyno-

mials. hp-methods typically perform significantly better than either h-methods or

p-methods as they can be preferable to reduce the mesh error by mesh section sub-

division over increasing polynomial order and visa versa in di↵erent circumstances.

This generally results in convergence with fewer total nodes (and therefore fewer

total NLP decision variables) in the final NLP iteration when an hp-method is used.

Many hp-methods have been presented and analysed [36, 82, 83, 219, 220, 262].

These methods typically apply p- and h-methods successively, prioritising the for-

mer as increasing the order of the interpolating polynomial generally gives a greater

reduction in mesh error than subdividing the mesh section [262]. Comparisons of

[7, 82, 83, 219, 220, 262] have shown that there is no clear best-performing mesh

refinement algorithm across a range of problems [9, 263].

One area where hp-methods do not perform well is in scenarios where the state

contains a discontinuity [7], as is typically the case when the optimal control contains

a discontinuity (bang-bang control) [7, 36]. Where a discontinuity appears within a

phase, a high density of nodes are required to approximate it with low error. In this

case it is best to use a mesh refinement algorithm that is capable of detecting dis-

continuities and recasting the problem with a di↵erent number of phases [7]. Such

algorithms have, however, been shown to perform poorly when applied to hyper-

sensitive OCPs (a class of OCP that exhibits highly nonlinear dynamics in small

regions of their domain), where they can incorrectly identify severe nonlinearities as

discontinuities [9, 284].

23

CHAPTER 2. ORTHOGONAL COLLOCATION

2.2 Research Objectives

Section 1.3 laid out the objective of developing and critically evaluating a highly

performant, easy-to-use, open-source software package to solve general OCPs. This

software package should use state-of-the-art theory and methods, and form a foun-

dational element of the Biomechanics Predictive Simulation Toolkit (BPST).

From the analysis and review of past work in section 2.1, a number of limitations

and constraints associated with the current software provision in this area were

identified. To address these, and meet the overall objective above, the following

sub-objectives are laid out:

1. investigate current limitations in the numerical solving of OCPs with the pur-

pose of developing new approaches and solutions that can be incorporated into

a software package, including:

(a) the interchangeability of Gaussian-, Radau- and Lobatto-based colloca-

tion methods;

(b) approaches to scaling OCPs; and

(c) approaches to mesh refinement;

2. incorporate any resulting findings and current state-of-the-art theory into the

development of a highly-performant, open-source software package for numer-

ically solving OCPs;

3. ensure that the software is easy-to-use and extensible, such that it is suitable

for use by other researchers and practitioners, and as part of the BPST;

4. validate the performance of the software by solving a range of OCPs from the

literature that test di↵erent aspects of the package’s functionality;

5. benchmark the software against the current industry-standard software and

evaluate its overall performance; and

6. identify areas for further development and improvement.

2.3 Implicit K-Stage Runge-Kutta Collocation

A large volume of previous work has shown how an OCP can be transcribed using

a specific form of collocation. The most prevalent and performant of these are all

based on Legendre polynomials and include the LG [33, 179], LGR [106, 121, 188]

24

2.3. IMPLICIT K-STAGE RUNGE-KUTTA COLLOCATION

�1.0 �0.8 �0.6 �0.4 �0.2 0.0 0.2 0.4 0.6 0.8 1.0

LG

LGR

LGL

Figure 2.1: Locations of LG (Gaussian), LGR (Radau) and LGL (Lobatto) points.

and LGL [25, 38, 100, 104] collocation methods. These three methods collocate the

discretised problem across multiple intervals at the Gaussian, Radau and Lobatto

points respectively (fig. 2.1). There are conflicting opinions in the literature about

which of LG, LGR and LGL collocation is the most numerically stable and o↵ers

the best convergence properties [105, 122]. Therefore, there is a motivation to allow

the user of any software package for solving OCPs to select the collocation method

that best suits their problem.

A unified framework for formulating for LG, LGR and LGL collocation has

been presented before [122]. However, this approach requires the di↵erentiation

of a sum of Lagrange polynomials to produce a di↵erentiation matrix, followed by

its inversion to produce the constants for integral-form collocation. Three slightly

di↵erent algorithms are required to formulate the three collocation schemes, which

reduces the framework’s ease of implementation.

This section develops a method that allows the transcription of the OCP defined

by eqs. (2.1) to (2.7) to an NLP by using multiple-interval integral-form variable-

order collocation based on K-stage Runge-Kutta methods with a generalised choice

of stages. It shows that LG, LGR and LGL collocation methods can all be formulated

as K-stage Runge-Kutta methods and, therefore, an appropriate Butcher table can

be used to derive the coe�cients corresponding to the collocation scheme. The

approach allows for any one of LG, LGR and LGL collocation to be used within the

same transcription framework, simply by adjusting the function used for computing

the quadrature nodes.

2.3.1 Discretising Ordinary Di↵erential Equations

The dynamical equations in an OCP can be characterised as a set of first-order

ODEs in terms of the state of the system. Solving the OCP will involve determin-

25

CHAPTER 2. ORTHOGONAL COLLOCATION

ing the value of the state such that it is dynamically consistent across the duration

of the problem (in addition to meeting any constraints on the state’s value at the

endpoints). Solution by the transcription method, therefore, involves discretising

the problem in a way that the NLP contains constraints that enforce the OCP’s

dynamics at each of the discretised state values. Each OCP phase may be discre-

tised such that it will consist of a number of mesh sections. However, to simplify

the following discussion only a single mesh section (from time ti to ti+1) will be

considered. The following results can then be generalised to a phase consisting of

multiple mesh sections.

Consider the simple ODE

ẏ (t) = f (y (t) , t) . (2.24)

The value of y (ti+1) relative to y (ti) can be found by integrating along the timestep

hi = ti+1 � ti

y (ti+1) = y (ti) +

Z ti+1

ti

ẏ (t) dt . (2.25)

The integral in eq. (2.25) can be approximated using a numerical method of inte-

gration (section 2.1.2). Further discretisation of the timestep between ti and ti+1 so

that is also contains internal stages is useful. If the timestep is discretised such that

it contains ⌫ total timepoints (⌫ � 2 internal stages) then let these timepoints be

denoted as

tij = ti + ⇢jhi , (j = 1, . . . , ⌫) , (2.26)

where

0 = ⇢1 < ⇢2 < . . . < ⇢⌫�1 < ⇢⌫ = 1 (2.27)

and ti1 = ti and ti⌫ = ti+1. To simplify the nomenclature, the terminology

yij = y (tij) , fij = f (yij, tij) = ẏ (tij)

is also introduced.

2.3.2 Lagrange Polynomials

Integral-form LG [32], LGR [121] and LGL [25] have all previously been derived

using Lagrange interpolating polynomials to approximate the integral in eq. (2.25).

Lagrange polynomials are defined as

L (⇢) :=
X

j=◆

yij`j (⇢) , (2.28)

26

2.3. IMPLICIT K-STAGE RUNGE-KUTTA COLLOCATION

where the Lagrange basis polynomials are

`j (⇢) =
Y

m=◆,m 6=j

⇢� ⇢m

⇢j � ⇢m
, (◆  j  ) . (2.29)

They are useful for numerical interpolation as they represent the polynomial of

lowest degree that can pass through a unique set of points. Some references (e.g. [32])

have presented the basis polynomials in their Barycentric form,

`j (⇢) =
` (⇢)

`0 (⇢j) (⇢� ⇢j)
, (2.30)

where

` (⇢) =
Y

m=◆

(⇢� ⇢m) , (2.31)

but these have been converted to the form in eqs. (2.28) and (2.29) for consistency

in this thesis.

2.3.3 Legendre Polynomials

Legendre polynomials are a set of orthogonal polynomials with useful mathematical

properties that make them highly suited to applications in numerical integration [71,

143]. The Legendre polynomials on the interval [0, 1] are

P
⇤
0 (x) = 1 ,

P
⇤
1 (x) = 2x� 1 ,

P
⇤
2 (x) = 6x2

� 6x+ 1 ,

P
⇤
3 (x) = 20x3

� 30x2 + 12x� 1 ,

...
...

and have the properties [71] that
Z 1

0

P
⇤
m (x)P ⇤

n (x) dx = 0 , (m 6= n) , (2.32)

P
⇤
n (1) = 1 , (n = 0, 1, 2, . . .) . (2.33)

2.3.4 Derivation and Equivalence

Consider approximating the state equation in eq. (2.24) using a Lagrange interpo-

lating polynomial collocated at K points [25, 32, 121]. This yields an approximation

to the derivative

ẏ (t) = f (y (t) , t) ⇡ L (⇢) (2.34)

27

CHAPTER 2. ORTHOGONAL COLLOCATION

with the property that

L (⇢j) = fij , (◆  j  ) . (2.35)

From eq. (2.34) and the definition of a Lagrange polynomial (eq. (2.28)), an integral

involving f (y (t) , t) can be approximated as

Z tij

ti

f (y (t) , t) dt ⇡

Z tij

ti

L (⇢) dt = hi

Z ⇢j

0

L (⇢) d⇢

= hi

Z ⇢j

0

X

j=◆

fij`j (⇢) d⇢

= hi

X

j=◆

fij

Z ⇢j

0

`j (⇢) d⇢ .

(2.36)

By defining

↵ij =

Z ⇢j

0

`j (⇢) d⇢ , (2.37)

estimates for yij can be made by approximating integrals using the summation from

eq. (2.36)

yij ⇡ yi + hi

X

◆

↵ijfij . (2.38)

Also, by defining

�j =

Z 1

0

`j (⇢) d⇢ , (2.39)

an estimate for the value yi+1 can be similarly approximated as

yi+1 ⇡ yi + hi

X

j=◆

�jfij . (2.40)

In the NLP, the exact values of yij and fij are not known. However, if yij for

(j = 1, . . . , ⌫) are treated as decision variables then values will be available for each

and fij can be directly calculated. Define Yij as the NLP decision variable at tij

such that

Y =
h
Yi Yi2 . . . Yi(⌫�1) Yi+1

iT
(2.41)

and Fij = f (Yij, tij) such that

F =
h
Fi Fi2 . . . Fi(⌫�1) Fi+1

iT
. (2.42)

From eq. (2.38) a set of K equality constraints which enforce the system dynamics

at the K internal stages can be produced in the form

0 = Yi � Yij + hi

X

j=◆

↵ijfij , (j = ◆, . . . ,) . (2.43)

28

2.3. IMPLICIT K-STAGE RUNGE-KUTTA COLLOCATION

Additionally, a further equality constraint, which enforces the system dynamics

across the integral of the timestep,

0 = Yi � Yi+1 + hi

X

j=◆

�jfij (2.44)

can be formed. Combining eqs. (2.43) and (2.44) for all stages and converting the

equations in to a linear matrix system yields

0 = EY + hiAF , (2.45)

where E is a (⌫ � 1)⇥ ⌫ matrix with ones in the first column and negative ones on

the first superdiagonal

E =

2

666664

1 �1 0 · · · 0

1 0 �1 · · · 0
...

...
...

...

1 0 0 · · · �1

3

777775
(2.46)

and A is the (⌫ � 1)⇥⌫ integration matrix populated by the stage and step weights

eqs. (2.37) and (2.39).

The previously developed LG [32, 122], LGR [121, 122] and LGL [25, 122] col-

location methods populate the integration matrix using integrals of the Lagrange

interpolating polynomials. However, the derivation of these methods can be moti-

vated another way due to the fact that collocation methods can also be thought of

as Runge-Kutta methods [71].

Consider instead approximating the integral term in eq. (2.25) using an implicit

K-stage Runge-Kutta method. The stages ⇢i, quadrature weights �i and stage

weights ↵ij associated with the method can be derived from analysis of Legendre

polynomials such that the error is minimised and the stability is maximised [71]. For

Runge-Kutta methods based on Gaussian quadrature, the set of Gaussian points are

used for ⇢i. For methods based on Radau and Lobatto quadrature, ⇢i is populated

by the set of Radau and Lobatto points respecively.

To maximise the order of the method based on the chosen points, the quadrature

weights �i for (i = ◆, . . . ,) should be chosen to satisfy the B (⌘) condition [71]

B (⌘) :
X

j=◆

�j⇢
s�1
j =

1

s
, (s = 1, . . . , ⌘) . (2.47)

Additionally, for the stage weights ↵ij for (i, j = ◆, . . . ,) should be chosen to satisfy

the C (⇣) condition [71]

C (⇣) :
X

j=◆

↵ij⇢
s�1
j =

⇢
s
i

s
, (i = ◆, . . . ,) , (s = 1, . . . , ⇣) . (2.48)

29

CHAPTER 2. ORTHOGONAL COLLOCATION

Solving the linear system in eq. (2.47) yields the quadrature weights �i, while solving

the K linear systems in eq. (2.48) yields the stage weights (with the ith row given

by solving the ith linear system).

The equivalence of a K-stage Runge-Kutta method with the coe�cients �j
defined by the B (⌘) condition and the coe�cients ↵ij defined by the C (⇣) to a

collocation method defined using Lagrange polynomials has been proven in [138,

330]. Specifically, for a given set of points, the coe�cients ↵ij defined by eqs. (2.37)

and (2.48) are equivalent and �j defined by eqs. (2.39) and (2.47) are also equivalent.

As a result, the defect constraints on the dynamics can be formulated in the form

given by eq. (2.45), with A populated using eqs. (2.47) and (2.48).

2.3.5 Legendre-Gauss Collocation

In LG collocation [32], interpolation is centred around the K = ⌫ � 2 Gaussian

points (fig. 2.1). From [4], the Gaussian points are the zeros of

P
⇤
K . (2.49)

In relation to the discretisation defined in eq. (2.27), the Gaussian points correspond

to the internal stages ⇢i for (i = 2, . . . , ⌫ � 1), with ⇢1 = 0 and ⇢⌫ = 1 being non-

collocated endpoints. As such, ◆ = 2 and  = ⌫ � 1 = K + 1 in relation to the sums

and products involved in the polynomials’ definitions in eqs. (2.28) and (2.29).

Using eq. (2.45), the set of defect constraints that enforce the system’s dynamics

when discretised at the Gaussian points can be produced by

0 = EY + hiA
LGF , (2.50)

where Y (eq. (2.41)), F (eq. (2.42)) and E (eq. (2.46)) are as before. As ◆ = 2 and

 = ⌫�1 = K+1, ALG is the (⌫ � 1)⇥⌫ integration matrix with A(i�1)j = ↵(i�1)j for

(i, j = 2, . . . , ⌫ � 1) and A(⌫�1)j = �j for (j = 2, . . . , ⌫ � 1) with remaining elements

as zeros

ALG =

2

666666664

0 ↵12 ↵13 · · · ↵1(⌫�1) 0

0 ↵22 ↵23 · · · ↵2(⌫�1) 0
...

...
...

...
...

0 ↵(⌫�2)2 ↵(⌫�2)3 · · · ↵(⌫�2)(⌫�1) 0

0 �2 �3 · · · �(⌫�1) 0

3

777777775

. (2.51)

The elements of ALG can be populated using an appropriately sized Gaussian

Butcher tableau [32]. Examples for k = 1, 2, 3 are given in table 2.1. The integration

matrices corresponding to the Butcher tableaus in table 2.1 are shown in table 2.2.

30

2.3. IMPLICIT K-STAGE RUNGE-KUTTA COLLOCATION

1
2

1
2

1

(a) k = 1

1
2 �

p
3
6

1
4

1
4 �

p
3
6

1
2 +

p
3
6

1
4 +

p
3
6

1
4

1
2

1
2

(b) k = 2

1
2 �

p
15
10

5
36

2
9 �

p
15
15

5
36 �

p
15
30

1
2

5
36 +

p
15
24

2
9

5
36 �

p
15
24

1
2 +

p
15
10

5
36 +

p
15
30

2
9 +

p
15
15

5
36

5
18

4
9

5
18

(c) k = 3

Table 2.1: Butcher tableaus for Gaussian methods.

ALG
2⇥3 =

2

40
1
2 0

0 1 0

3

5

(a) k = 1, ⌫ = 3

ALG
3⇥4 =

2

6664

0 1
4

1
4 �

p
3
6 0

0 1
4 +

p
3
6

1
4 0

0 1
2

1
2 0

3

7775

(b) k = 2, ⌫ = 4

ALG
4⇥5 =

2

666664

0 5
36

2
9 �

p
15
15

5
36 �

p
15
30 0

0 5
36 +

p
15
24

2
9

5
36 �

p
15
24 0

0 5
36 +

p
15
30

2
9 +

p
15
15

5
36 0

0 5
18

4
9

5
18 0

3

777775

(c) k = 3, ⌫ = 5

Table 2.2: Integration matrices for Gaussian methods.

31

CHAPTER 2. ORTHOGONAL COLLOCATION

2.3.6 Legendre-Gauss-Radau Collocation

In LGR collocation [121], a Lagrange polynomial is used to interpolate theK = ⌫�1

Radau points (fig. 2.1). From [4], the set of K Radau points ⇢LGR are the zeros of

P
⇤
K�1 (x) + P

⇤
K (x) (2.52)

and correspond to the stages ⇢i for (i = 1, . . . , ⌫ � 1), with ⇢⌫ again being non-

collocated, as defined in eq. (2.27). The set of Radau points, therefore, lie on

the half-open domain [0, 1). For LGR collocation, the general definitions for a

Lagrange polynomial and the Lagrange basis polynomials (eqs. (2.28) and (2.29))

are parameterised by ◆ = 1 and  = ⌫ � 1 = K.

Using eq. (2.45), the set of defect constraints that enforce the system’s dynamics

when discretised at the Radau points can be produced by

0 = EY + hiA
LGRF , (2.53)

where Y (eq. (2.41)), F (eq. (2.42)) and E (eq. (2.46)) are as before. As ◆ = 1 and

 = ⌫ � 1 = K + 1, ALGR is the (⌫ � 1) ⇥ ⌫ integration matrix with Aij = ↵ij for

(i, j = 1, . . . , ⌫ � 1) and A⌫j = �j for (j = 1, . . . , ⌫ � 1) with remaining elements as

zeros

ALGR =

2

666666664

↵11 ↵12 · · · ↵1(⌫�1) 0

↵21 ↵22 · · · ↵2(⌫�1) 0
...

...
...

...

↵(⌫�1)1 ↵(⌫�1)2 · · · ↵(⌫�1)(⌫�1) 0

�1 �2 · · · �(⌫�1) 0

3

777777775

. (2.54)

The elements of ALGR can be populated using an appropriately sized Radau I

Butcher tableau [32]. Examples for k = 1, 2, 3 are given in table 2.3. The integration

matrices corresponding to the Butcher tableaus in table 2.3 are shown in table 2.4.

2.3.7 Legendre-Gauss-Lobatto Collocation

In LGL collocation [25] the set of K = ⌫ Lobatto points (fig. 2.1) are used. From

[4], the Lobatto points can be generated as the zeros of

dP
⇤
n�1 (x)

dx
(2.55)

(which correspond to the internal stages ⇢i for (i = 2, . . . , ⌫ � 1)) as well as the

endpoints ⇢1 = 0 and ⇢⌫ = 1. In LGL collocation methods, all of the discretisation

32

2.3. IMPLICIT K-STAGE RUNGE-KUTTA COLLOCATION

0 0

1

(a) k = 1

0 0 0

2
3

1
3

1
3

1
4

3
4

(b) k = 2

0 0 0 0

6�
p
6

10
9+

p
6

75
24+

p
6

120
168�73

p
6

600

6+
p
6

10
9�

p
6

75
168+73

p
6

600
24�

p
6

120

1
9

16+
p
6

36
16�

p
6

36

(c) k = 3

Table 2.3: Butcher tableaus for Radau I methods.

ALGR
1⇥2 =

h
1 0

i

(a) k = 1, ⌫ = 2

ALGR
2⇥3 =

2

4
1
3

1
3 0

1
4

3
4 0

3

5

(b) k = 2, ⌫ = 3

ALGR
3⇥4 =

2

6664

9+
p
6

75
24+

p
6

120
168�73

p
6

600 0

9�
p
6

75
168+73

p
6

600
24�

p
6

120 0

1
9

16+
p
6

36
16�

p
6

36 0

3

7775

(c) k = 3, ⌫ = 4

Table 2.4: Integration matrices for Radau I methods.

33

CHAPTER 2. ORTHOGONAL COLLOCATION

0 0 0

1 1
2

1
2

1
2

1
2

(a) k = 2

0 0 0 0

1
2

5
24

1
3 �

1
24

1 1
6

2
3

1
6

1
6

2
3

1
6

(b) k = 3

0 0 0 0 0

5�
p
5

10
11+

p
5

120
25�

p
5

120
25�13

p
5

120
�1+

p
5

120

5+
p
5

10
11�

p
5

120
25+13

p
5

120
25+

p
5

120
�1�

p
5

120

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

(c) k = 4

Table 2.5: Butcher tableaus for Lobatto IIIA methods.

points are collocation points such that the Lobatto points lie on the closed domain

[0, 1]. Because all stages will be considered collocation points in LGL collocation,

the values ◆ = 1 and  = ⌫ = K correspond to eqs. (2.28) and (2.29).

Using eq. (2.45), the set of defect constraints that enforce the system’s dynamics

when discretised at the Lobatto points can be produced by

0 = EY + hiA
LGRF , (2.56)

where Y (eq. (2.41)), F (eq. (2.42)) and E (eq. (2.46)) are as before. As ◆ = 1 and

 = ⌫ � 1 = K + 1, ALGL is the (⌫ � 1) ⇥ ⌫ integration matrix with Aij = ↵(i+1)j

for (i, j = 1, . . . , ⌫)

ALGL =

2

666666664

↵21 ↵22 · · · ↵2⌫

↵31 ↵32 · · · ↵3⌫

...
...

...

↵(⌫�1)1 ↵(⌫�1)2 · · · ↵(⌫�1)⌫

↵⌫1 ↵⌫2 · · · ↵⌫⌫

3

777777775

=

2

666666664

↵21 ↵22 · · · ↵2⌫

↵31 ↵32 · · · ↵3⌫

...
...

...

↵(⌫�1)1 ↵(⌫�1)2 · · · ↵(⌫�1)⌫

�1 �2 · · · �⌫

3

777777775

.

(2.57)

The bottom row of ALGL can be equivalently thought of as Ai⌫ = �j or Ai⌫ = ↵⌫j

for (j = 1, . . . , ⌫) (eq. (2.57)).

34

2.3. IMPLICIT K-STAGE RUNGE-KUTTA COLLOCATION

ALGL
1⇥2 =

h
1
2

1
2

i

(a) k = 2, ⌫ = 2

ALGL
2⇥3 =

2

4
5
24

1
3 �

1
24

1
6

2
3

1
6

3

5

(b) k = 3, ⌫ = 3

ALGL
3⇥4 =

2

6664

11+
p
5

120
25�

p
5

120
25�13

p
5

120
�1+

p
5

120

11�
p
5

120
25+13

p
5

120
25+

p
5

120
�1�

p
5

120

1
12

5
12

5
12

1
12

3

7775

(c) k = 4, ⌫ = 4

Table 2.6: Integration matrices for Lobatto IIIA methods.

The elements of ALGL can be populated using an appropriately sized Lobatto

IIIA Butcher tableau [32]. Examples for k = 2, 3, 4 are given in table 2.5. The

integration matrices corresponding to the Butcher tableaus in table 2.5 are shown

in table 2.6.

2.3.8 Algorithmic Implementation

Section 2.3.4 showed that LG, LGR and LGL collocation methods can be grouped

under a unified framework if implemented using eq. (2.45), with A being populated

appropriately based on the chosen scheme. This unified framework lends itself to

algorithmic implementation such that a specific collocation method can be employed

just by choosing to use one of the particular sets of quadrature points. Furthermore,

the approach of using the Butcher tableaus to populate the integration matrices is

powerful as it will be shown that the Butcher tableau for any Runge-Kutta method

can be e�ciently generated by solving a series linear systems derived from the B (⌘)

and C (⇣) conditions.

In order to construct a generalised algorithm that supports formulation of LG,

LGR and LGL collocation methods, the Butcher tableau for a specific method needs

to be constructed in a way that is independent of the method. For all three methods

it has been shown that the quadrature points can be found as roots of the appropriate

Legendre polynomials, the quadrature weights can be found by satisfying the B (⌘)

condition and the stage weights can be found by satisfying the C (⌘) condition. This

algorithmic implementation consists of the following steps:

35

CHAPTER 2. ORTHOGONAL COLLOCATION

1. discretise the ODE at a given set of quadrature points with either no endpoints

collocated (Gaussian points), the initial endpoint collocated (Radau points)

or both endpoints collocated (Lobatto points);

2. generate the Butcher tableau for the method by solving the set of linear sys-

tems resulting from satisfying the B (⌘) and C (⇣) conditions at the chosen

quadrature points;

3. construct the integration matrix A using the necessary elements from the

Butcher tableau; and

4. generate the set of defect constraints using eq. (2.45).

Generation of Quadrature Points

Quadrature points can be determined using any polynomial root finding technique.

This is typically done computationally by building the Frobenius companion matrix

for the polynomial in question and finding its eigenvalues [312]. All established

mathematical computing languages will provide functions or classes to facilitate

this with ease. For example, the Python package SciPy [321] includes a module

containing classes for Legendre polynomials which have a method for finding their

roots.

Generation of Butcher Tableaus

The quadrature weights are determined by satisfying the B (⌘) condition. Let the

row vector of collocation points for a single step be denoted as

⇢ =
h
⇢1 ⇢2 · · · ⇢K

i
. (2.58)

For a method with K collocation points, satisfying the B (⌘) condition will result in

a series of K simultaneous equations with the unknowns �j in terms of the previous

calculated ⇢j for j = 1, . . . , K. A linear square matrix system can be formed by

constructing the B (⌘) conditions for j = 1, . . . , K, expanding the summation terms

and vertically concatenating the resulting equations. In this case, the right hand

side (RHS) is a column vector with K rows denoted as b and with its ith entry

being the ith value in the Harmonic series

b =
h
1 1

2 · · ·
1
K

iT
. (2.59)

36

2.3. IMPLICIT K-STAGE RUNGE-KUTTA COLLOCATION

The left hand side (LHS) square matrix

P =

2

666664

⇢0

⇢1

...

⇢K�1

3

777775
=

2

666664

1 1 · · · 1

⇢1 ⇢2 · · · ⇢K

...
...

. . .
...

⇢
K�1
1 ⇢

K�1
2 · · · ⇢

K�1
K

3

777775
. (2.60)

The LHS column vector of unknowns corresponding to the K quadrature weights is

denoted as

� =
h
�1 �2 . . . �K

iT
. (2.61)

This linear system P� = b can again be solved by established methods such

as LU-decomposition [312]. Facilities for this are provided by all mathematical

computing languages (e.g. Python’s SciPy).

Satisfying the C (⌘) condition to evaluate ↵ij for (i, j = 1, . . . , K) involves find-

ing K
2 unknowns and as such involves solving K linear systems, each with K un-

knowns. Each row of the stage weights in the Butcher tableau can be denoted by a

column vector with the ith being

↵i =
h
↵i1 ↵i2 · · · ↵iK

iT
(i = 1, . . . , K) . (2.62)

Motivated by satisfying the C (⌘) condition, ↵i can be found from solving the ith

linear system in the form P↵i = ci where the LHS matrix P is the same as defined

in eq. (2.60) and the ith column vector ci is defined as

ci =
h
⇢i

⇢i
2 · · ·

⇢Ki
K

iT
(i = 1, . . . , K) . (2.63)

Construction of the Integration Matrix

The integration matrix is constructed from the populated Butcher tableau using the

following steps:

1. Ignore any rows of stage weights corresponding to the quadrature point 0, as

the collocation method does not form a defect constraint between the stage

initial point and itself.

2. Ignore any rows of stage weights corresponding to the quadrature point 1. This

is only the case for Lobatto IIIA quadrature and is necessary as it has been

shown that the stage equation corresponding to the collocated point at 1 and

the quadrature equation for this family of schemes are equivalent (eq. (2.57)).

37

CHAPTER 2. ORTHOGONAL COLLOCATION

3. Vertically concatenate the remaining stage weights and the quadrature weights

to form a (⌫ � 1)⇥K rectangular matrix of weights.

4. Populate A using the weights, such that its upper-right entry lies in the first

row and the column corresponding to the first stage, which is also a collocation

point. For explicit clarity, this means that for the Gaussian-based method the

first and last columns are zero-padded, for the Radau-based method the last

column in zero-padded, and for the Lobatto-based method no zero padding is

necessary.

Formation of Defect Constraints

The defect constraints are formed using the quadrature-specific integration matrix

and eq. (2.45).

2.4 Sparse Nonlinear Programming Problem For-

mulation

Using the generalised framework for implicit integral-form K-stage Runge-Kutta

collocation method detailed in section 2.3, a multiphase continuous-time OCP can

be transcribed to an NLP that can be solved using a computational NLP solver.

This NLP is to determine the vector of decision variables X that minimises the

objective function

J = � (X) (2.64)

subject to the constraints

Cmin  C (X)  Cmax (2.65)

and where the decision variables are bounded as

Xmin  X  Xmax . (2.66)

This constrained NLP is of a general form such that it can be solved by any general

NLP solver.

2.4.1 Decision Variables

The column vector of decision variables is constructed as the concatenation of the

phase-specific decision variables X(p) for p 2 [1, . . . , P] and the phase-independent

38

2.4. SPARSE NONLINEAR PROGRAMMING PROBLEM FORMULATION

static parameter variables s, as

X =

2

666664

X(1)

...

X(P)

s

3

777775
. (2.67)

The phase-specific decision variables for phase p are further constructed as

X(p) =

2

6666666666666666666666666664

Y(p)
1

...

Y(p)

n
(p)
y

U(p)
1

...

U(p)

n
(p)
u

q(p)

t0
(p)

tF
(p)

3

7777777777777777777777777775

. (2.68)

Y(p)
i for

⇣
i = 1, . . . , n(p)

y

⌘
denotes a column vector of the ith state variable from

the OCP discretised according to the generalised K-stage Runge-Kutta colloca-

tion method outlined in section 2.3. Similarly, U(p)
j for

⇣
j = 1, . . . , n(p)

u

⌘
denotes

a column vector of the j th control variable from the OCP according to the same

discretisation. q(p) is a column vector containing the nq
(p) integral variables from

phase p in the form

q(p) =

2

666664

q
(p)
1

...

q
(p)

n
(p)
q

3

777775
, (2.69)

while t0
(p) and tF

(p) are the initial and final times of phase p respectively. The

phase-independent decision variables s directly correspond to the ns static parameter

variables from the OCP and are given as

s =

2

6664

s1

...

sns

3

7775
. (2.70)

39

CHAPTER 2. ORTHOGONAL COLLOCATION

Note that the size of the NLP with respect to the number of decision variables

is dependent on the discretisation mesh used for each phase within the OCP, with

denser phase meshes corresponding to larger NLPs. This is because Y(p)
i and U(p)

j

scale linearly in size with the number of discretisation nodes used within each phase.

Xmin and Xmax are the lower and upper bounds on the decision variables and are

typically supplied by the user as part of the OCP definition.

2.4.2 Functions

The NLP definition details two functions that need to be evaluated: the objective

function J , and the vector of constraints C. Evaluation of J for a specific value of

decision variables X is trivial from the definition in eq. (2.64). The column vector

constraints in eq. (2.65) can be assembled as

C =

2

666664

C(1)

...

C(P)

�

3

777775
. (2.71)

In the same way as for the decision variables, C is constructed as a con-

catenation of the phase-specific constraints C(p) for p 2 [1, . . . , P] and the phase-

independent endpoint constraints �. The phase-specific constraints for phase p are

constructed as

C(p) =

2

666666666666666666664

�(p)
1

...

�(p)

n
(p)
�

�(p)
1

...

�(p)

n
(p)
�

⇤(p)

3

777777777777777777775

, (2.72)

where �(p)
i is a column vector of the defect constraints associated with the ith

state variable Y(p)
i for

⇣
i = 1, . . . , n(p)

y

⌘
, �(p)

i is a column vector of the jth path

constraint applied at each of the discretisation nodes for
⇣
j = 1, . . . , n(p)

�

⌘
, and ⇤(p)

is a column vector of the n
(p)
q integral constraints. The defect constraints �(p)

i

40

2.4. SPARSE NONLINEAR PROGRAMMING PROBLEM FORMULATION

can be generated using the generalised implicit integral-form K-stage Runge-Kutta

collocation detailed in section 2.3 such that

�(p)
i = E(p)Y(p)

i +
tF

(p)
� t0

(p)

2
A(p)F(p)

i ,
�
i = 1, . . . , n(p)

y

�
. (2.73)

The matrices E(p) and A(p) are the phase-level state-di↵erence and integration ma-

trices respectively.

Both E(p) and A(p) are constructed as block matrices from components gener-

ated using the generalised implicit integral-form K-stage Runge-Kutta collocation

method and have the same block structure (shown in fig. 2.2). The phase in question

p is constructed on a mesh S
(p) with K mesh sections. Each mesh section S

(p)
k for

(k = 1, . . . , K) is discretised with ⌫(p)k stages and has an associated
⇣
⌫
(p)
k � 1

⌘
⇥ ⌫

(p)
k

state-di↵erence matrix E(p)
k , as well as a

⇣
⌫
(p)
k � 1

⌘
⇥ ⌫

(p)
k integration matrix A(p)

k .

E(p)
k is defined by eq. (2.46) while A(p)

k is constructed using the algorithm detailed

in section 2.3.8.

The integral constraints in phase p, ⇤(p), are constructed with the ith entry

being

⇤(p)
i = q

(p)
i �

tF
(p)
� t0

(p)

2

D
w(p)

,g(p)
i

E
,

�
i = 1, . . . , n(p)

q

�
, (2.74)

where the angle brackets denote the inner vector (dot) product. w(p) is a column

vector of quadrature weights corresponding to the discretisation used for S
(p). En-

tries is w(p) are trivial for the internal stages of each mesh section, however the

mesh nodes on the interior of the domain can be thought of both as the final node

in the LHS mesh section and the initial node in the RHS mesh section. The entries

corresponding to the interior mesh nodes are just the sums of the two appropriate

quadrature weights from the two mesh sections that the mesh node in question are

part of. g(p)
i is a column vector of the ith integrand function of p evaluated at each

of the discretisation nodes of S
(p).

Of the four types of constraints present in the NLP formulation, the defect and

integral constraints must be equality constraints and so are bounded as

�(p)
i = 0 ,

�
i = 1, . . . , n(p)

y

�
(2.75)

and

⇤(p) = 0 . (2.76)

The path and endpoint constraints are inequality constraints (although they may

be equality constraints in some problems) and so are bounded as

�(p)
min  �(p)

i (X)  �(p)
max ,

�
i = 1, . . . , n(p)

y

�
(2.77)

and

�min  �i (X)  �max . (2.78)

41

CHAPTER 2. ORTHOGONAL COLLOCATION

1 �1

1 �1

1 �1

1 �1

1 �1

1 �1

1 �1

1 �1

1 �1

1 �1

1 �1

1 �1

1 �1

1 �1

1 �1

1 �1

1 �1

Block 1

Block 2

Block 3

Block K

(1) Block k has dimensions Nk⇥Nk +1

(2) Matrix is sparse outside blocks

(3) Matrix has dimensions N ⇥N + 1

(a) Structure of the phase-level state-di↵erence matrix, E(p).

Block 1

Block 2

Block 3

Block K

(1) Block k has dimensions Nk⇥Nk +1

(2) Matrix is sparse outside blocks

(3) Matrix has dimensions N ⇥N + 1

(b) Structure of the phase-level integration matrix, A(p).

Figure 2.2: Block structures of matrices for constructing the defect constraints as-

sociated with the phase p.

42

2.4. SPARSE NONLINEAR PROGRAMMING PROBLEM FORMULATION

2.4.3 Derivatives

Computational NLP solvers use derivative information about the NLP to inform

their decisions about search direction. These universally use the first-order deriva-

tives of the objective function gradient g (eq. (2.20)) and the constraints Jacobian

G (eq. (2.21)). The second-order derivative, the Lagrangian Hessian H (eq. (2.23)),

is also sometimes used as inclusion of an exact computation of H can significantly

improve the convergence properties of a NLP [36, 131]. Using Ipopt as an example,

functions need to be supplied which return evaluations of g, G and H at a specific

value of X [43]. Gradient information can be generated in many ways and is the

subject of chapter 3.

2.4.4 Scaling

Ensuring that the transcribed NLP subproblem is well-scaled is vitally important

because the scaling of the problem a↵ects the convergence rate, termination tests and

numerical conditioning [36]. Defining what makes a problem well-scaled is di�cult.

Furthermore, a problem that is well-scaled at one point in the solution space may

be poorly scaled at another point.

Scaled Nonlinear Programming Problem

In relation to the NLP defined in eqs. (2.64) to (2.66), a scaled NLP with deci-

sion variables eX can be defined. The idea is to produce an equivalent NLP which

possesses the following characteristics:

1. decision variables eX that are of the same order of magnitude and are bounded

on the same domain [36];

2. an objective function eJ that results in a gradient vector where the majority

of entries are within a couple of orders of magnitude of unity [29]; and

3. constraint functions eC that are of the same order of magnitude, such that the

entries within the Jacobian matrix are also of similar orders of magnitude and

again within a couple of orders of magnitude of unity [29].

The scaled NLP is to determine the vector of scaled decision variables eX that

minimises the objective function

eJ = e�
⇣
eX
⌘
, (2.79)

43

CHAPTER 2. ORTHOGONAL COLLOCATION

subject to the constraints

eCmin 
eC
⇣
eX
⌘
 eCmax (2.80)

and where the decision variables are bounded as

�0.5  eX  0.5 . (2.81)

Motivation

The only complete description of how an OCP should be scaled is in [36]. However,

this approach assumes that the derivative information is determined for the unscaled

NLP functions with respect to the unscaled decision variables. This is then scaled

by multiple scaling factors to account for the scaling of the decision variables and the

scaling of the constraints. When another derivative-taking method is used (chap-

ter 3), it can be desirable to express the NLP functions in terms of eX rather than X.

Section 2.4.4 puts together a framework of recommendations for scaling that: col-

lects scaling recommendations from multiple resources, adapts the recommendations

of [36] so that they’re suitable for use with non-di↵erencing di↵erentiation methods,

and provides some recommendations for how scaling should be approached based

on practical experience of automatically scaling OCPs (section 2.7).

This framework of recommendations assumes that the OCP is defined in an

unscaled form, NLP solver is interfaced with the scaled version of the NLP, and the

di↵erentiation method (chapter 3) reformulates the OCP functions in terms of the
eX.

Decision Variables

Scaled decision variables should be of the same order of magnitude and should

occupy the same domain such that they are bounded on the interval [�0.5, 0.5] as

specified by eq. (2.81) [36]. The OCP variables should be scaled separately as this

can have physical meaning, making the process easier. This scaling can then be

transferred to the NLP [36].

The domains of the decision variables are scaled using the a�ne transform [36]

X = VeX+ r. (2.82)

V is a diagonal matrix of stretching weights and r is a column vector of translation

weights. The entries ofV and r can be determined using the upper and lower bounds

44

2.4. SPARSE NONLINEAR PROGRAMMING PROBLEM FORMULATION

of the original NLP, Xmin and Xmax from eq. (2.66) where the ith elements are

Vii = Xi,max �Xi,min (2.83)

and

ri = Xi,max �
Xi,max �Xi,min

2
, (2.84)

with Xi,min and Xi,max being the lower and upper bounds of the ith decision variable

respectively. Note that both V and r will contain many repeated entries because

a single state or control variable in the OCP will result in X containing many

corresponding decision variables due to the discretisation.

The approach in eq. (2.82) is dependent on there being good lower and upper

bounds on the decision variables. Application of this approach can be limited in sit-

uations where accurate bounds are not available. Software implementations should,

therefore, prompt users to provide accurate bounds for each variable. This does,

however, assume that the user has a good grasp of what sensible bounds are for

their problem. If no bounds are available, a large value floating point number (e.g.

10⇥ 1020) should be used in order to avoid computation problems if a numerical in-

finity is encountered. It is also recommended that a numerical limit (e.g. 10⇥ 106)

be placed on the maximum allowable scaling factors to avoid the problem becoming

over-scaled due to poor bounding information.

Objective Function

The objective function should be scaled so that the scaled gradient vector eg has

entries within a couple of orders of magnitude of unity [36]. The relative magnitudes

of the entries of eg are governed by the variable scaling of eq. (2.82). The absolute

magnitudes can also be scaled by directly scaling the objective function. Using the

definitions of eqs. (2.64) and (2.79), the scaled objective function can be defined as

eJ = wJJ = wJ� (X) (2.85)

where wJ is a linear scaling factor. The magnitudes of the entries in eg can therefore

be controlled by adjusting the objective scaling factor wJ . A good approach is to

use the rule of thumb that if reciprocal of the Euclidian norm of eg is 1 then the

resulting objective function and gradient will be well-scaled [29, 36]. Mathematically

this gives

kegk = 1 (2.86)

which can be substituted with eqs. (2.20) and (2.85) and rearranged to give

wJ =
1���@J
@ eX

���
. (2.87)

45

CHAPTER 2. ORTHOGONAL COLLOCATION

The values of eX that should be used when computing wJ using eq. (2.87) are

discussed below.

Constraints

The scaling of the constraints and their Jacobian is to produce a scaled constraints

vector in which the entries are of similar orders of magnitude, while also produc-

ing a Jacobian whose entries are within a couple of orders of magnitude of unity.

As the constraints vector is constructed from defect, path, integral and endpoint

constraints, the scaling of each of these should be considered separately.

Defect constraints should be scaled proportionally by the scaling factor used

to stretch their associated state variable [36]. To implement this, the scaled defect

constraints of phase p, discretised on the mesh S
(p), can be presented mathematically

as

e�(p) = W(p)
� �(p) =

⇥
V(p)

y

⇤�1
�(p)

, (2.88)

where W(p)
� =

h
V(p)

y

i�1

. Similarly, integral constraints should be scaled proportion-

ally by the scaling factor used to stretch their associated integral variable as they

rely on numerical quadrature [36]

e⇤(p) = W(p)
⇤ ⇤(p) =

⇥
V(p)

q

⇤�1
⇤(p) (2.89)

where W(p)
⇤ =

h
V(p)

q

i�1

.

Path and endpoint constraints are not linear functions of decision variables

like defect and integral constraints. They, therefore, need to be scaled using a

di↵erent approach. A method similar to that used to scale the objective function

and its gradient can be used as this can produce well-sized derivatives [29]. If the

path constraints in phase p are to be scaled by W(p)
� , then these weights should be

computed as

W
(p)
�,i =

�����
@�(p)

i

@ eX

�����

�1

, (i = 1, . . . , n�) , (2.90)

where �(p)
i is the ith path constraint evaluated at each of the discretisation nodes

within S
(p) and W

(p)
�,i is the ith entry in W(p)

� . In the same manner, the endpoint

constraints can be scaled by W� with the ith weight W�,i corresponding to the ith

endpoint constraint being computed as

W�,i =

����
@�i

@ eX

����
�1

, (i = 1, . . . , n�) . (2.91)

46

2.4. SPARSE NONLINEAR PROGRAMMING PROBLEM FORMULATION

Sampling Points

Calculation of the objective and constraints scaling factors involve evaluating first

derivatives of the NLP. This requires choosing values for X at which these functions

can be evaluated. A sensible starting point is to calculate the scaling factors using

evaluations of the NLP functions at the user-specified initial guess X0 [36].

It can be a good idea in practice to also compute the scaling factors by randomly

sampling the search space because a good initial guess is not always guaranteed.

There is no solid mathematical basis for how to best sample the search space, but

through trial and error as part of this thesis two rules-of-thumb were found:

1. sample points should be normally distributed where the mean is centrally lo-

cated between a variable’s lower and upper bounds and the standard deviation

is one sixth of the bounded range (noting that sampling points produced which

lie outside of the variable’s range should be shifted to lie on the bound); and

2. the median value of 100 samples for each scaling parameter gave a reliable

estimate which do not tend to change dramatically when significantly more

sampling points were used.

Updating Scaling Between Mesh Iterations

If mesh refinement is being used to solve a series of NLP subproblems, then for each

mesh iteration a good approximation to the OCP’s solution should be available after

the first mesh iteration. If sampling-based scaling has been used it is usually the

case that recomputing the scaling factors using the solution from the previous mesh

iterations results in a better-scaled NLP subproblem at the next mesh iteration [263].

However, changing the scaling between successive NLP subproblems can drastically

change the convergence properties and even solution. It is typically better, therefore,

to gradually adjust the magnitudes of the scaling factors between mesh iterations. If

scaling is to be updated, it is suggested to use an exponential moving average such

that the generic scaling factor for the next mesh iteration �M+1 can be calculated

as

�M+1 =
1

M

MX

i=1

h
↵ (1� ↵)(M�i)

�i

i
(2.92)

where ↵ is a weighting and where there have been M previous mesh iterations which

used the scaling factor �i for � = [1, . . . ,M]. Again, through trial and error as part

of this thesis, a value of ↵ = 0.8 is suggested.

47

CHAPTER 2. ORTHOGONAL COLLOCATION

2.5 Mesh Refinement

2.5.1 Motivation

For OCPs where the solution is simple and smooth, conducting mesh refinement

is trivial, and may not be required at all. Di�culty arises when the solution to

the OCP in question is either highly nonlinear or contains a discontinuity in either

its control or its dynamics [36]. In these cases, mesh refinement is needed so that

the error between the transcribed, discretised NLP and the real, continuous OCP

is less than some desired mesh tolerance [262]. Performant solving of an OCP

usually means meeting this desired mesh tolerance in as quick a time as possible [9].

Performant mesh refinement means identifying where additional nodes are needed in

the discretisation to decrease the mesh error, whilst also identifying locations where

nodes can be removed without the mesh error in that region dropping below the

mesh tolerance [36].

One category of OCPs for which mesh refinement for vital in their solving are

hypersensitive problems. Numerous examples of hypersensitive problems have been

presented in the literature [36, 263, 284]. This class of problem exhibit the features:

nonzero endpoint constraints on the state; a solution to the state and control which

is zero for the central portion of the time domain; and sharp features in the solution

concentrated at the endpoints which appear discontinuous but are in fact smooth.

An example optimal state and control for a hypersensitive problem are shown in

fig. 2.6 (in section 2.7.4). For mesh refinement to produce an e�cient mesh for

hypersensitive problems, the collocation nodes need to be highly concentrated in

two small regions at either end of the time domain, with the centre of the time

domain containing a sparse distribution of collocation nodes.

When an OCP is first solved, it is typical to initialise the first mesh iteration

on a mesh with a small number of uniform mesh sections. This is because it is

unknown where any important features in the solution are within the time domain.

In hypersensitive problems, where the important features lie at the very ends on the

time domain, this typically results in the polynomials associated with the lateral

mesh sections interpolating through a set of points which are all zero except for one

value. This gives rise to highly oscillatory interpolation due to a polynomial not

being a suitable function for accurately interpolating a set of values like these. For a

mesh refinement algorithm to work well with theK-stage Runge-Kutta discretisation

presented earlier in this chapter, the algorithm needs to be universally suitable for

LG, LGR and LGL collocation.

48

2.5. MESH REFINEMENT

0 2000 4000 6000 8000 10000
Independent Variable

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

St
at

e
n = 3
n = 4

(a) Interpolation at the non-symmetric

Radau points using LGR collocation.

0 2000 4000 6000 8000 10000
Independent Variable

�15

�10

�5

0

5

10

15

St
at

e

n = 3
n = 4

(b) Interpolation at the symmetric Lobatto

points using LGL collocation.

Figure 2.3: Comparison of the oscillatory interpolation of a hypersensitive problem

using a symmetric and a non-symmetric collocation scheme

In LGL collocation, the collocation condition is enforced at both ends of each

mesh section. This means that, unlike for LG and LGR collocation, the state deriva-

tive is continuous at the mesh boundaries and any oscillations present in one mesh

section are propagated to the adjacent mesh sections by this two-sided collocation

condition. Figure 2.3a illustrates the presence of the oscillations in the endpoint

mesh sections when LGR collocation is used, while fig. 2.3b illustrates the propaga-

tion of these oscillations across the whole time domain as a result of the additional

collocation conditions present in LGL collocation.

These oscillations are unavoidable and are damped out through the mesh re-

finement process when the concentration of nodes increases at the endpoints. With

su�cient nodal density, each polynomial interpolates through a set of points which

it is a suitable approximation for. Any mesh refinement algorithm will analyse these

oscillations as being inaccuracies in the solution and will therefore increase the den-

sity of collocation nodes in these regions. In the case of LGL collocation, this is

problematic for the central region of the solution because this apparent inaccuracy

is not a true inaccuracy and will reduce naturally as the solution improves at the

endpoints. A mesh refinement algorithm will initially introduce additional unnec-

essary nodes at the interior of the time domain. As shown in 2.3b, the magnitude

of the oscillations can exceed the maximum magnitude of the true solution, par-

ticularly when a low-order LGL scheme is used. The large magnitude oscillations

are interpreted as very large mesh errors and, as such, result in aggressive mesh

refinement in which many addition collocation nodes are added to the discretisation

mesh. For a mesh refinement algorithm to be performant it needs to be able to

accurately detect regions where there are unnecessary densities of nodes and remove

these from the discretisation to reduce the size of the NLP for the following mesh

iteration.

49

CHAPTER 2. ORTHOGONAL COLLOCATION

This section details the development of a novel mesh refinement algorithm suit-

able for use with LGL collocation. The novel algorithm builds on the hp-method

presented in [262]. It is extended so that it allows nodal density to be removed in

regions where the mesh tolerance is met, while still allowing it to be increased in

regions where the solution is deemed inaccurate. The algorithm of [262]was chosen

as the basis for the mesh refinement presented in this thesis as it has been shown

to exhibit consistent performance on a range of problems [9]. The base algorithm

from [262] contains two steps, mesh error assessment and mesh refinement, only the

latter of which was modified in this work.

2.5.2 Mesh Error Assessment

Error assessments can be performed using error estimators, which provide objective

error measures, or error indicators, which use heuristics to obtain information about

the error. A heuristic error indicator based on only the state error is used here.

While this is only an estimation of the true error, it has been shown that the

following calculation results in an error estimation that is nearly identical to the

true error [262].

The error indicator is calculated by comparing a pair of approximations to

the NLP solution [262]. A second, denser discretisation mesh Ŝi, with normalised

timepoints ⌧ij, is constructed [262]. The first approximation to the solution Y (⌧̂ij)

is produced by interpolating the solution at ⌧ij using Lagrange polynomials [262].

The second approximation Ŷ (⌧̂ij) is given by

Ŷ (⌧̂ij) = Y (⌧i1) + hi

miX

l=1

Âjlf (Y (⌧ij) , U (⌧ij) , ⌧ij) , (j = 2, . . . ,mi) , (2.93)

where hi is the width of the non-normalised mesh section Si, Âjl is the appropriate

entry from the (mi � 1)⇥mi integration matrix Â corresponding to Ŝi, Y (⌧ij) is the

Lagrange interpolation of the state solution, and U (⌧ij) is the Lagrange interpolation

of the control solution.

Comparison of Y (⌧̂ij) and Ŷ (⌧̂ij) can be used to estimate the mesh errors [262].

The absolute errors are calculated at each of the nodes of Ŝ as

E (⌧̂ij) =
���Ŷ (⌧̂ij)� Y (⌧̂ij)

��� , (i = 1, . . . , K) , (j = 1, . . . ,mi) . (2.94)

The relative errors are calculated for each mesh section

e (⌧̂ij) =
E (⌧̂ij)

1 + maxl2[1,...,N] |Y (⌧̂ij)|
. (2.95)

50

2.5. MESH REFINEMENT

The maximum relative error for each mesh section is calculated by comparing the

relative errors for each mesh section across the set of ny state variables in the OCP

emax = max
i2[1,...,ny]
l2[1,...,M]

e
(k)
i (⌧̂l) . (2.96)

2.5.3 Mesh Refinement Algorithm

Estimation of Required Order of Collocation Method

For the OCP to be successfully solved, a mesh tolerance ✏tol needs to be met in all

mesh sections of S. If ✏tol is not met in all mesh sections of S then the mesh will

need to be refined, by adjusting the number and width of mesh sections and the

order of the collocation scheme within each mesh section, and the new transcribed

OCP solved. A method for predicting the number of nodes per mesh section n
⇤
i that

are required in order for ✏tol to be met is given in [262], based on theory from [142,

171]. This is done by calculating

n
⇤
i = ni + p

⇤
i , (2.97)

where ni is the number of nodes in the ith mesh section in S,

p
⇤
i =

8
<

:
pi pi > 0

pi + dln (1� pi)e pi  0
(2.98)

and

pi =

⇠
logni

✓
emax

✏tol

◆⇡
. (2.99)

Mesh Section Adjustment Type Identification

The novel algorithm now diverges from the one in [262]. Using eq. (2.98) to deter-

mine how the number of nodes within each mesh section should be adjusted, mesh

sections are then categorised based on one of four options:

1. the mesh section can be merged via an hp-method;

2. the mesh section can be subdivided via an hp-method;

3. the mesh section should remain h-unchanged but may be refined via a p-

method; or

4. the mesh section is suitable as is and should remain hp-unchanged.

51

CHAPTER 2. ORTHOGONAL COLLOCATION

If the minimum and maximum allowable number of nodes in a single mesh section are

Nmin and Nmax respectively, the mesh section is suitable for merging (it is mergeable)

if n⇤
i < Nmin. If n⇤

i > Nmax then it is estimated that in order to meet the mesh

tolerance the mesh section will be required to contain more nodes than are allowed

and should, therefore, be subdivided into more than one new mesh section. If

neither of these criteria are met then the mesh section in question is predicted to

meet the mesh tolerance by changing the number of nodes it contains to n
⇤
i where

Nmin  n
⇤
i  Nmax and can therefore be refined using a simple p-method. Finally, if

n
⇤
i = ni then the mesh tolerance is met to a degree where the current mesh in that

region is suitable and should remain unchanged to the next mesh iteration.

Whole Mesh Analysis

For a merger of mesh sections to occur, a mergeable mesh section must lie adjacent

to other mergeable mesh sections. Where two or more mergeable mesh sections lie

adjacent, they can be merged to form a suitable number of new mesh sections. The

refinement proceeds with a pass across the whole mesh to identify groups of adjacent

mergeable mesh sections. All other categories of mesh section can be treated as

independent.

Mesh Section Merging

Mergeable mesh sections can either

1. form part of a mergeable group; or

2. not lie adjacent to any other mergeable mesh sections.

If a mesh section does not have mergeable neighbours, then its number of nodes is

reduced to Nmin, the maximum allowable reduction. If a mesh section forms part of

a mergeable group, then the di↵erent widths of, and numbers of nodes in, all mesh

sections need to be considered to best distribute the predicted error.

Merging aims to redistribute as few nodes as possible, located with their density

corresponding to the estimated error. Consider a merge group containing the M

mesh sections Sj, each containing nj nodes, for (j = 1, . . . ,M), which is to be refined

to a new set of M̂ mesh sections Ŝk for
⇣
k = 1, . . . , M̂

⌘
. The merge ratio

m̂j =
nj

n̂j
=

nj

Nmin � p⇤j
, (j = 1, . . . ,M) , (2.100)

52

2.5. MESH REFINEMENT

is calculated, motivated by an attempt to achieve the maximum allowable node

reduction is each Sj

n̂j = Nmin � p
⇤
j , (j = 1, . . . ,M) (2.101)

The merge ratio can be thought of as the factor by which Sj of width hj and contain-

ing n
⇤
j nodes would need to be increased such that the nodal density would exactly

equal a wider mesh section containing Nmin nodes. Division by n̂j (eq. (2.100))

ensures that 0 < m̄j < 1 always holds. A smaller value of m̄j indicates that the

portion of the domain currently occupied by Sj can be more sparsely populated in

Ŝ.

The number of mesh sections M̂ required in the merged mesh portion is calcu-

lated as

M̂ =

&
MX

j=1

m̂j

'
, (2.102)

with the ceiling rounding ensuring that a conservative integer value is obtained. The

scaled mesh section widths

ŵj =
hj

m̂j
, (j = 1, . . . ,M) (2.103)

use the merge ratio so that all mesh sections in the merge group can be compared

relative to one another. The reduction factor

⇢̂j = �ŵj , (j = 1, . . . ,M) , (2.104)

gives the relative required nodal densities across the merge group domain. � (eq. (2.104))

is a normalisation factor

� =

"
MX

j=1

h̄j

#�1

. (2.105)

A new set of mesh points defining Ŝj for
⇣
j = 1, . . . , M̂

⌘
is computed from the

reduction factors. Each of the M̂ new mesh section Ŝj is to contain Nmin nodes with

ĥj being chosen so that the cumulative reduction factor is uniformly distributed. A

cumulative density function ⇥ (⌧) is computed by linearly interpolating the indepen-

dent vector of mesh points in the merge group against the dependent vector of the

cumulative sum of ⇢̄j for (j = 1, . . . ,M). ⇥ (⌧) is then evaluated at M̂ + 1 linearly

spaced points, which gives the locations of the M̂ + 1 new mesh points with the

first and
�
M̄ + 1

�
th mesh points corresponding to the extrema of the merge group’s

domain.

53

CHAPTER 2. ORTHOGONAL COLLOCATION

Mesh Section Subdivision

Mesh section subdivision follows a similar approach to the one presented in [262].

For mesh sections where n
⇤
i > Nmax, the subdivision factor

ŝi =

⇠
n
⇤
i

Nmin

⇡
(2.106)

is computed. Si is split in to ŝi new mesh sections S̄j for (j = 1, . . . , s̄), of uniform

width, each containing Nmin nodes.

Mesh Section Order Reduction

An adjustment to how mesh order reduction is made in the novel algorithm compared

to that in [262] is outlined below. The complementary collocation condition in LGL

collocation has been shown to cause transfer of oscillations between adjacent mesh

sections (fig. 2.3b). This algorithm reduces the sensitivity of mesh section order

reduction so that if the mesh tolerance is almost met, a reduction in mesh section

order does not risk the mesh tolerance being unmet in the next mesh iteration.

For each mesh section, a reduction tolerance

⇠
+
i = max

2

4

0

@1�
1

ln
⇣

emax
✏tol

⌘

1

A , 0

3

5 (2.107)

is calculated. ⇠+i modifies the allowable order of mesh section order reduction such

that the closer emax is to ✏tol, the fewer the number of nodes that are removed from

a mesh section. From experience in solving hypersensitive problems using LGL

collocation (section 2.7.4), it was found that this logarithmic adjustment performed

well. When the mesh tolerance is not met, the mesh section Sj containing nj nodes

and predicted to require an adjustment by p
⇤
j  0 nodes, is refined to contain

n̂j =
⌃
nj + ⇠

+
i p

⇤
j

⌥
(2.108)

nodes.

Algorithmic Flow

1. Set the mesh iteration counter i 1; define the initial mesh S1.

2. Solve the transcribed NLP subproblem (section 2.4) on Si.

3. Compute the maximum relative error emax (eq. (2.96)); compare emax to the

mesh error tolerance ✏tol.

54

2.6. SOFTWARE IMPLEMENTATION: PYCOLLO

4. If emax < ✏tol, quit; else proceed.

5. Conduct mesh refinement to produce a new mesh Si+1.

(a) Estimate the required order of mesh refinement for each mesh section.

(b) Categorise the type of refinement each mesh section needs to undergo

(merge, subdivide, reduce order, or remain unchanged).

(c) Conduct a single pass over the whole mesh to identify groups of mergeable

mesh sections.

(d) Refine the mesh using the category-specific steps outlined in section 2.5.3.

(e) Increment the mesh counter i i+ 1; return to step 1.

2.6 Software Implementation: Pycollo

In this section, the development of a software package for solving OCPs is detailed.

The package is called Pycollo, with its name derived from Python and collocation.

Python was chosen as the implementation language due to its high suitability for

scientific computing [244, 256] and extensive scientific computing ecosystem [30, 147,

178, 206, 240, 321], which can facilitate rapid and easy development. Pycollo imple-

ments both state-of-the-art methods from the field of optimal control (sections 1.1

and 2.1), as well as the methods and algorithms described earlier in this chapter

and chapter 3. It is an open-source software package, meaning that it and its source

code are available for use by anyone. Pycollo also forms the foundation of the BPST

described in section 1.3.

2.6.1 Overview

Pycollo can solve the general multiphase OCP as defined by eqs. (2.1) to (2.7) in

section 2.1.1. It does this numerically via the transcription method. Specifically,

Pycollo uses the implicit integral-form K-stage Runge-Kutta collocation method

described in section 2.3 to form the NLP described in section 2.4.

Pycollo is built using an object-oriented programming (OOP) architecture and

application programming interface (API). This facilitates e�cient and robust design

and verification [161], while also being intuitive for users [87, 91, 299]. The simplified

architecture of Pycollo is shown fig. 2.4.

The main method of interaction with Pycollo is via the OptimalControlProblem

class, which acts as the highest level container for all OCP-related information. This

55

CHAPTER 2. ORTHOGONAL COLLOCATION

OptimalControlProblem

Backend

Settings

Quadrature

NlpSolver

Iteration Iteration

Scaling Solution Plot

Phase Phase

PhaseBounds PhaseGuessEndpointBounds EndpointGuess

Bounds Guess

PhaseMesh

MeshRefinement

Figure 2.4: A simplified diagram of the architecture of Pycollo using the Unified

Modelling Language (UML).

class is itself used to define the objective function (eq. (2.1)), endpoint constraints

(eq. (2.5)) and parameter variables. Each OCP can have one or more phases as-

sociated with it. Similarly, each OptimalControlProblem instance can have one

or more linked Phase instances. The Phase class is where state, control, integral

and time variables are defined for a specific phase. It is also where state equations

(eq. (2.2)), path constraints (eq. (2.3)), integrand functions (eqs. (2.4) and (2.7))

and state endpoint constraints are defined.

OCPs require bounds and initial guesses to be prescribed before they can be

numerically solved. This is done in the Pycollo API by using the bounds and

guess properties of OptimalControlProblem and Phase instances. For phase-

specific bounds and guesses, Phase uses the PhaseBounds and PhaseGuess classes.

Endpoint bounds and guesses are similarly provisioned for by the EndpointBounds

and EndpointGuess classes.

A wide range of user-customisable settings are available in Pycollo. These

are contained within an instance of the Settings class, which is accessible via the

settings property of OptimalControlProblem.

Pycollo solves OCPs numerically using the transcription method and orthogo-

nal collocation. As such, it implements functionality for discretising the OCP based

on a specific collocation scheme and interfacing with NLP solvers. This function-

ality is hidden from users and is implemented by the Backend class. Pycollo also

implements advanced features to improve performance, such as scaling OCPs and

mesh refinement.

56

2.6. SOFTWARE IMPLEMENTATION: PYCOLLO

Figure 2.5 illustrates the simplicity of the Pycollo API. It includes the code

for a simple example, in which the hypersensitive problem of section 2.7.4 is shown.

Some more advanced implementation details of Pycollo are discussed in the following

sections.

2.6.2 Transcription and Derivative Generation

The Backend class is responsible for handling the transcription of the user-defined

OCP to a NLP subproblem that can be solved by a NLP solver. Pycollo allows any

of LG, LGR and LGL collocation to be used, by implementing the approach based on

implicit K-stage Runge-Kutta methods detailed in section 2.3.8. The Quadrature

class is responsible for discretising the OCP at the correct quadrature points and

enforcing the collocation condition at the correct discretisation nodes.

An instance of the Iteration class is used to define and solve the NLP sub-

problem associated with a specific mesh iteration. This class formulates the NLP

subproblem and interfaces with the NLP solver. As this process is complex and in-

volved, Pycollo allows for the Backend class to be subclassed, so that other packages

can be leveraged to provide some of this functionality. By default, Pycollo uses its

CasadiBackend, which leverages CasADi, the open-source tool for nonlinear optimi-

sation and algorithmic di↵erentiation (AD). CasadiBackend uses CasADi to inter-

face with the NLP solver Ipopt and compute the NLP derivatives using AD. For each

Iteration, CasadiBackend constructs a new mesh-specific NLP and passes this to

CasADi for solving. While CasADi is useful in that it removes the need for Pycollo

to generate derivatives itself, it is ine�cient as it recalculates the NLP derivatives

in a mesh-specific manner for each mesh iteration, even though the OCP functions

remain unchanged. A further backend, which addresses some of the limitations of

the CasADi backend, is developed and detailed in section 3.6.

2.6.3 Scaling

Pycollo supports manual and automatic scaling of the NLP subproblem to improve

its numerical conditioning, the latter of which is conducted by following the frame-

work outlined in section 2.4.4. For automatic scaling, Pycollo uses the user-supplied

bounds and guesses to inform how the NLP variables should be scaled and the NLP

derivative functions be sampled, to produce scaling coe�cients for the constraints

and objective function. Pycollo also supports the updating of scaling between suc-

cessive mesh iterations as more information becomes available, again using the ap-

proach outlined in section 2.4.4.

57

CHAPTER 2. ORTHOGONAL COLLOCATION

2.6.4 Mesh Refinement

Pycollo implements the mesh refinement algorithm detailed in section 2.5. After

a mesh iteration has been successfully solved, with the NLP solver returning a so-

lution to the NLP subproblem, Pycollo computes the mesh error and constructs a

mesh for the next mesh iteration. Pycollo uses the interpolate module from SciPy

to compute the mesh error using the method outlined in [262]. The state solution

is interpolated using polynomial splines, while also ensuring that the collocation

conditions are met at each of the collocation nodes. SciPy is only capable of in-

terpolating, while also meeting the collocation condition, if the Lobatto points are

used. Therefore, Pycollo is currently only able to compute mesh errors, and conduct

mesh refinement, for Lobatto-based collocation.

2.6.5 Settings

Pycollo provides a wide range of user-customisable settings, all of which include

a default that has been chosen based either on sound theoretical reasoning or on

experience from practically solving OCPs using Pycollo. Examples of settings in-

clude: the NLP and mesh tolerances; maximum allowable NLP and mesh iterations;

scaling method and scaling update properties; collocation scheme; mesh refinement

algorithm, and maximum and minimum allowable number of collocation nodes per

mesh section; whether exact or approximate second-order derivatives be used; and

what information is output to the console during a solve.

2.6.6 Packaging

Pycollo has been released as an open-source package and is available on both

PyPI [271] and conda-forge [78]. The Pycollo source code is also made freely avail-

able on GitHub [63].

2.7 Pycollo Benchmarking Investigations

2.7.1 Motivation

In order to test the performance of Pycollo, a collection of five test OCPs from the

academic literature were solved using the package. Other authors have solved and

58

2.7. PYCOLLO BENCHMARKING INVESTIGATIONS

published results for the selected test OCPs so their solutions are known, making

them suitable for validating and benchmarking against. A varying range of OCPs

were selected in order to test many di↵erent aspects of Pycollo, including its ability

to handle problems with: highly nonlinear dynamics (examples 1, 4 and 5); variables

scaled across di↵erent orders of magnitude (examples 2 and 3); step changes in

their optimal control and discontinuities in their dynamics (examples 4 and 5); and

multiple phases (example 5).

A number of di↵erent OCP software packages were considered for benchmark-

ing Pycollo against. GPOPS-II [263] was selected due to it being arguably the

most advanced currently-available general-purpose collocation software package. It

is worth noting that while a more recent iteration of OCP solving software from the

developers of GPOPS-II , called CGPOPS [9], has been published, licenses for this

were unavailable at the time this work was conducted. GPOPS-II is similar to Py-

collo in that it implements a form of orthogonal collocation, can handle multiphase

problems, implementes mesh refinement, and distributes ready-written implemen-

tations of the example problems selected for this thesis. The two software packages

can, therefore, be directly compared in many ways. Unlike Pycollo, GPOPS-II is

proprietary software and, therefore, requires a licence to use.

2.7.2 Performance Metrics

Characterising the performance of a specific approach to solving a particular OCP

can involve many aspects. The most important metric should be whether the OCP

is solved correctly by the software. For these benchmark investigations, the solution

accuracy was assessed by comparing the optimal costs quoted in the original refer-

ences, and those obtained by both Pycollo and GPOPS-II . Graphical comparisons

of the optimal state and control obtained from both Pycollo and GPOPS-II are also

shown for each test OCP.

How quickly an OCP can be solved is another important consideration. Speed

can relate to both the time spent formulating and constructing the problem, and

the time spent by the software computing the solution once executed by the user.

The time spent by the software package solving the problem was used as a measure

of computational performance. The time for problem initialisation was recorded

alongside the time for NLP initialisation, NLP solve and mesh refinement for each

mesh iteration. These values were combined to give a total solve time metric for both

software packages on each test OCP, with shorter times meaning better performance.

When measuring the timing metrics, all OCPs were solved five times with the fastest

and slowest solves discounted and the remaining three mean-averaged to negate any

59

CHAPTER 2. ORTHOGONAL COLLOCATION

unintended interrupts from the operating system. To compare the e�ciency of mesh

refinement in both software packages, the number of mesh iterations required I, the

number of discretisation nodes used for each NLP subproblem N , and the mesh

error at the end of each mesh iteration emax were also recorded.

As time spent formulating the problem is di�cult to quantify, source lines of

code (SLOC) was included as an additional numerical measure under the justification

that fewer SLOC in a software’s implementation of an OCP is likely to correspond

to one that was quicker and less onerous on the user to construct. While it is

acknowledged that this is an imperfect measure, especially when comparing between

implementations in di↵erent programming languages with di↵erent syntax, using

SLOC does provide an approximation of the ease of problem construction for a user

using a specific software package. To present an as unbiased count of SLOC as

possible, only logical lines of code (LLOC) were counted to ensure that the counts

were insensitive to formatting and style conventions. This means only executable

statements were counted, and that whitespace lines and comments were omitted in

the quoted figures.

2.7.3 Software Settings

To present an as fair comparison between Pycollo and GPOPS-II as possible, a

standard set of solver settings were chosen before the set of test OCPs were solved.

These settings were used consistently throughout. Pycollo was used without mod-

ification so that all of its settings were default. For GPOPS-II , default settings

were used where possible and were only adjusted where a change was necessary to

allow solving of all problems. For example, GPOPS-II uses no scaling by default

but automatic scaling was used in all cases for benchmarking as some of the test

OCPs are poorly scaled due to units varying in orders of magnitude. NLP and mesh

tolerances of 10�10 and 10�7 respectively were used by both software packages so

that these were the same.

One major di↵erence between the settings chosen was that Pycollo’s Lobatto-

based collocation scheme was used, while GPOPS-II only supports Radau-based

collocation. This was because Pycollo can only currently compute mesh errors, and

therefore implement mesh refinement, for this collocation scheme. Pycollo uses the

Lobatto-based scheme by default as it is directly comparable to integral-form trape-

zoidal collocation when each mesh section contains two collocation nodes [38] and

integral-form Hermite-Simpson collocation when each mesh section contains three

collocation nodes [38, 94], and these are the most commonly used approaches [36,

38, 91, 194]. Integral form was used to formulate the defect constraints by both

60

2.7. PYCOLLO BENCHMARKING INVESTIGATIONS

software packages. All problems were initialised on the same mesh per phase, con-

sisting of 10 identical mesh sections, each containing four discretisation nodes. This

results in each state and control being discretised to 31 decision variables in the first

NLP subproblem.

All computations were performed on a 2019 MacBook Pro running macOS

Catalina 10.15.7, with a 2.4GHz 8-Core Intel Core i9 CPU and 32GB of 2667MHz

DDR4 RAM. All Pycollo scripts were executed by Python 3.7.8 in a virtual environ-

ment with Pycollo 0.3.0 installed. All GPOPS-II scripts were executed in MATLAB

R2020a.

2.7.4 Example 1: Hypersensitive Problem

Problem Definition

The hypersensitive problem (originally in [284] and presented as ex. (4.4) in [36])

was chosen as it is a good exemplar of the importance of mesh refinement. This is

due to its solution exhibiting all of its interesting behaviour at the phase endpoints,

with the state and control being zero for the vast majority of the problem. The

single-phase problem involving the state y = [y] and control u = [u] is to minimise

J = q (2.109)

subject to the dynamical constraint

ẏ = u� y
3 (2.110)

and state endpoint constraints

y (t0) = 1 y (tF) = 1.5 , (2.111)

where

q =
1

2

Z tF

t0

y
2 + u

2
dt (2.112)

and

t0 = 0 tF = 10000 .

Results and Discussion

The solutions obtained using Pycollo and GPOPS-II , 3.3620572 and 3.3620563 re-

spectively, were in very close agreement with one another, as well as with the value

61

CHAPTER 2. ORTHOGONAL COLLOCATION

1 import numpy as np

2 from pycollo import OptimalControlProblem

3 y, u = symbols("y u")

4 problem = OptimalControlProblem(name="Hypersensitive problem")

5 phase = problem.new_phase(name="A")

6 phase.state_variables = y

7 phase.control_variables = u

8 phase.state_equations = {y: -y**3 + u}

9 phase.integrand_functions = 0.5*(y**2 + u**2)

10 q = phase.integral_variables[0]

11 phase.bounds.initial_time = 0.0

12 phase.bounds.final_time = 10000.0

13 phase.bounds.state_variables = {y: [-50, 50]}

14 phase.bounds.control_variables = {u: [-50, 50]}

15 phase.bounds.integral_variables = {q: [0, 100000]}

16 phase.bounds.initial_state_constraints = {y: 1.0}

17 phase.bounds.final_state_constraints = {y: 1.5}

18 phase.guess.time = [0.0, 10000.0]

19 phase.guess.state_variables = {y: [1.0, 1.5]}

20 phase.guess.control_variables = {u: [0.0, 0.0]}

21 phase.guess.integral_variables = {q: 4}

22 problem.objective_function = q

23 problem.solve()

Figure 2.5: Code example of defining and solving a hypersentive problem (sec-

tion 2.7.4) using the Pycollo API.

62

2.7. PYCOLLO BENCHMARKING INVESTIGATIONS

0 2500 5000 7500 10000
t

0.0

0.5

1.0

1.5

y 0
(t

)

Pycollo
GPOPS-II

(a) State across time domain

0 2500 5000 7500 10000
t

0

2

4

6

u 0
(t

)

Pycollo
GPOPS-II

(b) Control across time domain

0 5 10 15
t

0.0

0.2

0.4

0.6

0.8

1.0

y 0
(t

) Pycollo
GPOPS-II

(c) State near initial time

0 5 10 15
t

�0.4

�0.3

�0.2

�0.1

0.0
u 0

(t
) Pycollo
GPOPS-II

(d) Control near initial time

9985 9990 9995 10000
t

0.0

0.5

1.0

1.5

y 0
(t

)

Pycollo
GPOPS-II

(e) State near final time

9985 9990 9995 10000
t

0

2

4

6

u 0
(t

)

Pycollo
GPOPS-II

(f) Control near final time

Figure 2.6: Comparison of the optimal states and controls for example 1: hypersen-

sitive problem obtained using Pycollo and GPOPS-II .

63

CHAPTER 2. ORTHOGONAL COLLOCATION

Pycollo GPOPS-II

I emax N emax N

1 9.833⇥ 103 31 2.827⇥ 101 31

2 2.325⇥ 101 181 4.090 69

3 1.320 661 6.066⇥ 10�1 111

4 2.336⇥ 10�1 243 1.260⇥ 10�1 150

5 2.324⇥ 10�2 86 6.762⇥ 10�3 182

6 5.982⇥ 10�4 67 1.256⇥ 10�4 247

7 1.875⇥ 10�5 90 9.070⇥ 10�7 302

8 3.047⇥ 10�8 101 7.035⇥ 10�8 310

Table 2.7: Mesh refinement performance comparison between Pycollo and GPOPS-

II for example 1: hypersensitive problem. I denotes the mesh iteration count, emax

denotes the maximum relative mesh error, and N denotes the number of discretisation

nodes used.

of 3.3620608 quoted in the literature [36]. Figure 2.6 shows the comparison of the

optimal solutions obtained for the state and control by Pycollo and GPOPS-II . As

the interesting features of the solution occur close to the time endpoints, the opti-

mal state and control near the initial time (for t 2 [0, 15]) are shown in figs. 2.6c

and 2.6d respectively while the optimal state and control near the final time (for

t 2 [9985, 10000]) are shown in figs. 2.6e and 2.6f respectively. Apparent exact agree-

ment between the solutions obtained by both software packages can be seen. This,

in conjunction with the near exact agreement of the optimal objective evaluations,

gives certainty that Pycollo was able to solve this OCP correctly.

Table 2.7 and fig. 2.7 show that both Pycollo and GPOPS-II required eight

mesh iterations before the mesh tolerance was met, highlighting close algorithmic

performance between the two software packages. The distribution of discretisation

nodes on the first mesh iteration, shown in fig. 2.7, illustrates the di↵erences between

the Lobatto-based collocation scheme employed by Pycollo and the Radau-based

collocation scheme used by GPOPS-II . As the mesh refinement process progresses,

the way that the mesh is refined by both software packages di↵ers considerably.

Pycollo continually refines the mesh in the central portion of the solution at every

mesh iteration so that by the final mesh iteration a highly e�cient distribution

of discretisation nodes is used. GPOPS-II , on the other hand, leaves the central

80% of the mesh untouched between the first and last mesh iterations, suggesting

that there may be some algorithmic ine�ciency here. The main reason that Pycollo

64

2.7. PYCOLLO BENCHMARKING INVESTIGATIONS

0.0 0.2 0.4 0.6 0.8 1.0
Mesh Point Locations (Normalised)

8

7

6

5

4

3

2

1
M

es
h

Ite
ra

tio
n

N
um

be
r

Pycollo GPOPS-II

Figure 2.7: Comparison of mesh refinement during the solving of example 1: hyper-

sensitive problem by Pycollo and GPOPS-II .

aggressively increases the mesh density in the central region of the domain during the

first three mesh iterations, before continually reducing it across the final five, is due

to the Lobatto-based collocation scheme used by Pycollo. As described earlier, the

Lobatto-based scheme enforces continuity in the state across the entire time domain

due to a two-sided collocation condition, which in this case propagates oscillations

present at the time endpoints to the centre of the domain on the initial meshes.

As Pycollo’s mesh refinement algorithm reduces the mesh error at the endpoint

regions, the high concentration of central discretisation nodes is no longer needed

and so these can be aggressively removed, which Pycollo does.

Table 2.7 shows that despite both software packages requiring eight mesh it-

erations to meet the mesh tolerance, on average Pycollo used fewer discretisation

points. The exception is on the third mesh iteration where Pycollo used twice as

many discretisation points than GPOPS-II did on its most dense (final) mesh. How-

ever, despite this Pycollo used significantly fewer discretisation points for each NLP

subproblem on average, indicating good performance of its transcription and mesh

refinement algorithms. Table 2.7 also shows how the mesh refinement employed by

Pycollo steadily reduces the estimated mesh error at each mesh iteration until the

specified mesh tolerance is met, indicating the algorithms e�cient operation across

a range of di↵erent estimated mesh errors.

65

CHAPTER 2. ORTHOGONAL COLLOCATION

Computational performance on this example problem was very comparable be-

tween the two software packages. GPOPS-II solved the problem in 1.59 s, slightly

outperforming Pycollo, which took 1.68 s. Finally, this problem was formulated in

Pycollo using only 23 LLOC while the GPOPS-II implementation required 31. As

these numbers are small by LLOC standards, this indicates that the demands placed

on the user to implement this OCP in both software packages are broadly equivalent.

2.7.5 Example 2: Space Shuttle Reentry Trajectory

Problem Definition

The space shuttle reentry trajectory for maximum crossrange problem (originally

in [349] and presented as ex. (6.1) in [36]) was chosen as it is an exemplar of the

importance of good scaling. This is because the state involves quantities that di↵er

by six orders of magnitude at the solution. The single-phase problem involving the

state

y =
h
h � ✓ ⌫ �

iT
(2.113)

and control

u =
h
↵ �

iT
(2.114)

is to maximise

J = ✓ (tF) (2.115)

subject to the dynamical constraints

ḣ = ⌫ sin (�) (2.116)

�̇ =
⌫ cos (�) sin ()

r cos (✓)
(2.117)

✓̇ =
⌫ cos (�) cos ()

r
(2.118)

⌫̇ = �
D

m
� g sin (�) (2.119)

�̇ =
L cos (�)

m⌫
+ cos (�)

⇣
⌫

r
�

g

⌫

⌘
(2.120)

 ̇ =
L sin (�)

m⌫ cos (�)
+
⌫ cos (�) sin () sin (✓)

r cos (✓)
(2.121)

and state endpoint constraints

h (t0) = 79 248m ⌫ (t0) = 7802.88m s�1
h (tF) = 24 384m

� (t0) = 0° � (t0) = �1° ⌫ (tF) = 762m s�1

✓ (t0) = 0° (t0) = 90° � (tF) = �5°

66

2.7. PYCOLLO BENCHMARKING INVESTIGATIONS

where the bounds

t0 = 0 0  tF  3000 s

0  h �89°  ✓  89°

1m s�1
 ⌫ �89°  �  89°

�90°  ↵  90° �89°  �  89°

are enforced and the auxiliary substitutions, and aerodynamic and atmospheric con-

stants

⇢0 = 1.2256 kgm�3
µ = 3.9860⇥ 1014 m3 s�2

hr = 7254.2m D =
1

2
cDS⇢⌫

2

Re = 6371 200m L =
1

2
cLS⇢⌫

2

S = 249.91m2
g =

µ

r2

cL0 = �0.2070 r = Re + h

cL1 = 1.6756 ⇢ = ⇢0 exp

✓
�

h

hr

◆

cD0 = 0.07854 CL = cL0 + cL1↵

cD1 = �0.3529 CD = cD0 + cD1↵ + cD2↵
2

cD2 = 2.0400 m = 92 079 kg

are used.

Results

The optimal costs obtained using Pycollo and GPOPS-II were 34.1501° and 34.1641°
respectively. These closely agreed with each other, and with the value of 34.1412°
reported in [36]. A comparison of the optimal state and control obtained by the two

software packages is shown in fig. 2.8. Close agreement in the optimal costs, states

and controls show that Pycollo is able to correctly solve this OCP.

The mesh refinement performance of Pycollo and GPOPS-II is compared in

table 2.8. Pycollo required three mesh iterations to meet the mesh tolerance, one

fewer than GPOPS-II . After the first mesh iteration, Pycollo produced a lower mesh

error using fewer mesh nodes. This suggests that the mesh refinement algorithm

described in section 2.5, and implemented in Pycollo, is more e�cient than the

hp-method implemented in GPOPS-II [262] for this problem.

The Pycollo formulation of this OCP involved 68 LLOC compared to 135,

67

CHAPTER 2. ORTHOGONAL COLLOCATION

0 500 1000 1500 2000
t (s)

40000

60000

80000
h

(m
)

GPOPS-II
Pycollo

(a) Altitude

0 500 1000 1500 2000
t (s)

2000

4000

6000

8000

n
(m

s�
1)

GPOPS-II
Pycollo

(b) Velocity

0 500 1000 1500 2000
t (s)

0.00

0.25

0.50

0.75

1.00

1.25

f
(°

)

GPOPS-II
Pycollo

(c) Longitude

0 500 1000 1500 2000
t (s)

�0.08

�0.06

�0.04

�0.02

0.00

g
(°

)

GPOPS-II
Pycollo

(d) Latitude

0 500 1000 1500 2000
t (s)

0.0

0.2

0.4

0.6

q
(°

)

GPOPS-II
Pycollo

(e) Flight path

0 500 1000 1500 2000
t (s)

0.5

1.0

1.5

y
(°

)

GPOPS-II
Pycollo

(f) Azimuth

0 500 1000 1500 2000
t (s)

0.290

0.295

0.300

0.305

a
(°

)

GPOPS-II
Pycollo

(g) Angle of attack

0 500 1000 1500 2000
t (s)

�1.25

�1.00

�0.75

�0.50

�0.25

0.00

b
(°

)

GPOPS-II
Pycollo

(h) Bank angle

Figure 2.8: Comparison of the optimal states and controls to example 2: space

shuttle reentry trajectory obtained using Pycollo and GPOPS-II .

68

2.7. PYCOLLO BENCHMARKING INVESTIGATIONS

Pycollo GPOPS-II

I emax N emax N

1 1.026⇥ 10�1 31 1.152⇥ 10�3 31

2 2.008⇥ 10�5 113 2.946⇥ 10�4 121

3 4.313⇥ 10�8 206 2.742⇥ 10�6 282

4 2.496⇥ 10�8 295

Table 2.8: Mesh refinement performance comparison between Pycollo and GPOPS-

II for example 2: space shuttle reentry trajectory. I denotes the mesh iteration

count, emax denotes the maximum relative mesh error, and N denotes the number of

discretisation nodes used.

almost twice as many, in GPOPS-II . GPOPS-II solved this OCP faster than Pycollo,

requiring 2.78 s to converge to the optimal solution, in comparison to 3.64 s.

2.7.6 Example 3: Space Station Attitude Control

Problem Definition

The space station attitude control problem (originally in [267] and presented as

ex. (6.7) in [36]) was chosen as it is contains complex three-dimensional (3D) dy-

namics expressed using vector and matrix quantities. The single-phase problem

involving the state

y =
h
!T rT hT

iT
=
h
!x !y !z rx ry rz hx hy hz

iT
(2.122)

and control

u =
h
ux uy uz

iT
(2.123)

is to maximise

J = q (2.124)

subject to the dynamical constraints

!̇ = J�1
⇥
3!2

orbC
⌦
3 JC3 � !

⌦ [J! + h]� u
⇤

(2.125)

ṙ =
1

2

⇥
rrT + I+ r⌦

⇤
[! + !orbC2] (2.126)

ḣ = u , (2.127)

inequality path constraint

0  h
2
x + h

2
y + h

2
z  h

2
max (2.128)

69

CHAPTER 2. ORTHOGONAL COLLOCATION

and state endpoint constraints

! (t0) =

2

6664

�9.538⇥ 10�6

�1.136⇥ 10�3

5.347⇥ 10�6

3

7775
r (t0) =

2

6664

2.996⇥ 10�3

1.533⇥ 10�1

3.836⇥ 10�3

3

7775
h (t0) =

2

6664

5000

5000

5000

3

7775

!̇ (tF) = 0

ṙ (tF) = 0

where the integral variable

q = 10�6

Z tF

t0

u
2
x + u

2
y + u

2
zdt , (2.129)

the times are equality bounded

t0 = 0 tF = 1800 s ,

the skew-symmetric cross product operator a⌦ is defined as

a⌦ =

2

6664

0 �a3 a2

a3 0 �a1

�a2 a1 0

3

7775
,

C3 is the third column of the rotation matrix

C = I+
2 (r⌦r⌦ � r⌦)

1 + rT r
,

and the constants

hmax = 10000 !orb =
0.06511⇡

180

and

J =

2

6664

2.807⇥ 107 4.823⇥ 105 �1.717⇥ 107

4.823⇥ 105 9.514⇥ 107 6.026⇥ 104

�1.717⇥ 107 6.026⇥ 104 7.659⇥ 107

3

7775
.

Note that many quantities in the problem definition are without units as specific

units are not provided in the original reference [36, 267].

Results

Optimal costs of 3.58679 and 3.58688 were obtained using Pycollo and GPOPS-II

respectively. The optimal cost obtained by GPOPS-II agreed exactly with that

70

2.7. PYCOLLO BENCHMARKING INVESTIGATIONS

0 500 1000 1500
t (s)

�0.00050

�0.00025

0.00000

0.00025

0.00050 GPOPS-II
Pycollo

(a) Angular velocity (!x)

0 500 1000 1500
t (s)

0.00

0.05

0.10
GPOPS-II
Pycollo

(b) Attitude (rx)

0 500 1000 1500
t (s)

�0.00114

�0.00112

�0.00110
GPOPS-II
Pycollo

(c) Angular velocity (!y)

0 500 1000 1500
t (s)

0.146

0.148

0.150

0.152

0.154
GPOPS-II
Pycollo

(d) Attitude (ry)

0 500 1000 1500
t (s)

�0.0002

0.0000

0.0002

0.0004 GPOPS-II
Pycollo

(e) Angular velocity (!z)

0 500 1000 1500
t (s)

0.01

0.02

0.03

GPOPS-II
Pycollo

(f) Attitude (rz)

Figure 2.9: Comparison of the optimal spacecraft angular velocity (!) and attitude

(r) states to example 3: space station attitude control obtained using Pycollo and

GPOPS-II .

71

CHAPTER 2. ORTHOGONAL COLLOCATION

0 500 1000 1500
t (s)

�5000

0

5000

10000

GPOPS-II
Pycollo

(a) CMG angular momentum (hx)

0 500 1000 1500
t (s)

�150

�100

�50

0

50

100

GPOPS-II
Pycollo

(b) Torque (ux)

0 500 1000 1500
t (s)

�2000

0

2000

4000

6000 GPOPS-II
Pycollo

(c) CMG angular momentum (hy)

0 500 1000 1500
t (s)

�10

0

10

20
GPOPS-II
Pycollo

(d) Torque (uy)

0 500 1000 1500
t (s)

�4000

�2000

0

2000

4000

6000

GPOPS-II
Pycollo

(e) CMG angular momentum (hz)

0 500 1000 1500
t (s)

�40

�20

0

20

GPOPS-II
Pycollo

(f) Torque (uz)

Figure 2.10: Comparison of the optimal spacecraft control moment gyroscopes

(CMGs) angular momentum (h) states and control torque (u) control to example

3: space station attitude control obtained using Pycollo and GPOPS-II .

72

2.7. PYCOLLO BENCHMARKING INVESTIGATIONS

Pycollo GPOPS-II

I emax N emax N

1 2.718⇥ 10�6 31 3.362⇥ 10�5 31

2 1.769⇥ 10�7 48 3.919⇥ 10�7 86

3 6.796⇥ 10�8 51 1.007⇥ 10�6 91

4 1.816⇥ 10�7 96

5 2.971⇥ 10�7 99

6 1.018⇥ 10�7 100

7 8.854⇥ 10�8 101

Table 2.9: Mesh refinement performance comparison between Pycollo and GPOPS-II

for example 3: space station attitude control. I denotes the mesh iteration count, emax

denotes the maximum relative mesh error, and N denotes the number of discretisation

nodes used.

reported in [36], with that obtained by Pycollo also being close. A comparison of

the optimal state and control obtained by the two software packages is shown in

figs. 2.9 and 2.10. Close agreement in the optimal costs, states and controls shows

that Pycollo is able to correctly solve this OCP.

The mesh refinement performance of Pycollo and GPOPS-II is compared in

table 2.9. Pycollo required three mesh iterations to meet the mesh tolerance, while

GPOPS-II required seven. It was also able to meet the mesh tolerance using half

as many mesh nodes as required by GPOPS-II . GPOPS-II was close to meeting the

mesh tolerance after the second mesh iteration, but then required five further mesh

refinements, with limited mesh adjustment, to converge fully. In contrast, Pycollo

converged successfully on the next mesh iteration after getting within an order of

magnitude of the mesh tolerance.

Again, formulating the OCP required fewer LLOC in Pycollo (98) than in

GPOPS-II (179). GPOPS-II was also marginally faster at solving the OCP than

Pycollo, requiring 6.09 s compared to 6.79 s.

73

CHAPTER 2. ORTHOGONAL COLLOCATION

2.7.7 Example 4: Free-Flying Robot

Problem Definition

The free-flying robot problem (originally in [294] and presented as ex. (6.13) in [36])

was chosen as the optimal solution exhibits bang-bang control. As a consequence

of this, the optimal state involves discontinuities. This is, therefore, a good test

for mesh refinement algorithms, which must place a high density of nodes at the

locations where the optimal control switches. The single-phase problem involving

the state

y =
h
x1 x2 ✓ v1 v2 !

iT
(2.130)

and control

u =
h
u1 u2 u3 u4

iT
(2.131)

is to maximise

J = q (2.132)

subject to the dynamical constraints

ẋ1 = v1 (2.133)

ẋ2 = v2 (2.134)

✓̇ = ! (2.135)

v̇1 = (u1 � u2 + u3 � u4) cos (✓) (2.136)

v̇2 = (u1 � u2 + u3 � u4) sin (✓) (2.137)

!̇ = ↵ (u1 � u2)� � (u3 � u4) , (2.138)

inequality path constraints

u1 + u2  1 u3 + u4  1 (2.139)

and state endpoint constraints

x1 (t0) = �10 x1 (tF) = 0

x2 (t0) = �10 x2 (tF) = 0

✓ (t0) =
⇡

2
✓ (tF) = 0

v1 (t0) = 0 v1 (tF) = 0

v2 (t0) = 0 v2 (tF) = 0

! (t0) = 0 ! (tF) = 0 ,

where the integral variable

q =

Z tF

t0

u1 + u2 + u3 + u4dt (2.140)

74

2.7. PYCOLLO BENCHMARKING INVESTIGATIONS

and the constants

t0 = 0 tF = 12.0 s

↵ = 0.2 � = 0.2

are used.

Results

The optimal costs obtained using Pycollo and GPOPS-II were 7.90960 and 7.90997

respectively. These both agreed closely with each other, and with the value of 7.9102

reported in [36]. A comparison of the optimal state and control obtained by the two

software packages is shown in figs. 2.11 and 2.12. Close agreement in the optimal

cost, state and control show that Pycollo is able to correctly solve this OCP.

The mesh refinement performance of Pycollo and GPOPS-II is compared in

table 2.10. GPOPS-II required 16 mesh iterations, fewer than the 22 required by

Pycollo. Both software packages required a similar number of nodes to meet the

mesh tolerance, with Pycollo requiring 1404 and GPOPS-II requiring 1326. Mesh

refinement was gradual in both cases, with neither software package performing well

due to the fact that many mesh iterations were still required once getting within

an order of magnitude of the mesh tolerance (eight in GPOPS-II ’s case and 14 in

Pycollo’s case).

The Pycollo formulation of this OCP involved 36 LLOC compared to 104,

almost three times as many, in GPOPS-II . Neither software package was able to

solve this OCP particularly quickly due to the excessive number of mesh refinement

iterations required. Solve times of 89.2 s for GPOPS-II and 532.3 s for Pycollo

were recorded. GPOPS-II was significantly faster than Pycollo. This was due in

majority to the large and increasing mesh initialisation times recorded by Pycollo

as the number of mesh nodes increased in later mesh iterations.

2.7.8 Example 5: Tumour Anti-Angiogenesis

Problem Definition

The tumour anti-angiogenesis problem (originally in [211] and presented as ex. (6.17)

in [36]) was chosen as it is an example of a multiphase OCP involving the state

y(p) =
h
v
(p)

c
(p)
iT

(2.141)

75

CHAPTER 2. ORTHOGONAL COLLOCATION

0.0 2.5 5.0 7.5 10.0 12.5
t (s)

�10

�8

�6

�4

�2

0
GPOPS-II
Pycollo

(a) Position (x1)

0.0 2.5 5.0 7.5 10.0 12.5
t (s)

�10

�8

�6

�4

�2

0
GPOPS-II
Pycollo

(b) Position (x2)

0.0 2.5 5.0 7.5 10.0 12.5
t (s)

0.0

0.5

1.0

1.5

GPOPS-II
Pycollo

(c) Velocity (v1)

0.0 2.5 5.0 7.5 10.0 12.5
t (s)

0.0

0.5

1.0

1.5

GPOPS-II
Pycollo

(d) Velocity (v2)

0.0 2.5 5.0 7.5 10.0 12.5
t (s)

0.0

0.5

1.0

1.5

GPOPS-II
Pycollo

(e) Angle (✓)

0.0 2.5 5.0 7.5 10.0 12.5
t (s)

�0.3

�0.2

�0.1

0.0

0.1

GPOPS-II
Pycollo

(f) Angular velocity (!)

Figure 2.11: Comparison of the optimal state to example 4: free-flying robot ob-

tained using Pycollo and GPOPS-II .

76

2.7. PYCOLLO BENCHMARKING INVESTIGATIONS

0.0 2.5 5.0 7.5 10.0 12.5
t (s)

0.0

0.2

0.4

0.6

0.8

1.0
GPOPS-II
Pycollo

(a) Control (u1)

0.0 2.5 5.0 7.5 10.0 12.5
t (s)

0.0

0.2

0.4

0.6

0.8

1.0
GPOPS-II
Pycollo

(b) Control (u2)

0.0 2.5 5.0 7.5 10.0 12.5
t (s)

0.0

0.2

0.4

0.6

0.8

1.0
GPOPS-II
Pycollo

(c) Control (u3)

0.0 2.5 5.0 7.5 10.0 12.5
t (s)

0.0

0.2

0.4

0.6

0.8

1.0
GPOPS-II
Pycollo

(d) Control (u4)

Figure 2.12: Comparison of the optimal control to example 4: free-flying robot

obtained using Pycollo and GPOPS-II .

77

CHAPTER 2. ORTHOGONAL COLLOCATION

Pycollo GPOPS-II

I emax N emax N

1 2.646⇥ 10�3 31 2.524⇥ 10�3 31

2 1.845⇥ 10�4 84 1.098⇥ 10�3 97

3 2.915⇥ 10�5 156 1.129⇥ 10�4 172

4 1.424⇥ 10�5 222 1.043⇥ 10�5 244

5 7.015⇥ 10�6 279 8.462⇥ 10�6 311

6 2.995⇥ 10�6 355 1.696⇥ 10�6 387

7 1.317⇥ 10�6 429 1.057⇥ 10�6 451

8 6.674⇥ 10�7 501 5.330⇥ 10�7 539

9 5.250⇥ 10�7 581 3.497⇥ 10�7 656

10 5.250⇥ 10�7 663 5.440⇥ 10�7 765

11 5.244⇥ 10�7 755 4.909⇥ 10�7 868

12 5.238⇥ 10�7 875 2.621⇥ 10�7 971

13 5.232⇥ 10�7 983 2.249⇥ 10�7 1085

14 4.398⇥ 10�7 1090 2.249⇥ 10�7 1161

15 2.362⇥ 10�7 1188 2.178⇥ 10�7 1254

16 1.739⇥ 10�7 1282 9.370⇥ 10�8 1326

17 1.735⇥ 10�7 1358

18 1.730⇥ 10�7 1372

19 1.726⇥ 10�7 1386

20 1.715⇥ 10�7 1397

21 1.699⇥ 10�7 1402

22 9.919⇥ 10�8 1404

Table 2.10: Mesh refinement performance comparison between Pycollo and GPOPS-

II for example 4: free-flying robot. I denotes the mesh iteration count, emax denotes

the maximum relative mesh error, and N denotes the number of discretisation nodes

used.

78

2.7. PYCOLLO BENCHMARKING INVESTIGATIONS

in phases p = 1 and p = 2, and control

u(1) =
h
u
(1)
iT

(2.142)

in phase p = 1 only. The objective is to maximise

J = q
(1) (2.143)

subject to the dynamical constraints

v̇
(p) = �⇠v(p) log

✓
v
(p)

c(p)

◆
(2.144)

ċ
(1) = c

(1)
h
b�

⇣
µ+ d

�
v
(1)
� 2

3 +Gu
(1)
⌘i

(2.145)

ċ
(2) = c

(2)
h
b�

⇣
µ+ d

�
v
(2)
� 2

3

⌘i
, (2.146)

and state endpoint constraints

v
(1)
⇣
t
(1)
0

⌘
=

vmax

2
c
(1)
⇣
t
(1)
0

⌘
=

cmax

4
,

where the integral variable

q
(1) =

Z t
(1)
F

t
(1)
0

u
(1)
dt (2.147)

and the constants

t0 = 0 tF = 12.0 s

↵ = 0.2 � = 0.2

⇠ = 0.084 d�1
b = 5.85 d�1

d = 0.008 73mm�2 d�1
G = 0.15 kgmg�1 d�1

µ = 0.02 d�1
vmax = cmax =

✓
b� µ

d

◆ 3
2

a = 75 A = 15

are used.

Results

The optimal costs obtained using Pycollo and GPOPS-II agreed almost exactly,

with values of 7571.6701 and 7571.6700 respectively. The optimal cost achieved

using Pycollo was identical to the two-phase solution reported in [36] of 7571.6701.

A comparison of the optimal state and control obtained by the two software packages

is shown in fig. 2.13. Close agreement in the optimal costs, states and controls show

that Pycollo is able to correctly solve this OCP.

79

CHAPTER 2. ORTHOGONAL COLLOCATION

0.00 0.25 0.50 0.75 1.00 1.25
t (d)

7600

7800

8000

8200

8400

8600 GPOPS-II
Pycollo

(a) Tumour volume (v)

0.00 0.25 0.50 0.75 1.00 1.25
t (d)

2000

4000

6000

GPOPS-II
Pycollo

(b) Vascular capacity (c)

0.00 0.25 0.50 0.75 1.00 1.25
t (d)

0

20

40

60

GPOPS-II
Pycollo

(c) Angiogenic dose rate (u)

Figure 2.13: Comparison of the optimal states and controls to example 5: tumour

anti-angiogenesis obtained using Pycollo and GPOPS-II .

Pycollo GPOPS-II

I emax N emax N

1 8.268⇥ 10�7 62 2.694⇥ 10�6 62

2 5.531⇥ 10�8 78 2.675⇥ 10�9 108

Table 2.11: Mesh refinement performance comparison between Pycollo and GPOPS-

II for example 5: tumour anti-angiogenesis. I denotes the mesh iteration count, emax

denotes the maximum relative mesh error, and N denotes the number of discretisation

nodes used.

80

2.8. DISCUSSION

The mesh refinement performance of Pycollo and GPOPS-II is compared in

table 2.11. Both software packages required two mesh iterations to meet the mesh

tolerance, with Pycollo using fewer nodes in the final mesh (78 compared to 108).

This OCP required 42 LLOC to be formulated in Pycollo compared to 69 in

GPOPS-II . Solve time was also slightly faster in Pycollo at 0.89 s compared to 1.04 s

in GPOPS-II .

2.8 Discussion

The literature review (section 2.1) highlighted a number of major limitations of

current software for solving OCPs. These included: limitations to the choice of

collocation scheme available to the user; no published framework for automatic

problem scaling that can be further developed and enhanced by other researchers;

and no suitable mesh refinement algorithm for use with LGL collocation.

In addition, at present, there is no easy-to-use, highly-performant, open-source

software package for solving OCPs. The closest software package to meeting these

requirements is GPOPS-II . However, as proprietary software, it does not lend itself

to forming part of a wider software framework (like the BPST). The implementa-

tion of Pycollo sought to address these requirements and current limitations, and

demonstrate its functionality through robust validation.

2.8.1 Performance

Optimal costs, states and controls obtained using Pycollo and GPOPS-II were in

close agreement for all five of the test OCPs. In addition, close agreement to the

previously published solutions [36, 211, 267, 284, 294, 349] was also demonstrated.

This confirms that Pycollo is able to accurately and reliably solve a range of di↵erent

OCPs, and validates the software package.

The ability of Pycollo to reliably solve the five test OCPs, including two that in-

volve states spanning multiple orders of magnitude (examples 2 and 3), indicates ro-

bust performance of the automatic problem scaling approach outlined in section 2.4.4

and implemented in Pycollo. This approach has been shown to deliver results at

least equivalent to those generated by GPOPS-II using its proprietary scaling al-

gorithm. This open-source scaling framework can now be used by researchers, and

further investigated and enhanced as required.

81

CHAPTER 2. ORTHOGONAL COLLOCATION

The solve times and mesh refinement counts recorded demonstrate that the

computational performance of Pycollo is broadly comparable to that of GPOPS-

II . The only example where this was not the case was for the free-flying robot

problem (example 4), where GPOPS-II was able to solve the OCP significantly

faster. Pycollo’s longer solve time can be attributed to mesh preprocessing. These

preprocessing times are incurred by the CasADi backend and involve recomputing

the NLP derivatives for each mesh-specific discretisation. This process is ine�cient

and is addressed as part of chapter 3, where an algorithm is proposed to negate this.

The number of LLOC required to formulate an OCP using Pycollo has been

shown to be materially less than required by GPOPS-II . This is particularly so for

more complex OCPs. This has been achieved while meeting the objectives of an

easy-to-use and extensive API, as illustrated in fig. 2.5.

2.8.2 Mesh Refinement

The mesh refinement algorithm presented in section 2.5 and implemented in Py-

collo performed well on the hypersensitive problem (example 1), allowing the mesh

tolerance to be met using significantly fewer discretisation nodes than was possible

using GPOPS-II . This was primarily because Pycollo’s algorithm is able to reduce

the number of discretisation nodes in regions where the mesh error is su�ciently

met. This aspect of the algorithm makes it the first directly suited for use alongside

LGL collocation. It will, however, need to be tested with LGR and LG collocation,

once these are fully supported by Pycollo, to investigate its e�ciency alongside these

other collocation schemes.

The mesh refinement performance of Pycollo was poor when applied to problems

with bang-bang control, as highlighted by the free-flying robot test OCP (example

4). A recent publication has presented a modified mesh refinement algorithm in

which discontinuities in the dynamics are detected and new phases are introduced

with their boundaries falling at these locations [7]. This approach has been shown to

be highly-performant on OCPs with bang-bang control. Future work should, there-

fore, investigate whether the ideas in [7] can be combined with the mesh refinement

algorithm developed in section 2.5. This would potentially lead to a mesh refine-

ment algorithm that is performant when solving OCPs with both nonlinearities and

discontinuities when used alongside LGL collocation.

82

2.8. DISCUSSION

2.8.3 Limitations of Pycollo

The presentation, analysis and discussion of the benchmark problems highlighted

some limitations of Pycollo. These include:

1. The solution obtained by Pycollo is a local optimum. If the OCP in question

has multiple solutions then there is no guarantee that the solution found is

the global optimum. Which local optimum Pycollo converges to is typically

dependent on the choice of the initial guess. Therefore, it is suggested that

the problem is solved multiple times using di↵erent initial guesses, especially

if it is suspected that the solution space is multimodal.

2. Pycollo’s automatic scaling algorithm works best when the user supplies ap-

propriate bounds for all of the OCP’s variables. If the user does not supply

bounds, or supplies bounds that are many orders of magnitude di↵erent from

the optimal solution, then the resulting problem scaling may be poor, and

ine�cient convergence or incorrect solutions may result.

3. The NLP solver employed by Pycollo, Ipopt, expects all functions to be second-

order continuous, such that accurate derivatives can be computed to determine

the search direction. If the OCP is formulated in a way that the functions

are discontinuous then convergence of the NLP subproblem can be adversely

a↵ected. This is somewhat addressed by the work of section 3.6, where a second

derivative backend to Pycollo, which only supports appropriately continuous

functions.

4. Mesh refinement is only supported when LGL collocation is used. Pycollo

uses a SciPy module to interpolate the NLP solution as part of the mesh error

computation. However, this module does not currently support interpolation

involving Radau or Gaussian collocation conditions. In order for this to be

addressed, a custom interpolation module will need to be developed for Py-

collo. This module would replace SciPy for this purpose and should be able

to compute the mesh error independent of the collocation scheme used.

5. Pycollo is intended to be used to solve OCPs whose optimal solutions are con-

tinuous for both the control and the first derivative of the state. Problems

which exhibit bang-bang control, such as the free-flying robot problem (exam-

ple 4), do not meet these criteria. While Pycollo was able to converge on the

correct optimal solution in this case, for other bang-bang OCPs, this may well

not be the case. This limitation can be addressed by reformulating the OCP,

adding additional phases with their boundaries lying at the control discon-

tinuities. This approach was demonstrated for the tumour anti-angiogenesis

83

CHAPTER 2. ORTHOGONAL COLLOCATION

problem (example 5). How the functionality of Pycollo could also be extended

in the future to support the accurate and e�cient solving of this category of

OCP is discussed above.

6. Pycollo is not currently able to solve OCPs with constraints that are explicit

functions of time (e.g. the kinetic batch reactor problem [36]). This motivates

the need for the package to be extended to support this type of OCP.

2.9 Conclusions

In this chapter a number of algorithms have been developed to aid the computational

solution of OCPs, including:

1. a generalised framework that allows the transcription of an OCP to a NLP us-

ing any of Gaussian, Radau or Lobatto collocation schemes, and a description

of how this can be implemented algorithmically;

2. a framework for automatically scaling an OCP’s transcribed NLP based on

user-supplied variable bounds, random sampling of the search space and anal-

ysis of the problem’s function’s derivatives; and

3. an adapted hp mesh refinement algorithm that supports decreasing mesh spar-

sity in regions of the domain where the mesh tolerance is exceeded and is

suitable for use alongside Lobatto collocation.

Pycollo, an open-source Python package for the computational solution of OCPs

using state-of-the-art theory and methods, and the algorithms detailed in this chap-

ter, has been developed. Once an OCP has been formulated using Pycollo’s syntax,

Pycollo handles all onerous tasks on behalf of the user including:

• transcribing the OCP to a NLP subproblem;

• automatically formulating any derivative information required by the NLP

solver and compiling these as callable functions;

• interfacing with the NLP solver Ipopt;

• automatically scaling the NLP subproblem to improve its numerical condition-

ing; and

• conducting adaptive mesh refinement to ensure that the OCP is solved su�-

ciently accurately via the transcription method.

84

2.9. CONCLUSIONS

Pycollo also provides additional facilities to aid analysis such as modules for timing

and visualisation.

Pycollo was comprehensively benchmarked against the industry-standard com-

mercial software package GPOPS-II . This:

• demonstrated Pycollo’s ability to accurately solve a range of di↵erent OCPs;

• showed the comparable performance of the open-source software package to

the established commercial software;

• highlighted key areas where the algorithms and frameworks presented earlier in

this chapter provide algorithmic improvements, specifically that the adapted

hp mesh refinement algorithm o↵ers improved performance over established

algorithms when used with LGL collocation;

• showed that LGL collocation and the presented mesh refinement algorithm are

not performant on OCPs with bang-bang control; and

• identified some key areas for future work where Pycollo can be further devel-

oped and improved.

The open-source provision of Pycollo should provide researchers in this field

with a base platform to continue developing algorithms for the computational solu-

tion of OCPs and allow the investigation and solution of novel OCPs easily, e�ciently

and reliably. In particular, it is recommended that future research investigates:

• applying the presented mesh refinement algorithm to LGR and LG collocation;

• incorporating the latest ideas and developments from bang-bang mesh refine-

ment into the adapted hp mesh refinement algorithm; and

• developing mesh error calculation functionality for LGR and LG collocation

in Pycollo, so that the relative performance of LGL, LGR and LG collocation

can be directly compared.

85

Chapter 3

Derivative Generation

As outlined in chapter 2, the calculation of derivatives, particularly gradients, Ja-

cobians and Hessians, are of significant importance when solving an optimal control

problem (OCP) via transcription to a nonlinear programming problem (NLP). This

chapter begins with a review of the main methods currently used in the research

field for derivative production, describing where appropriate fundamental underly-

ing concepts, and highlighting the areas in which certain approaches currently excel

and where their disadvantages lie. An algorithm named hybrid-symbolic-algorithmic

di↵erentiation (hSAD), which has been developed as part of this thesis, is presented.

The development of hSAD has been motivated by the need for a derivative-taking

method that can exploit the known sparsity structure of Jacobians and Hessians

produced by the transcription method presented in chapter 2. hSAD and its imple-

mentation in Pycollo are then benchmarked.

3.1 Background, Theory and Review

3.1.1 Derivatives for Optimal Control Problems

As outlined in chapter 2, modern OCPs are typically solved numerically rather

than analytically due to their complexity. In direct collocation, the predominant

approach, the continuous-time OCP is transcribed to a finite NLP by approximating

the state and control by a set of smooth basis functions, and enforcing the constraints

at a set of discrete points [36]. The resulting NLP, which is large and sparse, can

then be solved using established software packages [43, 129].

Gradient-based NLP solvers are preferred as they o↵er superior performance

87

CHAPTER 3. DERIVATIVE GENERATION

for this application in comparison to stochastic or global solvers [35, 282]. There are

two general categories of gradient-based methods on which NLP solvers are founded:

quasi-Newton methods and Newton-methods [105, 282]. The transcribed NLP is de-

fined in terms of an objective function (eq. (2.64)), a set of inequality constraints

(eq. (2.65)) and a set of bounded decision variables (eq. (2.66)) [131]. In addition

to this, in a quasi-Newton method, the first-order derivatives with respect to the

decision variables, the objective gradient and the constraints Jacobian, are also re-

quired [36, 131]. A quasi-Newton approximation to the inverse of the Lagrangian

Hessian is also required, typically computed using the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm [66, 114, 132, 298]. In a Newton method, the true La-

grangian Hessian is instead required [36, 131]. SNOPT [129] and Ipopt [43] are

software packages for solving NLPs that implement a quasi-Newton and a Newton

method respectively.

Gradient information is important when solving an NLP using a gradient method,

as is the case for solving OCPs using Pycollo (section 2.6). This is for two main

reasons:

1. Convergence of the NLP solver is highly dependent on the accuracy of the

supplied derivatives because these determine the search direction. Inaccurate

derivatives can result in slow convergence or nonconvergence in some cases [36].

2. The majority of central processing unit (CPU) time spent by a NLP solver

is inside function calls to evaluate derivatives [10]. The more cheaply these

derivatives can be evaluated, the faster the NLP can be solved.

Because of these two considerations, to tractably solve an OCP via the transcription

method using a gradient-based NLP solver, first- and second-order derivatives must

be supplied, such that they are both highly accurate and e�cient to evaluate.

3.1.2 Transcribed Nonlinear Programming Problem Spar-

sity Structure

A general NLP in the form of eqs. (2.64) to (2.66) does not typically possess any

form of structure [131]. However, the first- and second-order derivatives of a di-

rect collocation NLP subproblem have well-defined and predictable structures [8,

41, 264]. Specifically, the sparse first- and second-order derivatives of the NLP sub-

problem can be constructed from the dense first- and second-order derivatives of the

OCP functions evaluated at the discretisation nodes [8, 41, 264]. The derivatives of

the OCP functions have significantly fewer dimensions than the NLP subproblem

88

3.1. BACKGROUND, THEORY AND REVIEW

derivatives [36]. These derivatives need to be evaluated at points associated with

the discretisation mesh [36]. Each state and control in the OCP has an associated

vector of discretised decision variables in the NLP [36]. Furthermore, the OCP

functions (and their derivatives) form groups of similar equations where a single

equation corresponds to a single node in the discretisation mesh [38, 122]. Each of

these equations is only a function of the discretised state and control at the node to

which it corresponds and is independent of decision variables associated with other

nodes [8, 264]. Consequently, significant portions of these derivative calculations

can be vectorised [264]. By exploiting the known sparsity pattern of the derivatives

of the NLP and their relationship to the OCP, increased e�ciency in derivative

calculation can be achieved [8, 41, 264]. Therefore, when solving an OCP via tran-

scription to an NLP, this knowledge of the sparsity structure should be exploited to

improve e�ciency of derivative computations [36].

3.1.3 Categories of Derivative Methods

Approximation and Analytic Methods

A number of di↵erent approaches have been developed for evaluating derivatives for

computer programs. These can be broadly categorised as either approximation or

analytic methods. Approximation methods use a truncated Taylor series expansion

of the function in question to provide an estimate for the derivative with a defined

order of error [131]. The function is typically sampled at the point of interest

alongside one-or-more neighbouring points to evaluate the estimate. The simplest

family of approximation methods, finite di↵erencing (FD) methods, are well-known

and extensively used across many fields [139, 227]. They do, however, have many

limitations and recently new methods have been developed to address these [10, 113,

208]. These more recent methods include ones based on complex arithmetic, such

as the bicomplex step method [208], as well as methods based on hyper-dimensional

extensions of generalised complex numbers, such as hyper dual numbers [113].

Analytic methods provide exact derivatives by decomposing the target function

into a sequence of elementary arithmetic operations and applying the rules of dif-

ferential calculus at each [136]. This family includes manual di↵erentiation (MD),

symbolic di↵erentiation (SD) and algorithmic di↵erentiation (AD). Analytic meth-

ods provide the major advantage of providing exact (or as-exact-as-possible once

converted to a callable function based on floating point arithmetic) derivative infor-

mation, as well as the potential to be highly computationally e�cient if implemented

correctly [139, 227]. These advantages do, however, typically come at the expense

89

CHAPTER 3. DERIVATIVE GENERATION

 = ��

Quay Wall

!t

⌫ �

Figure 3.1: Lighthouse geometry.

of conceptual and implementational complexity [10, 136].

The Lighthouse Example (Griewank and Walther, 2008)

Certain derivative-taking methods are conceptually di�cult, especially when de-

scribed in their pure mathematical or algorithmic form. To assist the reader, a

simple example (the lighthouse example from [136]) is presented. This example will

be used to aid with the explanation of each method and to facilitate discussion of

their advantages and disadvantages.

The lighthouse example models the position on a quay wall of the spot of light

emitted from a lighthouse (fig. 3.1). The wall has slope � and is a horizontal distance

⌫ from the lighthouse, while the lighthouse rotates at an angular velocity ! in time

t. The plan coordinates of the spot of light, � and , are given as

� =
⌫ tan!t

� � tan!t
(3.1)

and

 =
�⌫ tan!t

� � tan!t
. (3.2)

With the independent variables x = [⌫, �,!, t] and the dependent variables y =

[�,], the function F : R4
7! R2 describes the position y = F (x). Note that the

dependent variables di↵er only by the relationship = �� so in this instance it

would be uneconomical to manipulate and evaluate � and independently. It is

often the case when dealing with vector functions in many variables that many of

the scalar dependent variables will be comprised of like-subexpressions, especially

when modelling a real system.

As both the independent variables x and dependent variables y are vectors, if

directional derivatives are taken then this will result in a Jacobian matrix

G =
@y

@x
=

2

4G1,1 G1,2 G1,3 G1,4

G2,1 G2,2 G2,3 G2,4

3

5 , (3.3)

90

3.1. BACKGROUND, THEORY AND REVIEW

where the entries in G, Gi,j for (i = 1, 2; j = 1, 2, 3, 4), which have been derived

analytically by hand, are given by

G1,1 =
tan (!t)

� � tan (!t)
(3.4)

G1,2 = �
⌫ tan (!t)

(� � tan (!t))2
(3.5)

G1,3 =
⌫t sec 2 (!t)

� � tan (!t)
+
⌫t sec 2 (!t) tan (!t)

(� � tan (!t))2
(3.6)

G1,4 =
⌫! sec 2 (!t)

� � tan (!t)
+
⌫! sec 2 (!t) tan (!t)

(� � tan (!t))2
(3.7)

G2,1 =
� tan (!t)

� � tan (!t)
(3.8)

G2,2 =
⌫ tan (!t)

� � tan (!t)
�

⌫� tan (!t)

(� � tan (!t))2
(3.9)

G2,3 =
⌫�t sec 2 (!t)

� � tan (!t)
+
⌫�t sec 2 (!t) tan (!t)

(� � tan (!t))2
(3.10)

G2,4 =
⌫�! sec 2 (!t)

� � tan (!t)
+
⌫�! sec 2 (!t) tan (!t)

(� � tan (!t))2
. (3.11)

Evaluation Trace

To understand the computational cost associated with a method, it is important to

think about how the calculation would be carried out when executed by a CPU.

This can be done by analysing the evaluation trace (ET) of a function. An ET can

be produced by decomposing a function down to a series of atomic operations and,

resultantly, it details the dependency graph between the variables of the function.

Each auxiliary variable is computed using only a simple (typically unary or binary)

operation and only depends on variables that have been previously calculated. As

a result the ET is a directed acyclic graph (DAG).

Decomposing eqs. (3.1) and (3.2) to produce an ET results in the series of

computations seen in table 3.1. The computation of y1 and y2, which correspond to

� and � respectively, in the ET is interesting because common subexpressions are

automatically reused. This is best illustrated by the case in which = ��. Rather

than recomputing from scratch using its symbolic primitives (⌫, �, ! and t), it can

be evaluated cheaply using only a binary multiplication of the already-computed �

and the symbolic primitive �. Exploitation of this reusable subexpressions is of high

importance when ensuring that an algorithm is e�cient.

91

CHAPTER 3. DERIVATIVE GENERATION

Independent Variables

x1 = ⌫

x2 = �

x3 = !

x4 = t

Auxiliary Variables

w1 = !t = x3x4 = Mul (x3, x4)

w2 = tan (!t) = tan (w1) = Tan (w1)

w3 = � � tan (!t) = x2 � w2 = Sub (x2, w2)

w4 = ⌫ tan (!t) = x1w2 = Mul (x1, w2)

w5 = ⌫ tan (!t)
��tan (!t) = w4

w3

= Div (w4, w3)

w6 = �⌫ tan (!t)
��tan (!t) = x2w5 = Mul (x2, w5)

Dependent Variables

y1 = � = ⌫ tan (!t)
��tan (!t) = w5

y2 = = �⌫ tan (!t)
��tan (!t) = w6

Table 3.1: ET for the lighthouse example.

3.1.4 Finite Di↵erencing

The most prevalent method for derivative generation in optimisation, due to its ease

of implementation, is FD [36, 131]. As FD is a numerical method, it results in only

approximate derivatives, the accuracy of which depend on the choice of perturba-

tion size h [131]. Two conflicting error sources, truncation error and subtractive

cancellation (or roundo↵) error, exist.

FD formulas with higher-order errors and for higher-order derivatives exist [36,

131, 229]. These all require increasing numbers of perturbations, raising a tradeo↵

between accuracy and computational cost [10, 113]. Recent benchmarking of deriva-

tive estimation methods for solving OCPs using direct collocation has shown that

FD, while easy to implement stably, typically results in the largest runtimes [10].

This is because its associated inaccuracies typically result in requiring more NLP

iterations to reach convergence [10]. For this reason, FD should be avoided for OCP

applications.

3.1.5 Complex Arithmetic

The use of complex arithmetic to approximate derivatives has been thoroughly in-

vestigated [3, 115, 205, 208, 223, 309]. Methods based on hyper-dual numbers are

the most useful practically as they allow derivatives of any order to be computed,

92

3.1. BACKGROUND, THEORY AND REVIEW

while being immune to both subtractive cancellation and truncation errors [113].

They are therefore accurate to machine precision and functionally equivalent to

forward-mode algorithmic di↵erentiation [113].

Hyper-dual methods are up to 3.5 times more expensive than central FD per

derivative when all factors are taken into account [113]; they typically require fewer

perturbations than FD [36, 113, 208], but a hyper-dual operation typically takes

between four and 14 elementary operations per each real-valued operation [113].

Computational benchmarking of central FD and a hyper-dual method in the con-

text of solving OCPs has been published [10]. The hyper-dual method outperformed

central FD overall due to its accuracy, despite being more computationally expen-

sive per NLP iteration [10]. Therefore, methods based on hyper-dual numbers are

preferred for OCP derivative approximations.

3.1.6 Manual Di↵erentiation

MD of functions by hand almost universally results in the development of derivative

code with the fastest runtimes [310]. This is because the di↵erentiated functions

can usually be successfully reduced down to their most simplified form with all

common subexpressions factorised out, reducing the number of intermediate calcu-

lations required in a single function evaluation [136]. MD is, however, very time

consuming, labour intensive and error prone, and is therefore seldom utilised for

OCP applications [139, 227, 310].

3.1.7 Symbolic Di↵erentiation

SD, is the mathematical di↵erentiation of functions using a computer. SD relies upon

the use of a computer algebra system (CAS), which can represent and manipulate

variables and expressions symbolically. CASs are capable of handling a wide range

of mathematics, most important of which to this application is analytic calculus.

Examples of CASs include the MATLAB’s MuPAD-based Symbolic Math Toolbox

and Python’s SymPy .

All expressions are represented within a CAS by their decomposition down to a

DAG. Each intermediate node in the DAG represents a single mathematical operator

that operates on a sequence of one or more operands. CASs are capable of taking

both total and partial derivatives. The CAS is coded to contain the derivative rules

for all of its contained operations. The total and partial derivatives of more complex

expressions can be taken by the application of di↵erentiation rules such as the chain

93

CHAPTER 3. DERIVATIVE GENERATION

rule.

SD is capable of e�cient low-level code generation by conducting expression sim-

plification and utilising common subexpression elimination before compilation [310].

However, it generally requires the representation of entire functions as a single ex-

pression and is therefore memory intensive, particularly for large functions [136].

Furthermore, for large expressions, expression simplification and common subex-

pression elimination can result in high upfront computational costs. Therefore, due

to its memory ine�ciency and slow runtimes, SD is typically not utilised for deriva-

tive generation [136, 139, 227, 310], especially within the field of optimal control [10].

3.1.8 Algorithmic Di↵erentiation

AD generates analytic derivatives by applying the rules of calculus numerically to

a computer program [136]. Derivatives are produced by carrying numerical partial

derivatives through every step in the calculation of the original function and using

these to apply to rules of di↵erential calculus [136]. For this reason AD is sometimes

also referred to as automatic di↵erentiation [136, 139, 227, 310]. As the derivative

function is never explicitly generated, but is instead evaluated through an augmented

evaluation of the original functions, AD has a computational cost of only a small

constant number times the original function call [136]. Also, because the derivative

is being evaluated numerically, AD supports the use of program flow control with

conditional statements, loops and recursion [136].

AD requires the function of interest, which is to be di↵erentiated, to be ex-

pressed as a computational graph [136]. Any computer function can be decomposed

to a set of elementary operations, for each of which the derivative is known. AD

can then be implemented by interpreting this computational graph and augmenting

it calculations of various derivatives. This is done by representing each variable

as a value-derivative pair and applying the chain rule at each elementary opera-

tion, carrying the derivative terms through. When done for the entire computation,

the overall derivative is yielded [136]. AD comes in two modes, forward-mode and

reverse-mode, depending on whether the derivative matrix is to be found by propa-

gating the chain rule from the input or the output of the function respectively.

Forward-Mode

Forward-mode AD allows the partial derivatives of a function to be evaluated nu-

merically with respect to a single input variable at a time. Consider the function

94

3.1. BACKGROUND, THEORY AND REVIEW

F : Rn
7! Rm with the n input variables xi for i 2 [1, . . . , n] and the m output

variables yj for j 2 [1, . . . ,m]. Each input variable xi is associated with a corre-

sponding derivative term ẋi. Each intermediate variable wk (primal) is also given a

corresponding derivative term ẇk (tangent), where

ẇk =
@wk

@x
(3.12)

and is an evaluation of the intermediate variable’s sensitivity to the function’s inputs.

Note that each tangent variable, as defined in eq. (3.12), is a sensitivity with respect

to a generic input variable. It is therefore important that only a single input variable

at a time is assigned a nonzero tangent.

A tangent can be evaluated by applying the chain rule to the elementary op-

eration of its corresponding primal. Conducting this process for all elements in the

computation graph results in both the evaluation of all of the output variables yj

as well as their partial derivatives with respect to the specified input variable ẏj.

Construction of this augmented forward-mode trace for the lighthouse example is

shown in table 3.2.

In the forward-mode derivative trace (table 3.2), each auxiliary variable in the

original ET has between one and three additional lines associated with it, each

corresponding to an additional unary or binary expression. The computational cost

of the forward-mode evaluation is, therefore, a small multiple of the cost of the

original function.

In order to compute the full Jacobian matrix of a vector function, a struc-

tured series of successive forward-mode passes can be used. Each forward-mode

pass numerically evaluates a single column of the Jacobian matrix. This is done

algorithmically by successively setting a single input variable’s tangent to 1.0 with

all other input tangents set to 0.0. As F is a function of n input variables, computa-

tion of the full Jacobian via this manner therefore requires n forward-mode passes.

Therefore, computational expense increases linearly with n.

Reverse Mode

In contrast to forward-mode AD, which propagated tangents through the original

function from its inputs, reverse-mode AD operates in the opposite direction [136].

In reverse-mode, derivatives are accumulated backwards through the function’s ET

starting at its output [136]. Each intermediate variable wk is associated with an

adjoint w̄k, where

w̄k =
@y

@wk
(3.13)

95

CHAPTER 3. DERIVATIVE GENERATION

Independent Variables

x1 = ⌫

ẋ1 = ⌫̇

x2 = �

ẋ2 = �̇

x3 = !

ẋ3 = !̇

x4 = t

ẋ4 = ṫ

Auxiliary Variables

w1 = x3x4 = Mul (x3, x4)

ẇ1a = x3ẋ4 = Mul (x3, ẋ4)

ẇ1b = ẋ3x4 = Mul (ẋ3, x4)

ẇ1 = x3ẋ4 + ẋ3x4 = Add (ẇ1a, ẇ1b)

w2 = tan (w1) = Tan (w1)

ẇ2a = sec (w1) = Sec (w1)

ẇ2b = sec 2 (w1) = Pow (w2a, 2)

ẇ2 = ẇ1 sec 2 (w1) = Mul (ẇ1, ẇ2b)

w3 = x2 � w2 = Sub (x2, w2)

ẇ3 = ẋ2 � ẇ2 = Sub (ẋ2, ẇ2)

w4 = x1w2 = Mul (x1, w2)

ẇ4a = x1ẇ2 = Mul (x1, ẇ2)

ẇ4b = ẋ1w2 = Mul (ẋ1, w2)

ẇ4 = x1ẇ2 + ẋ1w2 = Add (ẇ4a, ẇ4b)

w5 = w4

w3

= Div (w4, w3)

ẇ5a = w5ẇ3 = Mul (w5, ẇ3)

ẇ5b = ẇ4 � w5ẇ3 = Sub (ẇ4, ẇ5a)

ẇ5 = ẇ4

w3

�
ẇ3w4

w2

3

= Div (ẇ5b, w3)

w6 = x2w5 = Mul (x2, w5)

ẇ6a = ẋ2w5 = Mul (ẋ2, w5)

ẇ6b = x2ẇ5 = Mul (x2, ẇ5)

ẇ6 = ẋ2w5 + x2ẇ5 = Add (ẇ6a, ẇ6b)

Dependent Variables

y1 = w5

ẏ1 = ẇ5

y2 = w6

ẏ2 = ẇ6

Table 3.2: Jacobian ET for the lighthouse example using forward-mode AD.

96

3.1. BACKGROUND, THEORY AND REVIEW

and represents the sensitivity of the function’s output with respect to changes in the

intermediate variable in question. Note again that eq. (3.13) defines the adjoints

as sensitivities with respect to a generic output variable. Therefore, to produce a

meaningful result, only one output adjoint can be seeded to 1.0 per single reverse-

mode pass.

Reverse-mode AD is a two stage process. In the first stage, the function is eval-

uated by running forward through the ET. The numerical values of the intermediate

variables are stored in memory and their dependency relationships recorded to be

used in the second stage. This is followed by the second stage in which the adjoints

w̄k are propagated backwards through the ET, from the last intermediate variable

to the first.

Table 3.3 details reverse-mode AD for the lighthouse example. It can be seen

from this example that a single reverse-mode pass generates a row of the Jacobian

matrix. Therefore, for a function F : Rn
7! Rm, the full Jacobian can be evaluated

with m reverse-mode passes. In contrast to forward-mode AD, the complexity of

full Jacobian evaluation using reverse-mode AD grows linearly with the number of

output variables. It has been shown in the literature that if the function F can be

evaluated using � operations, then a single reverse-mode pass should take at most

6� operations to complete [136]. In reality the complexity of a single reverse-mode

pass is typically only two or three times greater than the original function [136].

Discussion

Forward-mode AD is suited to situations where the number of input variables is

small in comparison to the number of output variables. Conversely, reverse-mode

AD is suited to situations where the number of output variables is small compared to

the number of input variables. Therefore, for the function F : Rn
7! Rm, forward-

mode AD is preferred if n ⌧ m while reverse-mode is preferred if n � m [136,

139].

Reverse-mode AD requires that a single pass must be conducted in two parts,

with the first part involving computing and storing the entire ET of the original

function such that it can be used in the second part. For simple functions with a

small number of intermediate variables this is not a problem. However, if the ET

is so large that the amount of data exceeds the available random-access memory

(RAM), significant performance penalties are incurred [227]. Techniques, such as

retaping and checkpointing, have been developed to improve the memory properties

of reverse-mode AD, however these significantly increase the complexity of imple-

97

CHAPTER 3. DERIVATIVE GENERATION

Independent Variables

x1 = ⌫

x2 = �

x3 = !

x4 = t

Auxiliary Variables

w1 = x3x4 = Mul (x3, x4)

w2 = tan (w1) = Tan (w1)

w3 = x2 � w2 = Sub (x2, w2)

w4 = x1w2 = Mul (x1, w2)

w5 = w4

w3

= Div (w4, w3)

w6 = x2w5 = Mul (x2, w5)

Dependent Variables

y1 = w5

y2 = w6

Independent Variables

x1 = ⌫

x2 = �

x3 = !

x4 = t

ȳ1
ȳ2

Auxiliary Variables

w̄6 = 0 = Init (0)

w̄6 += ȳ2
w̄5 = 0 = Init (0)

w̄5 += ȳ1
w̄5 += Mul (x2, w̄6)

x̄2 = 0 = Init (0)

x̄2 += Mul (w5, w̄6)

w̄3 = 0 = Init (0)

w3a = w�1

3
= Pow (w3,�1)

w3b = w4

w2

3

= Mul (w5, w3a)

w3c = �w4

w2

3

= Neg (w3b)

w̄3 += Mul (w3c, w̄5)

w̄4 = 0 = Init (0)

w̄4 += Mul (w3a, w̄5)

x̄1 = 0 = Init (0)

x̄1 += Mul (w2, w̄4)

w̄2 = 0 = Init (0)

w̄2 += Mul (x1, w̄4)

x̄2 += w̄3

w2a = �w3 = Neg (w3)

w̄2 += Mul (w2a, w̄3)

w̄1 = 0 = Init (0)

w1a = sec (w1) = Sec (w1)

w1b = sec 2 (w1) = Mul (w1a, w1a)

w̄1 += Mul (w1b, w̄2)

x̄3 = 0 = Init (0)

x̄3 += Mul (x4, w̄1)

x̄4 = 0 = Init (0)

x̄4 += Mul (x3, w̄1)

Dependent Variables

ẋ1 = x̄1

ẋ2 = x̄2

ẋ3 = x̄3

ẋ4 = x̄4

Forward Sweep Reverse Sweep

Table 3.3: Jacobian ET for the lighthouse example using reverse-mode AD.

98

3.1. BACKGROUND, THEORY AND REVIEW

mentation [136]. For OCP applications where the number of decision variables and

constraints in the NLP are typically of the same order, forward-mode AD would

be preferred due to its easier implementation. Note, however, that reverse-mode

AD would be required to facilitate e�cient evaluation of second-order derivative

information if this were required [136].

One of AD’s main advantages is that it can be applied to standard computer

code without the need for substantial modification, unlike SD which requires all

expressions to be given in closed form [139]. This means that AD can be applied to

code containing conditional branching, loops and recursion [136, 139]. However, as

the NLP solvers employed when solving an OCP computationally require smooth

second derivatives [43, 129], it is generally easier to ensure a well-conditioned smooth

problem formulation by avoiding the use of conditional branching, loops and recur-

sion.

OCP applications also require numerical evaluation of second-order derivatives

in the form of the Hessian of the Lagrangian. AD software packages almost univer-

sally compute second-order derivatives by applying AD twice [136, 139]. In the case

of OCPs, the first-order Lagrangian gradient can be computed in a single reverse-

mode pass [139]. The full Hessian matrix can then be evaluated by applying an

additional n passes, either forward- or reverse-mode, where n is the number of vari-

ables in the OCP. E�cient evaluation of Hessian matrices is, therefore, dependent on

reverse-mode AD and can be done with n+ 1 AD passes. If only the forward-mode

is used then n
2 passes will be required. Computational benchmarking of numerically

solving OCPs in conjunction with AD has shown poor performance in comparison

to other approaches, such as hyper-dual approximations, potentially because of the

complexity involved in computing the second-order derivatives this way [10].

3.1.9 Computational Implementation

For a derivative-taking algorithm to be of practical use it requires a computational

implementation. This implementation must be both e�cient and easy to use. Naive

implementations can result in prohibitively slow code and excessive memory us-

age [139, 227].

Source Transformation

Source transformation (ST) works by starting with the source implementation of a

function and then augmenting it in the manner required by the AD algorithm, pro-

99

CHAPTER 3. DERIVATIVE GENERATION

ducing new source code for the modified function. The elementary operations in the

target function are analysed, each is augmented with the di↵erential rules of calculus,

and new source code is generated which can be used to evaluate derivatives alongside

the original function. If ST is being used to generate executables that consist solely

of mathematical functions and do not take advantage of advanced object-oriented

programming (OOP) features, then ST is considered by the AD community as the

preferred approach [227]. Examples of software packages that implement AD via ST

are ADIFOR [45], Tapenade [148] and ADiGator [325].

Operator Overloading

Operator overloading (OO) works by introducing a new class of variable which con-

tains both the numerical real component alongside a numerical derivative compo-

nent. This class overloads all arithmetic operators and mathematical functions such

that they function alongside this new class, carrying through the numerical deriva-

tives of each variable as the original function is evaluated. Implementing forward-

mode AD using OO is conceptually simple. While it is still possible to implement

reverse-mode AD using OO, this requires considerably more labour [227]. Using

hyper-dual numbers with operator overloading is functionally equivalent to forward-

mode AD [113]. Examples of software packages that implement AD via OO are

ADOL-C [324], Adept [168], JAX [61] and ForwardDi↵ [287].

Discussion

There is no universally preferred approach for computational implementations of

AD [227]. Whether ST or OO should be used will depend on the specifics of the

algorithm in question. For example, OO is best suited to approximation methods

based on hyper-dual numbers and bicomplex steps [113, 208]. This is because these

methods, by definition, carry numerical values of the derivative terms in tandem

with the intermediate variables through the ET. Therefore, the derivative terms

are automatically calculated when the rules of the number system’s arithmetic are

obeyed. In this scenario OO leads to a trivial implementation of AD provided

types are declared for the number system and its rules of arithmetic are correctly

and fully defined. Conversely, ST may be considered the appropriate approach for

implementations of reverse-model AD [227]. This is because construction of the

backwards pass is conceptually involved. It can be most easily done by analysing

the dependency relationships from the forward pass and using this information to

implement the appropriate adjoint accumulations in the reverse pass. Therefore,

when implementing computer code for an AD algorithm, the cohesion between ST

100

3.2. RESEARCH OBJECTIVES

and OO, and the specifics of the algorithm should be analysed and considered in

detail before a decision is made.

3.2 Research Objectives

Section 1.3 laid out the objective of investigating methods for determining first- and

second-order derivative information that reduce computational cost and maximise

derivative evaluation speed during an OCP solve. The findings and developments

should, where practicable, be implemented as part of the Biomechanics Predictive

Simulation Toolkit (BPST).

From the analysis and review of past work in section 3.1, a number of limitations

and constraints associated with the current methods available in this area were

identified. To address these, and meet the overall objective above, the following

sub-objectives are laid out:

1. investigate ways in which SD and AD can be combined such that the benefits

of each method are used to o↵set the limitations of the other;

2. investigate ways in which the e�ciency of derivative-taking methods can be

improved in the context of OCPs, particularly in the area of exact evaluation

of Lagrangian Hessians;

3. investigate ways in which the known sparsity of the NLP subproblem can be

exploited when combined with SD- and AD-based methods;

4. incorporate any resulting findings into the development of a supplementary

derivative backend for Pycollo (section 2.6);

5. validate the performance of the supplementary derivative backend by solving

a range of OCPs from the literature, and benchmark performance against

Pycollo’s CasADi backend;

6. identify areas for further development and improvement.

3.3 Hybrid-Symbolic-Algorithmic Di↵erentiation

This section details the development of a derivative-taking algorithm motivated by

the requirements of computing the first- and second-order derivative information

specifically required by Newton and quasi-Newton NLP solvers such as Ipopt.

101

CHAPTER 3. DERIVATIVE GENERATION

3.3.1 Motivation

Section 3.1 describes all of the derivative-taking methods that are currently practi-

cally used in the field of optimal control, namely AD and approximation methods

based on hyper-dual numbers. A significant downside to all of these methods is that

the derivatives are somewhat evaluated numerically based on the original function.

This is done by using seed values (of 0.0 and 1.0) to propagate sensitivities to either

the input or output variables through the target function based on the target func-

tion’s original ET. For this to result in correct partial derivatives, only one input

or output variable can be seeded at a time. Therefore, a derivative matrix must be

evaluated on a column-by-column or row-by-row basis.

Column-by-column evaluation can lead to ine�ciencies in computation in two

ways. Firstly, it cannot be known at runtime which seeds have been set to 0.0

and 1.0. This can result in the execution of many trivial floating point operations in

which the seed values are multiplied by other variables in order to ensure sensitivities

with respect to only a single variable are propagated at a time. For example, if the

auxiliary variable w1 is denoted by the function w1 = x1x2 then in forward-mode

AD the sensitivity of w1 with respect to the functions input, ẇ1, can be computed

as

ẇ1 = x1ẋ2 + ẋ1x2 , (3.14)

where ẋ1 and ẋ2 are input seeds. On the first pass with ẋ1 = 1.0 and ẋ2 = 0.0,

eq. (3.14) will evaluate to ẇ1 = x2. With ẋ1 = 0.0 and ẋ2 = 1.0 on the second pass,

eq. (3.14) will instead evaluate to ẇ1 = x1. Combined, this is four unnecessary mul-

tiplications and two unnecessary additions that could be replaced with assignments.

If this could be analysed symbolically, these six wasted operations could be avoided.

The second ine�ciency arises from the fact that the column-by-column eval-

uation requires the same function to be evaluated with di↵erent seeds numerous

times. While this column-by-column calculation is not necessarily poorly perform-

ing, because all columns need to be populated in order to evaluate a full derivative

matrix, it can result in many repeated calculations being done on each pass. This

is because the function being evaluated will likely contain many intermediate ex-

pressions that are not functions of the sensitivities and so do not change in value

between passes. While these could be precomputed and cached, neither AD nor ap-

proximation methods based on hyper-dual numbers allow for any preprocessing of

the dependency relationships between intermediate variables due to their numerical

nature. If the dependency relationships between these intermediate variables could

be easily determined and shared between columns, then significant computation

could likely be saved when evaluating a full derivative matrix.

102

3.3. HYBRID-SYMBOLIC-ALGORITHMIC DIFFERENTIATION

For large problems, the number of function passes required when using AD

or hyper-dual approximation scales with the size of the NLP subproblem, even if

its sparsity is being exploited due to the underlying structure of the OCP. If the

OCP is to be solved on a very dense mesh, as may be needed in order to meet

a required mesh accuracy, then the derivative computations required by the NLP

solver may become prohibitively expensive. It is, therefore, highly desirable to

develop a derivative-taking algorithm for OCP applications in which these wasted

and repeated calculations are avoided. This will be done by applying symbolic

methods to the theory underpinning AD, with the algorithm termed hybrid-symbolic-

algorithmic di↵erentiation (hSAD).

3.3.2 Development

Let f (x) : Rn
7! Rm be a generic vector function, and its Jacobian matrix

G =
@f (x)

@x
. (3.15)

Evaluating G using a computational evaluation procedure of atomic operations be-

comes nontrivial when f (x) is a composite function. If f (x) is a composite expression

of L functions then

f (x) = fL � fL�1 � . . . � f2 � f1 (x) (3.16)

where

f2 � f1 (x) = f2 (f1 (x)) . (3.17)

The chain rule is defined as

@fb � fa (x)

@x
=
@fb � fa (x)

@fa (x)

@fa (x)

@x
. (3.18)

Using the nomenclature Ga = @fa(x)
@x and Gb = @fb�fa(x)

@fa(x)
, the matrix of first-order

partial derivatives of the composite function can be generated by applying the chain

rule L times, giving

G = GLGL�1 . . .G2G1 . (3.19)

Tier Partitioning

When a function’s ET of atomic operations is produced, a number of auxiliary

variables, which define the procedure of operations between the input and output,

are defined. The auxiliary variables in the ET form an ordered serial list with each

auxiliary variable defining an operation with operands consisting of only previous

103

CHAPTER 3. DERIVATIVE GENERATION

T0 T1 T2 T3 T4 T5

x1

⌫

x2

�

x3

!

x4

t

w1

⇥

w2

tan

w3

�

w4

⇥

w5

÷

w6

⇥

y1

�

y2

Input

Variables
Auxiliary Variables

Output

Variables

Figure 3.2: DAG for the lighthouse example.

auxiliary variables. The ET can, therefore, be represented as a DAG between the

function’s input and output.

Unlike a linear evaluation procedure, a DAG is not strictly serial and may

contain parallel nodes. In the context of auxiliary variables, this means that certain

nodes in the DAG are of equal precedence and their order of evaluation can be

rearranged without impacting the validity of the evaluation procedure. This is

illustrated in the lighthouse example (section 3.1.3), where the order in which the

two auxiliary variables w3 and w4 are evaluated in a linear evaluation procedure is

inconsequential. This is because both w3 and w4 only depend on auxiliary variables

in the set {x1, x2, x3, x4, w1, w2}, which have been previously evaluated. The parallel

nature of w3 and w4 is illustrated by fig. 3.2, the DAG for the ET of the lighthouse

example shown in table 3.1, in which the w3 and w4 nodes are aligned vertically.

Both nodes are also placed to the right of the w2 node and to the left of the w5.

w2 must be computed before w3 and w4 as both nodes’ operations have w2 as an

operand. Similarly, w5 must be computed after both w3 and w4 as both are operands

in the operation associated with w5.

hSAD makes use of the fact that certain auxiliary variables are of equal prece-

dence in order to allow the whole expression graph to be processed in fewer stages

104

3.3. HYBRID-SYMBOLIC-ALGORITHMIC DIFFERENTIATION

using matrix operations. In the context of the hSAD algorithm, this step of grouping

auxiliary variables by their ET precedence is termed tier partitioning. Conducting

tier partitioning in full for the lighthouse example yields the five auxiliary tiers

alongside the zeroth tier, T0, containing the independent variables

xT0 = {x1, x2, x3, x4} (3.20)

xT1 = {w1} (3.21)

xT2 = {w2} (3.22)

xT3 = {w3, w4} (3.23)

xT4 = {w5} (3.24)

xT5 = {w6} . (3.25)

The tiers are denoted in set-notation in eqs. (3.20) to (3.25), but can also be denoted

as row vectors, as will be required when used in the matrix notation of partial

derivatives to follow

xT0 =
h
x1 x2 x3 x4

i
(3.26)

xT1 =
h
w1

i
(3.27)

xT2 =
h
w2

i
(3.28)

xT3 =
h
w3 w4

i
(3.29)

xT4 =
h
w5

i
(3.30)

xT5 =
h
w6

i
. (3.31)

Row vectors are required when used in the matrix notation as the order of variables

in each tier must be consistent between operations. As expected from the rationale

above, examining eqs. (3.23) and (3.29) shows that xT3 contains both w3 and w4.

For a simple problem like the lighthouse example, determining the number

of tiers and the tier associated with each node is trivial by inspection. However,

for larger more complex problems, and when a computational implementation is

required, this approach is not feasible. In order to algorithmically determine the

tier of a node in the DAG, a depth-first search (DFS) algorithm [80] can be used. In

this approach, each node is assigned a tier variable, which will be used to store the

node’s associated tier. The tier level of a node of interest is determined by inspecting

its parent nodes (i.e. the node or nodes which are associated with the operands of

its operation). If all parent nodes already have a defined tier level then the tier level

of the node of interest is set to one more than the maximum tier level of its parent

nodes. If a parent node does not have a defined tier level yet then it becomes a new

node of interest with greater priority. If the node is a root node, ascertainable by the

105

CHAPTER 3. DERIVATIVE GENERATION

fact that it has no associated parent nodes, then it is assigned a tier level of 0. The

recursion can be unwound and the root node’s child node assigned a tier level of 1.

The maximum tier can be determined trivially by finding the maximum tier value

in the whole set of nodes associated with the DAG. Conducting tier partitioning

using this DFS approach results in both linear time complexity and linear memory

complexity provided that a node’s tier is cached once determined.

To explain this approach based on DFS more explicitly, take the node w3 from

fig. 3.2 as an example. w3 has two parent nodes, x2 and w2. First, x2 is investigated.

x2 is a root node and so is assigned to T0, x2 7! T0. w2 is currently unassigned a

tier and so becomes a new node of interest with the new highest priority. w2 has

the sole parent node w1 which is itself current unassigned a tier, becoming a further

new node of interest, again with the new highest priority. w1 has two parent nodes,

x3 and x4, both of which are root nodes and so are assigned to T0, x3 7! T0 and

x4 7! T0. All parent nodes of w1 now have an assigned tier, so the tier of w1 can be

assigned as

w1 7! max [x3 7! T0, x4 7! T0]� 1 = T0 � 1 = T1 (3.32)

with �1 denoting the incrementation of the tier level by one. With its sole parent,

w1, assigned to T1, w2 can now be assigned its tier as

w2 7! max [w1 7! T1]� 1 = T1 � 1 = T2 . (3.33)

Finally, with both parents of w3, x2 and w2, having been assigned tiers, w3 can at

last be assigned its tier as

w3 7! max [x2 7! T0, w2 7! T2]� 1 = T2 � 1 = T3 . (3.34)

If further nodes need to be tier-partitioned then this can be done using the same

procedure. Indeed, in this case w4 can now be tier-partitioned with ease as both of

its parent nodes, x1 and w2, are either trivially assigned to T0, due to being a root

node, or have already been tier-partitioned themselves.

Delta Matrices

Applying the chain rule of eq. (3.18) to an ET, such as that in table 3.1, in a way that

results in an exact expression for the ET’s first-order partial derivatives is di�cult.

This is because the operands of each operation, and, therefore, each sub-Jacobian in

the product, are almost certainly di↵erent. As a result, algorithmically determining

sensitivities to the input variables requires tracking the sensitivity of every auxiliary

variable to every other lower precedence auxiliary variable. For example, if y = f (x)

is a composite expression of L = 2 functions, then its Jacobian matrix of first-order

106

3.3. HYBRID-SYMBOLIC-ALGORITHMIC DIFFERENTIATION

partial derivatives given by the chain rule is

@f2 (f1 (x))

@x
=
@f2 (f1 (x))

@f1 (x)

@f1 (x)

@x
. (3.35)

Determining the @f1(x)
@x term is easy as it can only be a function of x. However, the

@f2(f1(x))
@f1(x)

is already significantly more complicated as it can potentially be a function

of not only x but also of f1 (x). This complexity only increases as L increases.

The tier partitioning conducted in section 3.3.2 simplifies the application of the

chain rule by:

1. tracking the dependencies between auxiliary variable operations and their

operands; and

2. reducing the depth of the partial derivative ET as some tiers contain more

than one variable and can be processed in parallel.

Consider the vector expression y = f (x). Firstly, consider the trivial situation where

f (x) simply maps the input variables to the output variables. While this scenario

is trivially simple, it lays important foundations for the incrementally more compli-

cated scenarios that will follow. Note that by definition the zeroth tier contains only

the function’s input variables, that is x = xT0 . Therefore, when tier-partitioned, y

only requires a single tier, T0. As there are no auxiliary variables in this scenario,

the partial derivatives of all tier variables with respect to the input variables can be

expressed as
@xT0

@x
=
@xT0

@xT0

= I (3.36)

where I denotes the identity matrix

I =

2

666664

1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

3

777775
. (3.37)

The Jacobian of y with respect to x can then be expressed as

G =
@y

@x
=

@y

@xT0

@xT0

@x
=

@y

@xT0

@xT0

@xT0

(3.38)

where @y
@xT0

will, in this scenario only, trivially be the identity matrix due to the fact

that the output can only be constructed from the T0 variables.

Secondly, consider the next simplest situation in which y = f (x), which requires

auxiliary variables in order to be expressed, has been tier-partitioned and found

107

CHAPTER 3. DERIVATIVE GENERATION

to require {T0,T1}. Auxiliary variables are required to correspond to an atomic

operation, with these atomic operations typically being unary or binary operations.

The T1 auxiliary variables, xT1 , are therefore exclusively simple operations, usually

with one or two T0 variables as their operands. The partial derivatives of xT1 with

respect to x can be computed as

@xT1

@x
=
@xT1

@xT0

, (3.39)

where each entry can be a new auxiliary variable denoting the partial derivative

of the T1 variable in question with respect to a single one of its operands. These

partial derivatives are trivial to ascertain due to each auxiliary variable being an

atomic operation. The partial derivatives of xT0 with respect to x will remain as

per eq. (3.36) due to the fact that tier variables may only have operands from lesser

tiers. They are, therefore, completely unchanged by the addition of any greater

tiers. y can be constructed using variables from T0 and T1 as its entries. Therefore,

the Jacobian matrix of y with respect to x can be expressed as

G =
@y

@x
=

@y

@xT0

@xT0

@x
+

@y

@xT1

@xT1

@x
=

@y

@xT0

@xT0

@xT0

+
@y

@xT1

@xT1

@xT0

, (3.40)

where @y
@xT0

and @y
@xT1

are matrices of ones and zeros with the ones corresponding to

the locations in y that are populated by the required auxiliary variables from that

tier. Note, therefore, that each row of @y
@xTi

can contain only a single one. Each

column, however, may contain multiple ones as the same auxiliary variable may be

used to populate more than one entry in y, if such entries are like-expressions.

Thirdly, consider y = f (x) now requiring {T0,T1,T2} after having been tier-

partitioned. The T0 and T1 partial derivative matrices remain defined by eq. (3.36)

and eq. (3.39) respectively. The T2 partial derivative matrix can be expressed as

@xT2

@x
=
@xT2

@xT0

+
@xT2

@xT1

@xT1

@xT0

, (3.41)

which allows for all T2 variables to be functions of both T0 and T1 variables. Note

that eq. (3.41) contains within it the right hand side (RHS) term of the T1 partial

derivative matrix from eq. (3.39). The Jacobian matrix can this time be expressed

as

G =
@y

@x
=

@y

@xT0

@xT0

@x
+

@y

@xT1

@xT1

@x
+

@y

@xT2

@xT2

@x

=
@y

@xT0

@xT0

@xT0

+
@y

@xT1

@xT1

@xT0

+
@y

@xT2

✓
@xT2

@xT0

+
@xT2

@xT1

@xT1

@xT0

◆
.

(3.42)

Note that the
@xT0
@x ,

@xT1
@x and

@xT2
@x terms come from eqs. (3.36), (3.39) and (3.41)

and may contain common terms, e.g.
@xT1
@xT0

.

108

3.3. HYBRID-SYMBOLIC-ALGORITHMIC DIFFERENTIATION

Finally, consider scenarios where y = f (x) requires further tiers following tier

partitioning. For example, if T3 auxiliary variables were to be introduced, then the

partial derivatives of these with respect to the input variables would be computed

as
@xT3

@x
=
@xT3

@xT0

+
@xT3

@xT1

@xT1

@xT0

+
@xT3

@xT2

✓
@xT2

@xT0

+
@xT2

@xT1

@xT1

@xT0

◆
. (3.43)

The Jacobian matrix would now be expressed as

G =
@y

@x
=

@y

@xT0

@xT0

@x
+

@y

@xT1

@xT1

@x
+

@y

@xT2

@xT2

@x
+

@y

@xT3

@xT3

@x
, (3.44)

with
@xT0
@x ,

@xT1
@x ,

@xT2
@x and

@xT3
@x coming from eqs. (3.36), (3.39), (3.41) and (3.43).

It should now be clear that every time an additional tier is introduced, an ad-

ditional partial derivative matrix must be produced and that this partial derivative

matrix depends on all previous partial derivative matrices in a structured form. Fur-

thermore, these partial derivative matrices contain common subexpressions. This is

particularly true as the maximum tier number increases. This warrants the introduc-

tion of a new concept, termed delta matrices, which will assist with the algorithmic

construction of the partial derivative matrices of tier variables and will allow for

e�cient reuse of common subexpressions. Consider replacing the terms
@xT0
@x and

@xT1
@x of eqs. (3.36) and (3.39) with the compact notations �T0 and �T1 . These

are the zeroth and first delta matrices. The
@xT2
@x term of eq. (3.41), written more

compactly using the new delta matrix notation as �T2 , can be defined using other

delta matrices as

�T2 =
@xT2

@xT0

�T0 +
@xT2

@xT1

�T1 . (3.45)

From this point on, a matrix in the form
@xTj
@xTi

for i, j 2 Z+ and i < j will be termed

a partial derivative matrix. Similarly, the
@xT3
@x term of eq. (3.43), equivalent to �T3 ,

can be defined as

�T3 =
@xT3

@xT0

�T0 +
@xT3

@xT1

�T1 +
@xT3

@xT2

�T2 . (3.46)

The pattern by which further delta matrices could be defined from previous delta

matrices should now be apparent.

If the delta matrices are computed in increasing sequential order, starting with

�T1 (trivially, �T0 = I), then later delta matrices can be computed using a sum-

mation of at most t matrix products where t is the delta matrix’s tier number. One

obvious potential ine�ciency is that as the number of tiers increases, so does both

the computational complexity and the memory complexity of producing each delta

matrix. This point will be addressed later in section 3.4.

109

CHAPTER 3. DERIVATIVE GENERATION

3.3.3 hSAD Equations

Collating the information described in section 3.3.2 and presenting it in concise

mathematical form gives the hSAD equation

@f

@x
=

⌧X

i=1

@f

@xTi

�Ti , (3.47)

where ⌧ is the number of tiers required,

�T0 = I (3.48)

and

�Ti =
i�1X

j=0

@xTi

@xTj

�Tj , (i = 1, . . . , ⌧) (3.49)

is the delta matrix equation. Equations (3.47) to (3.49), along with tier partitioning

described in section 3.3.2 fully define the hSAD algorithm.

3.3.4 Worked Example

To illustrate the practical application of hSAD, a worked example using the light-

house example is be presented. The first step in the hSAD algorithm is to ensure

that the function to be di↵erentiated, termed the target function, has been pre-

sented as a DAG, either directly or by construction from an ET. Both an ET and

its corresponding DAG have already been presented for the lighthouse example, in

table 3.1 and fig. 3.2 respectively. The second step involves the tier partitioning of

the auxiliary variables. Again, this has already been done in section 3.3.2 with the

partitioned tiers stated by eqs. (3.26) to (3.31).

The next step is to sequentially produce the delta matrices. As defined by

eq. (3.48), the zeroth delta matrix, �T0 , is the 4 ⇥ 4 identity matrix I4⇥4, with its

dimension due to the cardinality of xT0 , |xT0 | = 4. The first delta matrix, �T1 , is

produced trivially as it can only be a function of the T0 variables

�T1 =
@xT1

@xT0

�T0 =
h
0 0 x4 x3

i
I4⇥4 =

h
0 0 x4 x3

i
. (3.50)

The second delta matrix, �T2 , is calculated as

�T2 =
�
�

��✓
01⇥4

@xT2

@xT0

�T0 +
@xT2

@xT1

�T1

=
h
sec 2 (w1)

i h
0 0 x4 x3

i

=
h
0 0 w9 w10

i
,

(3.51)

110

3.3. HYBRID-SYMBOLIC-ALGORITHMIC DIFFERENTIATION

where the additional auxiliary substitutions are created

w7 = sec (!t) = sec (w1) = Sec (w1)

w8 = sec 2 (!t) = (w7)
2 = Sqr (w7)

w9 = t sec 2 (!t) = x4w8 = Mul (x4, w8)

w10 = ! sec 2 (!t) = x3w8 = Mul (x3, w8) .

The third delta matrix, �T3 , is calculated as

�T3 =
@xT3

@xT0

�T0 +
�

�
��✓

02⇥1

@xT3

@xT1

�T1 +
@xT3

@xT2

�T2

=

2

4 0 1 0 0

w2 0 0 0

3

5 I4⇥4 +

2

4�1

x1

3

5
h
0 0 w9 w10

i

=

2

4 0 1 0 0

w2 0 0 0

3

5+

2

40 0 �w9 �w10

0 0 x1w9 x1w10

3

5

=

2

4 0 1 w11 w12

w2 0 w13 w14

3

5 ,

(3.52)

where the additional auxiliary substitutions are created

w11 = �t sec
2 (!t) = �w9 = Neg (w9)

w12 = �! sec 2 (!t) = �w10 = Neg (w10)

w13 = ⌫t sec 2 (!t) = x1w9 = Mul (x1, w9)

w14 = ⌫! sec 2 (!t) = x1w10 = Mul (x1, w10) .

The fourth delta matrix, �T4 , is calculated as

�T4 =
�
�
��✓

01⇥4

@xT4

@xT0

�T0 +
�
�

��✓
01⇥1

@xT4

@xT1

�T1 +
�
�

��✓
01⇥1

@xT4

@xT2

�T2 +
@xT4

@xT3

�T3

=
h
�

w4

w2
3

1
w3

i
2

4 0 1 w11 w12

w2 0 w13 w14

3

5

=
h
w17 w15

i
2

4 0 1 w11 w12

w2 0 w13 w14

3

5

=
h
w2w15 w17 w11w17 + w13w15 w12w17 + w14w15

i

=
h
w18 w17 w19 + w20 w21 + w22

i

=
h
w18 w17 w23 w24

i
,

(3.53)

111

CHAPTER 3. DERIVATIVE GENERATION

where the additional auxiliary substitutions are created

w15 =
1

� � tan (!t)
=

1

w3
= Recip (w3)

w16 =
⌫ tan (!t)

(� � tan (!t))2
= w5w15 = Mul (w5, w15)

w17 = �
⌫ tan (!t)

(� � tan (!t))2
= �w16 = Neg (w16)

w18 =
tan (!t)

� � tan (!t)
= w2w15 = Mul (w2, w15)

w19 = �
⌫t tan (!t) sec 2 (!t)

(� � tan (!t))2
= w11w17 = Mul (w11, w17)

w20 =
⌫t sec 2 (!t)

� � tan (!t)
= w13w15 = Mul (w13, w15)

w21 =
⌫! tan (!t) sec 2 (!t)

(� � tan (!t))2
= w12w17 = Mul (w12, w17)

w22 =
⌫! sec 2 (!t)

� � tan (!t)
= w14w15 = Mul (w14, w15)

w23 = �
⌫t tan (!t) sec 2 (!t)

(� � tan (!t))2
+
⌫t sec 2 (!t)

� � tan (!t)
= w19 + w20 = Add (w19, w20)

w24 =
⌫! tan (!t) sec 2 (!t)

(� � tan (!t))2
+
⌫! sec 2 (!t)

� � tan (!t)
= w21 + w22 = Add (w21, w22) .

The fifth and final delta matrix, �T5 , is calculated as

�T5 =
@xT5

@xT0

�T0 +
�

�
��✓

01⇥1

@xT5

@xT1

�T1 +
�
�

��✓
01⇥1

@xT5

@xT2

�T2 +
�
�
��✓

02⇥1

@xT5

@xT3

�T3 +
@xT5

@xT4

�T4

=
h
0 w5 0 0

i
I4⇥4 +

h
x2

i h
w18 w17 w23 w24

i

=
h
0 w5 0 0

i
+
h
w25 w26 w27 w28

i

=
h
w25 w29 w27 w28

i
,

(3.54)

where the additional auxiliary substitutions are created

w25 =
� tan (!t)

� � tan (!t)
= x2w18 = Mul (x2, w18)

w26 = �
⌫� tan (!t)

(� � tan (!t))2
= x2w17 = Mul (x2, w17)

w27 = �
⌫�t tan (!t) sec 2 (!t)

(� � tan (!t))2
+
⌫�t sec 2 (!t)

� � tan (!t)
= x2w23 = Mul (x2, w23)

w28 =
⌫�! tan (!t) sec 2 (!t)

(� � tan (!t))2
+
⌫�! sec 2 (!t)

� � tan (!t)
= x2w24 = Mul (x2, w24)

w29 =
⌫ tan (!t)

� � tan (!t)
�

⌫� tan (!t)

(� � tan (!t))2
= w5 + w26 = Add (w5, w26) .

112

3.4. COMPLEXITY AND PROPERTIES

The Jacobian matrix is finally expressed in its full form using the hSAD equation

(eq. (3.47)) as

G =
@y

@x
=
�

�
��✓

02⇥4

@y

@xT0

�T0 +
�
�

��✓
02⇥1

@y

@xT1

�T1 +
�

�
��✓

02⇥1

@y

@xT2

�T2 +
�

�
��✓

02⇥2

@y

@xT3

�T3

+
@y

@xT4

�T4 +
@y

@xT5

�T5

=

2

41

0

3

5
h
w18 w17 w23 w24

i
+

2

40

1

3

5
h
w25 w29 w27 w28

i

=

2

4w18 w17 w23 w24

w25 w29 w27 w28

3

5 .

(3.55)

Comparing the eight entries of G generated using hSAD (eq. (3.55)) to their

corresponding expressions found using MD (eqs. (3.4) to (3.11)) shows exact agree-

ment in their analytic representations. This illustrates how hSAD is able to produce

partial derivative matrices whose entries are exact analytical derivatives.

In this example, the hSAD pass generated 23 new auxiliary variables, w7 to

w29. This is in addition to the six auxiliary variables, w1 to w6, that were required

to represent the ET of the target function. The 23 new auxiliary variables can be

added to the target function’s expression graph as additional auxiliary nodes. The

matrix output by hSAD, G (eq. (3.55)), can be used to generate an ET for the

computation of the target function’s Jacobian. Such an ET is shown in table 3.4.

This ET can, in turn, be used to generate computer code which can be compiled to

produce a callable function. The computer code can then be used to numerically

evaluate the Jacobian at a desired set of inputs.

3.4 Complexity and Properties

3.4.1 Computational Complexity

In order to assess the practical applicability of hSAD, its computational and mem-

ory complexity must be compared to that of established methods. Forward-mode

AD, which has been shown to be functionally equivalent to hyper-dual approxima-

tion [113], will primarily be considered due to its proven performance when applied

to numerically solving OCPs [10]. To derive the computational complexity of both

forward-mode AD and hSAD, a generic vector function y = f (x) : Rn
7! Rm will

be considered. Explicitly, f has the n input variables x = [x1, x2, . . . , xn] and m

113

CHAPTER 3. DERIVATIVE GENERATION

Independent Variables

x1 = ⌫

x2 = �

x3 = !

x4 = t

Auxiliary Variables

w1 = x3x4 = Mul (x3, x4)

w2 = tan (w1) = Tan (w1)

w3 = x2 � w2 = Sub (x2, w2)

w4 = x1w2 = Mul (x1, w2)

w5 = w4

w3

= Div (w4, w3)

w6 = x2w5 = Mul (x2, w5)

w7 = sec (w1) = Sec (w1)

w8 = (w7)
2 = Sqr (w7)

w9 = x4w8 = Mul (x4, w8)

w10 = x3w8 = Mul (x3, w8)

w11 = �w9 = Neg (w9)

w12 = �w10 = Neg (w10)

w13 = x1w9 = Mul (x1, w9)

w14 = x1w10 = Mul (x1, w10)

w15 = 1

w3

= Recip (w3)

w16 = w5w15 = Mul (w5, w15)

w17 = �w16 = Neg (w16)

w18 = w2w15 = Mul (w2, w15)

w19 = w11w17 = Mul (w11, w17)

w20 = w13w15 = Mul (w13, w15)

w21 = w12w17 = Mul (w12, w17)

w22 = w14w15 = Mul (w14, w15)

w23 = w19 + w20 = Add (w19, w20)

w24 = w21 + w22 = Add (w21, w22)

w25 = x2w18 = Mul (x2, w18)

w26 = x2w17 = Mul (x2, w17)

w27 = x2w23 = Mul (x2, w23)

w28 = x2w24 = Mul (x2, w24)

w29 = w5 + w26 = Add (w5, w26)

Dependent Variables

G11 = w18

G12 = w17

G13 = w23

G14 = w24

G21 = w25

G22 = w29

G23 = w27

G24 = w28

Table 3.4: Jacobian ET for the lighthouse example using hSAD.

114

3.4. COMPLEXITY AND PROPERTIES

output variables y = [y1, y2, . . . , yn]. f can be considered to have been expressed as

either an analytic function or as source code in a computer program, such that it is

decomposable to an ET of L atomic operations. These ordered atomic operations

correspond to a set of L auxiliary variables, {w1, w2, . . . , wL}. All derivative-taking

methods aim to provide a way of numerically evaluating the Jacobian matrix of y

with respected to x,

G =
@y

@x
, (3.56)

at a specific value of the input variables, x0. Let ĉ denote the average cost of

evaluating a generic auxiliary variable, wk, such that the cost of evaluating f is ĉL.

To compute G using forward-mode AD, a cost of cnL relative to the cost of

computing the target function alone is incurred [136]. c is typically a small constant

where 1  c  4 [136]. Similarly, the cost of computing G using reverse-mode AD

is cmL relative to the cost of computing the target function alone [136].

Derivation for hSAD

hSAD is functionally equivalent to AD because it similarly generates an ET for the

target function’s partial derivatives by repeated application of the chain rule to the

target function. It, however, does this symbolically in a preprocessing step rather

than numerically at runtime.

Using the same terminology defined at the beginning of section 3.4.1, assume

that the auxiliary variables associated with f , wk for k = (1, . . . , L) have undergone

tier partitioning and have been partitioned in to ⌧ tiers, {T1,T2, . . . ,T⌧}. For the full

Jacobian matrix to be populated, delta matrices for each tier, {�T1 ,�T2 , . . . ,�T⌧},

need to be produced. Each delta matrix e↵ectively expresses the total derivatives

of all of its tier’s auxiliary variables with respect to the target function’s input

variables. In other words, �Tt expresses the sensitivities of all auxiliary variables in

Tt with respect to x.

Due to the hierarchical nature of the algorithm, the computational complexity

of hSAD can be shown by determining the computational complexity of computing

a single auxiliary variable and extrapolating this across all L auxiliary variables.

This is because the influence of a single auxiliary variable on the construction of

the final derivative matrix only involves auxiliary variables from lower-precedence

tiers, which have already been analysed and manipulated. Consider the auxiliary

variable wK , which maps to an atomic operation FK . Following tier partitioning,

wK is in TT , in which it is the pth variable. wK exists in the target function’s

expression graph and can be connected at the beginning of a directed edge (i.e.

115

CHAPTER 3. DERIVATIVE GENERATION

its operation has lower-precedence variables as its operands) and at the end of a

direct edge (i.e. it itself is an operand for a higher-precedence auxiliary variable’s

operation). wK-related terms will, therefore, appear in the delta matrix equations

in two places.

Firstly, wK-related terms can appear in the pth rows of
@xTT
@xTt

for t = (0, 1, . . . , T � 1)

in the �TT equation. In these cases, the terms are partial derivatives of FK with

respect to its operands. There are only as many terms of this type as there are

operands of FK . For example, if FK is a unary operation with the sole operand wa,

only one partial derivative term corresponding to wK ,
@FK(wa)

@wa
, will appear across

all pth rows in all
@xTT
@xTt

in the �TT equation. Alternatively, if FK is a binary

operation with the operands wa and wb, then two partial derivative terms corre-

sponding to wK ,
@FK(wa,wb)

@wa
and @FK(wa,wb)

@wb
, will appear across all pth rows in

@xTT
@xTt

for t = (0, 1, . . . , T � 1) in the �TT equation.

Secondly, wK-related terms can appear in the pth columns of
@xTt
@xTT

for t =

(T + 1, . . . , ⌧ � 1, ⌧) in the
�
�TT+1 , . . . ,�T⌧�1 ,�T⌧

equations. In these cases, the

terms are partial derivatives of atomic operations, in which wK is an operand, with

respect to wK . Here, however, wK is treated as a variable rather than a composite

function and, therefore, computations involving it do not directly increase the com-

putational cost associated with the calculation of wK . It follows that, to analyse the

computational complexity associated with wK , only the former of the two scenarios

needs to be considered.

The cost associated with wK arises entirely from the delta matrix equation

corresponding to the computation of �TT , that is

�TT =
@xTT

@xT0

�T0 +
@xTT

@xT1

�T1 + . . .+
@xTT

@xTT�1

�TT�1 . (3.57)

To reiterate, a delta matrix expresses the total derivatives of all of a tier’s auxiliary

variables with respect to all of the target function’s input variables. Therefore, the

pth row and only the pth row of �TT is associated with wK and wK exclusively.

Thus, all other rows of �TT can be ignored, and only the pth rows of
@xTT
@xTt

and pth

columns of �Tt for t = (0, 1, . . . , T � 1) need to be considered in relation to the cost

associated with wK .

Firstly, consider the simplest scenario where wK corresponds to the unary op-

eration FK (wa). In this case, FK has only one nonzero partial derivative, @FK(wa)
@wa

.

Therefore, across all pth rows of
@xTT
@xTt

for t = (0, 1, . . . , T � 1), there will be only

a single nonzero entry. If A and B are matrices, evaluating Mij (the element in

the ith row and jth column of M) where M = AB requires the dot product be-

tween the ith row of A and the jth column of B. If the ith row of A contains

116

3.4. COMPLEXITY AND PROPERTIES

only one nonzero, then evaluating Mij will require only a single scalar multiplica-

tion, provided that calculations involving zeros can be ignored, as is the case when

sparse matrix representations and arithmetic are used. Therefore, in this case, each

element in the pth row of �TT , of which there will be n, can be determined with

a single multiplication. Note that in the context of hSAD, a single multiplication

corresponds to creating a new auxiliary variable associated with a multiplication

operation and associating that new auxiliary variable with the expression graph.

Thus, the total cost associated with wK is the cost of adding n + � new auxiliary

variables to the expression graph, with � denoting the average number of additional

operations required to compute a single partial derivative of an auxiliary variable.

n of these operations are binary multiplications, with the remaining � operations

being those associated with @FK(wa)
@wa

.

Next, consider the scenario where wK corresponds to the binary operation

FK (wa, wb). Here, FK has two nonzero partial derivatives, @FK(wa,wb)
@wa

and @FK(wa,wb)
@wb

,

and there would now be two nonzero entries across all pth rows of
@xTT
@xTt

for t =

(0, 1, . . . , T � 1). If wa and wb are in the same tier, then the @FK(wa,wb)
@wa

and @FK(wa,wb)
@wb

terms will appear in the same
@xTT
@xTt

matrix. Evaluating Mi,j, where M = AB, with

two nonzero entries in the ith row of A now requires two scalar multiplications and

a single scalar addition. Therefore, each element in the pth row of �TT can be deter-

mined with three simple binary arithmetic operations. If wa and wb were in di↵erent

tiers, the cost would still be the same because a scalar multiplications correspond-

ing to each of the two matrix multiplications would still be required, together with

a single scalar addition corresponding to the matrix addition of the two product

matrices from the two matrix multiplications. Thus, the total cost associated with

wK would be the cost of adding 3n + 2� new auxiliary variables to the expression

graph, 2n of which are binary multiplication operations, n of which are binary ad-

dition operations and 2� of which are the operations associated with @FK(wa,wb)
@wa

and
@FK(wa,wb)

@wb
.

Finally, consider the scenario where wK corresponds to an operation with ! � 3

operands, FK (wa, wb, . . . , w!). Following the previous arguments, the total cost

associated with wK would instead be (2! � 1)n + !�. !n correspond to binary

multiplications, (! � 1)n correspond to binary additions and the remaining !� cor-

respond to the operations associated with each of the ! partial derivatives.

For the target function as a whole, conducting the hSAD pass involves ex-

trapolating the complexity associated with wK across all L auxiliary variables. Let

⌦ denote the average number of operands across all auxiliary variable operations.

Typically 1.0 < ⌦ < 2.0 as the vast majority of atomic operations will be either

unary or binary. Therefore, the cost of the hSAD pass will involve the creation of

117

CHAPTER 3. DERIVATIVE GENERATION

((2⌦� 1)n+ ⌦�)L new auxiliary nodes, of which (2⌦� 1)n correspond to simple

binary operations and ⌦� correspond to the generation of partial derivative expres-

sions. Typically 0  �  3 [20, 136]. Thus, the cost, chSAD, is O (nL), the same as

for forward-mode AD.

In addition to the cost of conducting the hSAD pass, there will also be a com-

putational cost associated with numerically evaluating the resulting Jacobian. This

will require numerically evaluating all of the nodes in the modified expression graph

(i.e. the expression graph as it is after the hSAD pass) as all of these will be re-

quired, either directly or indirectly, to populate the Jacobian. If compiled to a

callable function, this function will involve ((2⌦� 1)n+ ⌦� + 1)L floating point

operations.

3.4.2 Memory Complexity

hSAD operates on a target function’s DAG and involves conducting the hSAD pass

to modify the DAG to contain all of the new auxiliary variables required to exactly

populate the Jacobian. This modified DAG can then be used to produce an ET for

the Jacobian, which in turn can be compiled to a callable that numerically evaluates

the matrix. The memory complexity of hSAD, therefore, involves two components:

the memory requirement for carrying out the matrix arithmetic to conduct the hSAD

pass; and the memory requirement for storing the modified DAG.

These two components are, however, intrinsically linked as the hSAD pass is

itself responsible for all modifications made to the DAG. Each distinct step in the

hSAD pass involves computing a new delta matrix for each successive tier until all

tiers have an associated delta matrix. Following this, the Jacobian can be popu-

lated using all of the delta matrices and the hSAD equation. Each delta matrix

equation contains two types of matrices: partial derivative matrices and lower-tier

delta matrices. The nonzeros within all of these matrices directly correspond to new

variables that are required within the modified DAG. Therefore, all that needs to

be considered in relation to the delta matrix and hSAD equations is the memory

complexity of the structuring of these matrices. The memory complexity of the

modified DAG can be considered in place of the memory cost associated with each

nonzero.

The partial derivative matrices together detail the sensitivities of all of a tier’s

auxiliary variables with respect to their respective operands. The number of nonze-

ros across all of a single tier’s derivative matrices corresponds to the number of

directed edges entering that tier. If a tier contains on average L
⌧ auxiliary variables

118

3.4. COMPLEXITY AND PROPERTIES

and each auxiliary variable has on average ⌦ operands (i.e. is the head of on average

⌦ directed edges), then each tier has on average ⌦L
⌧ nonzeros across all of its partial

derivative matrices. Across all tiers, there will be ⌦L nonzeros across all partial

derivative matrices. However, once the delta matrix for a tier has been calculated,

the partial derivative matrices for that tier are never again required for use in a

later calculation. Therefore, after this point, a tier’s partial derivative matrices can

be discarded and their memory freed. As partial derivative matrices have a lifetime

corresponding to the time taken for their associated delta matrix calculation, the

maximum memory usage associated with partial derivative matrices will be in the

delta matrix calculation for the tier that has the most directed edges entering it.

The delta matrices on the RHS of a delta matrix equation contain the abso-

lute partial derivatives of the tier’s auxiliary variables operation’s operands with

respect to the target function’s input variables. The number of nonzeros across all

of these corresponds to the reachability of each auxiliary variable node from each

input variable node. In an average tier containing L
⌧ auxiliary variables, the delta

matrix will have dimensions nL ⇥ ⌧ . The point at which hSAD has the largest

delta matrix-related memory requirement is during the computation of the hSAD

equation, in which all delta matrices are required. Therefore, at this point there

are nL total matrix entries. Note, however, that it is unlikely that the DAG will

be fully interconnected and there will, therefore, be fewer than nL entries across

all delta matrices. If a sparse matrix representation is used for the delta matrices,

then each of the delta matrix nonzeros can be expressed be three pieces of informa-

tion: a pointer to the corresponding node in the expression graph; and two location

identifiers (e.g. a row and column index). In either case, the memory complexity

associated with the delta matrices will be O (nL).

Section 3.4.1 previously showed that the modified DAG will be required to

contain ((2⌦� 1)n+ ⌦)L new auxiliary variables, in addition to the L variables in

the target function’s DAG. Therefore, the memory complexity of the modified DAG,

µhSAD, is µhSAD = ((2⌦� 1)n+ ⌦+ 1)µL where µ is the memory requirement of

storing all the information relating to a single node in an expression graph (e.g. its

operation, operands, tier and delta matrix indices). Again, as ⌦ is a small constant,

the memory complexity of hSAD can be considered to be O (µnL).

3.4.3 Case Performance

The actual performance of hSAD will depend on the specific target function to which

it is being applied and the structure of the target function’s DAG. As computational

and memory complexity have both been shown to be O (nL), general performance

119

CHAPTER 3. DERIVATIVE GENERATION

of hSAD will scale linearly with both n and L. However, the absolute performance

will depend on the operations associated with each node in the target function’s

DAG and interconnectivity between these nodes. Specifically, the reachability of the

output nodes from the input nodes is of particular importance as these determine

the structural sparsity of the resulting Jacobian.

The specific operations associated with each auxiliary variable influence both

computational and memory complexity as they determine how many additional

nodes are required in the modified DAG to express each node’s operation’s partial

derivatives with respect to said node’s operands. There are two aspects to com-

plexity relating to specific operations. Firstly, certain operations generate more

complex derivatives and, therefore, require more additional nodes in the modified

DAG to express them. For example, an exponential function, exp (x), is the sim-

plest such operation as its partial derivative, @
@x (exp (x)) = exp (x), is itself and so

can be expressed without the need to create additional nodes in the modified DAG.

Conversely, complex trigonometric functions, such as tanh (x) or tan �1 (x), typically

require three additional nodes to be added to the modified DAG to correctly express

their partial derivatives. Secondly, operations with more operands will exhibit worse

performance as they will have more nonzero partial derivative terms in their partial

derivative matrices and will, therefore, grow the modified DAG further. There-

fore, performance of hSAD will be superior for a target function containing mostly

auxiliary variables associated with simple unary and binary operations (such as ad-

ditions, multiplications and natural exponentials) in comparison to one containing

many complex trigonometric and multiple-operand operations. In this respect, the

benefit hSAD o↵ers relative to AD is that these expensive portions of the DAG only

need to be computed once. With AD, they may need to be recomputed on each

pass causing expensive and unnecessary recalculation.

Reachability of nodes in the DAG directly influences the performance of hSAD

in a specific case as this determines the sparsity of the partial derivative matrices

and, more importantly, the delta matrices. If the target function’s DAG is less in-

terconnected, the delta matrices will contain more nonzero elements and the delta

matrix equations can be computed more e�ciently using sparse matrix arithmetic.

hSAD is, therefore, most e�cient when applied to target functions with low inter-

connectivity such that each output variable is only a function of a minor subset of

the input variables. If this is the case, then the complexity of hSAD can approach

O (L) and o↵er a significant performance benefit over AD.

120

3.4. COMPLEXITY AND PROPERTIES

3.4.4 Properties of hSAD

The primary purpose of hSAD is to provide a means of evaluating the exact first-

order partial derivatives of a target vector function with respect to its inputs. Addi-

tional to this, hSAD has many beneficial properties which allow it to perform better

than AD.

In AD, determination of a Jacobian’s structural sparsity is conducted as a step

separate to the AD processing of the target function, with a graph colouring algo-

rithm [125] usually being used. With hSAD, exact structural sparsity information

is contained within the delta matrices. An element can be known to be structurally

zero because its entry will not contain a named auxiliary variable. Therefore, when

the Jacobian is constructed by the hSAD equation, all structural zeros are known.

This exact structural sparsity information is generated in tandem with the informa-

tion for correctly evaluating each nonzero entry during the hSAD pass. Therefore,

the additional graph colouring preprocessing step is not required with hSAD.

Another beneficial property of hSAD is that it generates a set of auxiliary vari-

ables that can be used to compute all of the partial derivatives in a Jacobian exactly,

as well as a mapping of which auxiliary variables populate which entries in the Jaco-

bian. It, therefore, allows an ET for the target function’s Jacobian to be produced,

that will populate all nonzeros in a single pass. This has the benefit of ensuring

that, when an executable corresponding to the ET is compiled, auxiliary variables

are reused in places where partial derivatives contain common subexpressions. In

addition, due to the fact that the entire Jacobian can be populated from a single

ET, the scenario encountered in AD where the same auxiliary variables are recom-

puted on successive passes with di↵erent seeds does not occur. Combined, these two

factors result in hSAD being able to produce theoretically more computationally

e�cient numerical evaluation compared to AD.

hSAD applies the chain rule to the target function in a symbolic manner. In AD,

where seeds are 0.0 and 1.0 are propagated through the target function numerous

times per derivative evaluation, multiplications by 0.0 and 1.0 are frequently carried

out. Due to the nature of how AD is conducted, however, by seeding these tangent or

adjoint variables at runtime, it is not possible to remove them and AD is consigned

to containing these ine�ciencies. The symbolic application of the chain rule in hSAD

has the beneficial side e↵ect that certain trivial operations are removed automati-

cally through the matrix arithmetic. For example, in each delta matrix calculation,

numerous matrices are multiplied in pairs and their results summed (eq. (3.49)).

When a zero is present in one of these matrices, the symbolic arithmetic ensures

that the trivial zeros are not accumulated. This results in the modified DAG of

121

CHAPTER 3. DERIVATIVE GENERATION

hSAD, and any resulting compiled callable, not containing these trivially-simplified

wasteful operations.

Another benefit of the symbolic expression graph and its creation solely dur-

ing preprocessing is that CAS expression simplification can be carried out. Using

techniques of CASs, it is possible to simplify certain expressions to reduce the math-

ematical complexity of the DAG. This could be by removing trivial expressions, such

as multiplications by 1.0. Alternatively, it could be by replacing known identities

where there is a more simple expression available, such as replacing a set of aux-

iliary variables expressing sin 2 (x) + cos 2 (x) with an auxiliary constant 1.0. This

would, however, increase the complexity associated with the hSAD preprocessing

step because, as with all CAS expression rewriting, e�ciently analysing the expres-

sion graph to find these possible simplifications without human insight is a complex

problem.

In summary, hSAD:

1. generates an evaluation procedure for evaluating all nonzero entries in the

Jacobian of a target function with respect to its inputs;

2. ascertains the Jacobian’s exact structural sparsity during preprocessing;

3. allows for all nonzeros entries to be computed in a single evaluation pass; and

4. eliminates mathematically trivial calculations, including multiplications by 0.0

and 1.0.

The Lighthouse Example

The beneficial properties of hSAD that have just been stated can be illustrated in the

context of an example. Firstly, section 3.3.4 showed that the exact Jacobian could

be produced using hSAD. The resulting Jacobian was compared to the Jacobian

found through MD by hand and shown to be identical.

Secondly, the resulting Jacobian was produced with an exact sparsity structure.

This is somewhat inconsequential in this case as the expressions for both of the

outputs each contain all four of the input variables which results in a dense Jacobian.

However, many of the delta matrices ({�T1 ,�T2 ,�T3}) do contain structural zeros.

If the output were to contain auxiliary variables from any of these tiers then the

Jacobian matrix would also contain these structural zeros, whose locations would

have been determined by the hSAD pass.

122

3.5. ALGORITHM PERFORMANCE OPTIMISATIONS

Thirdly, hSAD produced a modified DAG containing 29 auxiliary variables, six

of which were present in the target function DAG. This set of 29 auxiliary variables

is required to populate the full Jacobian, with none of these auxiliary variables be-

ing redundant. The forward-mode AD ET (table 3.2) requires 22 auxiliary variables

(the six associated with the target function and 16 additional ones). With four input

variables and, therefore, four forward-mode passes required, 88 auxiliary computa-

tions would be required for full Jacobian evaluation. Similarly, the reverse-mode

AD ET (table 3.3) requires 35 auxiliary variables (the six associated with the target

function and 29 additional ones). Of the 29 additional additional auxiliary vari-

ables, 10 are zero-assignments and could potentially be removed as an optimisation

during compilation. With two output variables and, therefore, two reverse-mode

passes required, 70 auxiliary computations would be required for the full Jacobian

evaluation in the case of a general implementation, or 50 in the case of an optimised

implementation. Even the best-performing optimised reverse-mode AD ET results

in almost twice as many instructions compared to the hSAD ET. Therefore, if com-

piled to equivalent callables, the hSAD callable would o↵er faster evaluation than

the reverse-mode AD callable.

Finally, of the 23 additional auxiliary variables, none of them correspond to

trivial calculations, such as multiplications by 0.0 or 1.0, or additions with 0.0.

This suggests that the ET produced by hSAD is in a highly simplified form and

potentially close to optimal, if not optimal.

3.5 Algorithm Performance Optimisations

3.5.1 Function Nodes

The base hSAD algorithm requires that an entire function is expressed as a DAG,

either explicitly or by means of an ET being available such that a DAG can be

constructed. This DAG will contain nodes corresponding to atomic operations,

such as unary trigonometric functions or binary arithmetic operations. However, in

certain circumstances, it may be desirable to express function concepts at a higher

level of abstraction. This may be, for example, to simplify the process of defining

the function’s DAG or to allow the reuse of common non-atomic functions such as a

matrix inversion. hSAD supports this approach through an entity termed function

nodes.

An implementation of the hSAD algorithm is built around the assumption that

the partial derivatives of every node’s operation with respect to its operands are

123

CHAPTER 3. DERIVATIVE GENERATION

known. For many simple unary and binary operations, these rules of di↵erentiation

will be hardcoded. For example, the binary multiplication ab will have its partial

derivatives hardcoded as @(ab)
@a = b and @(ab)

@b = a. If more complex function abstrac-

tions are to be represented in the expression graph, then their partial derivatives

will not be hardcoded in the same way and will need to be determined during the

hSAD preprocessing.

Function nodes allow an expression graph to be built such that it contains

nodes that represent non-atomic operations. These function nodes act somewhat

like a black box, with a fixed number of inputs and outputs. Therefore, for a

function node to be useful and support derivative generation via hSAD, it needs

to be able to di↵erentiate its output with respect to its input. This can be done

by expressing the operation performed by a function node as its own DAG and

applying the hSAD algorithm. This technique can be very powerful as it allows

highly complicated expression graphs to be created with many layers of abstraction

to simplify them.

It is useful to explain the concept and implementation of function nodes through

example. In the lighthouse example (section 3.1.3) and its corresponding expression

graph fig. 3.2, five auxiliary tiers were required following tier partitioning. Consider

introducing a function node to represent the four nodes contained within T2, T3 and

T4. In this example, all auxiliary variables will be denoted with tildes (e.g. w̃i) to

avoid confusion with the nomenclature used in section 3.3.4. Auxiliary variables in

the function node expression graph will also be denoted with an apostrophe (e.g. w̃0
j)

to clearly distinguish them from auxiliary variables in the main expression graph.

The new function node’s operation is denoted by F1 such that the expression graph

can be expressed by the auxiliary substitution

w̃1 = !t = x̃3x̃4 = Mul (x̃3, x̃4)

w̃2 =
⌫ tan (!t)

� � tan (!t)
= F1 (x̃1, x̃2, w̃1)

w̃3 =
⌫� tan (!t)

� � tan (!t)
= x̃2w̃2 = Mul (x̃2, w̃2)

and the output assignments

ỹ1 =
⌫ tan (!t)

� � tan (!t)
= w̃2

ỹ2 =
⌫� tan (!t)

� � tan (!t)
= w̃3 ,

with the corresponding DAG shown in fig. 3.3a. The new operation, F1, can itself

124

3.5. ALGORITHM PERFORMANCE OPTIMISATIONS

be expressed by the input assignments

x̃
0
1 = ⌫

x̃
0
2 = �

x̃
0
3 = !t = w̃1 ,

the auxiliary substitutions

w̃
0
1 = tan (!t) = tan (x̃0

3) = Tan (x̃0
3)

w̃
0
2 = � � tan (!t) = x̃

0
2 � w̃

0
1 = Sub (x̃0

2, w̃
0
1)

w̃
0
3 = ⌫ tan (!t) = x̃

0
1w̃

0
1 = Mul (x̃0

1, w̃
0
1)

w̃
0
4 =

⌫ tan (!t)

� � tan (!t)
=

w̃
0
3

w̃0
2

= Div (w̃0
3, w̃

0
2)

and the output assignment

ỹ
0
1 =

⌫ tan (!t)

� � tan (!t)
= w̃

0
4 ,

with the corresponding DAG shown in fig. 3.3b.

Note that the function node, w̃2 in fig. 3.3a, is non-standard in comparison to

other expression graph nodes that have been shown so far as it contains three inputs.

This is inconsequential, however, as hSAD supports nodes to have an arbitrary

number of inputs. This should be clear from the analysis in section 3.4.1.

The first step in hSAD is to tier partition the DAG using a suitable graph

algorithm. For the example here, where there is a DAG corresponding to the function

node as well as one for the target function, both DAGs need to be tier-partitioned.

Both of these DAGs are tier-partitioned to contain three auxiliary node tiers. For

the target function, these tiers are

x̃T0 =
h
x̃1 x̃2 x̃3 x̃4

i
(3.58)

x̃T1 =
h
w̃1

i
(3.59)

x̃T2 =
h
w̃2

i
(3.60)

x̃T3 =
h
w̃3

i
, (3.61)

with the tiers for the function node being

x̃0
T0

=
h
x̃
0
1 x̃

0
2 x̃

0
3

i
(3.62)

x̃0
T1

=
h
w̃

0
1

i
(3.63)

x̃0
T2

=
h
w̃

0
2 w̃

0
3

i
(3.64)

x̃0
T3

=
h
w̃

0
4

i
. (3.65)

125

CHAPTER 3. DERIVATIVE GENERATION

T̃0 T̃1 T̃2 T̃3

x̃1

⌫

x̃2

�

x̃3

!

x̃4

t

w̃1

⇥

w̃2

F1

w̃3

⇥

ỹ1

�

ỹ2

Input

Variables
Auxiliary Variables

Output

Variables

(a) DAG for the target function.

T̃0 T̃0
1 T̃0

2 T̃0
3

x̃
0
1

⌫

x̃
0
2

�

x̃
0
3

w̃1

w̃
0
1

tan

w̃
0
2

�

w̃
0
3

⇥

w̃
0
4

÷

ỹ
0
1

w̃2

Input

Variables
Auxiliary Variables

Output

Variables

(b) DAG for the function node F1.

Figure 3.3: DAG for the lighthouse example using hSAD with function nodes.

126

3.5. ALGORITHM PERFORMANCE OPTIMISATIONS

Following tier partitioning, the delta matrices are produced. When the target

function contains function nodes, the function node’s partial derivatives are required

before hSAD can be applied to the target function. Therefore, the function node’s

delta matrices are computed first, followed by applying the hSAD equation to the

function node before hSAD is applied to the target function. If a target function

were to contain multiple function nodes, or if a function node was to itself contain

a function node, then hSAD would be applied to the most deeply-nested function

node first, with a DAG only being di↵erentiated once all of its function nodes have

themselves been addressed.

For the function node’s DAG, the zeroth delta matrix, �̃0
T0
, is the 3⇥3 identity

matrix I3⇥3. The first function node delta matrix, �̃0
T1
, is calculated as

�̃0
T1

=
@x̃0

T1

@x̃0
T0

�̃0
T0

=
h
0 0 sec 2 (w̃1)

i
I3⇥3

=
h
0 0 sec 2 (w̃1)

i

=
h
0 0 w̃6

i
,

(3.66)

where the additional auxiliary substitutions

w̃
0
5 = sec (!t) = sec x̃0

3 = Sec (x̃0
3)

w̃
0
6 = sec 2 (!t) = (w̃0

5)
2 = Sqr (w̃0

5)

are created. The second function node delta matrix, �̃0
T2
, is calculated as

�̃0
T2

=
@x̃T2

@x̃T0

�̃0
T0

+
@x̃T2

@x̃T1

�̃0
T1

=

2

4 0 1 0

w̃
0
1 0 0

3

5 I3⇥3 +

2

4�1

x̃
0
1

3

5
h
0 0 w̃6

i

=

2

4 0 1 w̃
0
7

w̃
0
1 0 w̃

0
8

3

5 ,

(3.67)

where the additional auxiliary substitutions

w̃
0
7 = � sec 2 (!t) = �w̃0

6 = Neg (w̃0
6)

w̃
0
8 = ⌫ sec 2 (!t) = x̃

0
1w̃

0
6 = Mul (x̃0

1, w̃
0
6)

127

CHAPTER 3. DERIVATIVE GENERATION

are created. The third and final function node delta matrix, �̃0
T3
, is calculated as

�̃0
T3

=
◆
◆
◆
◆7
01⇥3

@x̃0
T3

@x̃0
T0

�̃0
T0

+
◆
◆
◆
◆7
01⇥1

@x̃0
T3

@x̃0
T1

�̃0
T1

+
@x̃0

T3

@x̃0
T2

�̃0
T2

=


�

w̃0
3

(w̃0
2)

2
1

(w̃0
2)

2

�2

4 0 1 w̃
0
7

w̃
0
1 0 w̃

0
8

3

5

=
h
w̃

0
11 w̃

0
9

i
2

4 0 1 w̃
0
7

w̃
0
1 0 w̃

0
8

3

5

=
h
w̃

0
1w̃

0
9 w̃

0
11 w̃

0
6w̃

0
11 + w̃

0
7w̃

0
9

i

=
h
w̃

0
12 w̃

0
11 w̃

0
15

i
,

(3.68)

where the additional auxiliary substitutions

w̃
0
9 =

1

� � tan (!t)
=

1

w̃0
2

= Recip (w̃0
2)

w̃
0
10 =

⌫ tan (!t)

� � tan (!t)
= w̃

0
4w̃

0
9 = Mul (w̃0

4, w̃
0
9)

w̃
0
11 = �

⌫ tan (!t)

(� � tan (!t))2
= �w̃0

10 = Neg (w̃0
10)

w̃
0
12 =

tan (!t)

� � tan (!t)
= w̃

0
1w̃

0
9 = Mul (w̃0

1, w̃
0
9)

w̃
0
13 =

⌫ tan (!t) sec 2 (!t)

(� � tan (!t))2
= w̃

0
17w̃

0
11 = Mul (w̃0

7, w̃
0
11)

w̃
0
14 =

⌫ sec 2 (!t)

� � tan (!t)
= w̃

0
8w̃

0
9 = Mul (w̃0

8, w̃
0
9)

w̃
0
15 =

⌫ tan (!t) sec 2 (!t)

(� � tan (!t))2
+

⌫ sec 2 (!t)

� � tan (!t)
= w̃

0
13 + w̃

0
14 = Add (w̃0

13, w̃
0
14)

are created. The Jacobian matrix corresponding to the function node, G̃0 can then

be expressed using the hSAD equation (eq. (3.47)) as

G̃0 =
@ỹ0

@x̃0 =
�

�
��✓

01⇥3

@ỹ0

@x̃0
T0

�̃0
T0

+
�

�
��✓

01⇥1

@ỹ0

@x̃0
T1

�̃0
T1

+
�

�
��✓

01⇥2

@ỹ0

@x̃0
T2

�̃0
T2

+
@ỹ0

@x̃0
T3

�̃0
T3

=
h
1
i h

w̃
0
12 w̃

0
11 w̃

0
15

i

=
h
w̃

0
12 w̃

0
11 w̃

0
15

i
.

(3.69)

G̃0 can now be used to provide the partial derivatives @w̃2
@x̃1

, @w̃2
@x̃2

and @w̃2
@w̃1

when hSAD

is conducted on the target function’s DAG.

For the target function’s DAG, the zeroth delta matrix, �̃T0 , is the 4⇥4 identity

128

3.5. ALGORITHM PERFORMANCE OPTIMISATIONS

matrix I4⇥4. The first target function delta matrix, �̃T1 , is calculated as

�̃T1 =
@x̃T1

@x̃T0

�̃T0

=
h
0 0 x̃4 x̃3

i
I4⇥4

=
h
0 0 x̃4 x̃3

i
.

(3.70)

The second target function delta matrix, �̃T2 , is calculated as

�̃T2 =
@x̃T2

@x̃T0

�̃T0 +
@x̃T2

@x̃T1

�̃T1

=
h
w̃

0
12 w̃

0
11 0 0

i
I4⇥4 +

h
w̃

0
15

i h
0 0 x̃4 x̃3

i

=
h
w̃

0
12 w̃

0
11 0 0

i
+
h
0 0 w̃4 w̃5

i

=
h
w̃

0
12 w̃

0
11 w̃4 w̃5

i
,

(3.71)

where the additional auxiliary substitutions

w̃4 =
⌫t tan (!t) sec 2 (!t)

(� � tan (!t))2
+
⌫t sec 2 (!t)

� � tan (!t)
= x̃4w̃

0
15 = Mul (x̃4, w̃

0
15)

w̃5 =
⌫! tan (!t) sec 2 (!t)

(� � tan (!t))2
+
⌫! sec 2 (!t)

� � tan (!t)
= x̃3w̃

0
15 = Mul (x̃3, w̃

0
15)

are created. Note how the nonzero terms in the partial derivative matrices,
@x̃T2
@x̃T0

and
@x̃T2
@x̃T1

, in eq. (3.71) are populated using entries from G̃0 (eq. (3.69)). The third and

final target function’s delta matrix, �̃T3 , is calculated as

�̃T3 =
@x̃T3

@x̃T0

�̃T0 +
�

�
��✓

01⇥1

@x̃T3

@x̃T1

�̃T1 +
@x̃T3

@x̃T2

�̃T2

=
h
0 w̃2 0 0

i
I4⇥4 +

h
x̃2

i h
w̃

0
12 w̃

0
11 w̃4 w̃5

i

=
h
0 w̃2 0 0

i
+
h
w̃6 w̃7 w̃8 w̃9

i

=
h
w̃6 w̃10 w̃8 w̃9

i
,

(3.72)

where the auxiliary substitutions

w̃6 =
� tan (!t)

� � tan (!t)
= x̃2w̃

0
12 = Mul (x̃2, w̃

0
12)

w̃7 = �
⌫� tan (!t)

(� � tan (!t))2
= x̃2w̃

0
11 = Mul (x̃2, w̃

0
11)

w̃8 =
⌫�t tan (!t) sec 2 (!t)

(� � tan (!t))2
+
⌫�t sec 2 (!t)

� � tan (!t)
= x̃2w̃4 = Mul (x̃2, w̃4)

w̃9 =
⌫�! tan (!t) sec 2 (!t)

(� � tan (!t))2
+
⌫�! sec 2 (!t)

� � tan (!t)
= x̃2w̃5 = Mul (x̃2, w̃5)

w̃10 =
⌫ tan (!t)

� � tan (!t)
�

⌫� tan (!t)

(� � tan (!t))2
= w̃2 + w̃7 = Add (w̃2, w̃7)

129

CHAPTER 3. DERIVATIVE GENERATION

are created. The Jacobian matrix of the target function is finally expressed in its

full form using the hSAD equation (eq. (3.47)) as

G̃ =
@ỹ

@x̃
=
�
�
��✓

02⇥4

@ỹ

@x̃T0

�̃0
T0

+
�
�
��✓

02⇥1

@ỹ

@x̃T1

�̃0
T1

+
@ỹ

@x̃T2

�̃0
T2

+
@ỹ

@x̃T3

�̃0
T3

=

2

41

0

3

5
h
w̃

0
12 w̃

0
11 w̃4 w̃5

i
+

2

40

1

3

5
h
w̃6 w̃10 w̃8 w̃9

i

=

2

4w̃
0
12 w̃

0
11 w̃4 w̃5

w̃6 w̃10 w̃8 w̃9

3

5 .

(3.73)

Comparison of the eight entries of G̃ (eq. (3.73)), generated using hSAD with a

function node, to the eight entries ofG found either through basic hSAD (eq. (3.55))

or via MD (eqs. (3.4) to (3.11)) shows exact agreement in their analytic representa-

tions. This illustrates that the use of function nodes alongside hSAD still results in

the production of exact analytical partial derivatives.

The original DAG associated with the target function contained three auxiliary

variables (w̃1, w̃2 and w̃3), while the original DAG associated with the function node

contained four (w̃0
1, w̃

0
2, w̃

0
3 and w̃

0
4). Note that, in total, this is one more than was

required without the use of a function node. However, as the F1 outputs w̃0
4 which

is directly assigned to w̃2, it can be argued that there are only six true operation

nodes associated with the original target function. Indeed, if the target function

with its function node were to be compiled, the assignment of w̃0
4 to w̃2 could easily

be removed by inlining all of the operations associated with the function node.

The hSAD pass on the F1 function node generated 11 new auxiliary variables

(w̃0
5 to w̃

0
15), while the hSAD pass on the target function containing F1 generated

just seven new auxiliary variables (w̃4 to w̃10). Combined, these 18 new auxiliary

variables are fewer than the 23 auxiliary variables generated when hSAD was applied

to the same problem without the use of function nodes (section 3.3.4). This result

suggests that the use of function nodes has the potential to produce more com-

pact modified expression graphs through better reuse of common subexpressions.

More compact expression graphs result in more e�cient ETs and, therefore, the

executables produced if function nodes have been used may be less computationally

expensive than their counterpart without function nodes, as demonstrated here. An

ET generated using the modified expression graphs produced by the hSAD passes

to populate G̃ and G̃0 is shown in table 3.5.

130

3.5. ALGORITHM PERFORMANCE OPTIMISATIONS

Independent Variables

x̃1 = ⌫

x̃2 = �

x̃3 = !

x̃4 = t

Auxiliary Variables

w̃1 = x3x4 = Mul (x3, x4)

w̃2, w̃0
12

, w̃0
11

, w̃0
15

= F1 (x̃1, x̃2, w̃1)

w̃3 = x̃2w̃2 = Mul (x̃2, w̃2)

w̃4 = x̃4w̃0
15

= Mul (x̃4, w̃0
15

)

w̃5 = x̃3w̃0
15

= Mul (x̃3, w̃0
15

)

w̃6 = x̃2w̃0
12

= Mul (x̃2, w̃0
12

)

w̃7 = x̃2w̃0
11

= Mul (x̃2, w̃0
11

)

w̃8 = x̃2w̃4 = Mul (x̃2, w̃4)

w̃9 = x̃2w̃5 = Mul (x̃2, w̃5)

w̃10 = w̃2 + w̃7 = Add (w̃2, w̃7)

Dependent Variables

G̃11 = w̃0
12

G̃12 = w̃0
11

G̃13 = w̃4

G̃14 = w̃5

G̃21 = w̃6

G̃22 = w̃10

G̃23 = w̃8

G̃24 = w̃9

Independent Variables

x̃0
1

= x̃1

x̃0
2

= x̃2

x̃0
3

= w̃1

Auxiliary Variables

w̃0
1

= tan (x̃0
3
) = Tan (x̃0

3
)

w̃0
2

= x̃0
2
� w̃0

1
= Sub (x̃0

2
, w̃0

1
)

w̃0
3

= x̃0
1
w̃0

1
= Mul (x̃0

1
w̃0

1
)

w̃0
4

= w̃0
3

w̃0
2

= Div (w̃0
3
, w̃0

2
)

w̃0
5

= sec (x̃0
3
) = Sec (x̃0

3
)

w̃0
6

= (w̃0
5
)2 = Sqr (w̃0

5
)

w̃0
7

= �w̃0
6

= Neg (w̃0
6
)

w̃0
8

= x̃0
1
w̃0

6
= Mul (x̃0

1
, w̃0

6
)

w̃0
9

= 1

w̃0
2

= Recip (w̃0
2
)

w̃0
10

= w̃0
4
w̃0

9
= Mul (w̃0

4
, w̃0

9
)

w̃0
11

= �w̃0
10

= Neg (w̃0
10

)

w̃0
12

= w̃0
1
w̃0

9
= Mul (w̃0

1
, w̃0

9
)

w̃0
13

= w̃0
7
w̃0

11
= Mul (w̃0

7
, w̃0

11
)

w̃0
14

= w̃0
8
w̃0

9
= Mul (w̃0

8
, w̃0

9
)

w̃0
15

= w̃0
13

+ w̃0
14

= Add (w̃0
13

, w̃0
14

)

Dependent Variables

ỹ0
1

= w̃0
1

G̃0
11

= w̃0
12

G̃0
12

= w̃0
11

G̃0
13

= w̃0
15

Target Function Function Node

Table 3.5: Jacobian ET for the lighthouse example using hSAD with function nodes.

131

CHAPTER 3. DERIVATIVE GENERATION

3.5.2 Tier Checkpointing

Tier checkpointing is a strategy available with hSAD to reduce the algorithms mem-

ory cost. It is similar in approach to checkpointing in reverse-mode AD whereby the

target function in partitioned into sections that can be processed independently and

then recombined. The boundaries between these partitioned sections are known as

checkpoints in AD terminology. Figure 3.4 shows what the DAG for the lighthouse

example could look like if a single checkpoint tier were to be introduced at the

approximate halfway point in the DAG.

Tier checkpointing divides the target function’s DAG into multiple portions,

with the output nodes from one portion functioning as the input nodes to the follow-

ing portion. These nodes that function as both output and input nodes in adjacent

portions are termed checkpoint variables. The checkpointed target function can then

be considered as a composite function of its checkpointed portions. From fig. 3.4,

the checkpoint variables {x̂2, ŵ3, ŵ4} contained within the checkpoint tier, T̂0, illus-

trate the concept of tier checkpointing. Note that in this version of the lighthouse

example, all variables are denoted with hats (e.g. ŵi) to avoid confusion with the

nomenclature used in sections 3.3.4 and 3.5.1. Additionally, auxiliary variables in

the second checkpointed portion will also be denoted with an apostrophe (e.g. ŵ
0
j)

to clearly distinguish them from auxiliary variables in the first checkpointed portion.

Inspecting fig. 3.4, it can be seen that one of the target function’s input variables,

x̂2, is carried directly over to the checkpoint tier, T̂0
0, while the other checkpoint

tier variables, ŵ3 and ŵ4, come directly from the first portion’s final tier, T̂3. This

illustrates that any variables can be mapped to checkpoint variables provided that

they are of lower precedence in the DAG

If tier checkpoints are used, then slight modification to the hSAD algorithm

is required. This is because when the hSAD pass is conducted on a checkpointed

portion, the resulting Jacobian matrix details the partial derivatives of that portion’s

output variables with respect to its input variables. For the whole target function to

be di↵erentiated, a hSAD pass needs to be conducted on all checkpointed portions

and the Jacobian matrices for all portions combined. Using the lighthouse example

from fig. 3.4, which contains a single checkpoint tier and two checkpointed portions,

if a hSAD pass were to be conducted then two Jacobian matrices, ĜA and ĜB, are

132

3.5. ALGORITHM PERFORMANCE OPTIMISATIONS

T̂ 0
T̂ 1

T̂ 2
T̂ 3

T̂0 0
T̂0 1

T̂0 2

x̂
1

⌫ x̂
2

� x̂
3

! x̂
4t

ŵ
1

⇥

ŵ
2

ta
n

ŵ
3

� ŵ
4

⇥

x̂
0 1

� x̂
0 2

ŵ
3

x̂
0 3

ŵ
4

ŵ
5

÷

ŵ
6

⇥

ŷ
1� ŷ
2

In
p
u
t

V
ar
ia
b
le
s

A
u
xi
li
ar
y
V
ar
ia
b
le
s

C
h
ec
kp

oi
nt

V
ar
ia
b
le
s

A
u
xi
li
ar
y

V
ar
ia
b
le
s

O
u
tp
u
t

V
ar
ia
b
le
s

F
ig
u
re

3
.4
:

D
A

G
fo

r
th

e
li
gh

th
ou

se
ex

am
p
le

u
si

n
g

h
S
A

D
w

it
h

ti
er

ch
ec

kp
oi

nt
in

g.

133

CHAPTER 3. DERIVATIVE GENERATION

produced where

ĜA =
@x̂0

@x̂
=

2

6664

@x̂0
1

@x̂1

@x̂0
1

@x̂2

@x̂0
1

@x̂3

@x̂0
1

@x̂4

@x̂0
2

@x̂1

@x̂0
2

@x̂2

@x̂0
2

@x̂3

@x̂0
2

@x̂4

@x̂0
3

@x̂1

@x̂0
3

@x̂2

@x̂0
3

@x̂3

@x̂0
3

@x̂4

3

7775
(3.74)

ĜB =
@ŷ

@x̂0 =

2

4
@ŷ1
@x̂0

1

@ŷ1
@x̂0

2

@ŷ1
@x̂0

3

@ŷ2
@x̂0

1

@ŷ2
@x̂0

2

@ŷ2
@x̂0

3

3

5 . (3.75)

The additional required step is therefore the recombination of ĜA and ĜB using the

chain rule (eq. (3.19)) such that

Ĝ =
@ŷ

@x̂
=
@ŷ

@x̂0
@x̂0

@x̂
= ĜAĜB . (3.76)

The fact that the DAG is partitioned by its checkpoint tiers means that each

portion of the checkpointed expression graph is independent from all others. This

means that each portion can be processed using hSAD independently before their

recombination using eq. (3.76), which results in both potential computational and

memory benefits. Firstly, the fact that the Jacobian matrix of each independent

checkpointed portion can be produced using hSAD completely independently from

all others means that this problem is embarrassingly parallel. It is therefore greatly

suited for parallel implementation. If each checkpointed portion’s Jacobian is pro-

duced using a separate process then there is a potential computational speed up for

the hSAD passes proportional to the number of processes used. If p checkpoint por-

tions are used (i.e. if there are p� 1 checkpoints), then the Jacobian recombination

will require p�1 linear matrix multiplications. However, if these recombinations are

conducted in parallel as pairs of matrix multiplications, then the wall time runtime

could be reduced to the time associated with only dlog2 pe matrix multiplications.

Secondly, if excessive memory consumption is a point of consideration then tier

checkpointing can be used to improve the memory cost of hSAD. This is because, at

most, only memory corresponding to the hSAD memory cost of a single checkpointed

portion in addition to the memory required to store the accumulated Jacobian needs

to be allocated. Using the lighthouse example, if the first checkpointed portion

is processed in its entirety first, then the total memory cost is that required to

produce ĜA using hSAD. That is the memory required to store ĜA plus the memory

associated with the first checkpointed portion’s delta and partial derivative matrices.

Once ĜA has been computed, the delta and partial derivative matrices associated

with the first checkpointed portion are no longer needed and this memory can be

freed. ĜB can then be computed in the same manner, with the total memory

consumption now being that associated with ĜA, ĜB and the delta and partial

134

3.5. ALGORITHM PERFORMANCE OPTIMISATIONS

derivative matrices of the second checkpointed tier. Once ĜB has been computed

in addition to ĜA, the delta and partial derivative matrices associated with the

second checkpointed portion are no longer needed and this memory can again be

freed. The combined Jacobian can then be accumulated by multiplying ĜA and

ĜB. In this case of the lighthouse example, this would result in the complete

combined Jacobian. However, if there were further checkpointed portions, these

could be computed and the combined Jacobian accumulated without increasing the

maximum memory consumption further. This is because only the resulting product

of ĜA and ĜB would need to be stored for later use. Therefore, memory for only

one matrix would be required and the memory associated with both ĜA and ĜB

could be freed.

As with checkpoints employed during reverse-mode AD, tier checkpointing in

hSAD also improves memory consumption of the algorithm at the expense of intro-

ducing a moderate number of additional floating point operations [20, 136]. This is

because tier checkpointing essentially introduces additional nodes in to the expres-

sion graph. Although these additional nodes do not have an operation associated

with them, and therefore di↵erentiate to 1 with respect to their parent variable,

they add further directed edges to the DAG. These larger DAGs will result in less

computationally e�cient numerical evaluation if the ET is compiled to a callable in

comparison to basic hSAD. As tier checkpointing typically increases the number of

auxiliary variables in the hSAD derivative trace and therefore increases computa-

tional complexity of the resulting derivative, it should only be employed when the

expression graph associated with a function is large enough that the computational

implementation is consuming excessive memory.

3.5.3 Lagrangian Hessian

When numerically solving an OCP using a direct collocation method, the resulting

NLP subproblem is of the form given by eqs. (2.64) to (2.66). To solve this NLP

subproblem e�ciently using a gradient-based NLP solver, first- and second-order

derivative information is required. These first-order derivatives are the gradient of

the objective function

g =
@J

@X
(3.77)

and the Jacobian of the constraints

G =
@C

@X
. (3.78)

The second-order derivatives are the Lagrangian Hessian

H =
@
2
L

@X2
, (3.79)

135

CHAPTER 3. DERIVATIVE GENERATION

where the Lagrangian, L, is

L = �J +
nCX

1

�iCi . (3.80)

In eq. (3.80), � is the objective factor and nC is the number of constraints in C.

Additionally, �i and Ci are the ith Lagrange multiplier and constraint respectively.

First-order derivative matrices can be readily computed using hSAD. Thus,

g and G can be produced by conducting a single hSAD pass on each of J and

C respectively. The second-order derivative matrix, H, can be naively computed

using hSAD by constructing a DAG for L, conducting an hSAD pass to produce

the nC long vector @L
@X and then conducting a further hSAD pass on the vector @L

@X

to produce the matrix H. It is possible, however, to compute H using only a single

hSAD pass by reusing results from the first-order derivatives.

Di↵erentiating eq. (3.80) with respect to X gives

@L

@X
= �

@J

@X
+

nCX

1

�i
@Ci

@X
= �g + �G , (3.81)

where � is the vector of length nC of Lagrange multipliers. Thus, if g and G

are computed first using hSAD, @L
@X can be readily computed using: the auxiliary

variables from the modified DAGs of J and c; a symbolic scalar multiplication with

�; a symbolic vector-matrix product with �; and a symbolic vector addition. This is

a considerably more computationally e�cient means by which to calculate @L
@X than

conducting a hSAD pass on L as using eq. (3.81) does not require the computation

of any new partial derivatives

H can then be computed using a single hSAD pass on @L
@X . The three required

derivatives (one first-order vector of partial derivatives, one first-order matrix of

partial derivatives and one second-order matrix of partial derivatives) can, thus, be

computed using only three hSAD passes plus a small amount of additional expression

graph manipulation.

3.6 Software Implementation: Dash

The theoretical performance of hSAD has been discussed in section 3.4.3. How-

ever, in order to assess its performance in practice, a computational implementation

needed to be developed. This section details the development of a supplementary

derivative backend (section 2.6.2) for the open-source general purpose optimal con-

trol software Pycollo (section 2.6). This derivative backend, known as the Dash

136

3.6. SOFTWARE IMPLEMENTATION: DASH

Backend

DashBackend

ExpressionGraph Node

Mul Tan Sqrt ExpAdd

Figure 3.5: A simplified diagram of the architecture of the Dash backend to Pycollo

using the Unified Modelling Language (UML).

backend, implements the hSAD algorithm and acts as a second selectable derivative

backend to Pycollo, alongside the CasADi backend (section 2.6). While the core

functionality of the Dash backend (sections 3.6.1 to 3.6.3) is generalised, the back-

end also implements OCP-specific functionality (sections 3.6.4 to 3.6.6) to support

e�cient interoperability with Pycollo.

3.6.1 Architecture

The Dash backend utilises an OOP architecture to facilitate the implementation of

hSAD, primarily so that OO can be leveraged. OO is used to facilitate integration

with the Pycollo application programming interface (API). This allows user-supplied

expressions to be defined easily and the DAG to e�ciently modified during the

application of the hSAD equations (eqs. (3.47) and (3.49)).

The Dash backend defines a pair of base classes, the Node and ExpressionGraph

classes, which form the building blocks of the hSAD software implementation (fig. 3.5).

Note that if an explicit namespace is not stated in the following explanation, all func-

tions and classes are part of the pycollo namespace. As such, the terminology used

here is equivalent to having imported Pycollo using from pycollo import *. At

the lowest level, Node objects are instantiated by the Pycollo Variable alias (for

reference, casadi.SX.sym objects are instead instantiated when the CasADi back-

end is used). Aliased Node objects are used to construct the definitions of the OCP

137

CHAPTER 3. DERIVATIVE GENERATION

Arithmetic

Operation

Implemented

As

Node

Class

Number of

Operands

Di↵erentiates

To

a+ b
a + b

add(a, b)
Add 2 1, 1

a� b
a - b

sub(a, b)
Sub 2 1, -1

ab
a * b

mul(a, b)
Mul 2 b, a

a
b

a / b

div(a, b)
Div 2

Recip(b),

Neg(Mul(Div(a, b), Recip(b)))

�a
- a

neg(a)
Neg 1 -1

1
a

1 / a

recip(a)
Recip 1 Neg(Sqr(Recip(a)))

p
a sqrt(a) Sqrt 1 Recip(Mul(Sqrt(a), 2))

a2
a**2

sqr(a)
Sqr 1 Mul(a, 2)

a3
a**3

cube(a)
Cube 1 Mul(Sqr(a), 3)

ab
a**b

pow(a, b)
Pow 2

Mul(b, Pow(a, Sub(b, 1))),

Mul(Pow(a, b), Log(a))

exp (a) exp(a) Exp 1 Exp(a)

log (a) log(a) Log 1 Recip(a)

sin (a) sin(a) Sin 1 Cos(a)

cos (a) cos(a) Cos 1 Neg(Sin(a))

tan (a) tan(a) Tan 1 Sqr(Sec(a))

sec (a) sec(a) Sec 1 Mul(Sec(a), Tan(a))

csc (a) csc(a) Csc 1 Neg(Mul(Csc(a), Cot(a)))

cot (a) cot(a) Cot 1 Neg(Sqr(Csc(a)))

arcsin (a) asin(a) Asin 1 Recip(Sqrt(Sub(1, Sqr(a))))

arccos (a) acos(a) Acos 1 Neg(Recip(Sqrt(Sub(1, Sqr(a)))))

arctan (a) atan(a) Atan 1 Recip(Add(1, Sqr(a)))

arccot (a) acot(a) Acot 1 Neg(Recip(Add(1, Sqr(a))))

sinh (a) sinh(a) Sinh 1 Cosh(a)

cosh (a) cosh(a) Cosh 1 Sinh(a)

tanh (a) tan(a) Tanh 1 Sub(1, Sqr(Tanh(a)))

arcsinh (a) asinh(a) Asinh 1 Recip(Sqrt(Add(Sqr(a), 1)))

arccosh (a) acosh(a) Acosh 1 Recip(Sqrt(Sub(Sqr(a), 1)))

arctanh (a) atan(a) Atanh 1 Recip(Sub(1, Sqr(a)))

Table 3.6: Operations supported by the Dash backend and their implementation

details. a and b are used to represent generic instantiated Node objects.

138

3.6. SOFTWARE IMPLEMENTATION: DASH

functions using Pycollo syntax. OO overloads the primitive arithmetic operators

(e.g. the * multiplication operator) and functions representing other atomic oper-

ations (e.g. the tan() function to support the trigonometric operation) are also

supplied. Both the overloaded operators and the atomic operation functions return

Node objects representing the operation applied with references to the other Node

objects that are operands. This is implemented by the Node class being subclassed

many times, with a child class existing to represent each of the atomic operations

supported by the implementation. For example, the overloaded * multiplication

operator returns a Mul object while the tan() function returns a Tan object, with

both the Mul and Tan classes being subclasses of the Node class. The full list of

operations supported by the Dash backend is shown in table 3.6. The set of opera-

tions was chosen to include all of those recommended as essential by [136] plus some

additional operations that were found to be useful when implementing test problems

during development. Note that all of the supported operations are di↵erentiable to

smooth continuous functions. This is to ensure that all of the derivatives generated

by the Dash backend are smooth, as is required to ensure the e�cient and successful

solving of OCPs [36, 43, 131].

Node objects can represent both scalars and variable length vectors. This is

to ensure that OCP derivatives can be generated e�ciently by treating continuous-

time variables, which will be discretised to multiple decision variables in the NLP

subproblem, as single nodes in the expression graph. This is valid as all of the dis-

cretised variables associated with a single continuous-time variable will be actioned

by the same operations and, therefore, many repeated parallel calculations can be

avoided. As such, state and control variables are automatically treated as variable

length vector nodes by the Dash backend, while integral, time and static parameter

variables are treated as scalar nodes. The Dash backend implements propagation

rules to ensure that operations involving variable length vector nodes are handled

correctly. That is, if an operation has a variable length vector node as at least

one of its operands, then the operation is assumed to apply element-wise. Another

assumption made by the Dash backend is that all variable length vector nodes will

have the same length when used in computations. This has the consequence that all

vector and matrix expressions need to be expressed element-wise when constructing

equations using the Pycollo API.

The Dash backend instantiates a single ExpressionGraph which is responsible

for building a combined DAG for all of the user-supplied functions. The single DAG

approach is critical as it allows the Lagrangian Hessian to be derived e�ciently us-

ing the already-generated objective function gradient and constraints Jacobian (sec-

tion 3.5.3). As such, the ExpressionGraph class possesses attributes that explicitly

map to the OCP functions. This means that the required OCP derivatives can easily

139

CHAPTER 3. DERIVATIVE GENERATION

be generated by the Dash backend and in a form where the predictable structure of

the NLP subproblem can be exploited (section 3.6.4). The other main responsibil-

ity of the ExpressionGraph object is to collate all of the OCP variables such that

when the hSAD algorithm is applied to the OCP functions, analytic derivatives are

generated with respect to all of the required variables simultaneously.

3.6.2 hSAD Algorithm

Once the ExpressionGraph object has been constructed, it will contain attributes

detailing how the OCP object function and constraints can be populated using nodes

contained within the DAG. The hSAD algorithm can then be used to generate the

first-order objective function gradient, the first-order constraint Jacobian and the

second-order Lagrangian Hessian. These three derivatives are produced using five

hSAD passes. Five derivative passes are required as both the constraint Jacobian

and Lagrangian Hessian contain functions of both state and state endpoint variables.

As such, one pass is required for the continuous variables and another for the end-

point variables for both derivative matrices. To be explicit, the defect constraints

will be constructed by di↵erentiating the state equations with respect to (among

other variables) the continuous state variables. On the other hand, the endpoint

constraints can only be functions of the state at the phase initial and final times.

Therefore, the ExpressionGraph object constructs two sets of variables, those that

correspond to the continuous functions (e.g. state equations, path constraints and

integrand functions) and those that correspond to the endpoint functions (e.g. ob-

jective function and endpoint constraints).

Before any hSAD passes are conducted, the entire DAG is tier partitioned using

a DFS algorithm [80]. Auxiliary variables are then assigned an arbitrary index in

their tier so that matrix indices will remain consistent between all matrices in the

hSAD equations and also between distinct hSAD passes. The first pass derives the

objective function gradient by di↵erentiating the objective function with respect to

the endpoint variables. This is done using a sparse matrix implementation of the

hSAD equations with the partial derivative matrices being populated dynamically

using each Node objects subclass type to provide the partial derivatives, and its tier

index and operands attribute to determine the correct matrix indices. The second

and third hSAD passes di↵erentiate the constraints with respect to the continuous

and endpoint variables respectively, deriving the continuous and endpoint constraint

Jacobians.

Before the Lagrangian Hessian can be derived, new variables to represent the

objective factor and Lagrange multipliers are introduced into the DAG as variable

140

3.6. SOFTWARE IMPLEMENTATION: DASH

nodes. The first-order Lagrangian gradient can then be constructed using these new

variables, the previously derived objective function gradient and the previously de-

rived constraint Jacobian. This is done by modifying the ExpressionGraph object’s

DAG with the previously mentioned primitives and additional Add and Mul nodes.

The Lagrangian gradient is then di↵erentiated twice, once with respect to the con-

tinuous variables in the fourth hSAD pass and once with respect to the the endpoint

variables in the fifth, to derive the Lagrangian Hessian. With this complete, all of

the required OCP derivative information has been generated.

Note that the Dash backend implements a pure-Python implementation of

sparse matrices to facilitate the application of the hSAD equations. This was neces-

sary in order to support the OO required to dynamically modify the DAG with the

required additional nodes generated during the hSAD passes. Existing sparse matrix

implementations (such as that in the Sparse subpackage of SciPy [321]) could not be

used along with the Dash backend’s Node class as they only support certain numeric

data types and do not support custom types. As this sparse matrix implementation

is pure-Python, it would almost certainly be ine�cient in comparison to a dedicated

implementation written in a low-level language like C or C++.

3.6.3 Dynamic Code Generation

With the full modified DAG containing the objective function gradient, constraint

Jacobian and Lagrangian Hessian constructed, callables to evaluate these (along

with the objective function and constraint) can be generated using dynamic code

generation. For each OCP function and derivative function in turn, the output

is analysed and the subset of nodes required as auxiliary variables for its evalua-

tion is generated. These auxiliary variables are then topologically sorted based on

their tier number to produce a serial ordered evaluation procedure. The T0 vari-

ables are extracted as these constitute the inputs. ST is then used to convert the

evaluation procedure into source code. This is done by generating code for a new

function definition with a unique name and with the inputs as its arguments. Each

auxiliary variable generates a single line of source code within the function body

representing how its auxiliary variable can be generated mathematically from previ-

ously evaluated auxiliary variables. For example, if the node w3 represents a binary

multiplication between two other nodes, w1 and w2, (i.e. w3 = w1w2) this will be

represented by a Mul object corresponding to w3 in the ExpressionGraph object’s

DAG, which will generate the string w3 = w1 * w2. Finally, the source code is then

used to generate a callable using Python’s exec built-in.

To improve the computational performance of the generated callables, just-in-

141

CHAPTER 3. DERIVATIVE GENERATION

time (JIT) compilation by Numba is leveraged. This ensures that any numerical

evaluation is conducted using low-level code operating on primitive data types. As a

result, the JIT-compiled callables are able to compete with compiled C and C++ code

on speed [206]. Numba handles the JIT compilation of the source code containing

operations on array types in an e�cient manner such that the callables need to be

recompiled if array values change in length between calls, as is almost always the case

between mesh iterations. As Numba is used to JIT compile the dynamically gener-

ated callables, additional optimisations, such as utilising single instruction, multiple

data (SIMD) to e�ciently evaluate vector expressions, are applied automatically by

the LLVM [209] compiler behind Numba [206].

3.6.4 Sparse Matrices

The sparse derivative matrices, namely the constraint Jacobian and Lagrangian

Hessian, are well-known to have predictable structure and can be constructed ef-

ficiently from the derivatives of the OCP functions and collocation scheme-specific

weighting matrices [8, 41, 264]. Specifically, the constraint Jacobian, contains 20 dif-

ferent types of block, resulting from it representing four di↵erent types of constraint

function (defect, path, integral and endpoint) and having been di↵erentiated with

respect to five di↵erent types of variable (state, control, integral, time and static

parameter). Of these 20 blocks, three are zero matrices (the partial derivatives of

the defect constraints with respect to the integral variables, the path constraints

with respect to the integral variables and the endpoint constraints with respect to

the control variables) and one is the identity matrix (the partial derivatives of the in-

tegral constraints with respect to the integral variables) [8, 41, 264]. The remaining

16 blocks also follow a predictable predominantly sparse structure. The full sparse

constraint Jacobian matrix can, therefore, be constructed by first generating the 12

nontrivial submatrices plus an identity matrix and then combining these as a sparse

block matrix.

The Lagrangian Hessian also exhibits a predictable structure of the same form,

this time containing 15 di↵erent types of block. This results from the Lagrangian

Hessian representing a quantity twice-di↵erentiated with respect to five di↵erent

types of variable in addition to the fact that it is symmetric and therefore the upper

right triangle of entries can be ignored [8, 41, 264]. Of the 15 required blocks,

one is a zero matrix (the second-order partial derivative of the Lagrangian with

respect to the control and integral variables) [8, 41, 264]. Again, by generating the

14 nontrivial submatrices and combining these as a sparse block matrix, the lower

triangular symmetric sparse Lagrangian Hessian can be constructed.

142

3.6. SOFTWARE IMPLEMENTATION: DASH

The Dash backend utilises the sparse subpackage of SciPy to construct the

sparse block matrices numerically. Firstly, the vector of decision variables is reshaped

such that all discretised decision variables corresponding to a single continuous-time

(state or control) OCP variable are combined into a single array data type. This

enables the callables compiled by the dynamic code generator, which have the OCP

variables as their arguments, to be called directly, evaluating the mesh-specific OCP

functions to return array data types as well. The output is then partitioned by type,

such that each block of the sparse matrix being constructed has access to only the

relevant nonzeros. Sparse submatrices are then structured using the sparse matrix

operations from SciPy before these are combined to produce the final block matrix.

The nonzeros are then sorted by their indices before they are returned.

This block sparse matrix construction methodology is used because it is a simple

way to ensure that all nonzero indices are correctly computed. This approach,

while being vastly more e�cient than determining the derivative matrices of the full

NLP subproblem directly, is still ine�cient. This is because it involves constructing

the actual sparse matrices on every function call rather than just determining the

nonzeros in a predictable order. A much better approach, which has yet to be

implemented for the Dash backend, would involve having the nonzero values be

returned directly by the callables compiled by the dynamic code generator. This

would then require a di↵erent algorithm for determining the indices of the nonzero

prior to solving the NLP subproblem. Specifically, the indices of the nonzeros would

need to be ordered such that they correctly correspond to the output of the constraint

Jacobian and Lagrangian Hessian callables.

3.6.5 Sparsity Structure Detection

Each ET produced by the hSAD algorithm corresponds to the analytic derivative

of the target function. Furthermore, the ETs populate the entire Jacobian and Hes-

sian matrices in a single function call. This means that only the absolute sparsity

structure of these matrices needs to be determined in order to construct the sparse

NLP matrices [8] and this can be done by propagating not a number (NaN) val-

ues through each of the function calls in turn. Fortunately, the absolute sparsity

structure is determined as one output of the hSAD algorithm. As such, no further

OCP-specific preprocessing is required here.

With the sparsity structure of the OCP determined, the mesh-specific sparsity

structures associated with a NLP subproblem can be determined. Section 3.6.4

details how the NLP constraint Jacobian and Lagrangian Hessian can be constructed

using the OCP functions. The Dash backend utilises the functions that numerically

143

CHAPTER 3. DERIVATIVE GENERATION

evaluate the NLP constraint Jacobian and Lagrangian Hessian. These functions

construct the entire block sparse matrices before sorting and returning just the

nonzeros. Therefore, the indices of the nonzeros can be readily extracted from this

function after the nonzeros have been sorted.

3.6.6 Interface with Ipopt

Ipopt requires that it is linked with callables for the numerical evaluation of the

objective function, objective function gradient, constraints, constraints Jacobian and

Hessian Lagrangian provided at a point in the decision space. These will typically

be called at least once per NLP iteration. The Dash backend links the callables

compiled using its dynamic code generator to Ipopt before each mesh iteration.

Note that although these callables are generated as part of a mesh-independent

preprocessing step, each mesh iteration requires a new NLP subproblem be defined.

Therefore, these callables need to be linked with a new Ipopt NLP before each mesh

iteration is solved.

Ipopt also requires that the nonzero indices of the constraint Jacobian and La-

grangian Hessian be supplied before the NLP is solved. The indices of the nonzeros

in these two sparse matrices are determined using the method described in sec-

tion 3.6.5 and are linked to Ipopt at the start of each mesh iteration.

3.6.7 Properties

As a result of the design decisions described by sections 3.6.1 to 3.6.6, the compu-

tational implementation has the following properties:

1. allows target functions to be expressed as a DAG;

2. applies hSAD to produce ETs for analytic first derivatives;

3. e�ciently generates Lagrangian Hessians from already-generated analytic rep-

resentations of objective function gradients and constraint Jacobians;

4. compiles ETs to e�cient low-level executable functions that can be called

directly by NLP solvers such as Ipopt;

5. callables treat the discretised state and control variables as vector functions

(of unspecified) length, so that, subject to some reshaping, they can be called

irrespective of the mesh discretisation; and

144

3.7. DASH INVESTIGATIONS

6. conducts all of the di↵erentiation and compilation steps (excluding the mesh-

specific sparsity detection, which has a computational cost less than that of a

single NLP iteration) as a preprocessing stage of the OCP solve.

3.7 Dash Investigations

In order to investigate the practical benefits of applying hSAD to numerically solve

OCPs and to assess the performance of the implemented Dash backend to Pycollo,

a number of investigations were conducted. These investigations compared the per-

formance of the supplementary Dash backend to Pycollo (section 3.6) against the

previously implemented CasADi backend (section 2.6). While the two backends

interface with Pycollo identically, they take di↵erent approaches in their operation

and so their comparison enables the practical properties of hSAD to be investigated

in the context of a well-established prevalent method.

As outlined in section 2.6, Pycollo supports the use of the AD software package

CasADi to supply first- and second-order derivative information and to interface

with the NLP solver Ipopt. CasADi abstracts away some of the complexities of

formulating NLPs, such a correctly calculating the Hessian of the Lagrangian using

only the objective function and constraints. This has the implication that CasADi

interfaces directly with the NLP solver. In the context of Pycollo, this means that

the full mesh-specific NLP subproblem must be defined for each mesh iteration. As

such, CasADi must reconduct all derivative generation (and required compilation

so that derivative information can be numerically evaluated) for each new mesh on

which the OCP is to be solved. This does not matter if the OCP can be solved

while meeting the desired mesh tolerance on the initial mesh. However, if mesh

refinement is required, as is the case in the majority of practical cases, then this

redetermination and recompilation of all of the derivative information for each mesh

iteration results in a large amount of repetition of very similar tasks.

The Dash backend takes a di↵erent approach and attempts to front-load all

derivative calculation and all of the compilation of the callables required by the NLP

solver. It is able to do this by applying hSAD to the OCP constraints (or constraint-

related functions in the OCP definition) and constructing the NLP subproblem

derivatives on a per-mesh-iteration basis by exploiting the well-known block sparsity

structure of the derivative matrices [8, 41, 264]. The exact sparsity pattern for a

specific mesh iteration is readily determined algorithmically by constructing the

block sparse matrices using a sparse matrix representation, in combination with the

symbolic derivative information obtained from the hSAD pass.

145

CHAPTER 3. DERIVATIVE GENERATION

The Dash and CasADi backends to Pycollo take contrasting approaches to how

and when OCP derivative information is generated during the numerical solving of

an OCP. The CasADi backend requires all derivatives to be determined (including

their exact sparsity structure using a graph colouring algorithm [20]) and compiled

before each mesh iteration. The Dash backend, on the other hand, determines

all of the derivative information required and compiles discretisation-independent

callables during a preprocessing step before the initial mesh iteration. It then only

requires a single derivative-related per-mesh-iteration preprocessing step to deter-

mine the exact sparsity structure of the mesh-specific constraint Jacobian and La-

grangian Hessian. The approach taken by the Dash backend should, theoretically,

o↵er a significant performance improvement over the approach taken by the CasADi

backend by avoiding much of the repeated similar work.

A set of three performance metrics were selected in order to compare the two

backends. The first metric was the time spent preprocessing the derivatives during

OCP setup. This is denoted by T , with appropriate subscripts to identify the two

backends. This metric is important as it captures the actual di↵erentiation of the

OCP functions and compilation of the NLP derivative callables that are conducted

by the Dash backend. As the CasADi backend does not conduct any preprocessing

of this type, TCasADi = 0 in all situations. The second metric, the time spent pre-

processing the derivatives per mesh iteration, is denoted by P . PCasADi accounts for

all derivative processing done by the CasADi backend, which includes: constructing

the mesh-specific NLP subproblem; di↵erentiating the NLP subproblem to produce

the NLP derivatives; compiling callables for evaluating the NLP functions and NLP

derivatives; and determining the sparsity of the NLP Jacobian and Hessian. Con-

versely, PhSAD only accounts for the determination of the mesh-specific constraint

Jacobian and Lagrangian Hessian sparsities. This is because all other steps are

conducted beforehand and attributed to ThSAD. It is important to note that even

if an OCP requires many mesh iterations to be solved to a desired mesh tolerance,

the cost associated with T will only be incurred once. On the other hand, the cost

associated with P is incurred on each mesh iteration. Thus, the total cost relating

to P increases proportional to the number of mesh iterations. The third and final

metric, the average time spent evaluating the external derivative callables called by

Ipopt during a single NLP iteration, is denoted by I. This metric is important as it

helps quantify the e�ciency of the callables that are provided to the NLP solver by

both backends. Taking all of these metrics in to account, if m mesh iterations are re-

quired to accurately solve the OCP and n̄ NLP iterations are required on average to

solve a single NLP subproblem, then the total cost associated with derivative-related

operations will be given by T +m (P + n̄I).

As both backends produce exact analytical derivatives, they should in theory

146

3.7. DASH INVESTIGATIONS

generate identical derivative information. This is not actually the case in practice

due to the fact that there will be slight di↵erences in the numerical evaluation

procedures produced by their compiled callables. However, as any di↵erences arise

due to uncontrollable factors associated with compilation, this is, therefore, not of

primary concern in relation to these investigations and will not be considered here.

Furthermore, it was found during testing that, NLP solving progressed identically

when both backends were used. That is, provided that the same mesh discretisation

and initial guess were used, the same number of NLP iterations were required to

converge to the same solution within the specified NLP tolerance. Therefore, for

the purposes of this investigation, metrics related to NLP performance (e.g. NLP

solve time, number of mesh iterations required etc.) are not included, particularly

as these were the focus of section 2.7.

A subset of three problems, all of which have previously been solved using

Pycollo (section 2.7), were selected for this investigation. The first problem selected

was the hypersensitive problem [36, 284] (section 2.7.4). The second problem was the

space station attitude control problem [36, 267] (section 2.7.6). These two problems

were specifically selected as, when formulated in Pycollo and analysed using theDash

backend, it was found that they yielded the smallest and largest expression graphs

(by node count) of all of the five solvable example problems in section 2.7. They

should, therefore, correspond to the example problems with the cheapest and most

expensive to derive and evaluate derivatives of the example problems, thus providing

good lower and upper bounds on expected real-world performance of hSAD and

Pycollo with its Dash backend. As both of these problems are single phase, a third

problem, the multiphase tumour anti-angiogenesis problem [36, 211] (section 2.7.8),

was also selected. Between these three example problems, all problem types solvable

by Pycollo are covered. This includes: single and multiphase problems; problems

with state, control, integral, time and static parameter variables; and problems with

defect, path, integral, endpoint and state endpoint constraints.

Each of the three chosen example problems was investigated across a range

of di↵erent mesh densities and, therefore, NLP problem sizes. Meshes containing

K = {10, 20, 50, 100, 200, 500, 1000} mesh sections, with each mesh section contain-

ing eight discretisation nodes, were used. The lowest value of K = 10 was chosen as

this is the default initial mesh density in Pycollo, making it a sensible lower bound.

The greatest value of K = 1000 is approximately an order of magnitude greater than

the densest mesh observed during the benchmarking experiments in section 2.7 and,

therefore, was assessed as a sensible upper bound that might be observed in the case

of a highly nonlinear and complex OCP. These values for K, therefore, cover the

range of magnitudes of mesh densities that are likely to be seen in practice. Seven

approximately logarithmically separated values for K were chosen because this was

147

CHAPTER 3. DERIVATIVE GENERATION

K ThSAD (s) TCasADi (s) PhSAD (s) PCasADi (s) IhSAD (s) ICasADi (s)

10 0.0115 0 0.0199 0.0658 0.007 71 0.000 063 0

20 0.0114 0 0.0229 0.124 0.0106 0.000 089 0

50 0.0114 0 0.0351 0.295 0.0190 0.000 134

100 0.0115 0 0.0656 0.611 0.0310 0.000 247

200 0.0114 0 0.133 1.37 0.0603 0.000 537

500 0.0114 0 0.340 5.70 0.204 0.001 40

1000 0.0114 0 1.08 19.5 0.618 0.004 19

Table 3.7: Performance comparison for the hypersensitive problem by Pycollo using

its Dash and CasADi backends. K denotes the number of mesh sections, T denotes

the time spent preprocessing the derivatives during OCP setup, P denotes the time

spent preprocessing the derivatives per mesh iteration, and I denotes the average time

spent evaluating the external derivative callables called by Ipopt during a single NLP

iteration.

deemed a reasonable sample size and because the lower and upper limits for K dif-

fered by two orders of magnitude. Eight discretisation nodes per mesh section were

used despite this being greater than the default Pycollo value of four. This was

for two reasons. Firstly, the mesh refinement algorithm in Pycollo can adjust the

number of discretisation nodes per mesh section. By default, Pycollo limits this to

be between four and 12 and, thus, a value of eight is the average of what will be

encountered using the default Pycollo settings. Secondly, using more discretisation

nodes per mesh section results in larger block sizes when constructing the derivative

matrices. This results in a greater cost associated with constructing the sparse block

constraint Jacobian and Lagrangian Hessian matrices when using the Dash backend.

Thus, a more realistic comparison to the CasADi backend (which does not need to

construct these matrices in a block-wise fashion on each NLP iteration) is presented

than if the default value of four had been used.

3.7.1 Hypersensitive Problem

The full definition of the hypersensitive problem is presented in section 2.7.4. This

OCP was selected for this set of investigations as it resulted in the most compact

expression graph when formulated in Pycollo using the Dash backend. Therefore,

it represents a good lower bound on the computational complexity expected when

solving real-world OCPs. Table 3.7 gives the measured benchmark metrics (T , P

and I) for all values of K using both the Dash and CasADi backends. As expected,

148

3.7. DASH INVESTIGATIONS

ThSAD was found to be almost identical for all values of K, with the maximum

variation found to be ±0.44%, due to the fact that the derivative preprocessing to

which this metric corresponds is mesh independent. Additionally, TCasADi was zero

for all values of K as the kind of derivative preprocessing associated with T is not

conducted by this backend.

PhSAD was greater than ThSAD for all values of K (table 3.7). Both PhSAD and

PCasADi were found to increase with K. PCasADi was found to be 3.31 times larger

than PhSAD when K = 10, increasing to 18.1 times larger for K = 1000.

The combined metric, T + P , which essentially represents the total derivative

preprocessing time if an OCP were to be solved in a single mesh iteration, is plotted

against K in fig. 3.6a. This is plotted on log-log axes due to the multiple orders of

magnitude covered by both K and the total preprocessing time, T + P . It can be

seen that the total derivative preprocessing time incurred by the CasADi backend is

always greater than with the Dash backend for the same value of K. Furthermore,

the rate of increase in the total derivative preprocessing time with increased K is

greater for the CasADi backend and is illustrated by the steeper line gradient.

ICasADi was found to be at least 108 times faster (K = 20) than IhSAD and at

most 148 times faster (K = 1000). There was, however, no consistent correlation

between the magnitude of the di↵erence between IhSAD and ICasADi with K. It is

likely that there was some inaccuracy in the profiling of the NLP iterations using

the CasADi backend due to the fact that the times were so fast. Therefore, it is

more reliable to say that, for this problem, IhSAD was approximately two orders of

magnitude slower than ICasADi.

3.7.2 Space Station Attitude Control

The full definition of the space station attitude control problem is presented in

section 2.7.6. This OCP was selected for this set of investigations as it resulted

in the largest expression graph by node count, when formulated in Pycollo using

the Dash backend. Therefore, it represents a sensible upper bound on the likely

computational complexity frequently encountered when solving real-world OCPs.

Table 3.8 gives the measured benchmark metrics (T , P and I) for all values of K

using both the Dash and CasADi backends. Again, ThSAD is almost identical for all

values of K, with the maximum variation found to be ±0.75%, while TCasADi was

zero for all values of K.

ThSAD was greater than PhSAD for K  200, but exceeded PhSAD for K � 500.

Both PhSAD and PCasADi were found to increase withK. However, it was not possible

149

CHAPTER 3. DERIVATIVE GENERATION

10 20 50 100 200 500 1000
Number Mesh Sections

10�1

100

101

Ti
m

e
(s

)

Dash Backend
CasADi Backend

(a) Time taken during preprocessing of derivatives

10 20 50 100 200 500 1000
Number Mesh Sections

10�4

10�3

10�2

10�1

Ti
m

e
(s

)

Dash Backend
CasADi Backend

(b) Average time taken per NLP iteration

Figure 3.6: Comparison of the time taken during numerical solving of the hypersen-

sitive problem by Pycollo using its Dash and CasADi backends.

150

3.7. DASH INVESTIGATIONS

K ThSAD (s) TCasADi (s) PhSAD (s) PCasADi (s) IhSAD (s) ICasADi (s)

10 2.69 0 0.152 3.93 0.0951 0.004 52

20 2.70 0 0.209 8.16 0.127 0.008 43

50 2.67 0 0.325 22.8 0.249 0.0221

100 2.70 0 0.498 49.2 0.417 0.0438

200 2.69 0 0.938 113 0.866 0.0907

500 2.66 0 3.15 815 2.65 0.235

1000 2.70 0 8.25 - 6.94 -

Table 3.8: Performance comparison for the space station attitude control problem by

Pycollo using its Dash and CasADi backends. K denotes the number of mesh sections,

T denotes the time spent preprocessing the derivatives during OCP setup, P denotes

the time spent preprocessing the derivatives per mesh iteration, and I denotes the

average time spent evaluating the external derivative callables called by Ipopt during

a single NLP iteration.

to benchmark the OCP using the CasADi backend with K = 1000 due to the

kernal killing the Python process running the investigation test during the mesh

iteration derivative preprocessing step. The process was killed due to it exceeding the

available memory. For the values of K that could be successfully investigated using

both backends, PhSAD was found to be between 25.9 (K = 10) and 259 (K = 500)

times faster than PCasADi. There was a consistent correlation, with the ratio of

PhSAD to PCasADi increasing with each tested value of K.

A log-log plot of T + P against K is shown in fig. 3.7a. ThSAD + PhSAD was

universally less than TCasADi + PCasADi, but only by 38.3% for K = 10. However,

as illustrated by the gradient of the line for the CasADi backend, TCasADi +PCasADi

increased with K at a much greater rate than ThSAD + PhSAD.

I increased with K, as would be expected, when both backends were used.

ICasADi was again found to be consistently less than IhSAD (fig. 3.7b). The largest

di↵erence was found when K = 10, with ICasADi being 21.0 times faster than IhSAD.

This ratio reduced to a minimum of 9.52 times when K = 100, with it also being

9.55 times when K = 200. However, the ratio between ICasADi and IhSAD was

reasonably consistent for 50  K  500 so, due to the expected variability associated

with benchmarking fast numerical computations, a more reliable conclusion is that

ICasADi was approximately one order of magnitude faster than IhSAD for K � 50.

151

CHAPTER 3. DERIVATIVE GENERATION

10 20 50 100 200 500 1000
Number Mesh Sections

101

102

103

Ti
m

e
(s

)

Dash Backend
CasADi Backend

(a) Time taken during preprocessing of derivatives

10 20 50 100 200 500 1000
Number Mesh Sections

10�2

10�1

100

101

Ti
m

e
(s

)

Dash Backend
CasADi Backend

(b) Average time taken per NLP iteration

Figure 3.7: Comparison of the time taken during numerical solving of the space

station attitude control problem by Pycollo using its Dash and CasADi backends.

152

3.7. DASH INVESTIGATIONS

K ThSAD (s) TCasADi (s) PhSAD (s) PCasADi (s) IhSAD (s) ICasADi (s)

10 0.0426 0 0.0315 0.204 0.0153 0.000 095 2

20 0.0422 0 0.0409 0.504 0.0234 0.000 280

50 0.0424 0 0.0764 2.26 0.0453 0.000 538

100 0.0421 0 0.146 7.47 0.0815 0.000 912

200 0.0429 0 0.234 27.4 0.156 0.001 97

500 0.0420 0 0.513 162 0.411 0.004 63

1000 0.0421 0 1.278 623 0.960 0.0102

Table 3.9: Performance comparison for the tumour anti-angiogenesis problem by

Pycollo using its Dash and CasADi backends. K denotes the number of mesh sections,

T denotes the time spent preprocessing the derivatives during OCP setup, P denotes

the time spent preprocessing the derivatives per mesh iteration, and I denotes the

average time spent evaluating the external derivative callables called by Ipopt during

a single NLP iteration.

3.7.3 Tumour Anti-Angiogenesis

The full definition of the tumour anti-angiogenesis problem is presented in sec-

tion 2.7.8. This OCP was selected for this set of investigations as an example of a

multiphase problem that can be solved by Pycollo. It should be noted that, despite

being a multiphase problem, this OCP can be considered to be less complex than

the space station attitude control problem presented previously owing to a number

of reasons, including: a smaller number of state variables; less complex dynamical

equations; no control variables in the second phase; and bang-bang optimal solution

to the control between a constant value and zero.

Table 3.9 gives the measured benchmark metrics (T , P and I) for all values of

K using both the Dash and CasADi backends. Like for the previous two example

problems, TCasADi was zero for all values of K while ThSAD varied by at most 1.06%.

In the case of the tumour anti-angiogenesis problem, ThSAD exceeded PhSAD for

K  20, with PhSAD exceeding ThSAD for K � 50. As was the case for the two

previous example problems, both PhSAD and PCasADi were found to increase with K.

Once again, the ratio of PCasADi and PhSAD increases with K, from a minimum of

PhSAD being 6.48 times faster for K = 10 to a maximum of PhSAD being 487 times

faster for K = 1000.

As before, a log-log plot of ThSAD+PhSAD againstK is shown in fig. 3.8a. ThSAD+

PhSAD was, again, universally less than TCasADi + PCasADi. For K = 10, TCasADi +

153

CHAPTER 3. DERIVATIVE GENERATION

10 20 50 100 200 500 1000
Number Mesh Sections

10�1

100

101

102

Ti
m

e
(s

)

Dash Backend
CasADi Backend

(a) Time taken during preprocessing of derivatives

10 20 50 100 200 500 1000
Number Mesh Sections

10�4

10�3

10�2

10�1

100

Ti
m

e
(s

)

Dash Backend
CasADi Backend

(b) Average time taken per NLP iteration

Figure 3.8: Comparison of the time taken during numerical solving of the tumour

anti-angiogenesis problem by Pycollo using its Dash and CasADi backends.

154

3.8. DISCUSSION

PCasADi was found to be only 2.75 times slower than ThSAD + PhSAD. However, the

di↵erence between the total preprocessing times incurred by each backend increased

consistently with K and TCasADi+PCasADi was found to be a maximum of 486 times

slower for K = 1000.

Finally, increasing K once again increased both IhSAD and ICasADi. ICasADi was

found to be a maximum of 161 times faster than IhSAD (K = 10) and a minimum

of 79.2 times faster (K = 200). Again, there was variability in the ratio between

IhSAD and ICasADi. However, ICasADi was, on average, 97.1 times faster. Therefore,

a reasonable assessment is that, for this problem, ICasADi was approximately two

orders of magnitude faster than IhSAD.

3.8 Discussion

The results and analysis of the investigations conducted in section 3.7 will now be

discussed. The measured values for ThSAD varied by ±0.44%, ±0.75% and ±1.06%

for the hypersensitive problem (section 3.7.1), space station attitude control problem

(section 3.7.2) and tumour anti-angiogenesis problem (section 3.7.3) respectively.

Despite the fact that ThSAD is theoretically independent of K and should, therefore,

be exactly the same across all tests for the same problem, it is to be expected

that recorded execution times will di↵er slightly between successive runs. This

is because accurately and precisely benchmarking the execution time of computer

code is di�cult due to the fact that modern operating systems may, uninitiated

by the experimenter, interrupt the execution of a script by interweaving multiple

processes on the same CPU core during the benchmarking. While the potential

influence of this can be mitigated by attempting to have the benchmarking machine

not do anything else while running the investigations, it is very di�cult to do this

in practice. Furthermore, external factors, such as the room temperature or load

history of the CPU in the minutes leading up to the benchmark run, may further

influence the recorded times as the operating system throttles the CPU or allows

overclocking based on instantaneous thermals. The fact that all of the measured

values of ThSAD were of the order of 1% or less supports the statement that the

benchmarking results arising from this set of investigations are reliable.

As indicated by table 3.8 and fig. 3.7, the space station attitude control problem

could not be solved for K = 1000 when the CasADi backend was being used. This

was due to the kernel killing the Python process running the investigation during the

derivative preprocessing step. The process killing occurred during internal CasADi

function calls and was likely a result of excessive memory usage. The dynamics

155

CHAPTER 3. DERIVATIVE GENERATION

involved in the space station attitude control problem are complicated and a large

ET is required to express them in full. By formulating the NLP in full, as is the

case in the approach taken by the CasADi backend, derivative matrices involving

many thousands of variables and constraints are required when K = 1000. It is

clear from the result of this specific investigation that the AD approach taken by

CasADi results in excessive memory usage when an attempt is made to populate

these derivative matrices. This confirms that taking an approach which does not

exploit the predictable structure of the NLP subproblem is not only ine�cient but

is also unfeasible for dense discretisation meshes.

Across all three test problems, PhSAD was consistently found to be at least

an order of magnitude faster than PCasADi. In all cases, both PhSAD and PCasADi

increased as K increased. However, the rate of increase in PhSAD with K was found

to be significantly less than that for PCasADi. This meant that for dense meshes,

PCasADi was typically two orders of magnitude slower than PhSAD. Furthermore,

it is also likely that, judging by the gradient of the line for the CasADi backend

in fig. 3.7a, PhSAD would have been close to three orders of magnitude faster than

PCasADi in the case of the space station attitude control problem had it been possible

to run the test for K = 1000. As P corresponds to the mesh-specific preprocessing,

it was expected that PCasADi would involve significantly more cost than PhSAD due to

the fact that the CasADi backend has to conduct all of its derivative preprocessing

on the full dense NLP subproblem while the Dash backend exploits knowledge of

its underlying structure. The fact that OCPs will not typically be solved in a single

mesh iteration, as illustrated by section 2.7, reinforces the benefits of a smaller P .

These results confirm the predicted performance of the Dash backend and support

its approach. Namely that as much as possible of the derivative preprocessing be

conducted in a mesh-independent manner and the known structure of the NLP

subproblem be exploited to construct the derivative matrices from the derivatives

of the functions defining the OCP.

Using the number of nodes in the expression graph as an approximate measure

of problem complexity, of the three test problems, the hypersensitive problem is the

least complex. Conversely, the space station attitude control problem is the most

complex. Comparing PhSAD between the three test problems shows that PhSAD

increases with problem complexity. PhSAD only involves the computation of the

mesh-specific indices of the nonzeros in the Jacobian and Hessian. The reason that

this trend is observed is due to the method currently utilised by the Dash backend

to determine these indices. The Dash backend does this by calling the callables for

the Jacobian and Hessian linked to Ipopt with an array populated by floating point

NaN values as the argument. This approach is suboptimal and should be replaced by

an algorithm to directly construct these indices from the known sparsity pattern of

156

3.9. CONCLUSIONS

the NLP subproblem. If this was done then it would be expected that PhSAD would

increase slightly with increasing K, but would be independent of the complexity of

the OCP being solved.

Section 3.7 showed that IhSAD was consistently slower than ICasADi across all

three example problems. While there was variation in the measured ratio between

IhSAD and ICasADi for all problems, there was on average a bigger discrepancy be-

tween the cost of the NLP function calls when the OCP was less complex. In the

case of the hypersensitive problem, IhSAD was on average 129 times slower than

ICasADi. This decreased to 97.1 times for the tumour anti-angiogenesis problem and

decreased further to 13.0 times for the space station attitude control problem. hSAD

should, theoretically, lead to cheaper numerical evaluation of NLP derivatives than

AD for the reasons outlined in section 3.4. However, this assumes a like-for-like

implementation. This is not the case for the CasADi and Dash backends. There-

fore, the large di↵erences in IhSAD and ICasADi measured can be explained by two

factors. Firstly, the CasADi backend’s code writer generates optimised C code to

numerically evaluate the derivatives. Conversely, the Dash backend’s code writer

generates Python functions. It is well known that interpreted Python code is typ-

ically between 10 and 100 times slower than equivalent compiled C code. While

the Dash backend attempts to improve the execution speed of these through JIT

compilation using Numba [206], it is not possible to achieve performance on par

with compiled code from a low-level language using this approach. This is exagger-

ated by the fact that CasADi is an established package and its code writers have

undergone significant optimisations during its many years of development [20]. Sec-

ondly, the CasADi backend generates the derivative matrices directly. Conversely,

the Dash backend first evaluates all of the nonzeros using the OCP functions (and

their derivatives) and then constructs the NLP derivatives as sparse matrices using

a block sparse matrix construction. This added complexity on each NLP function

call is a consequence of exploiting the known sparsity of the NLP subproblem. It is

also one of the main reasons why PhSAD is significantly less than PCasADi. It is likely

that the implementation of the sparse block construction of the NLP matrices in

the Dash backend could be greatly improved with future work. Considering these

things, there is no reason why IhSAD could not be reduced to come close to matching

ICasADi with refinement of the implementation of the Dash backend.

3.9 Conclusions

The derivative-taking algorithm hSAD has been developed, specifically to assist with

e�cient numerical solving of OCPs. hSAD:

157

CHAPTER 3. DERIVATIVE GENERATION

• allows a DAG for first-order derivatives to be generated, which can then be

transformed into an evaluation trace and compiled to a callable, such that the

derivatives can be numerically evaluated;

• enables second-order derivatives to be generated by repeated passes of the

hSAD algorithm;

• demonstrates theoretical complexity at least as good as forward-mode AD;

• e�ciently generates the first-order derivatives required to solve the NLP sub-

problem associated with a discretised OCP in an exact analytic form; and

• incorporates a method for e�ciently generating the second-order Lagrangian

Hessian derivative matrix from other first-order derivatives.

Dash, an additional derivative backend for the open-source general-purpose

optimal control software Pycollo, was developed, which:

• provides a computational implementation of the hSAD algorithm;

• supports code generation for the numerical evaluation of gradients, Jacobians

and Lagrangian Hessians; and

• interfaces directly with the NLP solver Ipopt.

The Dash backend for Pycollo has been benchmarked against the already-

existing CasADi backend across three varied OCPs from the literature. These in-

vestigations found that:

• the Dash backend o↵ers very favourable preprocessing cost in comparison to

the CasADi backend, especially for dense mesh discretisations;

• a practical implementation of the hSAD algorithm leads to very e�cient

derivative generation when combined with exploitation of the known structure

of the NLP subproblem formed when using direct collocation to numerically

solve an OCP;

• the numerical evaluation times measured were between one and two orders

of magnitude slower when the Dash backend was used in comparison to the

CasADi backend; and

• slow evaluation times using the Dash backend can be attributed to di↵erences

in the choice of programming language used and ine�ciencies due to imple-

mentation decisions taken when developing it.

158

3.9. CONCLUSIONS

The open-source provision of Pycollo and its supplementary Dash backend will

allow researchers in this field to further develop the hSAD algorithm and its specific

application to the numerical solving of OCPs. In particular, it is recommended that

future research investigates:

• developing a further mode of hSAD that is analogous to reverse-mode AD

(as opposed to forward-mode AD) as this will potentially yield performance

benefits when evaluating derivatives for functions with many more outputs

than inputs;

• the application of the hSAD concepts of function nodes and tier checkpointing

further, to make recommendations on their application and use; and

• optimising and reimplementing Dash in a lower-level programming language,

such that it is capable of numerically evaluating derivatives with performance

equivalent to the CasADi backend, while also o↵ering significantly cheaper

derivative preprocessing costs.

159

Chapter 4

Multibody Dynamics

This chapter describes on the development of a software package for the definition

and solving of optimal control problems (OCPs) involving multibody dynamics, a

need not met by the existing software packages in this field. It commences with a

review of the related academic literature and a discussion of relevant background

material in section 4.1. The third objective from section 1.3 is restated, and a number

of sub-objectives required to meet it are then laid out in section 4.2. Section 4.3

details the development and attributes of a new software package designed to meet

the stated objectives. A set of investigations using the developed software package

were conducted to validate its accuracy and reliability, and to test and evaluate

alternative computational approaches. The results from these investigations and

their implications are discussed in section 4.5. The chapter concludes by assessing

the extent to which the objective and sub-objectives laid out in section 4.2 have

been met.

4.1 Background, Theory and Review

In recent years, musculoskeletal modelling has become an increasingly applied method-

ology in biomechanics research. With the skeleton being a critical part of any ver-

tebrate, a musculoskeletal model requires an underpinning model of the skeletal

system. As such, multibody dynamics plays a significant role in biomechanics re-

search.

Methods and software for simulating multibody dynamics were originally devel-

oped in the fields of mechanical and aerospace engineering to solve problems within

these contexts [165, 170, 189]. Early advancements in these fields were critically

important for establishing algorithms by which the equations of motion (EoMs)

161

CHAPTER 4. MULTIBODY DYNAMICS

defining a system could be derived, together with methods for converting these

formulations into e�cient software for running simulations [292].

Another area where the modelling and simulation of multibody dynamics has

been prevalent is in physics engines for computer games. Prominent examples of

games physics engines include PhysX [254], which is used in the two most well-

known game engines, Unreal Engine [101] and Unity [141]. In addition, ODE [305],

has been used by biomechanics researchers to investigate the gait of dinosaurs [296].

As well as supporting the modelling and simulation of rigid body dynamics, physics

engines such as PhysX and ODE also support additional functionality such as soft

body dynamics and collision detection.

Computer game physics engines have the overarching requirement of providing

real-time performance. This is because real-time responses are required to achieve

performance suitable for reactive gameplay. As such, computation speed is priori-

tised, typically at the expense of accuracy, and these tools cannot be used reliably

for quantitative engineering [254, 292]. For example, PhysX ignores Coriolis forces

making it unsuitable for applications where accuracy is of any importance [102].

Furthermore, game physics engines have been designed solely with forward sim-

ulation in mind. This means that they construct EoMs to be in a form focused solely

on use by ordinary di↵erential equation (ODE) solvers [292]. Typically only numer-

ical evaluation of velocity and acceleration quantities is supported. As outlined in

chapters 2 and 3, OCPs require first- and second-order derivative information to

be solved e�ciently and reliably. Therefore, the output of physics engines does not

provide the information about dynamical quantities in a form suitable for use in

OCPs.

Due to the lack of accuracy, focus on real-time computation and incompati-

bility with formulating OCPs, research involving multibody dynamics in the field

of biomechanics has been developed based on the methodologies and software from

aerospace and mechanical engineering.

4.1.1 Deriving Equations of Motion

In order to fully describe how any applied forces will articulate a musculoskeletal

model, dynamical EoMs for the system need to be derived. Many methods for de-

riving the EoMs governing a particular multibody system exist. These methods of

classical mechanics include, among others, the Newton-Euler equations, Langrangian

mechanics and Kane’s method. The dynamics of any system are uniquely described

and all derivation methods produce mathematically equivalent EoMs [217]. How-

162

4.1. BACKGROUND, THEORY AND REVIEW

ever, di↵erent derivation methods will produce di↵erent analytic expressions for

these, in terms of how they are factorised or which terms have been cancelled, with

some being more compact and e�cient than others [292]. Consequently, the result-

ing formulation of the EoMs and their complexity will have implications on run-time

performance when used as part of any simulation or optimisation [292].

Newton-Euler Equations

The Newton-Euler method, based on Newton’s second law, allows the EoMs for

a system to be derived by relating the motion of each particle or rigid body in

the system, to the sum of all external forces and torques acting upon it. While

it is possible to use this method to derive a system of EoMs equal in size to the

number of degrees of freedom (DoFs), this requires careful selection of the directions

in which forces are resolved, which is di�cult to do correctly when implementing

the method algorithmically in a software implementation [191]. Consequently, this

method typically results in larger, more coupled systems of equations as the number

of particles increases [57, 74, 191].

Lagrangian Mechanics

Instead of looking at the forces acting on or within a system, Lagrangian mechanics

looks at the energies. This approach requires multiple first-order derivatives to be

taken. These derivatives include ones with respect to the generalised coordinates,

the first-order time derivatives of the generalised coordinates (generalised speeds)

and first-order time derivatives. For all but the simplest of examples, analytical

expressions for these derivatives are non-trivial to obtain and the expression yielded

are not guaranteed to be in simplified forms [190, 191, 292].

Kane’s Method

Kane’s method di↵ers from the two previously presented methods because where

methods based on classical mechanics utilise virtual quantities of variational me-

chanics, Kane’s method instead uses specific known quantities [191]. It was devel-

oped in the late twentieth century with the goal of creating a method of dynamics

more systematic and physically intuitive than the other methods described previ-

ously [191]. As such, in the seminal textbook on the approach [191], it is stated that

the method can produce EoMs for a system that can be solved more easily than

with Langrangian mechanics.

163

CHAPTER 4. MULTIBODY DYNAMICS

Kane’s method can be derived using Newton’s second law and the concept of

partial velocities [191, 291]. The result of the derivation gives Kane’s Dynamical

Equations

F̃r + F̃
⇤
r = 0 . (4.1)

In eq. (4.1), F̃r denotes the generalised active forces and is defined as

F̃r =
⌫X

i=1

ṽPi
r · Ri , (i = 1, . . . , p) , (4.2)

where Ri is the resultant of all contact and distance forces acting on Pi, ṽPi
r is the

rth nonholonomic partial velocity of Pi and all other nomenclature is as before.

Similarly, F̃ ⇤
r from eq. (4.1) denotes the generalised inertial forces and is defined as

F̃
⇤
r =

⌫X

i=1

ṽPi
r · (�miai) , (i = 1, . . . , p) (4.3)

where ai is the acceleration of Pi in N .

One advantage of Kane’s method is that it is systematic and, as such, EoMs

can be derived methodically by following a series of standard steps. These steps are:

1. identify points that are locations of centres of mass or locations of applied

forces;

2. select a set of generalised coordinates (qr) and generalised speeds (ur);

3. generate expressions for angular velocity and acceleration of all bodies, and

velocity and acceleration of the important points;

4. determine partial velocities for all points with respect to all generalised speeds;

5. construct Kane’s Dynamical Equations from the generalised active forces and

generalised inertial forces;

6. rearrange Kane’s Dynamical Equations into the form Mẋ = k, where ẋ is the

column vector of first-order time derivatives of all of the generalised coordi-

nates and speeds; and

7. (optionally) solve for ẋ.

To further explain the method, the EoMs for a classic system, the simple pen-

dulum, are derived. Illustrated in fig. 4.1, the simple pendulum system S involves

a bob with mass m suspended by a light string of length ` from point O. The bob

hangs freely under gravity, where the acceleration due to gravity is g, and the clock-

wise angle that the string makes with the downwards vertical is ✓. It is also useful

164

4.1. BACKGROUND, THEORY AND REVIEW

m

✓

`

n̂2

n̂1

n̂3

N

b̂1

b̂2

b̂3

B

Figure 4.1: Diagram of the simple pendulum system.

b̂1

b̂2

b̂3

mg

✓

FT

Figure 4.2: Free body diagram of the pendulum bob. Only applied forces are shown.

to define two reference frames, an earth-fixed reference frame N and a bob-fixed

reference frame B. Both N and B are defined by a set of mutually orthogonal unit

vectors as is illustrated in fig. 4.1.

To derive the EoMs for the simple pendulum system S using Kane’s method, the

steps above can be followed sequentially. Note that the tilde notation of eqs. (4.2)

and (4.3) can be dropped as S is a holonomic system [191]. First, it needs to be

noted that the simple single DoF system consists of only a single particle with no

additional constraints. Therefore, ⌫ = p = 1. Second, a sensible choice for the

single generalised coordinate q1 = ✓ can be made, along with a sensible choice for

the single generalised speed u1 = ✓̇. It is common to select the generalised speeds to

be the first-order time derivatives of the generalised coordinates. Third, the velocity

of the bob can be determined as

Nvm = ✓̇`b̂2 (4.4)

and the acceleration of the bob can be determined as

Nam =
d

dt

�
Nvm

�
=

d

dt

⇣
✓̇`b̂2

⌘
= ✓̈`b̂2 + ✓̇

2
`
˙̂b2 = ✓̈`b̂2 � ✓̇

2
`b̂1 . (4.5)

Fourth, the partial velocity of the bob with respect to ✓ can easily be determined

165

CHAPTER 4. MULTIBODY DYNAMICS

from the expression for the velocity of the bob as

vm
1 = `b̂2 . (4.6)

Fifth, before the generalised active force F1 can be calculated, the resultant force on

the bob R1 needs to be found. By examining the free body diagram (FBD) shown

in fig. 4.2

R1 = mgn̂1 � FT â1 = mg (cos (✓)â1 � sin (✓)â2)� FT â1 (4.7)

and so, using eq. (4.2),

F1 = vm
1 · R1

=
⇣
`b̂2

⌘
·

⇣
mg

⇣
cos (✓)b̂1 � sin (✓)b̂2

⌘
� FT b̂1

⌘

= mg`

⇣
cos (✓)b̂2 · b̂1 � sin (✓)b̂2 · b̂2

⌘
� FT `b̂2 · b̂1

= �mg` sin (✓) ,

(4.8)

noting that the dot product between any pair of orthogonal vectors is 0 and the dot

product of any unit vector with itself is 1. Similarly, using eq. (4.3)

F
⇤
1 = vm

1 ·
�
�m

Nam
�

=
⇣
`b̂2

⌘
·

⇣
�m

⇣
✓̈`b̂2 � ✓̇

2
`b̂1

⌘⌘

= �m`2✓̈b̂2 · b̂2 +m`
2
✓̇
2b̂2 · b̂1

= �m`2✓̈ .

(4.9)

Kane’s Dynamical Equations can then be constructed by combining eqs. (4.8) and (4.9)

to give

F1 + F
⇤
1 = �mg` sin (✓)�m`

2
✓̈ = 0 . (4.10)

Finally, combining the sixth step and optional final step, rearranging eq. (4.10) yields

the EoM

✓̈ = �
g

`
sin (✓) . (4.11)

While this example may appear to make Kane’s method appear laborious, it is

worth noting that the approach is the same for all systems, no matter their size or

complexity.

Discussion of Methods

There are numerous examples in the literature showing that hand-crafted software

implementations of EoMs are the most performant [56, 57, 190]. Hand-crafted

166

4.1. BACKGROUND, THEORY AND REVIEW

implementations require manual derivation of the EoMs, allowing significant rear-

rangement and simplification of the equations, as well as manual optimisation of

any computer code [190]. However, derivation by hand is time consuming and error

prone for all but the simplest of systems [259]. Furthermore, such an approach is

system-specific so would need to be completely redone if the system was changed

even slightly. This approach is, therefore, seldom practical. As such an algorithmic

approach that can be automated in software is required for both general multi-body

modelling software [292] and biomechanical modelling software [259].

All three of the approaches presented above have the potential to be converted

into systematic software implementations. While all three methods will generate

mathematically equivalent EoMs for a system, the formulations will not necessarily

be equivalently e�cient [292]. E�ciency here can refer to both the size of the

resulting EoMs as well as the susceptibility of the formulation to be translated into

performant software. Dynamical calculations typically account for a significantly

large proportion of overall computation time during multibody simulations [292].

This is especially true within the context of an OCP because this can result in

millions of consecutive evaluations of the EoMs [74]. Compact EoMs are, therefore,

critically important for ensuring that they can be numerically evaluated e�ciently

as part of any software which they are associated with.

The method based on the Newton-Euler equations generally leads to exceed-

ingly compact expressions [292]. However, as the approach requires treating each

particle in the system as decoupled, with any internal or constraint forces replaced

by explicitly named unknowns, the resulting number of equations can far exceed the

number of required generalised coordinates [74]. This is because in addition to the

generalised coordinates, the resulting system of equations will also contain all of the

symbolic internal and constraint forces as unknowns. As a result, the additional

expression manipulation required to eliminate the excess unknowns can result in

extensive expression bloat [292].

A systematic method for deriving EoMs of biomechanical systems based on the

Newton-Euler equations has been proposed [74]. In this approach, the Newton-Euler

force and torque equations for each segment in a musculoskeletal model are derived.

These are then used to solve the system’s acceleration states using matrix manip-

ulations. While this method does present a simple and logical way of procedurally

deriving the EoMs for any two-dimensional (2D) system, the final matrix repre-

sentation of the EoMs also includes all internal and external reaction forces. This

results in a coupled linear system of equations that is larger than required to de-

scribe the system. This approach is, therefore, not suitable for use as a methodology

in a general-purpose package. Furthermore, the approach is not applicable to three-

167

CHAPTER 4. MULTIBODY DYNAMICS

dimensional (3D) systems making it further unsuitable for modern biomechanical

analysis [74].

Lagrangian mechanics and Kane’s method contrast approaches based on the

Newton-Euler equations in that exactly one expression is yielded per generalised

coordinate. This results in an as-compact-as-possible linear system of equations

defining the generalised coordinates and speeds. Unlike Kane’s method, Lagrangian

mechanics requires a substantial number of scalar energy quantities to be di↵erenti-

ated as part of the derivation process. This results in potentially bloated expressions

containing complicated trigonometric functions [292]. This has also been stated to

be the case in biomechanical applications [74]. While it is possible to simplify the

expressions of Lagrangian mechanics, it is not easy to do this systematically. This is

primarily because, as stated in section 3.1, it is di�cult to ascertain when a system

of equations has been simplified su�ciently. Kane’s method, on the other hand, has

been shown to lead directly to the simplest possible EoMs [190].

Kane’s method yields one equation per generalised coordinate. However, if

internal or constraint forces are explicitly required, then Kane’s method can also

easily produce these by using auxiliary speeds [191] to yield the required additional

equations [291]. Kane’s method, therefore, o↵ers the ability to easily control which

unknown quantities are present in the resulting EoMs. As such, this method is well

suited for use as the basis of algorithmically generating EoMs [189, 190, 292]. For all

of the reasons mentioned above, Kane’s method is also advantageous when applied

to deriving EoMs for musculoskeletal models [299, 331].

4.1.2 Explicit and Implicit Formulations

No matter which method is used to derive the EoMs for a system, a system of linear

equations in the form Mẋ = k will be yielded. In this system, M is the mass matrix,

k is the forcing vector and ẋ is the column vector of first-order time derivatives of

the generalised coordinates and speeds. Typically, ẋ would need to be found by

inverting M to transform the linear system into ẋ = M�1k so that ẋ can be directly

used either as a di↵erential-algebraic system of equations (DAE) in an initial value

problem (IVP) or as a state equation in an OCP. If the system is transformed so that

ẋ has been found, then the system can be termed explicit. If, on the other hand,

the EoMs remain in the form Mẋ = k, then the system of equations are coupled in

the highest-order derivative and, as such, are termed implicit.

The simplest and most intuitive approach to formulating a set of EoMs for use

in an OCP is to explicitly solve for the first-order time derivatives of the generalised

168

4.1. BACKGROUND, THEORY AND REVIEW

coordinates and speeds. As the generalised speeds are typically chosen to be the

first-order time derivatives of the generalised coordinates, only the generalised ac-

celerations need to be explicitly found. This is the approach taken by the majority

of multibody software packages [246, 299]. Obtaining ẋ explicitly is conceptually

advantageous as it means that state equations for the generalised speeds can be

directly supplied to the OCP software unaltered. One potential major downside of

this approach, however, is that by explicitly inverting the mass matrix, the resulting

expressions for ẋ can become exceedingly large and complex. This will have im-

plications on the computational performance when solving the OCP as these state

equations and their derivatives will be computationally expensive to numerically

evaluate. An additional downside is that the mass matrix can be near-singular for

biomechanical models due to the small masses and inertias of certain bodies in the

system [57]. Therefore, inverting the mass matrix can result in very sti↵ equations

for ẋ with large eigenvalues [57].

To avoid the numerical complications associated with a near-singular mass ma-

trix, an implicit formulation is required as this completely avoids the requirement of

computing M�1 [57]. An implicit formulation is usually produced by introducing a

set of auxiliary controls, equal in size to the number of generalised speeds [57, 108].

The generalised speeds’ state equations are directly mapped to the auxiliary con-

trols while the EoMs are enforced by introducing them as algebraic constraints. For

an OCP being solved using a direct collocation method, these algebraic constraints

correspond to introducing n path constraints per generalised speed, where n is the

number of discretisation nodes in the temporal mesh of the nonlinear programming

problem (NLP). Therefore, an implicit formulation has the e↵ect of significantly

increasing the size of the NLP subproblem, both in decision variables and in con-

straints. This is a drawback as larger NLPs tend to be more di�cult to solve [131].

Furthermore, the introduction of additional path constraints is not ideal as these

increase the complexity of the NLP and its di�culty to solve, and should be avoided

if possible [36].

Both implicit and explicit EoMs have been proposed as being more suitable for

musculoskeletal simulations. It has been argued that an implicit formulation pro-

duces sparser matrices which allows more e�cient matrix derivative calculations and

results in a more well conditioned numerical problem than a comparative explicit

formulation [57, 81]. There are many examples in which implicit formulations have

been used [57, 85, 91, 108]. However, others have reported success in producing e�-

cient and well-conditioned simulations and OCPs using explicit formulations [212].

There is yet to be a direct comparison of the performance of explicit and implicit

formulations for the same problem.

169

CHAPTER 4. MULTIBODY DYNAMICS

4.1.3 Assumptions in Biomechanical Multibody Dynamics

Rigid Body Mechanisms

The skeletal system is generally modelled as a mechanism of linked rigid mem-

bers [53, 54, 74, 251, 274]. Segments are assumed to be rigid as this allows the use

of rigid body dynamics in the derivation of EoMs [74]. This assumption is valid if

the modelled movement tasks do not involve impacts, which have been shown to

cause non-rigid behaviour [93, 137, 221].

To incorporate modelling of large-scale soft tissue movement relative to the

bone, wobbling mass models have been used [137]. This is typically done by attach-

ing a second rigid element to a rigid body via a nonlinear damped passive spring [258,

338]. Inclusion of wobbling masses can be crucial for accurate modelling and has

been shown to reduce loading on the system by nearly 50% compared to an equiv-

alent rigid body model [258]. However, such models increase the number of bodies

present in a model and thus increase system and simulation complexity [338].

Anthropometric information describing any modelled segment (including lengths,

locations of centres of mass, masses, and moments of inertia) is required. Careful

consideration must be given to how these values are parameterised as they can have

a large influence on movements generated by simulations [338]. Parameters can ei-

ther be determined by estimating values based on the literature, or by measuring

a specific individual. For the former, regression equations based on measurements

of cadaver segments can be used [164, 341], although this approach is only valid if

the morphologies of the participant being modelling and the original cadaver are

similar [338].

Alternatively, a geometric model with segment densities derived from cadaver

measurement can be used [153, 334]. Using this approach, error values of approxi-

mately 2% have been reported [334]. Measurement of live subjects using techniques

such as computed tomography (CT) and magnetic resonance imaging (MRI) is also

possible [73], making accurate, subject-specific evaluation of these quantities viable.

Mechanism Complexity

Many multi-joint movement studies have assumed that the motion of the skeletal

system mechanism is constrained to the sagittal plane. This assumption is valid

for movement tasks where performance is almost entirely attributed to extension

and flexion of the lower limb joints, and where joint centres remain coincident [234,

170

4.1. BACKGROUND, THEORY AND REVIEW

338]. Planar hip and knee extension and flexion dominate the power supplied to

the cranks during maximal pedalling [99, 120, 228, 233]. Similarly, in jumping tasks

these exertions are almost entirely responsible for accelerating the body’s centre of

mass during take o↵ [15, 54, 261, 295, 308].

Planar assumptions are not valid in cases that involve non-sagittal movement

where projections of the hip and shoulder joints become non-coincident [234]. Ex-

amples include movements with side-on positions, such as javelin throwing, fast

bowling in cricket, and overhead racket strokes. Imposing constraints on the rela-

tive locations of joints has been used to create a planar model of fast bowling in

cricket that accurately recreates system dynamics and forces [112]. However, such

an approach limits the creation of pure predictive simulations as movement data

from real athletes is used in part to define the resulting movement.

3D modelling for multi-joint tasks has become more prominent in recent years

due to increases in computational power making these studies more feasible. For

balance, stance, and posture tasks, 3D modelling is more appropriate. These tasks

require fine motor control of pelvic tilt and rotation in addition to hip extension and

flexion which is only allowed if the hip is modelled as a three DoF ball-and-socket

joint [19, 222]. While balance, stance, and posture have also been investigated using

2D models, limited insight into the fine motor controls required was gained [156,

239].

A general-purpose multibody modelling package should provide the ability to

generate governing EoMs for 3D systems due to the requirement for this in certain

applications. However, as 2D assumptions are prevalent and valid in many cases,

such a software package should be able to create a 2D model in 3D that is as e�cient

as if the calculations had been conducted entirely in 2D. This is so that this sim-

plifying assumption can be used, as intended, to reduce computational complexity

without incurring any additional overhead due to such a package’s 3D capabilities.

Joint Models

For simplicity, joints between the rigid bodies used to model the segments of the

skeletal system are often assumed to be pin joints [53, 54, 74, 251, 274]. The hip,

knee, and ankle joints have all frequently been modelled as pin joints because this re-

duces the number of DoFs in the system and enables very e�cient computation [259].

More complex models of the lower body joints have been developed to describe, for

example, the modified hinge joint nature of the knee joint [127, 332]. Such models of

the knee joint have been implemented in numerous biomechanical models that have

171

CHAPTER 4. MULTIBODY DYNAMICS

been used to simulate pedalling [53, 274, 279, 307]. Other highly complex 2D and

3D, anatomically accurate models of the lower limb joints have been developed [19,

222]. However, these have seen limited application in biomechanical models because

they contain many parameters relating to their geometry that cannot be accurately

determined [210]. Modelling the joints of the lower leg as pins is a valid assumption

for performance tasks where additional complexity increases uncertainty without

su�ciently improving the accuracy of results [13].

Contact Mechanics

Modelling multibody systems often demands the modelling of contact between bod-

ies. These contacts can be between any components in the system, either the internal

forces between a multibody mechanism or the surface contact between two or more

bodies. In reality, contact forces arise due to the deformation of the two contacting

bodies. This is particularly true in biomechanical systems where such contacting

bodies may be compliant biomaterials which noticeably deform.

Contacts, especially those between the bodies of a multibody mechanism, are of-

ten modelled as rigid contacts to reduce the complexity of the resulting system [259].

That is, such contacts may be idealised as a pin joint. When compliant contact needs

to be accounted for, contact modelling based on either Hertz contact theory [157,

185] or the Elastic Foundation Model [47, 185] can be used. Hertz contact the-

ory assumes that the contact is between two linearly elastic solids. In the Elastic

foundation model, the contacting bodies are assumed to be rigid apart from a thin

surface layer of elastic material.

Deformable contact modelling is typically only used within a biomechanical

context to model foot-ground contacts [85, 87, 145, 299]. For internal contacts

between bodies in a biomechanical model, rigid contacts are almost universally as-

sumed [299]. As not all biomechanical models contain deformable contacts, this

functionality should be considered as of secondary importance during the develop-

ment of any new multibody dynamics software.

4.1.4 Multibody Dynamics Software

Software packages designed and developed within the field of mechanical and aerospace

engineering have historically been essential in biomechanical research [88, 259, 346].

Examples of commercial packages includeAUTOLEV [214], SD/FAST [169], ADAMS [293]

and DADS [304]. All of these packages focus on forward simulation and, as such,

172

4.1. BACKGROUND, THEORY AND REVIEW

none natively support the formulation or solving of multibody OCPs.

Using commercial software packages can be problematic in research applica-

tions as it reduces the transparency and flexibility when developing new techniques.

This is of particular importance in a biomechanical context as the nature of skeletal

modelling di↵ers to that of a purely mechanical system. For example, biomechanical

joints may consist of multiple parts and may not perform simple rotations about a

fixed axis. Similarly, soft biomaterial may deform during actuation meaning that

moment arms vary and locations of force application are not single points. In ad-

dition, parameterisation of models is di�cult as these values may not be possible

to measure directly and may di↵er substantially depending on operating condi-

tions [259, 299].

These factors have resulted in the development of the open-source biomechanics-

specific C++ multibody dynamics package, Simbody . The primary focus of Simbody

is to allow users to build multibody models and formulate their EoMs easily. Sim-

body does this by providing an object-oriented programming (OOP) library of model

components and utilises Kane’s method for EoM derivation. Previous discussion has

explained why Kane’s method is a good choice for such a package. An OOP library

of model components is user-friendly because it provides a simple way for users to

reliably construct a multibody model and derive its EoMs, without requiring explicit

dynamics domain knowledge. Due to these attributes, Simbody has seen widespread

use within the academic biomechanics community as it is the dynamics engine un-

derpinning the open-source biomechanical modelling software, OpenSim [87] (see

section 5.1).

In addition to enabling the derivation of EoMs, Simbody also supports contact

modelling, numerical integration and handling of real-time interactions. Simbody

focuses on high accuracy and performant simulation that is able to handle real-time

interactions. As such, it treats all simulations as IVPs, which it solves numerically.

However, as a consequence of these design decisions, Simbody , without modification,

is ill-suited for direct application to OCPs because it does not provide dynamical

equations in a form where they can easily be used to yield OCP derivatives [108].

Simbody has been extended, by Moco [91], to provide OCP functionality. However,

for reasons further outlined in section 1.1, this approach is limited. This is due to

Simbody ’s focus on numerical computation meaning that only finite di↵erencing

(FD) can be used for OCP derivative generation, rather than algorithmic di↵er-

entiation (AD) or hybrid-symbolic-algorithmic di↵erentiation (hSAD) (section 3.3),

which limits its performance [91, 108].

The only established open-source multibody dynamics software specifically de-

173

CHAPTER 4. MULTIBODY DYNAMICS

signed with OCPs in mind is the SymPy [240], PyDy [246] and opty [247] stack.

SymPy , through its classical mechanics module, allows symbolic EoMs to be gener-

ated for a multibody system using either Lagrangian mechanics or Kane’s method.

In order to generate EoMs using Kane’s method, it requires the user to describe the

modelled system using five sets of equations: holonomic constraints, non-holonomic

constraints, kinematic di↵erential equations, dynamic equations, and di↵erentiated

non-holonomic equations. SymPy o↵ers a small library of low-level of abstraction

OOP components with which a user can construct a multibody model. These compo-

nents include, among others, dynamics symbols for describing position and velocity

coordinates, particles and inertia dyadics. For example, defining even a basic model,

such as one of the simple pendulum, requires the user to:

1. select a set of generalised coordinates and a set of generalised speeds;

2. create a global reference frame and origin;

3. explicitly define the locations of all points, masses and bodies relative to the

origin;

4. map the generalised speeds to the time derivatives of the generalised coor-

dinates (or similar, depending on the choice of generalised coordinates and

speeds);

5. manually set the velocities of all important points in the system;

6. collect together the five required equations that describe the system; and

7. call a function to compute the symbolic EoMs using Kane’s method.

SymPy is, therefore, a dynamics toolbox and not a high-level of abstraction OOP

component library. As such, the package is not suitable for use by users without

specific knowledge of multibody dynamics. Furthermore, even if the user has good

knowledge of multibody dynamics, because of the steps required as outlined above,

constructing EoMs using this package is laborious.

PyDy extends SymPy and supports numerical simulation of any system for

which symbolic EoMs have been generated. It does this by compiling callables to

numerically evaluate the EoMs. It then interfaces with SciPy for the numerical

integration, using one of its ODE solvers to solve an IVP. The basic OCP soft-

ware package, opty, interfaces with both SymPy and PyDy, allowing problems with

symbolic EoMs to be solved. As outlined in section 2.1, opty is limited as a general-

purpose OCP software package in that it only implements very simple collocation

schemes (e.g. backward Euler and midpoint) and therefore is limited in accuracy

174

4.2. RESEARCH OBJECTIVES

Packages Features Limitations Source

AUTOLEV High level of abstraction mod-

elling, e�cient code generation

No native OCP functionality Closed

SD/FAST High level of abstraction mod-

elling, e�cient code generation

No native OCP functionality Closed

ADAMS High level of abstraction mod-

elling, e�cient code generation

No native OCP functionality Closed

DADS High level of abstraction mod-

elling, e�cient code generation

No native OCP functionality Closed

Simbody,

Moco

High level of abstraction mod-

elling, e�cient code generation

OCP functionality restricted by

Simbody design decisions and ar-

chitecture, OCP derivatives by

FD

Open

Sympy,

PyDy, opty

Designed specifically for multi-

body OCPs, exact OCP deriva-

tives

Low level of abstraction mod-

elling, OCP derivatives by sym-

bolic di↵erentiation (SD), low ac-

curacy collocation methods

Open

Table 4.1: Features and limitations of the available software packages for solving

multibody OCPs.

compared to other similar software packages. Furthermore, opty does not provide

any form of mesh error calculation or algorithmic mesh refinement, further limiting

its accuracy.

Table 4.1 provides a summary of the available software packages for solving

multibody OCPs, and their features and limitations. There is currently no open-

source, high-level of abstraction multibody dynamics software package that has been

specifically designed for use as part of an OCP software stack.

4.2 Research Objectives

Section 1.3 laid out the objective of developing and critically evaluating a highly

performant, easy-to-use, open-source software package for modelling multibody sys-

tems and their dynamics, specifically tailored for use in OCPs. This software pack-

age should form a core element of the Biomechanics Predictive Simulation Toolkit

(BPST).

From the analysis and review of past work in section 4.1, a number of limitations

and constraints associated with the current software provision in this area were

identified. To address these, and meet the overall objective above, the following

175

CHAPTER 4. MULTIBODY DYNAMICS

sub-objectives are laid out:

• enable users to e�ciently construct multibody models using a high-level of

abstraction (current OCP-focused multibody modelling software only contains

low-level of abstraction modelling components);

• enable users without an expertise in dynamics to derive the EoMs governing

their modelled multibody system (current OCP-focused multibody modelling

software requires users to manually assemble dynamical equations describing

a modelled system);

• enable users to construct and accurately solve OCPs involving a modelled

multibody system while seeking to minimise complexity for the user (current

OCP-focused multibody modelling software is inaccurate and requires users

to manually formulate many aspects of the OCP definition);

• support the formulation of OCPs using either explicit or implicit dynamics

(there is no clear concensus in the literature about whether explicit or implicit

dynamics is preferable for use when formulating and solving multibody OCPs);

• directly compare the performance of OCPs using explicit dynamics to ones

using implicit dynamics (the academic literature contains no examples of di-

rect comparisons between the same OCP solved using explicit and implicit

dynamics); and

• validate the developed software using established problems from the multibody

dynamics literature.

4.3 Software Implementation: Pynamics

In this section, the development of a multibody dynamics package is described.

The package is called Pynamics, with its name derived from Python and dynamics.

Pynamics has been developed as an open-source software package and uses Python

as its development language for the same reasons as outlined in section 2.6. In

addition to this, Pynamics was designed to be an open-source package written in

Python so that it could be built on top of Pycollo to provide native support for

OCP solving.

176

4.3. SOFTWARE IMPLEMENTATION: PYNAMICS

pynamics

model form ocp

sim viz

Figure 4.3: Module structure of Pynamics.

4.3.1 Overview

Pynamics is a general-purpose multibody modelling and dynamics package. It has

been designed specifically to enable users to formulate robust, high performance,

minimal-coordinate OCPs involving multibody dynamics. As the scope of Pynam-

ics covers both multibody dynamics and optimal control, the package aims to be

accessible to users who do not have in-depth domain-specific knowledge in either

of these fields. As such, a user base from a diverse range of fields wishing to solve

multibody dynamics-related OCPs is expected.

Architecture

Like Pycollo, Pynamics uses an OOP architecture. This makes access easy for a

wide range of users of the package as OOP is conceptually intuitive due to the tan-

gible nature of objects. At the top level, Pynamics consists of five main modules.

These modules are model, form, ocp, sim and viz. It should be noted that the

separation between these modules is for package structuring purposes only and, as

such, their existence is not directly apparent to the user. That is to say, all classes

and functions available as part of the Pynamics application programming interface

(API) are accessible directly via the pynamics namespace. As with Pycollo, Amer-

ican English spellings are used throughout the Pynamics codebase because this is

the standard used for the vast majority of scientific Python packages.

The model module can be thought of as a library of modelling components that

can be used to construct a multibody model. This includes, amongst others, objects

such as bodies, joints, interactions and constraints. Section 4.3.2 details the library

of model objects available from the model module.

177

CHAPTER 4. MULTIBODY DYNAMICS

Multibody dynamics involves both the modelling of a system and the investi-

gation of its behaviour. Whether this is by means of forward simulation or as an

OCP, the EoMs governing the system need to be derived. The form module, de-

tailed in section 4.3.3, is responsible for analysing the modelled system and deriving

its EoMs.

The main focus of Pynamics is to assist users in developing multibody models

that can be used within OCP problems. The ocp module formulates OCPs based

on a multibody model defined using the model module. It generates all of the

components required to correctly formulate an OCP as well as providing a direct

interface to Pycollo. The structure, functionality and operation of the ocp module

is detailed in section 4.3.4

While the primary focus of Pynamics is on OCPs, it also enables users to

conduct forward simulations via the sim module. The sim and ocp modules are

similar in many regards and share some processing, analysis and formulation steps.

The sim module interfaces with the SciPy ’s integration module and is outlined in

section 4.3.5.

To facilitate ease of use, Pynamics also provides visualisation functionality via

the viz module. The viz module supports basic plotting and animation capabilities

visualising the results of forward simulations or OCPs. Section 4.3.6 briefly discusses

the contents and functionality of the viz module.

Integration with SymPy Classical Mechanics

Pynamics utilises the classical mechanics module of SymPy as the basis for certain

multibody dynamics functionality. SymPy provides objects representing vectors,

points, reference frames and inertia dyadics. It is also capable of generating the

EoMs for a system via either Lagrangian mechanics or Kane’s method. When dis-

cussing objects from SymPy ’s classical mechanics module, the namespace shorthand

convention me will be used. For all other SymPy objects (provided that they are

members of the package’s main namespace), the namespace convention sym will be

used instead.

To generate EoMs using Kane’s method, SymPy provides the me.KanesMethod

class. Creating an instance of the me.KanesMethod class allows the mass matrix and

forcing vector for a system to be computed simply by calling its kanes equations

method. In order to instantiate a me.KanesMethod object, the user must supply as

arguments:

178

4.3. SOFTWARE IMPLEMENTATION: PYNAMICS

1. a me.ReferenceFrame, in which the rest of the system is defined;

2. a set of independent generalised coordinates;

3. a set of independent generalised speeds;

4. a set of kinematic di↵erential equations relating the generalised coordinates to

the generalised speeds;

5. a set of dependent generalised coordinates, if any;

6. a set of dependent generalised speeds, if any;

7. a set of configuration constraints, if any;

8. a set of velocity constraints, if any;

9. a set of acceleration constraints, if any; and

10. a set of auxiliary speeds, if any.

This list of requirements is lengthy and constructing it can be complicated and error-

prone, even for a familiar user. Therefore, while Pynamics uses and builds on this

functionality, it abstracts away these complexities, providing a more user-friendly

and higher-level API.

4.3.2 Object Library (model Module)

The model module of Pynamics can be thought of as a library of components with

which a user can construct a model of a multibody system. All uses of Pynamics

begin with the user creating an instance of the Model class. Note that when a named

object is referenced in the following explanation, it can be assumed to be part of the

Pynamics namespace unless stated explicitly otherwise. The Model class is the basis

for a multibody dynamics model and as such contains important components that

all systems require, such as an origin and global reference frame. The Model class

acts as a container for all of the other components that constitute the multibody

system being constructed.

To model a complete multibody system, components such as rigid bodies, pin

joints and forces need to be added. To support this, Pynamics provides an exten-

sive library of classes describing di↵erent model components. Each of these classes

inherits from an abstract base class (ABC), ModelObject, which defines useful at-

tributes, properties and methods common across all model components. These

179

CHAPTER 4. MULTIBODY DYNAMICS

ModelObjectModel
global_ref_frame
origin
bodies
attachments
pos_constraints
vel_constraints
acc_constraints
joint
actuators
controllers

Point

Body

Joint

Constraint

Interaction

Pathway

Controller

NoncontributingInteraction

Figure 4.4: Categories of model component available in Pynamics.

Point

ModelOriginPoint MassCentrePoint AttachmentPoint

Figure 4.5: Class inheritance diagram for Point classes in Pynamics.

include names, identifiers, the parent Model and an accessor to the global refer-

ence frame. The general categories of model components, which are also shown in

fig. 4.4, are Point, Body, Joint, Constraint, Interaction, Pathway, Controller

and NoncontributingInteraction.

Points

Point objects in Pynamics are responsible for defining where and how objects in

the Model connect to one another. Pynamics contains three main object types that

inherit from Point, shown in fig. 4.5. These are ModelOriginPoint, MassCenter-

Point and AttachmentPoint.

ModelOriginPoint defines the location of the system’s origin, relative to which

all positions are defined. It is a singleton and is instantiated automatically when

a Model object is created. Similarly, MassCenterPoint objects, which define the

location of the centre of mass of a body, are owned by each Body object and are

automatically instantiated during their initialisation. An AttachmentPoint object

is used to define an important point on a body, such as the location at which a joint

is attached or the point of action of a force. They are, therefore, used extensively

in the construction of any model within Pynamics. In contrast, ModelOriginPoint

180

4.3. SOFTWARE IMPLEMENTATION: PYNAMICS

Body

PointMass RigidBody

Figure 4.6: Class inheritance diagram for Body classes in Pynamics.

Joint

PinJoint SlidingJoint

Figure 4.7: Class inheritance diagram for Joint classes in Pynamics.

and MassCenterPoint are not accessible as part of the Pynamics namespace and so

cannot be directly instantiated by the user.

Bodies

Only point masses and rigid bodies are modelled within Pynamics so that rigid body

dynamics and Kane’s method can be used to derive EoMs. These are represented by

the PointMass and RigidBody classes respectively, which subclasses Body (fig. 4.6).

The PointMass and RigidBody classes are similar in all regards except that the

former does not have an inertia attribute. A Body object instantiates a Mass-

CenterPoint during its initialisation which ensures that the mass and inertia (if

applicable) properties of the body are correctly parameterised. It also instantiates

a me.ReferenceFrame during its initialisation that is specific to the body. This

additional body-fixed reference frame is designed specifically to simplify the process

of defining how other objects attach relative to the Body.

Joints

Joint objects in Pynamics allow Body objects to be connected. To attach a Joint

object into a Model, it is typically required that the Joint is parameterised with two

AttachmentPoint objects on two Body objects defining the parent and child bodies

of the joint. Joint objects are responsible for introducing generalised coordinates

and speeds, the quantity of which is governed by the number of DoFs that the joint

allows. The two main joint classes are PinJoint and SlidingJoint (fig. 4.7). Both

o↵er a single DoF, with this being a rotational DoF about a specified axis for the

181

CHAPTER 4. MULTIBODY DYNAMICS

Constraint

TranslationalConstraint RotationalConstraint HolonomicConstraint NonholonomicConstraint

PositionConstraint VelocityConstraint AngleConstraint AngularVelocityConstraint

Figure 4.8: Class inheritance diagram for Constraint classes in Pynamics.

former and a translational DoF along a specified axis for the latter. It was decided

to not include further joint types as more complex joints tend to be system-specific

when they arise. Such joints can either be implemented by the user by subclassing

the Joint class with a custom class or by using the required set of constraints

between two bodies. There is scope to increase the library of Joint subclasses in

future releases if required.

Constraints

Pynamics contains classes to enable the placing of constraints on a system. These

constraints can be both translational and rotational, as well as both holonomic and

nonholonomic, and are available as the PositionConstraint, VelocityConstraint,

AngleConstraint and AngularVelocityConstraint classes. These classes are im-

plemented using multiple inheritance, as detailed in fig. 4.8. For example, an Angle-

Constraint object could be used to mimic a clamped joint and a AngularVelocity-

Constraint object could be used to enforce an isokinetic condition of a rigid body

about a specified axis.

Interactions

Interaction objects allow forces and torques to be applied to a model. These can

be point interactions, acting at a single AttachmentPoint, which are implemented

using the PointForce and PointTorque classes (fig. 4.9). Alternatively, these can be

actuators acting between a pair of attachment points. Pynamics has been designed

to o↵er many di↵erent types of actuator, including springs, dampers and linear

actuators, a selection of which are also shown in fig. 4.9. All Interaction objects

work directly in conjunction with a Controller object, which enables the magnitude

and timing of force or torque application to be prescribed.

182

4.3. SOFTWARE IMPLEMENTATION: PYNAMICS

Interaction

PointInteraction Actuator

PointForce PointTorque LinearActuator LinearSpring TorsionalSpring

JointTorqueActuator LinearDamper TorsionalDamper

Figure 4.9: Class inheritance diagram for Interaction classes in Pynamics.

Controller

NullController ConstantController VariableController PrescribedController

Figure 4.10: Class inheritance diagram for Controller classes in Pynamics.

Pathways

Pynamics contains Pathway objects so that the line of action of Actuator objects

can be defined. Pynamics implements a single subclass, LinearPathway, which is

suitable for modelling actuators that act across a straight line between two points.

The Pathway class is included to allow easy extension of Pynamics, which is utilised

in section 5.3.

Controllers

As mentioned previously, Controller classes define the magnitude and timing of

interactions. The di↵erent types of controller included in Pynamics are shown in

fig. 4.10. A NullController is required by Actuator objects that exert a passive

force or torque. A ConstantController is similar to a NullController, except it

provides a single parameter defining the magnitude of the interaction. This is useful

when the constant magnitude of an interaction needs to be included as a static

parameter in an OCP. A VariableController provides a single parameter, which

is itself a function of time, that allows the control to vary continuously between

upper and lower bounds. A PrescribedController allows a symbolic function to

be used to describe the magnitude of control that needs to be exerted.

183

CHAPTER 4. MULTIBODY DYNAMICS

NoncontributingInteraction

NoncontributingForce NoncontributingTorque

Figure 4.11: Class inheritance diagram for NoncontributingInteraction classes

in Pynamics.

Noncontributing Interactions

NoncontributingInteraction objects serve the sole purpose of introducing auxil-

iary speeds into Kane’s equations and thus enable noncontributing forces and torques

to be brought into evidence. Pynamics provides both the NoncontributingForce

and NoncontributingTorque classes (fig. 4.11). To bring into evidence an internal

force or torque, all that is required is to create an instance of one of these classes

and link it to a joint in the model.

4.3.3 Equations of Motion Generation (form Module)

As described in section 4.3.1, Pynamics uses functionality from SymPy ’s classical

mechanics module to derive EoMs using Kane’s method. The main function of the

form module of Pynamics is to conduct this EoMs derivation. To enable it to do

so, the form module also analyses the user-created Model object to ensure that

it describes a valid system, constructs the various quantities that are required by

SymPy ’s KanesMethod class, and generates the mass matrix and forcing vector that

describe the system’s EoMs.

Mechanism Analysis

The first step in producing a system’s EoMs involves analysing the system with the

main purpose of deducing suitable sets of independent and dependent generalised

coordinates and speeds. A system with any number of constraints is guaranteed

to have more generalised coordinates and speeds than DoFs. Therefore, to form

a minimal-coordinate system, a choice needs to be made as to which generalised

coordinates and speeds will be considered independent and will, therefore, appear

in the EoMs.

Pynamics analyses the model to ensure that all bodies are connected to the

rest of the system by either a joint, actuator or constraint. This ensures that the

184

4.3. SOFTWARE IMPLEMENTATION: PYNAMICS

system cannot be decomposed into two or more independent systems, as if this were

the case, it would be more e�cient to compute the EoMs separately for each inde-

pendent subsystem. All generalised coordinates and speeds are initially considered

to be independent. The generalised coordinates are separated into independent and

dependent sets separately from the generalised speeds. For the generalised coordi-

nates, each body is analysed in turn, starting from the system’s origin and iterating

through the bodies sequentially using a depth-first search (DFS) approach. For each

body, the same number of generalised coordinates as there are holonomic constraints

associated with it are transferred from the independent set to the dependent set.

This approach of starting from the system’s origin ensures that there are su�cient

independent coordinates to describe the system in 3D. The same process is repeated

for the generalised speeds, with the number of generalised speeds moved to the de-

pendent set instead being governed by the number of nonholonomic constraints each

body has associated with it.

Kane’s Equation

With the independent generalised coordinates and speeds determined, the velocities

of all points in the system can be set. This is done using the geometry of the system

and ensures that the velocity of each point can be described in the global reference

frame such that the partial velocities can be computed for the Fr equations and the

accelerations can be computed for the F
⇤
r equations.

SymPy ’s me.KanesMethod class requires three matrices to be passed as ar-

guments, describing in turn the position, velocity and acceleration constraints on

the system. Pynamics determines these constraints from the Constraint objects.

PositionConstraint and AngleConstraint objects both add a row to each of the

position, velocity and acceleration constraint matrices. VelocityConstraint and

AngularVelocityConstraint objects are similar except they both only add a row

to each of the velocity and acceleration constraint matrices.

The final step before the EoMs can be generated is to describe the forces and

torques acting on the system. Pynamics compiles a set of all interactions and their

locations of action. For point interactions this is simple, but becomes more in-

volved for more complex Interaction subclasses. Each Interaction subclass is

responsible for defining how the forces and torques it generates influence the system.

For example, Actuator objects, which attach to the mechanism at two locations,

contribute two force-point pairs.

With these steps complete the EoMs are computed, yielding the mass matrix

185

CHAPTER 4. MULTIBODY DYNAMICS

M and the forcing vector k which form part of the linear system

Mu̇ = k , (4.12)

where u̇ is the column vector of all generalised accelerations.

4.3.4 Optimal Control Problem Construction (ocp Module)

The ocp module of Pynamics is responsible for formulating an OCP based on a

multibody model. The architecture and functionality of Pynamics has been designed

and developed with the intention of Pycollo being used as its optimal control engine.

Consequently, Pycollo is a firm dependency of Pynamics. The ocp module wraps

Pycollo in order to fully integrate Pycollo’s functionality natively into Pynamics.

This architecture abstracts away many of the complexities in formulating OCPs

from the user. As such, formulating and solving OCPs in Pynamics is intended to

be straightforward once a Model has been defined.

Pynamics subclasses the pycollo.OptimalControlProblem class (section 2.6)

with its own OptimalControlProblem class. Instantiating and initialising an Optimal-

ControlProblem object is the main responsibility of the ocp module. Pynamics

implements its own OptimalControlProblem class to automate some of the OCP

setup, thus simplifying this process on behalf of the user. The OptimalControl-

Problem class initialises the same as its superclass but implements other initialiser

methods and calls these during its initialisation. These other initialiser methods are

responsible for defining all of the required OCP variables, the OCP functions, the

OCP bounds, an initial guess and any required settings. Pynamics is capable of

defining OCPs with both explicit and implicit dynamics, the formulations of both

follow. When instantiating an OptimalControlProblem object, it is possible to

specify whether the explicit or implicit formulation should be generated.

Explicit Formulation

An OCP requires state, control, integral, time and static parameter variables to be

defined. Additionally, required OCP functions include the state equations, path con-

straints, integrand functions, endpoint constraints and the objective function. In an

explicit formulation this is relatively straightforward. All independent generalised

coordinates and speeds become state variables. Any state or control variables asso-

ciated with the model’s Interaction objects are also added to the OCP definition.

Integral variables are added only if they are required as part of the user-defined

objective function or endpoint constraints. Time variables are only added if the

186

4.3. SOFTWARE IMPLEMENTATION: PYNAMICS

user has supplied unequal upper and lower bounds to the Model instance’s initial

or final time attributes. Finally, any constant model parameters that have unequal

user-defined upper and lower bounds are added to the OCP definition as static

parameter variables.

In the explicit formulation, all state equations are defined explicitly. This is

trivial for the generalised coordinates as qi, the ith generalised coordinate, is mapped

directly to ui, the ith generalised speed, in the state equations. That is, the ith state

equation is q̇i = ui.

To define the state equations for the generalised speeds, the linear system of

eq. (4.12) needs to be solved for u̇. Pynamics does this by defining a set of symbols,

one for each of the independent generalised speeds which have become state vari-

ables. An auxiliary equation corresponding to the solved linear system of eq. (4.12)

is then added to the OCP definition. For the ith independent generalised speed ui,

this means introducing the additional symbol ai and adding the auxiliary equation

ai =
⇥
M�1k

⇤
i,:

, (4.13)

where the trailing matrix subscript i, : denotes the ith row of the matrix. The

inversion of the mass matrix is abstracted away from Pynamics and is conducted by

Pycollo.

Objective functions can be defined in two ways. Firstly, Pynamics o↵ers a num-

ber of default options for objective functions that can be automatically implemented

using keywords. These include the minimisation of time, via the "minimize time"

keyword, and the minimisation of the sum of all Controller control magnitudes, via

the "minimize squared controls" keyword. Alternatively, a user is able to supply

a custom symbolic objective function via the objective function attribute.

Implicit Formulation

Pynamics’ implicit formulation is similar in many regards to the explicit formulation.

The main di↵erence arises in the state equations, and also has implications for the

control variables and path constraints. In the implicit formulation the linear system

of eq. (4.12) remains unsolved for u̇. To get around this, Pynamics introduces a new

control variable uj for each independent generalised speed ui. The state equations

are then defined as

u̇i = uj . (4.14)

187

CHAPTER 4. MULTIBODY DYNAMICS

To enforce the EoMs, a path constraint is introduced for each of these additional

control variables. These path constraints are in the form

Mi,: · u
⇤
� ki = 0 , (4.15)

where Mi,: is the ith row of the mass matrix, u⇤ is the concatenation of all of the

newly introduced control variables and ki is the ith entry in the forcing vector.

The remainder of the OCP formulation remains the same as that of the explicit

formulation.

Multiphase OCPs

Pynamics is designed to support the formulation of a range of the most common

multiphase OCPs. When constructing a Model, users are able to specify state con-

straints symbolically in terms of the global time symbol, accessed via the Model

objects time attribute. If state constraints are specified at times that do not equal

the endpoint times then Pynamics automatically generates a multiphase OCP. In

this scenario the phase boundaries fall at the required times or within the requisite

bounds. Pynamics does not currently support multiphase problems where the ge-

ometry of the system changes between phases as these are uncommon. Supporting

this functionality would have introduced an unnecessary level of complexity with

little practical benefit. The exception to this is if impulsive or discontinuous forces

act on the system as these can be implemented using the appropriate Controller

object alongside an Interaction where required.

Bounds and Guesses

Pynamics prescribes sensible bounds and guesses for all variables and constraints

where required by the OCP formulation. For parameters where there is a physical

reason to do so, Pynamics applies numerical bounds. For example, Pynamics will

default to bounding all angles to the domain [�2⇡, 2⇡]. Guesses are also generated,

if appropriate, by linearly interpolating between the relevant endpoint conditions.

Where it is not possible to make a sensible assumption about bounds or guesses,

Pynamics falls back on Pycollo’s default behaviour to either evaluate or handle these.

It is, however, recommended that a user supplies bounds and guesses using their

knowledge of the problem being solved to improve the reliability and performance

of Pycollo [36].

188

4.3. SOFTWARE IMPLEMENTATION: PYNAMICS

Pycollo Interface and OCP Solving

As OptimalControlProblem subclasses its Pycollo counterpart, user interaction

with an instance remains the same. Therefore, once an OptimalControlProblem

instance has been created and an OCP has been fully formulated, it can be solved

in the same manner as in Pycollo by calling the solve method. Similarly, if aspects

of the OCP need to be adjusted by the user, such as defining a custom objective

function or amending any of the default Pycollo settings, this can be done after

instantiation and before the solve method is called.

4.3.5 Forward Simulation (sim Module)

Pynamics supports the forward simulation of modelled systems in addition to OCP

formulation and solving. To do this, Pynamics constructs an IVP and solves this

using an ODE solver. An IVP is similar in formulation to an OCP with explicit

dynamics in many respects. In fact, all parts of the definition of an IVP are al-

ready contained within the definition of an OCP. Therefore, Pynamics implements

numerous private functions that are called when formulating both OCPs and IVPs.

Analogous to Pynamics’s OptimalControlProblem class used to define an OCP,

Pynamics also has a ForwardSimulation class to define an IVP. ForwardSimulation

formulates the IVP in a very similar manner to how OptimalControlProblem gen-

erates its explicit formulation. As IVPs are simpler than OCPs in definition, initial-

ising a ForwardSimulation object is much less involved. Pynamics uses an ODE

solver from SciPy ’s integrate module to solve the IVP. As with OptimalControl-

Problem, the solve method of ForwardSimulation can be called to solve the IVP.

4.3.6 Visualisation (viz Module)

Pynamics o↵ers visualisation functionality to assist with analysis and debugging by

means of the viz module. This includes the ability to generate 2D plots of the

modelled system. Additional to this, Pynamics also supports plotting and anima-

tion of the solutions to both OCPs and IVPs via the OptimalControlProblem and

ForwardSimulation classes respectively. In the case of plotting OCP solutions, this

is implemented by Pynamics wrapping Pycollo’s viz module.

189

CHAPTER 4. MULTIBODY DYNAMICS

4.4 Pynamics Investigations

In order to test the accuracy and performance of Pynamics, two multibody dynam-

ics OCPs from the academic literature were investigated. Both of these problems

have previously been solved by others and so their solutions are known [194]. As

Pycollo has been previously validated, these investigations focused on showing that

Pynamics correctly derives EoMs and successfully forms and solves OCPs.

The literature review in section 4.1.2 established that there are conflicting opin-

ions about the relative merits of using explicit and implicit dynamics when formu-

lating multibody OCPs. Consequently, an objective of this chapter is to further

investigate this issue by providing the first direct comparison, specific to OCPs, of

the two approaches. Pynamics has been designed to be able to formulate OCPs

with both explicit and implicit dynamics, enabling it to be used to solve the same

OCP with the dynamics formulated in both manners. Performance between the two

formulations was tested in a number of di↵erent areas, including:

1. the objective function value at the solution;

2. the state and control at the solution;

3. the central processing unit (CPU) time spent initialising the OCP;

4. the CPU time spent solving the OCP;

5. the number of NLP iterations required for the NLP subproblem to converge;

and

6. the mesh error at the solution.

Taken together these factors allow the numerical properties and computational per-

formance of the formulations to be compared. Like section 3.7, in cases where timing

data is given, results were derived from five runs, with the fastest and slowest times

discarded, with the mean of the remaining three being the number reported. All

investigations were conducted on the same system as described in section 2.7.

The first of the two problems selected was the cart-pole swing-up problem [194].

This is a simple OCP, typically used as a teaching example in multibody dynamics

and optimal control. The system has two DoFs and as such the system’s EoMs are

simple enough to be expressed in full and can also be derived easily by hand. This

simple example is useful in clearly demonstrating that Pynamics correctly derives

EoMs, and correctly formulates and solves OCPs.

190

4.4. PYNAMICS INVESTIGATIONS

The second example problem is the five-link bipedal walker problem from [194].

This problem is significantly more involved than the previous example as it contains

more DoFs, as well as periodicity and an impulsive force at the OCP endpoint. Taken

together, the pair of problems form a complementary set of examples showcasing a

range of di↵erent multibody models and OCP complexities.

4.4.1 Cart-Pole Swing-Up

The cart-pole swing-up problem, as described in [194], involves the multibody

cart-pole system shown in fig. 4.13. The system was modelled in Pynamics using

two PointMass objects, one each to describe the cart and the point mass on the end

of the pendulum. A SlidingJoint was used to restrict the motion of the cart to be

in a single horizontal direction only and a PinJoint object was used to allow the

pendulum arm to freely rotate around a horizontal axis through the cart. A Point-

Force (with an automatically inferred VariableController) was also used to apply

a time-varying horizontal point force to the cart. The Pynamics code required to

construct the cart-pole model and solve the swing-up OCP is shown in fig. 4.12.

EoMs for the system were automatically generated by Pynamics on calling the

Model instance’s optimal control problem method. Pynamics selected the cart

position (q1) and pendulum angle (q2) as the independent generalised coordinates,

while the cart velocity (u1) and pendulum angular velocity (u2) were selected as

the independent speeds. No dependent coordinates or speeds were required as the

system has two DoFs with no additional constraints. Pynamics formulated the

system’s compact mass matrix to be

M =

2

4 m1 +m2 m2` cos (q2)

m2` cos (q2) m2`
2

3

5 (4.16)

and compact forcing vector to be

k =

2

4F +m2` sin (q2)q̇22

�m2g` sin (q2)

3

5 . (4.17)

Note that the compact mass matrix and forcing vector form the linear system

Mu̇ = k (4.18)

describing the generalised speeds only. This is because, by design, Pynamics con-

structs systems such that the Q generalised coordinates are trivially related to the

generalised speeds as

q̇i = ui , (i = 1, . . . , Q) . (4.19)

191

CHAPTER 4. MULTIBODY DYNAMICS

1 from pynamics import (Model, SlidingJoint, PinJoint, PointMass, PointForce,

PI),!

2 l = 0.5 # pendulum length (in m)

3 m1 = 1.0 # block mass (in kg)

4 m2 = 0.3 # pendulum mass (in kg)

5 T = 2.0 # OCP duration (in s)

6 d_max = 2 # maximum cart displacement (in m)

7 F_max = 20 # maximum force (in N)

8 cart_pole = Model("cart-pole")

9 slider = SlidingJoint("slider", model=cart_pole,

parent_attachment=cart_pole.origin, axis="x", minimum_position=-d_max,

maximum_position=d_max)

,!

,!

10 cart = PointMass("cart", model=cart_pole, parent_joint=slider, mass=m1,

initial_position=0, final_position=0, initial_velocity=0,

final_velocity=0)

,!

,!

11 pin = PinJoint("pin", model=cart_pole, parent_attachment=cart.center_of_mass,

axis="z"),!

12 pendulum = PointMass("pendulum", model=cart_pole, parent_joint=pin,

offset=-PI/2, position_x=l, mass=m2, initial_angle=0, final_angle=PI,

initial_angular_velocity=0, final_angular_velocity=0)

,!

,!

13 force = PointForce("force", model=cart_pole, minimum_force=-F_max,

maximum_force=F_max),!

14 ocp = cart_pole.optimal_control_problem(final_time=T,

objective_function="minimise_squared_controls",

dynamics_formulation="implicit")

,!

,!

15 ocp.phases[0].mesh.num_mesh_sections = 20

16 ocp.settings.max_mesh_iterations = 1

17 solution = ocp.solve()

18 solution.plot()

19 solution.animate()

Figure 4.12: Creation of the cart-pole model and swing-up OCP using Pynamics.

192

4.4. PYNAMICS INVESTIGATIONS

m1

m2g

q1

q2

l
m2

cart

pendulum

(a) Geometry

m1g

m2g

F

q1

(b) Forces

Figure 4.13: System diagram of the cart-pole. m1 and m2 denote the masses of the

cart and the pendulum respectively, l denotes the pendulum length, g denotes the

acceleration due to gravity, F denotes the axial horizontal force applied to the cart,

q1 denotes the cart’s horizontal axial DoF, and q2 denotes the pendulum’s planar

rotational DoF.

These EoMs correspond exactly to the EoMs given in [194] confirming that Pynamics

correctly derived the dynamics for this system.

The cart-pole swing-up problem involves determining the optimal way to force

the cart such that the pendulum arm, initially hanging vertically below the cart

at rest, is swung to a point of inverted balance vertically above the cart. Upper

and lower bounds, such as bounds on the maximum horizontal distance the cart

could travel and on the magnitude of the point force, were applied by setting the

appropriate object properties (fig. 4.12). Similarly, initial and final states were

prescribed. The initial position of the cart was set to 0. The initial and final

positions of the pendulum were set to 0 and ⇡ respectively, while the initial and

final velocity of the cart and angular velocity of the pendulum were all set to 0.

The objective function for the cart-pole swing-up problem is to minimise

J =

Z T

0

F (t)2 dt , (4.20)

where F is the point force applied to the cart and T = 2. Pynamics o↵ers certain

preconstructed objective functions to simplify the specification of this aspect of the

OCP. One such objective function is the minimisation of the equally-weighted sum

of all Controller control parameters. As this utility was directly relevant here, it

was used by defining the objective function using Pynamics’ "minimise squared-

controls" keyword.

193

CHAPTER 4. MULTIBODY DYNAMICS

Explicit Formulation

Generating the EoMs and OCP in explicit dynamics mode resulted in an OCP with

four state variables

y =
h
q1 (t) q2 (t) u1 (t) u2 (t)

i
(4.21)

and one control variable

u =
h
F (t)

i
. (4.22)

As an integrand function was required to express the objective function, a single

integral variable q1 was automatically added by Pycollo (on behalf of Pynamics).

The four state equations were formed as

q̇1 = u1 (4.23)

q̇2 = u2 (4.24)

u̇1 = a1 (4.25)

u̇2 = a2 , (4.26)

where a1 and a2 correspond to the auxiliary substitutions

a1 =
F +m2g cos (q2) sin (q2) +m2` sin (q2)q̇22

m1 +m2 sin
2 (q2)

(4.27)

a2 = �
F cos (q2) + (m1 +m2) g sin (q2) +m2` cos (q2) sin (q2)q̇22

`
�
m1 +m2 sin

2 (q2)
� (4.28)

generated by Pycollo by symbolically solving eq. (4.18) for

u̇ =

2

4a1
a2

3

5 . (4.29)

The single integrand function g1, which corresponds to the integral variables q1, was

formulated as

g1 = F
2
, (4.30)

with the objective function being

J = q1 . (4.31)

Implicit Formulation

Generating the EoMs and OCP in explicit dynamics mode resulted in an OCP with

the same four state variables as eq. (4.21). Unlike the explicit formulation, however,

the implicit formulation contained three control variables

u =
h
F (t) u2(t) u3(t)

i
. (4.32)

194

4.4. PYNAMICS INVESTIGATIONS

Again, as with the explicit formulation, a single integral variable q1 was required.

The four state equations were formed as

q̇1 = u1 (4.33)

q̇2 = u2 (4.34)

u̇1 = u2 (4.35)

u̇2 = u3 . (4.36)

The main discrepancy arose whereby the implicit formulation also required the in-

clusion of two path constraints to enforce the dynamics of eq. (4.18). These were

(m1 +m2) u2 +m2` cos (q2)u3 � F �m2` sin (q2)q̇
2
2 = 0 (4.37)

m2` cos (q2)u2 +m2`
2
u3 +m2g` sin (q2) = 0 . (4.38)

Note that these path constraints correspond directly to the EoMs of eqs. (4.16)

and (4.17) via a slight rearrangement and using the substitutions u2 = u̇1 and

u3 = u̇2. The integrand function and objective function were identical to those of

the explicit formulation shown in eqs. (4.30) and (4.31).

OCP Solutions

Two default Pycollo settings were changed during the solving of both OCP formu-

lations. Firstly, the number of mesh sections in the initial mesh was increased from

10 to 20 in order to match the number of mesh sections used in the implementation

provided by [194]. Secondly, automatic mesh refinement was turned o↵ as the pur-

pose of this experiment was assess the accuracy of Pynamics and to compare the

explicit and implicit formulations. As such, fair comparison is only possible when

the meshes on which the NLP subproblems are being solved are identical, which is

only guaranteed on the first NLP iteration.

The objective function evaluations at the solution using the explicit and implicit

formulations were identical to machine precision, both being 58.8163. While [194]

did not provide a numerical value for the solution of the problem, solving the cart-

pole swing-up problem using the software provided supplementary to [194] resulted

in an objective function at the solution of 58.8076. This di↵erence of 0.0148% can

be attributed to di↵erences in the discretisations used by the two software packages.

Agreement of the objective function evaluations using Pynamics and [194] confirms

that Pynamics was able to correctly solve the cart-pole swing-up problem using both

explicit and implicit OCP formulations.

The optimal state found using both OCP formulations is shown in fig. 4.14. Sim-

ilarly, the optimal control is shown in fig. 4.15. As can clearly be seen, the optimal

195

CHAPTER 4. MULTIBODY DYNAMICS

0.0 0.5 1.0 1.5 2.0
t (s)

0.00

0.25

0.50

0.75

1.00

y 0
(t

)
(m

)

Explicit
Implicit

(a) Position solution

0.0 0.5 1.0 1.5 2.0
t (s)

�1

0

1

2

3

y 1
(t

)
(r

ad
)

Explicit
Implicit

(b) Angle solution

0.0 0.5 1.0 1.5 2.0
t (s)

�1

0

1

2

y 2
(t

)
(m

s�
1)

Explicit
Implicit

(c) Velocity solution

0.0 0.5 1.0 1.5 2.0
t (s)

�2.5

0.0

2.5

5.0

7.5

y 3
(t

)
(r

ad
s�

1)

Explicit
Implicit

(d) Angular velocity solution

Figure 4.14: Comparison of the optimal state solutions to the cart-pole swing-up

problem obtained using Pynamics in explicit and implicit modes.

196

4.4. PYNAMICS INVESTIGATIONS

0.0 0.5 1.0 1.5 2.0
t (s)

�10

�5

0

5

10
u 0

(t
)

(N
)

Explicit
Implicit

(a) Force solution

0.0 0.5 1.0 1.5 2.0
t (s)

�15

�10

�5

0

5

u 1
(t

)
(m

s�
2)

Implicit

(b) Acceleration solution

0.0 0.5 1.0 1.5 2.0
t (s)

�20

�10

0

10

20

30

u 2
(t

)
(m

s�
2)

Implicit

(c) Angular acceleration solution

Figure 4.15: Comparison of the optimal control solutions to the cart-pole swing-up

problem obtained using Pynamics in explicit and implicit modes. Note that solutions

for the acceleration u1(t) and angular acceleration u2(t) are only shown for the implicit

formulation as these variables did not form part of the explicit formulation.

197

CHAPTER 4. MULTIBODY DYNAMICS

Figure 4.16: Illustration of the optimum cart-pole swing-up trajectory. Nine uni-

formly spaced frames at 0.25 s intervals are shown, from start (blue) to end (orange).

state and control found using both approaches are identical, further confirming the

accuracy of Pynamics using both explicit and implicit dynamics. Finally, fig. 4.16

illustrates the optimal trajectory taken by the cart-pole during the swing-up.

The di↵erences between the explicit and implicit OCPs arose in the time taken

to solve both OCPs, the progression of the NLP subproblems and the resulting mesh

errors at the solutions. The explicit and implicit formulations required 186.29ms

and 198.39ms to be completely solve respectively. The explicit formulation required

156.50ms to initialise the OCP compared to 147.00ms for the implicit formulation.

This relative timing reversed for the time taken to solve the NLP subproblems

with the explicit and implicit formulations of the OCP being solved in 29.79ms

and 51.39ms respectively. This also corresponds to the number of NLP iterations

required in both cases, with the explicit OCP converging in 12 iterations compared

to 16 iterations for the implicit OCP. Finally, the implicit OCP solved with a smaller

mesh error of 1.422⇥ 10�5 compared to 3.282⇥ 10�4 for the explicit OCP.

4.4.2 Five-Link Biped

The five-link biped OCP [194] involves determining a periodic gait for a biped. The

system is a symmetric planar model consisting of five rigid bodies representing a

torso and two two-segment legs. The rigid bodies are connected by five idealised pin

joints, four of which represent the two hips and two knees. The two knees and two

hips are also actuated by controllable joint torques. The final pin joint attaches the

walker to the ground, resulting in a stance leg which supports the walker’s weight

198

4.4. PYNAMICS INVESTIGATIONS

q1

q2

q3

q4

q5

(a) Geometry

T1

T2
T3

T4

(b) Forces

Figure 4.17: System diagram of the five-link walker.

and a swing leg which is free to move above the ground. An illustration of the

system is shown in fig. 4.17.

The system was created in Pynamics using five RigidBody objects connected

by five PinJoint objects. One of these PinJoint objects was used to attached the

stance leg to the ModelOriginPoint. The model was actuated using four Joint-

TorqueActuator objects paired with four VariableController objects, one at each

of the stance knee, stance hip, swing hip and swing knee joints. The model compo-

nents were parameterised taking the same values from [194], which were themselves

selected to match [77].

The resulting model has five DoFs. Pynamics described the system using five

generalised coordinates, one for the angle of each rigid body, and five generalised

speeds, one for the angular velocity of each rigid body. Pynamics generated the

5⇥5 nontrivial mass matrix M5⇥5 and corresponding forcing vector k5⇥1 describing

the time derivatives of the generalised speeds, which formed the linear system

M5⇥5

2

666666664

u̇1

u̇2

u̇3

u̇4

u̇5

3

777777775

= k5⇥1 . (4.39)

199

CHAPTER 4. MULTIBODY DYNAMICS

The governing equations of motion for the system’s dynamics are not included here

due to their complexity and length.

The objective function for the five-link biped walker problem is to minimise

J =

Z T

0

T
2
1 (t) + T

2
2 (t) + T

2
3 (t) + T

2
4 (t) dt , (4.40)

where Ti for i = 1, 2, 3, 4 are the joint torques applied to the stance knee, stance hip,

swing hip and swing knee respectively. This objective function is used because it

produces smooth, well-behaved solutions, and penalises large torques which are usu-

ally undesirable in real systems [194]. In this investigation, a value of T = 0.7 s was

used to match [194]. As was the case for the cart-pole swing-up problem, Pynam-

ics’ "minimise squared control" keyword was used to implement the objective

function of eq. (4.40).

In order to have the biped produce a sensible gait, additional constraints were

required. Firstly, as a single stride was being simulated, periodicity between the

stance and swing legs was imposed. This was done by ensuring that the angles of

the swing leg at the initial time matched the angles of the stance leg at the final

time and visa versa. Similarly, the angle of the torso at the initial and final times

were constrained to be equal. Periodicity of the angular velocities was less trivial as

the problem requires an impulsive heel-strike to take place. The heel-strike map of

[194] was implemented as five additional endpoint constraints by having Pynamics

generate five equations conserving angular momentum of the system before and

after the application of an impulsive point force at the swing foot instantaneously

before heel-strike. Secondly, a pair of constraints to enforce the stride length were

imposed. This was done by using the symbolic equation describing the position

of the swing foot generated by Pynamics to form a constraint on the swing foot’s

horizontal position and vertical position at the final time. These position constraints

were equal to D = 0.5m and 0 respectively, enforcing a stride length of D on a flat

surface. Thirdly, similar constraints on the velocity of the swing foot at the initial

and final times were imposed to ensure that the swing foot leaves the ground at

the moment of the initial time and only touches the ground at the moment of the

final time. These constraints were required due to the method used to derive the

heel-strike map [194]. Finally, a set of path constraints were introduced to ensure

that the swing foot did not cross the horizontal plane representing the ground at any

point during the gait phase. The symbolic equation describing the vertical position

of the swing foot was used again here.

200

4.4. PYNAMICS INVESTIGATIONS

Explicit Formulation

The OCP formulated by Pynamics using explicit dynamics had ten state variables

and four control variables. The ten state variables corresponded to the five gener-

alised coordinates and five generalised speeds present in the EoMs

y =
h
q1 q2 q3 q4 q5 u1 u2 u3 u4 u5

i
. (4.41)

The four control variables corresponded to the control parameters describing the

magnitudes of the torques exerted by the four JointTorqueActuator objects

u =
h
T1 T2 T3 T4

i
. (4.42)

The ten state equations were formed as

q̇1 = u1 (4.43)

q̇2 = u2 (4.44)

q̇3 = u3 (4.45)

q̇4 = u4 (4.46)

q̇5 = u5 (4.47)

u̇1 = a1 (4.48)

u̇2 = a2 (4.49)

u̇3 = a3 (4.50)

u̇4 = a4 (4.51)

u̇5 = a5 , (4.52)

where ai for i = 1, 2, 3, 4, 5 corresponded to the five auxiliary substitutions generated

by Pycollo (on behalf of Pynamics) by symbolically solving eq. (4.39) for

u̇ =

2

666666664

a1

a2

a3

a4

a5

3

777777775

. (4.53)

The single integrand function g1, which corresponds to the integral variables q1, was

formulated as

g1 = T
2
1 + T

2
2 + T

2
3 + T

2
4 , (4.54)

with the objective function being

J = q1 . (4.55)

201

CHAPTER 4. MULTIBODY DYNAMICS

Implicit Formulation

Generating the EoMs and OCP using implicit dynamics resulted in an OCP with the

same ten state variables as when explicit dynamics were used (eq. (4.41)). Unlike

the explicit formulation, however, the implicit formulation contained an additional

five control variables, resulting in nine total

u =

2

666666666666666666664

T1

T2

T3

T4

u5

u6

u7

u8

u9

3

777777777777777777775

. (4.56)

Again, as with the explicit formulation, a single integral variable q1 was required.

The ten state equations were formed as

q̇1 = u1 (4.57)

q̇2 = u2 (4.58)

q̇3 = u3 (4.59)

q̇4 = u4 (4.60)

q̇5 = u5 (4.61)

u̇1 = u5 (4.62)

u̇2 = u6 (4.63)

u̇3 = u7 (4.64)

u̇4 = u8 (4.65)

u̇5 = u9 , (4.66)

while the dynamics of eq. (4.39) were enforced by introducing the five path con-

straints

M5⇥5

2

666666664

u5

u6

u7

u8

u9

3

777777775

� k5⇥1 =

2

666666664

0

0

0

0

0

3

777777775

. (4.67)

202

4.4. PYNAMICS INVESTIGATIONS

The integrand function and objective function were identical to those of the explicit

formulation shown in eqs. (4.54) and (4.55).

OCP Solutions

Pycollo defaults were used for all settings except one. As with the cart-pole swing-

up problem, automatic mesh refinement was turned o↵. Again, this was to ensure

that the results of the two investigations were not influenced by the discretisation

mesh and could be validly compared.

Pynamics was able to successfully solve the OCP using both explicit and im-

plicit dynamics. Both the explicit and implicit formulations led to an objective

function evaluation of 445.9796 for the solved OCP. A numerical value for the solved

OCP was not given in [194], however a computational implementation of the same

problem has been provided elsewhere [107]. Using [107] and default settings, an ob-

jective function of 432.5045 results. This increases to 446.7251 if the mesh density is

increased by a factor of 10. There is close agreement between the objective function

achieved using Pynamics and using [107] indicating that Pynamics correctly solves

the OCP. Note that the discrepancy between the objective functions is likely due

to [107] using the backward-Euler collocation scheme which is inaccurate in com-

parison to the orthogonal collocation scheme implemented by Pycollo on behalf of

Pynamics.

The optimal state found using both OCP formulations for the angles and angu-

lar velocities are shown in fig. 4.18 and fig. 4.19 respectively. Similarly, the optimal

control for the joint torques are shown in fig. 4.20. The optimal control for the

angular accelerations, the additional five control variables in the implicit formula-

tion, are not shown as they were only present in one formulation and are also the

time derivatives of the angular velocity state variables. Exact agreement of the

optimal state and control found using both approaches is clearly illustrated. This

further confirms that the explicit and implicit formulations generated by Pynamics

are equally valid and accurate. Finally, an illustration of the five-link biped walker’s

optimal gait is shown in fig. 4.21.

Solution of the NLP subproblems unfolded similarly, with the explicit formu-

lation requiring 15 NLP iterations compared to 16 required for the implicit formu-

lation. The explicit NLP subproblem was solved with a resulting mesh error of

1.168⇥ 10�5. This was more than an order of magnitude larger than the mesh error

of 8.352⇥ 10�7 achieved at the solution to the implicit NLP subproblem. The main

di↵erence between the two formulations was seen in the time taken to formulate

203

CHAPTER 4. MULTIBODY DYNAMICS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
t (s)

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

A
ng

le
s

(r
ad

)

q5
q4

q3

q2

q1

Explicit
Implicit

Figure 4.18: Comparison of the optimal angle state solutions to the five-link biped

walker problem obtained using Pynamics in explicit and implicit modes.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
t (s)

�2

�1

0

1

2

3

4

A
ng

ul
ar

ve
lo

ci
tie

s
(r

ad
s�

1)

q̇5

q̇4

q̇3

q̇2
q̇1

Explicit
Implicit

Figure 4.19: Comparison of the optimal angular velocity state solutions to the five-

link biped walker problem obtained using Pynamics in explicit and implicit modes.

204

4.5. DISCUSSION

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
t (s)

�20

�10

0

10

20

30

40

Jo
in

tt
or

qu
es

(N
m

)

T4
T3

T2

T1

Explicit
Implicit

Figure 4.20: Comparison of the optimal joint torque control solutions to the five-link

biped walker problem obtained using Pynamics in explicit and implicit modes.

and solve the OCP. The implicit formulation required 493.90ms to initialise and

79.67ms to solve the OCP; 573.57ms in total. The explicit formulation required

281.01 s to initialise and 11.65 s to solve the OCP, a total of 292.66 s. Note that the

times for the implicit formulation are given in ms, while the times for the explicit

formulation are given in s.

4.5 Discussion

The results in section 4.4 confirm that Pynamics is able to accurately and reliably

formulate and solve OCPs based on multibody dynamics. Furthermore, Pynamics is

capable of this using both explicit and implicit EoMs, with the same solution being

obtained using both methods for the two example problems investigated.

Formulating an OCP using implicit dynamics resulted in a larger NLP subprob-

lem, in terms of both variables and constraints. The increase in decision variables

was attributable to the additional control variables being introduced to act as the

state equations for the generalised speeds. Additionally, the increase in constraints

was attributable to additional path constraints being required to enforce the system

dynamics. For the cart-pole swing-up problem, 298 variables and 241 constraints

205

CHAPTER 4. MULTIBODY DYNAMICS

Figure 4.21: Illustration of the five-link walker trajectory that minimises the integral

of the sum of squared torques. Eight uniformly spaced frames at 0.1 s intervals are

shown, from start (blue) to end (orange).

206

4.5. DISCUSSION

were required when explicit dynamics were used. This was in comparison to 420

variables and 363 constraints when implicit dynamics were used. Similarly, for the

five-link biped walker problem, 435 variables and 313 constraints were required when

explicit dynamics were used. This was in comparison to 590 variables and 468 con-

straints when implicit dynamics were used. This corresponds to between a 35.6%

and 40.9% increase in variables, and between a 49.5% and 50.6% increase in con-

straints when moving from an explicit to an implicit formulation. This constitutes

a substantial increase in the size of the NLP subproblem. However, in the case

of the two test problems, both the explicit and implicit OCPs were solved equally

successfully, indicated by the relatively similar and small number of NLP iterations

required for the NLP subproblems to converge. Therefore, it can be concluded that

the increase in size of the NLP subproblem does not detrimentally a↵ect the conver-

gence properties of the generated OCPs as was suggested might be a consideration

in section 4.1.

For both problems, the initialisation times accounted for the majority of the

total OCP processing times irrespective of formulation. For the cart-pole swing-up

problem, the smaller of the two OCPs investigated, there was limited di↵erence in

the time taken to initialise the OCP between the two formulations. Initialisation

time for the explicit OCP was 6.46% greater than for the implicit OCP. This was

not the case for the larger example problem, the five-link biped walker problem, in

which initialising the explicit OCP took 569 times longer than the implicit OCP.

The absolute time required to initialise the explicit OCP (which accounted for 96.0%

of the total OCP processing time) was of the order of minutes. This was in stark

contrast to the implicit OCP which initialised and solved in under one second. The

explicit formulation of this problem was therefore not suitable for practical use.

This discrepancy was due entirely to the increased size of the expression graph that

Pycollo was required to generate as a result of having to invert the mass matrix in

the explicit formulation. Solving a linear system of n equations, as is required in

order to formulate the explicit EoMs, has complexity up to O (n3) depending on

the algorithm used [312]. Therefore, as the number of DoFs in the modelled system

increases, the computational cost associated with deriving the dynamics explicitly

grows exponentially. The implications of the larger expression graph compound

when computing the second-order OCP derivatives via either AD or hSAD because

the computational cost of deriving these scales proportionally to the square of the

size of the expression graph.

For both of the test problems, the solution to the implicit OCP yielded a mesh

error more than an order of magnitude smaller than the solution to the explicit OCP.

This indicates that the implicit OCP was solved with greater accuracy. In addition,

as both OCPs were solved on the same temporal mesh, it also indicates that the

207

CHAPTER 4. MULTIBODY DYNAMICS

implicit equations are more stable. The state equations are a key component in

evaluating the mesh error. Therefore, if two formulations of the same dynamical

equations result in di↵erent mesh errors, this indicates that the two formulations

are not equally stable. The formulation resulting in a larger mesh error must have

sti↵er dynamical equations as a change to the discretisation mesh results in a larger

change in the values that the function evaluates to. As such, the explicit dynamical

equations are sti↵er and less numerically stable than the implicit ones.

In the case of both test problems, the number of NLP iterations required for the

NLP subproblem to converge was fewer when explicit dynamics were used than im-

plicit dynamics. However, due to the small total number of NLP iterations required

in all cases, this result is not considered to be significant. Of greater importance

are the relative times taken to solve the OCPs. For the smaller cart-pole swing-up

problem, the explicit NLP subproblem was solved 1.73 times faster than the implicit

one. In this case, the majority of this time di↵erence can be attributed to the addi-

tional NLP iterations required for the implicit NLP subproblem to converge. This

was not the case for the other larger example problem, where the implicit problem

was solved 146 times faster, despite requiring an additional NLP iteration. Here, the

large increase in solve time was due to the more expensive-to-evaluate NLP deriva-

tives resulting from the explicit formulation. A single evaluation of the constraints

Jacobian was 231.17ms and 230.45 µs for the explicit and implicit formulations re-

spectively. Similarly, a single evaluation of the Lagrangian Hessian was 445.07ms

for the explicit formulation compared to 398.56 µs for the implicit formulation. In

both cases these large derivative matrices were in excess of 1000 times more com-

putationally expensive to compute when explicit dynamics were used. This was to

be expected given the explicit formulations’ significantly larger expression graphs.

Therefore, it should be expected that for systems with more than two DoFs, the

NLP subproblem will take a longer time to solve even if it can be solved in fewer

NLP iterations.

Even though the OCPs could be successfully solved using both explicit and im-

plicit dynamics, the analysis of the results of these investigations strongly indicates

that implicit dynamics should be used when formulating OCPs based on multibody

systems. For systems containing more than two DoFs, there are sound theoretical

reasons and experimental evidence to support this [10, 36, 136]. These reasons can

be summarised as follows:

1. it is less computationally expensive to initialise the OCP when implicit dynam-

ics are used because inversion of the mass matrix is not required, resulting in a

significantly smaller expression graph which needs to be di↵erentiated through

to determine the OCP derivatives [57, 136];

208

4.6. CONCLUSIONS

2. it is less computationally expensive to solve the NLP subproblem, despite it

being more than 50% larger, because the NLP derivatives resulting from the

implicit dynamics are significantly simpler and thus computationally cheaper

to evaluate [10]; and

3. the implicit equations are more numerically stable and result in smaller mesh

errors [36, 71].

4.6 Conclusions

Pynamics, an open-source Python package for optimal control involving multibody

dynamics, has been developed. It:

• allows users to construct computational models of multibody systems using

few lines of code, a consequence of its concise API and extensive library of

high level of abstraction multibody model components;

• greatly assists the user in constructing the multibody OCP, once a multibody

model has been constructed using its API, by:

– e�ciently determining compact EoMs for the modelled system;

– formulating the OCP by determining the required state variables, control

variables, static parameter variables, state equations, path constraints,

integrand functions and endpoint constraints; and

– interfacing with Pycollo to initialise and solve the OCP using a direct

collocation method;

• is capable of formulating OCPs using both explicit and implicit dynamics; and

• provides additional facilities to aid analysis, with modules for conducting for-

ward simulations and animating solutions.

Explicit and implicit formulations of dynamics were compared by using Pynam-

ics to solve a pair of multibody OCPs from the literature. The investigations:

• demonstrated that Pynamics is capable of accurately and reliably solving

multibody OCPs;

• concluded that using implicit dynamics to formulate multibody OCPs is sig-

nificantly more computationally e�cient and numerically robust for systems

with more than two DoFs; and

209

CHAPTER 4. MULTIBODY DYNAMICS

• recommended that implicit formulations of dynamics should be the preferred

approach.

The open-source provision of Pynamics will allow researchers and practitioners

without specific expertise in multibody dynamics or optimal control to investigate

OCPs involving multibody systems. In particular, it is recommended that future

research investigates:

• how handling of event detection can be incorporated into multibody OCPs so

that systems with altered dynamics can be modelled and predictively simulated

using direct collocation;

• making additions to the Pynamics component library; and

• adding support for contact modelling in Pynamics.

210

Chapter 5

Musculoskeletal Modelling

This chapter focuses on the unmet need for methodologies and software specifically

focused on the formulation and solution of predictive simulations involving mus-

culoskeletal models. A review of the related academic literature and background

material begin this chapter. The relevant objective from section 1.3 is restated, and

a set of sub-objectives laid out, in section 5.2. The development and attributes

of a software package are described in section 5.3, along with a number of biome-

chanical modelling methods and components specifically for predictive simulation.

Section 5.4 details the extensive verification and validation of the developed soft-

ware, including replication studies and sensitivity analyses. This is followed by a

set of recommendations for the formulation and solving of musculoskeletal predic-

tive simulations, and suggestions for how the work contained within this chapter

can be extended in the future. Finally, the objective and sub-objectives stated in

section 5.2 are reviewed, and an assessment of the extent to which they have been

met is made.

5.1 Background, Theory and Review

Biomechanical modelling in conjunction with simulation is a valuable analysis tech-

nique due to its ability to provide a quantitative interpretation of movement tasks.

Furthermore, this technique has become increasingly applied in recent years due

to improvements in computing power now making it practical to model the hu-

man anatomy with su�cient detail that realistic movements can be simulated [259].

Biomechanical models of the human body fall broadly into two types: torque-

actuated models articulated by net torques about each of the joints, and muscle-

actuated models articulated by numerous muscles spanning the joints and pairs of

211

CHAPTER 5. MUSCULOSKELETAL MODELLING

joints.

5.1.1 Torque-Actuated Models

Various two-dimensional (2D) torque-actuated models have been developed and

used to investigate gait [128, 238, 245, 260], crutch walking [110, 111], maximal

jumping [198, 199, 216], tumbling [337], pedalling [120, 134, 175, 176, 177, 193],

fast bowling in cricket [112], and tennis ground strokes [195]. In a torque-actuated

model, torque generators represent the net e↵ect of all muscles spanning a particular

joint [234, 338]. These torque generators typically model a muscle-tendon complex,

consisting of a contractile component and a series elastic component, such that both

passive and active torque generation are modelled accurately [234]. Furthermore,

separate agonist and antagonist torque generators are used to model opposite exer-

tions as this helps to achieve realistic kinematics and activation dynamics [234]. This

is of particular importance in situations where co-contraction occurs, for example

during impact landings [339].

As torque generators represent the net e↵ect of all muscles about a particular

joint, they can not be used to determine the role and contributions of individual

muscles [234]. Instead, their use in predictive simulation has focussed on predict-

ing global performance and kinematics. In these cases of performance prediction,

subject-specific modelling is particularly desirable. Torque-actuated models are ad-

vantageous as they can be readily parameterised from measured maximal isometric

and isokinetic exertions on a force dynamometer [14, 116, 197, 340]. A torque gen-

erator’s contractile component and series elastic component can be parameterised

by solving an optimisation problem in which the di↵erence between measured and

simulate joint torques is minimised [79, 116, 199].

Torque-actuated models have typically used monoarticular (spanning a single

joint) torque generators, which can limit insight into intermuscular coordination

due to only the net e↵ect of muscle moments about each joint being represented.

Torque-actuated models of pedalling have led to incorrect interpretations of muscles’

functions in such movements. A torque-actuated model was used to conclude that

the ankle moment is only responsible for transferring power produced by the hip

and knee to the cranks [120]. However, experimental research has shown that the

ankle joint also contributes approximately 20% of total output crank power [103].

Monoarticular torque generators also assume that the torque function is based

solely on the kinematics of the primary joint [116]. This assumption is invalid as it

ignores the e↵ects of biarticular (spanning more than one joint) muscles [79], which

212

5.1. BACKGROUND, THEORY AND REVIEW

have been shown to impact performance [306]. When monoarticular torque gen-

erators have been used, no insight into the role of biarticular muscles was gained

because of the modelling joint torques being independent of one another [120]. Mod-

els involving biarticular torque generators have been developed [216]. Such models

have been shown to produce more realistic simulations of jumping tasks [216].

One notable consideration regarding torque-actuated models is that it is di�-

cult to obtain a full set of subject-specific torque parameters in three-dimensional

(3D) [112, 338]. A 3D torque-actuated model of crutch walking has been cre-

ated [110]. However, this model was used to solve an inverse-dynamics problem,

and this category of model is yet to be used in a predictive simulation. As such, for

the majority of movement simulations, this approach is limited to 2D [234].

5.1.2 Muscle-Actuated Models

The first muscle-actuated model of the human body, and simulation capability to

use it to investigate human motion, was developed in 1976 [150, 151]. Other general,

planar, 2D, muscle-actuated biomechanical models of the lower extremity have since

been developed [173]. Similar models have been used to investigate pedalling [53,

250, 251, 252, 273, 274, 279, 280, 307, 343, 344] and other movement tasks like

gait [84] and jumping [55, 154, 295, 306, 308].

3D biomechanical modelling of the lower limb has also been conducted and

used to analyse and investigate human movement [22, 86, 202]. The development of

the open-source musculoskeletal modelling software OpenSim [87] has facilitated the

development and sharing within the biomechanics community of 3D biomechanical

models. These models have predominantly been used to investigate gait [16, 17, 18,

19, 145, 146, 266]. In addition, jumping [17, 269], squatting [75] and lifting [98] have

also been investigated.

Anatomically and physiologically accurate biomechanical models can be de-

veloped using OpenSim and it has therefore been predominantly employed to in-

vestigate novel movement tasks with clinical applications [286]. Examples include

surgery planning [117] and the rehabilitation of movement-restricting neurological

conditions like osteoarthritis and strokes [108, 117, 127, 200, 241]. Research has

predominantly focused on injury prevention rather than performance when Open-

Sim has been used to investigate sporting applications [286]. Investigation has,

however, been conducted to determine the contributions of various muscles’ forces

to propulsion in running [145, 146, 297].

Muscle-actuated biomechanical models require [259]:

213

CHAPTER 5. MUSCULOSKELETAL MODELLING

1. a model of the skeletal system and corresponding dynamical equations;

2. a model of musculotendon actuation as a function of muscular activation;

3. musculoskeletal coupling described by musculotendon origins, insertions and

pathways; and

4. a model of the dynamics between neural excitation and muscular activation.

5.1.3 Musculotendon Architecture

Like many biological structures, muscle exhibits a highly hierarchical structure [345].

The fundamental force generating units that make up muscle are sarcomeres [182].

Sarcomeres are long, thin structures (typically 2µm to 3µm in length and 1 µm
in diameter) comprised of fibrous protein filaments that slide over one another to

produce force. Numerous sarcomeres attached in series make up a muscle fibre [69],

the smallest scale longitudinal unit in a muscle. Parallel bundles of muscle fibres

form muscle fascicles, with a muscle consisting of numerous fascicles arranged in

parallel. As muscle fibres often run the full length of a muscle, fibre lengths within

a single muscle are usually equivalent. However, fibre lengths between muscles can

vary significantly as a result of muscle size [345]. The physiological cross-sectional

area (PCSA) of a muscle can be estimated by measuring its volume and dividing

this by the average fibre length.

Muscle fibres are connected to aponeuroses [345]. An aponeurosis is itself con-

nected to tendinous tissue, which is in turn attached to the skeleton. Aponeuroses

exhibit the same properties as the tendinous tissue to which they are attached [270,

276]. Therefore, the tendinous tissue and aponeurosis can be considered as a single

entity tendon [345]. A tendon transmits the force produced by its muscle to the

skeleton. Therefore, muscle and tendon must be considered as a single unit, the

musculotendon.

5.1.4 Musculotendon Properties

To develop an accurate musculotendon model, it is important to understand the

properties of muscle and tendon so that such a model accurately replicates these.

Muscle fibres exhibit both passive and active properties as a consequence of its

architecture and its ability to contract and produce force. These properties depend

on a muscle’s length and its shortening velocity. Conversely, tendons only exhibit

passive properties as they are not able to contract.

214

5.1. BACKGROUND, THEORY AND REVIEW

0.0 0.5 1.0 1.5 2.0
l̃M

0.0

0.5

1.0

1.5
flM pa

s

(a) Passive muscle fibre force-length

flM
pas

⇣
l̃M

⌘
.

0.0 0.5 1.0 1.5 2.0
l̃M

0.2

0.4

0.6

0.8

1.0

flM ac
t

(b) Active muscle fibre force-length

flM
act

⇣
l̃M

⌘
.

�1.0 �0.5 0.0 0.5 1.0
ṽM

0.0

0.5

1.0

fv
M

(c) Muscle fibre force-velocity fvM �
ṽM

�
.

1.00 1.02 1.04 1.06 1.08
l̃T

0.0

0.5

1.0

1.5

2.0

flT

(d) Tendon force-length flT
⇣
l̃T
⌘
.

Figure 5.1: Examples of typical musculotendon force-length and force-velocity char-

acteristics, adapted from [242]. l̃T denotes normalised tendon length, l̃M denotes

normalised muscle fibre length, and ṽM denotes normalised muscle fibre shortening

velocity.

Muscle Passive Force-Length

The passive properties of static muscle can be measured using an isolated specimen

by stretching it to a number of constant lengths, with no stimulation, and measuring

the resulting force [135, 275]. The muscle fibre length l
M at which passive muscle

develops force is known as the optimal muscle fibre length l
M
opt. When stretched

to lengths beyond l
M
opt the passive force increases exponentially due to inter-fibre

elasticity (caused by the protein, titin) [224]. Figure 5.1a shows this passive force-

length relationship flM
pas

⇣
l̃
M
⌘
for a typical muscle.

215

CHAPTER 5. MUSCULOSKELETAL MODELLING

Muscle Active Force-Length

A further component to the isometric force-length function of muscle flM
act

⇣
l̃
M
⌘
oc-

curs when the muscle tissue is activated by a neural stimulus, known as activation.

Fully activated muscle also develops a steady force when under isometric conditions.

The di↵erence between this and flMpas

⇣
l̃
M
⌘
is known as active muscle force flM

act

⇣
l̃
M
⌘
.

Active muscle force is generally produced in the region 0.5lMopt < l
M

< 1.5lMopt [135,

275]. At l
M = l

M
opt muscle force F

M also reaches its peak active value F
M
max [135,

275].

It is possible for muscle to be stimulated to a level lower than full excitation

if not all fibres are active, or if the muscle is stimulated by a low frequency pulse

train [345]. In this case the flM
⇣
l̃
M
⌘

can be considered as a scaled version of

the di↵erence between flM
pas

⇣
l̃
M
⌘
and flM

act

⇣
l̃
M
⌘
[152, 327]. This scaling argument

is predicated on the fact that the forces produced by multiple fibres in the same

muscle sum in parallel [183]. Figure 5.1b shows flM
act

⇣
l̃
M
⌘
for a typical muscle.

Muscle Force-Velocity

Muscle can only produce tensile force. Muscle length shortens when contracting

concentrically and thus does useful work. During a concentric contraction, FM is

weaker than for an equivalent isometric contraction [162]. As shortening velocity

v
M increases, the magnitude of FM continues to fall. At l

M = l
M
opt there exists a

maximum contractile velocity v
M
max at which the muscle cannot produce any tensile

force even when fully activated [162]. Muscle can contract eccentrically to resist

lengthening. Eccentric contractions are stronger than concentric ones and therefore,

during lengthening, if the muscle is fully activated, it is able to produce a force

F
M

> F
M
max [162]. A typical muscle force-velocity relationship fvM

�
ṽ
M
�
is shown in

fig. 5.1c.

fvM
�
ṽ
M
�
is dependent on l

M and activation in addition to v
M . However, exper-

iments have found that assuming a constant relationship between l
M and activation

has negligible e↵ect on the results of a muscle coordination analysis [24, 152, 345].

Due to the specific shape of fvM
�
ṽ
M
�
, the point at which a contracting muscle

can deliver maximum power output occurs at approximately 0.3vMmax [162]. There-

fore, for a task like cycling that requires a net power input to the system in order

to generate propulsion, concentric contractions constitute the majority of muscular

activity. As frictional loses in joints and tendons are minimal [345], if energy (in the

form of kinetic and potential energy of limb segments) needs to be dissipated, this is

216

5.1. BACKGROUND, THEORY AND REVIEW

done by eccentric contractions. The greater the stretching force a muscle is subject

to during lengthening, the faster it will lengthen [186, 192, 230]. However, the max-

imum tensile force a muscle can be subjected to is between 1.1 and 1.8 F
M
max [186,

192, 230], so care must be taken to not exceed this in order to avoid catastrophic

injury.

Tendon Force-Length

Tendon consists of two components: internal tendon (or aponeurosis) and external

tendon (which exists outside the muscle). Experimental data suggests that the

strain experienced by internal and external tendon is the same and therefore it is

justified to consider both components as a single entity with the same material

properties [270, 276]. The length below which a tendon cannot produce any force

is known as the tendon slack length l
T
slack. When tendon is stretched beyond this it

generates a nonlinear passive elastic contractile force (fig. 5.1d).

Pennation

The fibres in muscle may either be orientated parallel to the tendon (parallel-fibred

muscle) or at an acute angle (pennate muscle). This subtended angle is known

as the pennation angle ↵. Parallel-fibred and pennate muscle are equivalent when

↵ = 0. The more pennated a muscle is, the shorter its average fibre length and slower

its shortening velocity [237]. However, pennate muscles are generally stronger than

parallel-fibred muscles of the same volume because their architecture allows a greater

number of muscle fibres to contract simultaneously [237].

Fibre Type

Muscle fibres can also be of di↵erent types, namely slow-twitch (type I) and fast-

twitch (type II). Fast-twitch muscle fibres can develop greater force and do so faster

than their slow-twitch counterpart, albeit with worse resistance to fatigue [69]. Mus-

cles with predominantly type II fibres exhibit higher maximum and optimal short-

ening velocities than their type I counterparts, and thus are up to five times more

powerful [315]. Therefore, for performance during a maximal task, a high propor-

tion of type II fibres is desirable. Conversely, a high proportion of type I fibres is

desirable for endurance tasks. Di↵erent muscles contain di↵erent relative propor-

tions of the two main fibre types and as such exhibit di↵erent force-producing and

fatigue-resistance properties. Therefore, when modelling real musculotendons, it is

217

CHAPTER 5. MUSCULOSKELETAL MODELLING

important to parameterise the musculotendon models so that they are representative

of their counterpart muscles’ properties [108, 318, 319].

History Dependence

In addition to dependence on length and velocity, muscle force is also influenced

by time history. Several studies have shown that prior active shortening of muscle

reduces the amount of force it can produce relative to if it had undergone no prior

shortening (shortening-induced force-depression) [2, 158]. Conversely, a muscle that

has actively lengthened will be able to produce a higher force than if it had just

maintained the same length (stretch-induced force-enhancement) [2, 159].

5.1.5 Musculotendon Dynamics

Second-Order Systems Models

Second-order systems models assume that muscle is a simple force generator and do

not attempt to model the elastic characteristics [162, 328]. These assumptions allow

the muscle-joint system to be treated purely as a second-order model relating some

input (usually activation level) to joint angle, joint angular velocity and joint angular

acceleration. Although this allows the system to be described by a second-order

ordinary di↵erential equation (ODE) [11], these assumptions do have significant

shortcomings:

1. no velocity dependence (which has clearly been demonstrated for muscle [162])

is considered; and

2. model parameters are highly task and range of motion dependent and need to

be adjusted for di↵erent tasks.

This category of model is not recommended for musculoskeletal models and simula-

tions of human movements [24, 328].

Hill-Type Lumped-Parameter Models

Hill-type lumped-parameter models (based on the model proposed in [162]) accu-

rately describe the phenomenological characteristics of muscle and are the most com-

mon model type in musculoskeletal models used to simulate human movement [150,

218

5.1. BACKGROUND, THEORY AND REVIEW

DE

CE

EESE ↵

l
T

l
M cos (↵)

F
T

F
M

Figure 5.2: Schematic representation of a Hill-type musculotendon model. SE de-

notes the series elastic element, CE denotes the contractile element, DE denotes the

parallel damping element, and EE denotes the parallel elastic element. lT denotes the

tendon length, lM denotes the muscle fibre length, ↵ denotes the pennation angle, F T

denotes the tendon force, and FM denotes the muscle force.

242, 316, 328, 345]. These models typically consist of a force-producing contractile

element CE in parallel with an elastic element EE and damping element DE to

represent the muscle [242, 316]. This parallel arrangement is connected to a further

elastic element in series SE to represent the tendon (fig. 5.2). With the exception of

DE, all of the basic elements in Hill-type models are inherently nonlinear (fig. 5.1):

1. the properties of CE are given by flM
act

⇣
l̃
M
⌘
and fvM

�
ṽ
M
�
;

2. the properties of EE are given by flM
pas

⇣
l̃
M
⌘
; and

3. the properties of SE are given by flT
⇣
l̃
T
⌘
.

These characteristics are scaled such that

l̃
M =

l
M

lMopt

(5.1)

ṽ
M =

v
M

vMmax

(5.2)

l̃
T =

l
T

lTslack

, (5.3)

where l̃M is nondimensional muscle length, ṽM is nondimensional muscle shortening

velocity, and l̃
T is nondimensional tendon length. At any instantaneous time, the

length of the musculotendon actuator lMT is

l
MT = l

T + l
M cos (↵) (5.4)

219

CHAPTER 5. MUSCULOSKELETAL MODELLING

and the muscle force is therefore given by

F
M = F

M
max

⇣
aflM

act

⇣
l̃
M
⌘
fvM

�
ṽ
M
�
+ flM

pas

⇣
l̃
M
⌘
+ �ṽ

M
⌘
, (5.5)

where a is muscular activation (section 5.1.6).

The parameters lTslack, l
M
opt, F

M
max and ↵opt must be defined for a musculotendon

model, numerous data sets for which have been published [22, 73, 89, 202]. � is

the coe�cient of damping that describes the linear damper DE, with � = 0.1 sm�1

having been suggested [242]. Though strong damping has not been experimentally

observed [167], inclusion of DE seems reasonable due to the high water content of

muscle [320]. It has also been stated that DE improves the numerical conditioning

of the Hill-type model [242].

v
M
max = 10lMopts

�1 is typically assumed in simulation studies [16, 17, 252, 261,

274, 279] as this represents the summed e↵ect of slow-, intermediate-, and fast-twitch

muscle fibres [345]. However, no study to date has examined this assumption and the

sensitivity of simulations to v
M
max. Attempts have been made to better describe the

influence of varying proportions of fast- and slow-twitch muscle fibres on contraction

dynamics, however these have seen little validation or widespread use in simulation

studies [44].

Tendon is usually modelled as a nonlinear elastic spring [89, 173, 345], although

linear force-length relationships have also been used [15, 16, 261] to represent the

contractile force produced by the tendon as it is stretched beyond l
T
slack. The value of

l
T
slack can have a large influence on the characteristics of the modelled musculotendon

actuator as it will determine the magnitude of the peak force developed and the joint

angle at which peak force occurs [89, 173, 345]. Thus the ratio between l
T
slack and

l
M
opt is important in musculoskeletal models.

A rigid tendon assumption (vT = 0) allows l
M to be calculated as a function

of skeletal pose and has been made in simulation studies to improve computational

performance [85, 241]. This assumption has been investigated and it was found

that for short, sti↵ tendons computation times were significantly improved (by 2 to

54 times relative to an elastic tendon) without introducing additional error [242].

For longer and less-sti↵ tendons, the errors in muscle force values produced by

the rigid tendon model were approximately twice as large as those produced by

the elastic tendon models [242]. The characteristic force-length and force-velocity

functions published by [242] (which are used by OpenSim [87]) were adapted to

ensure they remained first- and second-order continuous [85]. This adaptation made

the musculotendon model more suitable for inclusion in optimal control problems

(OCPs) where smooth derivative functions are required for e�cient and reliable

convergence [36, 282].

220

5.1. BACKGROUND, THEORY AND REVIEW

Phenomenological models of history dependent e↵ects which accurately model

shortening-induced force-depression and stretch-induced force-enhancement have

been published [235, 236]. Simulation of jumping showed that including the phe-

nomenological models of history dependent e↵ects produced a more realistic coun-

termovement jump [236]. However, others stated that history dependent e↵ects

have little impact on natural movements [64] and it is therefore unclear whether

the inclusion of such models is important when simulating human movements like

cycling.

Huxley-Based Distributed-Parameter Models

Huxley-based distributed-parameter models (based on the work of [182]) attempt

to identify and model the physiological principles behind the contractile mechanism

rather than modelling phenomenological properties [97, 149, 163, 329]. Partial dif-

ferential equations (PDEs) are used to describe the process of muscle fibres sliding

over one another in order to produce contractile force [163, 329]. Huxley-based mod-

els are derived from biological principles and can therefore explain a full range of

muscle lengthening phenomena. However, they are mathematically complicated and

include many parameters that cannot be easily determined experimentally [328].

As such, Huxley-based models have not seen use in simulations of human move-

ment [242].

Passive Joint Structures

Passive joint structures which contribute to joint sti↵ness (such as ligaments, car-

tilage, and menisci) are generally not included in performance-based biomechanical

models, as within normal ranges of motion their e↵ect can be modelled in combi-

nation with the elastic properties of muscle [289, 303]. Passive torques provided by

ligaments, if modelled, are represented by functions which exponentially increase in

magnitude towards the extremes of the joint’s range of motion [16, 24, 155, 226,

342]. Cartilage and menisci act to decrease joint force transmission and therefore

only need to be modelled if this is the investigation’s focus [302].

221

CHAPTER 5. MUSCULOSKELETAL MODELLING

5.1.6 Activation Dynamics

Excitation-Activation Coupling

Muscle force production is the combination of muscle contraction dynamics and

activation dynamics, with activation dynamics being the transformation of neural

excitation into muscular activation [345]. The processes of activation and relaxation

cannot occur instantaneously as they involve the conversion of an electrical signal

from the nervous system into a chemical signal [96]. Although a second-order,

critically damped filter models the delay between changes in neural excitation e and

changes in muscular activation a very accurately [31], it is usually modelled as a first-

order process [16, 251, 261, 274, 307, 328, 345]. The first-order assumption is valid

because it accurately describes the rate-limiting di↵usion of calcium ions [152, 345]

and preference for first-order equations has prevailed because it reduces simulation

times [345].

All models of activation dynamics are similar implicit ODEs. These ODE rep-

resent the rate of change in activation da
dt as a function of a, e, and time con-

stants for activation ⌧act and deactivation ⌧deact [57, 150, 242, 326]. Deactivation

occurs at a much slower rate than activation [253]. 10ms  ⌧act  20ms and

20ms  ⌧deact  200ms are typically used in simulation studies [16, 57, 85, 242,

251, 261, 274, 307, 328, 345].

A fundamental feature of many of the first-order equations used to describe

activation dynamics is that discontinuities occur at the transition between stimu-

lation and relaxation [57, 242]. This is problematic if such a model is to be used

in an OCP as smooth functions and first- and second-derivatives are important for

e�cient and reliable convergence [282]. Amendments to the equations provided by

[242] have been proposed [85]. These amendments involved a hyperbolic tangent

function to smooth this transition between activation and deactivation, and make

the activation dynamics models better conditioned for OCPs.

Rate of Force Development

It is worth noting that studies into the rate of force development during maximal

exertions have shown that the time between zero and maximum force can range

from 40ms to 200ms [1, 65], slower than the times for ⌧act and ⌧deact given above.

This is because the presence of an elastic tendon introduces an additional source of

delay to force development, whereby an increase in muscle force initially acts to in-

crease tendon strain until muscle and tendon force equilibrium is reached. Numerous

222

5.1. BACKGROUND, THEORY AND REVIEW

simulation studies have concluded that activation dynamics are the most important

factor in determining the optimal neural excitation timings for movement tasks such

as cycling [253, 279, 280, 307]. Therefore, if a rigid tendon assumption is made (and

thus the additional delay in force generation is not intrinsic to the model) then the

magnitudes of ⌧act and ⌧deact should be carefully considered.

5.1.7 Musculotendon Pathways

The numerous muscles present in the human body act to articulate it through con-

traction. The forces produced by muscle contractions are transferred to the skeleton

through the tendons at either end of the musculotendon, attached to the skeleton

at the musculotendon’s origin and insertion [345]. It is important to be able to

calculate a musculotendon’s length and shortening velocity as functions of skeletal

pose and kinematics because these quantities are required to evaluate the equations

of musculotendon dynamics [85, 242, 316]. Musculotendon actuators are assumed

to originate from, and insert into, the skeleton at single points [16, 84, 150, 173, 251,

261, 274, 279, 307, 332]. However, when a muscle’s physical origin or insertion spans

across a large area of bone, it is sometimes separated into multiple components [89,

248].

In between their origin and insertion, musculotendons can follow complex paths,

wrapping around skeletal features and other musculotendons [345]. While simple

straight-line methods have been implemented to model the pathway of the muscle

between origin and insertion, these have been shown not to produce meaningful re-

sults when a muscle wraps around bone or another muscle [123, 184]. Consequently,

being able to accurately model such paths is important for the development of real-

istic musculoskeletal models [123].

Obstacle-Set Method

The obstacle-set method is more accurate than straight-line methods as it describes

a musculotendon’s pathway using a series of points that represent its cross-sectional

centroid [123, 184]. Via-points, connected by straight segments, accurately de-

scribe a musculotendon’s path even when skeletal articulation causes joint angles to

change [62, 89, 123]. The via-points are fixed relative to specific skeletal locations

and take into account musculotendon wrapping. While via-points may be taken to

be single points [87], others have extended the obstacle-set method to include wrap-

ping around regular-shaped 3D rigid bodies, such as spheres and cylinders [123].

When wrapping surfaces such as these are involved, the obstacle-set method typi-

223

CHAPTER 5. MUSCULOSKELETAL MODELLING

cally assumes that the musculotendon pathway is made up of a series of joined linear

and circular arc segments. In the obstacle-set method, via-points can be considered

either active or inactive as functions of relevant joint angles [123], which allows

the musculotendon pathway to vary as a function of skeletal pose. The obstacle-

set method has become the standard methodology for describing musculotendon

pathways in biomechanical models [87].

Published datasets of full musculoskeletal and musculotendon geometry (pro-

duced by medical imaging and cadaver dissection) facilitate the implementation of

the obstacle-set method [22, 73, 89, 202]. While these data sets are only representa-

tive of the individual from which they were produced, scaling techniques can be used

to tailor them for subject specific models. Many non-invasive, image-based scaling

methods (such as bone surface morphing [278], muscle volume registration [73], and

musculotendon path identification [73]) have been developed in recent years to as-

sist with this [73]. Furthermore, numerous studies have concluded that use of these

image based methods provide an e�cient and accurate means of producing subject-

specific musculoskeletal models [21, 48, 73].

Pathway Approximation and Simplification

Using obstacle-set musculotendon pathways in OCPs can present two problems.

Firstly, pathways that include multiple via-points or wrapping surfaces can be ex-

pensive to describe analytically as part of a system’s equations of motion (EoMs),

leading to prohibitively computationally expensive OCP functions [108]. Secondly,

obstacle-set pathways that include via-points that switch between active and inac-

tive at di↵erent joint angles require the introduction of conditional statements into

computational implementations which are not suited for OCPs [36]. To circumvent

these issues, it has been suggested that polynomial approximations of musculoten-

don pathways can be used [58, 108]. In this approach, data for musculotendon

lengths and moment arms as functions of joint angles is produced by analysing geo-

metric musculotendon pathways across a large number of skeletal poses. Polynomial

approximations to these are then produced using stepwise regression, increasing the

order of the approximation polynomial until a desired accuracy threshold is met [58].

Approximations to musculotendon shortening velocities can either be produced fol-

lowing a similar approach but by also including a range of joint angular velocities

in the dataset, or by di↵erentiating the polynomial fit to musculotendon length. To

date, there has been no study formally investigating the accuracy and e�ciency of

such an approach.

224

5.2. RESEARCH OBJECTIVES

5.2 Research Objectives

Section 1.3 laid out the objective of developing and critically evaluating a highly per-

formant, easy-to-use, open-source software package capable of formulating and solv-

ing musculoskeletal predictive OCPs. This will be done by adding musculoskeletal

modelling functionality to the Biomechanics Predictive Simulation Toolkit (BPST),

while leveraging the capabilities of the other BPST packages.

From the analysis and review of past work in section 5.1, a number of limitations

and constraints associated with the current software provision in this area were

identified. To address these, and meet the overall objective above, the following

sub-objectives are laid out:

• investigate current limitations in musculoskeletal modelling when applied to

OCPs with the purpose of developing approaches and solutions that can be

incorporated into a software package, including:

– the functions used to describe musculotendon properties;

– the formulation of musculotendon dynamics as part of an OCP; and

– e�cient musculotendon pathway approximation;

• enable users to e�ciently construct biomechanical models using a high-level of

abstraction (current software provision for this has not been developed with

predictive simulation as a core functionality);

• enable users without an expertise in biomechanics to derive the musculoskele-

tal EoMs governing their modelled biomechanical system (by placing OCP

functionality at the centre of design creates opportunities for more e�cient

and reliable modelling methodologies to be explored);

• enable the construction of OCPs involving modelled biomechanical systems

while seeking to minimise complexity for the user (the current software provi-

sion in this area focuses on inverse dynamics rather than predictive simulation);

• support the formulation of OCPs using a variety of formulations of musculo-

tendon dynamics (to enable the rigorous comparison of such formulations and

their implications on performance when solving predictive simulations);

• e�ciently model and approximate musculotendon pathways without compro-

mising accuracy (there has been no study to date investigating the implications

of approximate musculotendon pathways on OCP performance and solution

accuracy);

225

CHAPTER 5. MUSCULOSKELETAL MODELLING

• validate the developed software against previously published predictive simu-

lation results.

5.3 Software Implementation: Pyomechanics

In this section, the development of a biomechanical modelling package, with primary

focus on biomechanical predictive simulation, is described. The package is called

Pyomechanics, with its name derived from Python and biomechanics. Pyomechanics

is a biomechanics extension to Pynamics (section 4.3) and as such has also been

developed to be an open-source software package written in Python.

5.3.1 Overview

As outlined in section 5.1, biomechanical modelling is dependent on multibody dy-

namics, musculotendon dynamics, activation dynamics and musculoskeletal cou-

pling. Pyomechanics leverages Pynamics to provide multibody dynamics function-

ality. It does this by thinly wrapping Pynamics, exposing all of the function-

ality of Pynamics to the user. Pyomechanics also extends Pynamics to provide

biomechanics-specific modelling and OCP setup.

As Pyomechanics is an extension to Pynamics, it possesses the same structure,

also having model, form, ocp, sim and viz modules (section 4.3.1). The main

extension occurs in the model module, in which additional biomechanics-specific

classes are added to the component library. Firstly, there are the Musculotendon

classes, which subclass Pynamics’ Actuator class (section 5.3.2). These enable the

creation of musculoskeletal models that account for musculotendon and activation

dynamics. Secondly, there is the ObstacleSetPathway class, a subclass of Pathway

(section 5.3.6), which allows nonlinear musculotendon pathways to be modelled.

5.3.2 Musculotendon Dynamics

Biological muscle is complex and many simplifications and assumptions are made

when it is modelled [242]. Pyomechanics implements Hill-type musculotendon mod-

els [162, 345]. These modelled musculotendons are assumed to be massless, friction-

less, extensible strings which are able to contract and produce force. As illustrated

in fig. 5.3, modelled musculotendon is made up of a tendon in series with a set of

muscle fibres, which are responsible for producing the contractile force. The tendon

226

5.3. SOFTWARE IMPLEMENTATION: PYOMECHANICS

↵

h

l
MT

Tendon Muscle Fibres

Figure 5.3: Simplified diagram of a modelled musculotendon. lMT denotes the

musculotendon length, ↵ denotes the pennation angle, and h denotes the muscle fibre

height.

has length l
T and the muscle fibres have length l

M , arranged at the pennation angle

↵ to the tendon (fig. 5.3). Thus the length of the musculotendon l
MT is

l
MT = l

T + l
M cos (↵) , (5.6)

noting that lMT and v
MT are functions of skeletal pose and kinematics respectively.

The muscle fibres are assumed to be constant height, such that

l
M sin (↵) = l

M
opt sin (↵opt) , (5.7)

in order to approximate the constant-volume property of biological muscle [242].

Resolving the tendon and fibre forces of fig. 5.3 horizontally gives

F
T = F

M cos (↵) , (5.8)

where F
T , the tendon force, is the force imparted onto the skeleton at the mus-

culotendon’s origin and insertion. Pyomechanics uses dimensionless quantities to

describe the properties of muscle and tendon (see section 5.3.3). As such, these

dimensionless properties are scaled using five parameters in order to represent a spe-

cific musculotendon. These parameters are tendon slack length l
T
slack, optimal fibre

length l
M
opt, maximum fibre velocity v

M
max, maximum isometric fibre force F

M
max, and

pennation angle at optimal fibre length ↵opt, which allow nondimensional quantities

describing the musculotendon to be defined. Nondimensional quantities describing

the musculotendon include normalised tendon length

l̃
T =

l
T

lTslack

, (5.9)

normalised tendon velocity

ṽ
T =

v
T

lTslack

, (5.10)

227

CHAPTER 5. MUSCULOSKELETAL MODELLING

DE

CE

EE↵

l
T

l
M cos (↵)

F
T

F
M

Figure 5.4: Schematic of the damped rigid tendon musculotendon model used in

Pyomechanics. CE denotes the contractile element, DE denotes the parallel damping

element, and EE denotes the parallel elastic element. lT denotes the tendon length,

lM denotes the muscle fibre length, ↵ denotes the pennation angle, F T denotes the

tendon force, and FM denotes the muscle fibre force.

normalised tendon force

F̃
T =

F
T

FM
max

, (5.11)

normalised muscle fibre length

l̃
M =

l
M

lMopt

, (5.12)

normalised muscle fibre velocity

ṽ
M =

v
M

vMmax

(5.13)

and normalised muscle fibre force

F̃
M =

F
M

FM
max

. (5.14)

Pyomechanics provides both rigid and elastic tendon musculotendon models, which

are discussed below.

Rigid Tendon

Figure 5.4 shows a schematic of the rigid tendon musculotendon model used by

Pyomechanics. In the rigid tendon model lT = l
T
slack and v

T = 0. As such, lM and

v
M can be calculated directly as functions of skeletal pose and kinematics due to

the tendon being fixed-length. This means that

l
M =

q
(lMT � lTslack)

2
+
�
lMopt sin (↵opt)

�
, (5.15)

228

5.3. SOFTWARE IMPLEMENTATION: PYOMECHANICS

found by eliminating ↵ from eqs. (5.6) and (5.7). Furthermore,

v
M = v

MT

✓
l
MT
� l

T
slack

lM

◆
, (5.16)

found by di↵erentiating eqs. (5.6) and (5.7) with respect to time, eliminating d↵
dt from

the resulting pair of first-order ODEs and eliminating cos (↵) using eq. (5.6). The

force produced by the muscle fibres is a combination of the active force produced

by the contractile element and the passive forces produced by the passive parallel

elastic and damping elements (fig. 5.4). Using this model, muscle force

F
M = F

M
max

⇣
aflM

act

⇣
l̃
M
⌘
fvM

�
ṽ
M
�
+ flM

pas

⇣
l̃
M
⌘
+ �ṽ

M
⌘
, (5.17)

where � is an additional property of muscle fibre, the muscle fibre damping coe�-

cient. The terms flM
pas

⇣
l̃
M
⌘
, flM

act

⇣
l̃
M
⌘
and fvM

�
ṽ
M
�
correspond to the normalised

passive force-length, normalised active force-length and normalised force-velocity

properties of muscle fibre respectively, all of which are discussed in section 5.3.3.

Given the muscle activation a (see section 5.3.4), lMT and v
MT , the tendon force

F
T can be calculated by

1. determining l
M using eq. (5.15);

2. normalising l
M using eq. (5.12) to give l̃

M ;

3. determining v
M using eq. (5.16);

4. normalising v
M using eq. (5.13) to give ṽ

M ;

5. evaluating flM
pas

⇣
l̃
M
⌘
using l̃

M and an appropriate muscle fibre passive force-

length equation from section 5.3.3;

6. evaluating flM
act

⇣
l̃
M
⌘

using l̃
M and an appropriate muscle fibre active force-

length equation from section 5.3.3;

7. evaluating fvM
�
ṽ
M
�
using ṽ

M and an appropriate muscle fibre force-velocity

equation from section 5.3.3;

8. evaluate eq. (5.17) to give F
M ; and

9. determining F
T using eq. (5.8) with eq. (5.7) to eliminate cos (↵).

An example of how a rigid tendon musculotendon can be instantiated using the

Pyomechanics application programming interface (API) is given in section 5.3.5.

229

CHAPTER 5. MUSCULOSKELETAL MODELLING

DE

CE

EESE ↵

l
T

l
M cos (↵)

F
T

F
M

Figure 5.5: Schematic of the damped elastic tendon equilibrium musculotendon

model used in Pyomechanics. SE denotes the series elastic element, CE denotes the

contractile element, DE denotes the parallel damping element, and EE denotes the

parallel elastic element. lT denotes the tendon length, lM denotes the muscle fibre

length, ↵ denotes the pennation angle, F T denotes the tendon force, and FM denotes

the muscle fibre force.

Elastic Tendon

Pyomechanics also supports the modelling of musculotendons with elastic tendons

using a damped equilibrium model [242], a schematic of which is shown in fig. 5.5.

Unlike the rigid tendon model, the elastic tendon model models the tendon as a

nonlinear spring in series with the parallel contractile, elastic and damping elements

representing the muscle fibres. The tendon force F
T is given by

F
T = F

M
maxfl

T
⇣
l̃
T
⌘
, (5.18)

where flT
⇣
l̃
T
⌘

corresponds to the normalised force-length relationship of tendon,

which is discussed in section 5.3.3. The muscle fibres are modelled the same way

in both the rigid and elastic tendon models; the muscle fibre force is also given

using eq. (5.17). The five eqs. (5.6) to (5.8), (5.17) and (5.18) define a system of

nonlinear simultaneous equations with the five unknowns F
T , FM , lT , lM and ↵.

Unlike in the rigid tendon model, where F T can be stated in explicit form by finding

an algebraic solution to these equations using the rigid tendon assumption, the

elastic tendon system cannot be solved unless an additional state variable is defined.

Furthermore, unless the damping coe�cient � = 0, the muscle dynamics cannot be

expressed explicitly. Instead, they must be expressed implicitly by introducing a

further additional variable alongside the already-required additional state variable.

Pyomechanics supports two distinct ways of resolving this system of five equations

such that F
T can be calculated; by treating either l̃

M or F̃
T as a state variable.

230

5.3. SOFTWARE IMPLEMENTATION: PYOMECHANICS

Moreover, depending on the value of �, Pyomechanics will also formulate either

explicit or implicit musculotendon dynamics.

In the first formulation, l̃M is treated as a state variable. With l̃
M known,

enough additional information about the musculotendon’s configuration is provided

such that F T can determined by

1. denormalising l̃
M using a rearrangement of eq. (5.12) to give l

M ;

2. determining l
T as

l
T = l

MT
�

q
(lM)2 �

�
lMopt sin (↵opt)

�2
, (5.19)

produced by combining eqs. (5.6) and (5.7) by eliminating cos (↵) using the

Pythagorean trigonometric identity cos 2 (↵) + sin 2 (↵) = 1 and rearranging;

3. normalising l
T using eq. (5.9) to give l̃

T ;

4. determining cos (↵) as

cos (↵) =
l
MT
� l

T

lM
, (5.20)

a rearrangement of eq. (5.6);

5. evaluating flT
⇣
l̃
T
⌘
using l̃

T and an appropriate tendon force-length equation

from section 5.3.3; and

6. determining F
T using eq. (5.18).

As Pyomechanics formulates OCPs involving these musculotendon models, the time

derivatives of any state variables are also required so that these can be used as state

equations in any OCP formulation. If � = 0, it is possible to state the musculotendon

dynamics explicitly. Therefore, Pyomechanics also determines d
dt

⇣
l̃
M
⌘
in the case

of this first formulation by

7. determining F
M as

F
M =

F
T

cos (↵)
, (5.21)

a rearrangement of eq. (5.8);

8. normalising F
M using eq. (5.14) to give F̃

M ;

9. evaluating fvM
�
ṽ
M
�
as

fvM
�
ṽ
M
�
=

F̃
M
� flM

pas

⇣
l̃
M
⌘

aflM
act

⇣
l̃M
⌘ , (5.22)

a rearrangement of eq. (5.17);

231

CHAPTER 5. MUSCULOSKELETAL MODELLING

10. determining ṽ
M using fvM

�
ṽ
M
�
from the previously evaluated eq. (5.22) and

an appropriate inverse muscle fibre force-velocity equation from section 5.3.3;

and

11. evaluating d
dt

⇣
l̃
M
⌘
as

d

dt

⇣
l̃
M
⌘
=

1

lMopt

d

dt

�
l
M
�
=

1

lMopt

v
M =

v
M
max

lMopt

ṽ
M
. (5.23)

If � > 0, or if requested by the user, Pyomechanics will formulate the muscu-

lotendon dynamics implicitly. It does this by introducing ṽ
M as a control variable

such that eq. (5.23) can be evaluated directly. Steps 1 to 6 remain the same, with

the musculotendon dynamics then being imposed by introducing
⇣
aflM

act

⇣
l̃
M
⌘
fvM

�
ṽ
M
�
+ flM

pas

⇣
l̃
M
⌘
+ �ṽ

M
⌘
cos (↵)� flT

⇣
l̃
T
⌘
= 0 (5.24)

as an equality path constraint.

In the second formulation, F̃ T is treated as a state variable. With F̃
T known,

F
T can be determined with ease by

1. denormalising F̃
T using a rearrangement of eq. (5.11) to give F

T .

As before, the time derivative d
dt

⇣
F̃

T
⌘
of the introduced state variable F̃

T is also

required so that Pyomechanics can formulate OCPs. The required state equation

involving d
dt

⇣
F̃

T
⌘
is determined in Pyomechanics by

2. recognising that F̃ T = flT
⇣
l̃
T
⌘
;

3. determining l̃
T using flT

⇣
l̃
T
⌘
and an appropriate inverse tendon force-length

equation from section 5.3.3;

4. denormalising l̃
T using a rearrangement of eq. (5.9) to give l

T ;

5. determining l
M as

l
M =

q
(lMT � lT)2 +

�
lMopt sin (↵opt)

�2
, (5.25)

produced by combining eqs. (5.6) and (5.7) by eliminating cos (↵) using the

Pythagorean trigonometric identity cos 2 (↵) + sin 2 (↵) = 1 and rearranging;

6. normalising l
M using eq. (5.12) to give l̃

M ;

7. determining cos (↵) using eq. (5.20);

232

5.3. SOFTWARE IMPLEMENTATION: PYOMECHANICS

8. determining F
M using eq. (5.21);

9. normalising F
M using eq. (5.14) to give F̃

M ;

10. evaluating fvM
�
ṽ
M
�
using eq. (5.22);

11. determining ṽ
M using fvM

�
ṽ
M
�
the previously evaluated eq. (5.22) and an

appropriate inverse muscle fibre force-velocity equation from section 5.3.3;

12. determining v
T as

v
T = v

MT
�

v
M

cos (↵)
, (5.26)

given by rearranging and taking the first-order time derivative of eq. (5.6);

13. normalising v
T using eq. (5.10) to give ṽ

T ; and

14. evaluating d
dt

⇣
F̃

T
⌘
using the first-order time derivative of an appropriate ten-

don force-length equation from section 5.3.3.

Again, Pyomechanics will formulate implicit musculotendon dynamics by introduc-

ing ṽ
M as a control variable at the user’s request or if � > 0. Steps 1 to 7 and 12 to

14 are followed as before while steps 8 to 11 are simply removed as ṽM is known. As

for the formulation with l̃
M as the state variable, the musculotendon dynamics are

enforced using eq. (5.24) as an equality path constraint. Examples of how elastic

tendon musculotendons can be instantiated in Pyomechanics using both of the state

formulations described above are given towards the end of section 5.3.5.

5.3.3 Musculotendon Curves

Section 5.3.2 showed that the incorporation of eq. (5.17) in the musculotendon dy-

namics requires flM
pas

⇣
l̃
M
⌘
, flM

act

⇣
l̃
M
⌘
and fvM

�
ṽ
M
�
, dimensionless functions repre-

senting the passive force-length, active force-length and force-velocity characteristics

of muscle fibre respectively. This subsection details the mathematical expressions

that Pyomechanics uses to represent these musculotendon characteristics. As Py-

omechanics formulates OCPs, the mathematical expressions representing these char-

acteristic curves are required to be at least second-order continuous so that they are

compatible with the direct collocation method implemented by Pycollo (section 2.6,

[36, 43]). Additional numerical properties are also required for some of these char-

acteristic curves.

For each characteristic musculotendon curve, Pyomechanics provides two im-

plementations. Pyomechanics implements the OCP-suitable musculotendon curves

233

CHAPTER 5. MUSCULOSKELETAL MODELLING

from [85], termed the De Groote curves. Pyomechanics also implements a set of

characteristic musculotendon curves that have been produced as best-fits to the

non-OCP-suitable characteristic musculotendon curves from [242], termed the Mil-

lard curves. The curves from [242] are not directly suitable for use in OCPs as

they are constructed using quintic Bézier splines. While these meet the continu-

ity requirements, such interpolating functions are not readily di↵erentiable by OCP

software (section 2.6). It was desirable for Pyomechanics to provide OCP-suitable

implementations of musculotendon curves similar to those from [242] as these curves

are the most widely used musculotendon curves in biomechanical modelling and dif-

fer substantially to the curves of [85] in places (see below).

Tendon Force-Length

The dimensionless tendon force-length characteristic flT
⇣
l̃
T
⌘

is required as part

of elastic tendon modelling. Any mathematical expression describing flT
⇣
l̃
T
⌘

is

required to be third-order continuous as when F̃
T is used as a musculotendon state,

the first-order time derivative of flT
⇣
l̃
T
⌘

is required to define the state equation

involving d
dt

⇣
F̃

T
⌘
. Furthermore, the function needs be algebraically invertible so

that l̃
T can be readily determined for a specific value of flT

⇣
l̃
T
⌘
, as is specifically

required by the explicit elastic tendon musculotendon dynamics when F̃
T is treated

as a state. The De Groote flT
⇣
l̃
T
⌘
curve is given by the equation [85]

flT
DeGroote

⇣
l̃
T
⌘
= d1 exp

⇣
d4

⇣
l̃
T
� d2

⌘⌘
� d3 , (5.27)

with the constants di for i = 1, . . . , 4 given in table 5.1. Note that the value of d4
given in table 5.1 has been adjusted from that in [85] to ensure that flT

DeGroote

⇣
l̃
T
⌘

goes through the point flT
DeGroote

⇣
l̃
T = 1.049

⌘
= 1.0. This is because tendon force-

length properties are commonly parameterised such that they produce one nor-

malised force unit at a strain of 1.049 [87]. Equation (5.27) can be inverted to

give

l̃
T =

log

✓
flT (l̃T)+d3

d1

◆

d4
+ d2 (5.28)

and di↵erentiated with respect to time to give

d

dt

⇣
F̃

T
⌘
=

d

dt

⇣
flT
DeGroote

⇣
l̃
T
⌘⌘

= d1d4 exp
⇣
d4

⇣
l̃
T
� d2

⌘⌘
ṽ
T
. (5.29)

The OCP-suitable Millard flT
⇣
l̃
T
⌘
curve is given by the equation

flT
Millard

⇣
l̃
T
⌘
= c3 log

⇣
1 + exp

⇣
c1

⇣
l̃
T
� c2

⌘⌘⌘
� c4 , (5.30)

234

5.3. SOFTWARE IMPLEMENTATION: PYOMECHANICS

flT
DeGroote

⇣
l̃
T
⌘

flT
Millard

⇣
l̃
T
⌘

d1 0.200 c1 91.192

d2 0.995 c2 1.0130

d3 0.250 c3 0.327 74

d4 33.937 c4 0.087 201

Table 5.1: Constants for parameterising the flT
DeGroote

⇣
l̃T
⌘

and flT
Millard

⇣
l̃T
⌘

curves

representing tendon force-length characteristics in Pyomechanics.

1.00 1.01 1.02 1.03 1.04 1.05
l̃T

0.0

0.2

0.4

0.6

0.8

1.0

flT
� l̃T

�

Pyomechanics
Millard et al.

(a) Comparison of Pyomechanics’s

flT
Millard

⇣
l̃T
⌘

curve and flT
⇣
l̃T
⌘

from [242].

1.00 1.02 1.04 1.06 1.08
l̃T

0

1

2

3

flT
� l̃T

�

Millard
De Groote

(b) Comparison of Pyomechanics’s

flT
Millard

⇣
l̃T
⌘

and flT
DeGroote

⇣
l̃T
⌘

curves.

Figure 5.6: Tendon force-length characteristics in Pyomechanics.

with the constants ci for i = 1, . . . , 4 also given in table 5.1. The tendon force-

length curve in [242] is represented by a straight line segment flT
⇣
l̃
T
< 1.0

⌘
= 0,

another straight line l̃T > 1.037 and a curved Bézier spline in between. Therefore, a

softplus function [95] was chosen to represent flT
Millard

⇣
l̃
T
⌘
because this allowed the

tight curve in the region of l̃T = 1.0 to be accurately fitted to, while also enabling

the linear region at larger tendon strains to be represented well. Furthermore, the

softplus function of eq. (5.30) can be readily algebraically inverted to give

l̃
T =

log

✓
exp

✓
(flT (l̃T)+c4)

c3

◆
� 1

◆

c1
+ c2 . (5.31)

Finally, eq. (5.30) can be di↵erentiated with respect to time to give the state equation

d

dt

⇣
F̃

T
⌘
=

d

dt

⇣
flT
Millard

⇣
l̃
T
⌘⌘

=
c1c3 exp

⇣
c1

⇣
l̃
T
� c2

⌘⌘

exp
⇣
c1

⇣
l̃T � c2

⌘
+ 1

⌘ ṽT . (5.32)

The flT
Millard

⇣
l̃
T
⌘
constants (table 5.1) were determined using a nonlinear least

squares fit to sample data for the tendon force-length curve of [242]. The OpenSim

235

CHAPTER 5. MUSCULOSKELETAL MODELLING

implementation of the musculotendon curves from [242] were used to generate the

sample data. A set of 101 linearly-spaced values for 1.0  l̃
T
 1.05 were generated

and used to evaluate the TendonForceLengthCurve associated with the Millard-

2012EquilibriumMuscle class in OpenSim. The sample data is shown in fig. 5.6a

(only a subset of sample data is included to increase clarity of the figure). Lagrange

multipliers of 1 were used at each sample point except for l̃T = 1.0 and l̃
T = 1.049

where Lagrange multipliers of 0.01 were used. This was to ensure that the fit was

forced through the points (1.0, 0.0) and (1.049, 1.0). The fit of table 5.1 and fig. 5.6a

resulted in a maximum error of 0.00765 and root-mean-square error (RMSE) of

0.00304. Note that these quoted errors need not be normalised as the tendon force-

length curves are themselves normalised such that the function evaluates to [0, 1]

over the range of points of interest. A comparison of the De Groote and Millard

tendon force-length curves implemented in Pyomechanics is shown in fig. 5.6b. Note

that the De Groote curve is more compliant for strains 1.0  l̃
T
 1.049 but increases

in sti↵ness exponentially above this range in comparison to the Millard curve.

Muscle Fibre Passive Force-Length

The parallel elastic element representing the passive elastic properties of the muscle

fibres, illustrated in both figs. 5.4 and 5.5, is also modelled as a nonlinear spring.

The De Groote flM
pas

⇣
l̃
M
⌘
curve is given by the equation [85]

flM
pas,DeGroote

⇣
l̃
M
⌘
=

exp

✓
d1(l̃M�1)

d2

◆
� 1

exp (d1)� 1
, (5.33)

with the constants d1 and d2 given in table 5.2. The OCP-suitable Millard flM
pas

⇣
l̃
M
⌘

curve is given by the equation

flM
pas,Millard

⇣
l̃
M
⌘
= c1 exp

⇣
c2

⇣
exp

⇣
l̃
M
� c4

⌘⌘c3⌘
, (5.34)

with the constants ci for i = 1, . . . , 4 also given in table 5.2. Like the tendon force-

length curve, the muscle fibre passive force-length curve in [242] is represented by

a straight line segment flM
pas

⇣
l̃
M

< 1.0
⌘
= 0, another straight line l̃

T
> 1.7 and a

curved Bézier spline in between. A generalised logistic function [288] was used to

represent flM
pas,Millard

⇣
l̃
M
⌘
as this type of function has been used by other authors to

model OCP-suitable muscle fibre passive force-length curves [108].

The flM
pas,Millard

⇣
l̃
M
⌘
constants (table 5.2) were again determined using a non-

linear least squares fit to sample data for the muscle fibre passive force-length curve

of [242]. A similar approach to that described above was used, in which 101 linearly-

spaced values for 0.0  l̃
M
 2.0 were generated and used to evaluate the Fiber-

ForceLengthCurve associated with the Millard2012EquilibriumMuscle class in

236

5.3. SOFTWARE IMPLEMENTATION: PYOMECHANICS

flM
pas,DeGroote

⇣
l̃
M
⌘

flM
pas,Millard

⇣
l̃
M
⌘

d1 4.0 c1 3.1436

d2 0.60 c2 �76.908

c3 �2.5581

c4 0.056 965

Table 5.2: Constants for parameterising the flM
pas,DeGroote

⇣
l̃M

⌘
and flM

pas,Millard

⇣
l̃M

⌘

curves representing muscle fibre passive force-length characteristics in Pyomechanics.

1.0 1.2 1.4 1.6 1.8 2.0
l̃M

0.0

0.5

1.0

1.5

flM pa
s� l̃M

�

Pyomechanics
Millard et al.

(a) Comparison of Pyomechanics’s

flM
pas,Millard

⇣
l̃M

⌘
curve and flM

pas

⇣
l̃M

⌘
from

[242].

1.0 1.2 1.4 1.6 1.8 2.0
l̃M

0.0

0.5

1.0

1.5

2.0

flM pa
s� l̃M

�

Millard
De Groote

(b) Comparison of Pyomechanics’s

flM
pas,Millard

⇣
l̃M

⌘
and flM

pas,DeGroote

⇣
l̃M

⌘

curves.

Figure 5.7: Muscle fibre passive force-length characteristics in Pyomechanics.

OpenSim. A subset of the sample data is shown in fig. 5.7a. The fit of table 5.2

and fig. 5.7a resulted in a maximum error of 0.0137 and RMSE of 0.00295. Again,

these errors need not be normalised as the fibre passive force-length curves are

themselves normalised such that the function evaluates to [0, 1] over the range of

points of interest. A comparison of the De Groote and Millard muscle fibre passive

force-length curves implemented in Pyomechanics is shown in fig. 5.7b. Both curves

exhibit the property that for l̃
M

< 0, normalised passive muscle fibre force is ap-

proximately zero. Similar to the tendon force-length curves, the De Groote curve is

again marginally more compliant for small muscle fibre strains greater than l
M
opt but

increases in sti↵ness exponentially faster than the Millard curve for l̃M > 1.5.

Muscle Fibre Active Force-Length

The contractile element in both figs. 5.4 and 5.5 includes the active force-length

property of the muscle fibres. The De Groote flM
act

⇣
l̃
M
⌘
curve is given by the equa-

237

CHAPTER 5. MUSCULOSKELETAL MODELLING

0.0 0.5 1.0 1.5 2.0
l̃M

0.0

0.2

0.4

0.6

0.8

1.0
flM ac

t� l̃M
�

Pyomechanics
Millard et al.

(a) Comparison of Pyomechanics’s

flM
act,Millard

⇣
l̃M

⌘
curve and flM

act

⇣
l̃M

⌘
from

[242].

0.0 0.5 1.0 1.5 2.0
l̃M

0.0

0.2

0.4

0.6

0.8

1.0

flM ac
t� l̃M

�

Millard
De Groote

(b) Comparison of Pyomechanics’s

flM
act,Millard

⇣
l̃M

⌘
and flM

act,DeGroote

⇣
l̃M

⌘

curves.

Figure 5.8: Muscle fibre active force-length characteristics in Pyomechanics.

tion [85]

flM
act,DeGroote

⇣
l̃
M
⌘
=

3X

i=1

0

B@d4i�3 exp

0

B@�

⇣
l̃
M
� d4i�2

⌘2

2
⇣
d4i�1 + d4il̃

M
⌘

1

CA

1

CA , (5.35)

a sum of three Gaussian functions, with the constants dj for j = 1, . . . , 12 given in

table 5.3. The OCP-suitable Millard flM
act

⇣
l̃
M
⌘
curve is given by the equation

flM
act,Millard

⇣
l̃
M
⌘
= c1 +

5X

i=1

⇣
c3i+1 log

⇣
1 + exp

⇣
c3i�1

⇣
l̃
M
� c3i

⌘⌘⌘⌘
, (5.36)

with the constants ci for i = 1, . . . , 16 also given in table 5.3. The muscle fibre

active force-length curve in [242] is constructed using Bézier splines connecting six

linear sections. The Millard curve was described using a sum of five o↵set and scaled

softplus functions as this allowed the shape of the curve from [242] to be replicated

with high accuracy while also ensuring that the function used was a continuous and

di↵erentiable algebraic function, as required by Pycollo and OCPs in general.

The ActiveForceLengthCurve associated with the Millard2012Equilibrium-

Muscle class in OpenSim was used to produce the sample data, a subset of which is

show in fig. 5.8a. Lagrange multipliers of 1 were used at each sample point except

for l̃M = 0.0, l̃M = 1.0 and l̃
M = 2.0 where Lagrange multipliers of 0.01 were used.

This was to ensure that the fit was forced through the points (0.0, 0.1), (1.0, 1.0)

and (2.0, 0.1). The fit of table 5.3 and fig. 5.8a resulted in a maximum error of

0.00109 and RMSE of 0.000398, indicating that an accurate fit was achieved. A

comparison of the De Groote and Millard muscle fibre active force-length curves

implemented in Pyomechanics is shown in fig. 5.8b. Both active force-length curves

go through the point (1.0, 1.0). However, the De Groote curve exhibits a narrower

238

5.3. SOFTWARE IMPLEMENTATION: PYOMECHANICS

flM
act,DeGroote

⇣
l̃
M
⌘

flM
act,Millard

⇣
l̃
M
⌘

d1 0.815 d1 0.1

d2 1.055 d2 128.21

d3 0.162 d3 0.500 65

d4 0.063 d4 0.027 576

d5 0.433 d5 71.680

d6 0.717 d6 0.692 02

d7 �0.030 d7 �0.037 232

d8 0.200 d8 136.52

d9 0.100 d9 0.947 33

d10 1.000 d10 �0.005 983 4

d11 0.354 d11 54.636

d12 0.000 d12 1.070 74

d13 �0.026 509

d14 56.000

d15 1.7177

d16 0.025 004

Table 5.3: Constants for parameterising the flM
act,DeGroote

⇣
l̃M

⌘
and flM

act,Millard

⇣
l̃M

⌘

curves representing muscle fibre active force-length characteristics in Pyomechanics.

peak and smoother curves. Furthermore, the Millard curve has a minimum value

of 0.1, which it exhibits at the extremes of normalised fibre length, while the De

Groote curve transitions gradually to a normalised value of 0.0 when normalised

muscle fibre length is either 0.0 or 2.0.

Muscle Fibre Force-Velocity

The contractile element used to model muscle fibre’s force-producing properties also

exhibits a force-velocity relationship. Consequently, a dimensionless muscle fibre

force-velocity curve fvM
�
ṽ
M
�
is required to model this. Like the tendon force-

length characteristics, the inverse of any fvM
�
ṽ
M
�
curve is also required so that ṽM

can be determined for a given value of fvM
�
ṽ
M
�
. This is the case for any elastic

tendon model, no matter whether l̃M or F̃ T is used as the additional state variable.

239

CHAPTER 5. MUSCULOSKELETAL MODELLING

The De Groote fvM
�
ṽ
M
�
curve is given by the equation [85]

fvMDeGroote

�
ṽ
M
�
= d1 arcsinh

�
d2ṽ

M + d3

�
+ d4 , (5.37)

with the constants di for i = 1, . . . , 4 given in table 5.4. Equation (5.37) can be

algebraically inverted to give

ṽ
M =

sinh

✓
fvM(ṽM)�d4

d1

◆
� d3

d2
. (5.38)

The shape of the fvM
�
ṽ
M
�
curve in [242] is such that it was not possible to construct

an accurate approximation using an algebraically invertible function. Therefore,

separate fits were produced for the Millard fvM
�
ṽ
M
�
curve and its inverse. This

approach is valid provided that the pair of fitted curves exhibit a high level of

accuracy to each other when one is numerically inverted. The OCP-suitable Millard

fvM
�
ṽ
M
�
curve is given by the equation

fvMMillard

�
ṽ
M
�
= c1 +

4X

i=1

�
c3i+1 log

�
1 + exp

�
c3i�1

�
ṽ
M
� c3i

����
, (5.39)

with the constants ci for i = 1, . . . , 13 also given in table 5.4. Once again, a sum-

mation of o↵set and scaled softplus functions allowed the Bézier curve from [242]

to be approximated accurately using an OCP-suitable function. The OCP-suitable

Millard inverse fvM
�
ṽ
M
�
curve is given by the equation

ṽ
M = ĉ1 + ĉ2 log

�
ĉ3

�
fvM

�
ṽ
M
�
� ĉ4

��

+ ĉ5 log
�
1 + exp

�
ĉ6

�
fvM

�
ṽ
M
�
� ĉ7

���

+ ĉ8 log
�
1 + exp

�
ĉ9

�
fvM

�
ṽ
M
�
� ĉ10

���
,

(5.40)

with table 5.4 again giving the constants ĉi for i = 1, . . . , 10. The summation of a

logarithmic function and a pair softplus functions was required to enable fitting to

the shape of the inverse fvM
�
ṽ
M
�
curve from [242], with the logarithmic function

primarily responsible for the shape of the Millard curve for small values of fvM
�
ṽ
M
�
.

The ForceVelocityCurve associated with the Millard2012EquilibriumMuscle

class in OpenSim was sampled to generate the sample data for fitting, a subset of

which is shown in fig. 5.9a. Lagrange multipliers of 1 were used at each sample

point except for ṽM = �1.0 and ṽ
M = 0.0 where Lagrange multipliers of 0.01 were

used. This ensured that the Millard fvM
�
ṽ
M
�
curve goes through the pair of points

(�1.0, 0.0) and (0.0, 1.0). The fit of table 5.4 and fig. 5.9a resulted in a maximum

error of 0.00801 and RMSE of 0.00218. A comparison of the De Groote and Millard

muscle fibre force-velocity curves implemented in Pyomechanics is shown in fig. 5.9b.

Note that both curves pass through (�1.0, 0.0) and (0.0, 1.0) but that the De Groote

240

5.3. SOFTWARE IMPLEMENTATION: PYOMECHANICS

fvMDeGroote

�
ṽ
M
�

fvMMillard

�
ṽ
M
�

d1 �0.318 c1 �0.032 110 ĉ1 0.193 81

d2 �8.149 c2 1.0139 ĉ2 0.197 08

d3 �0.374 c3 3.7900 ĉ3 0.372 19

d4 0.886 c4 �0.097 403 ĉ4 �0.021 670

c5 1.2590 ĉ5 �0.047 561

c6 31.897 ĉ6 �10.141

c7 �0.005 725 5 ĉ7 0.504 97

c8 �0.377 95 ĉ8 0.311 07

c9 5.5718 ĉ9 25.586

c10 0.190 61 ĉ10 1.2873

c11 �1.2424

c12 33.562

c13 0.005 294 5

Table 5.4: Constants for parameterising the fvM
DeGroote

�
ṽM

�
and fvM

Millard

�
ṽM

�
curves

representing muscle fibre force-velocity characteristics in Pyomechanics.

curve exhibits more gradual changes in fvM
�
ṽ
M
�
as ṽ

M changes than the Millard

curve, as well as demonstrating a greater ability to generate eccentric force.

The sample data was inverted to provide the dataset for fitting the inverse

Millard fvM
�
ṽ
M
�
curve, with a subset shown in fig. 5.10a. A similar approach

using Lagrange multipliers was followed, except the points (0.0,�1.0) and (1.0, 0.0),

the inverse of before, were used. The fit of table 5.4 and fig. 5.10a resulted in

a maximum error of 0.0191 and RMSE of 0.00486. If however, only the central

90% of the inverse Millard curve is considered, then the maximum error was only

0.00792. This confirms that the fit is highly accurate across the range of values that

correspond to the normal operating conditions of musculotendons. A comparison of

the De Groote and Millard inverse muscle fibre force-velocity curves implemented

in Pyomechanics is shown in fig. 5.10b. As expected from the fvM
�
ṽ
M
�
curves, the

De Groote curve exhibits more gradual changes in value and a higher normalised

eccentric force-velocity value for which the curve can be inverted.

241

CHAPTER 5. MUSCULOSKELETAL MODELLING

�1.0 �0.5 0.0 0.5 1.0
ṽM

0.0

0.5

1.0

fv
M

� ṽM
�

Pyomechanics
Millard et al.

(a) Comparison of Pyomechanics’s

fvM
Millard

�
ṽM

�
curve and fvM �

ṽM
�

from

[242].

�1.0 �0.5 0.0 0.5 1.0
ṽM

0.0

0.5

1.0

1.5

fv
M

� ṽM
�

Millard
De Groote

(b) Comparison of Pyomechanics’s

fvM
Millard

�
ṽM

�
and fvM

DeGroote

�
ṽM

�
curves.

Figure 5.9: Muscle fibre force-velocity characteristics in Pyomechanics.

0.0 0.5 1.0

fvM �
ṽM�

�1.0

�0.5

0.0

0.5

1.0

ṽM

Pyomechanics
Millard et al.

(a) Comparison of Pyomechanics’s inverse

fvM
Millard

�
ṽM

�
curve and inverse fvM �

ṽM
�

from [242].

0.0 0.5 1.0 1.5

fvM �
ṽM�

�1.0

�0.5

0.0

0.5

1.0
ṽM

Millard
De Groote

(b) Comparison of Pyomechanics’s inverse

fvM
Millard

�
ṽM

�
and inverse fvM

DeGroote

�
ṽM

�

curves.

Figure 5.10: Inverse muscle fibre force-velocity characteristics in Pyomechanics.

5.3.4 Activation Dynamics

Activation dynamics describe the delay relationship between neural excitation sig-

nals and muscular activation. In neuromusculoskeletal modelling, excitation e is re-

lated to activation a by some form of ODE. Pyomechanics implements both zeroth-

and first-order activation dynamics. In zeroth-order activation dynamics, the exci-

tation is mapped directly to the activation

a = e (5.41)

and as such is an algebraic equation not an ODE. Zeroth-order activation dynam-

ics do not, therefore, introduce an additional state into OCP formulations, with

eq. (5.41) instead being treated as an auxiliary substitution. They are, therefore,

useful when it is desired that activation dynamics be ignored, typically in situations

242

5.3. SOFTWARE IMPLEMENTATION: PYOMECHANICS

0.0 0.2 0.4 0.6 0.8 1.0

t/s

0.0

0.2

0.4

0.6

0.8

1.0
e
a

Figure 5.11: Relationship between excitation e and activation a subject to first-

order activation dynamics from eq. (5.44) [85]. A set of arbitrary excitations and

corresponding activations using default values of ⌧act = 0.015 s and ⌧deact = 0.060 s

are shown.

where a user may want to simplify the equations governing a musculotendon in a

large or complicated model [87].

First-order activation dynamics are the most prevalent form of activation dy-

namics and are implemented using (a slight rearrangement of) the equations from

[85] (which are themselves based on [316, 326])

f1 = tanh (c1 (e � a)) (5.42)

f2 = 1 + 3a (5.43)

d

dt
(a) =


1 + f1

⌧actf2
+

f2 (1� f1)

4⌧deact

�
(e � a) . (5.44)

The action of eq. (5.44) on activation for an arbitrary excitation signal is shown

in fig. 5.11. The activation dynamics constant c1 = 10 has previously been pro-

posed [85], however, Pyomechanics uses a default value of c1 = 100 (see sec-

tion 5.4.6). Figure 5.12 illustrates f1 from eq. (5.44) and its derivatives for di↵erent

values of c1. It can be seen that while c1 = 10 ensures that the magnitudes of the

first- and second-order derivatives are kept small, the range over which the sigmoid

switches is still a significant portion of possible values of (e � a). On the other

hand, c1 = 100 results in rapid switching between the activation and deactivation

components of eq. (5.44), at the expense of nonlinear and large derivatives in the

region of e � a = 0.

Pyomechanics implements an Activation abstract base class (ABC), and two

specific subclasses: ZerothOrderActivation and FirstOrderActivation. An in-

stance of one of these subclasses is created and owned by each Musculotendon

instance during its initialisation. The Activation classes are responsible for spec-

ifying which quantities should be considered state variables, control variables and

auxiliary substitutions; the state equations (if there are any); and suitable guesses

243

CHAPTER 5. MUSCULOSKELETAL MODELLING

�1.0 �0.5 0.0 0.5 1.0
e�a

�1.0

�0.5

0.0

0.5

1.0
c1 = 1
c1 = 10
c1 = 100

(a) tanh (c1 (e � a))

�1.0 �0.5 0.0 0.5 1.0
e�a

0

20

40

60

80

100
c1 = 1
c1 = 10
c1 = 100

(b) d
da (tanh (c1 (e � a)))

�1.0 �0.5 0.0 0.5 1.0
e�a

�5000

0

5000
c1 = 1
c1 = 10
c1 = 100

(c) d2

da2 (tanh (c1 (e � a)))

Figure 5.12: Comparison of di↵erent values of c1 within the hyperbolic tangent func-

tion used for sigmoidal smoothing of the activation dynamics equation in eq. (5.44).

and bounds (that can be overwritten by the user if required) for any OCP variables.

For example, the FirstOrderActivation sets a as a state variable, e as a control

variable, eq. (5.44) mapped to a as a state equation, and user-settable constants ⌧act
and ⌧deact with default values of 0.015 s and 0.060 s respectively.

5.3.5 Musculotendon Implementations (Musculotendon Classes)

Pyomechanics implements two subclasses of Musculotendon. These are the DeGroote-

Musculotendon and MillardMusculotendon classes, which implement the De Groote

and Millard musculotendon curves (section 5.3.3) respectively. To illustrate the ease

with which a biomechanical model involving musculotendons can be created in Py-

omechanics, a simple code example (based on the supplementary documentation of

[87]) is presented. In fig. 5.13a a planar model of an arm is created using the Pyome-

chanics API. The model created is illustrated in fig. 5.14a and consists of a humerus

and radius, with the elbow modelled as a pin joint and the shoulder as a clamped

joint. While classes such as RigidBody, PinJoint and AttachmentPoint from the

244

5.3. SOFTWARE IMPLEMENTATION: PYOMECHANICS

Pyomechanics namespace are used, these are actually unmodified Pynamics classes

made available as part of the Pyomechanics API.

To add a musculotendon to a model, origin and insertion points on bodies need

to be created as AttachmentPoint objects, as shown in fig. 5.13b. A musculotendon

can be instantiated by passing these origin and insertion points as arguments to a

Musculotendon. In fig. 5.13b this is done using the MillardMusculotendon class so

that the instantiated musculotendon uses the Millard curves. To use the De Groote

curves, a DeGrooteMusculotendon can instead be used (fig. 5.13c). Figure 5.13c also

demonstrates the broad range of musculotendon properties that can be adjusted by

the user, including F
M
max, l

T
slack, l

M
opt, v

M
max, ↵opt, �, ⌧act and ⌧deact. It also shows how

the variants of musculotendon dynamics discussed in sections 5.3.2 and 5.3.4 can be

specified. These include using a rigid tendon model, whether l̃
M or F̃

T is used as

the musculotendon state, and the order of the activation dynamics. The structure

of the Pyomechanics API enables users to easily create custom biomechanical mod-

els using minimal lines of code. Furthermore, the breadth of available modelling

options allows biomechanical models to be easily customised. This facilitates robust

comparison and evaluation of di↵erent OCP formulations.

5.3.6 Musculotendon Pathways (Pathway Classes)

As outlined in section 5.1.7, it is important to be able to model nonlinear muscu-

lotendon pathways, as are encountered when musculotendons are required to wrap

around bone or other musculotendons. This enables accurate musculotendon lengths

and shortening velocities, as functions of the skeletal kinematics, to be determined.

Parallel to the LinearPathway class implemented in Pynamics, Pyomechanics pro-

vides another subclass of Pathway; the ObstacleSetPathway class.

Obstacle-Set Pathways

The obstacle-set method adjusts a musculotendon’s pathway between its origin and

insertion by adding via-points. These via-points can be either points at which linear

sections of the musculotendon’s path connect, or wrapping surfaces along which a

musculotendon’s path smoothly wraps. The ObstacleSetPathway allows a user to

define a nonlinear musculotendon pathway by adding these via-points and wrapping

surfaces. This approach allows segmented pathways (as typically used in Open-

Sim [87]) to be modelled, as well as pathways that wrap along the surface of a

cylindrical obstacle (as has been used in a multitude of past biomechanical mod-

elling work [53, 54, 154, 251, 274, 344]).

245

CHAPTER 5. MUSCULOSKELETAL MODELLING

1 from pyomechanics import (Model, ClampedJoint, RigidBody, AttachmentPoint,

PinJoint, MillardMusculotendon, DeGrooteMusculotendon),!

2 arm = Model("arm")

3 shoulder = ClampedJoint("shoulder", model=arm, parent_attachment=arm.origin,

axis="z", angle=-0.5*PI),!

4 humerus = RigidBody("humerus", model=arm, parent_joint=shoulder,

com_position_x=0.2, mass=1),!

5 epicondyl = AttachmentPoint("epicondyl", model=arm, parent_body=humerus,

position_x=0.2),!

6 elbow = PinJoint("elbow", model=arm, parent_attachment=epicondyl, axis="z",

min_angle=0, max_angle=PI),!

7 radius = RigidBody("radius", model=arm, parent_joint=elbow,

com_position_x=0.2, mass=1),!

8 styloid = AttachmentPoint("styloid", model=arm, parent_body=radius,

position_x=0.2),!

(a) Creation of bodies and joints.

9 origin = AttachmentPoint("origin", model=arm, parent_body=humerus,

position_x=-0.12),!

10 insertion = AttachmentPoint("insertion", model=arm, parent_body=radius,

position_x=-0.08),!

11 bicep = MillardMusculotendon("bicep", model=arm, origin=origin,

insertion=insertion, peak_isometric_force=200, tendon_slack_length=0.32,

optimal_fiber_length=0.36, rigid_tendon=True)

,!

,!

(b) Creation of an origin, an insertion and a musculotendon with Millard musculotendon curves.

12 bicep = DeGrooteMusculotendon("bicep", model=arm, origin=origin,

insertion=insertion, peak_isometric_force=200, tendon_slack_length=0.32,

optimal_fiber_length=0.36, maximal_fiber_velocity=3.6,

optimal_pennation_angle=0, fiber_damping_coefficient=0.1,

activation_time_constant=0.01, deactivation_time_constant=0.04,

rigid_tendon=False, musculotendon_dynamics_state="l_M_tilde",

activation_dynamics_order=1)

,!

,!

,!

,!

,!

,!

(c) Creation of a musculotendon with De Groote musculotendon curves and extended settings.

Figure 5.13: Code example of creating a simple arm model using the Pyomechanics

API. The simple arm model consists of two rigid bodies, a humerus and a radius. The

humerus is clamped at the shoulder such that it is vertical. The elbow is modelled as

a pin joint with a constrained range of motion.

246

5.3. SOFTWARE IMPLEMENTATION: PYOMECHANICS

shoulder n̂x

n̂y

n̂z

elbow

humerus

radius
wrist

0.2m

0.2m

0.2m 0.2m

(a) Arm system created by the Pyomechan-

ics code in fig. 5.13a.

n̂x

n̂y

n̂zorigin

insertion

0.12m

0.08m

bicep

(b) Arm system with musclotendon created

by the Pyomechanics code in fig. 5.13b.

Figure 5.14: Illustration of the simple arm model created using the Pyomechanics

code in fig. 5.13.

To create a nonlinear musculotendon pathway, an ObstacleSetPathway in-

stance is created. This class holds information about a musculotendon’s origin and

insertion points. As such, an instance of this class can be passed with the pathway

keyword argument when instantiating a Musculotendon. This can be done instead

of explicitly passing AttachmentPoint objects to its origin and insertion argu-

ments.

Via-Points

To create a segmented pathway, one or more AttachmentPoint objects can be

associated with an ObstacleSetPathway, using its via argument on initialisation.

This is illustrated in fig. 5.15a, in which a tricep musculotendon is added to the

simple arm created in fig. 5.13a. This code results in a segmented musculotendon

pathway with the via-points inserted in order between the origin and insertion as

illustrated in fig. 5.16a.

Wrapping Surfaces

In order to allow users to create musculotendon pathways in which a musculoten-

don wraps along a surface, Pyomechanics provides the WrappingCylinder class. A

WrappingCylinder is infinite in length, however, for a musculotendon to interact

with it, a Musculotendon object’s pathway must be explicitly linked to it. This is

done by passing a WrappingCylinder along with the via argument when creating

247

CHAPTER 5. MUSCULOSKELETAL MODELLING

13 trochlea = AttachmentPoint("trochlea", model=arm, parent_body=humerus,

position_x=0.20, position_y=-0.08),!

14 coronoid = AttachmentPoint("coronoid", model=arm, parent_body=radius,

position_x=-0.20, position_y=-0.08),!

15 pathway = ObstacleSetPathway("pathway", model=arm, origin=origin,

insertion=insertion, via=[trochlea, coronoid]),!

16 tricep = MillardMusculotendon("tricep", model=arm, pathway=pathway,

peak_isometric_force=200, tendon_slack_length=0.32,

optimal_fiber_length=0.44)

,!

,!

(a) Creation of two point pathway points and a tricep musculotendon.

13 trochlea = WrappingCylinder("trochlea", model=arm, parent_body=humerus,

position_x=0.20, radius=0.08, axis="z"),!

14 pathway = ObstacleSetPathway("pathway", model=arm, origin=origin,

insertion=insertion, via=trochlea),!

15 tricep = MillardMusculotendon("tricep", model=arm, pathway=pathway,

peak_isometric_force=200, tendon_slack_length=0.32,

optimal_fiber_length=0.44)

,!

,!

(b) Creation of a cylindrical wrapping surface and a tricep musculotendon.

Figure 5.15: Code example of adding a tricep musculotendon to the simple arm

model (figs. 5.13 and 5.14) created using the Pyomechanics API. The tricep muscu-

lotendon exhibits a nonlinear pathway such that its actuation causes extension of the

elbow. The model produced by the code is illustrated in fig. 5.16.

n̂x

n̂y

n̂zorigin

insertiontrochlea

coronoid

0.08m

0.08m

biceptricep

(a) Arm system with tricep pathway defined

with two via points created by the Pyome-

chanics code in fig. 5.15a.

n̂x

n̂y

n̂zorigin

insertion

0.08m

biceptricep

(b) Arm system with tricep pathway defined

using a cylindrical wrapping surface created

by the Pyomechanics code in fig. 5.15b.

Figure 5.16: Illustration of the simple arm model including a tricep muscle and sim-

ple wrapping around elbow created used the Pyomechanics code in figs. 5.13 and 5.15.

248

5.3. SOFTWARE IMPLEMENTATION: PYOMECHANICS

an ObstacleSetPathway (fig. 5.15b). Note that the side of the wrapping surface

around which a musculotendon wraps can be switched by passing the Wrapping-

Cylinder to the ObstacleSetPathway with a prepended minus sign. The model

created using the code in fig. 5.15b is illustrated in fig. 5.16b.

Pathway Approximation

Even simple nonlinear musculotendon pathways can require highly complex and

lengthy analytical expressions to describe a musculotendon’s length and shortening

velocity as a function of skeletal kinematics [58, 107]. Pyomechanics implements

musculotendon pathway approximation in which polynomials are used to represent

a musculotendon’s length, shortening velocity, moment arms and directions of force

application, as functions of skeletal joint angles and angular velocities. To fit the

approximating polynomials, the skeletal model is placed in a range of poses covering

the full range of all joint angles and the musculotendon pathways are evaluated

numerically to create a set of sample data. The order of approximating polynomials

required will vary between musculotendons. Pyomechanics will attempt to use as

few terms as possible in the approximating polynomials, such that the accuracy level

specified in the user-adjustable settings of Pyomechanics is met. A default maximum

allowable normalised error of 0.2% is used. A polynomial fitting routine from SciPy

is used to determine the required polynomial order and appropriate coe�cients. In

the case of internal forces, these are replaced by torques on the relevant segments,

with these torques being calculated as the product of musculotendon force and

moment arm.

5.3.7 Optimal Control Problem Construction (ocp Module)

The majority of the ocp module of Pyomechanics functions similarly to that of

Pynamics. One area where it di↵ers substantially is in the tools it provides for

initial guess generation. Generating suitable guesses for the musculotendon states

in an OCP is particularly important. This is because each of the musculotendon

curves has a range of values for its input over which its output is valid. Outside these

ranges, however, the curves can evaluate unfeasibly large forces, or tendon or fibre

lengths outside acceptable ranges. If such values are encountered in the process of

solving the OCP they can result in overflow during numerical calculations and cause

convergence problems or prohibit a solution to the OCP being found. Pyomechanics

allows a user to fully specify an initial guess or to use a forward simulation to generate

a dynamically-feasible initial guess. Additional to these options, Pyomechanics can

also attempt to generate a sensible initial guess on behalf of the user. To generate

249

CHAPTER 5. MUSCULOSKELETAL MODELLING

a sensible and feasible initial guess for the musculotendon states, Pyomechanics

requires the user to provide initial guesses for the dynamics states, such as positions

and velocities. If this condition is met then Pyomechanics will:

1. interpolate the dynamics states to produce a linearly spaced set of timepoints

over which the guess will be generated;

2. evaluate the length and velocity of all musculotendons at each of these time-

points; and

3. equilibrate each musculotendon at each timepoint to find the value of its state

variable for which the tendon and muscle fibre forces are in equilibrium.

The equilibration routine uses a bisection algorithm to find the value of either l̃M or

F̃
T (depending on which formulation of the musculotendon dynamics is being used)

that solve the equation

F̃
T
� F̃

M cos (↵) = 0 . (5.45)

If a musculotendon cannot be equilibrated for the set of dynamics states specified

by the user a warning is raised.

5.4 Pyomechanics Validation

It is important to validate the results produced by any novel software package. Py-

omechanics depends on both Pycollo (section 2.6) and Pynamics (section 4.3), both

of which have been previously independently validated (sections 2.7 and 4.4). One

focus of this section will, therefore, be validating the biomechanics-specific aspects

of Pyomechanics. It has been stated that for biomechanical modelling software, this

process should involve: verifying the software; validating the software’s results by

comparing models and simulations to independent experiments and other models;

and testing the robustness of the software by evaluating the sensitivity of its results

to model parameters and other modelling choices [161].

5.4.1 Tug of War (Lee and Umberger, 2016)

To facilitate the verification, validation and sensitivity analysis of Pyomechanics, a

problem with a solution previously published in the academic literature was used.

This is the tug of war OCP [212], which is based on an example biomechanical model

from OpenSim [87]. The tug of war model involves a block of mass m = 20 kg and

250

5.4. PYOMECHANICS VALIDATION

D D

x

2d

2d

(a) Diagram showing the position state x of

the block in the tug of war model.

(b) Illustration of the full system in the tug

of war model.

Figure 5.17: The tug of war model is a single degree of freedom (DoF) system

involving a block actuated by two musculotendons. D denotes the distance between

the central line and each fixed wall, d denotes the block half side length, and x denotes

the single horizontal axial DoF.

half side length d = 0.05m mobilised by a single DoF in a horizontal direction. This

DoF is parameterised by the variable x, which describes the block’s displacement

relative to its central position in the direction of the DoF, and its time derivative

v = dx
dt (fig. 5.17a). The block is attached to two musculotendons, one on each of

two opposite faces, such that the block can be actuated along its DoF (fig. 5.17b).

Each of the musculotendons attaches at its other end to a fixed wall at a distance

D = 0.35m from the central line. As such, lMT
LHS = l

MT
RHS = 0.30m when x = 0. The

musculotendons are parameterised by

l
M
opt = 0.25m

v
M
max = 2.5m s�1

l
T
slack = 0.05m

F
M
max = 1000N

↵opt = 0

� = 0.1 sm�1

⌧act = 0.055 s�1

⌧deact = 0.065 s�1
.

The tug of war OCP involves finding the two musculotendon excitations eLHS

and eRHS that enable a trajectory subject to

x (0.0 s) = �0.08m

x (0.5 s) = 0.08m

x (1.0 s) = �0.08m

v (0.0 s) = 0.0m s�1

v (0.5 s) = 0.0m s�1

v (1.0 s) = 0.0m s�1
,

while minimising the objective function

J =

Z 1.0

t=0.0

a
2
LHS + a

2
RHSdt , (5.46)

where aLHS and aRHS are the activations of the two musculotendons. The movement

must also be periodic, such that the musculotendon states and activations at t = 0.0 s

and t = 1.0 s are equal for each musculotendon.

251

CHAPTER 5. MUSCULOSKELETAL MODELLING

It was not possible to validate Pyomechanics against Moco using this OCP as

Moco does not support multiphase OCPs. It is, therefore, not possible to formulate

or solve the tug of war OCP using Moco. However, the MATLAB source code used

by Lee and Umberger to solve the tug of war OCP, is available online as a supple-

ment to the publication. This source code uses OpenSim to construct the tug of

war model, which includes two musculotendons based on [242]. As such, the system

is parameterised by six state and two control variables. The six state variables are:

the block position x and velocity v; the two musculotendon activations aLHS and

aRHS; and the two muscle fibre lengths l
M
LHS and l

M
RHS. Note that the muscle fibre

lengths are not normalised, unlike the normalised states l̃M that Pyomechanics uses

in one of its formulations of musculotendon dynamics. The two control variables are

the two musculotendon excitations eLHS and eRHS. The source code implements a

simplistic direct collocation framework to solve the OCP, which uses the backwards

Euler discretisation scheme [36] and MATLAB’s interior-point nonlinear program-

ming problem (NLP) solver fmincon. OpenSim was used to generate the six state

equations, the derivatives of each of the six state variables with respect to time.

Figure 5.25 shows the optimal state and control for the tug of war OCP, solved

using the software implementation described above, the hardware and software de-

scribed in section 2.7, and OpenSim 4.3. A discretisation with 100 collocation nodes

was used as the resulting NLP subproblem took 3 h 23min to solve and attempts

to use a denser mesh became prohibitively computationally expensive. The optimal

cost was 1.7269⇥ 10�2. This replication of Lee and Umberger’s results provides a

benchmark against which Pyomechanics can be validated.

5.4.2 Software Verification

Musculotendon and Activation Dynamics

To verify the modelling of musculotendon and activation dynamics in Pyomechanics,

the governing equations need to be checked to ensure that they produce accurate and

physiologically realistic results. The musculotendon and activation dynamics include

both novel and previously published equations. The novel musculotendon equations

in Pyomechanics occur in the Millard musculotendon curves. Pyomechanics’ Millard

musculotendon curves were constructed by fitting functions to previously verified

and validated models (figs. 5.6a, 5.7a, 5.8a, 5.9a and 5.10a). Therefore, these have

been shown to have been suitably verified, given that maximum errors and RMSEs

were within acceptable thresholds.

In cases where previously published equations have been implemented in soft-

252

5.4. PYOMECHANICS VALIDATION

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

�0.4

�0.2

0.0

0.2

0.4

dx dt
(m

s�
1)

OpenSim
Pyomechanics

(a) dx
dt

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

�4

�2

0

2

4

dv dt
(m

s�
2)

OpenSim
Pyomechanics

(b) dv
dt

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

�0.4

�0.2

0.0

0.2

0.4

dl
M dt

(m
s�

1)

OpenSim
Pyomechanics

(c) dlM
RHS

dt

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

�2

�1

0

da dt
(s

�
1)

OpenSim
Pyomechanics

(d) daRHS

dt

Figure 5.18: Comparison of musculotendon state derivative computations in Py-

omechanics and OpenSim. x denotes the block position, v denotes the block velocity,

lMRHS denotes the muscle fibre length of the RHS musculotendon, and aRHS denotes

the activation of the RHS musculotendon.

253

CHAPTER 5. MUSCULOSKELETAL MODELLING

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
F̃

(N
)

OpenSim
Pyomechanics (F̃T)
Pyomechanics (F̃M)
Pyomechanics (F̃T

� F̃M)

Figure 5.19: Comparison of the normalised muscle fibre forces F̃M and normalised

tendon forces F̃ T computed by Pyomechanics and OpenSim.

ware, verification can be conducted by evaluating the novel implementations and

comparing the output to results from software that has been widely applied and

well-validated elsewhere [161]. Pyomechanics’s musculotendon and activation dy-

namics equations were verified using this approach. The solution to the tug of war

OCP described in section 5.4.1 was used for this. Additionally, OpenSim was used

to evaluate the first-order time derivatives of all state variables at the solution. Py-

omechanics was then verified by using the state and control solution as inputs, and

recomputing the first-order time derivatives of the tug of war model’s state variables

using Pyomechanics’ Millard musculotendon curves and the musculotendon param-

eters detailed in section 5.4.1. Figure 5.18 shows the results of this and clearly

demonstrates the close agreement between the state derivatives computed using

OpenSim and Pyomechanics. There was exact agreement in dx
dt (fig. 5.18a) and dlM

dt

(fig. 5.18c) between the two software packages. Close agreement in dv
dt (fig. 5.18b)

and da
dt (fig. 5.18d) between the two software packages was also demonstrated. Note

that values for only one of the musculotendons are shown as the solution to the

tug of war OCP is symmetric. For da
dt the normalised maximum error was 0.0128

and the normalised root-mean-square error (NRMSE) was 0.0062, where the errors

were normalised by the di↵erence in maximum and minimum values in the Open-

Sim data. The di↵erence in da
dt was demonstrated to be due entirely to the sigmoidal

smoothing constant (c1 in eq. (5.44)).

254

5.4. PYOMECHANICS VALIDATION

The normalised maximum error was 0.0330 and the NRMSE was 0.0171 for dv
dt .

For the tug of war model, dv
dt is given by the equation

dv

dt
=

F
T
RHS � F

T
LHS

m
. (5.47)

Figure 5.19 compares the value of F T
LHS computed by OpenSim and the values of

F
T
LHS and F

M
LHS computed using Pyomechanics. As l̃

M and l̃
T were known from

the OpenSim data, Pyomechanics computed F
T
LHS using the Millard tendon force-

length curve, while F
M
LHS was computed using eq. (5.17). It can be observed from

fig. 5.19 that these values di↵er by no more than 0.01FM
max, with the error being

significantly less than this over the majority of the trajectory. The di↵erences can

be attributed to the slight di↵erences between OpenSim’s musculotendon curves and

Pyomechanics’ Millard musculotendon curves. Pyomechanics uses a path constraint

in its musculotendon dynamics to ensure that

F
M
� F

T = 0 . (5.48)

Therefore, any discrepancy between F
M and F

T would result in Pyomechanics ad-

justing the value of ṽM (a control variable in Pyomechanics’ elastic tendon damped

musculotendon model) to ensure that eq. (5.48) is satisfied. As neither OpenSim’s

nor Pyomechanics’ musculotendon curves are more correct than one another, the

musculotendon and activation dynamics in Pyomechanics can be considered to have

been verified.

5.4.3 Musculotendon Pathway Approximation

Pyomechanics implements pathway approximation in which polynomials are used

to approximate musculotendon lengths, shortening velocities, moment arms and

force vectors for complex 2D and 3D musculotendon geometries (section 5.3.6).

Pathway approximation is important in biomechanical OCPs as it provides a means

by which musculotendon pathways involving via-points that switch between active

and inactive (depending on system geometry) can be used. Pyomechanics supports

the creation of musculotendon pathways using the obstacle-set method, and allows

these pathways to be defined using both via-points and wrapping surfaces.

The modelling of musculotendon pathways in Pyomechanics was verified using

a test suite built on the Python testing framework pytest [204]. The Pyomechanics

test suite contains unit and integration tests in which Pyomechanics’ object-oriented

programming (OOP) pathway modelling is verified against a number of numerical

geometric test cases. Pyomechanics relies on SciPy [321] for the polynomial fit-

ting used to approximate musculotendon pathways. As this is a widely applied and

255

CHAPTER 5. MUSCULOSKELETAL MODELLING

x d

Q

p

q

(a) x  (p� d).

x d

p

Q

q

(b) x > (p� d).

Figure 5.20: Diagram of the musculotendon pathway in test case M1. The pathway

modifies the tug of war model and involves a via point that is active for x  (p� d)

and inactive otherwise. As the musculotendon path is 3D, figs. 5.20a and 5.20b cor-

respond to both elevation (from n̂z direction) and plan (from n̂y direction) views.

Q denotes the horizontal distance between the central point and the spatially-fixed

musculotendon attachment, q denotes the distance between the spatially-fixed muscu-

lotendon attachment and the centre of the axis of motion in two orthogonal directions,

d denotes the block half width, p denotes the distance from the central point to the

via-point, and x denotes the single horizontal axial DoF.

well-validated open-source package, the numerical fitting aspect of Pyomechanics’

pathway approximation can be considered to have been verified [161]. A description

of a pair of test cases, implemented in the Pyomechanics test suite, for the veri-

fication of Pyomechanics’ pathway modelling and approximation follow. Both are

modified versions of the tug of war model, with the modification required so that

the model included nonlinear musculotendon pathways that could be tested.

In the first test case M1, illustrated in fig. 5.20, the tug of war model is modified

by adding a via-point to the right hand side (RHS) musculotendon at (p, 0.5, 0),

denoted in 3D cartesian coordinates (i.e. (x, y, z)). Its origin point was moved from

(0.35, 0.5, 0) to (Q, 0.5 + q, q) where Q and q were selected such that lMT = (D � d)

at x = 0, and p = 0.09m. The resulting pathway is, therefore, 3D. The via-point

was defined such that it was active for x  (p� d) and inactive otherwise, such that

l
MT
RHS =

8
>>>>><

>>>>>:

D � (x+ d) x  (p� d)

s

2q2 +

✓q
(D � p)2 � 2q2 � (x+ d� p)

◆2

x > (p� d)

, (5.49)

where d = 0.05m is the block half width and D = 0.35m is the wall o↵set as before

(section 5.4.1). A symmetrical change was also made for the left hand side (LHS)

256

5.4. PYOMECHANICS VALIDATION

0.00 0.02 0.04 0.06 0.08
x (m)

0.24

0.26

0.28

0.30

lM
T

(m
)

True
Fit

(a) q = 0.1, polynomial approximation or-

der 4.

0.00 0.02 0.04 0.06 0.08
x (m)

0.26

0.27

0.28

0.29

0.30

lM
T

(m
)

True
Fit

(b) q = 0.18166, polynomial approximation

order 18.

Figure 5.21: Approximations of the musculotendon pathway in test case M1 for

di↵erent values of musculotendon attachment o↵set q.

musculotendon.

It was verified that Pyomechanics correctly models the musculotendon pathway

when M1 is implemented using the package. Approximations to the musculotendon

pathway for a range of values of q were tested, with the approximations for q = 0.1m

(a generic nonlinear pathway) and q = 0.181 66m (the upper limit on q) shown in

fig. 5.21. For q = 0.1m, a fourth order polynomial was required to meet the default

normalised maximum error tolerance ẽmax of 0.2%.(fig. 5.21a). For q = 0.181 66m,

a polynomial of order 18 was required to meet ẽmax (fig. 5.21a). Such a high-order

polynomial approximation was required as the use of a via-point in this extreme

case leads to a sharp change in l
MT as the via-point transitions from being active to

inactive. Approximations to the M1 musculotendon shortening velocity and force

vector were also verified but are not shown here.

In the second test case M2, illustrated in fig. 5.22, a cylindrical wrapping surface

with radius r was placed with its axis of symmetry oriented parallel to the z-axis

and passing through the point (p, 0.5 + r, 0). The RHS musculotendon’s origin was

moved to attach to the cylinder at a point on its surface such that lMT = D�d when

x = 0. The pathway is such that for x  p the musculotendon force acts parallel to

the x-axis, but for x > p the musculotendon becomes increasing detached from the

wrapping surface at its insertion on the block. This results in

l
MT
RHS =

8
>>><

>>>:

D � (x+ d) x  (p� d)

x+D + d� 2p� 2r arctan
�
x+d�p

r

�
x > (p� d)

. (5.50)

Pyomechanics was also verified to accurately model the M2 pathway. Approx-

257

CHAPTER 5. MUSCULOSKELETAL MODELLING

p

d
r

x

(a) x  (p� d).

x

p

r

(b) x > (p� d).

Figure 5.22: Diagram of the musculotendon pathway in test case M2. The pathway

modifies the tug of war model and involves a cylindrical wrapping surface. Both

figs. 5.22a and 5.22b are plan views (from n̂z direction). r denotes the radius of the

cylindrical musculotendon wrapping surface, d denotes the block half width, p denotes

the distance from the central point to the via-point, and x denotes the single horizontal

axial DoF.

imations to the musculotendon pathway for a range of values of r were tested, with

the approximations for r = 0.1m (a generic nonlinear pathway) and r = 0.04m (the

upper limit on r before the direction of force action on the block changes) shown

in fig. 5.23. In order to meet ẽmax, approximating polynomials of orders 3 and 4

were required for r = 0.1m and r = 0.04m respectively. As for M1, musculotendon

shortening velocity and force vector in M2 were also verified but are not shown here.

5.4.4 Validation Against Published Results

To validate Pyomechanics, the package was used to construct the tug of war

model and solve the tug of war OCP described in section 5.4.1. The Pyomechanics

code to create the tug of war model, and to construct and solve the tug of war OCP,

is shown in fig. 5.24. Pyomechanics solved the OCP in 450.60ms, determining the

optimal cost to be 1.2574⇥ 10�2. In the example code (as is the case for all further

investigations following in section 5.4) the number of mesh iterations was limited to

one, as it was found that, in all cases, mesh refinement did not change the optimal

cost up to five significant figures. All other settings were left as the Pyomechanics

defaults. 29 NLP iterations were required for the OCP to converge. The optimal

state and control are shown in fig. 5.25 (alongside the solution obtained using the

software from [212]). Note that, again, only aRHS, eRHS, l̃MRHS and F̃
T
RHS (the values

corresponding to the RHS musculotendon) are shown due to the solution being

symmetric.

258

5.4. PYOMECHANICS VALIDATION

0.00 0.02 0.04 0.06 0.08
x (m)

0.22

0.24

0.26

0.28

0.30

lM
T

(m
)

True
Fit

(a) r = 0.1, polynomial approximation or-

der 3.

0.00 0.02 0.04 0.06 0.08
x (m)

0.24

0.26

0.28

0.30

lM
T

(m
)

True
Fit

(b) r = 0.04, polynomial approximation or-

der 4.

Figure 5.23: Approximations of the musculotendon pathway in test case M2 for

di↵erent values of musculotendon wrapping surface radius r.

The optimal cost obtained using Pyomechanics was 31.5% less than that ob-

tained using the methods of Lee and Umberger, 2016 (1.7269⇥ 10�2). Compar-

ing the optimal states, it can be seen that the optimal displacements of the block

(fig. 5.25a) were nearly identical. However, inspecting the optimal velocities (fig. 5.25b),

it can be seen that the block is accelerated away from stationary endpoint posi-

tions faster in Pyomechanics. This can be explained by the optimal tendon forces

(fig. 5.25d). While F̃ T
RHS at t = 0 is similar in magnitude in both cases, Pyomechan-

ics’ optimal F̃ T
LHS was smaller at t = 0 (equivalent to F̃

T
RHS at t = 0.5 s due to the

system’s symmetry). As the block acceleration is governed by eq. (5.47), Pyome-

chanics’ smaller forces in the musculotendon pulling in the direction opposite to the

motion allow the prescribed movement to be achieved with lower musculotendon

activations (fig. 5.25e). As the objective function is the sum of squared activations,

a lower optimal cost results.

It is hypothesised that the di↵erence between the two solutions can be ex-

plained by two factors. Firstly, Pyomechanics was likely able to solve the OCP to a

significantly greater accuracy due to the high-order orthogonal collocation scheme

employed by Pycollo in comparison to the simple backward Euler scheme used in

the software implementation from Lee and Umberger. When the OpenSim version

of the OCP was solved, it was found that increasing the density of the discretisation

mesh significantly a↵ected the optimal cost. Using 20 and 50 mesh sections resulted

in optimal costs of 3.8690⇥ 10�2 and 2.1441⇥ 10�2 respectively, 124% and 24%

larger than the optimal cost found when 100 mesh sections were used. This was not

the case in Pyomechanics where the optimal cost remained constant across a range

of mesh densities due to the high-order orthogonal collocation scheme employed. It

was unfortunately not possible to confirm the relative contribution to the discrep-

ancy in optimal costs obtained by solving the tug of war OCP using the MATLAB

259

CHAPTER 5. MUSCULOSKELETAL MODELLING

1 from pyomechanics import (Model, SlidingJoint, RigidBody, AttachmentPoint,

MillardMusculotendon),!

2 d = 0.05 # block half width (in m)

3 D = 0.35 # distance to walls (in m)

4 m = 20 # mass (in kg)

5 T = 1.0 # OCP duration (in s)

6 x = 0.08 # distance to start/end position (in m)

7 lTslack = 0.05 # tendon slack length (in m)

8 lMopt = 0.25 # optimal fibre length (in m)

9 FMmax = 1000 # peak isometric force (in N)

10 beta = 0.1 # fibre damping coefficient (in s/m)

11 tau_a = 0.055 # activation time constant (in /s)

12 tau_d = 0.065 # deactivation time constant (in /s)

13 tow = Model("tug_of_war")

14 slider = SlidingJoint("slider", model=tow, parent_attachment=tow.origin,

axis="x"),!

15 block = RigidBody("block", model=tow, mass=m, initial_position=-x,

final_position=-x, intermediate_position=(T/2, x), initial_velocity=0,

final_velocity=0, intermediate_velocity=(T/2, 0))

,!

,!

16 lhs_origin = AttachmentPoint("lhs_origin", model=tow, parent_body=tow,

position_x=-D, position_y=d),!

17 lhs_insertion = AttachmentPoint("lhs_insertion", model=block, position_x=-d,

position_y=d),!

18 lhs_muscle = MillardMusculotendon("lhs_muscle", model=tow, origin=lhs_origin,

insertion=lhs_insertion, peak_isometric_force=FMmax,

tendon_slack_length=lTslack, optimal_fiber_length=lMopt,

fiber_damping_coefficient=beta, activation_time_constant=tau_a,

deactivation_time_constant=tau_d)

,!

,!

,!

,!

19 rhs_origin = AttachmentPoint("rhs_origin", model=tow, parent_body=tow,

position_x=D, position_y=d),!

20 rhs_insertion = AttachmentPoint("rhs_insertion", model=block, position_x=d,

position_y=d),!

21 rhs_muscle = MillardMusculotendon("rhs_muscle", model=tow, origin=rhs_origin,

insertion=rhs_insertion, peak_isometric_force=FMmax,

tendon_slack_length=lTslack, optimal_fiber_length=lMopt,

fiber_damping_coefficient=beta, activation_time_constant=tau_a,

deactivation_time_constant=tau_d)

,!

,!

,!

,!

22 ocp = tow.optimal_control_problem(final_time=T,

objective_function="minimise_squared_activations",

enforce_periodicity=True)

,!

,!

23 ocp.settings.max_mesh_iterations = 1

24 solution = ocp.solve()

25 solution.plot()

Figure 5.24: Creation of the tug of war model and OCP using Pyomechanics.

260

5.4. PYOMECHANICS VALIDATION

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

�0.05

0.00

0.05

x
(m

)

Pyomechanics
Lee & Umberger

(a) x(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

�0.4

�0.2

0.0

0.2

0.4

v
(m

s�
1)

Pyomechanics
Lee & Umberger

(b) v(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.8

1.0

1.2

l̃M

Pyomechanics
Lee & Umberger

(c) l̃M
RHS

(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.050

0.075

0.100

0.125

0.150

F̃
T

Pyomechanics
Lee & Umberger

(d) F̃T
RHS

(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.00

0.05

0.10

0.15

0.20

a

Pyomechanics
Lee & Umberger

(e) aRHS(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.00

0.05

0.10

0.15

0.20

0.25

e

Pyomechanics
Lee & Umberger

(f) eRHS(t)

Figure 5.25: Comparison of the solutions to the tug of war OCP obtained using

Pyomechanics and the MATLAB and OpenSim implementation from [212]. As the

solution is periodic, only the values for the RHS musculotendon properties are shown.

x denotes the block position, v denotes the block velocity, l̃M denotes the normalised

muscle fibre length, F T denotes the normalised tendon force, a denotes the musculo-

tendon activation, and e denotes the musculotendon excitation.

261

CHAPTER 5. MUSCULOSKELETAL MODELLING

and OpenSim implementation with a denser mesh due to prohibitive computational

expense.

Secondly, small discrepancies between Pyomechanics’ and OpenSim’s musculo-

tendon curves will result in di↵erent musculotendon forces being developed for the

same l̃
T and l̃

M . This has already been demonstrated in fig. 5.19. Examination

of fig. 5.25c shows that the muscle fibres lengthen and shorten through a range

greater than 0.6lMopt during the optimal trajectory. Therefore, large ranges of oper-

ating conditions, corresponding to large portions of the musculotendon curves, are

encountered. Depending on the model’s and OCP’s sensitivity to the modelling

parameters, the slight di↵erences in the musculotendon curves observed could have

a magnified e↵ect on the optimal solution. Investigation into the sensitivity of the

tug of war OCP to its musculotendon parameters and modelling decisions follows in

sections 5.4.5 and 5.4.6.

5.4.5 Sensitivity to Modelling Parameters

The robustness of any study involving biomechanical modelling should be tested by

evaluating the sensitivity of the results to the model parameters [161]. A parametric

study was conducted to determine the sensitivity of the tug of war OCP’s solution to

the core musculotendon modelling parameters [144]. This type of sensitivity analysis

was chosen because, due to the small number of parameters involved, it was possible

to determine the interaction e↵ects of each of them.

In section 5.4.4 the tug of war OCP was solved using Pyomechanics on a mesh

with 10 mesh sections (K = 10). For the sensitivity analysis, it was also solved on a

denser mesh with 100 mesh sections (K = 100). Sensitivity to seven musculotendon

parameters (lMopt, v
M
max, F

M
max, l̃

T , �, ⌧act and ⌧deact) was investigated. This was done

by solving the OCP a number of times in succession and varying each parameter by

up to ±10%.

A subset of the results of this investigation is shown in table 5.5, giving the opti-

mal cost J , change in optimal cost relative to the baseline �J , the number of NLP

iterations required for the subproblem to converge N and its change relative to the

baseline solve �N . The optimal cost was found to be most sensitive to reductions in

l
M
opt, with J increasing by up to 133% given a 5% reduction in l

M
opt. The optimal cost

was also found to have high sensitivity to changes in v
M
max and l

T
slack. Relative sensi-

tivity of the optimal cost to each parameter remained consistent across the di↵erent

mesh densities investigated. These results suggest that the optimal solution to the

tug of war OCP exhibits high sensitivity to the choice of musculotendon parameters.

262

5.4. PYOMECHANICS VALIDATION

As the modelling parameters used to describe the musculotendons are intrinsically

linked to the musculotendon curves, this can help to explain the di↵erences in the

optimal solutions found by Pyomechanics and Lee and Umberger, 2016.

For most musculotendon parameters, there was no significant pattern observed

between changes in the parameter values and the number of NLP iterations required

for the NLP subproblem to converge. The one exception was again l̃
M , whereby

increases in this parameter’s value resulted in disproportionately large increases in

N . It is hypothesised that this was because the fibres spent the majority of the

trajectory at lengths near or below l̃
M when l̃

M was increased. This results in the

motion being governed, in majority, by the active force characteristics of the muscle.

Consequentially a more complex optimal control is required and more nonlinear

optimal trajectories for F̃ T are produced. This optimal solution appears to be more

di�cult for the NLP solver to converge to, perhaps due to the sensitivity of the

activation and tendon force states to the excitations, thus requiring additional NLP

iterations.

Additional to the musculotendon parameters, the sigmoidal smoothing constant

(c1 in eq. (5.44)) associated with the activation dynamics was also investigated. In

the case of c1, sensitivity across a range of magnitudes was investigated rather than

a narrow linear range as for the other parameters. This was due to the exponential

nature of eq. (5.44) requiring order-of-magnitude changes in c1 for a noticeable

di↵erence to be observed. Values of 10, 100, 1000 and 10 000 were investigated, with

results shown in fig. 5.27. It can be seen that the optimal state and control di↵ered

significantly between c1 = 10 and larger values. There was limited di↵erence between

c1 = 100 and c1 = 1000, and negligible di↵erence when c1 was increased further (not

shown). These di↵erences were reflected in the optimal costs with J increasing to a

plateau as c1 was increased (table 5.5). This indicates that larger values of c1 result

in reduced sensitivity of the solution to the activation dynamics equations. This is

because in the region of activation of the sigmoid, the activation and deactivation

portions of eq. (5.44) are linearly combined, resulting in an unphysiological model.

The larger c1 is, the narrower this window and the more realistically the activation

dynamics will be modelled.

5.4.6 Sensitivity to Modelling Decisions

The tug of war model described in section 5.4.1 contains a number of aspects that

can be modelled in other ways. These include the use of: first-order activation

dynamics in preference to zeroth-order; elastic tendons in preference to rigid tendons;

musculotendon length to describe the musculotendon state in preference to using

263

CHAPTER 5. MUSCULOSKELETAL MODELLING

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

�0.05

0.00

0.05

x
(m

)

0.2375m
0.2500m
0.2625m

(a) x(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

�0.4

�0.2

0.0

0.2

0.4

v
(m

s�
1)

0.2375m
0.2500m
0.2625m

(b) v(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.8

1.0

1.2

1.4

l̃M

0.2375m
0.2500m
0.2625m

(c) l̃M
RHS

(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.05

0.10

0.15

0.20

0.25

F̃
T

0.2375m
0.2500m
0.2625m

(d) F̃T
RHS

(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.0

0.1

0.2

0.3

a

0.2375m
0.2500m
0.2625m

(e) aRHS(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.0

0.1

0.2

0.3

0.4

0.5

e

0.2375m
0.2500m
0.2625m

(f) eRHS(t)

Figure 5.26: Comparison of sensitivity of the solution to the tug of war OCP to

optimal fibre length lMopt. Results were obtained using Pyomechanics. As the solution is

periodic, only the values for the RHS musculotendon properties are shown. x denotes

the block position, v denotes the block velocity, l̃M denotes the normalised muscle

fibre length, F T denotes the normalised tendon force, a denotes the musculotendon

activation, and e denotes the musculotendon excitation.

264

5.4. PYOMECHANICS VALIDATION

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

�0.05

0.00

0.05

x
(m

)

10
100
1000

(a) x(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

�0.4

�0.2

0.0

0.2

0.4

v
(m

s�
1)

10
100
1000

(b) v(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.8

1.0

1.2

l̃M

10
100
1000

(c) l̃M
RHS

(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.025

0.050

0.075

0.100

0.125

0.150

F̃
T

10
100
1000

(d) F̃T
RHS

(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.05

0.10

0.15

0.20

a

10
100
1000

(e) aRHS(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.00

0.05

0.10

0.15

0.20

0.25

e

10
100
1000

(f) eRHS(t)

Figure 5.27: Comparison of sensitivity of the solution to the tug of war OCP to

the activation dynamics smoothing parameter c1. Results were obtained using Py-

omechanics. As the solution is periodic, only the values for the RHS musculotendon

properties are shown. x denotes the block position, v denotes the block velocity, l̃M

denotes the normalised muscle fibre length, F T denotes the normalised tendon force,

a denotes the musculotendon activation, and e denotes the musculotendon excitation.

265

CHAPTER 5. MUSCULOSKELETAL MODELLING

tendon force; a damping element in the muscle fibre model; and parallel-fibred

muscle in preference to pennate muscle. Pyomechanics supports investigating each

of these modelling decisions and their alternatives with ease. Each of these modelling

decisions was investigated to:

1. determine the sensitivity of the solution to the tug of war OCP to the modelling

decision; and

2. provide recommendations about relevant modelling decisions when creating

and solving novel biomechanical OCPs.

Optimal cost J was used to measure sensitivity of the OCP solution to the mod-

elling decision. In addition, the number of NLP iterations required for the NLP

subproblem to converge N was used as a measure of the sensitivity of the OCP

convergence to the modelling decision.

Activation Dynamics Order

The tug of war OCP was solved using zeroth- and first-order activation dynamics

for a range of other modelling parameters (table 5.6). The results show that zeroth-

order activation dynamics universally allowed a lower optimal cost to be obtained.

This corresponded to between an 8.5% to 53.0% reduction in the optimal cost when

zeroth-order activation dynamics were used compared to first-order. A lower optimal

cost if zeroth-order activation dynamics are used is to be expected as they place fewer

constraints on the musculotendon dynamics and therefore allow a more expansive

solution space. The number of NLP iterations required was also universally lower

when zeroth-order activation dynamics were used.

Choice of Musculotendon State

The musculotendon models in Pyomechanics allow musculotendon state to be pa-

rameterised using both l̃
M (formulations B and D in table 5.6) and F̃

T (formulations

C and E in table 5.6). Comparison of formulations D and E (damped elastic ten-

don musculotendon model) show that the optimal costs were identical to at least

five significant figures in all cases when first-order activation dynamics were used.

Furthermore, neither formulation consistently exhibited better convergence perfor-

mance than the other. This suggests that, based on this OCP, using either l̃
M or

F̃
T to parameterise musculotendon state is equally suitable.

266

5.4. PYOMECHANICS VALIDATION

The undamped elastic tendon musculotendon model can be parameterised in

four ways in Pyomechanics. In the first two of ways, either l̃
M or F̃

T is used to

parameterise the musculotendon state and explicit equations for the musculotendon

dynamics are used (formulations B and C respectively). In the second two of ways,

either l̃
M or F̃

T is again used, but the formulation includes the additional control

variable ṽM and the musculotendon dynamics are formulated implicitly and enforced

with a path constraint (formulations D and E respectively). J was higher in all cases

when an implicit formulation was used. Little di↵erence in N was observed between

the implicit and explicit formulations with first-order activation dynamics. However,

when zeroth-order activation dynamics were used, N was significantly larger for the

explicit formulations. This indicates that implicit formulations should be preferred.

Tendon Elasticity

Pyomechanics allows a user to easily switch between the rigid and elastic tendon

musculotendon models. Solving the tug of war OCP using both tendon models and

first-order activation dynamics, it was found that the optimal costs and correspond-

ing optimal trajectories (not shown) di↵ered between the two models but with no

consistent pattern as other parameters changed. Comparing N between the two

tendon models also showed no consistent relationship. Therefore, no performance

advantage was observed from using the simplified rigid tendon model over the elastic

tendon model, despite the elastic tendon model introducing one additional state and

control variable each per musculotendon into the OCP.

Muscle Fibre Damping

It has been suggested that including muscle fibre damping into a musculotendon

model improves the numerical conditioning, despite there being little experimental

evidence for this [242]. Solving the tug of war OCP using both undamped and

damped musculotendon models found that J was minimised when the muscle fibre

damping coe�cient � = 0. As � was increased, J was also found to increase. This

is to be expected as the parallel damping element in the damped musculotendon

model dissipates energy and the larger that � is, the greater this dissipation will

be. No consistent trend in convergence properties was observed when muscle fibre

damping was modelled and included in the tug of war OCP.

267

CHAPTER 5. MUSCULOSKELETAL MODELLING

Muscle Fibre Pennation

The tug of war model (as formulated in [212]) assumed parallel muscle fibres (i.e. no

pennation). Pyomechanics makes it easy to enable pennation in a musculotendon

model; simply by setting ↵opt > 0. The e↵ect of including pennation in the tug of

war musculotendons on J and N is shown in table 5.6c. Logarithmically spaced

values of ↵opt are shown so that the marginal e↵ect of including pennation could

be investigated. As expected, small values of ↵opt close to zero had little e↵ect on

J . As the value of ↵opt was increased, J also increased at an exponential rate.

This is due to that fact that a musculotendon’s ability to produce force decreases

as pennation angle increases. Therefore, larger activations are required to produce

the same force in pennate muscle than in equivalently parameterised parallel-fibred

muscle. This e↵ect is likely to be particularly pronounced in the tug of war OCP

due to the fibre lengths in the optimal trajectory covering a large operating range

of lMopt ± 0.3lMopt. As for muscle fibre damping, no relationship between the inclusion

of modelling pennation angle or variation in ↵opt and N was observed.

Musculotendon Curves

Pyomechanics o↵ers two sets of musculotendon curves. These are the De Groote

curves (implementations of the equations from [85]) and the novel Millard curves

(OCP suitable equations fitted to the data from [242]). The tug of war model

from [212] used the musculotendon curves from [242] and in section 5.4.4 the tug

of war OCP was solved using Pyomechanics and the Millard curves. The tug of

war OCP was also solved using Pyomechanics and the De Groote curves. The

optimal cost achieved using the De Groote curves (1.2104⇥ 10�2) was similar to,

albeit marginally less than, the optimal cost achieved using the Millard curves

(1.2574⇥ 10�2). Furthermore, the tug of war OCP required one fewer NLP iter-

ations to converge with the De Groote curves (37) than with the Millard curves

(38). Comparison of the optimal states and controls obtained using the two sets of

musculotendon curves is shown in fig. 5.28. It can be seen that although the optimal

costs were similar, the optimal trajectories showed greater disparity. The solution

using the De Groote curves exhibited later and faster activation, a marginally higher

peak activation and marginally later deactivation. Consequently, faster initial ac-

celerations of the block from stationary and lower overall tendon forces were also

observed. The De Groote curves are more compliant than the Millard curves at

low strains and only become sti↵er at fibre lengths l̃
M

> 1.5 (section 5.3.3). This

explains the lower forces observed in the De Groote curves solution as the opti-

mal trajectory using both sets of curves involved the fibres operating within the

268

5.4. PYOMECHANICS VALIDATION

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

�0.05

0.00

0.05

x
(m

)

Millard
De Groote

(a) x(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

�0.4

�0.2

0.0

0.2

0.4

v
(m

s�
1)

Millard
De Groote

(b) v(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.8

1.0

1.2

l̃M

Millard
De Groote

(c) l̃M
RHS

(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.025

0.050

0.075

0.100

0.125

0.150

F̃
T

Millard
De Groote

(d) F̃T
RHS

(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.05

0.10

0.15

0.20

a

Millard
De Groote

(e) aRHS(t)

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.00

0.05

0.10

0.15

0.20

0.25

e

Millard
De Groote

(f) eRHS(t)

Figure 5.28: Comparison of sensitivity of the solution to the tug of war OCP to the

use of the two sets of musculotendon curves, the Millard curves and the De Groote

curves, o↵ered by Pyomechanics. As the solution is periodic, only the values for the

RHS musculotendon properties are shown. x denotes the block position, v denotes

the block velocity, l̃M denotes the normalised muscle fibre length, F T denotes the

normalised tendon force, a denotes the musculotendon activation, and e denotes the

musculotendon excitation.

269

CHAPTER 5. MUSCULOSKELETAL MODELLING

approximate range 0.7lMopt < l̃
M

< 1.3lMopt.

5.5 Discussion

As has been demonstrated, extensive initial verification, validation and sensitiv-

ity analysis of Pyomechanics has been conducted. This highlighted a number of

recommendations for the construction of biomechanical models and formulation of

biomechanical OCPs, as well as some areas for future work. This section concludes

by also demonstrating that the objectives of this chapter have been met.

5.5.1 Musculotendon Pathways

Verification of Pyomechanics’ musculotendon pathway modelling and approximation

highlighted that the use of via-points in the obstacle-set method can lead to muscu-

lotendon pathways that exhibit rapid changes in musculotendon length, shortening

velocity, moment arm and direction of force vector due to changes in the independent

dynamics variables. This is undesirable as such pathways are not only unphysiolog-

ical, but high-order approximating polynomials are required in order for them to be

accurately represented. It is recommended that smooth wrapping surfaces be used in

preference to via-points when creating nonlinear obstacle-set musculotendon path-

ways. This will result in more physiologically accurate and valid modelling, as well

as improved OCP properties due to OCP formulations involving more numerically

well-conditioned functions.

5.5.2 Order of Activation Dynamics

The use of zeroth- and first-order activation dynamics were investigated and com-

pared. Zeroth-order activation dynamics were found to result in unphysiological

optimal trajectories when included in biomechanical OCPs. This was due to the

fact that mapping excitation to activation directly results in a control variable be-

ing e↵ectively included in the musculotendon equations, which allows unphysical

discontinuity in the musculotendon dynamics (particularly the tendon forces) to be

achieved. For physiologically valid musculotendon dynamics, the use of first-order

activation dynamics is recommended. However, zeroth-order activation dynamics

exhibited better convergence properties than first-order activation dynamics. There-

fore, the former presents a potentially useful tool in situations where it is di�cult to

achieve convergence of a biomechanical OCP. In this scenario, a potential approach

270

5.5. DISCUSSION

could be to simplify the biomechanical model to use zeroth-order activation dynam-

ics and solve the OCP using this simplified model to generate an initial guess for

the original model with first-order activation dynamics.

5.5.3 Explicit and Implicit Musculotendon Dynamics

Investigation of the di↵erent ways that Pyomechanics supports the formulation of

musculotendon dynamics found that an implicit formulation was universally more

performant and flexible than an explicit formulation. Comparison of the explicit

and implicit formulations of identical OCPs found that the NLP subproblems fre-

quently converge in fewer NLP iterations for the implicit formulation than the ex-

plicit formulation. This is despite implicitly formulated OCPs involving a greater

number of variables and constraints. Furthermore, the implicit formulations allow

both damped and undamped musculotendons to be modelled without modification,

making them more widely applicable. Therefore, it is recommended that implicit

formulations of the musculotendon equations are preferred and should be used by

default.

5.5.4 Equations for First-Order Activation Dynamics

Pyomechanics implements the smoothed first-order activation dynamics equations

from [85]. In the original publication, the sigmoidal smoothing parameter c1 =

10 was proposed. Sensitivity testing using Pyomechanics demonstrated that OCP

solutions are more sensitive to smaller values of c1, while larger values of c1 result in

more NLP iterations being required for convergence to be achieved. It was concluded

that c1 = 100 yielded a sensible balance between sensitivity and computational cost.

This value is, therefore, used as the default in Pyomechanics. However, if it is desired

that computational cost be kept down when solving a biomechanical OCP and low

N be prioritised, then it is recommended that a smaller value of c1 be used. It is

also advised that a lower bound of c1 = 10 be considered as values smaller than this

will result in too-gradual smoothing between activation and deactivation which will

render the modelling of the activation dynamics unphysiological (fig. 5.12).

5.5.5 Choice of Musculotendon State

Section 5.4 investigated the e↵ects of numerous modelling decisions on OCP solution

and convergence. Pyomechanicssupports parameterisation of the musculotendon

271

CHAPTER 5. MUSCULOSKELETAL MODELLING

equations using both l̃
M and F̃

T as state variables. Both formulations yielded the

exact same solutions and neither exhibited reliably improved OCP properties in

comparison to the other. Therefore, the choice of whether l̃M or F̃ T is used can be

determined based on which is more convenient for the problem formulation.

5.5.6 Musculotendon Model Components

Pyomechanics allows users to easily add or remove a parallel damping element to

their muscle fibre model, include or exclude pennation angle in the musculotendon

equations, and switch between di↵erent musculotendon curves. The OCP solutions

were found to be sensitive to all of these modelling decisions, while the convergence

properties were not impacted. This means that users are able to select the most

physically representative parameters without needing to consider such a decision’s

e↵ects on the convergence properties of their OCP. This is contrary to the advice of

Millard et al., 2013 [242], who suggested that damped musculotendon models o↵er

improved numerical stability.

5.6 Conclusions

Pyomechanics, an open-source Python package for optimal control involving biome-

chanical models, with a particular focus on predictive simulation, has been devel-

oped. In particular, it:

• o↵ers a library of OOP musculoskeletal modelling components and an easy to

use API that enables users to e�ciently construct biomechanical models using

minimal lines of code;

• implements a set of musculotendon curves that replicate the most widely-used

experimental data, with properties such that they are suitable for use in OCPs;

• o↵ers two implicit formulations for damped elastic tendon musculotendon

models;

• abstracts away the multibody and musculotendon modelling, thereby enabling

users without expertise in the mathematics of these areas to derive the equa-

tions governing their modelled system; and

• supports users by formulating predictive simulation OCPs on their behalf.

272

5.6. CONCLUSIONS

Pyomechanics has been rigorously tested on a simple biomechanical OCP from

the literature. A wide range of di↵erent OCP formulations have been compared and

a set of recommendations made for how biomechanical OCPs should be constructed.

These include using:

• smooth wrapping surfaces in preference to via-points when creating obstacle-

set musculotendon pathways and their polynomial approximations;

• first-order activation dynamics to represent physiologically valid musculoten-

don dynamics;

• zeroth-order activation dynamics to generate a dynamically-valid initial guess

in situations where complex OCPs are exhibiting poor convergence;

• implicit formulations of damped musculotendon dynamics, with no preference

over whether musculotendon state is parameterised by l̃
M or F̃ T ; and

• a sigmoidal smoothing constant of 100 to accurately represent activation-

deactivation switching in smoothed first-order activation dynamics, and only

using smaller values when convergence properties are to be prioritised over

physiological accuracy.

The open-source provision of Pyomechanics will allow researchers and practi-

tioners without specific expertise in musculoskeletal modelling, multibody dynamics

or optimal control to investigate biomechanical OCPs. In particular, it is recom-

mended that future research investigates:

• applying the developed direct collocation methodologies to other biomechanics

OCPs, including inverse-dynamics and motion tracking;

• musculotendon pathway approximation for complex 3D geometries;

• validating the package further on biomechanical models with more DoFs and

a greater number of musculotendons; and

• applying Pyomechanics, and the BPST as a whole, to create subject-specific

models of sprint cyclists and investigate the biomechanics of cycling by pre-

dictively simulating maximal pedalling.

273

CHAPTER 5. MUSCULOSKELETAL MODELLING

K = 10 K = 100

J10 �J10 (%) N10 �N10 (%) J100 �J100 (%) N100 �N100 (%)

Baseline 0.01258 29 0.01257 65

lMopt
�5% 0.02932 +133 28 �3.4 0.02921 +132 48 �25.0

+5% 0.00787 �37.4 35 +20.7 0.00787 �37.4 158 +147

vMmax

�5% 0.01399 +11.2 33 +13.8 0.01398 +11.2 55 �14.1

+5% 0.01143 �9.15 32 +10.3 0.01143 �9.13 71 +10.9

FM
max

�5% 0.01207 �4.05 37 +27.6 0.01206 �4.08 88 +37.5

+5% 0.01306 +3.80 35 +20.7 0.01306 +3.85 56 �12.5

lTslack
�5% 0.01405 +11.72 39 +34.5 0.01407 +11.86 69 +7.8

+5% 0.01135 �9.80 36 +24.1 0.01134 �9.82 69 +7.8

�

�5% 0.01197 �4.85 29 0.0 0.01196 �4.84 65 +1.6

+5% 0.01321 +5.05 26 �10.3 0.01321 +5.04 70 +9.4

⌧act
�5% 0.01254 �0.31 34 +17.2 0.01253 �0.31 67 +4.7

+5% 0.01262 +0.30 36 +24.1 0.01261 +0.30 67 +4.7

⌧deact
�5% 0.01231 �2.12 37 +27.6 0.01232 �2.04 55 �14.1

+5% 0.01286 +2.27 48 +65.5 0.01285 +2.22 72 +12.5

c1
⇥0.1 0.01108 �11.91 19 �34.5 0.01108 �11.84 25 �60.9

⇥10 0.01351 +7.42 51 +75.9 0.01350 +7.40 155 +142

⇥100 0.01352 +7.50 62 +113.8 0.01351 +7.48 447 +598

Table 5.5: Sensitivity of the optimal cost and convergence properties of the tug

of war OCP to the musculotendon modelling parameters. Musculotendon modelling

parameters investigated, and their baseline values, were: the optimal fibre length

lMopt = 0.25 m, the maximal fibre shortening velocity vMmax = 2.5 m s�1, the peak iso-

metric muscle fibre force FM
max = 1000 N, the tendon slack length lTslack = 0.05 m, the

fibre damping coe�cient � = 0.1 sm�1, the activation time constant ⌧act = 0.055 s�1,

the deactivation time constant ⌧deact = 0.065 s�1 and the activation smoothing con-

stant c1 = 100 (eq. (5.44)). K denotes the number of mesh sections, J and �J denote

the optimal cost and its change relative to the baseline, and N and �N denote the

number of NLP iterations for the subproblem to converge and its change relative to

the baseline.

274

5.6. CONCLUSIONS

A B C D E

� J N J N J N J N J N

0 0.004 454 14 0.002 365 96 0.002 538 75 0.002 513 22 0.002 525 27

0.01 0.004 925 16 0.002 805 23 0.003 705 24

0.02 0.005 444 15 0.003 292 23 0.004 523 24

0.05 0.007 257 15 0.005 525 20 0.006 826 20

0.1 0.010 987 14 0.016 276 38 0.010 644 19

0.2 0.022 272 13 0.020 311 27 0.021 803 17

0.5 0.090 881 10 0.089 089 17 0.089 406 14

1 0.314 99 9 0.311 22 11 0.311 13 14

(a) Zeroth-order activation dynamics, pennation angle at optimal muscle fibre length ↵opt = 0

A B C D E

� J N J N J N J N J N

0 0.005 231 50 0.005 032 60 0.005 031 54 0.004 957 53 0.004 957 58

0.01 0.005 655 53 0.005 370 71 0.005 370 51

0.02 0.006 114 52 0.005 817 52 0.005 817 45

0.05 0.007 927 47 0.007 607 58 0.007 607 55

0.1 0.012 961 45 0.012 574 38 0.012 574 60

0.2 0.030 215 47 0.029 634 45 0.029 634 51

0.5 0.130 35 32 0.128 84 42 0.128 84 60

1 0.441 74 60 0.437 30 45 0.437 30 49

(b) First-order activation dynamics, pennation angle at optimal muscle fibre length ↵opt = 0

A B C D E

↵opt J N J N J N J N J N

0 0.012 961 45 0.012 574 38 0.012 574 60

0.01 0.012 964 33 0.012 578 48 0.012 578 42

0.02 0.012 974 59 0.012 588 46 0.012 588 51

0.05 0.013 044 34 0.012 663 53 0.012 663 42

0.1 0.013 310 40 0.012 945 41 0.012 945 43

0.2 0.014 579 55 0.014 321 44 0.014 321 38

0.5 0.031 319 41 0.035 003 47 0.035 003 44

1 0.189 95 70 0.281 37 43 0.281 37 37

(c) First-order activation dynamics, muscle fibre damping coe�cient � = 0.1

Table 5.6: Sensitivity of the optimal cost (J) and convergence properties (N) of

the tug of war OCP to the musculotendon modelling decisions. Five formulations are

shown: formulation A used the rigid tendon model; formulation B used the undamped

elastic tendon model with l̃M as the musculotendon state; formulation C used the

undamped elastic tendon model with F̃ T as the musculotendon state; formulation D

used the damped elastic tendon model with l̃M as the musculotendon state and ṽM as

an additional control variable; and formulation E used the undamped elastic tendon

model with F̃ T as the musculotendon state and ṽM as an additional control variable.

Blank cells denote that the OCP could not be formulated in this way.

275

Chapter 6

Conclusions and Future Work

In this work, a comprehensive toolkit, the Biomechanics Predictive Simulation Toolkit

(BPST), that enables both expert and non-expert users to construct and solve pre-

dictive simulation trajectory optimisation and optimal control problems (OCPs)

involving musculoskeletal models has been developed. The BPST incorporates a

number of the methods and algorithms developed as part of this thesis, along with

other state-of-the-art theory and methods from the field of optimal control, which

users can leverage. This chapter summarises the main conclusions from each pre-

vious chapter, all of which began with a thorough review of the relevant academic

literature and software provision, and sets out a number of recommendations for

further developing each area of the work.

6.1 Conclusions

6.1.1 Orthogonal Collocation (Chapter 2)

Chapter 2 detailed the development of a highly-performant, easy-to-use, open-source

software package to solve general OCPs across a range of complexities. This Python

package, Pycollo, forms the first component in the BPST.

The benchmarking of Pycollo against the industry-standard commercial soft-

ware GPOPS-II showed it to be capable of accurately and correctly solving a range

of recognised OCPs from the literature [94, 211, 267, 284, 294]. Pycollo’s overall per-

formance across a range of measures was also demonstrated to be equivalent to that

of GPOPS-II . These measures included the computation time required to solve the

OCPs, the number of nonlinear programming problem (NLP) iterations required for

277

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

the generated NLP subproblems to converge, and the number of mesh refinements

required to meet a specified mesh tolerance. Pycollo’s performance can, in part,

be attributed to two factors. First is Pycollo’s framework for the automatic scaling

of an OCP’s transcribed NLP subproblems based on user-supplied variable bounds,

random sampling of the search space, and analysis of the problem’s function’s deriva-

tives. Sensibly scaling an OCP is important for ensuring its convergence, especially

when the OCP variables span many orders of magnitude. Conducting this scaling

on behalf of the user greatly facilitates ease-of-use. Second is Pycollo’s adapted

hp mesh refinement algorithm that supports decreasing mesh sparsity in regions of

the domain where the mesh tolerance is met, to improve the e�ciency of the dis-

cretisation. Using a mesh refinement algorithm that can simultaneously increase

and decrease mesh sparsity in di↵erent regions of the domain is important for use

alongside a Legendre-Gauss-Lobatto (LGL)-based collocation scheme where oscil-

latory solutions can arise on sparse meshes due to the complementary collocation

condition at interior mesh section boundaries.

6.1.2 Derivative Generation (Chapter 3)

Chapter 3 described the development of a highly-performant approach to determin-

ing first- and second-order derivative information for OCPs, termed hybrid-symbolic-

algorithmic di↵erentiation (hSAD). In addition, a computational implementation of

the hSAD algorithm, Dash, has been incorporated into Pycollo as a second selectable

derivative backend.

hSAD determines the sensitivities of a target function analytically in a pre-

processing step. This enables more e�cient evaluation traces for the computation

of derivatives to be produced than with forward-mode algorithmic di↵erentiation

(AD). The greater the sparsity of the target function’s derivative, the greater the

theoretical relative performance of hSAD over forward-mode AD. For completely

dense functions, hSAD’s e�ciency is no worse than that of forward-mode AD. This

property is particularly valuable when applied to OCP derivatives where many thou-

sands of numerical evaluations may be required throughout the duration of an OCP

solve.

Benchmarking of Pycollo’s Dash backend against its CasADi backend demon-

strated that the Dash backend enabled significantly faster preprocessing of the OCP

derivatives, especially when dense mesh discretisations were used. This evidences

that the hSAD algorithm leads to highly e�cient formulations of the OCP deriva-

tives when combined with exploitation of the known sparsity structure of the NLP

formed by direct collocation. However, numerical evaluations of OCP derivatives

278

6.1. CONCLUSIONS

using the Dash backend were between one and two orders of magnitude slower than

comparable evaluations using the CasADi backend. These di↵erences can be at-

tributed to design decisions made when implementing the Dash backend, specifically

the choice of Python as the implementation language as opposed to the low-level

C code generation employed by CasADi. This highlights that both algorithmic

and computational performance are requirements when writing a highly-performant

software implementation to generate OCP derivatives.

6.1.3 Multibody Dynamics (Chapter 4)

Chapter 4 detailed the development of a highly-performant, easy-to-use, open-source

software package for modelling multibody systems and their dynamics. This pack-

age, Pynamics, is specifically tailored for use in OCPs and forms a core element of

the BPST.

Pynamics is capable of formulating dynamical equations of motion (EoMs) both

explicitly and implicitly. A direct comparison between explicit and implicit formula-

tions of dynamics in OCPs demonstrated that implicit dynamics, in which the state

equations of the generalised speeds are enforced using equality path constraints,

should be preferred over explicit ones. This is because it is less computationally

expensive to initialise the OCP when implicit dynamics are used because inversion

of the mass matrix is not required, resulting in a significantly smaller expression

graph which needs to be di↵erentiated through to determine the OCP derivatives.

Furthermore, it is less computationally expensive to solve the NLP subproblem, de-

spite it being more than 50% larger, because the NLP derivatives resulting from

the implicit dynamics are significantly simpler and thus computationally cheaper to

evaluate. Finally, implicit equations are more numerically stable due to them not

involving the inversion of near-singular mass matrices and yield smaller mesh errors

as a result.

6.1.4 Musculoskeletal Modelling (Chapter 5)

Chapter 5 detailed the development of a highly-performant, easy-to-use, open-

source software package capable of formulating and solving musculoskeletal predic-

tive OCPs. This package, Pyomechanics, forms the final component, and primary

application programming interface (API), of the BPST. It wraps Pynamics and Py-

collo, and adds musculoskeletal modelling functionality.

Pyomechanics implements a set of musculotendon characteristic curves, based

279

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

on previously published interpolations of experimental data [242], specifically de-

rived to be suitable for use in musculoskeletal OCPs. Their use has highlighted

that meeting continuity and di↵erentiation requirements is essential for the reliable

convergence of NLPs. Additionally, in cases where it is not possible to algebraically

invert the function describing a musculotendon curve, using a second function to

describe its inverse is a suitable approach. Testing of the curves, as part of a muscu-

loskeletal OCP, highlighted the sensitivity of the optimal trajectory and control to

the musculotendon properties. Therefore, perfect numerical replication of previously

published results may not be possible, as was demonstrated in this case, unless a

model and optimisation framework identical to the original are used.

Pyomechanics also implements a damped equilibrium elastic tendon musculo-

tendon model suitable for use in OCPs. This highly customisable model (section 5.3)

allows users to select from a range of musculotendon modelling options. These op-

tions were extensively investigated as part of an OCP and the implicit formulation

of musculotendon dynamics was shown to be able to accommodate all modelling

options without the rate of convergence being penalised. This allows users to define

musculoskeletal models containing musculotendons that accurately represent their

system of interest, without needing to consider the potentially adverse e↵ects of

their modelling decisions on the convergence properties of their OCP.

6.2 Recommendations for Future Work

The research detailed in chapters 2 to 5, and conclusions stated in section 6.1,

highlight a number of areas where there is opportunity to further develop and refine

the contributions of this thesis.

There is potential to further refine the algorithms and methods for direct col-

location, developed in chapter 2, and to improve Pycollo by further increasing com-

putational performance and expanding support for the range of OCPs it can solve.

Specific recommendations for future work in this area include:

• applying the mesh refinement algorithm to Legendre-Gauss-Radau (LGR) and

Legendre-Gauss (LG) collocation;

• incorporating the latest ideas and developments from bang-bang mesh refine-

ment into the adapted hp mesh refinement algorithm; and

• developing mesh error calculation functionality for LGR and LG collocation

in Pycollo, so that the relative performance of LGL, LGR and LG collocation

280

6.2. RECOMMENDATIONS FOR FUTURE WORK

can be directly compared.

Chapter 3 described a number of advanced concepts in hSAD that have the

potential to increase the e�ciency and performance of the algorithm. In particular,

future work in this area should investigate:

• developing a further mode of hSAD that is analogous to reverse-mode AD

(as opposed to forward-mode AD) as this will potentially yield performance

benefits when evaluating derivatives for functions with many more outputs

than inputs;

• the application of the hSAD concepts of function nodes and tier checkpointing

further, to make recommendations on their application and use; and

• optimising and reimplementing Dash in a lower-level programming language,

such that it is capable of numerically evaluating derivatives with performance

equivalent to the CasADi backend, while also o↵ering significantly cheaper

derivative preprocessing costs.

The open-source provision of Pynamics will allow researchers in this field to

extend the capabilities of the package in the future. Specific future work could

include:

• how handling of event detection can be incorporated into multibody OCPs so

that systems with altered dynamics can be modelled and predictively simulated

using direct collocation;

• making additions to the Pynamics component library; and

• adding support for contact modelling in Pynamics.

Chapter 5 investigated predictive simulation of biomechanical models using a

high-performance optimisation engine. To further advance the accessible application

of state-of-the-art and novel methods and algorithms from other technical domains

to biomechanics research, it is recommended that further work be conducted that

investigates:

• applying the developed direct collocation methodologies to other biomechanics

OCPs, including inverse-dynamics and motion tracking;

• musculotendon pathway approximation for complex three-dimensional (3D)

geometries; and

281

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

• validating Pyomechanics further on biomechanical models with more degrees

of freedom (DoFs) and a greater number of musculotendons.

In considering further work, it is important to be cognisant of the rate with

which additional valuable research is being conducted in this area and to seek to

build on emerging best-practice from the various streams of activity. The release

of the BPST (incorporating Pycollo, Pynamics and Pyomechanics) as open-source

packages will provide a robust and versatile platform on which researchers can con-

tinue to develop methods and algorithms for the predictive simulation of muscu-

loskeletal models. Similarly, it is hoped that some of the contributions of this thesis

can be used to inform developments in related software tools and new strands of

research in the fields of optimal control theory, multibody dynamics and computa-

tional biomechanics.

282

Bibliography

[1] Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, P., and Dyhre-

Poulsen, P. “Increased rate of force development and neural drive of hu-

man skeletal muscle following resistance training”. In: Journal of Applied

Physiology 93.4 (2002), pp. 1318–1326. issn: 8750-7587. doi: 10 . 1152 /

japplphysiol.00283.2002. url: http://jap.physiology.org/content/

93/4/1318.short%7B%5C%%7D5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/

12235031.

[2] Abbott, B. C. and Aubert, X. M. “The force exerted by active striated muscle

during and after change of length”. In: Journal of Physiology 117 (1952),

pp. 77–86. issn: 1469-7793. doi: 10.1113/jphysiol.1952.sp004733.

[3] Abokhodair, A. A. “Complex di↵erentiation tools for geophysical inversion”.

In: Geophysics 74.2 (2009). issn: 00168033. doi: 10.1190/1.3052111.

[4] Abramowitz, M. and Stegun, I. A. Handbook of mathematical functions with

formulas, graphs, and mathematical tables. US Government Printing O�ce,

1948.

[5] Ackermann, M. and Bogert, A. J. van den. “Predictive simulation of gait

at low gravity reveals skipping as the preferred locomotion strategy”. In:

Journal of Biomechanics 45.7 (2012), pp. 1293–1298. issn: 00219290. doi:

10.1016/j.jbiomech.2012.01.029. url: http://dx.doi.org/10.1016/

j.jbiomech.2012.01.029.

[6] Ackermann, M. and Schiehlen, W. Physiological methods to solve the force-

sharing problem in biomechanics. Dordrecht, Netherlands: Springer, 2009.

[7] Agamawi, Y. M., Hager, W. W., and Rao, A. V. “Mesh refinement method

for solving bang-bang optimal control problems using direct collocation”. In:

AIAA Scitech 2020 Forum (2020), pp. 1–25. doi: 10.2514/6.2020-0378.

arXiv: 1905.11895.

[8] Agamawi, Y. M. and Rao, A. V. “Exploiting sparsity in direct orthogonal

collocation methods for solving multiple-phase optimal control problems”. In:

283

BIBLIOGRAPHY

Space Flight Mechanics Meeting, 2018. 210009. 2018. doi: 10.2514/6.2018-

0724.

[9] Agamawi, Y. M. and Rao, A. V. “CGPOPS: A C++ software for solving

multiple-phase optimal control problems using adaptive Gaussian quadra-

ture collocation and sparse nonlinear programming”. In: arXiv (2019). arXiv:

1905.11898.

[10] Agamawi, Y. M. and Rao, A. V. “Comparison of Derivative Estimation Meth-

ods in Optimal Control Using Direct Collocation”. In: AIAA Journal 58.1

(2020). doi: 10.2514/1.J058514.

[11] Agarwal, G. C., Berman, B. M., and Stark, L. “Studies in Postural Control

Systems Part I: Torque Disturbance Input”. In: IEEE Transactions on Sys-

tems Science and Cybernetics 6.2 (1970), pp. 116–121. issn: 21682887. doi:

10.1109/TSSC.1970.300285.

[12] Åkesson, J., Årzén, K.-E., Gäfvert, M., Bergdahl, T., and Tummescheit, H.

“Modeling and Optimization with Optimica and JModelica.org - Languages

and tools for solving large-scale dynamic optimization problems”. In: Com-

puters & Chemical Engineering 34.11 (2010), pp. 1737–1749.

[13] Allen, S. J., King, M. A., and Yeadon, M. R. “Models incorporating pin

joints are suitable for simulating performance but unsuitable for simulating

internal loading”. In: Journal of Biomechanics 45.8 (2012), pp. 1430–1436.

issn: 00219290. doi: 10.1016/j.jbiomech.2012.02.019.

[14] Anderson, D. E., Madigan, M. L., and Nussbaum, M. A. “Maximum vol-

untary joint torque as a function of joint angle and angular velocity: Model

development and application to the lower limb”. In: Journal of Biomechanics

40.14 (2007), pp. 3105–3113. issn: 00219290. doi: 10.1016/j.jbiomech.

2007.03.022.

[15] Anderson, F. C. and Pandy, M. G. “Storage and utilization of elastic strain

energy during jumping”. In: Journal of Biomechanics 26.12 (1993), pp. 1413–

1427. issn: 00219290. doi: 10.1016/0021-9290(93)90092-S. arXiv: 0021-

9290(93)90092-s [10.1016].

[16] Anderson, F. C. and Pandy, M. G. “A Dynamic Optimization Solution for

Vertical Jumping in Three Dimensions”. In: Computer Methods in Biome-

chanics and Biomedical Engineering 2.3 (1999), pp. 201–231. issn: 1025-5842.

doi: 10.1080/10255849908907988.

[17] Anderson, F. C. and Pandy, M. G. “Static and dynamic optimization so-

lutions for gait are pratical equivalent”. In: Journal of Biomechanics 34.2

(2001), pp. 153–161.

284

BIBLIOGRAPHY

[18] Anderson, F. C. and Pandy, M. G. “Dynamic Optimization of Human Walk-

ing”. In: Journal of Biomechanical Engineering 123.5 (2001), pp. 381–390.

issn: 00400262. doi: 10.2307/1218045. url: http://www.jstor.org/

stable/1218045?origin=crossref.

[19] Anderson, F. C. and Pandy, M. G. “Individual muscle contributions to sup-

port in normal walking”. In: Gait and Posture 17.2 (2003), pp. 159–169. issn:

09666362. doi: 10.1016/S0966-6362(02)00073-5.

[20] Andersson, J. A., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M. “CasADi:

a software framework for nonlinear optimization and optimal control”. In:

Mathematical Programming Computation 11.1 (2019), pp. 1–36. issn: 18672957.

doi: 10.1007/s12532-018-0139-4. url: https://doi.org/10.1007/

s12532-018-0139-4.

[21] Arnold, A. S., Salinas, S., Asakawa, D. J., and Delp, S. L. “Accuracy of

muscle moment arms estimated from MRI-based musculoskeletal models of

the lower extremity”. In: Computer Aided Surgery 5.2 (2000), pp. 108–119.

issn: 10929088. doi: 10.1002/1097-0150(2000)5:2<108::AID-IGS5>3.0.

CO;2-2.

[22] Arnold, E. M., Ward, S. R., Lieber, R. L., and Delp, S. L. “A model of the

lower limb for analysis of human movement”. In: Annals of Biomedical En-

gineering 38.2 (2010), pp. 269–279. issn: 00906964. doi: 10.1007/s10439-

009-9852-5. arXiv: s10439-009-9852-5 [10.1007].

[23] Ascher, U. M., Mattheij, R. M. M., and Russell, R. D. Numerical solution

of boundary value problems for ordinary di↵erential equations. Society for

Industrial and Applied Mathematics, 1995.

[24] Audu, M. L. and Davy, D. T. “The influence of muscle model complexity in

musculoskeletal motion modeling.” In: Journal of biomechanical engineering

107.2 (1985), pp. 147–157. issn: 01480731. doi: 10.1115/1.3138535.

[25] Axelsson, O. “Global Integration of di↵erential equations through Lobatto

quadrature”. In: Bit Numerical Mathematics 4 (1964), pp. 69–86. issn: 14678462.

doi: 10.1111/j.1467-8462.1993.tb00770.x.

[26] Bardin, A. “Predicting horse limb responses to surface variations with a

3D musculoskeletal model”. PhD thesis. Massey University, Manawatu, New

Zealand, 2020.

[27] Barratt, P. R., Martin, J. C., Elmer, S. J., and Kor↵, T. “E↵ects of pedal

speed and crank length on pedaling mechanics during submaximal cycling”.

In: Medicine and Science in Sports and Exercise 48.4 (2016), pp. 705–713.

issn: 15300315. doi: 10.1249/MSS.0000000000000817.

285

BIBLIOGRAPHY

[28] Bashforth, F. and Adams, J. C. An attempt to test the theories of capillary

action by comparing the theoretical and measured forms of drops of fluid.

Cambridge: Cambridge University Press, 1883.

[29] Becerra, V. M. “Solving complex optimal control problems at no cost with

PSOPT”. In: 2010 IEEE International Symposium on Computer-Aided Con-

trol System Design. 2010, pp. 1391–1396. url: http://psopt.googlecode.

com/files/PSOPT%7B%5C_%7DManual%7B%5C_%7DR2.pdf.

[30] Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and Smith,

K. “Cython: The Best of Both Worlds”. In: Computing in Science & Engi-

neering 13.2 (Mar. 2011), pp. 31–39. issn: 1521-9615. doi: 10.1109/MCSE.

2010.118. url: http://ieeexplore.ieee.org/document/5582062/.

[31] Bellemare, F., Woods, J. J., Johansson, R., and Bigland-Ritchie, B. “Motor-

unit discharge rates in maximal voluntary contractions of three human mus-

cles.” In: Journal of neurophysiology 50.6 (1983), pp. 1380–1392. issn: 0022-

3077.

[32] Benson, D. A. “A Gauss Pseudospectral Transcription for Optimal Control”.

Ph.D. Massachusetts Institute of Technology, 2004. isbn: 9781604138795.

arXiv: arXiv:1011.1669v3.

[33] Benson, D. A., Huntington, G. T., Thorvaldsen, T. P., and Rao, A. V. “Direct

Trajectory Optimization and Costate Estimation via an Orthogonal Colloca-

tion Method”. In: Journal of Guidance, Control, and Dynamics 29.6 (2006),

pp. 1435–1440. issn: 0731-5090. doi: 10.2514/1.20478.

[34] Bernoulli, J. Problema novum ad cujus solutionem Mathematici invitantur.

Acta Eruditorum, 1696, p. 269.

[35] Betts, J. T. “Survey of Numerical Methods for Trajectory Optimization”. In:

Journal of Guidance, Control, and Dynamics 21.2 (1998), pp. 193–207. issn:

0731-5090. doi: 10.2514/2.4231.

[36] Betts, J. T. Practical Methods for Optimal Control and Estimation Using

Nonlinear Programming, Second Edition. Philadelphia: Society for Industrial

and Applied Mathematics, 2010. isbn: 9780898716887. doi: 10.1137/1.

9780898718577.

[37] Betts, J. T. Sparse Optimization Suite (SOS). Seattle, WA, 2013.

[38] Betts, J. T. “Using direct transcription to compute optimal low thrust trans-

fers between libration point orbits”. In: Springer Optimization and Its Ap-

plications 114 (2016), pp. 49–86. issn: 19316836. doi: 10.1007/978-3-319-

41508-6_2.

286

BIBLIOGRAPHY

[39] Betts, J. T. Practical Methods for Optimal Control Using Nonlinear Pro-

gramming, Third Edition. Philadelphia: Society for Industrial and Applied

Mathematics, 2020. isbn: 9781611976182. doi: 10.1137/1.9781611976199.

[40] Betts, J. T. and Hu↵man, W. P. Sparse Optimal Control Software SOCS.

Seattle, WA, 1997.

[41] Betts, J. T. and Hu↵man, W. P. “Exploiting sparsity in the direct tran-

scription method for optimal control”. In: Computational Optimization and

Applications 14.2 (1999), pp. 179–201. issn: 09266003. doi: 10.1023/A:

1008739131724.

[42] Biegler, L. T. “An overview of simultaneous strategies for dynamic optimiza-

tion”. In: Chemical Engineering and Processing: Process Intensification 46.11

(2007), pp. 1043–1053. issn: 02552701. doi: 10.1016/j.cep.2006.06.021.

[43] Biegler, L. T. and Zavala, V. M. “Large-scale nonlinear programming using

IPOPT: An integrating framework for enterprise-wide dynamic optimiza-

tion”. In: Computers and Chemical Engineering 33.3 (2009), pp. 575–582.

issn: 00981354. doi: 10.1016/j.compchemeng.2008.08.006.

[44] Biewener, A. A., Wakeling, J. M., Lee, S. S., and Arnold, A. S. “Validation of

hill-type muscle models in relation to neuromuscular recruitment and force-

velocity properties: Predicting patterns of in vivo muscle force”. In: Integra-

tive and Comparative Biology 54.6 (2014), pp. 1072–1083. issn: 15577023.

doi: 10.1093/icb/icu070.

[45] Bischof, C., Carle, A., Corliss, G., Griewank, A., and Hovland, P. “ADIFOR-

Generating Derivative Codes from Fortran Programs”. In: Scientific Pro-

gramming 1 (1992), pp. 11–29.

[46] Bisseling, R. W. and Hof, A. L. “Handling of impact forces in inverse dy-

namics”. In: Journal of Biomechanics 39.13 (2006), pp. 2438–2444. issn:

00219290. doi: 10.1016/j.jbiomech.2005.07.021.

[47] Blankevoort, L., Kuiper, J. H., Huiskes, R., and Grootenboer, H. J. “Articu-

lar contact in a three-dimensional model of the knee”. In: Journal of Biome-

chanics 24.11 (1991), pp. 1019–1031. issn: 00219290. doi: 10.1016/0021-

9290(91)90019-J.

[48] Blemker, S. S., Asakawa, D. S., Gold, G. E., and Delp, S. L. “Image-based

musculoskeletal modeling: Applications, advances, and future opportunities”.

In: Journal of Magnetic Resonance Imaging 25.2 (2007), pp. 441–451. issn:

10531807. doi: 10.1002/jmri.20805.

[49] Bliss, G. A. “The problem of Mayer with variable end points”. In: Transac-

tions of the American Mathematical Society 19.3 (1918), pp. 305–314.

287

BIBLIOGRAPHY

[50] Bliss, G. A. “The problem of Lagrange in the calculus of variations”. In:

American Journal of Mathematics 52.4 (1930), pp. 673–744.

[51] Bliss, G. A. “The problem of Bolza in the calculus of variations”. In: Annals

of Mathematics (1932), pp. 261–274.

[52] Bliss, G. A. Lectures on the Calculus of Variations. Chicago: University of

Chicago Press, 1946.

[53] Bobbert, M. F., Casius, R. L. J., and Van Soest, A. J. “The relationship be-

tween pedal force and crank angular velocity in sprint cycling”. In: Medicine

and Science in Sports and Exercise 48.5 (2016), pp. 869–878. issn: 15300315.

doi: 10.1249/MSS.0000000000000845.

[54] Bobbert, M. F. and van Ingen Schenau, G. J. “Coordination in vertical jump-

ing”. In: Journal of Biomechanics 21.3 (1988), pp. 249–262. issn: 00219290.

doi: 10.1016/0021-9290(88)90175-3. arXiv: 178.

[55] Bobbert, M. F. and Zandwijk, J. P. van. “A simulation study”. In: 9457.94

(1987), pp. 1966–1969. doi: 10.1103/PhysRevA.76.012504. arXiv: arXiv:

1411.3848v2.

[56] Bogert, A. J. van den. “Musculoskeletal modelling: the DADS experience”.

In: ISB Newsletter 39 (1990), pp. 4–6.

[57] Bogert, A. J. van den, Blana, D., and Heinrich, D. “Implicit methods for e�-

cient musculoskeletal simulation and optimal control”. In: Procedia IUTAM 2

(2011), pp. 297–316. issn: 22109838. doi: 10.1016/j.piutam.2011.04.027.

arXiv: NIHMS150003. url: http://dx.doi.org/10.1016/j.piutam.2011.

04.027.

[58] Bogert, A. J. van den, Geijtenbeek, T., Even-Zohar, O., Steenbrink, F., and

Hardin, E. C. “A real-time system for biomechanical analysis of human move-

ment and muscle function”. In: Medical and Biological Engineering and Com-

puting 51.10 (2013), pp. 1069–1077. issn: 01400118. doi: 10.1007/s11517-

013-1076-z.

[59] Bogert, A. J. van den, Hupperets, M., Schlarb, H., and Krabbe, B. “Predictive

musculoskeletal simulation using optimal control: e↵ects of added limb mass

on energy cost and kinematics of walking and running”. In: Special Issue

Article Proc IMechE Part P: J Sports Engineering and Technology 226.2

(2012), pp. 123–133. issn: 1754-3371. doi: 10.1177/1754337112440644.

[60] Bolza, O. “Über den anormalen Fall beim Lagrangeschen und Mayerschen

Problem mit gemischten Bedingungen und variablen Endpunkten”. In:Math-

ematische Annalen 74 (1913), pp. 430–446.

288

BIBLIOGRAPHY

[61] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin,

D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang,

Q. JAX: composable transformations of Python and NumPy programs. 2018.

[62] Brand, R. A., Crowninshield, R. D., Wittstock, C. E., Pedersen, D. R.,

Clark, C. R., and Krieken, F. M. van. “A Model of Lower Extremity Mus-

cular Anatomy”. In: Journal of Biomechanical Engineering 104.4 (1982),

pp. 304–310. issn: 0148-0731. doi: 10.1115/1.3138363. url: http://

biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=

1395925.

[63] Brockie, S. G. Pycollo. 2021. url: https://github.com/brocksam/pycollo.

[64] Brown, I. E. and Loeb, G. E. “Measured and modeled properties of mam-

malian skeletal muscle: III. The e↵ects of stimulus frequency on stretch-

induced force enhancement and shortening-induced force depression”. In:

Journal of Muscle Research and Cell Motility 21.1 (2000), pp. 21–31. issn:

01424319. doi: 10.1023/A:1005619014170.

[65] Brown, I. E. and Loeb, G. E. “Measured and modeled properties of mam-

malian skeletal muscle: IV. Dynamics of activation and deactivation”. In:

Journal of Muscle Research and Cell Motility 21.1 (2000), pp. 33–47. issn:

16130073. doi: 10.1023/A. arXiv: 0005074v1 [arXiv:astro-ph].

[66] Broyden, C. G. “The convergence of a class of double-rank minimization

algorithms 2. The New Algorithm”. In: IMA Journal of Applied Mathematics

(Institute of Mathematics and Its Applications) 6.1 (1970), pp. 222–231. issn:

02724960. doi: 10.1093/imamat/6.1.76.

[67] Bryson, A. E., Desai, M. N., and Ho↵man, W. C. “Energy-state approxi-

mation in performance optimization of supersonic aircraft”. In: Journal of

Aircraft 6.6 (1969), pp. 481–488. issn: 15333868. doi: 10.2514/3.44093.

[68] Bryson, A. E. and Ho, Y.-C. Applied Optimal Control. New York: John Wiley

and Sons, 1975.

[69] Burke, E. R. Motor units: anatomy, physiology, and functional organization.

Wiley Online Library, 1981.

[70] Büskens, C. and Wassel, D. “The ESA NLP solver WORHP”. In: Springer

Optimization and Its Applications 73 (2013), pp. 85–110. issn: 19316836.

doi: 10.1007/978-1-4614-4469-5_4.

[71] Butcher, J. C. Numerical Methods for Ordinary Di↵erential Equations, Third

Edition. New York: John Wiley & Sons, 2016.

[72] Byrd, R. H., Nocedal, J., and Waltz, R. A. “KNITRO: An Integrated Package

for Nonlinear Optimization”. In: (2005), pp. 35–59. doi: 10.1007/0-387-

30065-1_4.

289

BIBLIOGRAPHY

[73] Carbone, V., Fluit, R., Pellikaan, P., Krogt, M. M. van der, Janssen, D.,

Damsgaard, M., Vigneron, L., Feilkas, T., Koopman, H. F. J. M., and Verdon-

schot, N. “TLEM 2.0 - A comprehensive musculoskeletal geometry dataset for

subject-specific modeling of lower extremity”. In: Journal of Biomechanics

48.5 (2015), pp. 734–741. issn: 18732380. doi: 10.1016/j.jbiomech.2014.

12.034. url: http://dx.doi.org/10.1016/j.jbiomech.2014.12.034.

[74] Casius, R. L. J., Bobbert, M. F., and Van Soest, A. J. “Forward dynamics of

two-dimensional skeletal models. A newton-euler approach”. In: Journal of

Applied Biomechanics 20.4 (2004), pp. 421–449. issn: 10658483.

[75] Catelli, D. S., Wesseling, M., Jonkers, I., and Lamontagne, M. “A mus-

culoskeletal model customized for squatting task”. In: Computer Methods

in Biomechanics and Biomedical Engineering 22.1 (2019), pp. 21–24. issn:

14768259. doi: 10.1080/10255842.2018.1523396. url: https://doi.org/

10.1080/10255842.2018.1523396.

[76] Charles, J. P., Cappellari, O., Spence, A. J., Wells, D. J., and Hutchinson,

J. R. “Muscle moment arms and sensitivity analysis of a mouse hindlimb

musculoskeletal model”. In: Journal of Anatomy 229.4 (2016), pp. 514–535.

issn: 14697580. doi: 10.1111/joa.12461.

[77] Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F., Wit, C. C. de, Grizzle,

J. W., and Westervelt, E. R. “RABBIT: A Testbed for Advanced Control

Theory”. In: IEEE Control Systems Magazine 23 (2013), pp. 57–79.

[78] Community, C.-f. The conda-forge Project: Community-based Software Dis-

tribution Built on the conda Package Format and Ecosystem. 2015. doi:

http://doi.org/10.5281/zenodo.4774216. url: https://anaconda.

org/conda-forge/pycollo.

[79] Conceição, F., King, M. A., Yeadon, M. R., Lewis, M. G., and Forrester,

S. E. “An isovelocity dynamometer method to determine monoarticular and

biarticular muscle parameters”. In: Journal of Applied Biomechanics 28.6

(2012), pp. 751–760. issn: 15432688. doi: 10.1123/jab.28.6.751.

[80] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to

Algorithms, Third Edition. Boston, MA: The MIT Press, 2009.

[81] Crowninshield, R. D. and Brand, R. A. “A physiologically based criterion of

muscle force prediction in locomotion”. In: Journal of Biomechanics 14.11

(1981), pp. 793–801. issn: 00219290. doi: 10.1016/0021-9290(81)90035-X.

arXiv: 0021-9290(81)90035-x [10.1016].

290

BIBLIOGRAPHY

[82] Darby, C. L., Hager, W. W., and Rao, A. V. “An hp-adaptive pseudospectral

method for solving optimal control problems”. In: Optimal Control Applica-

tions and Methods 32.4 (2011), pp. 476–502. issn: 01432087. doi: 10.1002/

oca.957.

[83] Darby, C. L., Hager, W. W., and Rao, A. V. “Direct trajectory optimization

using a variable low-order adaptive pseudospectral method”. In: Journal of

Spacecraft and Rockets 48.3 (2011), pp. 433–445. issn: 15336794. doi: 10.

2514/1.52136.

[84] Davy, D. T. and Audu, M. L. “A dynamic optimization technique for predict-

ing muscle forces in the swing phase of gait”. In: Journal of Biomechanics 20.2

(1987), pp. 187–201. issn: 00219290. doi: 10.1016/0021-9290(87)90310-1.

[85] De Groote, F., Kinney, A. L., Rao, A. V., and Fregly, B. J. “Evaluation of

Direct Collocation Optimal Control Problem Formulations for Solving the

Muscle Redundancy Problem”. In: Annals of Biomedical Engineering 44.10

(2016), pp. 2922–2936. issn: 15739686. doi: 10.1007/s10439-016-1591-9.

[86] Delp, S. L. “Surgery simulation: a computer graphics system to analyze and

design musculoskeletal reconstructions of the lower limb”. PhD thesis. 1990,

p. 117. isbn: 0612699625. doi: 10.16953/deusbed.74839. url: http://en.

scientificcommons.org/33620246.

[87] Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P. J., Habib, A., John,

C. T., Guendelman, E., and Thelen, D. G. “OpenSim: Open source to create

and analyze dynamic simulations of movement”. In: IEEE transactions on

bio-medical engineering 54.11 (2007), pp. 1940–1950. issn: 0018-9294. doi:

10.1109/TBME.2007.901024.

[88] Delp, S. L. and Loan, P. J. “A computational framework for simulating and

analyzing human and animal movement”. In: Computing in Science & Engi-

neering 2.5 (2000), pp. 46–55.

[89] Delp, S. L., Loan, P. J., Hoy, M. G., Zajac, F. E., Topp, E. L., and Rosen,

J. M. An Interactive Graphics-Based Model of the Lower Extremity to Study

Orthopaedic Surgical Procedures. 1990. doi: 10.1109/10.102791. arXiv: 169.

[90] Dembia, C. L. “Simulating Assistive Technology: Insights, Tools, and Open

Science”. PhD thesis. 2020, pp. 1–110. isbn: 9798662510074. url: https:

//www.proquest.com/docview/2430974784?accountid=28839%7B%5C%

%7D0Ahttp://www.yidu.edu.cn/educhina/educhina.do?artifact=

%7B%5C&%7Dsvalue=Simulating+Assistive+Technology%7B%5C%%7D3A+

Insights%7B%5C%%7D2C+Tools%7B%5C%%7D2C+and+Open+Science%7B%5C&

%7Dstype=2%7B%5C&%7Ds=on%7B%5C%%7D0Ahttp://pqdt.calis.edu.cn/

Detail.aspx?pid=281.

291

BIBLIOGRAPHY

[91] Dembia, C. L., Bianco, N. A., Falisse, A., Hicks, J. L., and Delp, S. L. “Open-

Sim Moco: Musculoskeletal optimal control”. In: bioRxiv (2020), pp. 1–25.

issn: 15537358. doi: 10.1101/839381.

[92] Demircan, E., Besier, T. F., and Khatib, O. “Muscle force transmission to op-

erational space accelerations during elite golf swings”. In: Proceedings - IEEE

International Conference on Robotics and Automation (2012), pp. 1464–1469.

issn: 10504729. doi: 10.1109/ICRA.2012.6225336.

[93] Dickinson, J. A., Cook, S. D., and Leinhardt, T. M. “The measurement of

shock waves following heel strike while running”. In: Journal of Biomechanics

18.6 (1985), pp. 415–422. issn: 00219290. doi: 10.1016/0021-9290(85)

90276-3.

[94] Dickmanns, E. D. and Well, K. H. “Approximate Solution of Optimal Con-

trol Problems Using Third-Order Hermite Polynomial Functions”. In: Opti-

mization Techniques IFIP Technical Conference. Springer, Berlin, Heidelberg,

1975, pp. 158–166. isbn: 9783540071655. doi: 10.1007/3-540-07165-2_21.

[95] Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., and Garcia, R. “Incorporating

second-order functional knowledge for better option pricing”. In: Advances

in Neural Information Processing Systems (2001). issn: 10495258.

[96] Ebashi, S. and Endo, M. “Calcium ion and muscle contraction.” In: Progress

in biophysics and molecular biology 18 (1968), pp. 123–183. issn: 0079-6107.

doi: 10.1016/0079-6107(68)90023-0.

[97] Eisenberg, E., Hill, T. L., and Chen, Y. D. “Cross-bridge Model of Muscle

Contraction: Quantitative Analysis”. In: Biophysical Journal 29.6 (1980),

pp. 195–227. issn: 00063495. doi: 10.1016/S0006-3495(80)85126-5. url:

http://dx.doi.org/10.1016/S0006-3495(80)85126-5.

[98] El Ouaaid, Z., Shirazi-Adl, A., Arjmand, N., and Plamondon, A. “Coupled

objective function to study the role of abdominal muscle forces in lifting

using the kinematics-driven model”. In: Computer Methods in Biomechanics

and Biomedical Engineering 16.1 (2013), pp. 54–65. issn: 10255842. doi:

10.1080/10255842.2011.607441.

[99] Elmer, S. J., Barratt, P. R., Kor↵, T., and Martin, J. C. “Joint-specific power

production during submaximal and maximal cycling”. In: Medicine and Sci-

ence in Sports and Exercise 43.10 (2011), pp. 1940–1947. issn: 01959131.

doi: 10.1249/MSS.0b013e31821b00c5.

[100] Elnagar, G., Kazemi, M. A., and Razzaghi, M. “The Pseudospectral Legendre

Method for Discretizing Optimal Control Problems”. In: IEEE Transactions

on Automatic Control 40.10 (1995), pp. 1793–1796.

[101] Epic. Unreal Engine. 2019.

292

BIBLIOGRAPHY

[102] Erez, T., Tassa, Y., and Todorov, E. “Simulation tools for model-based

robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX”. In: Pro-

ceedings - IEEE International Conference on Robotics and Automation 2015-

June.June (2015), pp. 4397–4404. issn: 10504729. doi: 10.1109/ICRA.2015.

7139807.

[103] Ericson, M. O. “Mechanical muscular power output and work during er-

gometer cycling at di↵erent work loads and speeds”. In: European Journal

of Applied Physiology and Occupational Physiology 57.4 (1988), pp. 382–387.

issn: 03015548. doi: 10.1007/BF00417980.

[104] Fahroo, F. and Ross, I. M. “Costate estimation by a Legendre pseudospec-

tral method”. In: Journal of Guidance, Control, and Dynamics 24.2 (2001),

pp. 270–277.

[105] Fahroo, F. and Ross, I. M. “Advances in pseudospectral methods for optimal

control”. In: AIAA Guidance, Navigation and Control Conference and Exhibit

(2008). doi: 10.2514/6.2008-7309.

[106] Fahroo, F. and Ross, I. M. “Pseudospectral methods for infinite-horizon opti-

mal control problems”. In: Journal of Guidance, Control, and Dynamics 31.4

(2008), pp. 927–936. issn: 15333884. doi: 10.2514/1.33117.

[107] Falisse, A., Serrancoĺı, G., and De Groote, F. Optimal control in biomechan-

ics. 2021.

[108] Falisse, A., Serrancoĺı, G., Dembia, C. L., Gillis, J., Jonkers, I., and De

Groote, F. “Rapid predictive simulations with complex musculoskeletal mod-

els suggest that diverse healthy and pathological human gaits can emerge

from similar control strategies”. In: Journal of the Royal Society Interface

16.157 (2019). issn: 17425662. doi: 10.1098/rsif.2019.0402.

[109] Falugi, P., Kerrigan, E., and Van Wyk, E. Imperial College London Optimal

Control Software User Guide (ICLOCS). London, England, UK, 2010.

[110] Febrer-Nafŕıa, M., Pallarès-López, R., Fregly, B. J., and Font-Llagunes, J. M.

“Comparison of di↵erent optimal control formulations for generating dynam-

ically consistent crutch walking simulations using a torque-driven model”. In:

Mechanism and Machine Theory 154 (2020). issn: 0094114X. doi: 10.1016/

j.mechmachtheory.2020.104031.

[111] Febrer-Nafŕıa, M., Pallarès-López, R., Fregly, B. J., and Font-Llagunes, J. M.

“Prediction of three-dimensional crutch walking patterns using a torque-

driven model”. In: Multibody System Dynamics 51.1 (2021). issn: 1573272X.

doi: 10.1007/s11044-020-09751-z.

293

BIBLIOGRAPHY

[112] Felton, P. J., Yeadon, M. R., and King, M. A. “Are planar simulation models

a↵ected by the assumption of coincident joint centers at the hip and shoul-

der?” In: Journal of Applied Biomechanics 35.2 (2019), pp. 157–163. issn:

15432688. doi: 10.1123/jab.2018-0136.

[113] Fike, J. A. and Alonso, J. J. “The Development of Hyper-Dual Numbers for

Exact Second-Derivative Calculations”. In: 49th AIAA Aerospace Sciences

Meeting including the New Horizons Forum and Aerospace Exposition. Jan-

uary. 2011. doi: 10.2514/6.2011-886.

[114] Fletcher, R. “A new approach to variable metric algorithms”. In: The Com-

puter Journal 13.3 (1970), pp. 317–322.

[115] Fornberg, B. “Numerical Di↵erentiation of Analytic Functions”. In: ACM

Transactions on Mathematical Software (TOMS) 7.4 (1981), pp. 512–526.

issn: 15577295. doi: 10.1145/355972.355979.

[116] Forrester, S. E., Yeadon, M. R., King, M. A., and Pain, M. T. “Comparing

di↵erent approaches for determining joint torque parameters from isoveloc-

ity dynamometer measurements”. In: Journal of Biomechanics 44.5 (2011),

pp. 955–961. issn: 00219290. doi: 10.1016/j.jbiomech.2010.11.024. url:

http://dx.doi.org/10.1016/j.jbiomech.2010.11.024.

[117] Fregly, B. J. “Design of Optimal Treatments for Neuromusculoskeletal Dis-

orders using Patient-Specific Multibody Dynamic Models.” In: International

journal for computational vision and biomechanics 2.2 (2009), pp. 145–155.

issn: 0973-6778. url: http://www.ncbi.nlm.nih.gov/pubmed/21785529%

7B%5C%%7D5Cnhttp://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=PMC3141573.

[118] Fregly, B. J., Fregly, C. D., and Kim, B. T. “Computational prediction of

muscle moments during ARED squat exercise on the international space sta-

tion”. In: Journal of Biomechanical Engineering 137.12 (2015), pp. 1–8. issn:

15288951. doi: 10.1115/1.4031795.

[119] Fregly, B. J., Reinbolt, J. A., Rooney, K. L., Mitchell, K. H., and Chmielewski,

T. L. “Erratum: Design of patient-specific gait modifications for knee os-

teoarthritis rehabilitation (IEEE Transactions on Biomedical Engineering

(2007))”. In: IEEE Transactions on Biomedical Engineering 54.10 (2007),

p. 1905. issn: 00189294. doi: 10.1109/TBME.2007.907637.

[120] Fregly, B. J. and Zajac, F. E. “A state-space analysis of mechanical energy

generation, absorption, and transfer during pedaling”. In: Journal of Biome-

chanics 29.3 (1996), pp. 81–90.

294

BIBLIOGRAPHY

[121] Garg, D., Patterson, M. A., Francolin, C., Darby, C. L., Huntington, G. T.,

Hager, W. W., and Rao, A. V. “Direct trajectory optimization and costate es-

timation of finite-horizon and infinite-horizon optimal control problems using

a Radau pseudospectral method”. In: Computational Optimization and Ap-

plications 49.2 (2009), pp. 335–358. issn: 09266003. doi: 10.1007/s10589-

009-9291-0.

[122] Garg, D., Patterson, M. A., Hager, W. W., Rao, A. V., Benson, D. A., and

Huntington, G. T. “A unified framework for the numerical solution of opti-

mal control problems using pseudospectral methods”. In: Automatica 46.11

(2010), pp. 1843–1851. issn: 00051098. doi: 10.1016/j.automatica.2010.

06.048. url: http://dx.doi.org/10.1016/j.automatica.2010.06.048.

[123] Garner, B. A. and Pandy, M. G. “The Obstacle-Set Method for Representing

Muscle Paths in Musculoskeletal Models”. In: Computer Methods in Biome-

chanics and Biomedical Engineering 3.1 (2000), pp. 1–30. issn: 1476-8259.

doi: 10.1080/10255840008915251. url: http://dx.doi.org/10.1080/

10255840008915251%7B%5C%%7D5Cnhttp://www.tandfonline.com/doi/

pdf/10.1080/10255840008915251.

[124] Gear, W. C. Numerical Initial-Value Problems in Ordinary Di↵erential Equa-

tions. Englewood Cli↵s, New Jersey: Prentice-Hall, 1971.

[125] Gebremedhin, A. H., Manne, F., and Pothen, A. “What color is your Ja-

cobian? Graph coloring for computing derivatives”. In: SIAM Review 47.4

(2005), pp. 629–705. issn: 00361445. doi: 10.1137/S0036144504444711.

[126] Geijtenbeek, T. “SCONE: Open Source Software for Predictive Simulation of

Biological Motion”. In: Journal of Open Source Software 4.38 (2019), p. 1421.

issn: 2475-9066. doi: 10.21105/joss.01421.

[127] Gerus, P., Sartori, M., Besier, T. F., Fregly, B. J., Delp, S. L., Banks, S. A.,

Pandy, M. G., D’Lima, D. D., and Lloyd, D. G. “Subject-specific knee joint

geometry improves predictions of medial tibiofemoral contact forces”. In:

Journal of Biomechanics 46.16 (2013), pp. 2778–2786. issn: 00219290. doi:

10.1016/j.jbiomech.2013.09.005. url: http://dx.doi.org/10.1016/

j.jbiomech.2013.09.005.

[128] Gilchrist, L. A. and Winter, D. A. “A multisegment computer simulation of

normal human gait”. In: IEEE Transactions on Rehabilitation Engineering

5.4 (1997), pp. 290–299. issn: 10636528. doi: 10.1109/86.650281.

[129] Gill, P. E., Murray, W., and Saunders, M. A. “SNOPT: An SQP Algorithm for

Large-Scale Constrained Optimization”. In: SIAM Journal on Optimization

12.4 (2002), pp. 979–1006. issn: 1052-6234. doi: 10.1137/S1052623499350013.

295

BIBLIOGRAPHY

arXiv: 17444372724. url: http://epubs.siam.org/doi/abs/10.1137/

S1052623499350013.

[130] Gill, P. E., Murray, W., and Saunders, M. A. “SNOPT: An SQP algorithm for

large-scale constrained optimization”. In: SIAM Review 47.1 (2005), pp. 99–

131. issn: 00361445. doi: 10.1137/S0036144504446096.

[131] Gill, P. E., Murray, W., and Wright, M. H. Practical Optimization. Society

for Industrial and Applied Mathematics, 1986.

[132] Goldfarb, D. “A Family of Variable-Metric Methods Derived by Variational

Means”. In:Mathematics of Computation 24.109 (1970), p. 23. issn: 00255718.

doi: 10.2307/2004873.

[133] Gong, Q., Fahroo, F., and Ross, I. M. “Spectral algorithm for pseudospectral

methods in optimal control”. In: Journal of Guidance, Control, and Dynamics

31.3 (2008), pp. 460–471. issn: 15333884. doi: 10.2514/1.32908.

[134] Gonzalez, H. and Hull, M. L. “Multivariable optimization of cycling biome-

chanics”. In: Journal of Biomechanics 22.11-12 (1989), pp. 1151–1161.

[135] Gordon, A. M., Huxley, A. F., and Julian, F. J. “The variation in isometric

tension with sarcomere length in vertebrate muscle fibres.” In: The Journal

of Physiology 184.1 (1966), pp. 170–192. issn: 0022-3751, 1469-7793. doi:

5921536. arXiv: 1111.6189v1. url: http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=1357553%7B%5C&%7Dtool=pmcentrez%7B%5C&

%7Drendertype=abstract.

[136] Griewank, A. and Walther, A. Evaluating Derivatives. Society for Indus-

trial and Applied Mathematics, Jan. 2008. isbn: 978-0-89871-659-7. doi:

10.1137/1.9780898717761. url: http://epubs.siam.org/doi/book/

10.1137/1.9780898717761.

[137] Gruber, K., Ruder, H., Denoth, J., and Schneider, K. “A comparative study

of impact dynamics : wobbling mass model versus rigid body models”. In:

Journal of Biomechanics 31 (1998), pp. 439–444.

[138] Guillou, A. and Soulé, J. L. “La résolution numérique des problèmes di↵érentiels

aux conditions initiales par des méthodes de collocation”. In: Revue française

d’informatique et de recherche opérationnelle. Série rouge 3.3 (1969), pp. 17–

44. issn: 0373-8000. doi: 10.1051/m2an/196903r300171.

[139] Güneş Baydin, A., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M.

“Automatic di↵erentiation in machine learning: A survey”. In: Journal of

Machine Learning Research 18 (2018), pp. 1–43. issn: 15337928. arXiv: 1502.

05767.

296

BIBLIOGRAPHY

[140] Gupta, D., Donnelly, C. J., and Reinbolt, J. A. “Optimizing whole-body

kinematics using OpenSim Moco to reduce peak non-sagittal plane knee loads

and ACL injury risk during single leg jump landing”. In: 2020.

[141] Haas, J. K. “A history of the Unity game engine”. In: Worcester Polytechnic

Institute (2014).

[142] Hager, W. W., Hou, H., Mohapatra, S., Rao, A. V., and Wang, X. S. “Con-

vergence rate for a Radau hp collocation method applied to constrained opti-

mal control”. In: Computational Optimization and Applications 74.1 (2019),

pp. 275–314. issn: 15732894. doi: 10.1007/s10589-019-00100-1. arXiv:

1605.02121.

[143] Hairer, E., Wanner, G., and Lubich, C. Geometric Numerical Integration.

Vol. 31. Springer Series in Computational Mathematics. Berlin/Heidelberg,

Germany: Springer-Verlag, 2006. isbn: 3-540-30663-3. doi: 10.1007/3-540-

30666-8.

[144] Hamby, D. M. “A Review of Techniques for Parameter Sensitivity”. In:

Environmental Monitoring and Assessment 32.c (1994), pp. 135–154. url:

https://deepblue.lib.umich.edu/bitstream/handle/2027.42/42691/

10661%7B%5C_%7D2004%7B%5C_%7DArticle%7B%5C_%7DBF00547132.pdf?

sequence=1.

[145] Hamner, S. R. and Delp, S. L. “Muscle contributions to fore-aft and vertical

body mass center accelerations over a range of running speeds”. In: Journal

of Biomechanics 46.4 (2013), pp. 780–787. issn: 00219290. doi: 10.1016/j.

jbiomech.2012.11.024. arXiv: NIHMS150003. url: http://dx.doi.org/

10.1016/j.jbiomech.2012.11.024.

[146] Hamner, S. R., Seth, A., and Delp, S. L. “Muscle contributions to propul-

sion and support during running”. In: Journal of Biomechanics 43.14 (2010),

pp. 2709–2716. issn: 00219290. doi: 10.1016/j.jbiomech.2010.06.025.

arXiv: 166. url: http://dx.doi.org/10.1016/j.jbiomech.2010.06.025.

[147] Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen,

P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,

Picus, M., Hoyer, S., Kerkwijk, M. H. van, Brett, M., Haldane, A., Rı́o, J. F.

del, Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T.,

Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. “Array program-

ming with NumPy”. In: Nature 585.7825 (Sept. 2020), pp. 357–362. issn:

0028-0836. doi: 10.1038/s41586-020-2649-2. url: http://www.nature.

com/articles/s41586-020-2649-2.

297

BIBLIOGRAPHY

[148] Hascoet, L. and Pascual, V. “The Tapenade automatic di↵erentiation tool”.

In: ACM Transactions on Mathematical Software 39.3 (2013), pp. 1–43. issn:

0098-3500. doi: 10.1145/2450153.2450158.

[149] Haselgrove, J. C. and Huxley, H. E. “X-ray evidence for radial cross-bridge

movement and for the sliding filament model in actively contracting skeletal

muscle”. In: Journal of Molecular Biology 77.4 (1973). issn: 00222836. doi:

10.1016/0022-2836(73)90222-2.

[150] Hatze, H. “The complete optimization of a human motion”. In: Mathematical

Biosciences 28.1-2 (1976), pp. 99–135. issn: 00255564. doi: 10.1016/0025-

5564(76)90098-5.

[151] Hatze, H. “A complete set of control equations for the human musculo-

skeletal system”. In: Journal of Biomechanics 10.11-12 (1977), pp. 799–805.

issn: 00219290. doi: 10.1016/0021-9290(77)90094-X.

[152] Hatze, H. “A myocybernetic control model of skeletal muscle”. In: Biolog-

ical Cybernetics 25.2 (1977), pp. 103–119. issn: 03401200. doi: 10.1007/

BF00337268.

[153] Hatze, H. “A mathematical model for the computational determination of

parameter values of anthropomorphic segments”. In: Journal of Biomechanics

13.10 (1980), pp. 833–843. issn: 00219290. doi: 10.1016/0021-9290(80)

90171-2.

[154] Hatze, H. “A comprehensive model for human motion simulation and its

application to the take-o↵ phase of the long jump”. In: Journal of Biome-

chanics 14.3 (1981), pp. 135–142. issn: 00219290. doi: 10 . 1016 / 0021 -

9290(81)90019-1.

[155] Hatze, H. “A three-dimensional multivariate model of passive human joint

torques and articular boundaries”. In: Clinical Biomechanics 12.2 (1997),

pp. 128–135. issn: 02680033. doi: 10.1016/S0268-0033(96)00058-7.

[156] He, J., Levine, W. S., and Loeb, G. E. “Feedback Gains for Correcting Small

Perturbations to Standing Posture”. In: IEEE Transactions on Automatic

Control 36.3 (1991), pp. 322–332. issn: 15582523. doi: 10.1109/9.73565.

[157] Hertz, H. “On the contact of elastic solids”. In: Journal für die reine und

angewandte Mathematik 92 (1882), pp. 156–171.

[158] Herzog, W. and Leonard, T. R. “The history dependence of force production

in mammalian skeletal muscle following stretch-shortening and shortening-

stretch cycles”. In: Journal of Biomechanics 33.5 (2000), pp. 531–542. issn:

00219290. doi: 10.1016/S0021-9290(99)00221-3. arXiv: 184.

298

BIBLIOGRAPHY

[159] Herzog, W. and Leonard, T. “Force enhancement following stretching of

skeletal muscle: a new mechanism”. In: Journal of Experimental Biology 202

(2002), pp. 1275–1283. issn: 0022-0949. doi: 10.1016/S0021- 9290(97)

00079-1. arXiv: 185.

[160] Hicks, J. L., Schwartz, M. H., Arnold, A. S., and Delp, S. L. “Crouched

postures reduce the capacity of muscles to extend the hip and knee during

the single-limb stance phase of gait”. In: Journal of Biomechanics 41.5 (2008),

pp. 960–967. issn: 00219290. doi: 10.1016/j.jbiomech.2008.01.002.

[161] Hicks, J. L., Uchida, T. K., Seth, A., Rajagopal, A., and Delp, S. L. “Is my

model good enough? Best practices for verification and validation of mus-

culoskeletal models and simulations of human movement”. In: Journal of

Biomechanical Engineering 137.February (2015), p. 020905. issn: 1528-8951.

doi: 10.1115/1.4029304.

[162] Hill, A. V. “The Heat of Shortening and the Dynamic Constants of Muscle”.

In: Proceedings of the Royal Society B: Biological Sciences 126.843 (1938),

pp. 136–195. issn: 0962-8452. doi: 10.1098/rspb.1938.0050. arXiv: arXiv:

1011.1669v3.

[163] Hill, T. L., Eisenberg, E., Chen, Y. D., and Podolsky, R. J. “Some self-

consistent two-state sliding filament models of muscle contraction.” In: Bio-

physical journal 15.4 (1975), pp. 335–372. issn: 00063495. doi: 10.1016/

S0006-3495(75)85823-1. url: http://dx.doi.org/10.1016/S0006-

3495(75)85823-1.

[164] Hinrichs, R. N. “Regression equations to predict segmental moments of inertia

from anthropometric measurements: An extension of the data of Chandler

et al. (1975)”. In: Journal of Biomechanics 18.8 (1985), pp. 621–624. issn:

00219290. doi: 10.1016/0021-9290(85)90016-8.

[165] Ho, J. Y. L. “Direct path method for flexible multibody spacecraft dynam-

ics”. In: Journal of Spacecraft and Rockets 14.2 (1977), pp. 102–110. issn:

00224650. doi: 10.2514/3.57167.

[166] Hoang, H. X. and Reinbolt, J. A. “Posture Influences Ground Reaction Force:

Implications for Crouch Gait”. In: Proceedings of 3D Analysis of Human

Movement. San Francisco, CA, USA, 2010.

[167] Hogan, N. “The mechanics of multi-joint posture and movement control”.

In: Biological Cybernetics 52.5 (1985), pp. 315–331. issn: 03401200. doi:

10.1007/BF00355754.

[168] Hogan, R. J. “Fast reverse-mode automatic di↵erentiation using expression

templates in C++”. In: ACM Transactions on Mathematical Software 40.4

(2014). issn: 15577295. doi: 10.1145/2560359.

299

BIBLIOGRAPHY

[169] Hollars, M. G., Rosenthal, D. E., and Sherman, M. A. “SD/FAST user’s

manual”. In: Symbolic Dynamics Inc (1991).

[170] Hooker, W. W. “Equations of motion for interconnected rigid and elastic bod-

ies: A derivation independent of angular momentum”. In: Celestial Mechanics

11.3 (1975), pp. 337–359. issn: 00088714. doi: 10.1007/BF01228811.

[171] Hou, H., Hager, W. W., and Rao, A. V. “Convergence of a Gauss pseudospec-

tral method for optimal control”. In: AIAA Guidance, Navigation, and Con-

trol Conference 2012 August (2012), pp. 1–9. doi: 10.2514/6.2012-4452.

[172] Houska, B., Ferreau, H. J., and Diehl, M. “ACADO Toolkit - An open-source

framework for automatic control and dynamic optimization”. In: Optimal

Control Applications and Methods 32.3 (2011), pp. 298–312.

[173] Hoy, M. G., Zajac, F. E., and Gordon, M. E. “A musculoskeletal model of the

human lower extremity: The e↵ect of muscle, tendon, and moment arm on the

moment-angle relationship of musculotendon actuators at the hip, knee, and

ankle”. In: Journal of Biomechanics 23.2 (1990), pp. 157–169. issn: 00219290.

doi: 10.1016/0021-9290(90)90349-8.

[174] Hubbard, M., Hibbard, R. L., Yeadon, M. R., and Komor, A. “A Multiseg-

ment Dynamic Model of Ski Jumping”. In: International Journal of Sport

Biomechanics 5.2 (2016), pp. 258–274. issn: 0740-2082. doi: 10.1123/ijsb.

5.2.258.

[175] Hull, M. L. and Gonzalez, H. “Bivariate optimization of pedalling rate and

crank arm length in cycling”. In: Journal of Biomechanics 21.10 (1988),

pp. 839–849. issn: 00219290. doi: 10.1016/0021-9290(88)90016-4.

[176] Hull, M. L., Gonzalez, H., and Redfield, R. “Optimization of Pedaling Rate in

Cycling Using a Muscle Stress-Based Objective Function”. In: International

Journal of Sports Biomechanics 4.June 2016 (1988), pp. 1–20. issn: 0740-

2082. doi: 10.1123/ijsb.4.1.1.

[177] Hull, M. L. and Jorge, M. “A method for biomechanical analysis of bicy-

cle pedalling”. In: Journal of Biomechanics 18.9 (1985), pp. 631–644. issn:

00219290. doi: 10.1016/0021-9290(85)90019-3.

[178] Hunter, J. D. “Matplotlib: A 2D Graphics Environment”. In: Computing in

Science & Engineering 9.3 (2007), pp. 90–95. issn: 1521-9615. doi: 10.1109/

MCSE.2007.55. url: http://ieeexplore.ieee.org/document/4160265/.

[179] Huntington, G. T. and Rao, A. V. “Optimal reconfiguration of spacecraft

formations using the gauss pseudospectral method”. In: Journal of Guidance,

Control, and Dynamics 31.3 (2008), pp. 689–698. issn: 15333884. doi: 10.

2514/1.31083.

300

BIBLIOGRAPHY

[180] Hutchinson, J. R., Anderson, F. C., Blemker, S. S., and Delp, S. L. “Anal-

ysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-

dimensional musculoskeletal computer model: implications for stance, gait,

and speed”. In: Paleobiology 31.4 (2005), p. 676. issn: 0094-8373. doi: 10.

1666/04044.1.

[181] Hutchinson, J. R., Rankin, J. W., Rubenson, J., Rosenbluth, K. H., Siston,

R. A., and Delp, S. L. “Musculoskeletal modelling of an ostrich (Struthio

camelus) pelvic limb: Influence of limb orientation onmuscular capacity dur-

ing locomotion”. In: PeerJ 2015.6 (2015), pp. 1–52. issn: 21678359. doi:

10.7717/peerj.1001.

[182] Huxley, A. F. “The mechanism of muscular contraction”. In: Science 164

(1969), pp. 1356–1366. issn: 0022-3751 (Print) 0022-3751 (Linking). doi:

10.1113/jphysiol.1974.sp010740. url: http://www.ncbi.nlm.nih.

gov/entrez/query.fcgi?cmd=Retrieve%7B%5C&%7Ddb=PubMed%7B%5C&

%7Ddopt=Citation%7B%5C&%7Dlist%7B%5C_%7Duids=4449057.

[183] Huxley, A. F. “Muscular Contraction”. In: The journal of Physiology 243.1

(1974), pp. 1–43. issn: 00223751. doi: 10.1113/jphysiol.1974.sp010740.

url: http : / / www . ncbi . nlm . nih . gov / entrez / query . fcgi ? cmd =

Retrieve % 7B % 5C & %7Ddb = PubMed % 7B % 5C & %7Ddopt = Citation % 7B % 5C &

%7Dlist%7B%5C_%7Duids=4449057.

[184] Jensen, R. H. and Davy, D. T. “An investigation of muscle lines of action

about the hip: A centroid line approach vs the straight line approach”. In:

Journal of Biomechanics 8.2 (1975), pp. 103–110. issn: 00219290. doi: 10.

1016/0021-9290(75)90090-1.

[185] Johnson, K. L. Contact mechanics. Cambridge University Press, 1987.

[186] Joyce, G. C. and Rack, P. “Isotonic lengthening and shortening movements

of cat soleus muscle.” In: The Journal of Physiology 204.2 (1969), pp. 475–

491. issn: 0140-6736. doi: 10.1113/jphysiol.1969.sp008925. url: http:

//jp.physoc.org/content/204/2/475.abstract.

[187] Jung, E., Lenhart, S., and Feng, Z. “Optimal control of treatments in a two-

strain tuberculosis model”. In: Discrete and Continuous Dynamical Systems

- Series B 2.4 (2002), pp. 473–482. issn: 15313492. doi: 10.3934/dcdsb.

2002.2.473.

[188] Kameswaran, S. and Biegler, L. T. “Convergence rates for direct transcription

of optimal control problems using collocation at Radau points”. In: Computa-

tional Optimization and Applications 41.1 (2008), pp. 81–126. issn: 09266003.

doi: 10.1007/s10589-007-9098-9.

301

BIBLIOGRAPHY

[189] Kane, T. R. and Levinson, D. A. “Formulation of Equations of Motion

for Complex Spacecraft”. In: Journal of Guidance and Control 3.2 (1980),

pp. 99–112.

[190] Kane, T. R. and Levinson, D. A. “The Use of Kanes’s Dynamical Equations

in Robotics”. In: The International Journal of Robotics Research 2.3 (1983),

pp. 3–21. issn: 17413176. doi: 10.1177/027836498300200301.

[191] Kane, T. R. and Levinson, D. A. Dynamics Theory and Applications. 1985,

p. 402. isbn: 0070378460. doi: 10.1016/0094-114X(86)90059-5.

[192] Katz, B. “The relation between force and speed in muscular contraction”. In:

Journal of Physiology 96 (1939), pp. 45–64.

[193] Kautz, S. A. and Hull, M. L. “Dynamic optimization analysis for equipment

setup problems in endurance cycling”. In: Journal of Biomechanics 28.11

(1995), pp. 1391–1401. issn: 00219290. doi: 10.1016/0021-9290(95)00007-

5.

[194] Kelly, M. P. “An introduction to trajectory optimization: How to do your

own direct collocation”. In: SIAM Review 59.4 (2017), pp. 849–904. issn:

00361445. doi: 10.1137/16M1062569.

[195] Kentel, B. B., King, M. A., and Mitchell, S. R. “Evaluation of a subject-

specific, torque-driven computer simulation model of one-handed tennis back-

hand ground strokes”. In: Journal of Applied Biomechanics 27.4 (2011),

pp. 345–354. issn: 15432688. doi: 10.1123/jab.27.4.345.

[196] King, M. A., Kentel, B. B., and Mitchell, S. R. “The e↵ects of ball impact

location and grip tightness on the arm, racquet and ball for one-handed

tennis backhand groundstrokes”. In: Journal of Biomechanics 45.6 (2012),

pp. 1048–1052. issn: 00219290. doi: 10.1016/j.jbiomech.2011.12.028.

[197] King, M. A., Kong, P. W., and Yeadon, M. R. “Determining e↵ective subject-

specific strength levels for forward dives using computer simulations of recorded

performances”. In: Journal of Biomechanics 42.16 (2009), pp. 2672–2677.

issn: 00219290. doi: 10.1016/j.jbiomech.2009.08.007. url: http:

//dx.doi.org/10.1016/j.jbiomech.2009.08.007.

[198] King, M. A., Wilson, C., and Yeadon, M. R. “Evaluation of a Torque-Driven

Model of Jumping for Height”. In: Journal of Applied Biomechanics 22 (2006),

pp. 264–274.

[199] King, M. A. and Yeadon, M. R. “Determining subject-specific torque param-

eters for use in a torque-driven simulation model of dynamic jumping”. In:

Journal of Applied Biomechanics 18.3 (2002), pp. 207–217. issn: 10658483.

doi: 10.1123/jab.18.3.207.

302

BIBLIOGRAPHY

[200] Kinney, A. L., Besier, T. F., Silder, A., Delp, S. L., D’Lima, D. D., and Fregly,

B. J. “Changes in in vivo knee contact forces through gait modification”. In:

Journal of Orthopaedic Research 31.3 (2013), pp. 434–440. issn: 07360266.

doi: 10.1002/jor.22240. arXiv: NIHMS150003.

[201] Kirk, D. E. Optimal Control Theory: An Introduction. New York: Dover Pub-

lications, 2004.

[202] Klein Horsman, M. D., Koopman, H. F. J. M., Helm, F. C. T. van der,

Poliacu Prosé, L., and Veeger, H. E. J. “Morphological muscle and joint

parameters for musculoskeletal modelling of the lower extremity”. In: Clinical

Biomechanics 22.2 (2007), pp. 239–247. issn: 02680033. doi: 10.1016/j.

clinbiomech.2006.10.003.

[203] Koelewijn, A. D. and Bogert, A. J. van den. “Joint contact forces can be

reduced by improving joint moment symmetry in below-knee amputee gait

simulations”. In: Gait and Posture 49 (2016), pp. 219–225. issn: 18792219.

doi: 10.1016/j.gaitpost.2016.07.007. url: http://dx.doi.org/10.

1016/j.gaitpost.2016.07.007.

[204] Krekel, H., Oliveira, B., Pfannschmidt, R., Bruynooghe, F., Laugher, B., and

Bruhin, F. pytest. 2004.

[205] Lai, K. L. and Crassidis, J. L. “Generalizations of the complex-step deriva-

tive approximation”. In: Collection of Technical Papers - AIAA Guidance,

Navigation, and Control Conference 2006 4 (2006), pp. 2540–2564. doi: 10.

2514/6.2006-6348.

[206] Lam, S. K., Pitrou, A., and Seibert, S. “Numba: a LLVM-based Python JIT

compiler”. In: Proceedings of the Second Workshop on the LLVM Compiler

Infrastructure in HPC - LLVM ’15. New York, New York, USA: ACM Press,

2015, pp. 1–6. isbn: 9781450340052. doi: 10.1145/2833157.2833162. url:

http://dl.acm.org/citation.cfm?doid=2833157.2833162.

[207] Langholz, J. B., Westman, G., and Karlsteen, M. “Musculoskeletal Modelling

in Sports-Evaluation of Di↵erent Software Tools with Focus on Swimming”.

In: Procedia Engineering 147 (2016), pp. 281–287. issn: 18777058. doi: 10.

1016/j.proeng.2016.06.278. url: http://dx.doi.org/10.1016/j.

proeng.2016.06.278.

[208] Lantoine, G., Russell, R. P., and Dargent, T. “Using multicomplex variables

for automatic computation of high-order derivatives”. In: ACM Transactions

on Mathematical Software 38.3 (2012), pp. 1–18. issn: 00653438.

303

BIBLIOGRAPHY

[209] Lattner, C. and Adve, V. “{LLVM}: A Compilation Framework for Lifelong

Program Analysis & Transformation”. In: 2004 International Symposium on

Code Generation and Optimization (CGO’04). Palo Alto, CA, USA, 2004,

pp. 75–88.

[210] Leardini, A., Belvedere, C., Nardini, F., Sancisi, N., Conconi, M., and Parenti-

Castelli, V. Kinematic models of lower limb joints for musculo-skeletal mod-

elling and optimization in gait analysis. 2017. doi: 10.1016/j.jbiomech.

2017.04.029. url: http://dx.doi.org/10.1016/j.jbiomech.2017.04.

029.

[211] Ledzewicz, U. and Schattier, H. “Analysis of optimal controls for a mathe-

matical model of tumour anti-angiogenesis”. In:Optimal Control Applications

and Methods 29.1 (2008), pp. 41–57. issn: 01432087. doi: 10.1002/oca.814.

[212] Lee, L.-F. and Umberger, B. R. “Generating optimal control simulations

of musculoskeletal movement using OpenSim and MATLAB”. In: PeerJ 4

(2016). issn: 2167-8359. doi: 10.7717/peerj.1638.

[213] Leineweber, D. B. “E�cient reduced SQP methods for the optimization of

chemical processes described by large space DAE models”. Ph.D. Universität

Heidelberg, 1998.

[214] Levinson, D. A. and Kane, T. R. “AUTOLEV - A New Approach to Multi-

body Dynamics”. In: Multibody Systems Handbook. Ed. by W. Schiehlen.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp. 81–102. isbn: 978-

3-642-50995-7. doi: 10.1007/978-3-642-50995-7_7. url: https://doi.

org/10.1007/978-3-642-50995-7%7B%5C_%7D7.

[215] Lewis, F. L. and Syrmos, V. L. Optimal Control. New York: John Wiley &

Sons, 1995.

[216] Lewis, M. G., Yeadon, M. R., and King, M. A. “Are torque-driven simula-

tion models of human movement limited by an assumption of monoarticu-

larity?” In: Applied Sciences 11.3852 (2021). issn: 20763417. doi: 10.3390/

app11093852.

[217] Likins, P. W. “Point-connected rigid bodies in a topological tree”. In: Ce-

lestial Mechanics 11.3 (1975), pp. 301–317. issn: 00088714. doi: 10.1007/

BF01228809.

[218] Lin, Y. C. and Pandy, M. G. “Three-dimensional data-tracking dynamic

optimization simulations of human locomotion generated by direct colloca-

tion”. In: Journal of Biomechanics 59 (2017), pp. 1–8. issn: 18732380. doi:

10.1016/j.jbiomech.2017.04.038. url: http://dx.doi.org/10.1016/

j.jbiomech.2017.04.038.

304

BIBLIOGRAPHY

[219] Liu, F., Hager, W. W., and Rao, A. V. “Adaptive mesh refinement method

for optimal control using nonsmoothness detection and mesh size reduc-

tion”. In: Journal of the Franklin Institute 352.10 (2015), pp. 4081–4106.

issn: 00160032. doi: 10.1016/j.jfranklin.2015.05.028. url: http:

//dx.doi.org/10.1016/j.jfranklin.2015.05.028.

[220] Liu, F., Hager, W. W., and Rao, A. V. “Adaptive Mesh Refinement Method

for Optimal Control Using Decay Rates of Legendre Polynomial Coe�cients”.

In: IEEE Transactions on Control Systems Technology 26.4 (2018), pp. 1475–

1483. issn: 10636536. doi: 10.1109/TCST.2017.2702122.

[221] Liu, W. and Nigg, B. M. “A mechanical model to determine the influence

of masses and mass distribution on the impact force during running”. In:

Journal of Biomechanics 33.2 (2000), pp. 219–224. issn: 00219290. doi: 10.

1016/S0021-9290(99)00151-7.

[222] Lund, M. E., Andersen, M. S., Zee, M. de, and Rasmussen, J. “Scaling of mus-

culoskeletal models from static and dynamic trials”. In: International Biome-

chanics 2.1 (2015), pp. 1–11. issn: 2333-5432. doi: 10.1080/23335432.

2014.993706. arXiv: arXiv:1401.4290v2. url: http://www.tandfonline.

com/doi/full/10.1080/23335432.2014.993706%7B%5C#%7Dabstract.

[223] Lyness, J. N. and Moler, C. B. “Numerical Di↵erentiation of Analytic Func-

tions”. In: SIAM Journal on Numerical Analysis 4.2 (1967), pp. 202–210.

issn: 15577295. doi: 10.1145/355972.355979.

[224] Magid, A. and Law, D. J. “Myofibrils bear most of the resting tension in frog

skeletal muscle.” In: Science (New York, N.Y.) 230.4731 (1985), pp. 1280–

1282. issn: 0036-8075. doi: 10.1126/science.4071053.

[225] Manns, P., Sreenivasa, M., Millard, M., and Mombaur, K. “Motion Optimiza-

tion and Parameter Identification for a Human and Lower Back Exoskeleton

Model”. In: IEEE Robotics and Automation Letters 2.3 (2017), pp. 1564–

1570. issn: 23773766. doi: 10.1109/LRA.2017.2676355. arXiv: 1803.05666.

[226] Mansour, J. M. and Audu, M. L. “The passive elastic moment at the knee

and its influence on human gait”. In: Journal of Biomechanics 19.5 (1986),

pp. 369–373. issn: 00219290. doi: 10.1016/0021-9290(86)90013-8.

[227] Margossian, C. C. and Jan, M. S. “A Review of Automatic Di↵erentiation

and its E�cient Implementation”. In: (2019), pp. 1–32. arXiv: arXiv:1811.

05031v2.

[228] Martin, J. C. and Brown, N. A. T. “Joint-specific power production and

fatigue during maximal cycling”. In: Journal of Biomechanics 42.4 (2009),

pp. 474–479. issn: 00219290. doi: 10.1016/j.jbiomech.2008.11.015.

305

BIBLIOGRAPHY

[229] Martins, J. R. R. A., Sturdza, P., and Alonso, J. J. “The complex-step deriva-

tive approximation”. In: ACM Transactions on Mathematical Software 29.3

(2003), pp. 245–262. issn: 00983500. doi: 10.1145/838250.838251.

[230] Mashima, H. “Force-velocity relation and contractility in striated muscles.”

In: The Japanese journal of physiology 34.1 (1984), pp. 1–17. issn: 0021-

521X. doi: 10.2170/jjphysiol.34.1.

[231] MATLAB. Matlab version R2020a. Natick, MA, USA, 2020.

[232] Mayer, A. “Zur Aufstellung der Kriterien des Maximums und Minimums

der einfachen Integrale bei variabeln Grenwerten”. In: Leipziger Berichte 36

(1884), pp. 99–128.

[233] McDaniel, J., Behjani, S. N., Elmer, S. J., Brown, N. A. T., and Martin, J. C.

“Joint-specific power-pedaling rate relationships during maximal cycling”. In:

Journal of Applied Biomechanics 30.3 (2014), pp. 423–430. issn: 15432688.

doi: 10.1123/jab.2013-0246.

[234] McErlain-Naylor, S. A., King, M. A., and Felton, P. J. “A review of forward-

dynamics simulation models for predicting optimal technique in maximal

e↵ort sporting movements”. In: Applied Sciences (Switzerland) 11.4 (2021),

pp. 1–20. issn: 20763417. doi: 10.3390/app11041450.

[235] McGowan, C. P., Neptune, R. R., and Herzog, W. “A phenomenological

model and validation of shortening-induced force depression during muscle

contractions”. In: Journal of Biomechanics 43.3 (2010), pp. 449–454. issn:

00219290. doi: 10 . 1016 / j . jbiomech . 2009 . 09 . 047. arXiv: 183. url:

http://dx.doi.org/10.1016/j.jbiomech.2009.09.047.

[236] McGowan, C. P., Neptune, R. R., and Herzog, W. “A phenomenological

muscle model to assess history dependent e↵ects in human movement”. In:

Journal of Biomechanics 46.1 (2013), pp. 151–157. issn: 00219290. doi: 10.

1016/j.jbiomech.2012.10.034. url: http://dx.doi.org/10.1016/j.

jbiomech.2012.10.034.

[237] McMahon, T. A. Muscles, Reflexes, and Locomotion. Princeton University

Press, 1984.

[238] Mena, D., Mansour, J. M., and Simon, S. R. “Analysis and synthesis of

human swing leg motion during gait and its clinical applications”. In: Journal

of Biomechanics 14.12 (1981), pp. 823–832. issn: 00219290. doi: 10.1016/

0021-9290(81)90010-5.

[239] Menegaldo, L. L., Fleury, A. D. T., andWeber, H. I. “Biomechanical modeling

and optimal control of human posture”. In: Journal of Biomechanics 36.11

(2003), pp. 1701–1712. issn: 00219290. doi: 10 . 1016 / S0021 - 9290(03)

00170-2.

306

BIBLIOGRAPHY

[240] Meurer, A., Smith, C. P., Paprocki, M., Čert́ık, O., Kirpichev, S. B., Rocklin,

M., Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S.,

Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F.,

Pedregosa, F., Curry, M. J., Terrel, A. R., Roučka, Š., Saboo, A., Fernando,

I., Kulal, S., Cimrman, R., and Scopatz, A. “SymPy: symbolic computing in

Python”. In: PeerJ Computer Science 3 (Jan. 2017), e103. issn: 2376-5992.

doi: 10.7717/peerj-cs.103. url: https://peerj.com/articles/cs-103.

[241] Meyer, A. J., Eskinazi, I., Jackson, J. N., Rao, A. V., Patten, C., and Fregly,

B. J. “Muscle Synergies Facilitate Computational Prediction of Subject-

Specific Walking Motions”. In: Frontiers in Bioengineering and Biotechnology

4.October (2016), p. 77. issn: 2296-4185. doi: 10.3389/fbioe.2016.00077.

url: http://journal.frontiersin.org/article/10.3389/fbioe.2016.

00077/full.

[242] Millard, M., Uchida, T. K., Seth, A., and Delp, S. L. “Flexing computational

muscle: modeling and simulation of musculotendon dynamics”. In: J Biomech

Eng 135.2 (2013), p. 21005. issn: 1528-8951. doi: 10.1115/1.4023390. url:

http://www.ncbi.nlm.nih.gov/pubmed/23445050%7B%5C%%7D5Cnhttp:

//biomechanical.asmedigitalcollection.asme.org/article.aspx?

articleid=1666657%7B%5C%%7D5Cnhttp://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=3705831%7B%5C&%7Dtool=pmcentrez%7B%5C&

%7Drendertype=abstract.

[243] Miller, R. H. and Hamill, J. “Optimal footfall patterns for cost minimization

in running”. In: Journal of Biomechanics 48.11 (2015), pp. 2858–2864. issn:

18732380. doi: 10.1016/j.jbiomech.2015.04.019. url: http://dx.doi.

org/10.1016/j.jbiomech.2015.04.019.

[244] Millman, K. J. and Aivazis, M. “Python for Scientists and Engineers”. In:

Computing in Science & Engineering 13.2 (Mar. 2011), pp. 9–12. issn: 1521-

9615. doi: 10.1109/MCSE.2011.36. url: http://ieeexplore.ieee.org/

document/5725235/.

[245] Mochon, S. and McMahon, T. A. “Ballistic walking: an improved model”. In:

Mathematical Biosciences 52.3-4 (1980), pp. 241–260. issn: 00255564. doi:

10.1016/0025-5564(80)90070-X. arXiv: arXiv:1011.1669v3.

[246] Moore, J. K. PyDy. 2016.

[247] Moore, J. K. and Bogert, A. J. van den. “opty: Software for trajectory op-

timization and parameter identification using direct collocation”. In: The

Journal of Open Source Software 3.21 (2018), p. 300. issn: 2475-9066. doi:

10.21105/joss.00300.

307

BIBLIOGRAPHY

[248] Moore, K. L., DalleyII, A. F., and Agur, A. M. R. Clinically Oriented Anatomy,

7th Edition. 7th ed. Vol. 27. 2. Lippincott Williams & Wilkins, 2014. isbn:

9781451119459. doi: 10.1002/ca.22316. arXiv: arXiv:1011.1669v3.

[249] Moulton, F. R. New methods in exterior ballistics. Chicago: University of

Chicago Press, 1926.

[250] Neptune, R. R. “Optimization algorithm performance in determining opti-

mal controls in human movement analyses.” In: Journal of Biomechanical

Engineering 121.2 (1999), pp. 249–252.

[251] Neptune, R. R. and Hull, M. L. “Evaluation of performance criteria for sim-

ulation of submaximal steady-state cycling using a forward dynamic model.”

In: Journal of biomechanical engineering 120.3 (1998), pp. 334–41. issn: 0148-

0731. doi: 10.1115/1.2797999. url: http://www.ncbi.nlm.nih.gov/

pubmed/10412400.

[252] Neptune, R. R. and Hull, M. L. “A theoretical analysis of preferred pedaling

rate selection in endurance cycling”. In: Journal of Biomechanics 32.4 (1999),

pp. 409–415. issn: 00219290. doi: 10.1016/S0021-9290(98)00182-1.

[253] Neptune, R. R. and Kautz, S. A. “Muscle activation and deactivation dy-

namics: the governing properties in fast cyclical human movement perfor-

mance?” In: Exercise and sport sciences reviews 29.2 (2001), pp. 76–80. issn:

0091-6331. doi: 10.1097/00003677-200104000-00007. arXiv: 00003677-

200104000-00007 [10.1097]. url: http://people.stfx.ca/smackenz/

courses/DirectedStudy/Articles/Neptune%20and%20Kautz%202000%

20Muscle%20Activation%20and%20Deactivation%20Dynamics.pdf.

[254] NVIDIA. PhysX Physics Engine. 2021. url: https://github.com/NVIDIAGameWorks/

PhysX.

[255] O’Neill, M. C., Umberger, B. R., Holowka, N. B., Larson, S. G., Reiser,

P. J., and Slade, J. M. “Chimpanzee super strength and human skeletal

muscle evolution”. In: Proceedings of the National Academy of Sciences of

the United States of America 114.28 (2017), pp. 7343–7348. issn: 10916490.

doi: 10.1073/pnas.1619071114.

[256] Oliphant, T. E. “Python for Scientific Computing”. In: Computing in Science

& Engineering 9.3 (2007), pp. 10–20. issn: 1521-9615. doi: 10.1109/MCSE.

2007.58. url: http://ieeexplore.ieee.org/document/4160250/.

[257] Ong, C. F., Geijtenbeek, T., Hicks, J. L., and Delp, S. L. “Predicting gait

adaptations due to ankle plantarflexor muscle weakness and contracture us-

ing physics-based musculoskeletal simulations”. In: PLoS computational bi-

ology 15.10 (2019), e1006993. issn: 15537358. doi: 10.1371/journal.pcbi.

1006993.

308

BIBLIOGRAPHY

[258] Pain, M. T. and Challis, J. H. “The influence of soft tissue movement on

ground reaction forces, joint torques and joint reaction forces in drop land-

ings”. In: Journal of Biomechanics 39.1 (2006), pp. 119–124. issn: 00219290.

doi: 10.1016/j.jbiomech.2004.10.036.

[259] Pandy, M. G. “Computer modeling and simulation of human movement”. In:

Annals of Biomedical Engineering 3.1 (2001), pp. 245–273. issn: 1523-9829.

doi: 10.1146/annurev.bioeng.3.1.245. url: http://www.ncbi.nlm.

nih.gov/pubmed/11447064.

[260] Pandy, M. G. and Berme, N. “Synthesis of human walking: A planar model

for single support”. In: Journal of Biomechanics 21.12 (1988), pp. 1053–1060.

issn: 00219290. doi: 10.1016/0021-9290(88)90251-5.

[261] Pandy, M. G., Zajac, F. E., Sim, E., and Levine, W. S. “An optimal control

model for maximum-height human jumping”. In: Journal of Biomechanics

23.12 (1990), pp. 1185–1198. issn: 00219290. doi: 10.1016/0021-9290(90)

90376-E.

[262] Patterson, M. A., Hager, W. W., and Rao, A. V. “A ph mesh refinement

method for optimal control”. In: Optimal Control Applications and Methods

36.4 (2015), pp. 398–421. issn: 10991514. doi: 10.1002/oca.2114.

[263] Patterson, M. A. and Rao, A. V. “GPOPS-II: A MATLAB Software for Solv-

ing Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian

Quadrature Collocation Methods and Sparse Nonlinear Programming”. In:

ACM Transactions on Mathematical Software 41.1 (2012), pp. 1–39. issn:

00983500. doi: 10.1145/1731022.1731032. arXiv: 1005.3014. url: http:

//portal.acm.org/citation.cfm?doid=1731022.1731032.

[264] Patterson, M. A. and Rao, A. V. “Exploiting sparsity in direct collocation

pseudospectral methods for solving optimal control problems”. In: Journal

of Spacecraft and Rockets 49.2 (2012), pp. 364–377. issn: 15336794. doi:

10.2514/1.A32071.

[265] Piazza, S. and Delp, S. L. “Three-dimensional dynamic simulation of total

knee replacement motion during a step-up task”. In: Journal of Biomechan-

ical Engineering 123.6 (2001), pp. 599–606. issn: 01480731. doi: 10.1115/

1.1406950.

[266] Piazza, S. J. “Muscle-driven forward dynamic simulations for the study of

normal and pathological gait”. In: Journal of NeuroEngineering and Reha-

bilitation 3 (2006), pp. 1–7. issn: 17430003. doi: 10.1186/1743-0003-3-5.

[267] Pietz, J. A. “Pseudospectral Collocation Methods for the Direct Transcrip-

tion of Optimal Control Problems”. Masters. Rice University, 2003.

309

BIBLIOGRAPHY

[268] Pontryagin, L. The Mathematical Theory of Optimal Processes. New York,

1962.

[269] Porsa, S., Lin, Y.-C., and Pandy, M. G. “Direct Methods for Predicting

Movement Biomechanics Based Upon Optimal Control Theory with Imple-

mentation in OpenSim”. In: Annals of Biomedical Engineering 44.8 (2016),

pp. 2542–2557. issn: 1573-9686. doi: 10.1007/s10439-015-1538-6. url:

http://link.springer.com/10.1007/s10439- 015- 1538- 6%7B%5C%

%7D5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/26715209.

[270] Proske, U. and Morgan, D. L. “Tendon sti↵ness: Methods of measurement

and significance for the control of movement. A review”. In: Journal of

Biomechanics 20.1 (1987), pp. 75–82. issn: 00219290. doi: 10.1016/0021-

9290(87)90269-7.

[271] Python Software Foundation. Python Package Index - PyPI. url: https:

//pypi.org/project/pycollo/ (visited on 03/28/2021).

[272] Qiao, M. and Jindrich, D. L. “Leg joint function during walking acceleration

and deceleration”. In: Journal of Biomechanics 49.1 (2016). issn: 18732380.

doi: 10.1016/j.jbiomech.2015.11.022.

[273] Raasch, C. C. and Zajac, F. E. “Locomotor Strategy for Pedaling: Muscle

Groups and Biomechanical Functions”. In: Journal of Neurophysiology 82

(1999), pp. 515–525.

[274] Raasch, C. C., Zajac, F. E., Baoming, M., and Levine, W. S. “Muscle co-

ordination of maximum-speed pedaling”. In: Journal of Biomechanics 30.6

(1997), pp. 595–602.

[275] Rack, P. and Westbury, D. “The e↵ects of length and stimulus rate on ten-

sion in the isometric cat soleus muscleq”. In: The Journal of physiology

204.2 (1969), pp. 443–460. issn: 0022-3751. doi: 10.1113/jphysiol.1969.

sp008923.

[276] Rack, P. and Westbury, D. “Elastic properties of the cat soleus tendon and

their functional importance.” In: The Journal of physiology 347.1984 (1984),

pp. 479–495. issn: 0022-3751. doi: 10.1113/jphysiol.1984.sp015077.

url: http://jp.physoc.org/content/347/1/479.short.

[277] Rajagopal, A., Dembia, C. L., DeMers, M. S., Delp, D. D., Hicks, J. L., and

Delp, S. L. “Full-Body Musculoskeletal Model for Muscle-Driven Simulation

of Human Gait”. In: IEEE Transactions on Biomedical Engineering 63.10

(2016), pp. 2068–2079. issn: 15582531. doi: 10.1109/TBME.2016.2586891.

[278] Rajamani, K., Nolte, L., and Styner, M. “Bone morphing with statistical

shape models for enhanced visualization”. In: SPIE Medical Imaging 5367.Febru-

ary (2004), pp. 122–130. issn: 0277786X. doi: 10.1117/12.535000.

310

BIBLIOGRAPHY

[279] Rankin, J. W. and Neptune, R. R. “A theoretical analysis of an optimal

chainring shape to maximize crank power during isokinetic pedaling”. In:

Journal of Biomechanics 41.7 (2008), pp. 1494–1502. issn: 00219290. doi:

10.1016/j.jbiomech.2008.02.015.

[280] Rankin, J. W. and Neptune, R. R. “The influence of seat configuration on

maximal average crank power during pedaling: A simulation study”. In: Jour-

nal of Applied Biomechanics 26.4 (2010), pp. 493–500. issn: 10658483. doi:

10.1017/CBO9781107415324.004. arXiv: arXiv:1011.1669v3.

[281] Rankin, J. W., Rubenson, J., and Hutchinson, J. R. “Inferring muscle func-

tional roles of the ostrich pelvic limb during walking and running using com-

puter optimization”. In: Journal of the Royal Society Interface 13.118 (2016).

issn: 17425662. doi: 10.1098/rsif.2016.0035.

[282] Rao, A. V. “A survey of numerical methods for optimal control”. In: Ad-

vances in the Astronautical Sciences 135.1 (2009), pp. 497–528. issn: 1569-

3953. doi: 10.1515/jnum-2014-0003. url: http://vdol.mae.ufl.edu/

ConferencePublications/trajectorySurveyAAS.pdf.

[283] Rao, A. V., Benson, D. A., Darby, C., Patterson, M. A., Francolin, C.,

Sanders, I., and Huntington, G. T. “Algorithm 902: GPOPS, a Matlab soft-

ware for solving multiple-phase Optimal Control Problems using the Gauss

Pseudospectral Method”. In: ACM Transactions on Mathematical Software

37.2 (2010), pp. 1–39.

[284] Rao, A. V. and Mease, K. D. “Eigenvector approximate dichotomic basis

method for solving hyper-sensitive optimal control problems”. In: Optimal

Control Applications and Methods 21.1 (2000), pp. 1–19.

[285] Rasmussen, J., Damsgaard, M., Surma, E., Christensen, S. T., Zee, M. de,

and Vondrak, V. “AnyBody - a software system for ergonomic optimization”.

In: Fifth World Congress on Structural and Multidisciplinary Optimization,

May 19-23, 2003, Lido di Jesolo - Venice, Italy January (2003), 6–6 pp.

[286] Reinbolt, J. A., Seth, A., and Delp, S. L. “Simulation of human movement:

Applications using OpenSim”. In: Procedia IUTAM 2 (2011), pp. 186–198.

issn: 22109838. doi: 10.1016/j.piutam.2011.04.019. url: http://dx.

doi.org/10.1016/j.piutam.2011.04.019.

[287] Revels, J., Lubin, M., and Papamarkou, T. “Forward-Mode Automatic Dif-

ferentiation in Julia”. In: April (2016), pp. 7–10. arXiv: 1607.07892. url:

http://arxiv.org/abs/1607.07892.

[288] Richards, F. J. “A flexible growth function for empirical use”. In: Journal

of Experimental Botany 10.2 (1959), pp. 290–301. issn: 00220957. doi: 10.

1093/jxb/10.2.290.

311

BIBLIOGRAPHY

[289] Riener, R. and Edrich, T. “Identification of passive elastic joint moments in

the lower extremities”. In: Journal of Biomechanics 32.5 (1999), pp. 539–544.

issn: 00219290. doi: 10.1016/S0021-9290(99)00009-3.

[290] Rohani, F., Richter, H., and Bogert, A. J. van den. “Optimal design and

control of an electromechanical transfemoral prosthesis with energy regener-

ation”. In: PLoS ONE 12.11 (2017), pp. 1–13. issn: 19326203. doi: 10.1371/

journal.pone.0188266.

[291] Roithmayr, C. M. and Hodges, D. H. Dynamics: Theory and Application of

Kane’s Method. New York, New York, USA: Cambridge University Press,

2016, pp. 1–511.

[292] Rosenthal, D. E. and Sherman, M. A. “High Performance Multibody Simula-

tions via Symbolic Equation Manipulation and Kane’S Method”. In: Journal

of the Astronautical Sciences 34.3 (1986), pp. 223–239. issn: 00219142.

[293] Ryan, R. R. “ADAMS-Multibody system analysis software”. In: Multibody

Systems Handbook (1990), pp. 361–402.

[294] Sakawa, Y. “Trajectory Planning of a Free-Flying Robot by Using the Op-

timal Control”. In: Optimal Control Applications and Methods 20.5 (1999),

pp. 235–248. issn: 01432087. doi: 10.1002/(SICI)1099-1514(199909/10)

20:5<235::AID-OCA658>3.0.CO;2-I.

[295] Selbie, W. S. and Caldwell, G. E. “A simulation study of vertical jumpng

from di↵erent starting postures”. In: Journal of Biomechanics 29.9 (1996),

pp. 1137–1146.

[296] Sellers, W. I., Margetts, L., Coria, R. A., and Manning, P. L. “March of the

titans: The locomotor capabilities of sauropod dinosaurs”. In: PLoS ONE

8.10 (2013). issn: 19326203. doi: 10.1371/journal.pone.0078733.

[297] Seth, A., Sherman, M. A., Reinbolt, J. A., and Delp, S. L. “OpenSim: A mus-

culoskeletal modeling and simulation framework for in silico investigations

and exchange”. In: Procedia IUTAM 2 (2011), pp. 212–232. issn: 22109838.

doi: 10 . 1016 / j . piutam . 2011 . 04 . 021. arXiv: 15334406. url: http :

//dx.doi.org/10.1016/j.piutam.2011.04.021.

[298] Shanno, D. F. “Conditioning of Quasi-Newton Methods for Function Min-

imization”. In: Mathematics of Computation 24.111 (1970), p. 647. issn:

00255718. doi: 10.2307/2004840.

[299] Sherman, M. A., Seth, A., and Delp, S. L. “Simbody: Multibody dynamics

for biomedical research”. In: Procedia IUTAM 2 (2011), pp. 241–261. issn:

22109838. doi: 10.1016/j.piutam.2011.04.023. arXiv: 15334406. url:

http://dx.doi.org/10.1016/j.piutam.2011.04.023.

312

BIBLIOGRAPHY

[300] Shourijeh, M. S. and McPhee, J. “Forward Dynamic Optimization of Hu-

man Gait Simulations: A Global Parameterization Approach”. In: Journal of

Computational and Nonlinear Dynamics 9.3 (2014), p. 031018. issn: 1555-

1415. doi: 10.1115/1.4026266. url: http://computationalnonlinear.

asmedigitalcollection . asme . org / article . aspx ? doi = 10 . 1115 / 1 .

4026266.

[301] Shourijeh, M. S., Smale, K. B., Potvin, B. M., and Benoit, D. L. “A forward-

muscular inverse-skeletal dynamics framework for human musculoskeletal

simulations”. In: Journal of Biomechanics 49.9 (2016). issn: 18732380. doi:

10.1016/j.jbiomech.2016.04.007.

[302] Shrive, N. G., O’Connor, J. J., and Goodfellow, J. W. “Load-bearing in the

knee joint.” In: Clin Orthop Relat Res. 131 (1978), pp. 279–287. issn: 0009-

921X. doi: 10.1097/00003086-197803000-00046.

[303] Silder, A., Whittington, B., Heiderscheit, B., and Thelen, D. G. “Identifi-

cation of passive elastic joint moment-angle relationships in the lower ex-

tremity”. In: Journal of Biomechanics 40.12 (2007), pp. 2628–2635. issn:

00219290. doi: 10.1016/j.jbiomech.2006.12.017. arXiv: NIHMS150003.

[304] Smith, R. C. and Haug, E. J. “DADS-Dynamic Analysis and Design System”.

In: Multibody Systems Handbook. Ed. by W. Schiehlen. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1990, pp. 161–179. isbn: 978-3-642-50995-7. doi:

10.1007/978-3-642-50995-7_11. url: https://doi.org/10.1007/978-

3-642-50995-7%7B%5C_%7D11.

[305] Smith, R. L. The Open Dynamics Engine (ODE). 2021. url: https://

bitbucket.org/odedevs/ode/src/master/.

[306] Soest, A. J. van and Bobbert, M. F. “The contribution of muscle properties

in the control of exprosive movements”. In: Biological Cybernetics 69 (1993),

pp. 195–204.

[307] Soest, A. J. van and Casius, R. L. J. “Which factors determine the optimal

pedaling rate in sprint cycling?” In: American College of Sports Medicine

(2000), pp. 1927–1934.

[308] Soest, A. J. van, Schwab, A. L., Bobbert, M. F., and van Ingen Schenau,

G. J. “The Influence Gastrocnemius of the Biarticularity of the Muscle on

Vertical-Jumping Achievement”. In: Journal of biomechanics 26.1 (1993),

pp. 1–8.

[309] Squire, W. and Trapp, G. “Using complex variables to estimate derivatives of

real functions”. In: SIAM Review 40.1 (1998), pp. 110–112. issn: 00361445.

doi: 10.1137/S003614459631241X.

313

BIBLIOGRAPHY

[310] Srajer, F., Kukelova, Z., and Fitzgibbon, A. “A benchmark of selected al-

gorithmic di↵erentiation tools on some problems in computer vision and

machine learning”. In: Optimization Methods and Software 33.4-6 (2018),

pp. 889–906. issn: 10294937. doi: 10.1080/10556788.2018.1435651. arXiv:

1807.10129.

[311] Steele, K. M., Rozumalski, A., and Schwartz, M. H. “Muscle synergies and

complexity of neuromuscular control during gait in cerebral palsy”. In: Devel-

opmental Medicine and Child Neurology 57.12 (2015), pp. 1176–1182. issn:

14698749. doi: 10.1111/dmcn.12826.Muscle. url: https://www.ncbi.

nlm.nih.gov/pmc/articles/PMC4683117/pdf/nihms-697756.pdf.

[312] Strang, G. Introduction to Linear Algebra, Volume 3. Wellesley, MA, USA:

Wellesley-Cambridge Press, 1993.

[313] Stryk, O. von. User’s Guide for DIRCOL Version 2.1: A Direct Collocation

Method for the Numerical Solution of Optimal Control Problems. Darmstadt,

Germany, 1999.

[314] Stryk, O. von and Schlemmer, M. “Optimal Control of the Industrial Robot

Manutec r3”. In: Computational Optimal Control 115 (1994), pp. 367–382.

doi: 10.1007/978-3-0348-8497-6_30.

[315] Swoap, S. J., Caiozzo, V. J., and Baldwin, K. M. “Optimal shortening ve-

locities for in situ power production of rat soleus and plantaris muscles”. In:

American Journal of Physiology 273.42 (1997), pp. 1057–1063.

[316] Thelen, D. G., Anderson, F. C., and Delp, S. L. “Generating dynamic simu-

lations of movement using computed muscle control”. In: Journal of Biome-

chanics 36.3 (2003), pp. 321–328. issn: 00219290. doi: 10.1016/S0021-

9290(02)00432-3. arXiv: S0021-9290(02)00432-3 [10.1016].

[317] Thompson, J. A., Tran, A. A., Gatewood, C. T., Shultz, R., Silder, A., and

Delp, S. L. “Biomechanical e↵ects of an injury prevention program in pread-

olescent female soccer athletes”. In: American Journal of Sports Medicine

45.2 (2017), pp. 294–301.

[318] Uchida, T. K., Hicks, J. L., Dembia, C. L., and Delp, S. L. “Stretching your

energetic budget: How tendon compliance a↵ects the metabolic cost of run-

ning”. In: PLoS ONE 11.3 (2016), pp. 1–19. issn: 19326203. doi: 10.1371/

journal.pone.0150378.

[319] Umberger, B. R., Gerritsen, K. G., and Martin, P. E. “Muscle fiber type ef-

fects on energetically optimal cadences in cycling”. In: Journal of Biomechan-

ics 39.8 (2006), pp. 1472–1479. issn: 00219290. doi: 10.1016/j.jbiomech.

2005.03.025.

314

BIBLIOGRAPHY

[320] Vinnars, E., Bergstom, J., and Furst, P. “Influence of the postoperative state

on the intracellular free amino acids in human muscle tissue”. In: Annals of

Surgery 182.6 (1975), pp. 665–671. issn: 00034932. doi: 10.1097/00000658-

197512000-00001.

[321] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cour-

napeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S. J.

van der, Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,

Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore,

E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I.,

Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,

F., and Mulbregt, P. van. “SciPy 1.0: fundamental algorithms for scientific

computing in Python”. In: Nature Methods 17.3 (Mar. 2020), pp. 261–272.

issn: 1548-7091. doi: 10.1038/s41592-019-0686-2. url: http://www.

nature.com/articles/s41592-019-0686-2.

[322] Vlases, W., Paris, S. W., Lajoie, R. M., Martens, M. J., and Hargraves, C. R.

Optimal Trajectories by Implicit Simulation. OH, USA, 1990.

[323] Wächter, A. and Biegler, L. T. On the implementation of an interior-point

filter line-search algorithm for large-scale nonlinear programming. Vol. 106.

1. 2006, pp. 25–57. isbn: 1010700405. doi: 10.1007/s10107-004-0559-y.

[324] Walther, A., Griewank, A., and Vogel, O. “ADOL-C: Automatic Di↵erentia-

tion Using Operator Overloading in C++”. In: Pamm 2.1 (2003), pp. 41–44.

issn: 1617-7061. doi: 10.1002/pamm.200310011.

[325] Weinstein, M. J., Patterson, M. A., and Rao, A. V. “Utilizing the algorithmic

di↵erentiation package adigator for solving optimal control problems using

direct collocation”. In: AIAA Guidance, Navigation, and Control Conference,

2013 (2015), pp. 1–19. doi: 10.2514/6.2015-1085.

[326] Winters, J. M. “An improved muscle-reflex actuator for use in large-scale

neuromusculoskeletal models”. In: Annals of Biomedical Engineering 23.4

(1995), pp. 359–374. issn: 00906964. doi: 10.1007/BF02584437.

[327] Winters, J. M. and Stark, L. “Analysis of Fundamental Human Movement

Patterns Through the Use of In-Depth Antagonistic Muscle Models”. In:

IEEE Transactions on Biomedical Engineering BME-32.10 (1985), pp. 826–

839. issn: 15582531. doi: 10.1109/TBME.1985.325498.

[328] Winters, J. M. and Stark, L. “Muscle models: What is gained and what is

lost by varying model complexity”. In: Biological Cybernetics 55.6 (1987),

pp. 403–420. issn: 03401200. doi: 10.1007/BF00318375.

315

BIBLIOGRAPHY

[329] Wood, J. E. and Mann, R. W. “A sliding-filament cross-bridge ensemble

model of muscle contraction for mechanical transients”. In: Mathematical

Biosciences 57.3-4 (1981), pp. 211–263. issn: 00255564. doi: 10.1016/0025-

5564(81)90105-X.

[330] Wright, K. “Some relationships between implicit Runge-Kutta, collocation

and Lanczos ⌧ methods, and their stability properties”. In: Bit Numeri-

cal Mathematics 10.2 (1970), pp. 217–227. issn: 00063835. doi: 10.1007/

BF01936868.

[331] Yamaguchi, G. T. Dynamic modeling of musculoskeletal motion: a vectorized

approach for biomechanical analysis in three dimensions. Springer Science &

Business Media, 2005.

[332] Yamaguchi, G. T. and Zajac, F. E. “A planar model of the knee joint to

characterize the knee extensor mechanism”. In: Journal of Biomechanics 22.1

(1989), pp. 1–10. issn: 00219290. doi: 10.1016/0021-9290(89)90179-6.

[333] Yamaguchi, G. T. and Zajac, F. E. “Restoring Unassisted Natural Gait to

Paraplegics Via Functional Neuromuscular Stimulation: A Computer Simula-

tion Study”. In: IEEE Transactions on Biomedical Engineering 37.9 (1990),

pp. 886–902. issn: 15582531. doi: 10.1109/10.58599.

[334] Yeadon, M. R. “The Simulation of Aerial Movement - II.A Mathematical

Inertia Model of the Human Body”. In: Journal of Biomechanics 23.1 (1990),

pp. 67–74. doi: 10.1016/0021-9290(90)90370-i.

[335] Yeadon, M. R. and Hiley, M. J. “Twist limits for late twisting double somer-

saults on trampoline”. In: Journal of Biomechanics 58 (2017), pp. 174–178.

issn: 18732380. doi: 10.1016/j.jbiomech.2017.05.002.

[336] Yeadon, M. R. and Hiley, M. J. “The limits of aerial and contact techniques

for producing twist in reverse 1½ somersault dives”. In: Human Movement

Science 66 (2019), pp. 390–398. issn: 18727646. doi: 10.1016/j.humov.

2019.05.010.

[337] Yeadon, M. R. and King, M. A. “Evaluation of a torque driven simulation

model of tumbling”. In: Journal of Applied Biomechanics 18 (2002), pp. 195–

206.

[338] Yeadon, M. R. and King, M. A. “Computer simulation modelling in sport”.

In: Biomechanical Evaluation of Movement in Sport and Exercise, 2nd edi-

tion. London, England, UK: Routledge, 2018, pp. 221–254. isbn: 9780415434683.

316

BIBLIOGRAPHY

[339] Yeadon, M. R., King, M. A., Forrester, S. E., Caldwell, G. E., and Pain,

M. T. “The need for muscle co-contraction prior to a landing”. In: Journal

of Biomechanics 43.2 (2010), pp. 364–369. issn: 00219290. doi: 10.1016/j.

jbiomech.2009.06.058. url: http://dx.doi.org/10.1016/j.jbiomech.

2009.06.058.

[340] Yeadon, M. R., King, M. A., and Wilson, C. “Modelling the maximum vol-

untary joint torque/angular velocity relationship in human movement”. In:

Journal of Biomechanics 39.3 (2006), pp. 476–482. issn: 00219290. doi: 10.

1016/j.jbiomech.2004.12.012.

[341] Yeadon, M. R. and Morlock, M. “The appropriate use of regression equations

for the estimation of segmental inertia parameters”. In: Journal of Biome-

chanics 22.6-7 (1989), pp. 683–689. issn: 00219290. doi: 10.1016/0021-

9290(89)90018-3.

[342] Yoon, Y. S. and Mansour, J. M. “The passive elastic moment at the hip”.

In: Journal of Biomechanics 15.12 (1982), pp. 905–910. issn: 00219290. doi:

10.1016/0021-9290(82)90008-2. arXiv: 190.

[343] Yoshihuku, Y. and Herzog, W. “Optimal design parameters of the bicycle-

rider system for maximal muscle power output”. In: Journal of Biomechanics

23.10 (1990), pp. 1069–1079. issn: 00219290. doi: 10.1016/0021-9290(90)

90322-T.

[344] Yoshihuku, Y. and Herzog, W. “Maximal muscle power output in cycling: a

modelling approach.” In: Journal of sports sciences 14.2 (1996), pp. 139–57.

issn: 0264-0414. doi: 10.1080/02640419608727696. url: http://www.

ncbi.nlm.nih.gov/pubmed/8737322.

[345] Zajac, F. E. “Muscle and tendon: properties, models, scaling, and applica-

tion to biomechanics and motor control.” In: Critical reviews in biomedical

engineering 17.4 (1989), pp. 359–411.

[346] Zajac, F. E., Neptune, R. R., and Kautz, S. A. “Biomechanics and muscle

coordination of human walking: Part I: Introduction to concepts, power trans-

fer, dynamics and simulations”. In: Gait and Posture 16.3 (2002), pp. 215–

232. issn: 09666362. doi: 10.1016/S0966-6362(02)00068-1.

[347] Zhang, Y., Ma, Y., and Liu, G. “Lumbar spinal loading during bowling in

cricket: a kinetic analysis using a musculoskeletal modelling approach”. In:

Journal of Sports Sciences 34.11 (2016), pp. 1030–1035. issn: 1466447X. doi:

10.1080/02640414.2015.1086014.

[348] Zhao, Y. and Tsiotras, P. “Density functions for mesh refinement in numer-

ical optimal control”. In: Journal of Guidance, Control, and Dynamics 34.1

(2011), pp. 271–277. issn: 15333884. doi: 10.2514/1.45852.

317

BIBLIOGRAPHY

[349] Zondervan, K. P., Bauer, T. P., Betts, J. T., and Hu↵man, W. P. “Solving the

Optimal Control Problem Using a Nonlinear Programming Technique Part

3: Optimal Shuttle Reentry Trajectories”. In: Proceedings of the AIAA/AAS

Astrodynamics Conference. Seattle, WA, USA, 1984, AIAA–84–2039.

318

