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Summary

Sketching is a probabilistic data compression technique that has been largely developed by
the computer science community. Numerical operations on big datasets can be intolerably slow;
sketching algorithms address this issue by generating a smaller surrogate dataset. Typically, infer-
ence proceeds on the compressed dataset. Sketching algorithms generally use random projections
to compress the original dataset, and this stochastic generation process makes them amenable
to statistical analysis. We argue that the sketched data can be modelled as a random sample,
thus placing this family of data compression methods firmly within an inferential framework.
In particular, we focus on the Gaussian, Hadamard and Clarkson–Woodruff sketches and their
use in single-pass sketching algorithms for linear regression with huge samples. We explore the
statistical properties of sketched regression algorithms and derive new distributional results for
a large class of sketching estimators. A key result is a conditional central limit theorem for data-
oblivious sketches. An important finding is that the best choice of sketching algorithm in terms
of mean squared error is related to the signal-to-noise ratio in the source dataset. Finally, we
demonstrate the theory and the limits of its applicability on two datasets.

Some key words: Computational efficiency; Random projection; Randomized numerical linear algebra; Sketching.

1. Introduction

Sketching is a general probabilistic data compression technique involving random projections
(Cormode, 2011). Even routine calculations can be prohibitively computationally expensive if
performed on massive datasets. Computational time can be reduced to an acceptable level by
allowing some approximation error in the results. Sketching algorithms simplify the compu-
tational task by generating a compressed version of the original dataset that then serves as a
surrogate for calculations. The compressed dataset is referred to as a sketch, because it acts as a
compact representation of the full dataset. Sketching algorithms use a randomized compression
stage, which makes them interesting from a statistical viewpoint. Sketching algorithms for linear
regression have attracted significant attention in the numerical linear algebra and theoretical
computer science communities (Mahoney, 2011; Woodruff, 2014).

To describe sketched regression in more detail, we first assume that the data consist of a length-
n response vector y and an n × p matrix of covariates, X , which is of full rank. It is assumed
throughout that n > p. The objective is to find the least squares coefficients. Given sufficient
computational resources, these can be computed exactly as

βF = (X TX )−1X Ty,
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where the subscript F indicates the connection to the full dataset. Only two quantities are needed
to determine βF: the Gram matrix X TX and the marginal associations X Ty. Calculation of X TX
requires O(np2) operations, while computation of X Ty needs only O(np) calculations. There are
two broad methods for sketched regression, namely complete sketching and partial sketching.
Complete sketching is based on approximating both X TX and X Ty, whereas partial sketching
approximates only the Gram matrix. Drineas et al. (2006) established many important results
for complete sketching, and Dhillon et al. (2013) and Pilanci & Wainwright (2016) derived
foundational results for partial sketching.

Sketching algorithms use random linear mappings to reduce the size of the dataset from n
to k observations. The random linear mapping can be represented as a k × n sketching matrix
S. Complete sketching generates a length-k sketched response vector ỹ and a k × p matrix of
sketched predictors X̃ . The sketched data are computed through the linear mappings ỹ = Sy and
X̃ = SX . Assuming that X̃ is of rank p, the complete sketching estimator βS is defined to be the
set of least squares coefficients using the sketched responses and predictors,

βS = (X̃ TX̃ )−1X̃ Tỹ. (1)

The partial sketching estimator, βP, is defined as

βP = (X̃ TX̃ )−1X Ty. (2)

The key difference between (1) and (2) is that the partial sketching estimator βP is constructed
using the exact marginal associations X Ty. Given the sketched data, computation of βS or βP
requires only O(kp2) operations, compared with the O(np2) operations required for βF.

There is a large literature concerned with designing appropriate distributions for the random
sketching matrix S. Our focus is on data-oblivious random projections, such that the distribution of
the sketching matrix is not a function of the source data (y, X ).An example is the Gaussian sketch,
where each element is independently distributed as an N (0, 1/k) variate. We also consider the
Hadamard sketch and the Clarkson–Woodruff sketch, random projections that exploit structure
and sparsity for computational efficiency. A motivation for this work is that there are no clear ties
between data-oblivious random projections and classical subsampling techniques.

Most existing results on the accuracy of sketching are universal worst-case bounds (Woodruff,
2014; Mahoney & Drineas, 2016). This is typical for randomized algorithms; however, a more
detailed error analysis can provide important insights (Halko et al., 2011). We investigate the
statistical properties of βP and βS when data-oblivious sketches are used. An important finding
is that the signal-to-noise ratio in the source dataset strongly influences the relative efficiency
of complete to partial sketching. The statistical analysis also allows the construction of exact
confidence intervals for the Gaussian sketch and asymptotic confidence intervals for other random
projections, paving the way for their wider use in the statistical community.

At its core, sketched regression is a randomized algorithm for approximate computation of
βF. Repeated application of the sketching algorithm to the same dataset will produce different
results. The first stage in our analysis is to establish the distributional properties of the sketching
estimators with the source dataset held fixed. An important result is a conditional central limit
theorem for the sketched dataset that connects the Hadamard and Clarkson–Woodruff projections
to the Gaussian sketch. The conditional analysis of the randomized algorithms is then extended to
cover situations where sketching is used for approximate statistical inference. Given a statistical
model for the response y = X β0+ε, with population parameter β0 and error term ε, distributional
properties of βP and βS can be determined by integrating over the conditional distributions of the
sketching estimators that take y and X as fixed.
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Statistical properties of sketching algorithms 285

2. Background and related work

2.1. Preliminaries

We define a number of quantities related to the full dataset before moving on. The total, residual
and model sum of squares are given by tssF = yTy, rssF = ‖y − X βF‖2

2 and mssF = ‖X βF‖2
2,

respectively, with tssF = mssF + rssF. The proportion of variance explained by the model is
R2

F = mssF/tssF. These values will be important in characterizing the behaviour of βS and βP.
The source data are generically represented by the n × d matrix A = (y, X ).

There are two general categories of distributions for the random matrix S: data-aware random
projections and data-oblivious random projections. A data-aware random projection uses infor-
mation in the source data (y, X ) to generate S. In contrast, a data-oblivious random projection
can be sampled without knowledge of y or X . Data-aware random projections are closely con-
nected to finite population sampling methods in the statistics literature (Ma & Sun, 2015). Our
main focus is on data-oblivious random projections, as their mechanism for data compression
is not obviously tied to subsampling. Data-oblivious random projections generate a dataset of k
pseudo-observations using the source dataset as a component in the generative process.

2.2. Data-oblivious sketches

The Gaussian sketch was one of the first projections proposed for sketched regression (Sarlos,
2006). Recall that a Gaussian sketch is formed by independently sampling each element of S from
an N (0, 1/k) distribution. A drawback of the Gaussian sketch is that computation of the sketched
data is quite demanding, taking O(ndk) operations. Therefore, work has been done on designing
more computationally efficient random projections. Woodruff (2014) gives an excellent survey
of work in this area.

The Hadamard sketch is a structured random matrix (Ailon & Chazelle, 2009). The sketching
matrix is formed as S = �HD/

√
k , where � is a k × n matrix and H and D are both n × n

matrices. The fixed matrix H is a Hadamard matrix of order n. A Hadamard matrix is a square
matrix with elements that are either +1 or −1 and orthogonal rows. Although Hadamard matrices
do not exist for all integers n, the source dataset can be padded with zeros so that a conformable
Hadamard matrix is available. The matrix D is a diagonal matrix whose n diagonal entries are
independent Rademacher random variables. The random matrix � subsamples k rows of H with
replacement. The structure of the Hadamard sketch allows for fast matrix multiplication, reducing
calculation of the sketched dataset to O(nd log k) operations.

The Clarkson–Woodruff sketch is a sparse random matrix (Clarkson & Woodruff, 2013). The
projection can be represented as the product of two independent random matrices, S = �D,
where � is a random k ×n matrix and D is a random n×n matrix. The matrix � is initialized as a
matrix of zeros. Independently in each column, one element is selected and set to +1. The matrix
D is a diagonal matrix whose n diagonal entries are independent Rademacher random variables.
The sparsity of the Clarkson–Woodruff sketch speeds up matrix multiplication, decreasing the
complexity of generating the sketched dataset to O(nd).

3. Gaussian sketching

3.1. Complete sketching

The Gaussian sketch is mathematically tractable, and it is possible to establish a number of
exact finite-sample results regarding the performance of the sketching estimators. In this section
we derive the distribution of βS in the case where a Gaussian sketch is used. As mentioned
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previously, all results treat y and X as fixed. The variability in βS is solely due to the use of the
random sketching matrix S. Let (ỹj, x̃T

j ) (j = 1, . . . , k) refer to the jth row of the sketched data

matrix Ã = (ỹ, X̃ ). Similarly, let sT
j denote the jth row of the sketching matrix S. The sketched

dataset consists of k random units (ỹj, x̃T
j ) (j = 1, . . . , k). The jth sketched response is given by

ỹj = sT
j y, and the jth sketched predictor is calculated as x̃T

j = sT
j X (j = 1, . . . , k). The k sketched

instances are independently distributed, because rows of the sketching matrix are independent.
It can be shown that the joint distribution of the sketched data, p(ỹ | X̃ , y, X ) p(X̃ | y, X ),

has the structure of a hierarchical Gaussian linear model. The sketched dataset has a multivariate
normal distribution, conditional on the source dataset. This is because the sketched dataset can be
expressed as a linear combination of Gaussian random variables. Specifically, row j in the sketched
dataset is (ỹj, x̃T

j ) = sT
j A. Given the source dataset A = (y, X ), ATsj is a linear combination of

independent Gaussians as sj ∼ N (0, Id/k), and so (ỹj, x̃T
j ) must be jointly normally distributed,

conditional on the source data A = (y, X ). It is easily shown that the conditional joint distribution
of the sketched responses and predictors is then(

ỹj
x̃j

) ∣∣∣∣ y, X ∼ N

{(
0
0

)
,

1

k

(
yTy yTX
X Ty X TX

)}
(j = 1, . . . , k).

From standard results on the multivariate normal distribution, it follows that the conditional
distribution of ỹj given x̃j is also normal with conditional mean ES(ỹj | x̃j, y, X ) = x̃T

j βF. The
subscript S is used with the expectation operator to emphasize that the only random quantity is
the sketching matrix. The conditional distribution of ỹj given the sketched predictors x̃j and the
source dataset (y, X ) is

ỹj | x̃j, y, X ∼ N
(

x̃T
j βF,

rssF

k

)
(j = 1, . . . , k).

This is the exact form of a standard Gaussian linear model, where the regression coefficient is
βF and the conditional variance is rssF/k . The distribution p(X̃ | y, X ) is easily obtained as the
marginal distribution of x̃j is also multivariate normal,

x̃j | y, X ∼ N (0, X TX /k) (j = 1, . . . , k).

A Gaussian sketch effectively simulates a series of observations from a Gaussian linear model
parameterized in terms of βF and rssF, where the design matrix has a matrix normal distribution.
The distribution of βS conditional on the sketched predictors X̃ follows immediately from standard
results on linear models (Searle, 1997, Ch. 3). To obtain the marginal distribution of βS, it is
necessary to integrate over the random sketched design matrix X̃ . Using properties of the normal
distribution (Eaton, 2007), it is possible to show that (X̃ TX̃ ) | y, X ∼ Wis(k , X TX /k). Hence,

(X̃ TX̃ )−1 | y, X ∼ iw{k , k(X TX )−1},
where iw denotes the inverse Wishart distribution. The marginal distribution of βS can then be
described using the normal inverse Wishart distribution (Gelman et al., 2014, p. 73). The following
theorem characterizes the distribution of βS under the Gaussian sketch.

Theorem 1. Suppose βS is computed using a Gaussian sketch and that k � p. Then:
(i) the conditional distribution of βS is

βS | X̃ , y, X ∼ N
{
βF,

rssF

k
(X̃ TX̃ )−1

}
;
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(ii) the marginal distribution of βS is

βS | y, X ∼ Student
{
βF,

rssF

k − p + 1
(X TX )−1, k − p + 1

}
.

For a proof see the Supplementary Material.
An immediate consequence of (i) is the ability to generate exact confidence intervals for the

elements of βS, an approach that does not seem to have been considered in the existing literature.
The variance of βS,

var(βS | y, X ) = rssF

(k − p − 1)
(X TX )−1, (3)

is not dependent on the compression ratio k/n. Although rssF can be expected to grow linearly
with n, this will generally be counterbalanced by (X TX )−1 decreasing linearly with n.

3.2. Partial sketching

Partial sketching was first proposed by Dhillon et al. (2013) using uniform subsampling, and
was later studied for general sketches by Pilanci & Wainwright (2016). Existing results on partial
sketching highlight that the model sum of squares influences the approximation error of the
partial sketching estimator βP. It is easy to see that the variance of the partial sketching estimator
will not be a function of the residual sum of squares. From the normal equations it follows that
X Ty = X TX βF. Using this property, we see that conditional on y and X , the variance of the
random linear combination βP = (X TSTSX )−1X Ty = (X TSTSX )−1X TX βF will be a function of
the covariates X and the fitted values X βF. The residual vector has no influence on the variance
of the partial sketching estimator, and as such the variance of βP will not be related to the residual
sum of squares. This suggests that when the noise level is high, partial sketching may become
preferable to complete sketching (Dhillon et al., 2013; Becker et al., 2015).

The hierarchical model for complete sketching provides an intuitive statistical perspective on
the mechanics of the algorithm. Partial sketching seems to lack a similar conceptual device. The
least squares coefficients can be represented as the solution to the linear system of equations
X TXb = X Ty. Partial sketching simply returns the solution, b, to the approximate linear system
X̃ TX̃ b = X Ty. Lacking a convenient representation for the estimator, we must proceed in a more
pedestrian manner. The mean squared error of the estimator βP can be determined using only
mean and variance information, and this will be the goal for now. The key observation is that
(X̃ TX̃ )−1 | y, X ∼ iw{k , k(X TX )−1}. Conditional on y and X , the estimator βP = (X̃ TX̃ )−1X Ty
is a linear combination of the elements of an inverse Wishart random matrix. However, this
is a nonstandard distribution, and it is difficult to express directly the distribution function of
βP. Despite this obstacle, it is straightforward to determine the mean and variance of βP. From
properties of the inverse Wishart distribution, it can be seen that the partial sketching estimator
is biased, with mean

ES(βP | y, X ) = k

(k − p − 1)
βF,

where it is assumed that k > p + 3. This motivates an alternative unbiased estimator

β∗
P = (k − p − 1)

k
(X̃ TX̃ )−1X Ty = (k − p − 1)

k
βP.
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Determining the variance of βP and the unbiased β∗
P is a more lengthy computation, which is

given in the Supplementary Material. The variance of the unbiased estimator β∗
P is

var(β∗
P | y, X ) = (k − p − 1)

(k − p)(k − p − 3)

{
mssF(X TX )−1 + k − p + 1

k − p − 1
βFβT

F

}
. (4)

By making a connection with method-of-moments estimation it is possible to establish asymptotic
normality of both βP and β∗

P as k tends to infinity. This motivates the construction of approximate
confidence intervals. As the exact variance is unknown, we propose the following estimator of
var(β∗

P | y, X ) using the sketched model sum of squares mssS:

(k − p − 1)

(k − p)(k − p − 3)

{(
k − p − 1

k

)
mssS(X̃ TX̃ )−1 + β∗

Pβ∗T
P

}
.

3.3. Relative efficiency

The relative efficiencies of complete and partial sketching are also of interest. As the plug-in
estimator βP has a greater mean squared error than β∗

P, it will not be considered in this subsection.
The performance of the complete sketching estimator βS and the unbiased partial sketching
estimator β∗

P will be compared in terms of mean squared error. As both βS and β∗
P are unbiased,

the mean squared errors can be computed using var(βS | y, X ) and var(β∗
P | y, X ). Comparing

(3) and (4), it can be seen that the variance of β∗
P is dependent on mssF whereas the variance of

βS is dependent on rssF. This suggests that the signal-to-noise ratio in the source dataset will
be an influential factor in determining which estimator is more efficient. In the Supplementary
Material it is shown that for k > p + 3 the relative efficiency can be bounded in terms of the
signal-to-noise ratio

R2
F

1 − R2
F

�
ES(‖β∗

P − βF‖2
2 | y, X )

ES(‖βS − βF‖2
2 | y, X )

� 2(k − p − 1)

(k − p − 3)

R2
F

1 − R2
F

.

When R2
F is close to 1, complete sketching can be orders of magnitude more efficient than

partial sketching; and when R2
F is close to 0, partial sketching can be orders of magnitude more

efficient than complete sketching.

3.4. Combined estimator

So far we have assumed that an analyst must choose between one of the two methods; but
obtaining both β∗

P and βS from a single sketch is computationally cheap and may be an attractive
strategy. The most demanding operation with the sketched data is calculating (X̃ TX̃ )−1. Given
this quantity, it is economical to compute both βS and β∗

P. Becker et al. (2015) mentioned that they
were investigating such a strategy, but did not give any details. Our development of a combined
estimator is motivated by the fact that, even when using a single sketch (ỹ, X̃ ), the two estimators
are uncorrelated, i.e., cov(β∗

P, βS | y, X ) = 0. This is established in the Supplementary Material
by taking iterated expectations and using the hierarchical model from § 3.1. A simple strategy is
then to take a weighted combination of βS and β∗

P. A combined estimator βC can be defined as

βC = φβS + (1 − φ)β∗
P

for some 0 � φ � 1. The value of φ that minimizes the mean squared error is φopt = tr{var(β∗
P) |

y, X }/[tr{var(β∗
P | y, X )} + tr{var(βS | y, X )}]. Use of the weighted estimator is expected to be
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most beneficial when the signal-to-noise ratio is moderate, i.e., R2
F ≈ 0.5. When the signal-to-

noise ratio is either very high or very low, there is little advantage in using the weighted estimator,
as either the complete or the partial estimator will dominate.

3.5. One-step correction

As noted by a referee, the combined estimator is related to another strategy in the sketching
literature for improving βS. Dhillon et al. (2013) and Pilanci & Wainwright (2016) proposed
a refinement procedure that uses gradient information from the source dataset. The one-step
corrected estimator is defined as

βH = βS + (X̃ TX̃ )−1X T(y − X βS) = {I − (X̃ TX̃ )−1X TX }βS + (X̃ TX̃ )−1X Ty. (5)

Now the least squares solution βF satisfies X T(y − X βF) = 0, so

βF = βF + (X̃ TX̃ )−1X T(y − X βF) = {I − (X̃ TX̃ )−1X TX }βF + (X̃ TX̃ )−1X Ty. (6)

Subtracting (6) from (5) gives the following expression for the error:

βH − βF = {I − (X̃ TX̃ )−1X TX }(βS − βF). (7)

The one-step estimator can be interpreted as a single step of the iterative Hessian sketch proposed
by Pilanci & Wainwright (2016), initialized at βS. Setting H̃ = (X̃ TX̃ )−1X TX , it follows from
(7) and Theorem 1(i) that

ES(‖βH − βF‖2
2 | y, X ) = EX̃

[
tr
{
k−1

rssF(X̃ TX̃ )−1(I − H̃ )T(I − H̃ )
}]

. (8)

The key terms in (8) are the random matrices (X̃ TX̃ )−1 and H̃ = (X̃ TX̃ )−1X TX . As (X̃ TX̃ )−1 |
y, X ∼ iw{k , k(X TX )−1}, it is possible to evaluate the expectation in (8) using the first, second
and third moments of the inverse Wishart distribution. The exact expression for (8) is lengthy
and is given in the Supplementary Material. The main conclusions are that the one-step estimator
βH can have a larger mean squared error than βS when the ratio k/p of sketch size to number
of variables is close to 1. As k/p increases, the one-step estimator becomes more efficient than
both βS and βC with the optimal weight φopt. The relative efficiency of βC to βS is at most 2. The
relative efficiency of βH to βS can be much higher, provided that k/p is sufficiently large.

4. Asymptotics

4.1. Preliminaries

Finite-sample distributions of random projection estimators can be mathematically intractable,
and thus asymptotic analysis can be a powerful tool (Diaconis & Freedman, 1984; Li et al., 2006).
It is very difficult to establish meaningful finite-sample results for the Hadamard and Clarkson–
Woodruff sketches, as they are discrete distributions over an enormous combinatorial space.
Instead, it is useful to study the large-n distribution of the estimators βS and βP to obtain an
interpretable expression.

As βF is the estimand in sketching algorithms, conditioning on the source data is required in
the asymptotic analysis. To elaborate, let A(n) = (y(n), X(n)) represent the n×d source data matrix
of full column rank. Any source data matrix A(n) has a set of associated least squares coefficients,
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which will be denoted by β
(n)
F here. The overall goal is to determine the asymptotic form of the

distributions p(βS | A(n)) and p(β∗
P | A(n)) for some arbitrary large dataset A(n). To take limits,

we employ a fixed sequence of n × d datasets, all of rank d.
Some related work has been done by Ma et al. (2015), who developed Taylor series approxima-

tions for the bias and variance of data-aware sketched regression estimators, where the asymptotic
expansion is taken in the sketch size k . In independent work, Dobriban & Liu (2019) examined
the behaviour of data-oblivious sketching algorithms in the asymptotic regime where k , d → ∞,
using elements of random matrix theory. Our work is novel, as we study data-oblivious random
projections in the regime where k and d are fixed, while taking limits in the number n of source
observations.

4.2. Sketching central limit theorem

A central limit theorem for sparse sketching matrices with independent entries is given in Li
et al. (2006). The Clarkson–Woodruff sketch and the Hadamard sketch have dependent entries,
so we use a different method of proof. Under some regularity conditions, the Hadamard and
Clarkson–Woodruff sketches produce sketched data that asymptotically have the same matrix
normal distribution as under the Gaussian sketch.

The k × d random matrix Ã is the output of a stochastic process governed by the fixed n × d
source dataset A(n) and the distribution of the random k × n sketching matrix S. Each column of
the sketched dataset is a linear combination of random vectors, the number of which increases
with n. Under an assumption on the limiting leverage scores of the source data matrix, we can
establish a central limit theorem for the sketched dataset. The leverage scores of the observations
in the source data matrix have been identified as an important structural property of sketch-
ing algorithms (Mahoney & Drineas, 2016). Assumption 1 highlights their role in establishing
asymptotic normality of the sketched data matrix.

Assumption 1. Let A(n) = U(n)D(n)V T
(n) be the singular value decomposition of the n × d

source dataset, and let uT
(n)i be the ith row in U(n). The maximum leverage score tends to zero,

that is,

lim
n→∞ max

i=1,...,n
‖u(n)i‖2

2 = 0.

Theorem 2 is the sketching central limit theorem. Its proof is given in the Supplementary
Material.

Theorem 2. Consider a sequence of arbitrary n × d data matrices A(n), where d is fixed. Let
A(n) = U(n)D(n)V T

(n) be the singular value decomposition of A(n), and let S be a k×n Hadamard or
Clarkson–Woodruff sketching matrix where k is also fixed. Suppose that Assumption 1 is satisfied.
Then, as n tends to infinity, the following convergence in distribution holds:

{ÃV(n)D
−1
(n) | A(n)} → mn(0, Ik , Id/k),

where mn denotes the matrix normal distribution.

4.3. Sketching estimators

The central limit theorem for the sketched data suggests that the results on βS and βP for the
Gaussian sketch will also hold approximately for the Hadamard and Clarkson–Woodruff sketches
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for large n. To establish convergence of the estimators it helps to make an extra assumption on
the sequence of source datasets.

Assumption 2. We have that

lim
n→∞ n−1

(
yT
(n)y(n) yT

(n)X(n)

X T
(n)y(n) X T

(n)X(n)

)
= Q

for some positive-definite matrix Q.

The limiting matrix Q allows one to avoid specifying a probability model for the source dataset,
without overcomplicating the mathematical analysis. Under Assumptions 1 and 2, it is possible
to establish an asymptotic result for βS and βP.

Theorem 3. Suppose that Assumptions 1 and 2 hold, k � p, and βS is computed using a
Hadamard or Clarkson–Woodruff sketch. Let (X̃ TX̃ )+ denote the Moore–Penrose pseudo-inverse
of (X̃ TX̃ ). Let

C̃(n) = rss
(n)
F

k
(X̃ TX̃ )+, C(n) = rss

(n)
F

k − p + 1
(X T

(n)X(n))
−1.

Then, as n → ∞, the following convergence results hold in distribution:

(i) {C−1/2
(n) (βS − β

(n)
F ) | A(n)} → Student(0, Ip, k − p + 1);

(ii) {C̃−1/2
(n) (βS − β

(n)
F ) | A(n)} → N (0, Ip).

The proof is given in the Supplementary Material. For large n we expect βS to be approximately
distributed as per Theorem 1 for both the Hadamard and the Clarkson–Woodruff sketches.

It is harder to establish a comparable limit theorem for β∗
P, because of the nonstandard distri-

bution of β∗
P when a Gaussian sketch is used. Instead, we wish to show that the partial sketching

estimators under the Hadamard and Clarkson–Woodruff sketches have similar mean and vari-
ance properties to the Gaussian partial sketching estimator. Convergence in moments can be
established given a stability condition on the singular values of the sketched data matrix.

Assumption 3. The sequence of source datasets is such that ES{1/σ 4
min(n

−1X̃ TX̃ ) | y, X } is
finite for large enough n, where σmin(·) denotes the minimum singular value of a matrix.

This additional regularity condition enables a formal limit theorem regarding the moments of
β∗

P to be established.

Theorem 4. Suppose that Assumptions 1–3 hold, k > p + 3, and β∗
P is computed using a

Hadamard or Clarkson–Woodruff sketch. Let

C(n) = (k − p − 1)

(k − p)(k − p − 3)

{
mss

(n)
F (X T

(n)X(n))
−1 + k − p + 1

k − p − 1
β

(n)
F β

(n)T
F

}
.

Then, as n → ∞:
(i) ES{β∗

P − β
(n)
F | A(n)} → 0;

(ii) varS{C−1/2
(n) (β∗

P − β
(n)
F ) | A(n)} → Ip.
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The proof is given in the Supplementary Material. This theorem suggests that the conditional
bias and variance of β∗

P under the Clarkson–Woodruff and Hadamard sketches should be approx-
imately equal to those under the Gaussian sketch. The results here are meant to provide useful
heuristics for assessing the uncertainty associated with the output of the randomized approxima-
tion algorithm. There is a need to quantify the approximation error of sketching algorithms and
communicate it to end users (Lopes et al., 2018), for which the asymptotic results developed in
this section may be helpful.

5. Unconditional results

The previous analysis treated the source dataset as fixed to isolate the approximation error
introduced by the random projection. When sketching is used for statistical inference, the hier-
archical model of § 3.1 can be extended to include a source of variation at the population level.
We take the design matrix X to be fixed and treat the response y as random. The assumed
data-generating process is y = X β0 + ε, where ε is a vector of n independent and identically
distributed random variables with mean zero and variance σ 2. Let γ 2 represent the average mean
function sum of squares, so γ 2 = ‖X β0‖2

2/n. As shown in Searle (1997), at the population level
the ordinary least squares estimator satisfies Ey(βF | X ) = β0, vary(βF | X ) = σ 2(X TX )−1,
Ey(rssF | X ) = (n − p)σ 2 and Ey(mssF | X ) = pσ 2 + nγ 2. Taking iterated expectations, it
can be seen that the Gaussian sketch gives an unbiased estimator of the population parameter
β0: Ey(βS | X ) = Ey {ES(βS | y, X )} = Ey(βF | X ) = β0. The same argument shows that
Ey(β

∗
P | X ) = β0. In the Supplementary Material, we use the law of total variance to determine

the unconditional variances

vary(βS | X ) = σ 2(X TX )−1 + (n − p)σ 2

(k − p − 1)
(X TX )−1,

vary(β
∗
P | X ) = σ 2(X TX )−1 + (k − p − 1)

(k − p)(k − p − 3)

[
(pσ 2 + nγ 2)(X TX )−1

+ k − p + 1

k − p − 1

{
σ 2(X TX )−1 + β0β

T
0

}]
.

For large n, the most significant term in the unconditional variance of βS is nσ 2(X TX )−1. The
dominating term in the unconditional variance of β∗

P is nγ 2(X TX )−1, a function of the average
model sum of squares γ 2. We reach conclusions similar to those of the conditional analysis in
§ 3.3, in that βS is expected to be more efficient when the signal-to-noise ratio is high, while β∗

P is
expected to be more efficient when the signal-to-noise ratio is low. Under Assumptions 1–3, the
variance expressions give asymptotic approximations for the Hadamard and Clarkson–Woodruff
projections. These results can be extended to account for more complicated error models on ε

if it is still possible to determine Ey(βF | X ), vary(βF | X ), Ey(rssF | X ) and Ey(mssF | X ).
Raskutti & Mahoney (2016) provides further results on the performance of sketching estimators
from an inferential perspective.

6. Data application

6.1. Human leukocyte antigen locus dataset

We compare the performance of the sketching estimators on a genetic dataset from the UK
Biobank database. We use a small extract of the data in Astle et al. (2016). The selected response
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Fig. 1. Bias of partial sketching estimators on the HLA dataset: panels (a)–(c) show results for βP and panels (d)–
(f) results for the bias-corrected estimator β∗

P ; mean estimates are plotted against the true values. In this scenario
n = 132 353, p = 1000 and k = 1500. The solid line in each panel is the identity line, and the dashed line in panels

(a)–(c) represents the theoretical bias factor.

variable is mean red cell volume, taken from the full blood count assay and with adjustments for
various technical and environmental covariates. Genome-wide imputed genotype data in expected
allele dose format were available on n = 132 353 study subjects (Howie et al., 2009; Bycroft
et al., 2018). We consider 1000 genetic variants in the human leukocyte antigen, HLA, region of
chromosome 6, selected so that no pair of variants had squared Pearson correlation of posterior
expected allele doses greater than 0.8. We chose to focus on this region because many associations
have been discovered in a genome-wide scan using univariable models; these associations were
with variants having different allele frequencies, which suggests multiple distinct causal variants
in the region. The aim is to perform a multivariable regression analysis to obtain variant effect
size estimates that are conditional on the other variants in the region.

An early theoretical finding was that the partial sketching estimator βP is biased. One thousand
sketches were taken to estimate the bias ES(βP −βF | y, X ) with k = 1500. We also computed the
bias-corrected estimator β∗

P in each replication. Figure 1 plots the average value of the estimators
against the true value of the least squares coefficient using the full dataset. The top row shows
results for βP, and the bottom row shows results for β∗

P. The left, middle and right columns display
results for the Gaussian, Hadamard and Clarkson–Woodruff sketches, respectively. The solid line
in each panel is the identity line. The dashed line in the top row represents the theoretical bias,
with slope k/(k − p − 1).

The results in panels (a)–(c) show that βP is biased for each of the random projections. The
bias closely matches the theoretical factor. Panels (d)–(f) show that the adjusted estimator β∗

P
appears to be unbiased, with the mean values falling close to the identity line.

We also compared the complete and partial sketching estimators in terms of mean squared
error and coverage of confidence intervals at k = 1500 and k = 10 000. Moreover, we compared
the data-oblivious sketches to simple uniform subsampling with replacement. Table 1 reports
the mean squared error for each of the estimators. The signal-to-noise ratio is quite low for
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Table 1. Mean squared errors of sketching estimators on the HLA dataset
k = 1500 k = 10 000

βS βP β∗
P βS βP β∗

P

Gaussian 238 (3) 39 (0.7) 3.8 (0.08) 13.3 (0.17) 0.28 (0.004) 0.21 (0.002)
Hadamard 238 (4) 39 (0.7) 3.8 (0.07) 12.5 (0.16) 0.26 (0.003) 0.20 (0.002)
Clarkson–Woodruff 241 (3) 38 (0.8) 4.0 (0.05) 13.2 (0.16) 0.28 (0.004) 0.21 (0.002)
Uniform 375 (15) 105 (7.6) 10.7 (0.55) 13.8 (0.20) 0.38 (0.007) 0.29 (0.005)

Table 2. Coverage of confidence intervals; the largest standard error is 0.004
HLA HLA Flights

k = 1500 k = 10 000 k = 1500
βS β∗

P βS β∗
P βS β∗

P

Gaussian 0.950 0.953 0.950 0.951 0.948 0.951
Hadamard 0.949 0.949 0.954 0.954 0.950 0.948
Clarkson–Woodruff 0.947 0.952 0.951 0.950 0.948 0.947

Table 3. Timings for sketching: average times to compute the
sketched dataset Ã = SA, in seconds

HLA Flights
k = 1500 k = 10 000 k = 5000

Gaussian 522 3479 404
Hadamard 57 65 5.8
Clarkson–Woodruff 5.3 5.4 0.2

this dataset, with R2
F = 0.02. We expect that partial sketching will be much more efficient than

complete sketching on this dataset given the low signal-to-noise ratio. The simulation results
support this prediction, with β∗

P having a mean squared error roughly 60 times smaller than βS at
both values of k . The results are very similar for each of the random projections, suggesting that
the asymptotic approximations are reasonable for this dataset. For k = 1500, the mean squared
error of βP is approximately 10 times that of β∗

P. For k = 10 000 there is less of a difference, as
the ratio k/(k − p − 1) is closer to 1.

Table 2 summarizes the coverage of 95% confidence intervals for the sketching estimators. We
report the overall proportion of intervals containing the true value of the least squares estimate βF
over the 250 sketches and p = 1000 coefficients. The observed coverage is close to the nominal
level of 0.95 at both levels of k . The different random projections give very similar results,
suggesting that the use of asymptotic approximations is again reasonable for this dataset. The
intervals for the Hadamard sketch appear to be slightly conservative at k = 10 000.

Table 3 reports the average sketching times for the data-oblivious sketches. We computed 10
sketches using each projection. The Gaussian sketch is an order of magnitude slower than the
Hadamard projection and two orders of magnitude slower than the Clarkson–Woodruff sketch.

6.2. New York flights dataset

We also evaluated the sketching algorithms on the New York flights dataset available in the R
(R Development Core Team, 2021) package nycflights13 (Wickham, 2014). Arrival delay
was taken as the response, and departure delay, distance, departure time, origin, and month and
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Table 4. Mean squared errors of sketching estimators (with standard
errors in parentheses) on the flights dataset with k = 5000

βS βP β∗
P

Gaussian 60 (2) 14900 (400) 14900 (400)
Hadamard 63 (2) 14800 (500) 13900 (400)
Clarkson–Woodruff 66 (2) 15000 (500) 13800 (400)
Uniform 64 (2) 14600 (500) 14600 (400)

day were chosen to be the covariates. Rows of the dataset with missing data were omitted, so that
we were left with n = 327 346 and d = 47. The goal is to compare the accuracy of the various
sketches on real data rather than to build a statistical model for the flights dataset. We compare
the mean squared error of the estimators and the coverage of confidence intervals for k = 5000.
In contrast to the HLA dataset, the flights dataset has a very high R2

F value of 0.99. We took 500
sketches to compare complete and partial sketching. See Table 4 for details.

7. Discussion

In recent years work has been done to adapt sketching methods for statistical inference in
large datasets, building upon the worst-case bounds developed in the computer science literature.
Geppert et al. (2017) and Bardenet & Maillard (2015) investigated sketching algorithms for
Bayesian regression, and derived bounds on the difference between the sketched posterior distri-
bution and the full-data posterior distribution. Only complete sketching was considered in those
works. The results on the advantages of partial sketching in this paper could motivate adaptations
that make use of the exact marginal associations X Ty. Sketching ideas have been used to develop
methods for approximate nonlinear regression (Banerjee et al., 2013; Avron et al., 2014). The
goodness of fit of the model may also influence the relative efficiency of different sketching algo-
rithms in more complex regression tasks. A related branch of work uses random projections to
reduce the number of predictors in regression and classification problems (Shah & Meinshausen,
2018; Guhaniyogi & Dunson, 2015; Cannings & Samworth, 2017).
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