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Abstract 
 

A sequencing-based analysis of epigenetic modifications of the mitochondrial 
genome 

Iacopo Bicci 

 
Methylation on CpG residues is one of the most important epigenetic modifications of 

nuclear DNA, where it regulates gene expression. Methylation of mitochondrial DNA 

(mtDNA) has been studied using whole genome bisulfite sequencing (WGBS), but 

recent evidence has uncovered major technical issues, which introduce a potential 

bias during methylation quantification. In this study, we first validate the technical 

concerns with WGBS using publicly available datasets. Then we develop and assess 

the accuracy of a protocol for variant-specific methylation identification using long-read 

based technology Oxford Nanopore Sequencing. Our approach circumvents mtDNA-

specific confounders, while enriching for native full-length molecules over nuclear 

DNA. Variant calling analysis against Illumina deep re-sequencing showed that all 

expected mtDNA variants can be reliably identified. By using simulated data sets, we 

were able to determine that the mtDNA methylation levels identified were likely false 

positives introduced by the technique. This observation was consistent across the 

multiple human primary and cancer cell lines and human tissues analysed in this 

study.  

 

We therefore conclude that CpG methylation is not an epigenetic modification 

occurring in human mtDNA, thus resolving previous controversies. Additionally, we 

developed a reliable protocol to study epigenetic modifications of mtDNA at single-

molecule and single-base resolution, with potential applications beyond CpG 

methylation 
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Chapter 1. Introduction 

1.1 Mitochondrial Biology  

1.1.1 Mitochondria origin 
Mitochondria are intracellular organelles present in the majority of the eukaryotic cells, 

specialised in energy production in the form of adenine triphosphate (ATP) through 

oxidative phosphorylation (OXPHOS)1. Through this latter process, the coupling of 

adenine diphosphate (ADP) and inorganic phosphate (Pi) through a redox reaction is 

linked to a transfer of electrons from reduced cofactors (NADH and FAD2) to O2, via 

the electron transport chain (ETC) protein complexes1. 

To postulate the origin of these organelles within eukaryotic cells, the most accredited 

explanation is the endosymbiotic theory, which hypothesises that mitochondria 

descend from free-living α-proteobacteria, a type of organism which requires the 

insertion into a host cell as a step required for its replication2. These original 

endosymbiotic cells are thought to have helped the evolution of eukaryotes by 

complementing their nuclear genes functions3. A more recent study has somewhat 

challenged this view, claiming that mitochondria in fact evolved from a prokaryote 

group that branched before α-proteobacteria4. Regardless, horizontal gene transfer 

from the mitochondrial to the nuclear genome of the host cell has been suggested to 

be the crucial step for the transition from endosymbionts to organelles3. This relocation 

of the mitochondrial genes during evolution of eukaryotes has been suggested by the 

observation that the majority of the proteins essential to the integrity, replication and 

expression of the mitochondrion structure and genome are indeed encoded by the 

nucleus2. This evidence were further supported by comparative analyses performed 

with the latest DNA sequencing technologies, which additionally unveiled the presence 

of non-functional nuclear mitochondrial sequences (NuMTs) within the genome of both 

plants and animals, including humans5. 

 

1.1.2 Mitochondrion structure 
Mitochondria possess a double phospholipid bilayer membrane, dividing the 

mitochondria into two internal aqueous compartments, the inter-membrane space 

(IMS) and the matrix6. 
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Figure 1.1: Mitochondrial structure. Transmission electron microscopy image of a round 

shaped mitochondrion. OMM: Outer mitochondrial membrane; IMM: Inner Mitochondrial 
Membrane, IMS: Inter Membrane Space. (scale bar = 100 nm). Adapted from Prudent J. et al, 
20157 

 

The latter is the innermost mitochondrial compartment, it has a high pH (7.9-8) and an 

elevated protein density, and it hosts key metabolic processes such as the tricarboxylic 

acid cycle (TCA, also known as Kreb’s cycle or citric acid cycle)8. The TCA is a series 

of chemical processes that participate to the breakdown of energy molecules (such as 

glucose) in order to produce NADH and FADH2 feeding into the OXPHOS1 reaction. 

In the matrix are also present multiple copies of mitochondrial DNA (mtDNA), and as 

such it is the site where mtDNA replication, transcription and translation happens.  

Enveloping the matrix, the inner mitochondrial membrane (IMM) is organised into 

invaginations called cristae, connected to the inter-membrane space (IMS, the second 

aqueous compartment the mitochondrion is divided in) at the cristae junctions9. The 

part of matrix contained within the cristae invaginations is called cristae lumen, and it 

is the site where the ATP production mainly takes place. This is due to the peculiar pH 

of the cristae lumen (7.2), forming the transmembrane electrochemical gradient driving 

the ATP synthesis, and the local concentration of the proteins of the ETC10. 

The cristae lumen is connected to the IMS via tubular openings located at the cristae 

junctions forming a complex structure called mitochondrial contact site and cristae 

organising system (MICOS)11. In this space, the proteins apt to the shuttling of 

metabolites, ions, ADP and ATP, along with the protein import complexes such as the 
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translocase inner membrane (TIM)11 are also contained. This protein forms a super 

complex with the other protein importer complex, the translocase outer membrane 

(TOM), located on the outer mitochondrial membrane (OMM). This latter membrane 

is more porous than the IMM, with ions and small uncharged protein freely traversing 

through porins such as the voltage-dependent anion channel (VDAC)12. The OMM 

also possess proteins functioning as tethers anchoring the mitochondrion to other 

cellular organelles, and that it plays a central role in shaping mitochondrial 

morphology13. 

 

1.1.3 Mitochondria function 
Mitochondria also play additional functions to energy production, such as regulators 

of apoptosis14,15, calcium homeostasis16–19, antigen presentation20 and various 

immune response functions21,22. Mitochondria are also the source of a variety of 

important metabolites used in many cellular functions, such as the by-products of the 

TCA cycle23, of the biosynthesis of cellular pyrimidines24, steroids, heme, and the β-

oxidation of fatty acids25. They also produce metabolites called reactive oxygen 

species (ROS), which have an important cellular signalling function, and mitochondria 

maintain the cellular redox balance through OXPHOS26.  

 

However, the principal activity of mitochondria is their capability to produce energy via 

OXPHOS and the ETC27. The latter is comprised of 4 complexes (I to IV), responsible 

of keeping the proton gradient across the IMM (except complex II), and two electron 

carriers (coenzyme Q10 and cytochrome C). All of these proteins are required for the 

correct functioning of the ATP synthase, or complex V28. Complex I (also called NADH-

ubiquinone oxidoreductase) is comprised of 45 subunits, of which only 7 are encoded 

by the mtDNA (the rest are nuclear), while complex II (or succinate dehydrogenase) 

contains 4 completely nuclear-encoded subunits29,30. Complex III (or ubiquinol-

cytochrome c oxidoreductase) has 11 subunits, only one of which is encoded by 

mtDNA (cytochrome b), whereas Complex IV (or cytochrome c oxidase) possesses 

14 subunits (3 mitochondrial and the rest nuclear)31,32. Finally, Complex V (the ATP 

synthase) has 19 subunits and only MT-ATP6 and MT-ATP8 encoded by mtDNA33. 
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Figure 1.2: Overview of the respiratory complexes machinery and the TCA cycle. 
The complexes forming the respiratory chain (in purple) are shown embedded in the 
mitochondrial inner membrane, and the electron transfer is shown. The steps of the TCA cycles 
are shown inside the mitochondrial matrix, and the formation of NADH and FADH2 is shown. 
Complex V (ATP synthetase is represented in purple at the end of the respiratory chain. Adapted 
from Martinez-Reyes et al. 202034 

 

NADH and FADH2 produced by glycolysis, the TCA cycle and/or the β-oxidation of 

fatty acids supply the electrons to Complex I and II, respectively, where NADH is 

oxidised to NAD+ and FADH2 to FAD. The electrons are then transferred to Coenzyme 

Q10 thanks to reduction of ubiquinone to ubiquinol. This process facilitates the transfer 

of 4H+ ions through the IMM, in order to generate the electrochemical gradient35 

Ubiquinol is then oxidised by the Q cycle of Complex III, where electrons pass to 

cytochrome c (via its reduction), facilitating even more transfer of H+ ions through the 

IMM36. Finally, electrons flow through cytochrome c to oxygen (the final electron 

acceptor), through the action of Complex IV, which again facilitates the passing of H+ 

ions through the IMM. 
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The electron transfer process generates reactive oxygen species (ROS), which can 

on one side participate in mitochondrial signalling37 and on the other potentially 

damage cellular components38. The proton gradient across the IMM generated by the 

ETC complexes creates the so-called proton-motive force necessary for the ATP 

synthase to generate ATP from ADP and Pi, through a rotary catalysis process39. 

 

1.2 Mitochondrial genomics  

1.2.1 The mitochondrial genome organisation 
In addition to chloroplast DNA in plants, mtDNA is the only source of critical cellular 

proteins outside the nucleus of eukaryotic cells, and it is usually organised as a circular 

double-stranded DNA molecule. 

The length in humans is generally consistent around 16569 base pairs (bp), but its 

length may vary greatly in other species (up to thousands of Kbp in angiosperms40)41. 

The two strands have a different nucleotide composition, which makes them possible 

to separate physically by density centrifugation in alkaline thiophosgene (CsCl2) 

gradient42. The lighter strand (L-strand) is rich in cytosine residues, while the heavy 

strand (H-strand) has a higher guanine content. 

Moreover, mtDNA is present in multiple copies inside of the mitochondria (between 

100 and 10’000 copies), varying according to the cellular energy demands43. The 

mitochondrial genome contains 37 genes, the majority (28) on the H-strand and only 

9 on the L-strand. Of these, 13 genes encode essential subunits of the Complexes I, 

III, IV and V of the mitochondrial respiratory chain, essential for energy production 

through OXPHOS. Additionally, 24 genes encode for transport RNA (tRNA) molecules 

and 2 for the essential components of the mitochondrial ribosome: 16s rRNA and 12s 

rRNA43. Unlike nDNA, ~93% of the mtDNA is comprised of coding regions, lacking 

introns, and two sets of genes (MT-ATP6/MT-ATP8 and MT-ND4/MT-ND4L) share an 

overlapping region of the H-strand during transcription (Figure 1.3). 
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Figure 1.3: Mitochondrial genome structure. The two strands are shown, with the H-

strand on the outer and the L-strand in the inner side. Non-coding D-loop is show in black, the 
two rRNA genes in red and tRNA genes in yellow. Other genes forming subunit of the respiratory 
chain are shown. Adapted from Stewart and Chinnery, 201544 

 

The rest of the genes are mostly contiguous, with coding genes usually separated by 

a tRNA and/or a few non-coding base pairs (Figure 1.3). 

Only one significant non-coding region (NCR) is present in mtDNA, called the 

displacement loop (D-loop), because it has incorporated a small single strand DNA 

(called 7s DNA), complementary to the L-strand. The exact function of this structure 

has been debated, and it has been suggested that it probably plays a role in the 

regulation of mtDNA topology, replication or even association to the matrix 

membrane45. This NCR contains the sites for the initiation of mtDNA replication (called 

origin of the heavy strand synthesis, or OH), two promoters for the transcription of the 

H-strand (HSP1 and HSP2) and one promoter for the transcription of the L-strand 
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(LSP), located on the opposite strand. The origin of the replication of the L-strand (OL) 

is located 11 kbp downstream of OH. 

The mitochondrial genetic code is also different from the nDNA, as not all codons 

encode for the same amino acids as in nDNA, and two non-conventional codons 

(“AGA” and “AGG”) induce a frameshift in human mitochondrial ribosomes46. 

During the formation of the mammalian zygote, sperm mtDNA is removed by 

ubiquitination during the transport through the male reproductive tract47. For this 

reason, mtDNA is maternally inherited, and the mtDNA content of the zygote is only 

determined by the contents of the unfertilised egg43. 

 

1.2.2 Nucleoids structure 
In a parallel fashion to nDNA, mtDNA molecules are also packed around proteins, in 

order to form structures called nucleoids48. Nucleoids are mostly localised to the 

cristae junction of the IMM, although they could be identified in other parts of a 

mitochondrial network49,50. The protein responsible of nucleoids formation is the 

Mitochondrial Transcription Factor A (TFAM), and it has been described that up to 

over 1000 copies of this protein may coat a single mtDNA molecule51–53. Previous 

estimates gave a range from 2-10 molecules for every nucleoid, but recent evidence 

on stimulated emission depletion super resolution microscopy (STED) challenged 

those results and confirmed the presence of a single mtDNA molecule per nucleoid53. 

TFAM binding to mtDNA and to itself generate negative supercoiling, which bends the 

mtDNA molecule compacting and reducing its size54. Other proteins have been 

identified associated with mtDNA and TFAM in nucleoids structures, namely: the 

transcription factors B1M and B2M and the single stranded binding protein (SSBP1)55.  

 

1.2.3 mtDNA copy number regulation 
As mentioned in paragraph 1.2.1, tissues with high energetic demands such as heart, 

muscles and the brain possess a higher number of mitochondrial copies comparing to 

others (such as the spleen, a far less energy-demanding tissue)56,57.  

The mitochondrial copy number is mainly maintained at an optimal level by nuclear-

encoded proteins which regulate mtDNA replication58, such as TWINKLE59, SSBP160, 

DNA polymerase γ (POLG)61 and TFAM, which levels are critical for the maintenance 

of mtDNA copy number62,63. 
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However, the regulation of mtDNA copy number was shown to be also dependent on 

a number of additional factors, including: metabolic and transport enzymes64, changes 

in mitochondria dynamics65, cytoskeletal proteins66, factors influencing mitochondrial 

biogenesis67, protein chaperones68 and various exonucleases and proteases69,70. 

 

1.2.4 Human mtDNA variation and mitochondrial diseases 
As mentioned previously, mtDNA is polyploid, with multiple copies present inside of 

the mitochondria (between 100 and 10’000 copies), varying according to the cellular 

energy demands43. When there is a condition of genetic homogeneity of the mtDNA 

molecules of a cell/organism we define this condition as homoplasmy. On the contrary, 

whenever there is a situation of co-existence between a wild type and mutant DNA, 

this condition is referred to as heteroplasmy. 

Because of the special circumstances of mtDNA inheritance (paragraph 1.2.1), there 

has been negligible intermolecular recombination of mtDNA43, although some studies 

have confirmed that it does in fact happen in human mtDNA as well71. On the other 

hand, the evolutionary rate of mtDNA is higher than the average nuclear gene72, 

resulting in a sequence variation that evolved as a sequential accumulation of 

maternally inherited mutations73. Because of this characteristic, it has been possible 

to retrace the whole human lineage back to a common matrilinear ancestor living 

approximately 200’000 years ago in Africa74–76. Subgroups of mtDNA haplotypes 

found in the present human genome pool which descend from a common ancestral 

mitochondrial genome are defined as haplogroups72. Thanks to analysis of human 

mtDNA haplogroups it has been possible to trace the migrations of humans out of 

Africa72. The common mtDNA variants that define an haplogroup are usually fixed 

(homoplasmic) in a population, and they generally do not possess any detrimental 

phenotypic effect43, although it has been suggested that some regional variation could 

be explained by favourable effects that these variants have on the adaptation to the 

environment. For example, in colder climates common variants have been associated 

to a looser coupling between oxidation and phosphorylation, which in turn may 

generate additional heat production at the expenses of ATP production, favouring the 

survival of human populations in those areas77. 

Some rare mtDNA mutations are the primary cause of mitochondrial diseases in 

humans, such as Leber hereditary optic neuropathy (LHON), mitochondrial 
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encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) and myoclonic 

epilepsy with ragged red fibers (MERRF) syndromes. These rare mutations have an 

estimated incidence of 1 in 500078 and they primarily occur on either tRNAs or protein 

coding genes. This in turn results in a reduced energy production, either through 

impairment of mitochondrial protein synthesis or through reduced activity of the RC 

enzymes79. Differently from haplogroups-defining variants, these rare mutations are 

often heteroplasmic, with notable exception such as the MT-ND1 primary LHON 

mutations (found in homoplasmy in > 90% of the cases)80. In the majority of the cases 

however, an heteroplasmic mutation has to reach a specific threshold to generate a 

pathological effect81,82, and this threshold is very specific according to both the 

mutation and the context in which it occurs81. In fact, heteroplasmy level of a 

pathogenic mutation can not only vary from one cell to another in the same organ, but 

also between organs of the same person, and people of a same family44,83. 

 

 
Figure 1.4: mtDNA mutations threshold effect. Mitochondria represented on the left 

have different level of heteroplasmy of their mutated mtDNA molecules. This does not result in 
a phenotypic defect. Only when the heteroplasmy of the mutation reaches a biochemical 
threshold we can have a deleterious effect, as represented on the mitochondria on the right. 
Adapted from Stewart and Chinnery, 201544 

 

1.3 Epigenetics and DNA methylation 

By definition, epigenetics is the field that studies phenotypic changes that are 

inheritable but not related to alterations of the DNA sequence. Unlike genetic 

modifications such as mutations or DNA rearrangements, epigenetic changes are 

usually reversible, and do not involve changes in the DNA sequence, but rather they 

affect how the genetic information is interpreted84. Epigenetic modifications include 

direct modifications of DNA (such as methylation of the 5th cytosine carbon) or 
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modifications of the histones tails, which influence chromatin accessibility85,86. The 

epigenome is responsible for maintaining the phenotype specification of individual 

cells and tissues, by maintaining the cell- or tissue-specific gene expression states87–

89. In mammals, it was thought that cytosine methylation in CpG context, a very stable 

epigenetic modification, was the only DNA modification present. However, recent 

evidence have shown presence of non-CpG cytosine methylation (in stem cells in 

particular90,91) or adenine methylation92 (although the presence of this latter 

modification in the mammalian genome is still somewhat debated93).  

Between 60-80% of the ~29 millions CpG residues of the human genomes are 

methylated94, and they are classified according to their density. CpG islands are 

defined as high density methylation-resistant areas, with 7% of the CpG sites located 

in these regions95. Around ~70% of the annotated gene promoters are associated to 

CpG islands96. 

 

1.3.1 De novo DNA methylation patterns 
Because of binding of transcription factors, exclusion by nucleosomes rearrangement 

or the action of histone modifiers (such as H3K4 methyltransferase SETD1A97), most 

of the CpG islands-associated promoters are protected from methylation97. Despite 

this, some promoters become methylated during development, repressing in turn the 

gene expression (de novo methylation)97. This process is executed by the action of 

the DNA methyltransferases DNMT3a and DNMT3b98, in complex with the protein 

DNMT3L, a related homolog lacking catalytic activity99,100. This protein is responsible 

for the recognition of unmethylated H3K4 and the recruitment of the de novo 

methyltransferases to the site99. 

The targeting of DNMT3a and DNMT3b to gene promoter is usually in conjunction with 

other repressors of the gene expression, such as histone deacetylases and H3K9 

methyltransferases101, and it is started by the binding of transcription factors97. The 

observed crosstalk between histone modification and DNA methylation suggest the 

former initiate the formation of heterochromatin and DNA methylation serve as a stable 

silencing of the target promoter97. 
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1.3.2 Maintenance of DNA methylation modifications 
In humans, DNA methylation patterns are transmitted during DNA replication through 

the action of the high-fidelity DNA methyltransferase DNMT1102,103, which shows a 

strong preference for hemi methylated DNA103. In fact, this protein gets recruited 

directly into the DNA replication fork through interactions with the protein PCNA and 

UHRF1, which recognises hemi methylated sites through its SRA domain104. 

The activity of DNMT1 is regulated through post-translational modifications97. The 

most important protein modulating DNMT1 stability through regulation of its 

methylation status is lysine-specific demethylase 1 (LSD1), which is then in turn 

essential for the maintenance of global DNA methylation patterns105.  

Another factor regulating DNMT1 stability during the S phase is the methylation of the 

lysine 9 of the histone H3, the binding site of UHRF1106. These kind of interactions 

with other heterochromatin-associated proteins make sure that DNMT1 is active and 

stabilised only during the DNA replication phase, to provide fidelity to global DNA 

methylation replication97. 

 

1.3.3 DNA methylation removal 
Two possible mechanisms of DNA methylation are known, either passive or active. 

Methylation is gradually removed from the DNA pool when it is not maintained during 

the successive replication rounds. In the active demethylation process, specific 

enzymes use energy to remove methyl groups bound to 5mC107. Such enzymes have 

been identified in the ten-eleven translocation (TET) enzyme family, TET1, TET2 and 

TET3108. To remove the methylation residue the first step is to oxidise 5mC to 

5hydroxymethylcytosine (5hmC), then to the other oxidated states 5-formylcytosine 

and 5-carboxylcytosine109. These modified bases have attracted much attention lately 

as they are being increasingly recognised as having independent roles as modifiers of 

gene expression rather than mere oxidated intermediates of 5mC107. DNA methylation 

is finally completed by either diluting the 5mC oxidation derivatives during replication, 

or by base excision repair110,111.  
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Figure 1.5: Diagram showing the cytosine oxidation states. a) Diagram representing 

the cytosine oxidation cycle. b) Individual reactions to generate the oxidised residues shown in 
diagram in a). DNMT: DNA methyltransferase; TET: ten eleven translocation; thymine DNA 
glycosylase; a-KG: Alpha-ketoglutarate; 5mC: 5-methylcytosine; 5hmC: 5-

hydroxymethylcytosine; 5fC: 5-formylcytosine; 5caC: 5-carboxylcytosine. Adapted from Kohli 

and Zhang, 2013107 
 

1.4 DNA methylation and gene expression 

As mentioned above, not only the distribution of CpG residues in the genome is non-

random, but their methylation status is also tightly regulated by the DNMT and TET 

enzymes. DNA methylation is essential for silencing retroviral elements, regulating 

tissue-specific gene expression, genomic imprinting, and X chromosome inactivation, 

and it may exert different influences on gene activities based on the underlying genetic 

sequence. 

 

1.4.1 Silencing of retroviral elements 
Transposable viral elements are potentially harmful DNA sequences that have the 

potential of being replicated and inserted in the human genome, causing gene 

disruption and DNA mutations112–116. It is estimated that 45% of the mammalian 

genome consists of transposable and viral elements that are silenced by bulk 
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methylation117. However, the majority of these elements are inactivated by DNA 

methylation or by mutations acquired over time as the result of the deamination of 

5mC118.  

As it is demonstrated in the case of the intracisternal A particle (IAP), one of the most 

aggressive retrovirus in the human genome118, one of the main roles of DNA 

methylation in intergenic region is to repress the expression of these potentially 

harmful elements. In fact, not only IAP is heavily methylated throughout life in 

gametogenesis, development, and adulthood118,119, but even within the embryo, when 

the rest of the genome is relatively hypomethylated, Dnmt1 maintains the repression 

of IAP elements119. On the contrary, when Dnmt1 is depleted by genetic mutations, 

leading to extensive hypomethylation, IAP elements are expressed118,120. 

 

1.4.2 How CpG island methylation controls gene expression 
As mentioned in paragraph 1.3, stretches of at least 200bp containing a high CpG 

density are defined as CpG islands, and are often found unmethylated87. Around 70% 

of gene promoters are found within these DNA regions96, especially those for 

housekeeping genes121, and for this reason they are usually found highly conserved 

between the species122. 

CpG islands have evolved to promote gene expression by the regulation of 

transcription factor binding and of the chromatin structure. In fact, a common feature 

of CpG islands is their low nucleosomes content compared to other DNA stretches123–

125, which are also often associated with histone modification involved in enhancing 

gene expression123,126. Despite more than half of the CpG islands are known to contain 

transcription start sites, they are usually devoid of other common promoter elements 

such as TATA boxes127. Despite this, CpG islands still enhance the accessibility of 

DNA and promote transcription factor binding, because many such binding sites are 

rich in GC residues. 

 

On the contrary, methylation of CpG islands results in stable silencing of gene 

expression128. As mentioned in the previous paragraphs, methylation patterns are 

established during both gametogenesis and early embryonic development, when CpG 

islands go through a process of differential methylation129–132, for example during the 
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establishment of imprinted genes125,129–131 (where the expression of a gene is 

determined by the parent of inheritance).  

Moreover, CpG island methylation regulates gene expression during development and 

stem cells differentiation128,133–136. Contrary to what could be expected, only CpG 

islands in intragenic and gene body regions (and not those associated with 

transcription start sites) have tissue-specific methylation patterns122,136–139. These 

regions are called CpG islands “shores”, they can be located as far as 2 kbp from CpG 

islands and their methylation correlates with a reduction in gene expression140.  

 

1.4.3 Methylation of CpG sites in gene bodies 
“Gene body” is defined as the region of a gene past the first exon, as it was shown 

that methylation of the first exon leads to gene silencing (similarly to promoter 

methylation)141. Experimental evidence show that methylation of the gene body is 

associated with elevated gene expression in dividing cells142–144, while this become 

not significant in slowly dividing or nondividing cells such as neurons144–146. Despite 

these evidence, it is still unclear how DNA methylation of the gene body specifically 

contributes to gene expression regulation. 

 

1.5 Reading DNA methylation patterns 

Although DNA methylation can impair gene expression directly by steric hindrance of 

transcription factor binding, a specific class of proteins achieves the same purpose by 

binding with high affinity to 5mC. In particular, DNA methylation is recognized by three 

separate families of proteins: MBD, UHRF and the zinc-finger proteins.  

MBD (methyl-CpG-binding domain) contain a conserved MBD domain that confers the 

proteins a high affinity for single methylated CpG sites147. This protein family includes: 

MeCP2 (the first identified methyl-binding protein), MBD1, MBD2, MBD3, and 

MBD4148–150. They are found highly expressed in the brain (more than any other 

tissues), as many MBDs are important for neural development and function151. A 

particular characteristic of most MBD proteins is the presence of a transcriptional 

repression domain (TRD), that allows MBD proteins to bind to a variety of repressor 

complexes147,152,153. Also, MeCP2 does not only act as a transcriptional repressor, but 

it also appears to have a unique role in the maintenance of DNA methylation. MeCP2 
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binds to DNMT1 via its TRD and can recruit DNMT1 to hemi-methylated DNA to 

perform maintenance methylation154.  

Another class of methyl-binding proteins are the ubiquitin-like, containing PHD and 

RING finger domain (UHRF) proteins, which includes UHRF1 and UHRF2. As their 

name implies, these proteins bind methylated cytosines via a SET- and RING-

associated DNA-binding domain155. However, contrary to MBD proteins, the primary 

function of UHRF proteins is not to bind to DNA and repress transcription. Instead, 

proteins of the UHRF family first bind to DNMT1, then they target it to hemi methylated 

DNA in order to maintain DNA methylation during DNA replication156–158. 

Finally, the third family of methylated DNA-binding proteins is composed of the protein 

Kaiso, ZBTB4 and ZBTB38, which all share the presence of a zinc-finger domain in 

their molecular structure159,160, and are found highly expressed in the brain. Similarly 

to proteins of the MBD family, zinc-finger domain proteins repress transcription in a 

DNA methylation-dependent manner159–162. 

These families of methyl-binding proteins also serve as a link between DNA 

methylation and modifications on the histone tails, as both the MBDs and the UHRF 

proteins interact with methylated DNA and histones to facilitate gene 

repression152,153,163–165. For example, not only MeCP2 recruits histone deacetylases to 

remove active histone modifications, repressing gene transcription163,166,167, but it also 

enhances the repressive chromatin state by recruiting histone methyl-transferases 

that add repressive H3K9 methylation167.  

 

1.6 Technologies used to study DNA methylation and mtDNA-
related problems 

1.6.1 Mass spectrometry 
The most sensitive technology that can be used to assess the methylation level of a 

DNA sample is based on mass spectrometry168. In the most recent method developed, 

DNA is analysed with liquid chromatography coupled with mass spectrometry (LC/MS) 

after digestion of DNA to individual nucleosides169. In the context of mtDNA research, 

this implies that mitochondria have to be isolated from the target cells/tissues before 

sequencing, to avoid contamination with nDNA. Therefore, steps that assure the purity 

of the mitochondrial preparation (WB, fractionation, sucrose gradient isolation, etc) 

first, and of the mtDNA elution later (such as RNAse treatment) are required169. The 
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earliest studies that identified methylation of the mitochondrial genome were based on 

this technology170,171 and the methylation that was measured was ~5%. These results 

were refined further by a 2018 study by Matsuda and colleagues169, which found even 

lower mtDNA methylation levels, at around 0.3%. Apart from the laboursome 

preparation protocol to analyse mtDNA methylation with this method, the principal 

disadvantage of mass spectrometry is that this technology does not provide any 

information on the DNA sequence, because each genome is digested to individual 

nucleoside level. 

 

1.6.2 Bisulfite sequencing 
Most of the technology currently available to measure DNA methylation, including the 

current gold standard whole genome bisulfite sequencing (WGBS) are based on the 

chemical treatment of DNA with sodium bisulfite. This reaction facilitates the 

conversion of unmethylated cytosines to uracils (which then become thymines upon 

PCR amplification), while leaving methylated ones unaffected. Based on this simple 

principle a variety of technologies have been developed, all with specific advantages 

and disadvantages, that are briefly described in the next paragraph. Some downfalls 

of using bisulfite treatment on DNA are worth for consideration. Firstly, the bisulfite 

treatment is very harsh, leading to DNA degradation and problems in PCR 

amplification, therefore large amounts of input DNA are often required. This problem 

is particularly important in mtDNA methylation research, as recent reports have in fact 

highlighted that bisulfite preferentially degrades unmethylated C-rich regions, such as 

the mitochondrial L-strand. This could potentially introduce biases in mtDNA 

methylation calculation, and this hypothesis will be explored in chapter 4 of this 

dissertation. 

The analysis of bisulfite-converted data require dedicated bioinformatic tools that are 

more sophisticated than those required for unconverted DNA. Usually the bisulfite-

converted reads needs to be aligned to a bisulfite-converted reference genome, in 

order to infer the methylation calls. 

As WGBS is based on Illumina sequencing, it suffers from the same issues common 

to other short-read sequencing technologies, such as mapping issues in repeated or 

low complexity regions (including heavily GC rich regions and repetitive DNA). These 
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problems are further exacerbated by the loss of sequence diversity following bisulfite 

conversion (see Figure 3.1)172. 

 

1.6.3 Other bisulfite-based sequencing technologies 
When only a small number of genomic loci are to be investigated (≤ 20), the most 

effective solution is amplicon sequencing, where DNA is treated with bisulfite first, then 

amplified with specific primers, barcoded and sequenced173. 

For a larger number of regions, capture-sequencing is usually preferred, as it avoid 

labour-intensive primer pairs design although it does require the synthesis of a probe 

panel. Capture by hybridisation can then be performed either before174 or after175–177 

bisulfite conversion. In this latter case, there is a risk of introducing biases in the 

methylation quantification based on the preferential binding of the probes to certain 

methylation states. This solution is usually cost-effective for large cohort-based 

studies, where commercially available probes panels are used178. 

 

Another cost-efficient solution to analyse mammalian genomes is reduced 

representation bisulfite sequencing (RRBS)136,179. This technology is based on the 

digestion of the target genomes by the restriction enzyme MspI, which cuts CCGG 

motives irrespective of their methylation state180. This enables the enrichment of 

regions of high CpG density such as CpG islands, enhancer and promoters95. RRBS 

has been found to be informative for 85% of CpG islands, representing < 3% of the 

genome and therefore greatly reducing sequencing costs180.  

However, it is obvious that the main drawback of RRBS is its reliance on the presence 

of MspI restriction sites. Also, MspI digestion creates an intrinsic lack of diversity at 

the beginning of all sequenced reads, which could possibly interfere with calibration 

and cluster detection on the latest Illumina sequencers181.  

 

1.6.4 Methylated DNA immunoprecipitation sequencing (Me-DIP seq) 
Me-DIP sequencing is a well-established approach for identifying CpG-rich genomic 

sequences and to identify differentially methylated regions. As the name implies, Me-

DIP sequencing is based on the immunocapture of methylated DNA residues using 

anti 5mC monoclonal antibodies, coupled with next generation sequencing of the 

isolated, fragmented products182. The high specificity of monoclonal antibodies make 
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this technique ideal for the specific detection of 5mC (either in CpG or non-CpG 

context), but also 5mGC or 5hmC as well183. DNA input requirements are also 

relatively low, and the downstream analysis is more straightforward compared to 

bisulfite-based methods, making Me-DIP seq an attractive alternative184. 

The principal downside of Me-DIP seq is that methylation levels cannot be resolved at 

single-base resolution level, nor hemi-methylation status can be determined. Me-DIP 

seq data is shown as differentially methylated regions (DMRs), which are represented 

as peaks of methylation enrichment across the genome. Since the maximum 

resolution size of the peaks is around 100-150 bases, this is usually sufficient for most 

studies, since methylation bordering CpGs has been shown to correlate significantly 

with regions distant up to 1 kbp138.  

If methylated regions are inferred by the read enrichment, unmethylated ones must be 

inferred by lack of reads. Therefore, predictions of unmethylated regions rely critically 

upon achieving high sequencing depths and more importantly by the use of 

appropriate controls (such as input DNA without enrichment or methylated and 

unmethylated DNA controls). 

Me-DIP seq has been used to detect mtDNA methylation in post-mortem blood and 

brain specimens, and brain region-specific patterns of methylation could be 

identified185. Also, when testing valproic acid toxicity on primary hepatocytes, Wolters 

and colleagues revealed using Me-DIP seq that some methylation modifications they 

identified on mtDNA were reversible after a 3-day washout period186. 

 

1.6.5 Single-molecule long-read sequencing 
Among the most recent developments in sequencing technologies there is the 

sequencing of very long fragments as single-molecule DNA (single-molecule long-

reads sequencing). These technologies have been developed by PacBio 

technologies, under the form of PacBio SMRT sequencing and by Oxford Nanopore 

Sequencing (ONS)187. The main advantage of these two methods is that they are able 

to sequence native, DNA (i.e.: not treated with any chemical reagent, including 

bisulfite, nor amplified with PCR). Therefore, they are able to avoid the biases 

introduced by bisulfite-induced DNA degradation and of the subsequent PCR 

amplification, while still collecting information at the individual cytosine level. Recent 

advancements in software development, in particular neural network technology, now 
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also allow the identification of modified bases from the raw signal coming from PacBio 

and ONS data188,189. These modifications are usually 5mC or 6-adenosine methylation 

(6mA), for which models are already provided by the software developers, although it 

is common that new models can be trained on ad-hoc controls to recognise other kinds 

of modified bases. 

A major advantage of long-read sequencing is the potential to phase epigenetic and 

genetic information, providing allele-specific 5mC patterns that allow insight into the 

effect of mutations, structural variants, or parental origin on gene regulation190,191. 

A downside of this approach is that since PCR amplification needs to be avoided to 

collect information on modified bases, a large amount of input DNA is required to 

obtain enough data (PCR can however still be performed in simple WGS approaches).  

 

1.6.6 PacBio SMRT sequencing 

 
Figure 1.6: PacBio SMRT sequencing principle. a) A schematic diagram of the SMRT 

sequencing. The adaptor binds to a polymerase immobilized at the bottom of a zero-mode 
waveguide, where the light excitation and emission occurs. b) (top) Sequencing-by-synthesis 
procedure; (bottom) graph showing PacBio raw signal intensities over time. Adapted from 
Rhoads and Au, 2015192 

 

The key technology at the hearth of SMRT sequencing are the so-called zero-mode 

waveguides, small nanowells that are able to contain a single DNA polymerase fixed 

at the bottom. In each of the nanowells a circularised DNA strand is then inserted, and 

the original DNA sequence is reconstructed by registering fluorescent pulses over 

time, emitted when a different fluorescently labelled nucleotide is incorporated by the 

polymerase (sequencing-by-synthesis)187. Therefore, with SMRT sequencing 

modified bases do not affect the basecalling of the sequence, but instead they 

influence the kinetics by which the polymerase incorporates the complementary 
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base188. By analysing inter-pulse durations, base modifications can be inferred by 

comparison to an in silico model or to an unmodified template188. The various patterns 

of perturbations depend on the genomic context in which each modification is inserted, 

and the magnitude of the perturbations of the polymerase kinetics depend on the 

modification itself188.  

Because of the way PacBio sequencing detects base modifications, the signal/noise 

ratio is usually low, and it varies greatly according to the modification analysed. 

Therefore, high read depths are recommended, for example 25x for 6mA or even as 

high as 250x for 5mC and 5hmC (unless they are enriched or modified beforehand to 

produce an even greater polymerase incorporation shift)193. Because of this issue 

SMRT sequencing typically only achieves single-molecule resolution for certain 

modifications, and using relatively short fragments (≤ 2 kb), which have to be read a 

large number of times by the polymerase190. 
 

1.6.7 Oxford Nanopore Sequencing (ONS) 
1.6.7.1 Overview of the technology and nucleotide calling 

In ONS, a single strand of a target DNA sequence is unwound through a protein pore 

by the action of a helicase placed at the edges of the DNA sequence by ad-hoc 

sequencing adaptors. The flow of the DNA strand through the pore interrupts an ion 

current which is maintained across the synthetic membrane in which the pore is 

embedded, and variations in the resulting electric signal are registered over time. 

Neural network-based algorithms are then capable to reconstruct the original DNA 

sequence by analysis of the electrical current variations, in a process called 

basecalling. Recent advances in basecalling technologies have enabled the 

identification of modified bases by their electric signature. In a typical bioinformatic 

workflow using ONS there are usually 3 steps: (i) basecalling with canonical bases 

only; (ii) anchoring the raw electric signal to a genomic reference and (iii) comparing 

the raw signal to a model to assess the probability of a specific base in that particular 

genomic context to be modified or not. 
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Figure 1.7: Principle of Oxford Nanopore Sequencing-based modified bases 
detection. On the left a diagram of a Nanopore is shown. When a DNA strand with unmodified 

bases passes through the nanopore, this produces a current registered over time, represented 
by the blue line in the diagram on the right. When a modified bases is sequenced, this can be 
seen as different in the electric current over time, represented as the red line in the diagram on 
the right.  Adapted from Xu and Seki, 2019189 

 

1.6.7.2 ONS accuracy and error rates 

Accuracy of basecalling can be assessed at the read level or at the consensus 

sequence level. The former measures the identity of individual basecalled reads to a 

known reference, while the latter measures identity of a consensus sequence 

constructed overlapping multiple reads coming from the same genomic location, and 

increases with the read depth (i.e.: accuracy of a consensus built using 10 reads is 

lower than one built with 100 reads). There may be a correlation between read and 

consensus accuracy, although more accurate reads do not necessarily produce more 

accurate consensuses. In fact, since random errors occur in the minority of their reads 

at their locus, it is unlikely that they will appear in the consensus. Therefore, Low 

accuracy reads are able to produce perfect consensus sequences, assuming their 

errors are random and the read depth large enough. Vice versa, high accuracy reads 

can produce an imperfect consensus if they contain systematic errors, irrespectively 

of the read depth.  

One of the main drawbacks of ONS is the elevated error rate compared to all of the 

other sequencing technologies. The most common errors found in ONS are insertions 

and deletions194. These are caused by the fact that, on one side the helicase that 

unwinds DNA through the nanopore does not do so always at a constant rate, and this 

results in more deletions when translocases speeds are high194. On the other hand, a 

major issue lies in homopolymeric repeats, which generate constant current 

alterations over time, and are challenging to interpret by the basecalling software195 . 
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Moreover, as with ONS it is possible to use native DNA or RNA, the accuracy can be 

further altered by the presence of secondary modifications like CpG methylation. 

In ONS, read and consensus accuracies depend on, and are improved with the 

advancement of both the sequencing chemistry (i.e.: better translocases, shorter 

pores, etc.) and the basecalling software. A characteristic of ONS since the company 

was formed in 2015 is the very fast rate at which these two aspects have improved196. 

Because of this and all the variables on which the accuracy determination depend on, 

to get an update estimate of the ONS accuracy, multiple aspects have to be 

considered, including pore and sequencing kit versions, basecalling software version 

and sample type (DNA/RNA, native/PCR).  

Currently (February 2022), in latest technology update by ONS, the company claims 

to achieve a raw read accuracy of 99.3% (https://nanoporetech.com/accuracy), which 

is higher than the maximum theoretical accuracy that could be achieved with the kit, 

pores and basecalling software version that were used in this study (which was 

performed between 2017-19). However, this accuracy is still very far from the levels 

that can be currently achieved with Illumina sequencing (>99.99%)197. 

Nevertheless, because of the constant rate of ONS technology improvements, it is 

advisable to consider re-analysing old sequencing data using the latest release of the 

basecalling software. 

 

1.6.7.3 Methylation calling with ONS 

Nanopolish198 is one of the most widely used software for modified bases detection 

using ONS. It shows a good correlation with WGBS regarding the calling of 5mC in 

mouse and human genomes199. Nanopolish already possess a model to assess 5mC, 

so usually the comparison with a non-methylated and methylated control is not 

needed. The output of Nanopolish is a log-likelihood ratio quantifying the probability 

for a base to be modified198. Other software for 5mC detection have been developed 

by independent laboratories, such as signalAlign200  mCaller201, DeepSignal202, 

DeepMod203, as well as software developed by ONS technologies, such as Megalodon 

(https://github.com/nanoporetech/megalodon)  or Tombo204. 6mA identification is 

usually less accurate than 5mC, and depends greatly on the development of accurate 

positive and negative controls. This holds true also for other modifications in general, 

since for software (including Nanopolish) which model a previous knowledge on the 

expected modification signal, the use of ad-hoc controls is fundamental201. These 

https://nanoporetech.com/accuracy
https://github.com/nanoporetech/megalodon
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controls are typically PCR amplicons either left untreated (negative control) or either 

synthesised chemically or treated in vitro with a modifying enzyme (such as a 

methyltransferase)198,201.  

Very recent advances of the basecalling software (after Guppy v3.2.1) now allow the 

direct basecalling of the modified bases on the raw electric signal. Despite still being 

restricted to 5mC in the CG and CC(A/T)GG contexts and 6mA in the GATC context, 

this technology is very promising as it avoids complicated downstream bioinformatic 

analyses. 

Despite this, the detection of DNA modifications with ONS is still in development, as 

we do not yet know the full extent of the modifications that can be observed, the 

sensitivity limits for each detection or ways to detect more than a modification at the 

same time. Moreover, ONS technologies frequently updates both the pore chemistry 

and the basecalling algorithms, so it is virtually necessary to re-train the algorithms at 

every upgrade. 

 

1.7 Mitochondrial DNA methylation 

As outlined in section 1.3 and 1.4, DNA methylation has been studied in detail in 

nDNA. In parallel to these studies, short after the discovery of mtDNA many groups 

have researched the presence and the possible role of 5mC methylation in mtDNA as 

well (see paragraph 1.7.1). However, contrary to what has been established for 

nDNA, there is still not agreement over not only the role but also the existence of 

relevant methylation on mtDNA. 

 

1.7.1 Early evidence 
In 1971, the group by Vanyushin and colleagues reported activity of DNMT1 in 

mitochondria of loach embryos205. This was the very first evidence that suggested that 

mtDNA could be methylated. The first study that measured 5mC levels in mtDNA was 

performed in 1973 by the same group that discovered mtDNA170. Using mass 

spectrometry, they were able to demonstrate that 5mC was the only DNA modification 

present in mtDNA of various cell lines, but they reported levels well below those 

present in nDNA, at around 2-5% methylation170. Also, because of the technology used 

it could not be possible to determine sequence information, nor they could identify 

which methyltransferase was responsible for the maintenance of the observed low 
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methylation levels. These results were also challenged by a report published shortly 

after, dismissing the observed methylation as an artefact206. These initial reports 

contributed to picture mtDNA as essentially deprived of significant methylation, a view 

that would endure for decades. Despite this, other groups were reporting DNMT1 

activity in mitochondria isolated from beef heart207, and later it was also reported the 

5mC mitochondrial methylation profile in tissues of various species171. However, the 

main view remained that mtDNA was not methylated, thus the few studies that 

followed these early reports confirmed the reported low levels of methylation, although 

without reporting sequence information208,209. 

 

1.7.2 Recent studies 
In 2001, the first major breakthrough in mtDNA methylation research came from a 

study performed by Shock and colleagues210. When analysing the DNMT1 sequence, 

they noted the presence of additional ORFs, one of which producing a peptide with 

possible mitochondrial targeting. After establishing that the peptide could produce a 

mitochondrially-targeted DNMT1 isoform, they arguably show presence of DNMT1 in 

mitochondria by fractionation and WB. Then, they established that the mitochondrially-

targeted DNMT1 was associated to mtDNA, and further identifying some levels of 5mC 

associated with mitochondrial genes by immunoprecipitation. They also reported 

presence of 5hmC in mtDNA for the first time209. Recently, another study showed that 

the mitochondrially-targeted DNMT1 corresponds to the isoform 3 of DNMT1211.  This 

report paved the way for a new wave of research focussed on identifying mtDNA 

methylation and its possible role.  

 

1.7.2.1 Environment effect on mtDNA methylation 

Several studies have been conducted on a Belgian cohort of mothers and new-borns 

(ENVIRONAGE cohort212) over the years, which explored the effect on babies and 

mothers of environmental stressors. For example, they explored the effect of 

pregnancy smoking or exposure to pollutants during pregnancy on different 

phenotypic variables on the newborns, including mtDNA methylation. Within this 

framework, the researchers identified over the years differences in the methylation of 

mitochondrial genes MT-RNR1, MT-TF and the D-loop between patients and 

controls213–219. Another study measured whether mtDNA methylation was affected in 
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the newborn by intrauterine growth restriction and preeclampsia, and found that 

mtDNA levels were increased in all pathologic groups compared to control, while D-

loop methylation was further decreased in the most severe cases and associated to 

umbilical vein pO2. MT-CO1 methylation levels were inversely correlated to mtDNA 

content220.  

 

1.7.2.2 mtDNA methylation research in cancer 

Another field where mitochondrial DNA methylation was extensively investigated is 

cancer research. Although an initial pre-2011 study failed to identify any relevant 

methylation in cancer cell lines221, shortly after the report by Shock and colleagues210, 

mtDNA methylation was found associated with the L1 region of the papillomavirus 

HPV16 in samples from infected patients, prompting the suggestion that it could be 

used as a marker for precancerous and cancerous cervix disease222. Studies 

conducted on colon cancer samples revealed instead that demethylation of the D-loop 

region in patients possibly modulated mtDNA copy number MT-ND2 expression, 

facilitating cancer growth223–225. In a study that took both nDNA and mtDNA sequence 

differences into account, various CpG residues distributed across the whole 

mitochondrial molecule were differentially methylated in cell lines derived from 

glioblastoma and osteosarcoma patients226.  

 

1.7.2.3 mtDNA methylation and ageing 

Detailed analysis of a large number of human blood samples part of a cohort 

comprising all possible age groups revealed methylation of the MT-RNR1 gene and 

the co-presence of both unmethylated and methylated cytosines in most samples. 

High methylation levels (>10%) were more frequent in old women with respect to 

younger controls227. A 9-year-long follow-up survey showed that subjects with high 

methylation levels exhibit a mortality risk significantly higher than subjects with low 

levels227. A similar analysis on a smaller and different sample group detected low and 

variable levels of mtDNA methylation at 54 of 133 CpG sites interrogated, with 12S 

ribosomal RNA gene showing an inverse correlation with subject age228. 

 

1.7.2.4 Role of mtDNA methylation in neurological diseases 

The presence of mtDNA methylation was linked to motor neuron cell death, through 

DNMT3a upregulation229. DNMT3a (but not DNMT1) was found in mitochondria of 
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skeletal muscle and CNS of transgenic mouse models of amyotrophic lateral sclerosis, 

together with a peculiar 5mC pattern on mtDNA230. Post-mortem brains of patients 

with late-onset Alzheimer’s disease showed decreased methylation levels compared 

to controls231, while they were found increased in another study232. Loss of methylation 

in the D-loop was observed in substantia nigra of Parkinson’s patients compared to 

controls232. A study based on the analysis of post-mortem brain tissues revealed 

region-specific patterns of mitochondrial DNA methylation185. 

 

1.7.2.5 Role of mtDNA methylation in stem cells research 

The first study that examined mtDNA methylation presence in human stem cells was 

part of a bigger project aiming at mapping 5hmC distribution at a single-base 

resolution. Coincidentally, the authors found that the highest presence of non-CpG 

5hmC presence was in mtDNA, although no explanation on the mechanism was 

investigated233. Another group showed that after inactivation of Dnmt1, Dnmt3a, and 

Dnmt3b in mouse embryonic stem (ES) cells, a reduction of the CpG methylation in 

the D-loop was observed, while the non-CpG methylation was apparently not 

affected234. This suggested that D-loop epigenetic modification is probably only 

partially established by those enzymes234. A recent report studying mtDNA 

methylation patterns during development reported methylation presence as early as 

soon after implantation, with DNMT1 as the main enzyme responsible for establishing 

and maintaining such modification 235. 

 

1.7.2.6 mtDNA methylation and its identification in other diseases 

A 2015 study showed both in an in vitro model and in human retinal microvasculature 

from donors with diabetic retinopathy that the retinal mtDNA is hypermethylated in 

diabetes, and compared to other regions of mtDNA, the D-loop showed higher degree 

of methylation236. Also, Dnmt1 appears to play an active role in mtDNA methylation, 

as its expression is increased in the mitochondria, and inhibition of Dnmt1 by its siRNA 

ameliorated hyperglycaemia-induced decrease in mtDNA transcription and increase 

in apoptosis, suggesting a critical role of D-loop methylation in the development of 

diabetic retinopathy236. 

Clusters of methylated cytosines were described in the D-loop of senescent 

endothelial cells, where based on their position it was hypothesised that that could 

play a role in mtDNA replication rather than gene expression237.  
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Another study tested the effect of the antiepileptic drug valproic acid in vitro on primary 

human hepatocytes and found that 7 mtDNA regions are transiently hypomethylated 

when cells are temporarily exposed to the drug186. 

In a cohort of overweight and obese patients platelet mtDNA was assessed for 

methylation to test whether it could be used as a predictor for cardiovascular disease 

(CVD). This study found that methylation of the MT-CO1, MT-CO3, and MT-TL1 genes 

are strong predictors of future CVD incidence238. 

 

1.7.3 Evidence against mtDNA methylation presence 
In parallel to the emerging evidence that supported the presence of mtDNA 

methylation, a number of publications emerged with a more critical approach to this 

research, questioning not only the role but the very existence of 5mC presence in 

mtDNA.  

In 2013, a seminal study from Hong and colleagues was the first after the discovery of 

the mitochondrially-targeted DNMT1 to challenge the view of a methylated mtDNA239. 

In their study, using sodium bisulfite DNA conversion they examined the same 

mitochondrial regions that had been identified by the Shock group in their original 

study, using the same cell line strain210. They failed to identify any methylation higher 

than 0.18% in any of the regions they analysed, even after enrichment of the CpG 

sequences using RRBS. They repeated their analysis in primary human cell lines and 

in publicly-available WGBS experiments, and once again they failed to identify any 

methylation above 1% across the whole mitochondrial genome239. 

Following on Hong and colleagues work, in 2017 a study by Mechta and colleagues 

expanded further the amount of evidence against mtDNA methylation presence240. 

Using WGBS to analyse mouse tissue and cell lines that were reported either 

containing or not methylation on mtDNA, they reported for the first time a strict 

correlation between the amount of unconverted (i.e.: possibly methylated) cytosines 

and their relative read depth. After having excluded the possibility of NuMTs 

contamination by careful analysis of the aligned reads, they hypothesised that this 

phenomenon could be explained by the mtDNA secondary conformation. Because of 

its circular nature, DNA can in fact form supercoiled structures241. This could in turn 

cause some specific mtDNA areas to be more affected to the sonication process at 

the beginning of the WGBS procedure, thus ending up being overrepresented 
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compared to the others more tightly wound to the supercoiled structure (and therefore 

less likely to ligate to the WGBS adaptors). To test this, authors digested mtDNA with 

BamHI (a restriction enzyme that cut mtDNA once) in order to linearise it before 

sonication. When analysing different mitochondrial regions, they found statistically 

significant differences between the methylation levels calculated on the same regions 

in digested Vs undigested samples. For example, in the D-loop (positions 6–298) of 

Lonza cells, the range of methylation identified was 0-4.8% in undigested samples, 

dropping to 0-0.6% after BamHI digestion240. 

Shortly after the publication of Mechta and colleagues, Olova and colleagues 

performed an extensive comparative analysis of the available WGBS protocols, to 

assess how the sequence coverage and methylation outputs are affected by: 1) BS-

induced DNA degradation, 2) PCR amplification, 3) DNA modifications, and 4) 

incomplete BS conversion242. Their main result was that the bisulfite conversion step 

is mainly responsible for introducing sequencing biases, due to a selective and 

context-specific DNA degradation243 and incomplete conversion efficiency, with 

subsequent PCR amplification only expanding biases already introduced previously. 

A major discovery was done on mtDNA as well: while assessing the effect of various 

bisulfite treatments on sequences with uneven C distribution across the strands, they 

found that mtDNA was affected in a major way, with more than 60% aligning only from 

the C-poor H-strand, as part of the reads from the L-strand are lost due to degradation. 

Based on these results, in chapter 4 we will explore the effect that this bias could have 

on the mtDNA methylation detection. 

Lastly, the work of Matsuda and colleagues extensively examined mtDNA using 3 

different technologies, to look for traces of 5mC169. Initially, they performed WGBS on 

rat liver and brain mtDNA isolated from mitochondria preparations and linearised with 

BglIII. They failed to identify any significant methylation signal in all of the samples 

tested169. The same observation was confirmed when the analysis was done using a 

5mC-specific restriction enzyme, McrBC, which failed to digest any of the mtDNA 

samples they analysed169. Finally, they used LC/MS on mtDNA isolated from 

mitochondria preparations and digested to single nucleosides. They then compared 

the obtained levels of methylation to standard curves to obtain an absolute 

quantification of the 5mC present in their samples. The measured levels of 5mC over 

dC were ranging from 0.3%-06%, demonstrating once again that the levels of 

methylation in mtDNA in their samples is extremely low.  
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Overall, this evidence seem to point towards a vision of mtDNA as generally 

unmethylated. However, what is still unknown is whether even the low methylation 

observed in these latter studies may have a functional relevance (for example, if it is 

concentrated on a few highly methylated molecules or if it is more diluted but present 

always in the same pattern). Therefore, there is a need of developing an accurate 

method for specifically analyse mtDNA methylation at single-base resolution. 

 

1.7.4 Introductory final remarks 
The idea of an epigenetic control of mtDNA has been fascinating to researchers since 

early after the discovery of the molecule itself. As we described in the previous 

paragraphs, this topic still remains a matter of debate, particularly because of the 

contradicting findings in the works that have been published until now regarding this 

topic.  

However, its relevance could have far-reaching ramifications, ranging from control of 

mitochondrial gene expression in a variety of diseases to effects on mtDNA replication. 

None of these aspects have been studied in deep so far, with the majority of the 

published works exploring simple associations of methylated mtDNA patterns to 

diseased states or other conditions (paragraph 1.7.2).  

Therefore, there is a need to investigate further whether these association evidence 

are indeed linked with a molecular mechanism that regulates mitochondrial gene 

expression or replication. The presence of DNMT enzymes (DMNT1 in particular), 

albeit disputed, seems to suggest that the former might be true. 

However, before assessing the validity of these hypotheses, an essential step is the 

establishment of a reliable method to assess mtDNA methylation presence, since this 

is the key readout that is used to explore any role of DNMT1 or other possible 

molecular mechanisms behind the epigenetic regulation of mtDNA. This topic will be 

thoroughly explored in this dissertation, where we propose an innovative method 

based on long-read sequencing to assess CpG methylation on mtDNA. 
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Chapter 2: Aim of the work 
Studying the presence of CpG methylation in the mitochondrial genome has potentially 

very important applications. Primarily, this epigenetic modification could play a role in 

regulating gene expression, mirroring its function on the nuclear genome. To 

understand the mechanisms by which this is regulated could be of central importance 

in expanding our knowledge on mitochondrial gene expression. Additionally, mtDNA 

methylation has already been suggested to be potentially used as a biomarker in 

various pathological contexts244. Therefore, it is crucial to possess the most up-to-date 

tool to study this epigenetic modification in a context such as mtDNA genomics which 

already possess intrinsic difficulties. This is an aspect which is still debated in the field 

of mitochondria epigenetics. While on one side presence of CpG methylation on 

mtDNA is being observed, others questioned such results based on technical 

problems in the technology used to analyse this modification. The aim of this work can 

be summarised in the following objectives: 

 

(i) By analysing publicly available WGBS studies, we aim at highlighting any 

problems intrinsic with this technology when specifically investigating 

mtDNA methylation. 

 

(ii) Using Oxford Nanopore Sequencing we aim to develop both a novel library 

preparation method targeting mitochondrial sequences and to analyse in 

detail any advantages/pitfalls intrinsic to this technology. The aim of this 

objective is to develop a tool that circumvents the technical issues we 

identified in WGBS for single-base methylation assessment. 

 

(iii) Finally, by investigating the presence of mtDNA CpG methylation in a 

variety of human samples using our new method, the overarching aim of 

this project is to determine whether there is significant methylation on 

human mtDNA at single-nucleotide resolution. 
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Chapter 3. Materials and Methods 

3.1 Cell culture 

Primary and immortalised cell lines used in this study are listed in Appendix 1. Cells 

were maintained in DMEM high glucose (Gibco) with 10% foetal bovine serum (Gibco) 

and no antibiotics at 37°C in a humidified 5% CO2 atmosphere. Cells were grown until 

~80% confluence in 10mm dishes (Corning). When ready, cells were placed under 

sterile conditions in a class II cabinet. Cells were washed with sterile DPBS (Gibco), 

then incubated with 0.05% trypsin (Gibco) for 5 minutes at 37°C. Cells were then 

collected in a 15 ml plastic tube, then centrifuged at 1500 g for 5 minutes. Old media 

was removed by aspiration. At this point, for routine cell passaging, pellets were 

resuspended in 1 ml of DMEM 10% FBS medium then split into 10 mm dishes, in a 

ratio varying from 1:3 to 1:10. For DNA extraction, pellets were washed once with PBS, 

then placed on ice. Resuspended pellets were then centrifuged at 10000g for 10 

minutes at 4°C, then, after PBS removal, snap-frozen in liquid nitrogen and kept at -

20°C until further use. 

 

3.1.1 Cell counting 
Human cell lines and primary fibroblasts were counted using a Countess II FL 

Automated Cell Counter (Thermo Fisher Scientific). The cell suspension was diluted 

with a 1:1 ratio of 0.4% Trypan Blue (Thermo Fisher Scientific) in 20 μl final volume. 

10 μl of this solution was loaded into a Countess Cell Counting Chamber Slide and 

placed into the Countess II FL Automated Cell Counter to measure the number of 

cells/ml. Only the concentration of alive cells was used to calculate the number of cells 

for seeding. 

 

3.2 DNA extraction using Qiagen kits 

3.2.1 DNA extraction from cell pellets 
All DNA from immortalised or primary cell lines, was extracted from snap-frozen pellets 

using the QIAmp DNeasy blood and tissue kit (QIAGEN) following the manufacturer's 

instructions on how to extract DNA from cultured cells. Briefly, pellets were thawed at 

RT, then resuspended in 200µl of PBS. This was followed by the addition of 20µl of 

Proteinase K and 200µl of AL lysis buffer. Lysed samples were then incubated at 56°C 
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for 10 minutes, then 100% EtOH was added to stop the reaction. The mixture was 

then added to a DNeasy Spin Column and centrifuged at 6000g for 1 minute. Eluate 

was discarded and 500µl of Buffer AW1 was added to the column. Samples were 

centrifuged at 6000g for 1 minute, then eluate was discarded. 500µl of Buffer AW2 

was then added to the columns. Samples were centrifuged at 20000g for 3 minutes, 

then eluate was discarded and columns were transferred to a 1.5 Eppendorf tube. 

200µl of PCR-grade H2O was then added to the columns and column membranes 

were soaked for 1 minute. Finally, samples were centrifuged at 6000g for 1 minute, 

and this last step was repeated for a total of 2 times to increase DNA recovery yield. 

 

3.2.2 DNA extraction from human tissues 
DNA from human tissues was extracted using the QIAmp Fast DNA Tissue Kit 

(QIAGEN). A lysis buffer mastermix was prepared by adding the following reagents in 

the amounts described in Table 3.1 below per each sample. 

 

Reagent Amount 

AVE Buffer 200 µl 

VXL Buffer 40 µl 

DX Reagent 1 µl 

Proteinase K 20 µl 

RNase A (100mg/ml) 4 µl 

Table 3.1: mastermix preparation for DNA extraction using QIAmp Fast DNA Tissue Kit 

 

Lysis buffer mastermix was added to supplied Disruption Tubes (265 µl per sample), 

then under a class II biological safety cabinet ~25 mg of human tissues (Appendix 1) 

were added to each individual tube. Tissues were then homogenised by mechanical 

disruption by shaking on a vortex for 5 minutes. This was followed by incubation on a 

Thermomixer (Thermo Scientific) at 56°C for 10 minutes, shaking at 1000 rpm. If 

required, the last two steps were repeated once to increase tissue disruption. After 

homogenisation, 165 µl of MVL media were added to each sample, then mixed by 

vortexing. Samples were then added to individual QIAmp Mini spin columns, then 

centrifuged at 20’000 rpm for 1 minute. Eluate was discarded, then 500 µl of Buffer 

AW1 were added to the columns. Samples were centrifuged at 20’000 rpm, then eluate 
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was discarded. This was followed by addition of 500 µl of Buffer AW2 and further 

centrifugation at 20’000 rpm for 1 minute. Finally, columns were transferred to 1.5 ml 

Eppendorf tubes, and 75 µl of water was added to the membrane columns. After 1 

minute, tubes were centrifuged at 20’000 rpm for 1 minute to recover DNA. This step 

was repeated for a total of 3 times to increase DNA recovery yield.  

 

3.3 DNA quantification using Qbit dsDNA kits 

All DNA was quantified using the Qubit dsDNA kit (Invitrogen), either Broad Range 

(BR) or High Sensitivity (HS) following the manufacturer's instructions (identical for the 

two kits). Working solution (WS) was prepared by adding the Qbit Reagent in Qbit 

buffer at a concentration of 1:1000. Volumes of WS were calculated by preparing 200 

µl of WS per sample (considering an excess of 1 or 2 samples) and 200 µl per 

calibrating control. Controls were prepared by adding 10 µl of either Control #1 or 

Control #2 to 190 µl of WS into Qbit tubes (Invitrogen). Samples were prepared by 

adding 2 µl of sample to 198 µl of WS. Calibration was performed every time new 

samples were analysed. Calibration and sample reading were performed on a Qbit 2.0 

instrument following the guidelines on the instrument for either Qbit HS or BR 

reagents. The choice between the two kits depended on whether the measured DNA 

concentration fell in the detection range of either kit.  

 

3.4 Long-range polymerase reactions 

Long-range polymerase reactions (LR-PCR) amplification reaction was performed 

using PrimeSTAR GXL DNA Polymerase kit (Takara) according to manufacturer’s 

instructions. The primers used are detailed in Appendix 2. The resulting PCR product 

is an amplicon of 15412 bp length, covering the positions 1157-16569 of the human 

mitochondrial genome. Amplification reactions were performed using the following 

cycling conditions: 94°C for 1 minute, followed by 30 cycles of 98°C for 10 seconds, 

55°C for 15 seconds and 68°C for 10 minutes. 

 

3.5 Generation of negative and positive controls 

Untreated LR-PCR amplicons were used as negative controls for methylation. To 

generate positive controls, the same amplicons were treated in vitro with the 



 48 

recombinant CpG methyltransferase M.SssI (NEB). To find the optimal reaction 

conditions, various parameters were tested, as outlined in chapter 5. The final 

protocol is detailed here: 1 µg of amplicon DNA per 50µl reaction were treated for 4 

hours at 37°C with 50 units of M.SssI in the presence of 1x NEB buffer #2 and 160µM 

of S-adenosylmethionine (NEB). To test the efficiency of the M.SssI reaction, 10 units 

of methylation-sensitive restriction enzyme BstUI were added at the end of the M.SssI 

incubation. This was followed by a further incubation at 60°C for 1 hour. 

Protection of the M.SssI-treated amplicons from BstUI digestion was assessed using 

the Genomic DNA ScreenTape System (Agilent) on an Agilent 2200 TapeStation 

platform following manufacturer’s instructions described below (Figure 5.2). 

 

3.5.1 TapeStation 
The Agilent 220 TapeStation system is designed to perform fast and automated DNA 

electrophoresis. The platform utilises various formats of ScreenTape reagents, 

designed to separate different DNA sizes and at a variable sensitivity. In this study, 

only Genomic ScreenTape was used. Genomic ScreenTape is designed to analyse 

fragments ranging from 200 to > 60’000 bp. Also, Genomic ScreenTape provides an 

estimation of objective genomic DNA integrity by calculating a DNA Integrity Number 

(DIN), which ranges from 0 (highly fragmented DNA) to 10 (intact DNA). DIN was used 

to assess DNA integrity before each Nanopore sequencing experiment, and only DNA 

with a DIN ≥ 9 were processed for further analysis. An internal control ladder is 

provided and analyse together with experimental sample, to which sample peaks are 

compared to identify their size. 

To analyse samples using Genomic ScreenTape, all reagents were taken out at RT 

and let equilibrate for 10 minutes. Then, Genomic ScreenTape Sample Buffer (Agilent) 

were added to 0.2 µl plastic PCR tubes, 10 µl per sample. The number of samples to 

analyse at one time needs to always be odd, since the Agilent 220 TapeStation system 

may only analyse couples of samples at the time, and the ladder must always be 

included with the samples. Then, 1 µl of Genomic DNA ladder was added to the first 

tube, followed by 1 µl of experimental sample per every other tube. Tubes were then 

briefly centrifuged, then vortexed at 2000 rpm for 1 minute. Meanwhile, Genomic 

ScreenTape was added to the Agilent 220 TapeStation system, together with the 

sample plate holder and tips holder. Details of the experiment were added using the 
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Agilent 220 TapeStation controller software, and tips were added in the tips holder 

following the pattern specified in the software. Once the vortexing was over, tubes 

were briefly centrifuged then added into the tubes holder, after carefully removing their 

lids (if present) using a scalpel. Agilent 220 TapeStation system was then closed and 

the experiment started using Agilent 220 TapeStation controller software.  

 

3.6 Mitochondrial DNA enrichment for single-molecule 
sequencing 

3.6.1 Exonuclease V-based protocol 
Following the protocol developed by Jayaprakash and colleagues245, 1µg or 4 µg of 

gDNA were digested with Exonuclease V (NEB) for 48 hours at 37°C. For each 

reaction 10 enzymatic units per µg of DNA were used, in addition to 0.3 mM of ATP 

and 1x NEB buffer 4 (provided with the enzyme). AMPure beads (Beckman Coulter) 

were then used to isolate high molecular weight digestion products and to remove the 

enzyme (see section 3.4.2). 

To purify digested DNA, AMPure beads were used. The principle for the size selection 

used in AMPure beads purification is based on the concentration of the negatively 

charged DNA around the magnetic beads, in the presence of high salt and PEG 

concentrations (contained in the beads solution). Therefore, at low beads/DNA 

concentrations (corresponding to low salt and PEG levels) only the high molecular 

weight DNA fragments will be concentrated with the beads and eluted out. 

To achieve purification, digested gDNA was transferred into 1.5 ml Lo-Bind 

microcentrifuge tubes (Eppendorf). A beads/DNA ratio of 0.5 was used to enrich for 

fragment of the desired molecular weight. Mix were incubated at RT for 10 minutes 

and beads were pelleted using a DynaMag-2 magnet (Invitrogen). Bead pellets were 

washed twice with 750 μl of 70% ethanol (vol/vol). Bead pellets were air-dried for 5 

minutes and resuspended in 25 μl of DNase-free water (Ambion) and incubated at 

37°C for 5 minutes. Tubes were placed on a DynaMag-2 magnet (Invitrogen) and 

supernatant was collected and transferred to new Lo-Bind 1.5 ml microcentrifuge 

tubes (Eppendorf). 
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3.6.2 BamHI-based protocol 
The protocol for mtDNA enrichment Is based on the simultaneous linearisation of 

mtDNA and its isolation together with high molecular fragments. To achieve this, 2 µg 

of genomic DNA (nuclear + mitochondrial DNA) per 50 µl reactions were digested with 

40 units of the recombinant restriction enzyme BamHI-HF (NEB) for 1 hour at 37°C in 

the presence of CutSmart buffer (NEB).  

To achieve combined DNA purification and selection of high molecular weight 

fragments, DNA was first purified using a ratio of AMPure beads/DNA of 0.1x, 0.3x 

and 0.5x, following the protocol described above.   

At a later stage, purification and selection was achieved using the Monarch® PCR & 

DNA Cleanup Kit (NEB), following manufacturer’s instructions. Binding Buffer was 

added at a ratio of 2:1 buffer:sample (100 µl buffer per 50 µl reaction). The mixture 

was then added to the PCR Monarch® PCR & DNA Cleanup columns, followed by 

centrifugation at 16’000 g for 1 minute. Eluate was discarded then 200 µl of Wash 

Buffer was added to the columns, followed by centrifugation at 16’000 g for 1 minute 

and eluate removal. This step was repeated once, after which columns were 

transferred to 1.5 ml Eppendorf tubes. The last step was modified following the 

recommended protocol modification to enrich for long DNA fragments: 20µl of Elution 

Buffer was heated to 50°C, then added to the columns. Membranes were soaked for 

1 minute, then columns were centrifuged at 16’000g for 1 minute and eluate was 

retained. 

 

3.7 Quantification of mtDNA levels using ddPCR 

Droplet Digital PCR (ddPCR) was used to quantify relative mtDNA enrichment 

following BamHI-HF (NEB) treatment of control DNA. This technique has the 

advantage to enable the quantification of the absolute mtDNA copy number without 

relying on a standard curve. On an average run, samples are fractionated to form 

~10’000-20’000 droplets, where individual PCR reactions take place. To quantify 

relative mtDNA copy number246, a mitochondrial and nuclear target (the genes MT-

ND1 and RNASE P, respectively) were amplified and fluorescent signal was 

generated using the primers and probes detailed in Appendix 2. ddPCR protocol was 

performed following manufacturer’s instructions. PCR reaction master mix was 

prepared in 1x (final concentration) ddPCR Supermix for Probes (No dUTP, BioRad), 
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by adding 300nM of each primer and 200nM of each probe in 19µl final volume. Then, 

1 ng of sample DNA was added to the mastermix. Droplets were generated using an 

Automated Droplet Generation instrument (BioRad) in a 96 well plate (Bio-Rad). After 

droplet generation, the plate was sealed with foil using a PX1 PCR Plate Sealer (Bio-

Rad). Droplets were quickly subjected to PCR amplification, performed using the 

following cycling conditions: 95°C for 10 minutes, followed by 39 cycles of 94°C for 30 

seconds and 58°C for 1 minute, followed by a final stabilisation step at 98°C for 10 

minutes. Droplets were then loaded into a QX200 droplet reader (BioRad) and 

analysed using an absolute quantification protocol (ABS) to measure the absolute 

copy number of each probe. Droplet analysis was performed using the QuantaSoft 

analysis software (BioRad) that determines if droplets are positives or negatives. The 

separation threshold was adjusted manually if necessary. Results were represented 

as a ratio of MT-ND1/RNASE P copy numbers. 

 

3.8 ONS library preparation and sequencing on the MinION 
instrument 

Approximately 1 µg of native genomic DNA (from cell lines or human tissues, 

Appendix 1) or purified LR-PCR amplicons were prepared for ONS sequencing on 

R9.4.1 flow cells using the Ligation Sequencing Kit SQK-LSK109 (Nanoporetech), in 

combination with the Native Barcoding Expansion Kit EXP-NBD114 (Nanoporetech). 

Genomic DNA was fragmented either through BamHI digestion (see paragraph 3.6.2) 

or sheared to 10 kbp using g-tubes (Covaris), following manufacturers’ instructions, 

while amplicons were left untreated. To shear DNA using g-tubes, 50µl of DNA were 

placed inside the g-tube column, then centrifuged at 6000 rpm for 1 minute on an 

Eppendorf 5424 centrifuge. The column was then flipped and centrifuged again at 

6000 rpm for 1 minute on an Eppendorf 5424 centrifuge. Sheared DNA was collected 

from the g-tube cap. 

Simultaneous DNA repairing, end-repairing, and dA-tailing was achieved using the 

NEBNext FFPE Repair Mix (NEB) and the Ultra II end-repair module (NEB). DNA 

repair is an optional step which increases DNA quality after sequencing. DNA end-

repairing allows the addition of a few nucleotides at either strand on both ends of a 

DNA sequence to obtain a blunt sequence end. To this, dA-tailing adds an adenine to 

one of the DNA strands to allow the subsequent ligation of an additional 
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barcode/adapter, both of which will have a thymine at one of their strands ends for 

complementarity. Samples were then incubated at 65°C for 5 minutes then 20°C for 5 

minutes in a thermocycler. Barcodes (part of the EXP-NBD114 kit) were ligated to 

individual samples using Blunt/TA Ligase Master Mix (NEB), by incubation at RT for 

10 minutes. Barcodes are short DNA sequences with a known nucleotide pattern and 

they allow the labelling of a specific sample. This allows the pulling together of several 

samples in one sequencing experiment. 

Samples were then combined and AMII adapters were ligated using NEBNext® Quick 

Ligation Module (NEB), by incubation at RT for 10 minutes. AMII are special adapters 

containing the motor proteins needed for sequencing using Nanopore technology. 

These motor proteins are helicases which can separate the two DNA strands while 

attached to the Nanopore protein pore.  

AMPure XP beads (Beckman Coulter) at a concentration of 1x, 1x and 0.5x, 

respectively, were used to purify DNA between the library preparation steps. Final 

libraries were loaded onto R9.4.1 flow cells and samples were sequenced using a 

single MinION Mk 1B, together with sequencing buffer and sequencing beads (part of 

the SQK-LSK109 kit). To keep the sequencing throughput consistent, where possible 

a maximum of 6 biological samples were pooled and sequenced for 24 hours 

(Appendix 5) . LR-PCR amplicons were pooled and sequenced for 6 hours.  

For all the experiments, live basecalling was turned off and only raw signal data was 

collected. Mux scans were performed every 6 hours. In a R9.4.1 MinION flow cell the 

sequencing pores are divided in 4 sequencing groups based on sequencing 

performance. Mux scans allow the periodic reset of these 4 groups based on the 

changing performance of the sequencing groups over the course of the experiment. 

 

3.9 WGBS data analysis 

3.9.1 Data download 
Raw WGBS experiments part of the Roadmap Epigenome Project247 were 

downloaded from the GEO Database. Downloaded files from single-ended WGBS 

sequencing experiments were converted from SRA (Sequence Read Archive) format 

to fastq files using fastq-dump (Appendix 4) with the following options: --readids 

--skip-technical -W --read-filter pass --gzip. Respectively, these 

options allow to: append the read id after the spot id as 'accession.spot.readid'; dump 
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only the biological reads; clip adapter sequences; optionally filter reads by value: 

“pass”; compress output files using gzip. SRA is a public repository of data which 

contains thousands of high-throughput-sequencing experiments, usually short-reads-

based sequencing experiments (typically less than 100bp). 

 

3.9.2 Quality control and trimming 
Read quality of the converted fastq files was assessed with FastQC v0.11.5248. 

FastQC is a commonly used software which provides a quick way to assess the quality 

of the raw data files. Specifically, in this study it was used to assess the fastq files 

extracted from the downloaded SRA files. Relevant graphs are generated and can be 

visualised on an html file. 

 

 
Figure 3.1: Example of a FastQC sequence content per position graph. Graph 

showing the average percentage (y axis) per position (x axis) of each of the 4 bases (different 
colours) across all the reads of a WGBS fastq file.  

 

All the reports generated from FastQC were manually checked to determine whether 

a trimming of low-quality reads and/or adapters was needed. Where trimming was 
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deemed necessary, TrimGalore! v0.4.5249 was used. This software automatically trims 

adapter sequences from the reads (if present) and retains those with an average 

Phred quality score ≤ 20 (before and/or after trimming). Reads shorter than 45 bp after 

trimming were discarded using the --length option.  
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Figure 3.2: Comparison of pre- and post-trimming quality scores per position 
distributions in WGBS experiments. The graphs show the distributions of average quality 

scores per position(s) in one WGBS sample, a) before and b) after the trimming by TrimGalore!. 
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Y-axis represent quality scores expressed on the Phred scale; X-axis represent the position(s) 
on the read in basepairs. 

 

3.9.3 Reads alignment 
Alignment of the sequenced reads to a reference sequence is necessary to identify 

where on the genome a read should be assigned to. Upon quality check and trimming, 

both alignment of the WGBS fastq files to the reference human genome sequence 

(GRCh38) and extraction of the methylation information were carried out with bowtie2 

v2.3.2250 and Bismark v0.19.0251, respectively. Coverage was calculated from BAM 

files using samtools depth252. This was defined as the percentage of mtDNA genome 

in each strand covered by at least 5 reads. 

 

3.9.4 Calculation of the methylation levels 
Extraction of the methylation information was performed by Bismark by comparing 

which cytosines were converted to thymines in the sequenced read after bisulfite 

treatment (because of their unmethylated status) and which instead remained as 

cytosines (because they were originally methylated). This information and the 

sequencing context where this modification is found (i.e.: CpG or non-CpG context) 

were reported in an additional column in the BAM file which is generated after 

alignment.  

Methylation extraction was carried out from the BAM file using the 

bismark_methylation_extractor package with the following options: --

comprehensive --merge_non_CpG --gzip --bedGraph --CX_context. 

These set of options reported information on cytosines in both CpG and non-CpG 

context, but for the purposes of this study only CpG residues were considered for 

further analyses. The generated files were further processed using custom scripts to 

extract information about the mitochondrial genome alignment bias, coverage, etc. 

 

3.10 ONS data analysis 

3.10.1 Base calling 
Raw signal from ONS experiments is a collection of information on the variation of the 

current in each flow cell pore over time, stored in fast5 files. To convert these signals 

to sequence information, the software Guppy utilises a machine-learning algorithm to 
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calculate a probability for each variation to correspond to one of the 4 DNA bases 

(recent advances allow the identification of modified bases directly at this level, but 

this was not performed in this study)198. Base-calling of fast5 files containing raw 

electric current information was performed by the guppy_basecaller package of 

Guppy v3.2.2+9fe0a78 (Nanoporetech). Base-called, barcoded reads were de-

multiplexed into individual samples using the guppy_barcoder package of Guppy 

v3.2.2+9fe0a78 (Nanoporetech). 

Demultiplexing is performed by aligning the initial bases of each basecalled read 

(corresponding to the expected length of an ONS barcode) to a reference list of 

barcodes sequences. A read is assigned to a barcode (i.e.: to a different sample) when 

a complete alignment is found and the read is then added to fastq files in dedicated 

custom repositories. Unaligned or partially aligned reads are excluded and collected 

in fastq files in an “unassigned” repository. 

 

3.10.2 Reads alignment and quality check 
To simultaneously enrich for linear full-length mitochondrial sequences, exclude 

ligation artifacts and minimise the presence of NuMTs, we applied a stringent filter on 

read sequence length (for LR-PCR controls: min=14000 bp, max=17000 bp; for 

biological samples: min=4000 bp, max=17000 bp) and quality (Phred quality score ≥ 

9) using the software NanoFilt v2.2.0253 on the barcoded fastq files (Figure 5.17). The 

minimap2 v2.10-r761254 software was used to perform the alignment of Nanopore 

reads onto the GRCh38 reference (which includes the mitochondrial rCRS reference 

sequence, NC_012920.1), specifying the -x map-ont option. Secondary alignments 

(when a read completely aligns both to two genome regions) were identified in the 

BAM files by specific flags (256, 272) and excluded. Also, because of the length of the 

ONS reads, it is possible that reads partially align to two or more genomic regions. 

This are defined as “supplementary alignments” and identified in the BAM file by “SA” 

flags. Supplementary alignments represent a risk of NuMTs contamination when one 

of the alignments is on the nuclear DNA and the other on the mtDNA. To avoid this 

risk, we excluded all these cases aligned both on nuclear and mtDNA and marked by 

the “SA” flag. In the case of fragmentation experiments, we also identified 

supplementary alignments aligning only to the mtDNA. This is an artifact due to the 

circularity of the mtDNA and it is typical of reads which span the D-loop (with 16569-0 
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bp boundaries), that minimap2 does not recognise as circular sequences. Using 

custom scripts we therefore retained all such supplementary alignments, but only if 

they aligned in the same orientation on the same strand (H- or L- strand).  

Similarly, to avoid the same issue with reads spanning the BamHI cut site in the ND6 

gene (14258-14259 bp of the mtDNA reference sequence), we created an alternative 

rCRS (or sample-specific, see paragraph 6.2.2) mitochondrial reference sequence 

with a modified starting site at base 14259 instead of base 1. All the experiments 

where the samples were digested using BamHI were aligned to this alternative 

sequence (gene annotations were adapted accordingly). Quality control plots and 

sequencing statistics of aligned reads were automatically generated using NanoPlot 

v1.13.0253. 

 

3.10.3 ROC curve generation 
ROC curve generation was performed by Dr. Claudia Calabrese. We calculated a 

ROC curve to assess the accuracy of our CpG methylation calling, using a previously 

published procedure198. To do this, we randomly chose 50,000 mtDNA CpG sites from 

positive and negative controls and classified each CpG call as true positive (TP) or 

false positive (FP), depending on which of the two controls each site came from and 

on whether methylation fell above or below a log-likelihood methylation threshold. We 

repeated the TP and FP calculation by varying log-likelihood threshold values within a 

range of -20 to 20 (to build the ROC curve) and 0 to 10 (to calculate accuracy, intended 

as the proportion of true calls, either TP or true negatives (TN), with a step of 0.25, as 

explained by Simpson and colleagues198 

 

3.10.4 Mitochondrial variant calling of ONS samples  
Variant calling was performed by Dr Claudia Calabrese. Because Nanopore 

technology allows a simultaneous read of epigenetic modifications while sequencing 

the target DNA, we performed a mitochondrial variant calling on the fastq files filtered 

with NanoFilt v2.2.0253. For this we used a modified version of the MToolBox 

pipeline255, a workflow developed to analyse mtDNA from high-throughput sequencing 

data, which was adapted to long-reads sequencing analysis and is available in the 

Github public code repository 

(https://github.com/mitoNGS/MToolBox/tree/MToolBox_Nanopore). 

https://github.com/mitoNGS/MToolBox/tree/MToolBox_Nanopore


 59 

For reads mapping we used the GRCh38 human genome assembly. For variant 

calling, we set a minimum Phred quality score (QS) threshold to retain variants to 10 

(using the -q option of the assemblyMTgenome.py script). Variants with a read 

depth per position ≥ 30x and heteroplasmy ≥ 10% were retained). Finally, we 

performed haplogroup predictions, automatically generated by the MToolBox pipeline 

using a consensus FASTA sequence with all major alleles found in each sample255 

compared against the human phylogeny annotated in the Phylotree build 17256 

(Appendix 6).  Moreover, we used Haplogrep 2 v.2.1.1257 as additional tool to confirm 

individual haplogroup predictions, by running it on MToolBox-generated VCF files 

including only homoplasmic variants (with heteroplasmy ≥  90%).   

 

3.10.5 CpG methylation detection 
Detection of methylation in CpG context was carried out using Nanopolish v0.11.0 call-

methylation package198. In a similar way to Guppy basecalling, Nanopolish utilises a 

trained Hidden Markov Model to detect modified bases by comparing raw electric 

signals of modified/unmodified cytosines with expected signal from a reference 

sequence. The methylation calling output is a log-likelihood ratio where a positive 

value indicates evidence supporting methylation. Nanopolish utilises as input fast5 

files containing raw electric signal information, basecalled fastq files and BAM 

alignment files, to generate an index file used by the algorithm to determine 

methylation Log-likelihood ratios. Log-likelihood ratios were then converted to a binary 

methylated/unmethylated call for each read, then percentage of methylation was 

obtained by calculating the fraction of methylated reads, using the 

calculate_methylation_frequency.py script available with the Nanopolish 

package. After accuracy determination using positive/negative controls, the default 

calling threshold of ≥ 2.5 LLR was modified to a more stringent ≥ 5 LLR to increase 

the accuracy of the call by modifying the script. Since Nanopolish groups neighbouring 

CpG sites and calls them jointly, CpG sites in the same group were separated and 

assigned the same methylation frequency using the -s option.  

 

3.10.6 CpG methylation analysis 
We applied a series of stringent quality filters to remove possible artefacts of the CpG 

methylation calling and errors introduced by the Nanopolish algorithm. We first 
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removed in all samples those CpGs calls that had a methylation frequency greater 

than two standard deviations from the methylation frequency mean in negative 

controls (false positives, Appendix 3). We also removed: I) all calls supported by less 

than 60 reads (since after analysing the relationship between read depth and 

methylation level we decided that this was the minimum acceptable read depth 

threshold to obtain reliable methylation results); II) calls with methylation frequency 

similar to the background (i.e. with a methylation frequency ≤ 0.5%, which is the 

average methylation frequency observed in the negative controls) and III) calls 

neighbouring any heteroplasmic nucleotide variant (i.e.: with heteroplasmy < 0.9) in a 

± 5 nucleotides window.  

This last approach was deemed necessary after noticing that Nanopolish introduced 

a false methylation call every time a homoplasmic haplogroup-defining variant position 

fell within ± 5 nucleotides from a CpG. As 11 nucleotides is the kmer size that 

Nanopolish considers to calculate CpG LLR, we hypothesized that the introduction of 

a nucleotide variant within ± 5 nucleotides from the CpG altered the Nanopolish 

methylation determination, leading to an incorrect methylation call. To demonstrate 

this, we used MToolBox255 to generate a consensus sequence from the Illumina data, 

carrying only the major alleles at each position, and we used this new sequence to 

perform another methylation calling on our ONS samples. As expected, no methylation 

was identified in the CpGs close to the haplogroup-defining variants  this time (Figure 
6.3). 

Differential methylation analysis was performed on cell lines and primary fibroblasts 

using the R package DSS258 following the protocol detailed by Gigante and 

colleagues191 using the H haplogroup and control fibroblasts as baseline, respectively. 

Differentially methylated mtDNA positions and regions (defined by overlapping tiles of 

50nt) were deemed significant if False Discovery Rate was below 1%. 

 

3.10.7 Dataset simulation and background noise modelling 
To elucidate the relationship between the methylation levels and the read depth in 

ONS data, we generated in silico multiple datasets of simulated sequencing 

experiments, subsampling the negative control BAM file. We used samtools -s (read 

fraction) -b BAM > simulated.sam. We selected 30 different read fractions 

matching the read depths achieved with both the fragmentation and BamHI-based 
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sequencing experiments on native DNA. Once the simulated SAM files were 

generated, we proceeded with the methylation calling using Nanopolish, following the 

same workflow used for cell lines, primary fibroblasts and tissues. Methylation levels 

calculated on the simulated data were therefore considered background noise 

introduced by either the ONS technique or the methylation calling procedure, as 

previously observed. The following analyses were performed by Dr. Claudia 

Calabrese. We chose a function describing an exponential decay (1) to model the 

background noise, given the inverse relationship we observed in simulated data (high 

methylation levels corresponding to low read depth and vice versa). 
 

(1)     𝑌 = 𝑚 ∗ 𝑒(−𝑡∗𝑥) + 𝑏 

 

The goodness of fit test showed that the exponential function in (1) well explained the 

variation of the simulated data (R2 = 0.94), therefore we set out to use the estimated 

parameters (m, t and b) and the equation in (1) to calculate the background noise 

present in all downstream ONS sequencing experiments. The background noise 

model fitting was performed using the optimize.curve_fit function of the  Scipy 

Python module. All analyses have been performed in Python 3.0 and code is available 

at  https://github.com/ib361/scripts_paper  
 

3.11 Illumina Miseq library preparation and sequencing  

Sequencing of human samples on the Illumina Miseq platform was performed by Dr. 

Zoe Golder. MiSeq libraries were prepared from genomic DNA by amplification of the 

mitochondrial DNA in two overlapping fragments, using the primers outlined in 

(Appendix 2). Amplicons were individually purified, quantified, and then were pooled 

in equal amounts from each sample. Libraries were prepared using NEBNext Ultra 

library prep reagents (NEB) according to manufacturer's instructions and sequenced 

using a 2 × 250-cycle MiSeq Reagent kit v3.0 (Illumina, CA). 

 

3.12 Miseq variant calling analysis 

Variant calling was performed by Dr. Claudia Calabrese. Fastq files generated with 

Illumina Miseq were checked for quality using FastQC v0.11.5248.  Illumina adapters 

https://github.com/ib361/scripts_paper
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and read ends showing poor per-base quality were trimmed using TrimGalore! 

v0.4.5249, setting a minimum per-base QS = 20 and minimum read length after 

trimming = 35 bp. Mitochondrial variant calling was then performed with the MToolBox 

pipeline v1.2255, which mapped reads to the human reference genome (GRCh38) with 

the two-mapping step protocol integrated in the pipeline, to exclude possible NUMT. 

Single nucleotide variants with ≥ 5 reads of support (and at least 1 read of support on 

each strand) and minimum QS per base ≥25 were retained. Haplogroup predictions 

were performed using both MToolBox and Haplogrep 2 v.2.1.1257 and based on the 

human phylogeny annotated in the Phylotree build 17256. Haplogrep2 predictions were 

based on homoplasmic mtSNVs only (with heteroplasmy ≥ 90%). 

 

3.13 Statistical tests 

Each data distribution was checked for normality by using the Shapiro-Wilk test. For 

pairwise comparisons, we chose to use the parametric Student’s t-test or Anova one-

way test when values were normally distributed. When not stated, distributions were 

non-normal and a Wilcoxon two-tailed test was used instead. Spearman’s rank test 

has been used to calculate correlation between variables. 
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Chapter 4. CpG methylation analysis of mtDNA with WGBS 

4.1 Introduction 

Methylation of the 5th carbon of cytosines in CpG context is a well-described epigenetic 

modification of the DNA, which has a central role in regulating gene expression both 

during development97 and throughout life259. Its presence and role in mtDNA has been 

researched by multiple groups soon after the discovery of mtDNA170. While early 

studies showed that mtDNA possesses very low or absent methylation levels205–207, 

the recent discovery of a mitochondrial isoform of the methyltransferase DNMT1210 

rekindled the interest in mitochondria epigenetics. As reviewed more extensively in 

the introduction, a series of recent studies have tried to show that mitochondrial CpG 

(and sometimes non-CpG) methylation is present at various degrees in a variety of 

contexts including ageing227, environmental exposure to pollutants219, cancer226,260 

and different neurological diseases231,232. However, these studies fail to reach a 

consensus on both whether a specific pattern of methylation is shared in the different 

context analysed and on which of the three nuclear methyltransferases (DNMT1, 3a 

or 3b) is the one responsible to establish mtDNA methylation patterns. In parallel to 

the various studies demonstrating presence of mtDNA methylation, a few works were 

published on the opposite view, that mtDNA methylation in fact does not exists, and 

that the results of published studies could in fact be ascribed as artefacts 169,239,240,261. 

Whole genome bisulfite sequencing (WGBS) is the gold standard technique used to 

study the presence of CpG modifications on the nuclear genome186,262,263 and is also 

the one at the heart of most of the studies that show presence of mtDNA methylation. 

Some of the arguments against the presence of mtDNA methylation revolve around 

whether the harsh chemical treatment with bisulfite, the basis of WGBS, introduces a 

bias in DNA sequences that have an uneven distribution of unmethylated cytosines 

between the strands (such as the mtDNA L-strand)242. Work by Olova and colleagues 

has in fact shown that such sequences are especially sensitive to degradation 

following bisulfite treatment. This in turn may potentially lead to a bias being generated 

during methylation calling of the two strands. Such bias has even been recently 

identified by Dou and colleagues264 but it has been interpreted by the authors as an 

intrinsic property of mtDNA.  

To help elucidate this ongoing issue, in this chapter we sought independent evidence 

on whether WGBS has indeed limitations in establishing accurately the level of CpG 



 64 

methylation on mtDNA or if biases are introduced and on what level. To do so, we 

applied a commonly used bioinformatic workflow to analyse publicly available WGBS 

experiments on human cell lines and tissue. Particularly, we focussed on quantifying 

alignment biases and their possible effects on mtDNA CpG methylation calling. The 

data has been sourced from the NIH Human Epigenome Roadmap Project247 

repository. The consortium was an international effort aimed at building a database of 

experiments which could give insights into the epigenetic landscape of the human 

genome. 

The core of our bioinformatic workflow is based on a software called bismark251, used 

to perform the alignment of WGBS data. During the WGBS library preparation process, 

unmethylated cytosines (which represent the majority in the human genome) are 

chemically converted to uracils by the deamination on the C4 carbon. Uracil is then 

converted to thymine the PCR amplification step of the library preparation. For this 

reason, WGBS reads present a reduced nucleotide complexity compared to standard 

NGS experiments (Figure 3.1), which precludes the use of standard alignment tools. 

To solve this problem, bismark251 generates an in silico-converted reference 

genome where all cytosines are virtually converted to thymines in the reference 

provided. Read alignment is then performed using the converted genome and, once a 

match is found, the original unconverted reference genome is compared to the WGBS 

read to check which cytosines were converted (thus marked as unmethylated) and the 

ones that remained unconverted after the bisulfite treatment (thus considered as 

methylated). 

 

4.2 Results 

4.2.1 WGBS experiments quality control 
We downloaded data from 67 human cell lines and tissues from the NIH Human 

Epigenome Roadmap Project247 repository. Fifty-five passed quality control (Methods) 

and were aligned to the human genome build GRCh38 (Appendix 4). As reads were 

aligned to both the nuclear and mitochondrial genome (rCRS265), we were able to 

identify and exclude those with a double nuclear-mitochondrial alignment (i.e.: 

secondary alignments), which likely represented nuclear-mitochondrial sequences 

(NuMTs)5. 
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From the BAM files we were able to extract the information on mitochondrial reads 

and their strand alignment. By looking at the distributions of the reads per mtDNA 

strand, we arbitrarily divided the samples in two groups, depending on the percentage 

of the reads mapped on the H strand (“Bias” and “Low Bias”). The Bias group included 

58.2% (N= 32/55) samples, with a majority of reads mapped to the mitochondrial H-

strand (≥ 55% reads;  P = ≤ 0.0001, Figure 1.1 A-B), and a more pronounced per 

strand coverage bias (L-strand coverageBG = 6.2%-88.3%; H-strand coverageBG = 

83.5%-91.7%, Figure 1.1 C left panel). The remaining samples (41.8%, N = 23/55, 

“Low Bias” group, LBG), showed a milder mapping bias on the H-strand (between 

51%-55% reads; P = ≤ 0.0001, Figure 1.1 A-B), although present in all the samples 

analysed, but no coverage bias (Figure 1.1 C right panel).  

 

 
Figure 4.1: Quantification of alignment and coverage bias. a) Percentage of reads 

aligned to the mtDNA reference per sample, identifying samples with a marked (Bias, N = 32/55) 
or low (Low Bias, N = 23/55) per-strand-bias. b) Percentage of reads aligned to mtDNA, divided 
by bias group. Boxplot shows the percentage of reads aligned to the mtDNA reference. The 
lower and upper hinges correspond to the first and third quartile of the distribution, with median 
in the centre and whiskers span no further than 1.5*interquartile range. Stars indicate 
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significance (****: two-sided P ≤ 0.0001, Wilcoxon test). c) Percentage of mtDNA covered by at 

least 5 reads on the two mtDNA strands (H and L) in (top) Bias and (bottom) Low Bias sample 
groups.  
 

This bias is reflected in the differences observed in the average mitochondrial read 

depth per position calculated in the two groups (i.e.: the average number of reads 

aligned to the mitochondrial genome per position): 66.32 ± 28.84x in the Bias Group 

versus 148.77 ± 55.45x in the Low Bias Group (mean ± sd; Mann-Whitney test: P = ≤ 

0.0001, Figure 4.2). 

 

 
Figure 4.2: WGBS samples read depth distributions. Distribution of the average read 

depth per mtDNA position in the two per-strand-bias groups. 
 

4.2.2 WGBS experiments methylation analysis results 
Finally, methylation analysis in both groups revealed higher methylation levels in the 

L-strand compared to the H in all the samples analysed, despite this difference being 

more pronounced in the Biased Group samples compared to the Low Bias Group 

samples (L-strandBG= 4.97% ± 8.79 vs H-strandBG= 2.01% ± 1.92 (mean methylation 

± sd); L-strandLBG= 1.43% ± 0.77 vs H-strandLBG= 1.39% ± 0.7 (mean methylation 

± sd); P = ≤ 0.001;  Figure 4.3 A,B). 
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Figure 4.3: Results of the mtDNA methylation analysis on WGBS samples. a) 

Distribution of the methylation percentage per mtDNA position in CpG context, in (top) Bias (N 
= 32) and (bottom) Low Bias (N = 23 ) groups.  Each dot represents every CpG in every sample. 
Methylation values are expressed in % of methylation. b)  Quantification of the average CpG 
methylation per strand (H and L), divided by per-strand-bias group. The lower and upper hinges 
of the violinplot correspond to the first and third quartile of the distribution, with median in the 
centre. Stars indicate significance (***: two-sided P ≤ 0.001;  two-sided ****: P ≤ 0.0001, Wilcoxon 
test). c) Correlations between average read depth and average methylation percentage for every 
cytosine in CpG context, in bias (upper graphs) and low-bias (lower graphs) groups  and mtDNA 
strands (H and L). Spearman’s rank test correlation coefficient and two-sided P-values are 
shown. For all the plots in b,c), Average methylation is intended as the mean methylation value 
across all the WGBS samples analysed. 

 

Since the methylation level per CpG is expressed as a ratio of the reads supporting a 

methylated CpG over the total of the reads covering that CpG position, we reasoned 

that the bias we observed per strand could be explained by strand-specific fluctuations 

of the read depth. Indeed, we found a significant inverse correlation between 
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methylation levels detected and the read depth (Spearman’s rank test P < 2.2e-16; 

average rho coefficient = -0.78, Figure 1.3 C), leading to the appearance of higher 

methylation levels where read depth is low. This holds true also for the Low Bias Group 

samples (which possess a milder alignment bias), where local fluctuations in the read 

depth alter CpG methylation levels (Figure 1.4 A,B). 

 

 
Figure 4.4: methylation patterns in WGBS Low Bias group samples. a,b) CpG 

methylation and read depth profiles of a 2kb (a) and 3kb (b) mtDNA genome region, per each 
position in the Low Bias sample group, divided by mtDNA strand (H and L). Each dot represents 
all the CpGs in the specific area in all the Low Bias samples. Methylation values are expressed 
in % of methylation. Blue lines indicate the mean over all the data points (calculated using the 
“loess” geom_smooth R function) and shaded surrounding regions represent 95% confidence 
interval. 
 

4.3 Conclusions and Discussion 

The results of our analysis on mtDNA alignment bias in human WGBS experiments 

are in line with what was described in the study by Olova and colleagues242. In their 

in-depth analysis of the available WGBS library preparation methods Olova and 

colleagues show that the principal source of biases in WGBS is the bisulfite-mediated 

degradation of DNA, followed by a PCR step amplifying any initial biases. Moreover, 

they show that the bias introduced by bisulfite is non-random, targeting specifically 

unmethylated C-rich regions of the DNA, such as repeated chromatin regions (i.e.: 

satellite DNA) or mtDNA. Therefore, we believe that this is a plausible explanation of 

the bias we also observed in our analysis: the bisulfite treatment degraded 
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preferentially the C-rich mtDNA L-strand, which in turn could not be fully sequenced 

(Figure 4.1 C).  

The strict relationship between methylation and read depth supports the view of an 

unmethylated mtDNA: if mtDNA was indeed methylated, we would have expected that 

the amount of unconverted (i.e. methylated) reads would increase in line with the read 

depth, plateauing around the expected methylation level. The strict inverse 

relationship observed between these two measurements suggests instead that with 

the increase in read depth we draw closer to the true mtDNA (low/absent) methylation 

value, as more information is gathered to describe the methylation status of the 

individual cytosines. This is further supported by the established notion that circular 

mtDNA is more resistant to bisulfite conversion240. 

Higher mitochondrial read depths are unlikely to solve the problem either. First, by 

looking at the average read depths profile in both BG and LBG (figure 4.2), it is 

possible to observe that the read depths achieved are already far higher than what is 

usually considered good in WGBS (10x for nDNA). Secondly, as shown by the 

distribution profiles of the read depth in the LBG group (figure 4.4), having a uniform 

distribution of the read depth across the molecule is more important than achieving 

high read depths (which would anyway be easier to achieve on mtDNA because of the 

multiple copies present in each cell). However, as shown in the average read depths 

distribution profile (figure 4.2), not only this is not the case, but it seems that the read 

depth is probably dependent on the mtDNA sequence itself, as some sections are 

always lowly represented. This would be interesting to investigate in depth, as it would 

be in line with what was published by Olova and colleagues242 regarding the 

preferential degradation of cytosine-rich sequences by the bisulfite treatment. 

We could not find a clear explanation to the stark differences observed between the 

Biased and Low Bias groups in their respective alignment biases. In their study, Olova 

and colleagues242 state that the choice of the right kit for WGBS library preparation 

and the polymerase to use for the subsequent PCR amplification that precedes 

sequencing are important factors to take into account as a strategy to avoid the 

introduction of sequencing biases. Even more important is the timing of the bisulfite 

treatment (before or after sequencing adapter ligation), in order to avoid excessive 

DNA degradation. A manual search of the library preparation method of all the 

samples analysed in this study revealed no differences in the kit used for preparing 
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the sequencing library between the two sample groups, nor in the polymerase used, 

which were therefore factors excluded as being the cause of the observed bias. 

The presence of a methylation bias is something that has been previously described 

in the literature. At least 19 works published before the one by Olova and colleagues242 

have identified differences in the methylation patterns between the mitochondrial 

strands185,186,227,229–232,234–236,266,213–215,218,220,222–224. Having reviewed those studies we 

believe that it is possible that those results could indeed be ascribed to the presence 

of an underlying alignment bias. However, even after the publication of the guidelines 

for limiting WGBS-derived alignment bias242, multiple groups have continued to 

investigate mtDNA methylation using bisulfite-based technologies, without accounting 

for biases presence219,226,267–271. One study in particular stands out: the work by Dou 

and colleagues264 identifies a strikingly similar pattern to the one we identified in the 

Roadmap samples. They analyse both publicly available WGBS experiments and 

samples sequenced by the group, both in humans and other species. However, while 

the authors correctly report the presence of an alignment bias in all the samples they 

analyse, they claim that the differences observed in the methylation levels between 

the two mtDNA strands are a biologically relevant phenomenon, probably dependent 

on DNMT3A regulation. 

Studies of this kind show that the question regarding the presence and the role of 

mtDNA methylation is far from being fully addressed. The common issue undermining 

most of the results published in this field is that the principal technology used to detect 

mtDNA methylation is vulnerable to the introduction of intrinsic biases that lead to 

contradicting interpretations of the results. This, combined with the added complexity 

of studying mtDNA (i.e.: presence of NuMTs; multiple mtDNA copies, etc.) has 

prompted us to look at alternative methodologies to WGBS to analyse mtDNA 

methylation. 
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Chapter 5. Experimental setup for CpG methylation detection 
on mtDNA using Oxford Nanopore Sequencing 

5.1 Introduction  

The work detailed in chapter 4 discussed the intrinsic weakness common to all 

bisulfite-based technologies when it comes to draw conclusions on mtDNA 

methylation. In light of these considerations, we had to exclude the most used 

technologies to analyse DNA methylation at single-base resolution level (i.e.: WGBS, 

RRBS, etc)180,263,272, as well as the rest of the non-bisulfite based methods (such as 

MeDIP sequencing, mass spectrometry, etc)273,274, as none of these possess neither 

the sensitivity, nor they provide the same amount of information that can be obtained 

by single-base detection methods. 

Long-reads-based sequencing technologies could instead be a valid alternative for 

mtDNA methylation detection. Currently, such technologies are represented by 

PacBio SMRT sequencing and by Oxford Nanopore Sequencing (ONS)275, reviewed 

in the introduction. For practical and budget reasons (the ONS MinION sequencing 

platform is a portable device and the starting kit cost is 1k £), we chose to explore only 

the potential of ONS to measure methylation in mtDNA. Briefly, in ONS DNA is 

unwound through a protein pore embedded in a synthetic membrane, across which 

an electric flow of ions is maintained276. Fluctuations in the electric flow caused by the 

passing of the DNA strand through the pore are registered and interpreted (either in 

real-time or later) by a neural network-based algorithm which re-constructs the original 

DNA sequence bases identities (a process called “basecalling”)196. Contrary to 

Illumina-based sequencing technologies, ONS can sequence native DNA (i.e.: nor 

treated nor PCR amplified). Therefore, it is possible to identify the signal coming from 

modified bases such as 5mC (and others), thanks to recent advances in the 

basecalling technologies189. At the time of writing, there are multiple specialised 

software which can identify such modifications189, including the principal software used 

for basecalling, guppy 195. However, all the methylation calculation in this study have 

been performed using the software Nanopolish198, as at the time of the analysis that 

was the most advanced software available. 

Briefly, Nanopolish utilises a Hidden Markov Model (HMM) to distinguish between raw 

electric signal originating from a modified or unmodified cytosine (in the case of 5mC 
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modification in CpG context). This model is trained to recognise these differences 

using positive (i.e.: methylated) and negative (i.e.: unmethylated) DNA control 

sequences198. The resulting output of Nanopolish methylation calling is a Log 

Likelihood Ratio (LLR) that describes the probability of a cytosine in CpG context to 

be methylated. The direct identification of DNA modifications without the need of PCR 

amplification is the main advantage of ONS compared to WGBS, potentially 

overcoming the intrinsic biases created by the bisulfite treatment and subsequent PCR 

amplifications. In the first part of this chapter we assessed the sensitivity and accuracy 

of Nanopolish mtDNA methylation calling, using ad-hoc positive and negative controls. 

To do so we apply a custom bioinformatic workflow combining common tools used in 

ONS quality control and analysis (Figure 5.2). 

One of the characteristics of ONS is that virtually there is no limit to the length of the 

reads generated by the sequencing276. Studies have in fact shown that the principal 

factor limiting the length of an ONS-sequenced DNA read is the physical fragmentation 

occurring during the library preparation. Ultra-long reads have been used to generate 

de novo plant and human genome assembly that span regions which were usually 

hard to map using only short reads275,277.  

Therefore, in the second part of this chapter we devised a modification of the standard 

ONS library preparation (based on random fragmentation) which could allow 

sequencing of the full-length mtDNA molecule. The advantages of this alternative 

method would include: 1) identifying methylation not only at the single-base but also 

at single-molecule level; 2) combining the identification of nucleotide variations with 

epigenetic modifications using a single technology; 3) the possibility of phasing distant 

nucleotide variants (and possibly methylation) on the same molecule. Moreover, to 

save time and resources we devised our method to avoid the need to isolate 

mitochondria from the biological samples for subsequent purification of the mtDNA. 

Two mtDNA enrichment methods from gDNA were first assessed, then the most 

promising one was evaluated against the standard ONS library preparation method, 

using DNA from control cell lines. 
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5.2 Results 

5.2.1 Negative and positive controls generation 
To assess the accuracy of the Nanopolish methylation calling we generated positive 

and negative controls, replicating the protocol described by Simpson and 

colleagues198. Similarly, we used PCR amplicons either untreated (i.e.: negative 

control) or treated in vitro with a recombinant methyltransferase (i.e.: positive control). 

However, instead of short PCR sequences we decided to use long-range PCR (LR-

PCR) amplicons, covering almost the entirety of the mitochondrial sequence. As the 

LR-PCR protocol requires a very long amplification cycle (>5 hours), the risk of NuMTs 

amplification was high. To assess this possibility, we used DNA from a Rho 0 cell line 

(deprived of mtDNA)278 in parallel to control DNA used as template for LR-PCR. 

Agarose gel results revealed that indeed some aspecific bands lower than the 

expected ~16 kbp band appeared after amplification (Figure 5.1). However, as the 

~16 kbp band did not appear in the Rho 0 DNA sample, and since the aspecific bands 

were lower in intensity compared to the ~16 kbp one (denoting lower concentration), 

we decided to proceed with the methyltransferase reaction and sequencing without 

further purification steps. A strict filtering on the sequencing reads was applied 

bioinformatically at a later stage, to avoid the alignment of sequenced reads lower than 

14 kbp (likely aspecific). 

 
Figure 5.1: aspecific amplification test. Agarose gel results show presence of aspecific 

low molecular weight bands in the LR-PCR performed on DNA from Rho 0 cells. The apparent 
higher molecular weight of the mitochondrial amplicon is probably due to incomplete resolution 
during the gel run.  

 

To generate positive controls, we incubated the LR-PCR products with the 

recombinant bacterial M.SssI methyltransferase. We tested whether the methylation 

rate is influenced by 3 parameters: I) reaction time II) enzyme concentration and III) 
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DNA concentration. As we required at least 1 µg of DNA for the ONS library 

preparation, we decided to use that amount of DNA in all reactions and to vary only 

reaction times and enzyme units amounts, to test which of these two variables had the 

biggest effect on the methylation levels. Therefore, while keeping DNA concentration 

(1 µg), temperature (37°C), reaction buffer and methyl donor s-adenosine-methionine 

(SAM) concentration (160 µM) steady, we set up a series of reactions in parallel. As 

readout, we used a restriction enzyme reaction by the enzyme BstUI, which cuts only 

unmethylated CpGs. Generation of fragments from the BstUI reactions were assessed 

on the TapeStation instrument, and results are illustrated in Figure 5.2. The reactions 

conditions which resulted in the highest protection from BstUI reaction were 4 hours 

of incubation with 50 U of M.SssI.  

 

 
Figure 5.2: Positive control generation assessment. Fragment peak analysis results 

using Genomic ScreenTape. a) Fragment peak profile of untreated mitochondrial LR-PCR 
amplicon. b) Fragment peak profile of mitochondrial LR-PCR amplicon treated for 1 hour with 
the restriction enzyme BstUI. c) Fragment peak profile of mitochondrial LR-PCR amplicon 
treated first with the recombinant methyltransferase M.SssI for 4 hours (at the reaction 
conditions stated in the methods section), then treated for 1 hour with the restriction enzyme 
BstUI. The different peak sizes shown in a) and c) are possibly due to the low resolution of the 
tape at high molecular weights. 
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5.2.2 Bioinformatic workflow 

 
Figure 5.3: Bioinformatic pipeline overview.  
 

The workflow used to analyse negative and positive controls data was overall identical 

to the one used for the rest of the samples that were analysed in this study and is 

outlined in Figure 5.3 (any specific ad-hoc modifications introduced later are 

discussed in the following chapters). Briefly, raw fast5 files were basecalled and 

separated by barcodes using guppy. Specifically for LR-PCR controls, sequenced 

reads shorter than 14 kbp  were filtered out before alignment to the hg38 human 

genome assembly. BAM files, basecalled fastq files and raw fast5 files were then used 

by Nanopolish198 to generate methylation LLR for all the cytosines in CpG context 

found in the sequenced negative and positive controls (Figure 5.4).  
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Figure 5.4: Distributions of LLR from negative and positive controls. Log-

likelihood ratio values of methylation calculated by Nanopolish, using the positive and negative 
controls. The log-likelihood ranges between -20 and 20 (used to build the Receiver operating 
characteristic (ROC) curve) are shown 
 

5.2.3 Accuracy assessment of Nanopolish methylation calling  
To determine the methylation status of the individual CpGs Nanopolish applies a 

default threshold of 2.5 on the calculated LLRs, above which a site is considered 

methylated. It is worth noting that this threshold has been determined by the analysis 

of nuclear DNA data only. Therefore, to choose the most accurate methylation calling 

threshold for mtDNA, we used LLRs derived from our known controls to determine 

true and false positives ratios at varying threshold values (from -20 to +20, with 0.25 

increments), following a procedure published previously by the Nanopolish 

developers198 (Methods). We then calculated a receiving operating characteristic 

(ROC) and methylation calling accuracy (intended as proportion of true calls; Figure 
5.5 A,B). The ability to distinguish between mtDNA unmethylated and methylated sites 

was measured by the area under the ROC curve (AUC), which was equal to 0.97 
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(Figure 5.5 A). Also, at the default Nanopolish threshold of ≥2.5 the accuracy was 

97.7% (Figure 5.5 B). 

 

 
Figure 5.5: Assessment of Nanopolish methylation calling accuracy. a) ROC curve 

calculated by changing the methylation call log-likelihood ratio threshold from a value of -20 to 
20, with a step of 0.25. The dash lines are drawn at FPR (False Positive Rate) and TPR (True 
Positive Rate) values obtained by setting the ratio equal to 5. AUC = area under the curve. b) 
Methylation call accuracy calculated at increasing values of log-likelihood ratio (ranging 
between 0 and 10). The dash lines indicate the accuracy achieved at the ratio equal to 2.5 
(accuracy = 0.977) and 5 (accuracy = 0.99). 

 

To increase the sensitivity in detecting mtDNA methylation, we decided to improve the 

methylation calling accuracy further. To do that, we chose a more stringent calling 

threshold of LLR ≥ 5. This increased the accuracy to 99% (Figure 5.5 B), dropping 

the false positive rate (FPR) from a 0.016 FPR (at LLR ≥ 2.5) to 0.0032 (at LLR ≥5). 

Additionally, by looking at the methylation profiles of the negative control, we identified 

13 residues with a methylation percentage consistently higher than 2 standard 

deviations from the average negative control methylation value (Appendix 3, Figure 
5.6). We checked the methylation level of these 13 positions in all of the samples 

sequenced in this study, and we found that they were consistently methylated at 

around the same level (data not shown). For this reason, these residues could 

represent false positives (possibly due to their sequence context, although this was 

not explored in this study) and were therefore excluded from all of our analyses. 

 



 78 

 
Figure 5.6: Results of the Nanopolish methylation calling on NC and PC. 
Distribution of the methylation percentage per mtDNA position in CpG context, in (top) negative 
and (bottom) positive controls. Methylation values are expressed in % of methylation. Grey 
values represents the 13 positions identified as likely false positives. 

 

5.2.4 Improvement on ONS library preparation: advancement over the standard 
protocol  
Many of the published studies sequenced mtDNA isolated from pure mitochondria 

preparations, which usually involves a time-consuming step requiring large amount of 

biological material279. If on one side this approach has the potential advantage of 

reducing/avoiding NuMTs contamination before the sequencing step, on the other side 

the purity of the mitochondria preparations may vary greatly between the available 

methods279. This approach is even more problematic for results obtained with mass 

spectrometry: not only nuclear DNA could end up mixing with mtDNA in the 

mitochondrial preparation, but bacterial DNA may act as an important confounder too, 

as it is methylated and indistinguishable from mtDNA280. Therefore, we set out to 

develop a protocol that avoids the mitochondria isolation step and still enrich for 

mtDNA sequences starting from gDNA. 

 

To achieve this, we tested two different approaches. The first is a method published 

by Jayaprakash and colleagues245, based on the reaction of the enzyme Exonuclease 

V with gDNA. This enzyme degrades linear sequences (nuclear DNA) while keeping 

circular ones (mtDNA) intact. Linearisation of mtDNA for sequencing with ONS is 

achieved by BamHI digestion. The other method is based directly on the restriction 

reaction of the enzyme BamHI, which cuts nuclear DNA multiple times (at the multiple 

BamHI restriction sites present on nDNA), while cutting mtDNA once. Subsequent 
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selection of the longer restriction fragments ultimately allows the enrichment of full-

length linearised mtDNA molecules.  

 

5.2.4.1 Exonuclease V approach  

For the first approach (based on Exonuclease V) we digested control DNA and Rho 0 

DNA used as positive and negative controls, respectively. After digestion, DNA was 

purified using AMPure beads at 0.5x ratio. Analysis of purified DNA by agarose gel 

electrophoresis revealed the presence in the control lanes of a low molecular weight 

band, maintained after purification. This band could correspond to supercoiled mtDNA 

molecules migrating faster into the agarose gel, as it was reported for plasmid vector 

purification281 (Figure 5.7). 
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Figure 5.7: Exonuclease V protocol results. Analysis of DNA digested with 

Exonuclease V of Rho 0 and control cell lines before or after AMPure beads purification (0.5x). 
 

To determine if full-length mtDNA was maintained after Exonuclease V digestion, we 

first performed a LR-PCR reaction on purified samples. We analysed amplification 

results by agarose gel electrophoresis, using as positive and negative controls LR-

PCR performed on pure mtDNA isolated from mitochondria of Rho 0 or control cell 

lines. As expected, we did not observe any amplification in the digested Rho 0 sample. 

On the other hand, we observed one full length amplicons of the expected size (16.5 

kbp) from digested Control sample (Figure 5.8).  

 

 
Figure 5.8: LR-PCR on Exonuclease V-digested samples. Analysis of the presence 

of intact circular mtDNA after enzymatic digestion and AMPure beads purification. “+ Ctrl” = LR-
PCR on untreated control DNA, “- Ctrl” = LR-PCR on untreated Rho0 cells DNA. 
 

Next, we performed ddPCR using a nuclear (RNASE P) and a mitochondrial probe 

(MT-ND1). As expected, we saw no amplification of either probe in the Rho 0 samples 

digested with ExoV and amplification of the mitochondrial probe only in the control 

samples (Figure 5.9). 
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Figure 5.9: ddPCR results of Exonuclease V-digested samples. a) copy number/µl 

ratio of the nuclear RNASE P gene in samples treated with Exonuclease V b) copy number/µl 
ratio of the mitochondrial MT-ND1 gene in samples treated with Exonuclease V. Correlation 
statistics are shown in the boxes below. Pearson correlation coefficient is shown. N =1 

 

5.2.4.2 BamHI approach 

For the second approach, we used the restriction enzyme BamHI to digest gDNA. We 

chose BamHI as it had been used previously in the literature169,240. Again, we digested 

control DNA (used as positive control) and Rho 0 DNA (used as a negative control). 

We purified fragmented products with AMPure beads at 3 different DNA/beads ratios 

(0.5, 0.3 and 0.1), to determine in which condition we could obtain less low molecular 

weight products. On agarose gel electrophoresis, we observed DNA migrating at the 

same molecular weight as the positive control on the 0.5x AMPure-purified control and 

Rho 0 DNA lanes (Figure 5.10). 
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Figure 5.10: Results of BamHI-digested samples. Results of electrophoresis on 0.7% 

agarose gel shows the presence of high molecular weight bands after enzymatic digestion and 
different AMPure beads purification. “+ Ctrl” = LR-PCR on untreated control DNA, “- Ctrl” = LR-
PCR on untreated Rho0 cells DNA. The presence of intense high molecular weights bands in 
the BamHI-treated samples could also be attributed to incomplete enzymatic digestion, although 
this was not tested further in this study. 
 

We also noticed a faint band of the same molecular weight as the positive control in 

the 0.3x AMPure-purified Control DNA lane, while no products were visible in the rest 

of the conditions. We used the same positive and negative controls as the previous 

experiment. 

The presence of a band in the digested DNA from Rho 0 cells prompted us to 

investigate in silico the possibility of the formation of digestion products ≥ 16.5 Kbp 

after BamHI digestion. Indeed, longer fragments can be formed from the digestion of 

nuclear DNA with BamHI, possibly explaining the formation of the band we observed 

in the Rho 0 sample (Figure 5.11). 
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Figure 5.11: In silico digestion of the human genome reference hg38 with the 
enzyme BamHI. Graph shows the total number of the possible fragments ≥ 16.5 Kbp that can 

possibly be formed by digesting in silico a single hg38 human reference genome with the 
restriction enzyme BamHI. 

 

This was further confirmed by the ddPCR results which showed RNASE P 

amplification and no signal of the mitochondrial probe in BamHI-digested Rho0 

samples and amplification. In BamHI-digested control samples, both probes were 

amplified (Figure 5.12). 

 

 
Figure 5.12: ddPCR results of BamHI-digested samples. a) copy number/µl ratio of 

the nuclear RNASE P gene in samples treated with BamHI b) copy number/µl ratio of the 
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mitochondrial MT-ND1 gene in samples treated with BamHI. Correlation statistics are shown in 
the boxes below. Pearson correlation coefficient is shown. N = 1 

 

The 0.5x DNA/beads ratio resulted in the highest recovery of DNA after digestion. To 

further improve on this, we tested the 0.5x DNA/beads ratio purification against an 

alternative method based on the use of NEB PCR purification columns. We chose to 

test this latter method because it only required a small modification of the standard 

purification protocol, and because we reasoned that we could obtain more consistent 

results with a column-based purification approach compared to one that requires 

handling of AMPure beads. Results showed that the purification method based on 

NEB columns purification was the best in both DNA recovery and high molecular 

weight fragment enrichment (Figure 5.13). 

 

 
Figure 5.13: Comparison of BamHI purification methods. Fragment peak analysis 

results using Genomic ScreenTape. a) Fragment peak profile of untreated Control DNA. b) 
Fragment peak profile of Control DNA digested with BamHI and purified using 0.5x AMPure 
beads. c) Fragment peak profile of Control DNA digested with BamHI and purified using NEB 
PCR purification columns. 
 

Comparing the two mtDNA enrichment approaches (Exonuclease V and BamHI-

based), it was clear that although we could achieve a higher degree of mtDNA 

purification with the Exonuclease V method, we would require an amount of starting 

gDNA too high to achieve the 1 µg needed for ONS library preparation after digestion 

(Table 2). This, combined with the 48 hours of Exonuclease V incubation time, 
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prompted us to choose the BamHI approach (+ NEB column purification) as the 

method of choice for mtDNA enrichment from gDNA. 

 

Protocol Input Output Loss  

Exonuclease V 1 µg ~2.5 ng 99.75% 

BamHI 5 µg 4.72 µg 5.6% 

Table 2: Comparison of the outputs of the Exonuclease V and BamHI digestions 
of Control DNA 
 

5.2.5 Testing the improved ONS library preparation method 
Next, we tested the efficiency of our modified protocol over the standard ONS library 

preparation (Figure 5.14), based on random fragmentation, by performing ONS on 

biological replicates of human DNA (N = 3 different gDNA, 5 technical replicates each, 

15 in total). 

 
Figure 5.14: schematics of the fragmentation-based vs BamHI-based library 

preparation protocols. Overview of the workflow used to process samples using (left) 

standard ONT fragmentation protocol and (right) BamHI-based protocol. 
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Each gDNA was processed in parallel with both protocols. To reduce the possibility of 

NuMTs contamination, we performed a strict filtering on read lengths (selecting 

between 4 and 17 kbp) and per read quality (Phred ≥ 9) before the alignment, followed 

by secondary and supplementary alignments removal (Figure 5.3). While not altering 

quality parameters (percentage of identity and base quality per read; Figure 5.15), our 

filtering enriched for full length mtDNA sequences in all BamHI-treated samples.  

 

 
Figure 5.15: ONS quality controls parameters. a) Plots show the correlation between 

read lengths and read quality scores in one sample processed with the fragmentation protocol 
before filtering (left) and after filtering (right). b) Plots show the correlation between read lengths 
and read quality scores in one sample processed with the BamHI-based protocol before filtering 
(left) and after filtering (right). c) Plots show the correlation in one sample processed with the 
fragmentation protocol between percent identity to the reference sequence and average quality 
of the reads (left), and correlation between aligned read lengths and sequenced read lengths 
(right). d) Plots show the correlation in one sample processed with the BamHI protocol between 
percent identity to the reference sequence and average quality of the reads (left), and correlation 
between aligned read lengths and sequenced read lengths (right).  

 

The enrichment of mtDNA in BamHI-treated samples was confirmed both by ddPCR 

and by analysis of the mapped reads. We found a higher percentage of mtDNA-
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mapped reads in the BamHI samples compared to the fragmentation ones (Student’s 

t-test P-value ≤ 0.05, Figure 5.16). 

 

 
Figure 5.16: enrichment of mtDNA in BamHI-treated samples Vs fragmentation 
protocol. a) Ratio of signal from the mitochondrial MT-ND1 over RNASE P ddPCR probes in 

undigested genomic DNA and BamHI-digested genomic DNA. N = 4 for each protocol used. Star 
indicates significance (*: two-sided P ≤ 0.05, Wilcoxon test). b) Percentage of aligned reads on 
mtDNA and in fragmentation and BamHI sequenced samples (N=5 each). Stars indicate 
significance (*: two-sided P ≤ 0.05, Student’s t-test). 
 

NuMTs contamination level was assessed by sequencing Rho 0 cells lacking 

mtDNA278. Results of this analysis showed that in 2 replicates of Rho 0 cells 

sequenced with ONS, of the 5488 mapped reads only 5 aligned to mtDNA (Figure 
5.17). This suggested a low risk of mtDNA misalignment caused by NuMTs-derived 

sequences. 
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Figure 5.17: ONS reads distributions. a) Distributions of the total sequenced reads 

before alignment in 3 samples prepared with either fragmentation or BamHI-based protocols. 
Reads from Rho 0 cells (treated with BamHI) are highlighted in yellow. Blue dashed lines 
correspond to the cut-off for read filtering at 4000bp and 17000bp. The red dashed line 
corresponds to the human mtDNA genome length (16.5 Kbp). b) Distribution of the mtDNA reads 
filtered by length (4000bp -17000 bp) after alignment, in the same 3 samples prepared with either 
fragmentation or BamHI-based protocols. Reads from Rho 0 cells (treated with BamHI) are 
highlighted in yellow. 

Under the conditions described, the fragmentation-based method showed an H-strand 

bias (L-strandFRAG= 46.12% ± 5.13, H- strandFRAG = 53.87% ± 5.13, mean methylation 

± sd; Anova one-way test P ≤ 0.001, Figure 5.18 A left panel, Figure 5.18 B, 

Appendix 5) with 6 samples having < 100% coverage (Figure 5.18 C). On the 

contrary, the BamHI-based protocol did not show any alignment bias (L-strandBAMHI = 

50.67% ± 4.07, H- strandBAMHI =  49.32% ± 4.07, mean methylation ± sd;  P = 0.36, 

Figure 5.18 A right panel, Figure 5.18 B, Appendix 5) or coverage bias (Figure 5.18 
D).  

 

 
Figure 5.18: Alignment and coverage bias analysis of ONS samples. a) Percentage 

of reads aligned to the mtDNA reference per strand per biological replicate (N = 15 samples per 
protocol), in samples processed with (left) fragmentation protocol and (right) BamHI-based 
protocol. b) Percentage of reads aligned to mtDNA, divided by strand and library preparation 
protocol (N = 15 per protocol). Stars indicate significance (***: P ≤ 0.001, Anova one-way test).  
c,d) Percentage of mtDNA covered by at least 5 reads on the two mtDNA strands (H and L) per 
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biological replicate (N = 15 samples per protocol), in samples processed with c) fragmentation 
protocol and d) BamHI-based protocol. 

 

Average mtDNA read depth was higher in the samples processed with the BamHI-

based protocol (Frag. = 23.83x ± 4.33, BamHI = 131.73x ± 8.15, mean ± sd;  P = ≤ 

0.0001, Figure 5.19 A,B, Appendix 5), with almost half of the mitochondrial reads 

mapped as full-length molecules (≥ 15 kbp; 42% ± 12 of BamHI reads Vs 2% ± 2 of 

Frag. reads, Figure 5.17 B).  

 

 
Figure 5.19: Read depth distribution of ONS sequenced samples. a) Distribution of 

the average read depth per mtDNA position in samples processed with (top) fragmentation 
protocol and (bottom) BamHI-based protocol (N = 15 samples per protocol). b) Average read 
depth per sample observed in the same sample pool processed using either fragmentation 
protocol (left) or BamHI-based protocol (right). N = 15 per protocol. Stars indicate significance 
(****: two-sided P = ≤ 0.0001, Wilcoxon test). 
 

5.2.6 Methylation calling results 
Samples sequenced using a fragmentation-based protocol showed a greater range in  

average methylation levels (MinFRAG : 5% - MaxFRAG : 33%) at low read depths levels 

(Figure 5.20; MinFRAG :  9.16x – MaxFRAG : 55.62x), while the same samples processed 

with the BamHI-based protocol achieved similar methylation levels (MinBAMHI : 2% - 

MinBAMHI: 8%) at higher read depths (Figure 5.20; MinBAMHI: 40.6x – MaxBAMHI : 

306.2x). 
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Figure 5.20: Average methylation and read depth profiles of ONS sequenced 
samples. Correlation between average read depth and average methylation percentage in 

samples processed with fragmentation- and BamHI-based protocols (Obs) and in unmethylated 
datasets simulated from the negative control (Backgr). Circles represent a sample sequenced 
with either sequencing protocol (N = 15 per protocol). Triangles represent an unmethylated 
dataset simulated from the negative control. Spearman’s rank correlation coefficient and two-
sided P-values are shown. 

 

This inverse relationship between read depth and methylation levels was remarkably 

similar to the one obtained with WGBS data. However, this time we could not explain 

these results with an effect of bisulfite treatment on the DNA integrity. Instead, we 

hypothesised that these results may be explained by an effect of incorrect methylation 

calls introduced by Nanopolish (background methylation noise), which was more 

pronounced at lower read depths and got diluted out at higher read depths. To test 

this hypothesis, we first generated simulated unmethylated control data. To do that, 
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we selected reads at random from the NC BAM files, to generate 30 new BAM files 

(“Background”) with a read depth matched to read depths obtained with both 

fragmentation and BamHI-based protocol-derived experiments (“Observed”) (Figure 
5.20). We then called the methylation again with Nanopolish on these simulated 

samples to determine the effect of the baseline methylation “noise”. Indeed we could 

confirm that we observed a similar inverse relationship between average read depth 

and average methylation level (Figure 5.20). Based on this data we were then able to 

infer a model that best fitted the simulated data, which we used to estimate the 

background noise in methylation calling of all the ONS experiments performed in this 

study (R2 = 0.94, Figure 5.21, Methods). 
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Figure 5.21: ONS methylation error modelling. Green circles represent the average 

methylation percentages calculated from 30 ONS sequencing of simulated datasets (derived 
from negative controls, therefore expected to be unmethylated), in relation to their read depth. 
The blue solid line represents the fitted line (exponential decay function) that describes such 
distribution, corresponding to the methylation background noise (Backgr). The formula 
describing the fit and R2 correlation calculated with the goodness of fit test are shown. 
 

5.3 Conclusion and discussion 

In our effort to find a suitable alternative to WGBS and other single-base resolution 

methods for studying mtDNA methylation, we explored the suitability of the third-

generation sequencing technology ONS. We chose ONS as it does not require neither 

bisulfite treatment nor PCR amplification to obtain information on the DNA methylation 

status, and because it was the most viable solution for us at the time this analysis was 

performed. Moreover, since ONS allows the sequencing of ultra-long reads (potentially 

> 100 kbp275,277), this allows us to sequence the full mtDNA molecule as a single read, 

and potentially obtain simultaneous information on SNVs and CpG methylation, as 

well as phasing of SNVs and methylated residues on the single molecules. 

For this reason, we first tested first the accuracy of the methylation calling of the 

Nanopolish software by using custom negative and positive controls sequenced with 

ONS, as shown by Simpson and colleagues198. Results show that the accuracy level 

at the default methylation calling threshold of ≥ 2.5 LLR was 97.7%. Therefore, we 

decided to increase the calling threshold to ≥ 5 LLR, to obtain a better accuracy of 

99%. We identified 13 false positives in the negative control. These positions were 

found to be methylated at the same level irrespective of the sample analysed. They 

were deemed false positives and removed from any further analysis. 

We were also interested in avoiding the requirement of isolating mitochondria from 

biological samples to sequence pure mtDNA for sequencing. We wanted to do that 

firstly because this procedure usually requires a large amount of starting material 

(either tissues or cell lines), and secondly because of the great variability in the 

available procedures279, which may affect the purity of the mtDNA preparation and 

hence the methylation calling. We tested two different methods for mtDNA enrichment 

from gDNA. The first one, published by Jayaprakash and colleagues245, based on the 

digestion of linear nDNA by exonuclease V, resulted in a better purity of the remaining 

circular mtDNA, as measured by ddPCR. However, because of the low mtDNA 
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recovery yield from 1 µg of gDNA, the very long incubation times required and the 

requirement of one additional linearisation step to sequence linear mtDNA, we opted 

for the alternative method that we tested. This method is based on the digestion of 

gDNA with BamHI, which cuts mtDNA once and nDNA multiple times. 

Finally, we tested our new library preparation method against the standard ONS library 

preparation protocol based on random fragmentation of gDNA (without any additional 

purification or enrichment steps before sequencing). Contrary to what we observed in 

WGBS samples, we found a low L-strand  and coverage bias in samples sequenced 

with the fragmentation-based method, while no bias of any form was observed in the 

samples prepared with the BamHI-based protocol. Mitochondrial read depth was also 

significantly higher in BamHI-treated samples, with 42% of the mitochondrial reads 

longer than 15 kbp (versus only 2% of the mitochondrial reads in samples processed 

with the fragmentation protocol), as expected. 

When comparing the average mitochondrial methylation level observed in samples 

sequenced using the two protocols with their relative mitochondrial read depth, we 

found an inverse correlation similar to the one observed in WGBS samples (Figure 
4.3 C). However, it was clear that this time we could not explain this relationship with 

differences in the degree of bisulfite resistance, as we only sequenced native DNA. 

We therefore hypothesised that these data could be explained by the presence of a 

baseline methylation calls that are wrongly called as methylated by Nanopolish (thus 

representing background methylation error), and that could explain the average 

methylation frequency observed especially when the read depth is low. This could be 

shown by calculating the methylation levels of simulated unmethylated data at read 

depths matching the ones from the real samples analysed. The data derived from this 

simulation support the hypothesis that a baseline level of incorrect methylation calls 

must be taken into account when quantifying the mtDNA methylation on ONS-

sequenced “real” biological samples, especially when read depth is low. This analysis 

also allowed us to infer a model describing the relationship of background methylation 

error with sequencing read depths, which we used in subsequent experiments to 

remove noise from the true methylation signal. Moreover, the fact that at higher “real” 

read depths (observed by sequencing with ONS control cell lines) we still observe an 

average methylation close to 0 adds to the evidence supporting the absence of mtDNA 

methylation (Figure 5.20). Moreover, we were able to infer a model of the expected 
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background error, to determine also in future experiments whether the observed signal 

could be ascribed as noise. 
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Chapter 6. BamHI-based method mtDNA sequencing with ONS 
for mitochondrial variant calling and CpG methylation analysis 
on human cell lines, primary fibroblasts, and tissue DNA 
6.1 Introduction 
6.1.1 mtDNA homoplasmy, heteroplasmy and mitochondrial haplogroups 
One of the main characteristics of the mitochondrial genome of all organisms is to be 

present in multiple copies per cell 43,282. The identity of all mtDNA sequences is a 

condition known as homoplasmy. Identification of homoplasmic variants in the human 

mtDNA allows the definition of different haplogroups: mtDNA molecules that share the 

same haplotype, are inherited by the maternal line, and derive by descent from the 

ancestral mtDNA molecule283. From a phylogenetic perspective, an haplogroup 

corresponds to a specific branch (or clade) in the human phylogenetic tree and its 

ancestral mutational pattern is situated on a branch node284. Mitochondrial 

haplogroups have been studied in population genetics to model the history of human 

migrations out of Africa72. The opposite condition to homoplasmy, known as 

heteroplasmy, is the presence of more than one mtDNA species, defined by their 

sequence285. Heteroplasmy of pathological variants may cause rare mitochondrial 

disease when their level surpasses a certain threshold44. Technologies used to study 

mitochondrial variation include PCR-based methods (southern blotting, qPCR, etc.286–

293) microarrays (for a targeted approach where known variants are investigated294), 

pyrosequencing291, and next-generation sequencing (NGS) technologies for the 

identification of unknown variants295,296. 

 

6.1.2 Origin of NGS error rates 
The digital output of NGS is represented by FASTQ files containing short sequences, 

known as “reads”, of varying lengths, depending on the technology employed296.  

The FASTQ files are text-based files used to store information on both the nucleotide 

sequence itself and corresponding quality scores, expressed with a Phred-like 

formula297. This score is related logarithmically to the error probability (P) of the base-

calling, and inversely correlated to the error rate. Therefore, high Phred scores 

correspond to more accurate base calls. This measure of the quality of the sequencing 

data is one of the main advantages of this technologies compared to others. In 
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addition, NGS technologies provide high scalability, as multiple samples can be 

sequenced at the same time thanks to the use of molecular indexes to tag specifically 

the individual samples.  

However, every NGS technology has an intrinsic error late level that influences the 

heteroplasmy calling accuracy, that may depend on the specific type of NGS 

chemistry, or on the DNA sequence context. For examples, in the Illumina Miseq the 

fluorophores that label the A and C bases have the highest intensities and are 

identified through the same channel, thus leading to a higher susceptibility of A to C 

substitution errors298. This effect is more pronounced in case of homopolymeric 

stretches of the same repeated nucleotides, that may lead to incorrect 

insertions/deletions299–301.  

On top of this, incorrect proofreading of the DNA polymerase used for PCR can 

increase the miscalling rate. For Illumina sequencing, this could happen both during 

the final PCR amplification step during library preparation, during cluster generation, 

or during sequencing itself302. Various bioinformatic strategies can be implemented to 

correct for these PCR errors in NGS. 

 

6.1.3 Mitochondrial variant calling 
The first step in the bioinformatic analysis targeted at mitochondrial variant calling is 

the read alignment (or “mapping”) and genome assembly. In NGS, due to the nature 

of the reads, the alignment of short fragments only to either the mtDNA or nDNA 

reference is prone to the generation of misaligned reads and false positives in 

subsequent mtDNA variant calling303,304. Therefore, it is recommended to perform the 

read alignment on both genome sequences simultaneously, to detect and remove 

possible NuMTs sequences304,305. These strategies are already commonly used by 

most of the available mtDNA variant calling tools, included MToolBox (used in this 

study)255. 

The following step is mtDNA variant calling, aimed at identifying variants and quantify 

their heteroplasmy levels. The available pipelines may vary slightly in their quality 

procedures and calling methods of a valid set of mtDNA heteroplasmic variants. 

However in general, heteroplasmy is calculated as the ratio of the read depths of the 

allele on the total read depth per position. The cut-offs used to call a variant are 

arbitrary and may vary between the pipelines. The pipeline used in this study, of which 

results are presented in this chapter, MToolBox255, adopts a default read depth value 
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of ≥5 and a per-base quality score of ≥25 to call a mitochondrial variant, and also 

excludes small insertions/deletions close to read ends, where quality tends to be 

lower.   

There is no pre-defined set of rules or agreement on what specific heteroplasmy 

thresholds are to be used in mtDNA variant calling analysis. However, the sequencing 

metrics, like read depth, may help choosing the most appropriate cut-off for 

heteroplasmy analysis. In general, a high read depth (≥1000x) corresponds to higher 

sensitivity, and enhanced detection of low heteroplasmic variants (≤1%). Despite this, 

some false low heteroplasmy variants may arise from the presence of rare unknown 

NuMTs sequences not excluded in the alignment step or sequencing errors that have 

failed the quality filtering, despite stringent quality controls304,306. For this reason, to 

reduce false positives higher heteroplasmy cut-offs (≥1-5%) would be preferred, 

despite resulting in the exclusion of true low-frequency variants303. Skipping this 

quality control may in fact result to susceptibility to generation of flawed data307. 

 

6.1.4 MtDNA variant calling with third-generation sequencing technologies 
As mentioned in paragraph 1.6.5, third-generation sequencing technologies such as 

PacBio or ONS can pose a valid alternative to short-read based NGS technologies, 

enabling the detection of mtDNA at the single-molecule level296. The opportunity 

offered by these technologies, which is being explored in this study, is to be able to 

capture and sequence full-length native mtDNA, to simultaneously perform variant 

calling, variant phasing and methylation calling of CpG residues. Alignment of the full-

length sequence may lead to higher mitochondrial variant calling specificity, as the risk 

of aligning NuMTs is reduced. Moreover, by sequencing native DNA, the risk of 

introducing PCR artifact is virtually nullified, therefore increasing the mtDNA variants 

detection accuracy (especially for low-level heteroplasmy).  

However, these approaches have several possible disadvantages. First, third-

generation sequencing PCR-free protocols require a high amount of input DNA (1-5 

µg) to achieve sensible read depths (although for mtDNA this requirement might be 

lower). Secondly, as we discussed in paragraph 1.6.7.2  of the introduction, one of 

the major issues of ONS specifically is the high error rate arising from the interpretation 

of the electric signal variations over time. This is exacerbated in homopolymeric 

regions, and could represent a major setback in the usage of ONS for mtDNA variant 
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calling (although it could probably represent a good technology for the identification of 

large mtDNA re-arrangements). 

 

6.1.5 Final remarks 
The work detailed in chapter 5 was aimed primarily at establishing a reliable method 

to consistently measure mtDNA methylation using ONS. In the first section of this 

chapter we tested for the first time to our knowledge the efficacy of ONS for mtDNA 

variant calling, using a modification of the MToolBox bioinformatics pipeline255, and 

samples sequenced using gold-standard Illumina sequencing as control. This analysis 

was performed by Dr. Claudia Calabrese. With this analysis we want to unravel the 

potential of ONS for mtDNA variant calling, and outline its limitations. 

Next, using the library preparation method developed in the previous chapter, based 

on BamHI-cutting, we assessed the presence of mtDNA methylation in human cancer 

cell lines with different mitochondrial haplogroups, primary fibroblasts with or without 

a pathological mitochondrial variant, and in different human tissues. 

 

6.2 Results 

6.2.1 Comparison of mtDNA ONS variant calling with Illumina Miseq 
In this first section, we analyse and compare results from variant calling performed 

with Illumina sequencing Vs ONS. To test this, we sequenced DNA from cells with 

known mtDNA sequences. First, we sequenced DNA from 3 trans-mitochondrial 

osteosarcoma cybrids with mtDNAs belonging to 3 different human haplogroups283 

with an identical nuclear background308 (N = 5 technical replicates of 3 independent 

DNA from the mitochondrial haplogroup H1, J1c and J2, respectively; “613H”, “128J”, 

“135J2; Appendix 1). Then, we sequenced mtDNA from primary fibroblasts including 

healthy control subjects without known mtDNA mutations (“Control 1”, “Control 2”), 

and one patient carrying the heteroplasmic m.8344A>G/MT-TK (“m.8344A>G”), 

causative of  myoclonic epilepsy with ragged red fibers (MERRF) syndrome and 2 

patients carrying the m.3243A>G/MT-TL1 mutation (“m.3244A>G”), known to cause 

Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, Stroke-Like Episodes 

(MELAS309,310; N = 3 technical replicates, Appendix 1). Additionally, we sequenced 

human tissues (Liver, Kidney, Heart, Muscle) from 7 different healthy individuals 

(Appendix 1). 
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To detect mtDNA variants and quantify their heteroplasmy, we identified mtDNA 

variants in ONS-sequenced samples and used high depth Illumina MiSeq sequencing 

of mtDNA for validation (mean read depth = 2,769x, min = 318x, max = 5,559x , 

Appendix 6). Illumina Miseq was performed by Dr. Zoe Golder and variant calling by 

Dr. Claudia Calabrese, and conducted on human cell lines and primary fibroblasts only 

(where either the mitochondrial haplogroup or the mtDNA mutation was known) to 

seek confirmation with both Illumina and ONS techniques. First, variant calling with 

ONS detected 99.5% (N = 739/743) of the homoplasmic variants (het. ≥ 95%) also 

detected by the Illumina sequencing. Then we confirmed that ONS was able to 

correctly predict haplogroups of all 613H, 128J and 135J2 biological replicates. It was 

also able to identify the known single nucleotide heteroplasmic variants in most 

biological replicates of primary cells derived from MERRF and MELAS patients (N= 

2/3 for m.3244A>G (1), N=3/3 for m.3244A>G (2), N=2/3 for m.8344A>G; Appendix 
6, Figure 6.1). 
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Figure 6.1: Comparison of ONS and Illumina sequencing variant calling. a-h) 

Scatterplots show the mtDNA heteroplasmy quantified with ONS in each sample as a function 
of the read depth per position. Variants confirmed also by Illumina Miseq are highlighted in 
orange and in red (marking m.3243A>G and m.8344A>G mtDNA mutations).  
MtDNA variants shown have been aggregated across biological replicates per sample 
sequenced with ONS (N = 5 for 613H/128J/135J2 and N = 3 for 
Control1/Control2/m.3243A>G(1)/m.3243A>G(2)/m.8344A>G). The m.3243A>G mutation was 
confirmed by Illumina Miseq but identified with ONS in two out of three biological replicates of 
the m.3243A>G (1) sample and in all the three replicates of the m.3243A>G (2) sample. The 
m.8344A>G mutation was confirmed by Illumina Miseq and identified by ONS in two out of the 
three biological replicates of the m.8344A>G sample. 

 

Because we observed a base calling accuracy of ~90% in our samples sequenced 

with ONS (Figure 5.15), we set a stringent threshold of ≥10% heteroplasmy to call for 

mtDNA variants. On average, we identified 60 mtDNA variants with ≥ 10% 

heteroplasmy per sample with ONS alone, of which 28 (~47%) were confirmed with 

Illumina Miseq (Figure 6.2 right plot). These were mostly highly heteroplasmic or 

homoplasmic variants (heteroplasmyONS = 93% ±  17%; heteroplasmyMiseq = 96% ±  

15%; mean ± sd, Figure 6.2 A left plot). The remaining ONS-only mtDNA variants 

were mostly low heteroplasmic (heteroplasmyONS = 16% ± 11%, mean ± sd; Figure 
6.2 A left plot). Heteroplasmies calculated with ONS overall tended to correlate better 

with Illumina at higher read depths (Figure 6.2 B). 
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Figure 6.2: ONS-based variant calling of mtDNA. a) Variant calling statistics per each 

cell line analysed. Heteroplasmy (left) and percentage of single nucleotide mtDNA variants 
(right) identified with either Illumina Miseq and ONS or ONS only. ONS values are means 
calculated across all biological replicates per each cell line analysed (N = 5).  b) Scatterplot 
showing a correlation between differences in heteroplasmy values quantified with Illumina 
Miseq and ONS (calculated as Miseq heteroplasmy - ONS heteroplasmy), for each single 
nucleotide mtDNA variant detected with both techniques, and ONS read depth per position. 
Colours correspond to the different samples analysed (N = 5 for 613H/128J/135J2 and N = 3 for 
Control1/Control2/m.3243A>G (1)/m.3243A>G (2)/m.8344A>G), with lines indicating mean over 
all the data points in each sample (calculated using the “loess” geom_smooth R function). 
Spearman's rank two-sided P-values and rho coefficients are shown. 
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6.2.2 ONS-based CpG methylation analysis of mtDNA in human cell lines and 
tissues reveals absence of CpG methylation 
Next, we performed CpG methylation calling followed by differential methylation (DM) 

analysis191, in all the cell lines and primary fibroblasts, using as baseline the 613H cell 

line and the control fibroblasts, respectively. We first checked the methylation levels 

of the 13 possible false positives we had identified in the NCs (chapter 5), and we 

found them to be methylated at the same level in the samples analysed (Appendix 
3). Therefore, we removed the 13 false positives positions from all the ONS 

sequencing experiments results. In the cell lines, the DM analysis revealed 3 

differentially methylated CpGs (DM-CpGs): one found only in the haplogroup J2 cells 

(m.16360), and two found in both J cell lines (m.10400 and m.16128; Figure 6.3 top 

graph, Appendix 7). We also found 5 DM-CpGs in all the primary fibroblast (m.4919, 

m.9195, m.10400, m.15925, m.16128; Appendix 7). However, a comparison of these 

DM-CpG with the variants identified in our analysis, revealed that an haplogroup-

defining variant always fell within a ± 5 bp window from a DM-CpG. This prompted us 

to hypothesize that these variants may alter the Nanopolish methylation calling. In fact, 

the software compares the signal from a 11 bp window of ± 5 bp around the CpG with 

the expected signal coming from the trained model. We hypothesised that the 

presence of a variant inside this 11 bp window may alter the signal in a way that could 

be misinterpreted by Nanopolish. To test this, we generated a new reference for 

methylation calling based on a mtDNA consensus sequence built on major mtDNA 

alleles identified with Illumina MiSeq sequencing (Methods). As expected, DM analysis 

repeated using consensus sequences-corrected methylation calls returned no 

significant differences in methylation levels between the samples, indicating that the 

previously identified possible DM-CpGs were artefacts of the Nanopolish calling 

algorithm (Figure 6.3 bottom graph, Appendix 7). 

 



 104 

 
Figure 6.3: Differential methylation analysis results. Example of methylation calling 

artefacts introduced when using hg38 as reference (which includes the mitochondrial reference 
sequence rCRS) (top) instead of a sample-specific consensus sequence (bottom). In green are 
highlighted the sample-specific differentially methylated positions which disappear upon 
reference correction 
 

Using a sample-specific mtDNA reference sequence for methylation calling, we 

measured consistently low methylation levels in all the cell lines and primary 

fibroblasts analysed (MethylationC_LINES/FIB= 1.3%-2%, min-max; Figure 6.4). All the 

measured methylation values were found to be below our estimated background noise 

(Figure 6.4). 
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Figure 6.4: methylation analysis results on cell lines and primary fibroblasts. 
Scatterplot showing the relationship between average read depth and average methylation 
percentage in samples processed with BamHI protocol. Circles represent an average of al 
mtDNA position in either 5 (cell lines) or 3 (primary fibroblasts) biological replicates. Yellow 
triangles represent the background noise. Inset plots show magnification of the data shown. 
Spearman’s test, p-value and Rho are shown.   
 

The biological samples utilised for the analysis showed so far were generated in our 

laboratory and were cultivated exclusively in vitro. We therefore decided to look for  

additional evidence of mtDNA methylation presence in a more physiological context, 

sequencing mtDNA from post-mortem human tissues of 7 different healthy individuals 

(Appendix 1). However, once again we observed that the methylation levels were 
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extremely low and below our estimated background noise, even at higher read depths 

compared to the cell lines (Figure 6.5; MethylationTISSUES= 0.6%-0.8%, min-max). 

 

 
Figure 6.5: methylation analysis results on human tissues. Scatterplot showing the 

relationship between average read depth and average methylation percentage in samples 
processed with BamHI protocol. Circles represent an average of al mtDNA position in human 
tissues of 7 different individuals. Yellow triangles represent the background noise. Inset plots 
show magnification of the data shown. Spearman’s test, p-value and Rho are shown.   
 

Since we could not identify any significant methylation in the human samples analysed 

so far, we sought for conclusive evidence that ONS can identify methylation above the 

background level. To do that, we generated and sequenced with ONS 4 additional 
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positive control samples with expected methylation levels of 5%, 25%, 50% and 75%, 

generated by mixing the PC and NC at different percentages. Results of this analysis 

revealed that the expected methylation levels could be indeed correctly detected with 

ONS  (Rho=1, P=0.003, Spearman’s rank test, Figure 6.6). Therefore, we concluded 

that the low methylation levels observed in all the biological contexts analysed were 

artefacts, and that CpG methylation is not present in human mtDNA. 

 

 
Figure 6.6: Positive controls methylation results. Correlation between the expected 

and observed methylation levels calculated on methylated controls generated by mixing PC and 
NC. Spearman’s test, p-value and Rho are shown.   
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6.3 Conclusions and discussion 

Variant calling is crucial for our understanding of the human genome variation311. 

Compared to gold-standard Illumina sequencing (and other short-read based 

technologies), long-read sequencing-based ONS has the advantage of having a 

reduced GC-bias and does not require PCR amplification276. This makes this 

technology useful to analyse DNA sequences that were previously notoriously difficult 

to study275. Because of its polyploid status and the presence of NuMTs, variant calling 

on mtDNA is particularly challenging312. Here, for the first time to our knowledge, we 

tested the efficacy of ONS in identifying mitochondrial genome variants. Using 

samples with known haplogroups and/or known mitochondrial disease-causing 

mutations, our analysis performed against gold-standard Illumina sequencing 

revealed that ONS can correctly identify variants with an heteroplasmy ≥90%, such as 

homoplasmic haplogroup-defining variants or the pathological mutations of our test 

cell lines and primary fibroblasts, respectively. However, ONS revealed to be 

unreliable in assessing low heteroplasmic variants, as proven by the estimated levels 

of heteroplasmy of the SNV variants identified in both ONS and Illumina sequencing 

(Figure 6.1), and the fact that low heteroplasmic variants were for the majority only 

found with ONS and not confirmed by Illumina Miseq. This latter finding was somewhat 

expected, given the high rate of incorrect insertions/deletions known to be 

systematically introduced by ONS near homopolymeric stretches313. Also, the 

observation of an inverse relationship between the difference in heteroplasmy 

quantified at the same time with Illumina and ONS and the mitochondrial read depth 

measured with ONS suggests that with increasing mtDNA read depths the ONS errors 

introduced in variant calling is smoothed out, and the accuracy of the heteroplasmy 

quantification increases (Figure 6.2 C). This implies that adjustments to the ONS 

protocol aimed at reaching higher read depths (e.g. longer sequencing times, higher 

starting sample material, etc) can improve heteroplasmic mtDNA variants 

identification. These observations reveal that ONS technology is still lacking behind 

Illumina sequencing regarding at least mtDNA variant calling. It is clear from our 

analysis that not only ONS sequencing of native DNA cannot compare to Illumina for 

the correct estimation of high heteroplasmic variants (≥ 90%), but it is very unreliable 

for low heteroplasmic variants. However, it also seems likely that high ONS read 

depths could help to ameliorate mtDNA variant calling, and this point may be crucial: 
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the analysis we performed in this study was specifically aimed at estimating 

methylation, with the variant calling being tested as a secondary aim. Because of this, 

we were obligated to sequence native DNA (and to try to enrich as much as possible 

for native mtDNA molecules). Therefore, while this limited us to achieving high read 

depths, on the other hand does not preclude that if mtDNA variant calling analysis is 

the main objective of the research, PCR amplification before sequencing may be used 

to achieve higher read depths that could lead to more accurate results. 

DM calling analysis on human cell lines and primary fibroblasts was initially performed 

following the guidelines from Gigante and colleagues191. In this study the authors could 

successfully identify different methylation patterns in genes inherited by either of the 

two parental nuclear chromosomes, demonstrating that a combination of phasing of 

DNA variants and methylation calling can be simultaneously achieved with ONS. 

Similarly, our analysis initially revealed a few DM-CpGs in the samples studied. 

However, a deeper scrutiny of the variants positions revealed the possibility that 

homoplasmic variants around the DM position could influence the results. This 

hypothesis was substantiated by repeating the methylation calling analysis using a 

sample-specific mitochondrial reference sequence (generated using Illumina 

sequencing variant calling performed on the same samples), where all the previously 

identified DM-CpGs disappeared, thus confirming the artefactual nature of the 

previously-identified DM results. Additionally, the levels of mtDNA methylation 

quantified in our samples were extremely low and decreasing at increasing read 

depths (particularly in the human tissues), and consistently lower than the methylation 

background noise calculated using the model inferred from simulated data and 

described in chapter 5 (and the Methods section).  

As a final confirmation that ONS was indeed capable of identifying mtDNA methylation 

when present (even at low levels), we sequenced a series of positive controls with 

expected intermediate methylation levels (0%, 5%, 25%, 50%, 75%, 100%) and high 

read depths (~2000x - ~5000x, min-max). Our results showed that indeed we could 

correctly identify the expected methylation levels of our positive controls, confirming 

on one side that ONS technology is able to correctly detect mtDNA methylation levels 

as low as 5% and, on the other side, the absence of any substantial CpG methylation 

on the mtDNA in the biological contexts we analysed. 
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Chapter 7. Summary and conclusions 
While every chapter has been discussed in turn, in this chapter we will provide a 

discussion on the whole work and its relevance in the field of mtDNA epigenetics.  

 

7.1 Summary 

Soon after the discovery of mtDNA, researchers began to be interested in discovering 

whether this DNA molecule could be epigenetically regulated as well170. Although the 

early reports did not find substantial amounts of methylated residues on mtDNA, the 

recent discovery of a mitochondrially-targeted DNA methyltransferase210 (DNMT1), 

rekindled the interest in the field. In the span of a few years many articles were 

published reporting specific mtDNA methylation patterns in a variety of fields ranging 

from cancer to neurological research (see chapter 1). However, a few studies 

published in parallel to these new reports focussed their attention on the techniques 

used to measure mtDNA methylation240,242, pointing out fundamental flaws in bisulfite 

technology which laid at the basis of most of the published studies. 

 

In our work, we addressed again this fundamental issue, and in chapter 4 we analysed 

55 human WGBS samples part of the Roadmap Epigenomic Project247. We focussed 

on highlighting the underlying biases intrinsic to WGBS and we could indeed separate 

the samples in 2 groups based on the amount of alignment bias they showed. More 

than half of the samples (58.2%) had a strong alignment bias on the H strand (≥ 55% 

of the mitochondrial reads aligned on the H strand), and uneven coverage between 

the mtDNA strands. The methylation between the strands was also significantly higher 

in the L-strand compared to the H-strand. As reported by Mechta and colleagues240, 

we too identified a strong inverse relationship between the mtDNA methylation levels 

and the read depth of the individual cytosines on all mtDNA strands in all the sample 

groups analysed. This is in line with what Olova and colleagues reported242, about the 

strong bias being likely linked with the bisulfite-mediated degradation of the cytosine-

rich mtDNA L-strand. This also explains the differences of methylation between the 

two mtDNA strands: the intrinsic bisulfite-mediated degradation of the L-strand 

resulted in a lower read depth, which influenced in turn the methylation level on that 

strand (since methylation is measured as a number of methylated calls over the total 

calls). In conclusion, in this chapter we demonstrated the full extension of the problems 
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intrinsic to the gold-standard technology currently used to study methylation, and we 

then sought for an alternative method to look at mtDNA methylation. 

 

This was the focus of chapter 5, where we started exploring the possibility of using 

ONS to analyse methylation on mtDNA. Firstly, we assessed the accuracy level of this 

technology for methylation detection. Using ad-hoc mitochondrial negative and 

positive controls (NC and PC) and a modified bioinformatic pipeline, we established 

that using the Nanopolish software198 we were able to reach an accuracy of 99% in 

detecting methylated residues on the mitochondrial molecule. The next step in our 

work was then to modify the standard ONS library preparation procedure to specifically 

enrich mitochondrial sequences out of gDNA. To do this, we tested two enrichment 

methods: one based on digestion of gDNA by Exonuclease V245, and the other based 

on digestion by BamHI followed by enrichment of long fragments. The latter proved to 

be more practically convenient for our purposes, and we then tested this new method 

against the standard ONS library preparation, based on random fragmentation of 

gDNA. Our results showed that our new protocol was better than the standard library 

preparation method in achieving higher mitochondrial read depths with no alignment 

or coverage biases observed in the samples treated with BamHI. Regarding 

methylation estimations, once again we observed the same inverse relationship 

between read depth and methylation levels in all samples sequenced with ONS. We 

hypothesised that this phenomenon was due to random noise introduced by incorrect 

methylation calls introduced by Nanopolish (or due to random fluctuations in the raw 

electrical ONS signal). To assess this and to describe a baseline methylation error 

level, we randomly sampled from the NC control BAM file sequences in order to form 

new simulated datasets with read depths corresponding to the observed samples. This 

then allowed us to calculate a mathematical model of the methylation background 

noise distribution, based on these simulated samples. When we compared the 

observed methylation levels to the background, we found that all the signal was below 

the noise level, even at higher read depths.  

 

The potential of our new protocol was explored in chapter 6, where we initially 

performed variant calling analysis on cybrid cell lines and primary fibroblasts with 

either a specific haplogroup (H, J or J2) or a mtDNA pathological mutation, 

respectively. Comparing results  obtained with ONS to gold-standard Illumina 
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sequencing we were able to identify the correct haplogroup in all of the cybrids cell 

lines and the pathologic mutation in the fibroblasts. On average, we were able to 

identify 60 mtDNA variants with ≥ 10% heteroplasmy per sample using only ONS. Of 

these, only ~47% were then confirmed with Illumina Miseq, and they were mostly 

highly heteroplasmic or homoplasmic variants (≥ 90%). The remaining mtDNA variants 

identified only with ONS were mostly low heteroplasmic, probably derived from the 

random insertion/deletion that are common in ONS. In general, heteroplasmies 

calculated with ONS overall tended to correlate better with Illumina at higher read 

depths.  

Having explored the potential of ONS in calling mitochondrial variants, we set out to 

analyse methylation in the same sample groups on which variant calling analysis was 

performed. An initial differential methylation analysis revealed a few possible 

methylation residues that were differentially methylated between H and J haplogroups 

cell lines, and between control and mutation primary fibroblasts, respectively. 

However, we discovered that every single one of these residues had an haplogroup-

defining variant in a + 5 bp window around the methylated position. Because for calling 

methylation Nanopolish compares the raw ONS signal with an expected signal that it 

calculates based on the reference sequence that is provided by the user, we reasoned 

that the presence of these variants could affect methylation calling. Therefore we 

repeated the differential methylation analysis using new sample-specific reference 

sequences. In this case, all the methylated position identified previously disappeared, 

confirming our theory. All methylation calling was then performed using sample-

specific mitochondrial sequences. 

Methylation analysis revealed very low levels of average apparent methylation in all 

the samples analysed (cybrids and fibroblasts methylation = 1.3%-2%; min-max), 

including in 7 human samples where read depth was higher than the cell lines 

(methylation tissues = 0.6%-0.8%, min-max). Moreover, all of the measured apparent 

methylation levels were below the background level calculated at each read depth 

using the formula we inferred in chapter 5 using simulated negative controls. As a 

final proof that ONS was indeed able to measure methylation, we generated new 

positive controls possessing intermediate methylation levels (5%, 10%, 25%, 50%, 

75%) and sequenced them with ONS. Methylation analysis revealed that in this case 

we were indeed able to observe all the expected average methylation levels in our 

controls, confirming that methylation is absent in biological samples. 
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7.2 Conclusions 

In conclusion, the work presented in this dissertation is following up a line of research 

initiated early after the discovery of mtDNA itself. The challenge of demonstrating the 

presence of mtDNA methylation is hard, but the potential is huge. If mtDNA was indeed 

methylated a range of possibilities would open up when determining its role in either 

gene expression (mirroring its role in nDNA), or even in mtDNA replication, that could 

potentially change mitochondrial biology in a major way. Mitochondrial DNA is not only 

involved in regulating OXPHOS and in debilitating mitochondrial disease syndromes, 

but its role in regulating metabolism is emerging314. For example, knowing whether the 

expression of mtDNA proteins is regulated epigenetically could imply knowing whether 

it is possible to ameliorate the effects of the pathological mtDNA mutations in 

mitochondrial syndromes. Because of this potential, many studies have over the years 

tried to identify mtDNA methylation and/or which protein is responsible for its 

establishment. However, of the many works that were published, no consensus has 

ever been reached on which patterns of methylation are actually correlated with 

diseased states (in cancer or other diseases) or with physiological conditions (such as 

cell senescence or aging). There is no consensus either on which of the three DNMT 

proteins are the ones responsible for the establishment and replication of mtDNA 

methylation patters, and no study has ever explored how practically mtDNA 

methylation could affect either mtDNA gene expression or replication. This 

uncertainty, coupled with the few thorough studies that pointed out the flaws intrinsic 

to the technologies used to detect mtDNA methylation have contributed to give the 

impression that, at best, the field of mitochondria epigenetics is confused or, at worst, 

that mtDNA methylation does not exist or is not relevant even if it existed. We believe 

that this confusion is in part justified, and it could be explained by the fact that most of 

the published studies do not apply the level of thoroughness that should instead be 

standard in mtDNA research in general. For example, in very few of the published 

works we observed efforts to reduce NuMTs contamination in the sequenced samples, 

something that should be fundamental when trying to decipher whether the observed 

methylation comes from bona fide mitochondrial sequences. Also, after the publication 

of the reports from Mechta and colleagues240 and Olova and colleagues242, only a few 

groups followed their guidelines to reduce sources of biases when using bisulfite 

sequencing to study mtDNA methylation. 
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Our work is intended as both a follow up of those works highlighting flaws in the current 

way mtDNA methylation is studied, and to propose a future direction that has 

applications even beyond mtDNA methylation analysis. Our analysis of publicly 

available WGBS samples confirmed the intrinsic problems identified by Olova and 

colleagues242, and pointed out how they affect mtDNA methylation calling. In the 

following chapters we tested the potential of using a cutting edge technology, ONS, to 

surpass the problems intrinsic to bisulfite-based technologies. We showed that our 

modified protocol, intended for streamlined analysis of multiple samples, was better 

than the standard ONS library preparation method, based on random fragmentation, 

to sequence native full-length mtDNA sequences. We tried to exploit the potential of 

this multi-modal technology by assessing the accuracy of the variant calling on ONS 

samples, showing good correlation with Illumina data for high heteroplasmy and high 

depth variants. When assessing mtDNA methylation we tried to reduce as much as 

possible any sources of false positives, such as NuMTs contamination, alignment 

biases or sequence-specific artefacts introduced by Nanopolish software. Using very 

stringent parameters we called methylation on a series of biological samples with good 

read depths, but failed to identify any methylation above the background level 

calculated on ad-hoc negative controls. As we could on the other hand identify 

“artificial” methylation on positive controls, we concluded that methylation on the 

cytosine is absent in mtDNA.  

 

However, the future of mitochondria epigenetic seems already on the brink of another 

major breakthrough, for which our method could represent an ideal tool. Very recent 

works have identified adenine methylation (6mA) as the methylated residue mainly 

present on mtDNA315. In the future it could be interesting to go back to the data created 

for this study and look for 6mA instead of 5mC, provided a good detection model is 

generated with Nanopolish using specific controls.  

 
7.3 Future plans 

Although in our opinion the work presented in this dissertation has been more thorough 

than what has been published on the matter of mtDNA methylation, at least for what 

concerns the estimation of the accuracy of our results, there are a series of line of 

evidence that would have been interesting to explore. In general, as it was clear from 
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the results presented, it would be useful to add replicates to the biological samples 

analysed in this study with the aim to improve on the read depths achieved. This would 

give us the opportunity to strengthen the conclusions that we had found regarding the 

absence of mtDNA methylation on one side, and ameliorate the variant calling. 

Secondly, we would have liked the possibility to test the presence of mtDNA 

methylation using additional controls. One of this would have been using cell lines 

where the mtDNA methylation is artificially induced using a recombinant 

methyltransferase directed to the mitochondria. We had done preliminary experiments 

in that sense, where we engineered a few plasmid constructs where we attached the 

bacterial methyltransferase M.SssI sequence to a mitochondrial target sequence 

(MTS), and transfected the plasmid into HeLa cells. While the efficacy of the MTS to 

target mitochondria was demonstrated by swapping M.SssI with GFP, we were never 

able to see expression of the methyltransferase to mitochondria. These experiments 

would have required some additional time to fine-tune the technical issues usually 

involved with experiments of this kind, and would have resulted in the generation of 

positive controls which would have probably strengthen our conclusions regarding the 

absence of mtDNA in biological samples.  

Regarding this last point, another good line of research that we started was done in 

collaboration with the laboratory of Dr James Stewart at the university of Newcastle. 

Following on what we also thought in parallel for cell lines, they were trying to develop 

a mouse model that could target both a CpG and a GpC methyltransferase to 

mitochondria. This latter strategy was used in a recent publication, where cytosine 

methylation on GpC residues was used as a method to assess nucleosome 

occupancy, using long-read single-molecule ONS sequencing, in addition to 

“standard” CpG methylation316. They developed mouse models at both the 

homozygous and heterozygous level of expression of their constructs, and we 

received some organs from those models. It would be interesting to test the validity of 

their mouse models using our BamHI-based model to assess the methylation both at 

the CpG and on the GpC level (given a re-training of the Nanopolish model or using 

other software).  

Finally, as mentioned in the previous paragraph, since a characteristic of ONS data is 

that they can be re-analysed multiple times to look for additional modifications, it would 

be interesting to perform a complete re-analysis of the biological samples used in this 

work to determine the presence of 6mA methylation. We had started this line of 
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research by generating positive and negative controls in a similar way as we did for 

those used for CpG methylation, but we incurred in technical problems that would 

require more time to smooth out.   

 
  



 118 

References 
(1)  Berg, J.; Tymoczko, J.; Stryer, L. Biochemistry, 5th Edition; 2002. 
(2)  Timmis, J. N.; Ayliff, M. A.; Huang, C. Y.; Martin, W. Endosymbiotic Gene 

Transfer: Organelle Genomes Forge Eukaryotic Chromosomes. Nature 
Reviews Genetics. 2004. https://doi.org/10.1038/nrg1271. 

(3)  Archibald, J. M. Origin of Eukaryotic Cells: 40 Years On. Symbiosis 2011. 
https://doi.org/10.1007/s13199-011-0129-z. 

(4)  Martijn, J.; Vosseberg, J.; Guy, L.; Offre, P.; Ettema, T. J. G. Deep Mitochondrial 
Origin Outside the Sampled Alphaproteobacteria. Nature 2018. 
https://doi.org/10.1038/s41586-018-0059-5. 

(5)  Hazkani-Covo, E.; Zeller, R. M.; Martin, W. Molecular Poltergeists: Mitochondrial 
DNA Copies (Numts) in Sequenced Nuclear Genomes. PLoS Genetics. 2010. 
https://doi.org/10.1371/journal.pgen.1000834. 

(6)  Freya, T. G.; Mannellab, C. A. The Internal Structure of Mitochondria. Trends in 
Biochemical Sciences. 2000. https://doi.org/10.1016/S0968-0004(00)01609-1. 

(7)  Prudent, J.; Zunino, R.; Sugiura, A.; Mattie, S.; Shore, G. C.; McBride, H. M. 
MAPL SUMOylation of Drp1 Stabilizes an ER/Mitochondrial Platform Required 
for Cell Death. Mol. Cell 2015. https://doi.org/10.1016/j.molcel.2015.08.001. 

(8)  Friedman, J. R.; Nunnari, J. Mitochondrial Form and Function. Nature. 2014. 
https://doi.org/10.1038/nature12985. 

(9)  Daems, W. T.; Wisse, E. Shape and Attachment of the Cristae Mitochondriales 
in Mouse Hepatic Cell Mitochondria. J. Ultrasructure Res. 1966. 
https://doi.org/10.1016/S0022-5320(66)80027-8. 

(10)  Lea, P. J.; Hollenberg, M. J. Mitochondrial Structure Revealed by High‐
resolution Scanning Electron Microscopy. Am. J. Anat. 1989. 
https://doi.org/10.1002/aja.1001840308. 

(11)  Wiedemann, N.; Pfanner, N. Mitochondrial Machineries for Protein Import and 
Assembly. Annu. Rev. Biochem. 2017. https://doi.org/10.1146/annurev-
biochem-060815-014352. 

(12)  Guo, X. W.; Mannella, C. A. Conformational Change in the Mitochondrial 
Channel, VDAC, Detected by Electron Cryo-Microscopy. Biophys. J. 1993. 
https://doi.org/10.1016/S0006-3495(93)81399-7. 

(13)  Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and 
Cristae Remodeling as Key Mediators of Cellular Function. Annual Review of 
Physiology. 2016. https://doi.org/10.1146/annurev-physiol-021115-105011. 

(14)  Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S. M.; Ahmad, M.; Alnemri, E. 
S.; Wang, X. Cytochrome c and DATP-Dependent Formation of Apaf-
1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade. Cell 1997. 
https://doi.org/10.1016/S0092-8674(00)80434-1. 

(15)  Susin, S. A.; Lorenzo, H. K.; Zamzami, N.; Marzo, I.; Snow, B. E.; Brothers, G. 
M.; Mangion, J.; Jacotot, E.; Costantini, P.; Loeffler, M.; Larochette, N.; Goodlett, 
D. R.; Aebersold, R.; Siderovski, D. P.; Penninger, J. M.; Kroemer, G. Molecular 
Characterization of Mitochodrial Apoptosis-Inducing Factor. Nature 1999. 
https://doi.org/10.1038/17135. 

(16)  Baughman, J. M.; Perocchi, F.; Girgis, H. S.; Plovanich, M.; Belcher-Timme, C. 
A.; Sancak, Y.; Bao, X. R.; Strittmatter, L.; Goldberger, O.; Bogorad, R. L.; 
Koteliansky, V.; Mootha, V. K. Integrative Genomics Identifies MCU as an 
Essential Component of the Mitochondrial Calcium Uniporter. Nature 2011. 
https://doi.org/10.1038/nature10234. 



 119 

(17)  DELUCA, H. F.; ENGSTROM, G. W. Calcium Uptake by Rat Kidney 
Mitochondria. Proc. Natl. Acad. Sci. U. S. A. 1961. 
https://doi.org/10.1073/pnas.47.11.1744. 

(18)  Paupe, V.; Prudent, J. New Insights into the Role of Mitochondrial Calcium 
Homeostasis in Cell Migration. Biochem. Biophys. Res. Commun. 2018. 
https://doi.org/10.1016/j.bbrc.2017.05.039. 

(19)  Perocchi, F.; Gohil, V. M.; Girgis, H. S.; Bao, X. R.; McCombs, J. E.; Palmer, A. 
E.; Mootha, V. K. MICU1 Encodes a Mitochondrial EF Hand Protein Required 
for Ca2+ Uptake. Nature 2010. https://doi.org/10.1038/nature09358. 

(20)  Matheoud, D.; Sugiura, A.; Bellemare-Pelletier, A.; Laplante, A.; Rondeau, C.; 
Chemali, M.; Fazel, A.; Bergeron, J. J.; Trudeau, L. E.; Burelle, Y.; Gagnon, E.; 
McBride, H. M.; Desjardins, M. Parkinson’s Disease-Related Proteins PINK1 
and Parkin Repress Mitochondrial Antigen Presentation. Cell 2016. 
https://doi.org/10.1016/j.cell.2016.05.039. 

(21)  Weinberg, S. E.; Sena, L. A.; Chandel, N. S. Mitochondria in the Regulation of 
Innate and Adaptive Immunity. Immunity. 2015. 
https://doi.org/10.1016/j.immuni.2015.02.002. 

(22)  West, A. P.; Shadel, G. S.; Ghosh, S. Mitochondria in Innate Immune 
Responses. Nature Reviews Immunology. 2011. 
https://doi.org/10.1038/nri2975. 

(23)  Reyes, J. L.; Aldana, I.; Barbier, O.; Parrales, A. A.; Melendez, E. Indomethacin 
Decreases Furosemide-Induced Natriuresis and Diuresis on the Neonatal 
Kidney. Pediatr. Nephrol. 2006. https://doi.org/10.1007/s00467-006-0224-1. 

(24)  Inaba, K.; Oda, T. Phosphorylation of Purine and Pyrimidine Nucleosides by 
Isolated Rat Liver Mitochondria. Acta Med. Okayama 1975. 

(25)  Adeva-Andany, M. M.; Carneiro-Freire, N.; Seco-Filgueira, M.; Fernández-
Fernández, C.; Mouriño-Bayolo, D. Mitochondrial β-Oxidation of Saturated Fatty 
Acids in Humans. Mitochondrion. 2019. 
https://doi.org/10.1016/j.mito.2018.02.009. 

(26)  Murphy, M. P. How Mitochondria Produce Reactive Oxygen Species. 
Biochemical Journal. 2009. https://doi.org/10.1042/BJ20081386. 

(27)  Kadenbach, B. Introduction to Mitochondrial Oxidative Phosphorylation. Adv. 
Exp. Med. Biol. 2012. https://doi.org/10.1007/978-1-4614-3573-0_1. 

(28)  Van Den Heuvel, L.; Smeitink, J. The Oxidative Phosphorylation (OXPHOS) 
System: Nuclear Genes and Human Genetic Diseases. BioEssays. 2001. 
https://doi.org/10.1002/bies.1071. 

(29)  Zhu, J.; Vinothkumar, K. R.; Hirst, J. Structure of Mammalian Respiratory 
Complex I. Nature 2016. https://doi.org/10.1038/nature19095. 

(30)  Sun, F.; Huo, X.; Zhai, Y.; Wang, A.; Xu, J.; Su, D.; Bartlam, M.; Rao, Z. Crystal 
Structure of Mitochondrial Respiratory Membrane Protein Complex II. Cell 2005. 
https://doi.org/10.1016/j.cell.2005.05.025. 

(31)  Iwata, S.; Lee, J. W.; Okada, K.; Lee, J. K.; Iwata, M.; Rasmussen, B.; Link, T. 
A.; Ramaswamy, S.; Jap, B. K. Complete Structure of the 11-Subunit Bovine 
Mitochondrial Cytochrome Bc1 Complex. Science (80-. ). 1998. 
https://doi.org/10.1126/science.281.5373.64. 

(32)  Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamaguchi, H.; 
Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S. Structures of Metal 
Sites of Oxidized Bovine Heart Cytochrome c Oxidase at 2.8 Å. Science (80-. ). 
1995. https://doi.org/10.1126/science.7652554. 

(33)  Walker, J. E.; Dickson, V. K. The Peripheral Stalk of the Mitochondrial ATP 



 120 

Synthase. Biochimica et Biophysica Acta - Bioenergetics. 2006. 
https://doi.org/10.1016/j.bbabio.2006.01.001. 

(34)  Martínez-Reyes, I.; Chandel, N. S. Mitochondrial TCA Cycle Metabolites Control 
Physiology and Disease. Nature Communications. 2020. 
https://doi.org/10.1038/s41467-019-13668-3. 

(35)  Kim, H. J.; Khalimonchuk, O.; Smith, P. M.; Winge, D. R. Structure, Function, 
and Assembly of Heme Centers in Mitochondrial Respiratory Complexes. 
Biochimica et Biophysica Acta - Molecular Cell Research. 2012. 
https://doi.org/10.1016/j.bbamcr.2012.04.008. 

(36)  Mitchell, P.; Moyle, J. Respiration-Driven Proton Translocation in Rat Liver 
Mitochondria. Biochem. J. 1967. https://doi.org/10.1042/bj1051147. 

(37)  Shadel, G. S.; Horvath, T. L. Mitochondrial ROS Signaling in Organismal 
Homeostasis. Cell. 2015. https://doi.org/10.1016/j.cell.2015.10.001. 

(38)  Wallace, D. C. Mitochondrial DNA Mutations in Disease and Aging. 
Environmental and Molecular Mutagenesis. 2010. 
https://doi.org/10.1002/em.20586. 

(39)  He, J.; Ford, H. C.; Carroll, J.; Douglas, C.; Gonzales, E.; Ding, S.; Fearnley, I. 
M.; Walker, J. E. Assembly of the Membrane Domain of ATP Synthase in 
Human Mitochondria. Proc. Natl. Acad. Sci. U. S. A. 2018. 
https://doi.org/10.1073/pnas.1722086115. 

(40)  Kitazaki, K.; Kubo, T. Cost of Having the Largest Mitochondrial Genome: 
Evolutionary Mechanism of Plant Mitochondrial Genome. J. Bot. 2010, 2010. 
https://doi.org/10.1155/2010/620137. 

(41)  Boore, J. L. Animal Mitochondrial Genomes. Nucleic Acids Res. 1999, 27 (8). 
https://doi.org/10.1093/nar/27.8.1767. 

(42)  Berk, A. J.; Clayton, D. A. Mechanism of Mitochondrial DNA Replication in 
Mouse L-Cells: Asynchronous Replication of Strands, Segregation of Circular 
Daughter Molecules, Aspects of Topology and Turnover of an Initiation 
Sequence. J. Mol. Biol. 1974. https://doi.org/10.1016/0022-2836(74)90355-6. 

(43)  Chinnery, P. F.; Hudson, G. Mitochondrial Genetics. British Medical Bulletin. 
2013. https://doi.org/10.1093/bmb/ldt017. 

(44)  Stewart, J. B.; Chinnery, P. F. The Dynamics of Mitochondrial DNA 
Heteroplasmy: Implications for Human Health and Disease. Nature Reviews 
Genetics. 2015. https://doi.org/10.1038/nrg3966. 

(45)  Nicholls, T. J.; Minczuk, M. In D-Loop: 40 Years of Mitochondrial 7S DNA. Exp. 
Gerontol. 2014. https://doi.org/10.1016/j.exger.2014.03.027. 

(46)  Temperley, R.; Richter, R.; Dennerlein, S.; Lightowlers, R. N.; Chrzanowska-
Lightowlers, Z. M. Hungry Codons Promote Frameshifting in Human 
Mitochondrial Ribosomes. Science. 2010. 
https://doi.org/10.1126/science.1180674. 

(47)  Sutovsky, P. Ubiquitin-Dependent Proteolysis in Mammalian Spermatogenesis, 
Fertilization, and Sperm Quality Control: Killing Three Birds with One Stone. 
Microsc. Res. Tech. 2003. https://doi.org/10.1002/jemt.10319. 

(48)  Speranzini, V.; Pilotto, S.; Sixma, T. K.; Mattevi, A. Touch, Act and Go: Landing 
and Operating on Nucleosomes. EMBO J. 2016. 
https://doi.org/10.15252/embj.201593377. 

(49)  Brown, T. A.; Tkachuk, A. N.; Shtengel, G.; Kopek, B. G.; Bogenhagen, D. F.; 
Hess, H. F.; Clayton, D. A. Superresolution Fluorescence Imaging of 
Mitochondrial Nucleoids Reveals Their Spatial Range, Limits, and Membrane 
Interaction. Mol. Cell. Biol. 2011. https://doi.org/10.1128/mcb.05694-11. 



 121 

(50)  Hayashi, J. I.; Ohta, S.; Kikuchi, A.; Takemitsu, M.; Goto, Y. I.; Nonaka, I. 
Introduction of Disease-Related Mitochondrial DNA Deletions into HeLa Cells 
Lacking Mitochondrial DNA Results in Mitochondrial Dysfunction. Proc. Natl. 
Acad. Sci. U. S. A. 1991. https://doi.org/10.1073/pnas.88.23.10614. 

(51)  Garrido, N.; Griparic, L.; Jokitalo, E.; Wartiovaara, J.; Van der Bliek, A. M.; 
Spelbrink, J. N. Composition and Dynamics of Human Mitochondrial Nucleoids. 
Mol. Biol. Cell 2003. https://doi.org/10.1091/mbc.E02-07-0399. 

(52)  Kukat, C.; Davies, K. M.; Wurm, C. A.; Spåhr, H.; Bonekamp, N. A.; Kühl, I.; 
Joos, F.; Polosa, P. L.; Park, C. B.; Posse, V.; Falkenberg, M.; Jakobs, S.; 
Kühlbrandt, W.; Larsson, N. G. Cross-Strand Binding of TFAM to a Single 
MtDNA Molecule Forms the Mitochondrial Nucleoid. Proc. Natl. Acad. Sci. U. S. 
A. 2015. https://doi.org/10.1073/pnas.1512131112. 

(53)  Kukat, C.; Wurm, C. A.; Spåhr, H.; Falkenberg, M.; Larsson, N. G.; Jakobs, S. 
Super-Resolution Microscopy Reveals That Mammalian Mitochondrial 
Nucleoids Have a Uniform Size and Frequently Contain a Single Copy of 
MtDNA. Proc. Natl. Acad. Sci. U. S. A. 2011. 
https://doi.org/10.1073/pnas.1109263108. 

(54)  Kaufman, B. A.; Durisic, N.; Mativetsky, J. M.; Costantino, S.; Hancock, M. A.; 
Grutter, P.; Shoubridge, E. A. The Mitochondrial Transcription Factor TFAM 
Coordinates the Assembly of Multiple DNA Molecules into Nucleoid-like 
Structures. Mol. Biol. Cell 2007. https://doi.org/10.1091/mbc.E07-05-0404. 

(55)  Bogenhagen, D. F.; Rousseau, D.; Burke, S. The Layered Structure of Human 
Mitochondrial DNA Nucleoids. J. Biol. Chem. 2008. 
https://doi.org/10.1074/jbc.M708444200. 

(56)  Miller, F. J.; Rosenfeldt, F. L.; Zhang, C.; Linnane, A. W.; Nagley, P. Precise 
Determination of Mitochondrial DNA Copy Number in Human Skeletal and 
Cardiac Muscle by a PCR-Based Assay: Lack of Change of Copy Number with 
Age. Nucleic Acids Res. 2003. https://doi.org/10.1093/nar/gng060. 

(57)  D’Erchia, A. M.; Atlante, A.; Gadaleta, G.; Pavesi, G.; Chiara, M.; De Virgilio, C.; 
Manzari, C.; Mastropasqua, F.; Prazzoli, G. M.; Picardi, E.; Gissi, C.; Horner, D.; 
Reyes, A.; Sbisà, E.; Tullo, A.; Pesole, G. Tissue-Specific MtDNA Abundance 
from Exome Data and Its Correlation with Mitochondrial Transcription, Mass and 
Respiratory Activity. Mitochondrion 2015. 
https://doi.org/10.1016/j.mito.2014.10.005. 

(58)  Kelly, R. D. W.; Mahmud, A.; McKenzie, M.; Trounce, I. A.; St John, J. C. 
Mitochondrial DNA Copy Number Is Regulated in a Tissue Specific Manner by 
DNA Methylation of the Nuclear-Encoded DNA Polymerase Gamma A. Nucleic 
Acids Res. 2012. https://doi.org/10.1093/nar/gks770. 

(59)  Tyynismaa, H.; Sembongi, H.; Bokori-Brown, M.; Granycome, C.; Ashley, N.; 
Poulton, J.; Jalanko, A.; Spelbrink, J. N.; Holt, I. J.; Suomalainen, A. Twinkle 
Helicase Is Essential for MtDNA Maintenance and Regulates MtDNA Copy 
Number. Hum. Mol. Genet. 2004. https://doi.org/10.1093/hmg/ddh342. 

(60)  Van Dyck, E.; Foury, F.; Stillman, B.; Brill, S. J. A Single-Stranded DNA Binding 
Protein Required for Mitochondrial DNA Replication in S. Cerevisiae Is 
Homologous to E. Coli SSB. EMBO J. 1992. https://doi.org/10.1002/j.1460-
2075.1992.tb05421.x. 

(61)  Stewart, J. D.; Schoeler, S.; Sitarz, K. S.; Horvath, R.; Hallmann, K.; Pyle, A.; 
Yu-Wai-Man, P.; Taylor, R. W.; Samuels, D. C.; Kunz, W. S.; Chinnery, P. F. 
POLG Mutations Cause Decreased Mitochondrial DNA Repopulation Rates 
Following Induced Depletion in Human Fibroblasts. Biochim. Biophys. Acta - 



 122 

Mol. Basis Dis. 2011. https://doi.org/10.1016/j.bbadis.2010.11.012. 
(62)  Larsson, N. G.; Wang, J.; Wilhelmsson, H.; Oldfors, A.; Rustin, P.; Lewandoski, 

M.; Barsh, G. S.; Clayton, D. A. Mitochondrial Transcription Factor A Is 
Necessary for MtDNA Maintenance and Embryogenesis in Mice. Nat. Genet. 
1998. https://doi.org/10.1038/ng0398-231. 

(63)  Ikeda, M.; Ide, T.; Fujino, T.; Arai, S.; Saku, K.; Kakino, T.; Tyynismaa, H.; 
Yamasaki, T.; Yamada, K. I.; Kang, D.; Suomalainen, A.; Sunagawa, K. 
Overexpression of TFAM or Twinkle Increases MtDNA Copy Number and 
Facilitates Cardioprotection Associated with Limited Mitochondrial Oxidative 
Stress. PLoS One 2015. https://doi.org/10.1371/journal.pone.0119687. 

(64)  Saada, A.; Bar-Meir, M.; Belaiche, C.; Miller, C.; Elpeleg, O. Evaluation of 
Enzymatic Assays and Compounds Affecting ATP Production in Mitochondrial 
Respiratory Chain Complex I Deficiency. Anal. Biochem. 2004. 
https://doi.org/10.1016/j.ab.2004.08.015. 

(65)  Jones, B. A.; Fangman, W. L. Mitochondrial DNA Maintenance in Yeast 
Requires a Protein Containing a Region Related to the GTP-Binding Domain of 
Dynamin. Genes Dev. 1992. https://doi.org/10.1101/gad.6.3.380. 

(66)  Reyes, A.; He, J.; Mao, C. C.; Bailey, L. J.; Di Re, M.; Sembongi, H.; Kazak, L.; 
Dzionek, K.; Holmes, J. B.; Cluett, T. J.; Harbour, M. E.; Fearnley, I. M.; Crouch, 
R. J.; Conti, M. A.; Adelstein, R. S.; Walker, J. E.; Holt, I. J. Actin and Myosin 
Contribute to Mammalian Mitochondrial DNA Maintenance. Nucleic Acids Res. 
2011. https://doi.org/10.1093/nar/gkr052. 

(67)  Srivastava, S.; Diaz, F.; Iommarini, L.; Aure, K.; Lombes, A.; Moraes, C. T. PGC-
1α/β Induced Expression Partially Compensates for Respiratory Chain Defects 
in Cells from Patients with Mitochondrial Disorders. Hum. Mol. Genet. 2009. 
https://doi.org/10.1093/hmg/ddp093. 

(68)  Ciesielski, G. L.; Plotka, M.; Manicki, M.; Schilke, B. A.; Dutkiewicz, R.; Sahi, C.; 
Marszalek, J.; Craig, E. A. Nucleoid Localization of Hsp40 Mdj1 Is Important for 
Its Function in Maintenance of Mitochondrial DNA. Biochim. Biophys. Acta - Mol. 
Cell Res. 2013. https://doi.org/10.1016/j.bbamcr.2013.05.012. 

(69)  Matsushima, Y.; Goto, Y. I.; Kaguni, L. S. Mitochondrial Lon Protease Regulates 
Mitochondrial DNA Copy Number and Transcription by Selective Degradation of 
Mitochondrial Transcription Factor A (TFAM). Proc. Natl. Acad. Sci. U. S. A. 
2010. https://doi.org/10.1073/pnas.1008924107. 

(70)  Sesaki, H.; Southard, S. M.; Aiken Hobbs, A. E.; Jensen, R. E. Cells Lacking 
Pcp1p/Ugo2p, a Rhomboid-like Protease Required for Mgm1p Processing, Lose 
MtDNA and Mitochondrial Structure in a Dnm1p-Dependent Manner, but 
Remain Competent for Mitochondrial Fusion. Biochem. Biophys. Res. Commun. 
2003. https://doi.org/10.1016/S0006-291X(03)01348-2. 

(71)  Kraytsberg, Y.; Schwartz, M.; Brown, T. A.; Ebralidse, K.; Kunz, W. S.; Clayton, 
D. A.; Vissing, J.; Khrapko, K. Recombination of Human Mitochondrial DNA. 
Science (80-. ). 2004, 304 (5673). https://doi.org/10.1126/science.1096342. 

(72)  Torroni, A.; Achilli, A.; Macaulay, V.; Richards, M.; Bandelt, H. J. Harvesting the 
Fruit of the Human MtDNA Tree. Trends in Genetics. 2006. 
https://doi.org/10.1016/j.tig.2006.04.001. 

(73)  van Oven, M.; Kayser, M. Updated Comprehensive Phylogenetic Tree of Global 
Human Mitochondrial DNA Variation. Hum. Mutat. 2009. 
https://doi.org/10.1002/humu.20921. 

(74)  Mishmar, D.; Ruiz-Pesini, E.; Golik, P.; Macaulay, V.; Clark, A. G.; Hosseini, S.; 
Brandon, M.; Easleyf, K.; Chen, E.; Brown, M. D.; Sukernik, R. I.; Olckers, A.; 



 123 

Wallace, D. C. Natural Selection Shaped Regional MtDNA Variation in Humans. 
Proc. Natl. Acad. Sci. U. S. A. 2003. https://doi.org/10.1073/pnas.0136972100. 

(75)  Macaulay, V.; Hill, C.; Achilli, A.; Rengo, C.; Clarke, D.; Meehan, W.; Blackburn, 
J.; Semino, O.; Scozzari, R.; Cruciani, F.; Taha, A.; Shaari, N. K.; Raja, J. M.; 
Ismail, P.; Zainuddin, Z.; Goodwin, W.; Bulbeck, D.; Bandelt, H. J.; 
Oppenheimer, S.; Torroni, A.; Richards, M. Single, Rapid Coastal Settlement of 
Asia Revealed by Analysis of Complete Mitochondrial Genomes. Science (80-. 
). 2005. https://doi.org/10.1126/science.1109792. 

(76)  Behar, D. M.; Van Oven, M.; Rosset, S.; Metspalu, M.; Loogväli, E. L.; Silva, N. 
M.; Kivisild, T.; Torroni, A.; Villems, R. A “Copernican” Reassessment of the 
Human Mitochondrial DNA Tree from Its Root. Am. J. Hum. Genet. 2012. 
https://doi.org/10.1016/j.ajhg.2012.03.002. 

(77)  Wallace, D. C. A Mitochondrial Paradigm of Metabolic and Degenerative 
Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine. Annual 
Review of Genetics. 2005. 
https://doi.org/10.1146/annurev.genet.39.110304.095751. 

(78)  Chinnery, P. F.; Elliott, H. R.; Hudson, G.; Samuels, D. C.; Relton, C. L. 
Epigenetics, Epidemiology and Mitochondrial DNA Diseases. Int. J. Epidemiol. 
2012. https://doi.org/10.1093/ije/dyr232. 

(79)  Ghezzi, D.; Zeviani, M. Assembly Factors of Human Mitochondrial Respiratory 
Chain Complexes: Physiology and Pathophysiology. Adv. Exp. Med. Biol. 2012. 
https://doi.org/10.1007/978-1-4614-3573-0_4. 

(80)  Iommarini, L.; Calvaruso, M. A.; Kurelac, I.; Gasparre, G.; Porcelli, A. M. 
Complex i Impairment in Mitochondrial Diseases and Cancer: Parallel Roads 
Leading to Different Outcomes. Int. J. Biochem. Cell Biol. 2013. 
https://doi.org/10.1016/j.biocel.2012.05.016. 

(81)  Rossignol, R.; Faustin, B.; Rocher, C.; Malgat, M.; Mazat, J. P.; Letellier, T. 
Mitochondrial Threshold Effects. Biochemical Journal. 2003. 
https://doi.org/10.1042/BJ20021594. 

(82)  Gorman, G. S.; Chinnery, P. F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, 
R.; Suomalainen, A.; Thorburn, D. R.; Zeviani, M.; Turnbull, D. M. Mitochondrial 
Diseases. Nat. Rev. Dis. Prim. 2016. https://doi.org/10.1038/nrdp.2016.80. 

(83)  Nunnari, J.; Suomalainen, A. Mitochondria: In Sickness and in Health. Cell. 
2012. https://doi.org/10.1016/j.cell.2012.02.035. 

(84)  Bernstein, B. E.; Meissner, A.; Lander, E. S. The Mammalian Epigenome. Cell. 
2007. https://doi.org/10.1016/j.cell.2007.01.033. 

(85)  Greenberg, M. V. C.; Bourc’his, D. The Diverse Roles of DNA Methylation in 
Mammalian Development and Disease. Nature Reviews Molecular Cell Biology. 
2019. https://doi.org/10.1038/s41580-019-0159-6. 

(86)  Venkatesh, S.; Workman, J. L. Histone Exchange, Chromatin Structure and the 
Regulation of Transcription. Nature Reviews Molecular Cell Biology. 2015. 
https://doi.org/10.1038/nrm3941. 

(87)  Bird, A. DNA Methylation Patterns and Epigenetic Memory. Genes and 
Development. 2002. https://doi.org/10.1101/gad.947102. 

(88)  Hemberger, M.; Dean, W.; Reik, W. Epigenetic Dynamics of Stem Cells and Cell 
Lineage Commitment: Digging Waddington’s Canal. Nature Reviews Molecular 
Cell Biology. 2009. https://doi.org/10.1038/nrm2727. 

(89)  Shipony, Z.; Mukamel, Z.; Cohen, N. M.; Landan, G.; Chomsky, E.; Zeliger, S. 
R.; Fried, Y. C.; Ainbinder, E.; Friedman, N.; Tanay, A. Dynamic and Static 
Maintenance of Epigenetic Memory in Pluripotent and Somatic Cells. Nature 



 124 

2014. https://doi.org/10.1038/nature13458. 
(90)  Ramsahoye, B. H.; Biniszkiewicz, D.; Lyko, F.; Clark, V.; Bird, A. P.; Jaenisch, 

R. Non-CpG Methylation Is Prevalent in Embryonic Stem Cells and May Be 
Mediated by DNA Methyltransferase 3a. Proc. Natl. Acad. Sci. U. S. A. 2000. 
https://doi.org/10.1073/pnas.97.10.5237. 

(91)  Ziller, M. J.; Müller, F.; Liao, J.; Zhang, Y.; Gu, H.; Bock, C.; Boyle, P.; Epstein, 
C. B.; Bernstein, B. E.; Lengauer, T.; Gnirke, A.; Meissner, A. Genomic 
Distribution and Inter-Sample Variation of Non-CpG Methylation across Human 
Cell Types. PLoS Genet. 2011. https://doi.org/10.1371/journal.pgen.1002389. 

(92)  Wu, T. P.; Wang, T.; Seetin, M. G.; Lai, Y.; Zhu, S.; Lin, K.; Liu, Y.; Byrum, S. 
D.; Mackintosh, S. G.; Zhong, M.; Tackett, A.; Wang, G.; Hon, L. S.; Fang, G.; 
Swenberg, J. A.; Xiao, A. Z. DNA Methylation on N6-Adenine in Mammalian 
Embryonic Stem Cells. Nature 2016. https://doi.org/10.1038/nature17640. 

(93)  Douvlataniotis, K.; Bensberg, M.; Lentini, A.; Gylemo, B.; Nestor, C. E. No 
Evidence for DNA N6-Methyladenine in Mammals. Sci. Adv. 2020. 
https://doi.org/10.1126/sciadv.aay3335. 

(94)  Lister, R.; Pelizzola, M.; Dowen, R. H.; Hawkins, R. D.; Hon, G.; Tonti-Filippini, 
J.; Nery, J. R.; Lee, L.; Ye, Z.; Ngo, Q. M.; Edsall, L.; Antosiewicz-Bourget, J.; 
Stewart, R.; Ruotti, V.; Millar, A. H.; Thomson, J. A.; Ren, B.; Ecker, J. R. Human 
DNA Methylomes at Base Resolution Show Widespread Epigenomic 
Differences. Nature 2009. https://doi.org/10.1038/nature08514. 

(95)  Deaton, A. M.; Bird, A. CpG Islands and the Regulation of Transcription. Genes 
Dev. 2011. https://doi.org/10.1101/gad.2037511. 

(96)  Saxonov, S.; Berg, P.; Brutlag, D. L. A Genome-Wide Analysis of CpG 
Dinucleotides in the Human Genome Distinguishes Two Distinct Classes of 
Promoters. Proc. Natl. Acad. Sci. U. S. A. 2006. 
https://doi.org/10.1073/pnas.0510310103. 

(97)  Smith, Z. D.; Meissner, A. DNA Methylation: Roles in Mammalian Development. 
Nat. Rev. Genet. 2013, 14 (3), 204–220. https://doi.org/10.1038/nrg3354. 

(98)  Edwards, J. R.; Yarychkivska, O.; Boulard, M.; Bestor, T. H. DNA Methylation 
and DNA Methyltransferases. Epigenetics and Chromatin. 2017. 
https://doi.org/10.1186/s13072-017-0130-8. 

(99)  Ooi, S. K. T.; Qiu, C.; Bernstein, E.; Li, K.; Jia, D.; Yang, Z.; Erdjument-Bromage, 
H.; Tempst, P.; Lin, S. P.; Allis, C. D.; Cheng, X.; Bestor, T. H. DNMT3L 
Connects Unmethylated Lysine 4 of Histone H3 to de Novo Methylation of DNA. 
Nature 2007. https://doi.org/10.1038/nature05987. 

(100)  Jia, D.; Jurkowska, R. Z.; Zhang, X.; Jeltsch, A.; Cheng, X. Structure of Dnmt3a 
Bound to Dnmt3L Suggests a Model for de Novo DNA Methylation. Nature 2007. 
https://doi.org/10.1038/nature06146. 

(101)  Epsztejn-Litman, S.; Feldman, N.; Abu-Remaileh, M.; Shufaro, Y.; Gerson, A.; 
Ueda, J.; Deplus, R.; Fuks, F.; Shinkai, Y.; Cedar, H.; Bergman, Y. De Novo 
DNA Methylation Promoted by G9a Prevents Reprogramming of Embryonically 
Silenced Genes. Nat. Struct. Mol. Biol. 2008. 
https://doi.org/10.1038/nsmb.1476. 

(102)  Probst, A. V.; Dunleavy, E.; Almouzni, G. Epigenetic Inheritance during the Cell 
Cycle. Nature Reviews Molecular Cell Biology. 2009. 
https://doi.org/10.1038/nrm2640. 

(103)  Hermann, A.; Goyal, R.; Jeltsch, A. The Dnmt1 DNA-(Cytosine-C5)-
Methyltransferase Methylates DNA Processively with High Preference for 
Hemimethylated Target Sites. J. Biol. Chem. 2004. 



 125 

https://doi.org/10.1074/jbc.M403427200. 
(104)  Arita, K.; Ariyoshi, M.; Tochio, H.; Nakamura, Y.; Shirakawa, M. Recognition of 

Hemi-Methylated DNA by the SRA Protein UHRF1 by a Base-Flipping 
Mechanism. Nature 2008. https://doi.org/10.1038/nature07249. 

(105)  Wang, J.; Hevi, S.; Kurash, J. K.; Lei, H.; Gay, F.; Bajko, J.; Su, H.; Sun, W.; 
Chang, H.; Xu, G.; Gaudet, F.; Li, E.; Chen, T. The Lysine Demethylase LSD1 
(KDM1) Is Required for Maintenance of Global DNA Methylation. Nat. Genet. 
2009. https://doi.org/10.1038/ng.268. 

(106)  Rothbart, S. B.; Krajewski, K.; Nady, N.; Tempel, W.; Xue, S.; Badeaux, A. I.; 
Barsyte-Lovejoy, D.; Martinez, J. Y.; Bedford, M. T.; Fuchs, S. M.; Arrowsmith, 
C. H.; Strahl, B. D. Association of UHRF1 with Methylated H3K9 Directs the 
Maintenance of DNA Methylation. Nat. Struct. Mol. Biol. 2012. 
https://doi.org/10.1038/nsmb.2391. 

(107)  Kohli, R. M.; Zhang, Y. TET Enzymes, TDG and the Dynamics of DNA 
Demethylation. Nature. 2013. https://doi.org/10.1038/nature12750. 

(108)  Ito, S.; Dalessio, A. C.; Taranova, O. V.; Hong, K.; Sowers, L. C.; Zhang, Y. Role 
of Tet Proteins in 5mC to 5hmC Conversion, ES-Cell Self-Renewal and Inner 
Cell Mass Specification. Nature 2010. https://doi.org/10.1038/nature09303. 

(109)  Ito, S.; Shen, L.; Dai, Q.; Wu, S. C.; Collins, L. B.; Swenberg, J. A.; He, C.; 
Zhang, Y. Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 
5-Carboxylcytosine. Science (80-. ). 2011. 
https://doi.org/10.1126/science.1210597. 

(110)  He, Y. F.; Li, B. Z.; Li, Z.; Liu, P.; Wang, Y.; Tang, Q.; Ding, J.; Jia, Y.; Chen, Z.; 
Li, N.; Sun, Y.; Li, X.; Dai, Q.; Song, C. X.; Zhang, K.; He, C.; Xu, G. L. Tet-
Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in 
Mammalian DNA. Science (80-. ). 2011. 
https://doi.org/10.1126/science.1210944. 

(111)  Maiti, A.; Drohat, A. C. Thymine DNA Glycosylase Can Rapidly Excise 5-
Formylcytosine and 5-Carboxylcytosine: Potential Implications for Active 
Demethylation of CpG Sites. J. Biol. Chem. 2011. 
https://doi.org/10.1074/jbc.C111.284620. 

(112)  Michaud, E. J.; van Vugt, M. J.; Bultman, S. J.; Sweet, H. O.; Davisson, M. T.; 
Woychik, R. P. Differential Expression of a New Dominant Agouti Allele (A(Iapy)) 
Is Correlated with Methylation State and Is Influenced by Parental Lineage. 
Genes Dev. 1994. https://doi.org/10.1101/gad.8.12.1463. 

(113)  Wu, M.; Rinchik, E. M.; Wilkinson, E.; Johnson, D. K. Inherited Somatic 
Mosaicism Caused by an Intracisternal A Particle Insertion in the Mouse 
Tyrosinase Gene. Proc. Natl. Acad. Sci. U. S. A. 1997. 
https://doi.org/10.1073/pnas.94.3.890. 

(114)  Kuster, J. E.; Guarnieri, M. H.; Ault, J. G.; Flaherty, L.; Swiatek, P. J. IAP 
Insertion in the Murine LamB3 Gene Results in Junctional Epidermolysis 
Bullosa. Mamm. Genome 1997. https://doi.org/10.1007/s003359900535. 

(115)  Gwynn, B.; Lueders, K.; Sands, M. S.; Birkenmeier, E. H. Intracisternal A-
Particle Element Transposition into the Murine β-Glucuronidase Gene 
Correlates with Loss of Enzyme Activity: A New Model for β-Glucuronidase 
Deficiency in the C3H Mouse. Mol. Cell. Biol. 1998. 
https://doi.org/10.1128/mcb.18.11.6474. 

(116)  Ukai, H.; Ishii-Oba, H.; Ukai-Tadenuma, M.; Ogiu, T.; Tsuji, H. Formation of an 
Active Form of the Interleukin-2/ 15 Receptor β-Chain by Insertion of the 
Intracisternal A Particle in a Radiation-Induced Mouse Thymic Lymphoma and 



 126 

Its Role in Tumorigenesis. Mol. Carcinog. 2003. 
https://doi.org/10.1002/mc.10128. 

(117)  Schulz, W. A.; Steinhoff, C.; Florl, A. R. Methylation of Endogenous Human 
Retroelements in Health and Disease. Current Topics in Microbiology and 
Immunology. 2006. https://doi.org/10.1007/3-540-31181-5_11. 

(118)  Walsh, C. P.; Chaillet, J. R.; Bestor, T. H. Transcription of IAP Endogenous 
Retroviruses Is Constrained by Cytosine Methylation [4]. Nature Genetics. 1998. 
https://doi.org/10.1038/2413. 

(119)  Gaudet, F.; Rideout, W. M.; Meissner, A.; Dausman, J.; Leonhardt, H.; Jaenisch, 
R. Dnmt1 Expression in Pre- and Postimplantation Embryogenesis and the 
Maintenance of IAP Silencing. Mol. Cell. Biol. 2004. 
https://doi.org/10.1128/mcb.24.4.1640-1648.2004. 

(120)  Hutnick, L. K.; Golshani, P.; Namihira, M.; Xue, Z.; Matynia, A.; Yang, X. W.; 
Silva, A. J.; Schweizer, F. E.; Fan, G. DNA Hypomethylation Restricted to the 
Murine Forebrain Induces Cortical Degeneration and Impairs Postnatal 
Neuronal Maturation. Hum. Mol. Genet. 2009. 
https://doi.org/10.1093/hmg/ddp222. 

(121)  Gardiner-Garden, M.; Frommer, M. CpG Islands in Vertebrate Genomes. J. Mol. 
Biol. 1987. https://doi.org/10.1016/0022-2836(87)90689-9. 

(122)  Illingworth, R. S.; Gruenewald-Schneider, U.; Webb, S.; Kerr, A. R. W.; James, 
K. D.; Turner, D. J.; Smith, C.; Harrison, D. J.; Andrews, R.; Bird, A. P. Orphan 
CpG Islands Identify Numerous Conserved Promoters in the Mammalian 
Genome. PLoS Genet. 2010. https://doi.org/10.1371/journal.pgen.1001134. 

(123)  Tazi, J.; Bird, A. Alternative Chromatin Structure at CpG Islands. Cell 1990. 
https://doi.org/10.1016/0092-8674(90)90339-G. 

(124)  Ramirez-Carrozzi, V. R.; Braas, D.; Bhatt, D. M.; Cheng, C. S.; Hong, C.; Doty, 
K. R.; Black, J. C.; Hoffmann, A.; Carey, M.; Smale, S. T. A Unifying Model for 
the Selective Regulation of Inducible Transcription by CpG Islands and 
Nucleosome Remodeling. Cell 2009. https://doi.org/10.1016/j.cell.2009.04.020. 

(125)  Choi, J. D.; Underkoffler, L. A.; Wood, A. J.; Collins, J. N.; Williams, P. T.; 
Golden, J. A.; Schuster, E. F.; Loomes, K. M.; Oakey, R. J.  A Novel Variant of 
Inpp5f Is Imprinted in Brain, and Its Expression Is Correlated with Differential 
Methylation of an Internal CpG Island . Mol. Cell. Biol. 2005. 
https://doi.org/10.1128/mcb.25.13.5514-5522.2005. 

(126)  Mikkelsen, T. S.; Ku, M.; Jaffe, D. B.; Issac, B.; Lieberman, E.; Giannoukos, G.; 
Alvarez, P.; Brockman, W.; Kim, T. K.; Koche, R. P.; Lee, W.; Mendenhall, E.; 
O’Donovan, A.; Presser, A.; Russ, C.; Xie, X.; Meissner, A.; Wernig, M.; 
Jaenisch, R.; Nusbaum, C.; Lander, E. S.; Bernstein, B. E. Genome-Wide Maps 
of Chromatin State in Pluripotent and Lineage-Committed Cells. Nature 2007. 
https://doi.org/10.1038/nature06008. 

(127)  Carninci, P.; Sandelin, A.; Lenhard, B.; Katayama, S.; Shimokawa, K.; Ponjavic, 
J.; Semple, C. A. M.; Taylor, M. S.; Engström, P. G.; Frith, M. C.; Forrest, A. R. 
R.; Alkema, W. B.; Tan, S. L.; Plessy, C.; Kodzius, R.; Ravasi, T.; Kasukawa, 
T.; Fukuda, S.; Kanamori-Katayama, M.; Kitazume, Y.; Kawaji, H.; Kai, C.; 
Nakamura, M.; Konno, H.; Nakano, K.; Mottagui-Tabar, S.; Arner, P.; Chesi, A.; 
Gustincich, S.; Persichetti, F.; Suzuki, H.; Grimmond, S. M.; Wells, C. A.; 
Orlando, V.; Wahlestedt, C.; Liu, E. T.; Harbers, M.; Kawai, J.; Bajic, V. B.; 
Hume, D. A.; Hayashizaki, Y. Genome-Wide Analysis of Mammalian Promoter 
Architecture and Evolution. Nat. Genet. 2006. https://doi.org/10.1038/ng1789. 

(128)  Mohn, F.; Weber, M.; Rebhan, M.; Roloff, T. C.; Richter, J.; Stadler, M. B.; Bibel, 



 127 

M.; Schübeler, D. Lineage-Specific Polycomb Targets and De Novo DNA 
Methylation Define Restriction and Potential of Neuronal Progenitors. Mol. Cell 
2008. https://doi.org/10.1016/j.molcel.2008.05.007. 

(129)  Wutz, A.; Smrzka, O. W.; Schweifer, N.; Schellander, K.; Wagner, E. F.; Barlow, 
D. P. Imprinted Expression of the Igf2r Gene Depends on an Intronic CpG 
Island. Nature 1997. https://doi.org/10.1038/39631. 

(130)  Caspary, T.; Cleary, M. A.; Baker, C. C.; Guan, X.-J.; Tilghman, S. M. Multiple 
Mechanisms Regulate Imprinting of the Mouse Distal Chromosome 7 Gene 
Cluster. Mol. Cell. Biol. 1998. https://doi.org/10.1128/mcb.18.6.3466. 

(131)  Zwart, R.; Sleutels, F.; Wutz, A.; Schinkel, A. H.; Barlow, D. P. Bidirectional 
Action of the Igf2r Imprint Control Element on Upstream and Downstream 
Imprinted Genes. Genes Dev. 2001. https://doi.org/10.1101/gad.206201. 

(132)  Kantor, B.; Kaufman, Y.; Makedonski, K.; Razin, A.; Shemer, R. Establishing the 
Epigenetic Status of the Prader-Willi/Angelman Imprinting Center in the 
Gametes and Embryo. Hum. Mol. Genet. 2004. 
https://doi.org/10.1093/hmg/ddh290. 

(133)  Shen, L.; Kondo, Y.; Guo, Y.; Zhang, J.; Zhang, L.; Ahmed, S.; Shu, J.; Chen, 
X.; Waterland, R. A.; Issa, J. P. J. Genome-Wide Profiling of DNA Methylation 
Reveals a Class of Normally Methylated CpG Island Promoters. PLoS Genet. 
2007. https://doi.org/10.1371/journal.pgen.0030181. 

(134)  Weber, M.; Hellmann, I.; Stadler, M. B.; Ramos, L.; Pääbo, S.; Rebhan, M.; 
Schübeler, D. Distribution, Silencing Potential and Evolutionary Impact of 
Promoter DNA Methylation in the Human Genome. Nat. Genet. 2007. 
https://doi.org/10.1038/ng1990. 

(135)  Fouse, S. D.; Shen, Y.; Pellegrini, M.; Cole, S.; Meissner, A.; Van Neste, L.; 
Jaenisch, R.; Fan, G. Promoter CpG Methylation Contributes to ES Cell Gene 
Regulation in Parallel with Oct4/Nanog, PcG Complex, and Histone H3 K4/K27 
Trimethylation. Cell Stem Cell 2008. https://doi.org/10.1016/j.stem.2007.12.011. 

(136)  Meissner, A.; Mikkelsen, T. S.; Gu, H.; Wernig, M.; Hanna, J.; Sivachenko, A.; 
Zhang, X.; Bernstein, B. E.; Nusbaum, C.; Jaffe, D. B.; Gnirke, A.; Jaenisch, R.; 
Lander, E. S. Genome-Scale DNA Methylation Maps of Pluripotent and 
Differentiated Cells. Nature 2008. https://doi.org/10.1038/nature07107. 

(137)  Rakyan, V. K.; Hildmann, T.; Novik, K. L.; Lewin, J.; Tost, J.; Cox, A. V.; 
Andrews, T. D.; Howe, K. L.; Otto, T.; Olek, A.; Fischer, J.; Gut, I. G.; Berlin, K.; 
Beck, S. DNA Methylation Profiling of the Human Major Histocompatibility 
Complex: A Pilot Study for the Human Epigenome Project. PLoS Biol. 2004. 
https://doi.org/10.1371/journal.pbio.0020405. 

(138)  Eckhardt, F.; Lewin, J.; Cortese, R.; Rakyan, V. K.; Attwood, J.; Burger, M.; 
Burton, J.; Cox, T. V.; Davies, R.; Down, T. A.; Haefliger, C.; Horton, R.; Howe, 
K.; Jackson, D. K.; Kunde, J.; Koenig, C.; Liddle, J.; Niblett, D.; Otto, T.; Pettett, 
R.; Seemann, S.; Thompson, C.; West, T.; Rogers, J.; Olek, A.; Berlin, K.; Beck, 
S. DNA Methylation Profiling of Human Chromosomes 6, 20 and 22. Nat. Genet. 
2006. https://doi.org/10.1038/ng1909. 

(139)  Maunakea, A. K.; Nagarajan, R. P.; Bilenky, M.; Ballinger, T. J.; Dsouza, C.; 
Fouse, S. D.; Johnson, B. E.; Hong, C.; Nielsen, C.; Zhao, Y.; Turecki, G.; 
Delaney, A.; Varhol, R.; Thiessen, N.; Shchors, K.; Heine, V. M.; Rowitch, D. H.; 
Xing, X.; Fiore, C.; Schillebeeckx, M.; Jones, S. J. M.; Haussler, D.; Marra, M. 
A.; Hirst, M.; Wang, T.; Costello, J. F. Conserved Role of Intragenic DNA 
Methylation in Regulating Alternative Promoters. Nature 2010. 
https://doi.org/10.1038/nature09165. 



 128 

(140)  Irizarry, R. A.; Ladd-Acosta, C.; Wen, B.; Wu, Z.; Montano, C.; Onyango, P.; Cui, 
H.; Gabo, K.; Rongione, M.; Webster, M.; Ji, H.; Potash, J. B.; Sabunciyan, S.; 
Feinberg, A. P. The Human Colon Cancer Methylome Shows Similar Hypo- and 
Hypermethylation at Conserved Tissue-Specific CpG Island Shores. Nat. Genet. 
2009. https://doi.org/10.1038/ng.298. 

(141)  Brenet, F.; Moh, M.; Funk, P.; Feierstein, E.; Viale, A. J.; Socci, N. D.; Scandura, 
J. M. DNA Methylation of the First Exon Is Tightly Linked to Transcriptional 
Silencing. PLoS One 2011. https://doi.org/10.1371/journal.pone.0014524. 

(142)  Hellman, A.; Chess, A. Gene Body-Specific Methylation on the Active X 
Chromosome. Science (80-. ). 2007. https://doi.org/10.1126/science.1136352. 

(143)  Ball, M. P.; Li, J. B.; Gao, Y.; Lee, J. H.; Leproust, E. M.; Park, I. H.; Xie, B.; 
Daley, G. Q.; Church, G. M. Targeted and Genome-Scale Strategies Reveal 
Gene-Body Methylation Signatures in Human Cells. Nat. Biotechnol. 2009. 
https://doi.org/10.1038/nbt.1533. 

(144)  Aran, D.; Toperoff, G.; Rosenberg, M.; Hellman, A. Replication Timing-Related 
and Gene Body-Specific Methylation of Active Human Genes. Hum. Mol. Genet. 
2011. https://doi.org/10.1093/hmg/ddq513. 

(145)  Guo, J. U.; Ma, D. K.; Mo, H.; Ball, M. P.; Jang, M. H.; Bonaguidi, M. A.; Balazer, 
J. A.; Eaves, H. L.; Xie, B.; Ford, E.; Zhang, K.; Ming, G. L.; Gao, Y.; Song, H. 
Neuronal Activity Modifies the DNA Methylation Landscape in the Adult Brain. 
Nat. Neurosci. 2011. https://doi.org/10.1038/nn.2900. 

(146)  Guo, J. U.; Su, Y.; Zhong, C.; Ming, G. L.; Song, H. Hydroxylation of 5-
Methylcytosine by TET1 Promotes Active DNA Demethylation in the Adult Brain. 
Cell 2011. https://doi.org/10.1016/j.cell.2011.03.022. 

(147)  Nan, X.; Meehan, R. R.; Bird, A. Dissection of the Methyl-CpG Binding Domain 
from the Chromosomal Protein MeCP2. Nucleic Acids Res. 1993. 
https://doi.org/10.1093/nar/21.21.4886. 

(148)  Meehan, R. R.; Lewis, J. D.; McKay, S.; Kleiner, E. L.; Bird, A. P. Identification 
of a Mammalian Protein That Binds Specifically to DNA Containing Methylated 
CpGs. Cell 1989. https://doi.org/10.1016/0092-8674(89)90430-3. 

(149)  Lewis, J. D.; Meehan, R. R.; Henzel, W. J.; Maurer-Fogy, I.; Jeppesen, P.; Klein, 
F.; Bird, A. Purification, Sequence, and Cellular Localization of a Novel 
Chromosomal Protein That Binds to Methylated DNA. Cell 1992. 
https://doi.org/10.1016/0092-8674(92)90610-O. 

(150)  HENDRICH, B.; BIRD, A. Identification and Characterization of a Family of 
Mammalian Methyl CpG-Binding Proteins. Genet. Res. 1998. 
https://doi.org/10.1017/s0016672398533307. 

(151)  Amir, R. E.; Van Den Veyver, I. B.; Wan, M.; Tran, C. Q.; Francke, U.; Zoghbi, 
H. Y. Rett Syndrome Is Caused by Mutations in X-Linked MECP2, Encoding 
Methyl- CpG-Binding Protein 2. Nat. Genet. 1999. 
https://doi.org/10.1038/13810. 

(152)  Ng, H. H.; Zhang, Y.; Hendrich, B.; Johnson, C. A.; Turner, B. M.; Erdjument-
Bromage, H.; Tempst, P.; Reinberg, D.; Bird, A. MBD2 Is a Transcriptional 
Repressor Belonging to the MeCP1 Histone Deacetylase Complex. Nat. Genet. 
1999. https://doi.org/10.1038/12659. 

(153)  Sarraf, S. A.; Stancheva, I. Methyl-CpG Binding Protein MBD1 Couples Histone 
H3 Methylation at Lysine 9 by SETDB1 to DNA Replication and Chromatin 
Assembly. Molecular Cell. 2004. https://doi.org/10.1016/j.molcel.2004.06.043. 

(154)  Kimura, H.; Shiota, K. Methyl-CpG-Binding Protein, MeCP2, Is a Target 
Molecule for Maintenance DNA Methyltransferase, Dnmt1. J. Biol. Chem. 2003. 



 129 

https://doi.org/10.1074/jbc.M209923200. 
(155)  Hashimoto, H.; Horton, J. R.; Zhang, X.; Bostick, M.; Jacobsen, S. E.; Cheng, 

X. The SRA Domain of UHRF1 Flips 5-Methylcytosine out of the DNA Helix. 
Nature 2008. https://doi.org/10.1038/nature07280. 

(156)  Sharif, J.; Muto, M.; Takebayashi, S. I.; Suetake, I.; Iwamatsu, A.; Endo, T. A.; 
Shinga, J.; Mizutani-Koseki, Y.; Toyoda, T.; Okamura, K.; Tajima, S.; Mitsuya, 
K.; Okano, M.; Koseki, H. The SRA Protein Np95 Mediates Epigenetic 
Inheritance by Recruiting Dnmt1 to Methylated DNA. Nature 2007. 
https://doi.org/10.1038/nature06397. 

(157)  Bostick, M.; Jong, K. K.; Estève, P. O.; Clark, A.; Pradhan, S.; Jacobsen, S. E. 
UHRF1 Plays a Role in Maintaining DNA Methylation in Mammalian Cells. 
Science (80-. ). 2007. https://doi.org/10.1126/science.1147939. 

(158)  Achour, M.; Jacq, X.; Rondé, P.; Alhosin, M.; Charlot, C.; Chataigneau, T.; 
Jeanblanc, M.; Macaluso, M.; Giordano, A.; Hughes, A. D.; Schini-Kerth, V. B.; 
Bronner, C. The Interaction of the SRA Domain of ICBP90 with a Novel Domain 
of DNMT1 Is Involved in the Regulation of VEGF Gene Expression. Oncogene 
2008. https://doi.org/10.1038/sj.onc.1210855. 

(159)  Prokhortchouk, A.; Hendrich, B.; Jørgensen, H.; Ruzov, A.; Wilm, M.; Georgiev, 
G.; Bird, A.; Prokhortchouk, E. The P120 Catenin Partner Kaiso Is a DNA 
Methylation-Dependent Transcriptional Repressor. Genes Dev. 2001. 
https://doi.org/10.1101/gad.198501. 

(160)  Filion, G. J. P.; Zhenilo, S.; Salozhin, S.; Yamada, D.; Prokhortchouk, E.; 
Defossez, P.-A. A Family of Human Zinc Finger Proteins That Bind Methylated 
DNA and Repress Transcription. Mol. Cell. Biol. 2006. 
https://doi.org/10.1128/mcb.26.1.169-181.2006. 

(161)  Yoon, H. G.; Chan, D. W.; Reynolds, A. B.; Qin, J.; Wong, J. N-CoR Mediates 
DNA Methylation-Dependent Repression through a Methyl CpG Binding Protein 
Kaiso. Mol. Cell 2003. https://doi.org/10.1016/j.molcel.2003.08.008. 

(162)  Lopes, E. C.; Valls, E.; Figueroa, M. E.; Mazur, A.; Meng, F. G.; Chiosis, G.; 
Laird, P. W.; Schreiber-Agus, N.; Greally, J. M.; Prokhortchouk, E.; Melnick, A. 
Kaiso Contributes to DNA Methylation-Dependent Silencing of Tumor 
Suppressor Genes in Colon Cancer Cell Lines. Cancer Res. 2008. 
https://doi.org/10.1158/0008-5472.CAN-08-0344. 

(163)  Nan, X.; Ng, H. H.; Johnson, C. A.; Laherty, C. D.; Turner, B. M.; Eisenman, R. 
N.; Bird, A. Transcriptional Repression by the Methyl-CpG-Binding Protein 
MeCP2 Involves a Histone Deacetylase Complex. Nature 1998. 
https://doi.org/10.1038/30764. 

(164)  Citterio, E.; Papait, R.; Nicassio, F.; Vecchi, M.; Gomiero, P.; Mantovani, R.; Di 
Fiore, P. P.; Bonapace, I. M. Np95 Is a Histone-Binding Protein Endowed with 
Ubiquitin Ligase Activity. Mol. Cell. Biol. 2004. 
https://doi.org/10.1128/mcb.24.6.2526-2535.2004. 

(165)  Karagianni, P.; Amazit, L.; Qin, J.; Wong, J. ICBP90, a Novel Methyl K9 H3 
Binding Protein Linking Protein Ubiquitination with Heterochromatin Formation. 
Mol. Cell. Biol. 2008. https://doi.org/10.1128/mcb.01598-07. 

(166)  Jones, P. L.; Veenstra, G. J. C.; Wade, P. A.; Vermaak, D.; Kass, S. U.; 
Landsberger, N.; Strouboulis, J.; Wolffe, A. P. Methylated DNA and MeCP2 
Recruit Histone Deacetylase to Repress Transcription. Nat. Genet. 1998. 
https://doi.org/10.1038/561. 

(167)  Fuks, F.; Hurd, P. J.; Deplus, R.; Kouzarides, T. The DNA Methyltransferases 
Associate with HP1 and the SUV39H1 Histone Methyltransferase. Nucleic Acids 



 130 

Res. 2003. https://doi.org/10.1093/nar/gkg332. 
(168)  Ehrich, M.; Nelson, M. R.; Stanssens, P.; Zabeau, M.; Liloglou, T.; Xinarianos, 

G.; Cantor, C. R.; Field, J. K.; Van Den Boom, D. Quantitative High-Throughput 
Analysis of DNA Methylation Patterns by Base-Specific Cleavage and Mass 
Spectrometry. Proc. Natl. Acad. Sci. U. S. A. 2005. 
https://doi.org/10.1073/pnas.0507816102. 

(169)  Matsuda, S.; Yasukawa, T.; Sakaguchi, Y.; Ichiyanagi, K.; Unoki, M.; Gotoh, K.; 
Fukuda, K.; Sasaki, H.; Suzuki, T.; Kang, D. Accurate Estimation of 5-
Methylcytosine in Mammalian Mitochondrial DNA. Sci. Rep. 2018, 8 (1), 5801. 
https://doi.org/10.1038/s41598-018-24251-z. 

(170)  Nass, M. M. K. Differential Methylation of Mitochondrial and Nuclear DNA in 
Cultured Mouse, Hamster and Virus-Transformed Hamster Cells In Vivo and in 
Vitro Methylation. J. Mol. Biol. 1973. https://doi.org/10.1016/0022-
2836(73)90239-8. 

(171)  Vanyushin, B. F.; Kirnos, M. D. Structure of Animal Mitochondrial DNA (Base 
Composition, Pyrimidine Clusters, Character of Methylation). BBA Sect. Nucleic 
Acids Protein Synth. 1977. https://doi.org/10.1016/0005-2787(77)90023-5. 

(172)  Treangen, T. J.; Salzberg, S. L. Repetitive DNA and Next-Generation 
Sequencing: Computational Challenges and Solutions. Nature Reviews 
Genetics. 2012. https://doi.org/10.1038/nrg3117. 

(173)  Masser, D. R.; Berg, A. S.; Freeman, W. M. Focused, High Accuracy 5-
Methylcytosine Quantitation with Base Resolution by Benchtop next-Generation 
Sequencing. Epigenetics and Chromatin 2013. https://doi.org/10.1186/1756-
8935-6-33. 

(174)  Lee, E. J.; Pei, L.; Srivastava, G.; Joshi, T.; Kushwaha, G.; Choi, J. H.; 
Robertson, K. D.; Wang, X.; Colbourne, J. K.; Zhang, L.; Schroth, G. P.; Xu, D.; 
Zhang, K.; Shi, H. Targeted Bisulfite Sequencing by Solution Hybrid Selection 
and Massively Parallel Sequencing. Nucleic Acids Res. 2011. 
https://doi.org/10.1093/nar/gkr598. 

(175)  Li, Q.; Suzuki, M.; Wendt, J.; Patterson, N.; Eichten, S. R.; Hermanson, P. J.; 
Green, D.; Jeddeloh, J.; Richmond, T.; Rosenbaum, H.; Burgess, D.; Springer, 
N. M.; Greally, J. M. Post-Conversion Targeted Capture of Modified Cytosines 
in Mammalian and Plant Genomes. Nucleic Acids Res. 2015. 
https://doi.org/10.1093/nar/gkv244. 

(176)  Masser, D. R.; Stanford, D. R.; Hadad, N.; Giles, C. B.; Wren, J. D.; Sonntag, 
W. E.; Richardson, A.; Freeman, W. M. Bisulfite Oligonucleotide-Capture 
Sequencing for Targeted Base- and Strand-Specific Absolute 5-Methylcytosine 
Quantitation. Age (Omaha). 2016. https://doi.org/10.1007/s11357-016-9914-1. 

(177)  Wendt, J.; Rosenbaum, H.; Richmond, T. A.; Jeddeloh, J. A.; Burgess, D. L. 
Targeted Bisulfite Sequencing Using the SeqCap Epi Enrichment System. In 
Methods in Molecular Biology; 2018. https://doi.org/10.1007/978-1-4939-7481-
8_20. 

(178)  Kacmarczyk, T. J.; Fall, M. P.; Zhang, X.; Xin, Y.; Li, Y.; Alonso, A.; Betel, D. 
“same Difference”: Comprehensive Evaluation of Four DNA Methylation 
Measurement Platforms. Epigenetics and Chromatin 2018. 
https://doi.org/10.1186/s13072-018-0190-4. 

(179)  Meissner, A.; Gnirke, A.; Bell, G. W.; Ramsahoye, B.; Lander, E. S.; Jaenisch, 
R. Reduced Representation Bisulfite Sequencing for Comparative High-
Resolution DNA Methylation Analysis. Nucleic Acids Res. 2005. 
https://doi.org/10.1093/nar/gki901. 



 131 

(180)  Gu, H.; Smith, Z. D.; Bock, C.; Boyle, P.; Gnirke, A.; Meissner, A. Preparation of 
Reduced Representation Bisulfite Sequencing Libraries for Genome-Scale DNA 
Methylation Profiling. Nat. Protoc. 2011. https://doi.org/10.1038/nprot.2010.190. 

(181)  Akalin, A.; Garrett-Bakelman, F. E.; Kormaksson, M.; Busuttil, J.; Zhang, L.; 
Khrebtukova, I.; Milne, T. A.; Huang, Y.; Biswas, D.; Hess, J. L.; Allis, C. D.; 
Roeder, R. G.; Valk, P. J. M.; Löwenberg, B.; Delwel, R.; Fernandez, H. F.; 
Paietta, E.; Tallman, M. S.; Schroth, G. P.; Mason, C. E.; Melnick, A.; Figueroa, 
M. E. Base-Pair Resolution DNA Methylation Sequencing Reveals Profoundly 
Divergent Epigenetic Landscapes in Acute Myeloid Leukemia. PLoS Genet. 
2012. https://doi.org/10.1371/journal.pgen.1002781. 

(182)  Weber, M.; Davies, J. J.; Wittig, D.; Oakeley, E. J.; Haase, M.; Lam, W. L.; 
Schübeler, D. Chromosome-Wide and Promoter-Specific Analyses Identify 
Sites of Differential DNA Methylation in Normal and Transformed Human Cells. 
Nat. Genet. 2005. https://doi.org/10.1038/ng1598. 

(183)  Yong, W. S.; Hsu, F. M.; Chen, P. Y. Profiling Genome-Wide DNA Methylation. 
Epigenetics and Chromatin. 2016. https://doi.org/10.1186/s13072-016-0075-3. 

(184)  Staunstrup, N. H.; Starnawska, A.; Nyegaard, M.; Christiansen, L.; Nielsen, A. 
L.; Børglum, A.; Mors, O. Genome-Wide DNA Methylation Profiling with MeDIP-
Seq Using Archived Dried Blood Spots. Clin. Epigenetics 2016. 
https://doi.org/10.1186/s13148-016-0242-1. 

(185)  Devall, M.; Smith, R. G.; Jeffries, A.; Hannon, E.; Davies, M. N.; Schalkwyk, L.; 
Mill, J.; Weedon, M.; Lunnon, K. Regional Differences in Mitochondrial DNA 
Methylation in Human Post-Mortem Brain Tissue. Clin. Epigenetics 2017. 
https://doi.org/10.1186/s13148-017-0337-3. 

(186)  Wolters, J. E. J.; Van Breda, S. G. J.; Caiment, F.; Claessen, S. M.; De Kok, T. 
M. C. M.; Kleinjans, J. C. S. Nuclear and Mitochondrial DNA Methylation 
Patterns Induced by Valproic Acid in Human Hepatocytes. Chem. Res. Toxicol. 
2017. https://doi.org/10.1021/acs.chemrestox.7b00171. 

(187)  Amarasinghe, S. L.; Su, S.; Dong, X.; Zappia, L.; Ritchie, M. E.; Gouil, Q. 
Opportunities and Challenges in Long-Read Sequencing Data Analysis. 
Genome Biology. 2020. https://doi.org/10.1186/s13059-020-1935-5. 

(188)  Flusberg, B. A.; Webster, D. R.; Lee, J. H.; Travers, K. J.; Olivares, E. C.; Clark, 
T. A.; Korlach, J.; Turner, S. W. Direct Detection of DNA Methylation during 
Single-Molecule, Real-Time Sequencing. Nat. Methods 2010. 
https://doi.org/10.1038/nmeth.1459. 

(189)  Xu, L.; Seki, M. Recent Advances in the Detection of Base Modifications Using 
the Nanopore Sequencer. Journal of Human Genetics. 2020. 
https://doi.org/10.1038/s10038-019-0679-0. 

(190)  Beaulaurier, J.; Zhang, X. S.; Zhu, S.; Sebra, R.; Rosenbluh, C.; Deikus, G.; 
Shen, N.; Munera, D.; Waldor, M. K.; Chess, A.; Blaser, M. J.; Schadt, E. E.; 
Fang, G. Single Molecule-Level Detection and Long Read-Based Phasing of 
Epigenetic Variations in Bacterial Methylomes. Nat. Commun. 2015. 
https://doi.org/10.1038/ncomms8438. 

(191)  Gigante, S.; Gouil, Q.; Lucattini, A.; Keniry, A.; Beck, T.; Tinning, M.; Gordon, 
L.; Woodruff, C.; Speed, T. P.; Blewitt, M. E.; Ritchie, M. E. Using Long-Read 
Sequencing to Detect Imprinted DNA Methylation. Nucleic Acids Res. 2019. 
https://doi.org/10.1093/nar/gkz107. 

(192)  Rhoads, A.; Au, K. F. PacBio Sequencing and Its Applications. Genomics, 
Proteomics and Bioinformatics. 2015. 
https://doi.org/10.1016/j.gpb.2015.08.002. 



 132 

(193)  Clark, T. A.; Lu, X.; Luong, K.; Dai, Q.; Boitano, M.; Turner, S. W.; He, C.; 
Korlach, J. Enhanced 5-Methylcytosine Detection in Single-Molecule, Real-
Time Sequencing via Tet1 Oxidation. BMC Biol. 2013. 
https://doi.org/10.1186/1741-7007-11-4. 

(194)  Delahaye, C.; Nicolas, J. Sequencing DNA with Nanopores: Troubles and 
Biases. PLoS One 2021, 16 (10 October). 
https://doi.org/10.1371/journal.pone.0257521. 

(195)  Wick, R. R.; Judd, L. M.; Holt, K. E. Performance of Neural Network Basecalling 
Tools for Oxford Nanopore Sequencing. Genome Biol. 2019. 
https://doi.org/10.1186/s13059-019-1727-y. 

(196)  Rang, F. J.; Kloosterman, W. P.; de Ridder, J. From Squiggle to Basepair: 
Computational Approaches for Improving Nanopore Sequencing Read 
Accuracy. Genome Biology. 2018. https://doi.org/10.1186/s13059-018-1462-9. 

(197)  Stoler, N.; Nekrutenko, A. Sequencing Error Profiles of Illumina Sequencing 
Instruments. NAR Genomics Bioinforma. 2021, 3 (1). 
https://doi.org/10.1093/nargab/lqab019. 

(198)  Simpson, J. T.; Workman, R. E.; Zuzarte, P. C.; David, M.; Dursi, L. J.; Timp, W. 
Detecting DNA Cytosine Methylation Using Nanopore Sequencing. Nat. 
Methods 2017. https://doi.org/10.1038/nmeth.4184. 

(199)  Jain, M.; Koren, S.; Miga, K. H.; Quick, J.; Rand, A. C.; Sasani, T. A.; Tyson, J. 
R.; Beggs, A. D.; Dilthey, A. T.; Fiddes, I. T.; Malla, S.; Marriott, H.; Nieto, T.; 
O’Grady, J.; Olsen, H. E.; Pedersen, B. S.; Rhie, A.; Richardson, H.; Quinlan, 
A. R.; Snutch, T. P.; Tee, L.; Paten, B.; Phillippy, A. M.; Simpson, J. T.; Loman, 
N. J.; Loose, M. Nanopore Sequencing and Assembly of a Human Genome with 
Ultra-Long Reads. Nat. Biotechnol. 2018. https://doi.org/10.1038/nbt.4060. 

(200)  Rand, A. C.; Jain, M.; Eizenga, J. M.; Musselman-Brown, A.; Olsen, H. E.; 
Akeson, M.; Paten, B. Mapping DNA Methylation with High-Throughput 
Nanopore Sequencing. Nat. Methods 2017. 
https://doi.org/10.1038/nmeth.4189. 

(201)  McIntyre, A. B. R.; Alexander, N.; Grigorev, K.; Bezdan, D.; Sichtig, H.; Chiu, C. 
Y.; Mason, C. E. Single-Molecule Sequencing Detection of N6-Methyladenine in 
Microbial Reference Materials. Nat. Commun. 2019. 
https://doi.org/10.1038/s41467-019-08289-9. 

(202)  Ni, P.; Huang, N.; Zhang, Z.; Wang, D. P.; Liang, F.; Miao, Y.; Xiao, C. Le; Luo, 
F.; Wang, J. DeepSignal: Detecting DNA Methylation State from Nanopore 
Sequencing Reads Using Deep-Learning. Bioinformatics 2019. 
https://doi.org/10.1093/bioinformatics/btz276. 

(203)  Liu, Q.; Fang, L.; Yu, G.; Wang, D.; Xiao, C. Le; Wang, K. Detection of DNA 
Base Modifications by Deep Recurrent Neural Network on Oxford Nanopore 
Sequencing Data. Nat. Commun. 2019. https://doi.org/10.1038/s41467-019-
10168-2. 

(204)  Stoiber, M.; Quick, J.; Egan, R.; Eun Lee, J.; Celniker, S.; Neely, R.; Loman, N.; 
Pennacchio, L.; Brown, J. De Novo Identification of DNA Modifications Enabled 
by Genome-Guided Nanopore Signal Processing. bioRxiv 2016. 
https://doi.org/10.1101/094672. 

(205)  Vanyushin, B. F.; Kiryanov, G. I.; Kudryashova, I. B.; Belozersky, A. N. DNA-
Methylase in Loach Embryos (Misgurnus Fossilis). FEBS Lett. 1971. 
https://doi.org/10.1016/0014-5793(71)80646-4. 

(206)  Dawid, I. B. 5-Methylcytidylic Acid: Absence from Mitochondrial DNA of Frogs 
and HeLa Cells. Science (80-. ). 1974. 



 133 

https://doi.org/10.1126/science.184.4132.80. 
(207)  Vanyushin, B. F.; Kirnos, M. D. The Nucleotide Composition and Pyrimidine 

Clusters in DNA from Beef Heart Mitochondria. FEBS Lett. 1974. 
https://doi.org/10.1016/0014-5793(74)80049-9. 

(208)  Mushkambarov, N. N.; Votrin, I. I.; Debov, S. S. Methylation of Preformed DNA 
in Cell Nuclei and Mitochondria of the Rat Liver. Doklady Biochemistry. 1977. 

(209)  Shmookler Reis, R. J.; Goldstein, S. Mitochondrial DNA in Mortal and Immortal 
Human Cells. Genome Number, Integrity, and Methylation. J. Biol. Chem. 1983. 
https://doi.org/10.1016/s0021-9258(17)44633-3. 

(210)  Shock, L. S.; Thakkar, P. V.; Peterson, E. J.; Moran, R. G.; Taylor, S. M. DNA 
Methyltransferase 1, Cytosine Methylation, and Cytosine Hydroxymethylation in 
Mammalian Mitochondria. Proc. Natl. Acad. Sci. U. S. A. 2011. 
https://doi.org/10.1073/pnas.1012311108. 

(211)  Saini, S. K.; Mangalhara, K. C.; Prakasam, G.; Bamezai, R. N. K. DNA 
Methyltransferase1 (DNMT1) Isoform3 Methylates Mitochondrial Genome and 
Modulates Its Biology. Sci. Rep. 2017. https://doi.org/10.1038/s41598-017-
01743-y. 

(212)  Janssen, B. G.; Madhloum, N.; Gyselaers, W.; Bijnens, E.; Clemente, D. B.; Cox, 
B.; Hogervorst, J.; Luyten, L.; Martens, D. S.; Peusens, M.; Plusquin, M.; 
Provost, E. B.; Roels, H. A.; Saenen, N. D.; Tsamou, M.; Vriens, A.; 
Winckelmans, E.; Vrijens, K.; Nawrot, T. S. Cohort Profile: The ENVIRonmental 
Influence on Early AGEing (ENVIRONAGE): A Birth Cohort Study. Int. J. 
Epidemiol. 2017. https://doi.org/10.1093/ije/dyw269. 

(213)  Janssen, B. G.; Gyselaers, W.; Byun, H. M.; Roels, H. A.; Cuypers, A.; 
Baccarelli, A. A.; Nawrot, T. S. Placental Mitochondrial DNA and CYP1A1 Gene 
Methylation as Molecular Signatures for Tobacco Smoke Exposure in Pregnant 
Women and the Relevance for Birth Weight. J. Transl. Med. 2017. 
https://doi.org/10.1186/s12967-016-1113-4. 

(214)  Byun, H. M.; Panni, T.; Motta, V.; Hou, L.; Nordio, F.; Apostoli, P.; Bertazzi, P. 
A.; Baccarelli, A. A. Effects of Airborne Pollutants on Mitochondrial DNA 
Methylation. Part. Fibre Toxicol. 2013. https://doi.org/10.1186/1743-8977-10-
18. 

(215)  Janssen, B. G.; Byun, H. M.; Cox, B.; Gyselaers, W.; Izzi, B.; Baccarelli, A. A.; 
Nawrot, T. S. Variation of DNA Methylation in Candidate Age-Related Targets 
on the Mitochondrial-Telomere Axis in Cord Blood and Placenta. Placenta 2014. 
https://doi.org/10.1016/j.placenta.2014.06.371. 

(216)  Byun, H. M.; Barrow, T. M. Analysis of Pollutant-Induced Changes in 
Mitochondrial DNA Methylation. In Mitochondrial Medicine; 2015. 
https://doi.org/10.1007/978-1-4939-2288-8_19. 

(217)  Janssen, B. G.; Byun, H. M.; Gyselaers, W.; Lefebvre, W.; Baccarelli, A. A.; 
Nawrot, T. S. Placental Mitochondrial Methylation and Exposure to Airborne 
Particulate Matter in the Early Life Environment: An ENVIRONAGE Birth Cohort 
Study. Epigenetics 2015. https://doi.org/10.1080/15592294.2015.1048412. 

(218)  Byun, H. M.; Colicino, E.; Trevisi, L.; Fan, T.; Christiani, D. C.; Baccarelli, A. A. 
Effects of Air Pollution and Blood Mitochondrial DNA Methylation on Markers of 
Heart Rate Variability. J. Am. Heart Assoc. 2016. 
https://doi.org/10.1161/JAHA.116.003218. 

(219)  Vos, S.; Nawrot, T. S.; Martens, D. S.; Byun, H. M.; Janssen, B. G. Mitochondrial 
DNA Methylation in Placental Tissue: A Proof of Concept Study by Means of 
Prenatal Environmental Stressors. Epigenetics 2020. 



 134 

https://doi.org/10.1080/15592294.2020.1790923. 
(220)  Novielli, C.; Mandò, C.; Tabano, S.; Anelli, G. M.; Fontana, L.; Antonazzo, P.; 

Miozzo, M.; Cetin, I. Mitochondrial DNA Content and Methylation in Fetal Cord 
Blood of Pregnancies with Placental Insufficiency. Placenta 2017. 
https://doi.org/10.1016/j.placenta.2017.05.008. 

(221)  Maekawa, M.; Taniguchi, T.; Higashi, H.; Sugimura, H.; Sugano, K.; Kanno, T. 
Methylation of Mitochondrial DNA Is Not a Useful Marker for Cancer Detection 
[6]. Clinical Chemistry. 2004. https://doi.org/10.1373/clinchem.2004.035139. 

(222)  Sun, C.; Reimers, L. L.; Burk, R. D. Methylation of HPV16 Genome CpG Sites 
Is Associated with Cervix Precancer and Cancer. Gynecol. Oncol. 2011. 
https://doi.org/10.1016/j.ygyno.2011.01.013. 

(223)  Feng, S.; Xiong, L.; Ji, Z.; Cheng, W.; Yang, H. Correlation between Increased 
ND2 Expression and Demethylated Displacement Loop of MtDNA in Colorectal 
Cancer. Mol. Med. Rep. 2012. https://doi.org/10.3892/mmr.2012.870. 

(224)  Gao, J.; Wen, S.; Zhou, H.; Feng, S. De-Methylation of Displacement Loop of 
Mitochondrial DNA Is Associated with Increased Mitochondrial Copy Number 
and Nicotinamide Adenine Dinucleotide Subunit 2 Expression in Colorectal 
Cancer. Mol. Med. Rep. 2015. https://doi.org/10.3892/mmr.2015.4256. 

(225)  Tong, H.; Zhang, L.; Gao, J.; Wen, S.; Zhou, H.; Feng, S. Methylation of 
Mitochondrial DNA Displacement Loop Region Regulates Mitochondrial Copy 
Number in Colorectal Cancer. Mol. Med. Rep. 2017. 
https://doi.org/10.3892/mmr.2017.7264. 

(226)  Sun, X.; Vaghjiani, V.; Jayasekara, W. S. N.; Cain, J. E.; St John, J. C. The 
Degree of Mitochondrial DNA Methylation in Tumor Models of Glioblastoma and 
Osteosarcoma. Clin. Epigenetics 2018. https://doi.org/10.1186/s13148-018-
0590-0. 

(227)  D’Aquila, P.; Giordano, M.; Montesanto, A.; De Rango, F.; Passarino, G.; 
Bellizzi, D. Age-and Gender-Related Pattern of Methylation in the MT-RNR1 
Gene. Epigenomics 2015. https://doi.org/10.2217/epi.15.30. 

(228)  Mawlood, S. K.; Dennany, L.; Watson, N.; Dempster, J.; Pickard, B. S. 
Quantification of Global Mitochondrial DNA Methylation Levels and Inverse 
Correlation with Age at Two CpG Sites. Aging (Albany. NY). 2016. 
https://doi.org/10.18632/aging.100892. 

(229)  Chestnut, B. A.; Chang, Q.; Price, A.; Lesuisse, C.; Wong, M.; Martin, L. J. 
Epigenetic Regulation of Motor Neuron Cell Death through DNA Methylation. J. 
Neurosci. 2011. https://doi.org/10.1523/JNEUROSCI.1639-11.2011. 

(230)  Wong, M.; Gertz, B.; Chestnut, B. A.; Martin, L. J. Mitochondrial DNMT3A and 
DNA Methylation in Skeletal Muscle and CNS of Transgenic Mouse Models of 
ALS. Front. Cell. Neurosci. 2013. https://doi.org/10.3389/fncel.2013.00279. 

(231)  Stoccoro, A.; Siciliano, G.; Migliore, L.; Coppedè, F. Decreased Methylation of 
the Mitochondrial D-Loop Region in Late-Onset Alzheimer’s Disease. J. 
Alzheimer’s Dis. 2017. https://doi.org/10.3233/JAD-170139. 

(232)  Blanch, M.; Mosquera, J. L.; Ansoleaga, B.; Ferrer, I.; Barrachina, M. Altered 
Mitochondrial DNA Methylation Pattern in Alzheimer Disease-Related 
Pathology and in Parkinson Disease. Am. J. Pathol. 2016. 
https://doi.org/10.1016/j.ajpath.2015.10.004. 

(233)  Sun, Z.; Terragni, J.; Borgaro, J. G.; Liu, Y.; Yu, L.; Guan, S.; Wang, H.; Sun, 
D.; Cheng, X.; Zhu, Z.; Pradhan, S.; Zheng, Y. High-Resolution Enzymatic 
Mapping of Genomic 5-Hydroxymethylcytosine in Mouse Embryonic Stem Cells. 
Cell Rep. 2013. https://doi.org/10.1016/j.celrep.2013.01.001. 



 135 

(234)  Bellizzi, D.; D’aquila, P.; Scafone, T.; Giordano, M.; Riso, V.; Riccio, A.; 
Passarino, G. The Control Region of Mitochondrial DNA Shows an Unusual 
CpG and Non-CpG Methylation Pattern. DNA Res. 2013. 
https://doi.org/10.1093/dnares/dst029. 

(235)  Ren, L.; Zhang, C.; Tao, L.; Hao, J.; Tan, K.; Miao, K.; Yu, Y.; Sui, L.; Wu, Z.; 
Tian, J.; An, L. High-Resolution Profiles of Gene Expression and DNA 
Methylation Highlight Mitochondrial Modifications during Early Embryonic 
Development. J. Reprod. Dev. 2017. https://doi.org/10.1262/jrd.2016-168. 

(236)  Mishra, M.; Kowluru, R. A. Epigenetic Modification of Mitochondrial DNA in the 
Development of Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2015. 
https://doi.org/10.1167/iovs.15-16937. 

(237)  Bianchessi, V.; Vinci, M. C.; Nigro, P.; Rizzi, V.; Farina, F.; Capogrossi, M. C.; 
Pompilio, G.; Gualdi, V.; Lauri, A. Methylation Profiling by Bisulfite Sequencing 
Analysis of the MtDNA Non-Coding Region in Replicative and Senescent 
Endothelial Cells. Mitochondrion 2016. 
https://doi.org/10.1016/j.mito.2016.02.004. 

(238)  Corsi, S.; Iodice, S.; Vigna, L.; Cayir, A.; Mathers, J. C.; Bollati, V.; Byun, H. M. 
Platelet Mitochondrial DNA Methylation Predicts Future Cardiovascular 
Outcome in Adults with Overweight and Obesity. Clin. Epigenetics 2020. 
https://doi.org/10.1186/s13148-020-00825-5. 

(239)  Hong, E. E.; Okitsu, C. Y.; Smith, A. D.; Hsieh, C.-L. Regionally Specific and 
Genome-Wide Analyses Conclusively Demonstrate the Absence of CpG 
Methylation in Human Mitochondrial DNA. Mol. Cell. Biol. 2013. 
https://doi.org/10.1128/mcb.00220-13. 

(240)  Mechta, M.; Ingerslev, L. R.; Fabre, O.; Picard, M.; Barrès, R. Evidence 
Suggesting Absence of Mitochondrial DNA Methylation. Front. Genet. 2017. 
https://doi.org/10.3389/fgene.2017.00166. 

(241)  Kolesar, J. E.; Wang, C. Y.; Taguchi, Y. V.; Chou, S. H.; Kaufman, B. A. Two-
Dimensional Intact Mitochondrial DNA Agarose Electrophoresis Reveals the 
Structural Complexity of the Mammalian Mitochondrial Genome. Nucleic Acids 
Res. 2013. https://doi.org/10.1093/nar/gks1324. 

(242)  Olova, N.; Krueger, F.; Andrews, S.; Oxley, D.; Berrens, R. V.; Branco, M. R.; 
Reik, W. Comparison of Whole-Genome Bisulfite Sequencing Library 
Preparation Strategies Identifies Sources of Biases Affecting DNA Methylation 
Data. Genome Biol. 2018, 19 (1), 33. https://doi.org/10.1186/s13059-018-1408-
2. 

(243)  Tanaka, K.; Okamoto, A. Degradation of DNA by Bisulfite Treatment. Bioorganic 
Med. Chem. Lett. 2007. https://doi.org/10.1016/j.bmcl.2007.01.040. 

(244)  Iacobazzi, V.; Castegna, A.; Infantino, V.; Andria, G. Mitochondrial DNA 
Methylation as a Next-Generation Biomarker and Diagnostic Tool. Molecular 
Genetics and Metabolism. 2013. https://doi.org/10.1016/j.ymgme.2013.07.012. 

(245)  Jayaprakash, A. D.; Benson, E. K.; Gone, S.; Liang, R.; Shim, J.; Lambertini, L.; 
Toloue, M. M.; Wigler, M.; Aaronson, S. A.; Sachidanandam, R. Stable 
Heteroplasmy at the Single-Cell Level Is Facilitated by Intercellular Exchange of 
MtDNA. Nucleic Acids Res. 2015. https://doi.org/10.1093/nar/gkv052. 

(246)  O’Hara, R.; Tedone, E.; Ludlow, A.; Huang, E.; Arosio, B.; Mari, D.; Shay, J. W. 
Quantitative Mitochondrial DNA Copy Number Determination Using Droplet 
Digital PCR with Single-Cell Resolution. Genome Res. 2019. 
https://doi.org/10.1101/gr.250480.119. 

(247)  Roadmap Epigenomics Consortium; Kundaje, A.; Meuleman, W.; Ernst, J.; 



 136 

Bilenky, M.; Yen, A.; Heravi-Moussavi, A.; Kheradpour, P.; Zhang, Z.; Wang, J.; 
Ziller, M. J.; Amin, V.; Whitaker, J. W.; Schultz, M. D.; Ward, L. D.; Sarkar, A.; 
Quon, G.; Sandstrom, R. S.; Eaton, M. L.; Wu, Y. C.; Pfenning, A. R.; Wang, X.; 
Claussnitzer, M.; Liu, Y.; Coarfa, C.; Harris, R. A.; Shoresh, N.; Epstein, C. B.; 
Gjoneska, E.; Leung, D.; Xie, W.; Hawkins, R. D.; Lister, R.; Hong, C.; Gascard, 
P.; Mungall, A. J.; Moore, R.; Chuah, E.; Tam, A.; Canfield, T. K.; Hansen, R. 
S.; Kaul, R.; Sabo, P. J.; Bansal, M. S.; Carles, A.; Dixon, J. R.; Farh, K. H.; 
Feizi, S.; Karlic, R.; Kim, A. R.; Kulkarni, A.; Li, D.; Lowdon, R.; Elliott, G.; 
Mercer, T. R.; Neph, S. J.; Onuchic, V.; Polak, P.; Rajagopal, N.; Ray, P.; Sallari, 
R. C.; Siebenthall, K. T.; Sinnott-Armstrong, N. A.; Stevens, M.; Thurman, R. E.; 
Wu, J.; Zhang, B.; Zhou, X.; Beaudet, A. E.; Boyer, L. A.; De Jager, P. L.; 
Farnham, P. J.; Fisher, S. J.; Haussler, D.; Jones, S. J. M.; Li, W.; Marra, M. A.; 
McManus, M. T.; Sunyaev, S.; Thomson, J. A.; Tlsty, T. D.; Tsai, L. H.; Wang, 
W.; Waterland, R. A.; Zhang, M. Q.; Chadwick, L. H.; Bernstein, B. E.; Costello, 
J. F.; Ecker, J. R.; Hirst, M.; Meissner, A.; Milosavljevic, A.; Ren, B.; 
Stamatoyannopoulos, J. A.; Wang, T.; Kellis, M. Integrative Analysis of 111 
Reference Human Epigenomes. Nature 2015. 
https://doi.org/10.1038/nature14248. 

(248)  Andrews, S. FASTQC A Quality Control Tool for High Throughput Sequence 
Data. Babraham Inst. 2015. 

(249)  Krueger, F. Trim Galore 
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/. 

(250)  Langmead, B.; Salzberg, S. L. Fast Gapped-Read Alignment with Bowtie 2. Nat. 
Methods 2012. https://doi.org/10.1038/nmeth.1923. 

(251)  Krueger, F.; Andrews, S. R. Bismark: A Flexible Aligner and Methylation Caller 
for Bisulfite-Seq Applications. Bioinformatics 2011. 
https://doi.org/10.1093/bioinformatics/btr167. 

(252)  Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; 
Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. 
Bioinformatics 2009. https://doi.org/10.1093/bioinformatics/btp352. 

(253)  De Coster, W.; D’Hert, S.; Schultz, D. T.; Cruts, M.; Van Broeckhoven, C. 
NanoPack: Visualizing and Processing Long-Read Sequencing Data. 
Bioinformatics 2018. https://doi.org/10.1093/bioinformatics/bty149. 

(254)  Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics 
2018. https://doi.org/10.1093/bioinformatics/bty191. 

(255)  Calabrese, C.; Simone, D.; Diroma, M. A.; Santorsola, M.; Gutta, C.; Gasparre, 
G.; Picardi, E.; Pesole, G.; Attimonelli, M. MToolBox: A Highly Automated 
Pipeline for Heteroplasmy Annotation and Prioritization Analysis of Human 
Mitochondrial Variants in High-Throughput Sequencing. Bioinformatics 2014. 
https://doi.org/10.1093/bioinformatics/btu483. 

(256)  van Oven, M. PhyloTree Build 17: Growing the Human Mitochondrial DNA Tree. 
Forensic Sci. Int. Genet. Suppl. Ser. 2015. 
https://doi.org/10.1016/j.fsigss.2015.09.155. 

(257)  Weissensteiner, H.; Pacher, D.; Kloss-Brandstätter, A.; Forer, L.; Specht, G.; 
Bandelt, H. J.; Kronenberg, F.; Salas, A.; Schönherr, S. HaploGrep 2: 
Mitochondrial Haplogroup Classification in the Era of High-Throughput 
Sequencing. Nucleic Acids Res. 2016. https://doi.org/10.1093/nar/gkw233. 

(258)  Park, Y.; Wu, H. Differential Methylation Analysis for BS-Seq Data under 
General Experimental Design. Bioinformatics 2016. 
https://doi.org/10.1093/bioinformatics/btw026. 



 137 

(259)  Siegfried, Z.; Simon, I. DNA Methylation and Gene Expression. Wiley 
Interdiscip. Rev. Syst. Biol. Med. 2010, 2 (3), 362–371. 
https://doi.org/10.1002/wsbm.64. 

(260)  Dong, Z.; Pu, L.; Cui, H. Mitoepigenetics and Its Emerging Roles in Cancer. 
Frontiers in Cell and Developmental Biology. 2020. 
https://doi.org/10.3389/fcell.2020.00004. 

(261)  Liu, B.; Du, Q.; Chen, L.; Fu, G.; Li, S.; Fu, L.; Zhang, X.; Ma, C.; Bin, C. CpG 
Methylation Patterns of Human Mitochondrial DNA. Sci. Rep. 2016. 
https://doi.org/10.1038/srep23421. 

(262)  Sirard, M. A. Distribution and Dynamics of Mitochondrial DNA Methylation in 
Oocytes, Embryos and Granulosa Cells. Sci. Rep. 2019. 
https://doi.org/10.1038/s41598-019-48422-8. 

(263)  Krueger, F.; Kreck, B.; Franke, A.; Andrews, S. R. DNA Methylome Analysis 
Using Short Bisulfite Sequencing Data. Nature Methods. 2012. 
https://doi.org/10.1038/nmeth.1828. 

(264)  Dou, X.; Boyd-Kirkup, J. D.; McDermott, J.; Zhang, X.; Li, F.; Rong, B.; Zhang, 
R.; Miao, B.; Chen, P.; Cheng, H.; Xue, J.; Bennett, D.; Wong, J.; Lan, F.; Han, 
J. D. J. The Strand-Biased Mitochondrial DNA Methylome and Its Regulation by 
DNMT3A. Genome Res. 2019. https://doi.org/10.1101/gr.234021.117. 

(265)  Anderson, S.; Bankier, A. T.; Barrell, B. G.; De Bruijn, M. H. L.; Coulson, A. R.; 
Drouin, J.; Eperon, I. C.; Nierlich, D. P.; Roe, B. A.; Sanger, F.; Schreier, P. H.; 
Smith, A. J. H.; Staden, R.; Young, I. G. Sequence and Organization of the 
Human Mitochondrial Genome. Nature 1981. https://doi.org/10.1038/290457a0. 

(266)  Van Der Wijst, M. G. P.; Van Tilburg, A. Y.; Ruiters, M. H. J.; Rots, M. G. 
Experimental Mitochondria-Targeted DNA Methylation Identifies GpC 
Methylation, Not CpG Methylation, as Potential Regulator of Mitochondrial Gene 
Expression. Sci. Rep. 2017. https://doi.org/10.1038/s41598-017-00263-z. 

(267)  Park, S. H.; Lee, S. Y.; Kim, S. A. Mitochondrial DNA Methylation Is Higher in 
Acute Coronary Syndrome than in Stable Coronary Artery Disease. In Vivo 
(Brooklyn). 2021. https://doi.org/10.21873/INVIVO.12247. 

(268)  Sun, X.; Wang, Z.; Cong, X.; Lv, Y.; Li, Z.; Rong, L.; Yang, T.; Yu, D. 
Mitochondrial Gene COX2 Methylation and Downregulation Is a Biomarker of 
Aging in Heart Mesenchymal Stem Cells. Int. J. Mol. Med. 2021. 
https://doi.org/10.3892/ijmm.2020.4799. 

(269)  Tao, X.; Zhan, Y.; Scott, R. T.; Seli, E. ASSESSMENT OF MITOCHONDRIAL 
DNA METHYLATION IN HUMAN BLASTOCYSTS. Fertil. Steril. 2020. 
https://doi.org/10.1016/j.fertnstert.2020.08.1042. 

(270)  Patil, V.; Cuenin, C.; Chung, F.; Aguilera, J. R. R.; Fernandez-Jimenez, N.; 
Romero-Garmendia, I.; Bilbao, J. R.; Cahais, V.; Rothwell, J.; Herceg, Z. Human 
Mitochondrial DNA Is Extensively Methylated in a Non-CpG Context. Nucleic 
Acids Res. 2019. https://doi.org/10.1093/nar/gkz762. 

(271)  Corsi, S.; Iodice, S.; Shannon, O.; Siervo, M.; Mathers, J.; Bollati, V.; Byun, H.-
M. Mitochondrial DNA Methylation Is Associated with Mediterranean Diet 
Adherence in a Population of Older Adults with Overweight and Obesity. Proc. 
Nutr. Soc. 2020. https://doi.org/10.1017/s0029665120000439. 

(272)  Delaney, C.; Garg, S. K.; Yung, R. Analysis of DNA Methylation by 
Pyrosequencing. In Methods in Molecular Biology; 2015. 
https://doi.org/10.1007/978-1-4939-2963-4_19. 

(273)  Song, L.; James, S. R.; Kazim, L.; Karpf, A. R. Specific Method for the 
Determination of Genomic DNA Methylation by Liquid Chromatography-



 138 

Electrospray Ionization Tandem Mass Spectrometry. Anal. Chem. 2005. 
https://doi.org/10.1021/ac0489420. 

(274)  Neary, J. L.; Carless, M. A. Methylated DNA Immunoprecipitation Sequencing 
(MeDIP-Seq): Principles and Applications. In Epigenetics Methods; 2020. 
https://doi.org/10.1016/b978-0-12-819414-0.00009-4. 

(275)  Logsdon, G. A.; Vollger, M. R.; Eichler, E. E. Long-Read Human Genome 
Sequencing and Its Applications. Nature Reviews Genetics. 2020. 
https://doi.org/10.1038/s41576-020-0236-x. 

(276)  Jain, M.; Olsen, H. E.; Paten, B.; Akeson, M. The Oxford Nanopore MinION: 
Delivery of Nanopore Sequencing to the Genomics Community. Genome Biol. 
2016. https://doi.org/10.1186/s13059-016-1103-0l. 

(277)  Prall, T. M.; Neumann, E. K.; Karl, J. A.; Shortreed, C. G.; Baker, D. A.; Bussan, 
H. E.; Wiseman, R. W.; O’Connor, D. H. Consistent Ultra-Long DNA Sequencing 
with Automated Slow Pipetting. BMC Genomics 2021. 
https://doi.org/10.1186/s12864-021-07500-w. 

(278)  King, M. P.; Attardi, G. Human Cells Lacking MtDNA: Repopulation with 
Exogenous Mitochondria by Complementation. Science (80-. ). 1989. 
https://doi.org/10.1126/science.2814477. 

(279)  Actis, P.; Hudson, G.; Bury, A. G.; Vincent, A. E.; Turnbull, D. M. Mitochondrial 
Isolation: When Size Matters. Wellcome Open Research. 2020. 
https://doi.org/10.12688/wellcomeopenres.16300.2. 

(280)  O’Brown, Z. K.; Boulias, K.; Wang, J.; Wang, S. Y.; O’Brown, N. M.; Hao, Z.; 
Shibuya, H.; Fady, P. E.; Shi, Y.; He, C.; Megason, S. G.; Liu, T.; Greer, E. L. 
Sources of Artifact in Measurements of 6mA and 4mC Abundance in Eukaryotic 
Genomic DNA. BMC Genomics 2019. https://doi.org/10.1186/s12864-019-
5754-6. 

(281)  Wheeler, D.; Lin, J. ‐H; Chrambach, A. Distinction between Supercoiled and 
Linear DNA in Transverse Agarose Pore Gradient Gel Electrophoresis. 
Electrophoresis 1992. https://doi.org/10.1002/elps.1150130185. 

(282)  Lightowlers, R. N.; Chinnery, P. F.; Turnbull, D. M.; Howell, N.; Turnbuu, D. M. 
Mammalian Mitochondrial Genetics: Heredity, Heteroplasmy and Disease. 
Trends in Genetics. 1997. https://doi.org/10.1016/S0168-9525(97)01266-3. 

(283)  Gómez-Durán, A.; Pacheu-Grau, D.; Martínez-Romero, Í.; López-Gallardo, E.; 
López-Pérez, M. J.; Montoya, J.; Ruiz-Pesini, E. Oxidative Phosphorylation 
Differences between Mitochondrial DNA Haplogroups Modify the Risk of Leber’s 
Hereditary Optic Neuropathy. Biochim. Biophys. Acta - Mol. Basis Dis. 2012. 
https://doi.org/10.1016/j.bbadis.2012.04.014. 

(284)  Stewart, J. B.; Chinnery, P. F. Extreme Heterogeneity of Human Mitochondrial 
DNA from Organelles to Populations. Nature Reviews Genetics. 2020. 
https://doi.org/10.1038/s41576-020-00284-x. 

(285)  DiMauro, S.; Schon, E. A.; Carelli, V.; Hirano, M. The Clinical Maze of 
Mitochondrial Neurology. Nature Reviews Neurology. 2013. 
https://doi.org/10.1038/nrneurol.2013.126. 

(286)  Holt, I. J.; Harding, A. E.; Morgan-Hughes, J. A. Deletions of Muscle 
Mitochondrial DNA in Patients with Mitochondrial Myopathies. Nature 1988. 
https://doi.org/10.1038/331717a0. 

(287)  Tengan, C. H.; Moraes, C. T. Detection and Analysis of Mitochondrial DNA 
Deletions by Whole Genome PCR. Biochem. Mol. Med. 1996. 
https://doi.org/10.1006/bmme.1996.0040. 

(288)  Fromenty, B.; Manfredi, G.; Sadlock, J.; Zhang, L.; King, M. P.; Schon, E. A. 



 139 

Efficient and Specific Amplification of Identified Partial Duplications of Human 
Mitochondrial DNA by Long PCR. Biochim. Biophys. Acta - Gene Struct. Expr. 
1996. https://doi.org/10.1016/0167-4781(96)00110-8. 

(289)  Van Haute, L.; Spits, C.; Geens, M.; Seneca, S.; Sermon, K. Human Embryonic 
Stem Cells Commonly Display Large Mitochondrial DNA Deletions. Nature 
Biotechnology. 2013. https://doi.org/10.1038/nbt.2473. 

(290)  Ronaghi, M.; Uhlén, M.; Nyrén, P. A Sequencing Method Based on Real-Time 
Pyrophosphate. Science. 1998. https://doi.org/10.1126/science.281.5375.363. 

(291)  Andréasson, H.; Asp, A.; Alderborn, A.; Gyllensten, U.; Allen, M. Mitochondrial 
Sequence Analysis for Forensic Identification Using Pyrosequencing 
Technology. Biotechniques 2002. https://doi.org/10.2144/02321rr01. 

(292)  Belmonte, F. R.; Martin, J. L.; Frescura, K.; Damas, J.; Pereira, F.; Tarnopolsky, 
M. A.; Kaufman, B. A. Digital PCR Methods Improve Detection Sensitivity and 
Measurement Precision of Low Abundance MtDNA Deletions. Sci. Rep. 2016. 
https://doi.org/10.1038/srep25186. 

(293)  Trifunov, S.; Pyle, A.; Valentino, M. L.; Liguori, R.; Yu-Wai-Man, P.; Burté, F.; 
Duff, J.; Kleinle, S.; Diebold, I.; Rugolo, M.; Horvath, R.; Carelli, V. Clonal 
Expansion of MtDNA Deletions: Different Disease Models Assessed by Digital 
Droplet PCR in Single Muscle Cells. Sci. Rep. 2018. 
https://doi.org/10.1038/s41598-018-30143-z. 

(294)  Maitra, A.; Cohen, Y.; Gillespie, S. E. D.; Mambo, E.; Fukushima, N.; Hoque, M. 
O.; Shah, N.; Goggins, M.; Califano, J.; Sidransky, D.; Chakravarti, A. The 
Human MitoChip: A High-Throughput Sequencing Microarray for Mitochondrial 
Mutation Detection. Genome Res. 2004. https://doi.org/10.1101/gr.2228504. 

(295)  van Dijk, E. L.; Jaszczyszyn, Y.; Naquin, D.; Thermes, C. The Third Revolution 
in Sequencing Technology. Trends in Genetics. 2018. 
https://doi.org/10.1016/j.tig.2018.05.008. 

(296)  Goodwin, S.; McPherson, J. D.; McCombie, W. R. Coming of Age: Ten Years of 
next-Generation Sequencing Technologies. Nature Reviews Genetics. 2016. 
https://doi.org/10.1038/nrg.2016.49. 

(297)  Ewing, B.; Hillier, L. D.; Wendl, M. C.; Green, P. Base-Calling of Automated 
Sequencer Traces Using Phred. I. Accuracy Assessment. Genome Res. 1998, 
8 (3). https://doi.org/10.1101/gr.8.3.175. 

(298)  Schirmer, M.; Ijaz, U. Z.; D’Amore, R.; Hall, N.; Sloan, W. T.; Quince, C. Insight 
into Biases and Sequencing Errors for Amplicon Sequencing with the Illumina 
MiSeq Platform. Nucleic Acids Res. 2015, 43 (6). 
https://doi.org/10.1093/nar/gku1341. 

(299)  Kurelac, I.; Lang, M.; Zuntini, R.; Calabrese, C.; Simone, D.; Vicario, S.; 
Santamaria, M.; Attimonelli, M.; Romeo, G.; Gasparre, G. Searching for a 
Needle in the Haystack: Comparing Six Methods to Evaluate Heteroplasmy in 
Difficult Sequence Context. Biotechnol. Adv. 2012, 30 (1). 
https://doi.org/10.1016/j.biotechadv.2011.06.001. 

(300)  Shendure, J.; Ji, H. Next-Generation DNA Se1. Shendure J, Ji H. Next-
Generation DNA Sequencing. Nat Biotechnol. 2008;26(10):1135–45. Quencing. 
Nat. Biotechnol. 2008, 26 (10). 

(301)  Feng, W.; Zhao, S.; Xue, D.; Song, F.; Li, Z.; Chen, D.; He, B.; Hao, Y.; Wang, 
Y.; Liu, Y. Improving Alignment Accuracy on Homopolymer Regions for 
Semiconductor-Based Sequencing Technologies. BMC Genomics 2016, 17. 
https://doi.org/10.1186/s12864-016-2894-9. 

(302)  Li, M.; Schönberg, A.; Schaefer, M.; Schroeder, R.; Nasidze, I.; Stoneking, M. 



 140 

Detecting Heteroplasmy from High-Throughput Sequencing of Complete 
Human Mitochondrial DNA Genomes. Am. J. Hum. Genet. 2010, 87 (2). 
https://doi.org/10.1016/j.ajhg.2010.07.014. 

(303)  Zhang, P.; Samuels, D. C.; Lehmann, B.; Stricker, T.; Pietenpol, J.; Shyr, Y.; 
Guo, Y. Mitochondria Sequence Mapping Strategies and Practicability of 
Mitochondria Variant Detection from Exome and RNA Sequencing Data. Brief. 
Bioinform. 2016, 17 (2). https://doi.org/10.1093/bib/bbv057. 

(304)  Santibanez-Koref, M.; Griffin, H.; Turnbull, D. M.; Chinnery, P. F.; Herbert, M.; 
Hudson, G. Assessing Mitochondrial Heteroplasmy Using next Generation 
Sequencing: A Note of Caution. Mitochondrion 2019, 46. 
https://doi.org/10.1016/j.mito.2018.08.003. 

(305)  Picardi, E.; Pesole, G. Mitochondrial Genomes Gleaned from Human Whole-
Exome Sequencing. Nature Methods. 2012. 
https://doi.org/10.1038/nmeth.2029. 

(306)  Pyle, A.; Hudson, G.; Wilson, I. J.; Coxhead, J.; Smertenko, T.; Herbert, M.; 
Santibanez-Koref, M.; Chinnery, P. F. Extreme-Depth Re-Sequencing of 
Mitochondrial DNA Finds No Evidence of Paternal Transmission in Humans. 
PLoS Genet. 2015, 11 (5). https://doi.org/10.1371/journal.pgen.1005040. 

(307)  Just, R. S.; Irwin, J. A.; Parson, W. Questioning the Prevalence and Reliability 
of Human Mitochondrial DNA Heteroplasmy from Massively Parallel 
Sequencing Data. Proceedings of the National Academy of Sciences of the 
United States of America. 2014. https://doi.org/10.1073/pnas.1413478111. 

(308)  Chomyn, A.; Lai, S. T.; Shakeley, R.; Bresolin, N.; Scarlato, G.; Attardi, G. 
Platelet-Mediated Transformation of MtDNA-Less Human Cells: Analysis of 
Phenotypic Variability among Clones from Normal Individuals--and 
Complementation Behavior of the TRNALys Mutation Causing Myoclonic 
Epilepsy and Ragged Red Fibers. Am. J. Hum. Genet. 1994, 54 (6), 966–974. 

(309)  Shoffner, J. M.; Lott, M. T.; Lezza, A. M. S.; Seibel, P.; Ballinger, S. W.; Wallace, 
D. C. Myoclonic Epilepsy and Ragged-Red Fiber Disease (MERRF) Is 
Associated with a Mitochondrial DNA TRNALys Mutation. Cell 1990. 
https://doi.org/10.1016/0092-8674(90)90059-N. 

(310)  Flierl, A.; Reichmann, H.; Seibel, P. Pathophysiology of the MELAS 3243 
Transition Mutation. J. Biol. Chem. 1997. 
https://doi.org/10.1074/jbc.272.43.27189. 

(311)  Chen, J.; Li, X.; Zhong, H.; Meng, Y.; Du, H. Systematic Comparison of Germline 
Variant Calling Pipelines Cross Multiple Next-Generation Sequencers. Sci. Rep. 
2019. https://doi.org/10.1038/s41598-019-45835-3. 

(312)  Bris, C.; Goudenege, D.; Desquiret-Dumas, V.; Charif, M.; Colin, E.; Bonneau, 
D.; Amati-Bonneau, P.; Lenaers, G.; Reynier, P.; Procaccio, V. Bioinformatics 
Tools and Databases to Assess the Pathogenicity of Mitochondrial DNA 
Variants in the Field of Next Generation Sequencing. Frontiers in Genetics. 
2018. https://doi.org/10.3389/fgene.2018.00632. 

(313)  Sahlin, K.; Sipos, B.; James, P. L.; Medvedev, P. Error Correction Enables Use 
of Oxford Nanopore Technology for Reference-Free Transcriptome Analysis. 
Nat. Commun. 2021. https://doi.org/10.1038/s41467-020-20340-8. 

(314)  Spinelli, J. B.; Haigis, M. C. The Multifaceted Contributions of Mitochondria to 
Cellular Metabolism. Nature Cell Biology. 2018. https://doi.org/10.1038/s41556-
018-0124-1. 

(315)  Hao, Z.; Wu, T.; Cui, X.; Zhu, P.; Tan, C.; Dou, X.; Hsu, K. W.; Lin, Y. Te; Peng, 
P. H.; Zhang, L. S.; Gao, Y.; Hu, L.; Sun, H. L.; Zhu, A.; Liu, J.; Wu, K. J.; He, 



 141 

C. N6-Deoxyadenosine Methylation in Mammalian Mitochondrial DNA. Mol. Cell 
2020. https://doi.org/10.1016/j.molcel.2020.02.018. 

(316)  Lee, I.; Razaghi, R.; Gilpatrick, T.; Molnar, M.; Gershman, A.; Sadowski, N.; 
Sedlazeck, F. J.; Hansen, K. D.; Simpson, J. T.; Timp, W. Simultaneous Profiling 
of Chromatin Accessibility and Methylation on Human Cell Lines with Nanopore 
Sequencing. Nat. Methods 2020. https://doi.org/10.1038/s41592-020-01000-7. 

  



 142 

 

Appendices 

Appendix 1: List of cell lines and tissues used in this study  

Cell lines information 

Cell line description Codes Source Publication 

Rho 0 cell line Rho 0 Laboratory of Prof. Patrick F 

Chinnery 
278 

Human cybrid cell line - H 

haplogroup 
613H Laboratory of Prof. Patrick F 

Chinnery 
283 

Human cybrid cell line - J 

haplogroup 
128J Laboratory of Prof. Patrick F 

Chinnery 
283 

Human cybrid cell line - J2 

haplogroup 
135J2 Laboratory of Prof. Patrick F 

Chinnery 
283 

Human primary fibroblast cell 

line - Control 
Control 1 Laboratory of Prof. Patrick F 

Chinnery 
N/A 

Human primary fibroblast cell 

line - Control 
Control 2 Laboratory of Prof. Patrick F 

Chinnery 
N/A 

Human primary fibroblast cell 

line - MELAS mutation 
m.3243A>G (1) Laboratory of Prof. Patrick F 

Chinnery 
N/A 

Human primary fibroblast cell 

line - MELAS mutation 
m.3243A>G (1) Laboratory of Prof. Patrick F 

Chinnery 
N/A 

Human primary fibroblast cell 

line - MERRF cell line 
m.8344A>G Laboratory of Prof. Patrick F 

Chinnery 
N/A 

Tissues information 

Tissue type ID Code Source  Gender/Age 

Human Liver TB15-0139 Addenbrooke’s Tissue Bank Male/36 years 

Kidney TB12-1905 Addenbrooke’s Tissue Bank Male/60 years 

Human Kidney TB15-153 Addenbrooke’s Tissue Bank Male/75 years 
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Heart TB12-2860 Addenbrooke’s Tissue Bank Male/28 years 

Skeletal Muscle TB15-2606 Addenbrooke’s Tissue Bank Male/56 years 

Skeletal Muscle TB13-1505 Addenbrooke’s Tissue Bank Male/40 years 

Skeletal Muscle TB05-0578 Addenbrooke’s Tissue Bank Male/82 years 

 

Appendix 2: List of primers and probes used in this study 

Primers 

Primer name Forward 5' - 3' Reverse 5' - 3' Used for 

2F 
TGTAAAACGACGGCCAGTTTAA
AACTCAAAGGACCTGGC - LR-PCR 

D1R - CAGGAAACAGCTATGACCAGGG
TGATAGACCTGTGATC 

LR-PCR 

MT-ND1 
GGGTTCATAGTAGAAGAGCGA
TGG 

ACGCCATAAAACTCTTCACCAAA
G 

dPCR 

RNASE P AGATTTGGACCTGCGAGCG GAGCGGCTGTCTCCACAAGT dPCR 

Illumina_prime
r_1_Fw 

CATCCGTATTACTCGCATCAG -  

Illumina_prime
r_1_Rev - TTGGCTCTCCTTGCAAAGTT  

Illumina_prime
r_2_Fw 

TATCCGCCATCCCATACATT -  

Illumina_prime
r_2_Rev 

- AATGTTGAGCCGTAGATGCC  

Probes 

Probe name Fluorophore Sequence 5' - 3' Quencher 

MT-ND1 HEX 
ACCCGCCACATCTACCATCACCC
TC 

BHQ_1 

RNASE P FAM 
TTCTGACCTGAAGGCTCTGCGC
G BHQ_1 
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Appendix 3. False positive positions and methylation values.  

MtDNA position Methylation 
Frequency In NC 

Methylation 
Frequency in Cell 
Lines and Tissues 

(average) 

Standard deviation in 
Cell Lines and 

Tissues 

3034 0.035 0.05 0.07 

3405 0.135 0.09 0.07 

3494 0.05 0.11 0.11 

6241 0.172 0.07 0.04 

6688 0.037 0.13 0.06 

11590 0.033 0.06 0.04 

12052 0.11 0.25 0.13 

12123 0.07 0.08 0.08 

12190 0.051 0.03 0.03 

12455 0.03 0.08 0.06 

15146 0.035 0.05 0.07 

15274 0.052 0.05 0.04 

16410 0.065 0.06 0.06 
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Appendix 4: List and metrics of WGBS samples that passed quality control . 

 
Appendix 4.1: Bias group 
 

GEO 
Accession 

(exp) 
Cell  
Line Tissue  Total Bases 

Ave 
Mito 
rd 

L-
strand 

Aligned 
Reads 

H-
strand 

Aligned 
Reads 

Tot. 
Aligned 
Reads 

% L-
strand 

%. H-
strand 

Covered 
bp H-
strand 

Coverage 
Perc. H-
strand 

Covered 
bp L-

strand 

Coverage 
Perc. L-
strand 

GSM983650 N/A Left 
Ventricle 45627599814 81.52 1216 12947 14163 8.59 91.41 15171 91.56255658 4107 24.7872533 

GSM983652 N/A Spleen 41570280536 73.63 255 12127 12382 2.06 97.94 14808 89.37171827 1021 6.16210996 

GSM983646 N/A Small 
Intestine 42456528367 73.11 267 12036 12303 2.17 97.83 14693 88.67765104 1206 7.27865291 

GSM1282350 N/A Lung 24157867100 130.19 9749 12441 22190 43.93 56.07 15145 91.40563703 14628 88.2853522 

GSM1120322 N/A Thymus 18111125700 80.5 4862 8830 13692 35.51 64.49 15061 90.89866618 14366 86.7040859 

GSM675544 H1 N/A 2696663675 67.68 1766 11666 13432 13.15 86.85 14687 88.64143883 7808 47.1241475 
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GEO 
Accession 

(exp) 
Cell  
Line Tissue  Total Bases 

Ave 
Mito 
rd 

L-
strand 

Aligned 
Reads 

H-
strand 

Aligned 
Reads 

Tot. 
Aligned 
Reads 

% L-
strand 

%. H-
strand 

Covered 
bp H-
strand 

Coverage 
Perc. H-
strand 

Covered 
bp L-

strand 

Coverage 
Perc. L-
strand 

GSM675545 H1 N/A 8950212800 83.37 1978 12881 14859 13.31 86.69 15120 91.25475285 6798 41.0284266 

GSM675546 H1 N/A 9095955300 82.96 1901 12868 14769 12.87 87.13 15105 91.16422234 6601 39.8394592 

GSM675543 H1 N/A 2547041448 64.7 1707 11470 13177 12.95 87.05 14649 88.41209488 7254 43.780554 

GSM818006 H1 N/A 8508010500 99.09 4472 12947 17419 25.67 74.33 15142 91.38753093 11590 69.9499065 

GSM818003 H1 N/A 9371304897 99.53 5648 13052 18700 30.2 69.8 15050 90.83227714 12528 75.6110809 

GSM818004 H1 N/A 9352002787 101.17 5921 13018 18939 31.26 68.74 15085 91.043515 12962 78.2304303 

GSM818005 H1 N/A 9369542245 92.55 4416 12942 17358 25.44 74.56 15076 90.98919669 11218 67.7047498 

GSM706058 iPS 
DF 6.9 N/A 9360062890 86.26 2888 13026 15914 18.15 81.85 15105 91.16422234 9766 58.9413966 
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GEO 
Accession 

(exp) 
Cell  
Line Tissue  Total Bases 

Ave 
Mito 
rd 

L-
strand 

Aligned 
Reads 

H-
strand 

Aligned 
Reads 

Tot. 
Aligned 
Reads 

% L-
strand 

%. H-
strand 

Covered 
bp H-
strand 

Coverage 
Perc. H-
strand 

Covered 
bp L-

strand 

Coverage 
Perc. L-
strand 

GSM706054 
iPS 
DF 

19.11 
N/A 9676571741 89.62 2708 13064 15772 17.17 82.83 15151 91.44184924 9442 56.9859376 

GSM706053 
iPS 
DF 

19.11 
N/A 9468370800 84.85 2559 13004 15563 16.44 83.56 15197 91.71947613 9194 55.4891665 

GSM706061 H9 N/A 10053272232 85.65 2570 13096 15666 16.4 83.6 15167 91.53841511 7780 46.9551572 

GSM429322 H1 N/A 1557514194 44.1 1001 8621 9622 10.4 89.6 14314 86.39024685 4627 27.9256443 

GSM429321 H1 N/A 1428272997 39.79 878 8133 9011 9.74 90.26 14204 85.72635645 4190 25.2881888 

GSM432687 IMR90 N/A 1830847836 30.39 1191 5497 6688 17.81 82.19 13847 83.57173034 5861 35.3732875 

GSM432689 IMR90 N/A 1188700256 24.89 882 4479 5361 16.45 83.55 13835 83.49930593 4565 27.5514515 

GSM432688 IMR90 N/A 1823837724 30.3 1180 5304 6484 18.2 81.8 14004 84.519283 5888 35.5362424 
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GEO 
Accession 

(exp) 
Cell  
Line Tissue  Total Bases 

Ave 
Mito 
rd 

L-
strand 

Aligned 
Reads 

H-
strand 

Aligned 
Reads 

Tot. 
Aligned 
Reads 

% L-
strand 

%. H-
strand 

Covered 
bp H-
strand 

Coverage 
Perc. H-
strand 

Covered 
bp L-

strand 

Coverage 
Perc. L-
strand 

GSM432692 IMR90 N/A 1299424482 32.15 859 6107 6966 12.33 87.67 14046 84.77276842 4094 24.7087935 

GSM432690 IMR90 N/A 1950385749 32.95 989 6276 7265 13.61 86.39 13918 84.00024141 4699 28.3601907 

GSM432691 IMR90 N/A 1993907586 30.81 896 5821 6717 13.34 86.66 13998 84.48307079 4244 25.6140986 

GSM432686 H1 N/A 895485171 46.47 2256 7797 10053 22.44 77.56 14388 86.83686402 8512 51.373046 

GSM602252 H1 N/A 3611892212 49.84 1505 9821 11326 13.29 86.71 14239 85.9375943 7390 44.601364 

GSM602253 H1 N/A 3577328228 53.93 1515 10504 12019 12.61 87.39 14316 86.40231758 7150 43.1528759 

GSM602251 H1 N/A 3468065852 56.34 2014 10448 12462 16.16 83.84 14326 86.46267125 8815 53.2017623 

GSM602254 H1 N/A 3549481305 57.56 2056 10491 12547 16.39 83.61 14374 86.75236888 8322 50.2263263 
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GEO 
Accession 

(exp) 
Cell  
Line Tissue  Total Bases 

Ave 
Mito 
rd 

L-
strand 

Aligned 
Reads 

H-
strand 

Aligned 
Reads 

Tot. 
Aligned 
Reads 

% L-
strand 

%. H-
strand 

Covered 
bp H-
strand 

Coverage 
Perc. H-
strand 

Covered 
bp L-

strand 

Coverage 
Perc. L-
strand 

GSM602255 H1 N/A 3577130016 57.93 2107 10523 12630 16.68 83.32 14349 86.6014847 8591 51.8498401 

GSM602256 H1 N/A 3579398738 58.56 2000 10799 12799 15.63 84.37 14383 86.80668719 8219 49.6046834 

 
Appendix 4.2: Low bias group 

 
GEO 

Accessio
n (exp) 

Tissue 
Type 

Total 
Bases 

Avg. 
Mito. rd 

L-strand 
Aligned 
Reads 

H-strand 
Aligned 
Reads 

Tot. 
Aligned 
Reads 

% L-
strand 

% H-
strand 

Covered 
bp H-
strand 

Coverage 
Perc. H-
strand 

Covered 
bp L-

strand 

Coverage 
Perc. L-
strand 

GSM1010
978 

Left 
Ventricle 

37039943
200 150.94 12296 13224 25520 48.18 51.82 15171 91.562556

58 14778 89.190657
25 

GSM1010
981 

Adrenal 
Gland 

19107066
700 151.46 12369 13232 25601 48.31 51.69 15183 91.634980

99 14750 89.021666
97 

GSM1282
348 Adipose 18727174

700 146.92 11943 13170 25113 47.56 52.44 15144 91.399601
67 14687 88.641438

83 

GSM1282
349 Gastric 25708659

400 149.65 12268 13213 25481 48.15 51.85 15177 91.598768
79 14874 89.770052

51 

GSM1120
320 

Left 
Ventricle 

20100786
000 150.98 12249 13203 25452 48.13 51.87 15162 91.508238

28 14731 88.906994
99 

GSM1120
321 

Small 
Intestine 

21307522
400 148.35 11862 13169 25031 47.39 52.61 15160 91.496167

54 14682 88.611262 
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GEO 
Accessio
n (exp) 

Tissue 
Type 

Total 
Bases 

Avg. 
Mito. rd 

L-strand 
Aligned 
Reads 

H-strand 
Aligned 
Reads 

Tot. 
Aligned 
Reads 

% L-
strand 

% H-
strand 

Covered 
bp H-
strand 

Coverage 
Perc. H-
strand 

Covered 
bp L-

strand 

Coverage 
Perc. L-
strand 

GSM1282
354 

Adrenal 
Gland 

25012202
200 150.98 12518 13237 25755 48.6 51.4 15178 91.604804

15 14933 90.126139
18 

GSM1282
355 Aorta 24257883

800 147.65 12027 13186 25213 47.7 52.3 15172 91.568591
95 14913 90.005431

83 

GSM1282
356 

Oesophag
us 

23212572
200 148.54 12116 13198 25314 47.86 52.14 15176 91.592733

42 14916 90.023537
93 

GSM1282
357 Adipose 19237123

400 148.31 12155 13197 25352 47.94 52.06 15172 91.568591
95 14913 90.005431

83 

GSM1282
358 Gastric 23600960

300 147.61 12396 13222 25618 48.39 51.61 15173 91.574627
32 14907 89.969219

63 

GSM1282
359 Pancreas 23176515

700 149.79 12322 13201 25523 48.28 51.72 15170 91.556521
21 14923 90.065785

5 

GSM1282
360 

Psoas 
Muscle 

23086039
900 151.84 12516 13240 25756 48.59 51.41 15178 91.604804

15 14931 90.114068
44 

GSM1282
361 

Small 
Intestine 

23080205
700 148.34 12079 13187 25266 47.81 52.19 15172 91.568591

95 14915 90.017502
57 

GSM1282
362 Spleen 24832228

900 144.01 11479 13043 24522 46.81 53.19 15169 91.550485
85 14898 89.914901

32 

GSM1120
325 

Adrenal 
Gland 

22328957
400 148.05 12403 13247 25650 48.35 51.65 15172 91.568591

95 14747 89.003560
87 

GSM1120
326 Aorta 24914636

600 148.11 12068 13183 25251 47.79 52.21 15172 91.568591
95 14721 88.846641

32 

GSM1120
327 Aorta 25386720

300 147.95 12070 13198 25268 47.77 52.23 15179 91.610839
52 14729 88.894924

26 

GSM1120
328 Aorta 26181703

500 147.5 12039 13178 25217 47.74 52.26 15172 91.568591
95 14735 88.931136

46 
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GEO 
Accessio
n (exp) 

Tissue 
Type 

Total 
Bases 

Avg. 
Mito. rd 

L-strand 
Aligned 
Reads 

H-strand 
Aligned 
Reads 

Tot. 
Aligned 
Reads 

% L-
strand 

% H-
strand 

Covered 
bp H-
strand 

Coverage 
Perc. H-
strand 

Covered 
bp L-

strand 

Coverage 
Perc. L-
strand 

GSM1120
329 Aorta 24655689

100 145.3 11947 13168 25115 47.57 52.43 15167 91.538415
11 14721 88.846641

32 

GSM1120
330 

Adipose 
Tissue 

24516017
400 147.21 12262 13220 25482 48.12 51.88 15162 91.508238

28 14730 88.900959
62 

GSM1120
335 

Right 
Atrium 

22649536
800 151.33 12379 13236 25615 48.33 51.67 15186 91.653087

09 14740 88.961313
3 

GSM1120
334 

Right 
Atrium 

23404848
500 151.07 12388 13230 25618 48.36 51.64 15177 91.598768

79 14754 89.045808
44 
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Appendix 5: List and metrics of samples sequenced with ONS in this study. 

 

Sample 
Type Haplogroup Status Library 

Preparation 
Replicate 

No. 
Total 
Bases 

Avg. 
Mito. 
Read 
Depth 

L-
strand 

Aligned 
Reads 

H-
strand 

Aligned 
Reads 

Tot. 
Aligned 
Reads 

% L-
strand 

% H-
strand 

Coverage 
% H-

strand 

Coverage 
% L-

strand 

Cybrid 
cancer 
cell line 

H WT g-Tube 
fragmented 1 1191851646 18.07 39 44 83 46.99 53.01 99.85 99.91 

Cybrid 
cancer 
cell line 

H WT BamHI - 
based 1 1748177382 104.55 102 87 189 53.97 46.03 100.00 100.00 

Cybrid 
cancer 
cell line 

H WT g-Tube 
fragmented 2 554638990 12.75 32 20 52 61.54 38.46 92.26 99.81 

Cybrid 
cancer 
cell line 

H WT BamHI - 
based 2 1221290459 55.05 64 58 122 52.46 47.54 99.96 99.99 

Cybrid 
cancer 
cell line 

H WT g-Tube 
fragmented 3 473399623 5.87 18 12 30 60.00 40.00 48.13 60.34 

Cybrid 
cancer 
cell line 

H WT BamHI - 
based 3 742045001 42.97 43 36 79 54.43 45.57 99.99 99.96 

Cybrid 
cancer 
cell line 

H WT g-Tube 
fragmented 4 1255777617 33.15 90 75 165 54.55 45.45 99.98 99.99 

Cybrid 
cancer 
cell line 

H WT BamHI - 
based 4 2245338595 313.12 228 251 479 47.60 52.40 99.99 100.00 

Cybrid 
cancer 
cell line 

H WT g-Tube 
fragmented 5 1068575050 23.52 54 49 103 52.43 47.57 99.86 99.98 

Cybrid 
cancer 
cell line 

H WT BamHI - 
based 5 1477337742 151.88 126 111 237 53.16 46.84 99.99 100.00 

Cybrid 
cancer 
cell line 

J1 WT g-Tube 
fragmented 1 888874016 23.98 56 57 113 49.56 50.44 99.93 99.99 
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Sample 
Type Haplogroup Status Library 

Preparation 
Replicate 

No. 
Total 
Bases 

Avg. 
Mito. 
Read 
Depth 

L-
strand 

Aligned 
Reads 

H-
strand 

Aligned 
Reads 

Tot. 
Aligned 
Reads 

% L-
strand 

% H-
strand 

Coverage 
% H-

strand 

Coverage 
% L-

strand 

Cybrid 
cancer 
cell line 

J1 WT BamHI - 
based 1 1388724441 191.25 149 119 268 55.60 44.40 100.00 100.00 

Cybrid 
cancer 
cell line 

J1 WT g-Tube 
fragmented 2 434993311 11.41 28 20 48 58.33 41.67 89.00 98.23 

Cybrid 
cancer 
cell line 

J1 WT BamHI - 
based 2 1066234226 94.13 80 98 178 44.94 55.06 100.00 99.99 

Cybrid 
cancer 
cell line 

J1 WT g-Tube 
fragmented 3 391434319 8.43 28 24 52 53.85 46.15 98.74 99.16 

Cybrid 
cancer 
cell line 

J1 WT BamHI - 
based 3 907230105 104.77 80 90 170 47.06 52.94 100.00 99.99 

Cybrid 
cancer 
cell line 

J1 WT g-Tube 
fragmented 4 645437367 8.04 21 15 36 58.33 41.67 98.56 99.72 

Cybrid 
cancer 
cell line 

J1 WT BamHI - 
based 4 1988784182 72.61 74 57 131 56.49 43.51 99.98 100.00 

Cybrid 
cancer 
cell line 

J1 WT g-Tube 
fragmented 5 518581582 10.20 25 27 52 48.08 51.92 99.69 99.47 

Cybrid 
cancer 
cell line 

J1 WT BamHI - 
based 5 1186935320 219.32 160 133 293 54.61 45.39 100.00 100.00 

Cybrid 
cancer 
cell line 

J2 WT g-Tube 
fragmented 1 947373947 26.51 68 51 119 57.14 42.86 99.93 99.98 

Cybrid 
cancer 
cell line 

J2 WT BamHI - 
based 1 988759990 279.20 193 190 383 50.39 49.61 100.00 100.00 

Cybrid 
cancer 
cell line 

J2 WT g-Tube 
fragmented 2 452157430 15.49 39 35 74 52.70 47.30 99.79 99.87 
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Sample 
Type Haplogroup Status Library 

Preparation 
Replicate 

No. 
Total 
Bases 

Avg. 
Mito. 
Read 
Depth 

L-
strand 

Aligned 
Reads 

H-
strand 

Aligned 
Reads 

Tot. 
Aligned 
Reads 

% L-
strand 

% H-
strand 

Coverage 
% H-

strand 

Coverage 
% L-

strand 

Cybrid 
cancer 
cell line 

J2 WT BamHI - 
based 2 1053592851 103.66 77 95 172 44.77 55.23 99.99 99.99 

Cybrid 
cancer 
cell line 

J2 WT g-Tube 
fragmented 3 427184866 7.49 19 23 42 45.24 54.76 88.51 86.62 

Cybrid 
cancer 
cell line 

J2 WT BamHI - 
based 3 915506169 135.01 107 101 208 51.44 48.56 100.00 99.99 

Cybrid 
cancer 
cell line 

J2 WT g-Tube 
fragmented 4 527209479 13.73 35 24 59 59.32 40.68 96.75 99.93 

Cybrid 
cancer 
cell line 

J2 WT BamHI - 
based 4 1187786881 125.89 85 100 185 45.95 54.05 100.00 99.99 

Cybrid 
cancer 
cell line 

J2 WT g-Tube 
fragmented 5 353962498 8.59 15 15 30 50.00 50.00 46.48 98.00 

Cybrid 
cancer 
cell line 

J2 WT BamHI - 
based 5 419509534 47.99 35 39 74 47.30 52.70 99.96 99.99 

Primary 
Fibroblast 
Cell Line 

T WT BamHI - 
based 1 876468989 84.63 60 51 111 54.05 45.95 94.62 94.62 

Primary 
Fibroblast 
Cell Line 

T WT BamHI - 
based 2 767786286 97.13 65 63 128 50.78 49.22 94.62 94.62 

Primary 
Fibroblast 
Cell Line 

T WT BamHI - 
based 3 583892338 81.11 52 47 99 52.53 47.47 94.62 94.62 

Primary 
Fibroblast 
Cell Line 

T WT BamHI - 
based 1 770948386 90.46 59 60 119 49.58 50.42 94.62 94.65 

Primary 
Fibroblast 
Cell Line 

T WT BamHI - 
based 2 832017755 70.64 47 41 88 53.41 46.59 94.62 94.62 
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Sample 
Type Haplogroup Status Library 

Preparation 
Replicate 

No. 
Total 
Bases 

Avg. 
Mito. 
Read 
Depth 

L-
strand 

Aligned 
Reads 

H-
strand 

Aligned 
Reads 

Tot. 
Aligned 
Reads 

% L-
strand 

% H-
strand 

Coverage 
% H-

strand 

Coverage 
% L-

strand 

Primary 
Fibroblast 
Cell Line 

T WT BamHI - 
based 3 788580455 53.87 35 33 68 51.47 48.53 94.59 94.61 

Primary 
Fibroblast 
Cell Line 

J1 8344 A>G 
MERRF 

BamHI - 
based 1 797209949 84.63 64 68 132 48.48 51.52 99.99 100.00 

Primary 
Fibroblast 
Cell Line 

J1 8344 A>G 
MERRF 

BamHI - 
based 2 769587574 97.91 82 44 126 65.08 34.92 99.96 100.00 

Primary 
Fibroblast 
Cell Line 

J1 8344 A>G 
MERRF 

BamHI - 
based 3 329885349 35.78 33 19 52 63.46 36.54 99.69 99.98 

Primary 
Fibroblast 
Cell Line 

U 
32434 
A>G 

MELAS_1 

BamHI - 
based 1 661121759 87.00 62 47 109 56.88 43.12 100.00 100.00 

Primary 
Fibroblast 
Cell Line 

U 
32434 
A>G 

MELAS_1 

BamHI - 
based 2 582363472 71.37 51 40 91 56.04 43.96 99.97 100.00 

Primary 
Fibroblast 
Cell Line 

U 
32434 
A>G 

MELAS_1 

BamHI - 
based 3 458345590 35.32 25 24 49 51.02 48.98 99.90 99.96 

Primary 
Fibroblast 
Cell Line 

U 
32434 
A>G 

MELAS_2 

BamHI - 
based 1 928457028 111.44 77 74 151 50.99 49.01 100.00 100.00 

Primary 
Fibroblast 
Cell Line 

U 
32434 
A>G 

MELAS_2 

BamHI - 
based 2 590347810 87.83 50 64 114 43.86 56.14 99.99 100.00 

Primary 
Fibroblast 
Cell Line 

U 
32434 
A>G 

MELAS_2 

BamHI - 
based 3 414140512 77.32 55 48 103 53.40 46.60 99.97 99.99 

Hum. 
Don. 

TB12 - 
1905 

Kidney 

W WT BamHI - 
based 1 N/A 145.69 N/A N/A N/A N/A N/A N/A N/A 

Hum. 
Don. 

TB12 - 
W WT BamHI - 

based 1 N/A 565.98 N/A N/A N/A N/A N/A N/A N/A 
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Sample 
Type Haplogroup Status Library 

Preparation 
Replicate 

No. 
Total 
Bases 

Avg. 
Mito. 
Read 
Depth 

L-
strand 

Aligned 
Reads 

H-
strand 

Aligned 
Reads 

Tot. 
Aligned 
Reads 

% L-
strand 

% H-
strand 

Coverage 
% H-

strand 

Coverage 
% L-

strand 

Heart 
Normal 
Hum. 
Don. 

TB15 - 
139 Liver 

W WT BamHI - 
based 1 N/A 110.81 N/A N/A N/A N/A N/A N/A N/A 

Hum. 
Don. 

TB15 - 
153 

Kidney 

U WT BamHI - 
based 1 N/A 274.93 N/A N/A N/A N/A N/A N/A N/A 

Hum. 
Don. 

TB15 - 
2606 

Muscle 

J WT BamHI - 
based 1 N/A 214.72 N/A N/A N/A N/A N/A N/A N/A 

Hum. 
Don. 

TB13 - 
1505 

Muscle 

J WT BamHI - 
based 1 N/A 637.77 N/A N/A N/A N/A N/A N/A N/A 

Hum. 
Don. 

TB05 - 
578 

Muscle 

K WT BamHI - 
based 1 N/A 210.32 N/A N/A N/A N/A N/A N/A N/A 
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Appendix 6: Illumina Miseq and ONS sequencing metrics 

 
Appendix 6.1: general sequencing metrics 
 

Samples Illumina Miseq ONS sequencing 

Cell line 
Nanopore 
replicates 

Nanopore 
replicates 
(Barcodes) 

Average 
Read 
Depth 

Coverage 

Haplogroup 
prediction 

(MToolBox) 

Haplogroup 
prediction 

(Haplogrep2) 

Average 
Read 
Depth 

Coverage 

Haplogroup 
prediction 

(MToolBox) 

Haplogroup 
prediction 

(Haplogrep2) 

128J 

128J_1 exp_16_barcode10 

4260.21x 100% J1c1g J1c1g 

147.11x 100% J1c1g J1c1c 

128J_2 exp_17_barcode04 77.15x 100% J1c1g J1c1g 

128J_3 exp_19_barcode04 75.86x 100% J1c1g J1c1g 

128J_4 exp_24_barcode04 55.57x 100% J1c1g J1c1c 

128J_5 exp_25_barcode10 162.57x 100% J1c1g J1c1g 
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Samples Illumina Miseq ONS sequencing 

Cell line 
Nanopore 
replicates 

Nanopore 
replicates 
(Barcodes) 

Average 
Read 
Depth 

Coverage 

Haplogroup 
prediction 

(MToolBox) 

Haplogroup 
prediction 

(Haplogrep2) 

Average 
Read 
Depth 

Coverage 

Haplogroup 
prediction 

(MToolBox) 

Haplogroup 
prediction 

(Haplogrep2) 

135J2 

135 J2_1 exp_16_barcode12 

4382.19x 100% J2b1a1 J2b1a1 

218.21x 100% J2b1a1 J2b1a1 

136 J2_1 exp_17_barcode06 78.54x 100% J2b1a1 J2b1a1 

137 J2_1 exp_19_barcode06 99.55x 100% J2b1a1 J2b1a1 

138 J2_1 exp_24_barcode06 97.45x 100% J2b1a1 J2b1a1 

139 J2_1 exp_25_barcode12 35.49x 100% J2b1a1 H2a2a1 

613H 

613 H_1 exp_16_barcode08 

5558.61x 100% H1 H1 

78.46x 100% H1 H1 

614 H_2 exp_17_barcode02 40.73x 100% H1 H2a2a1 
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Samples Illumina Miseq ONS sequencing 

Cell line 
Nanopore 
replicates 

Nanopore 
replicates 
(Barcodes) 

Average 
Read 
Depth 

Coverage 

Haplogroup 
prediction 

(MToolBox) 

Haplogroup 
prediction 

(Haplogrep2) 

Average 
Read 
Depth 

Coverage 

Haplogroup 
prediction 

(MToolBox) 

Haplogroup 
prediction 

(Haplogrep2) 

615 H_3 exp_19_barcode02 31.13x 100% H1 H2a2a1 

616 H_4 exp_24_barcode02 240.58x 100% H1 H1 

617 H_5 exp_25_barcode08 109.65x 100% H1 H1 

Control 

1 

Control 

Fibroblast 

1_1 

exp_26_barcode01 

2967.37x 100% T2b4;T2b_150 T2b4 

64.88x 94.6 T2b4;T2b_150 T2b+150 

Control 

Fibroblast 

1_2 

exp_27_barcode07 73.08x 94.6 T2b4;T2b_150 T2b4 

Control 

Fibroblast 

1_3 

exp_28_barcode01 60.28x 94.6 T2b4;T2b_150 T2b+150 

Control 

2 

Control 

Fibroblast 

2_1 

exp_26_barcode02 3707.17x 100% T2b4;T2b_150 T2b4 67.78x 94.6 T2b4;T2b_150 T2b4 



 160 

Samples Illumina Miseq ONS sequencing 

Cell line 
Nanopore 
replicates 

Nanopore 
replicates 
(Barcodes) 

Average 
Read 
Depth 

Coverage 

Haplogroup 
prediction 

(MToolBox) 

Haplogroup 
prediction 

(Haplogrep2) 

Average 
Read 
Depth 

Coverage 

Haplogroup 
prediction 

(MToolBox) 

Haplogroup 
prediction 

(Haplogrep2) 

Control 

Fibroblast 

2_2 

exp_27_barcode08 53.78x 94.6 T2b4;T2b_150 T2b+150 

Control 

Fibroblast 

2_3 

exp_28_barcode02 40.72x 94.6 T2b4;T2b_150 H2a2a1 

MERFF 

MERFF_1 exp_26_barcode04 

321.73x 100% J1c1a J1c1a 

78.21x 100% J1c1a J1c1a 

MERFF_2 exp_27_barcode09 70.36x 100% J1c1a J1c1a 

MERFF_3 exp_28_barcode03 26.53x 100% J1c1a H2a2a1 

MELAS1 

MELAS1_1 exp_26_barcode03 

638.59x 100% U5a1f1a1 U5a1f1a1 

64.73x 100% U5a1f1a1 U5a1f1a1 

MELAS1_2 exp_27_barcode10 51.36x 100% U5a1f1a1 U5a1+@16192 
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Samples Illumina Miseq ONS sequencing 

Cell line 
Nanopore 
replicates 

Nanopore 
replicates 
(Barcodes) 

Average 
Read 
Depth 

Coverage 

Haplogroup 
prediction 

(MToolBox) 

Haplogroup 
prediction 

(Haplogrep2) 

Average 
Read 
Depth 

Coverage 

Haplogroup 
prediction 

(MToolBox) 

Haplogroup 
prediction 

(Haplogrep2) 

MELAS1_3 exp_28_barcode04 25.84x 100% U5a1f1a1 H2a2a1 

MELAS2 

MELAS2_1 exp_26_barcode05 

317.95x 100% U5a1f1a1 U5a1f1a1 

79.81x 100% U5a1f1a1 U5a1f1 

MELAS2_2 exp_27_barcode11 63.25x 100% U5a1f1a1 U5a1f1 

MELAS2_3 exp_28_barcode05 56.67x 100% U5a1f1a1 U5a1f1a1 
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Appendix 7: ONS differential methylation analysis results 

 

Appendix 7.1: Differential methylation on rCRS 
 

Haplogroup results 

H Vs J1 

Position on rCRS mu1 mu2 diff diff.se stat phi1 phi2 pval fdr 

10400 0.026435 0.25447 -0.2280349 0.036470486 -6.252588281 0.013788412 0.012063583 4.04E-10 8.76041E-08 

16128 6.38E-05 0.322185 -0.322121 0.056611601 -5.690018222 0.016607978 0.01246307 1.27E-08 1.83764E-06 

16360 0.075261 0.57707 -0.5018093 0.058191544 -8.623406487 0.016923701 0.012531377 6.5E-18 2.82062E-15 

H Vs J2 

Position on rCRS mu1 mu2 diff diff.se stat phi1 phi2 pval fdr 
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10400 0.026435 0.251048 -0.2246129 0.03504282 -6.409669451 0.013788412 0.010181706 1.46E-10 3.16463E-08 

16128 6.38E-05 0.489763 -0.4896992 0.065747701 -7.448156842 0.016607978 0.012973657 9.47E-14 4.10795E-11 

Fibroblasts results 

Ctrl Vs MELAS_1 

Position on rCRS mu1 mu2 diff diff.se stat phi1 phi2 pval fdr 

4919 0.234492 0.000174 0.2343177 0.039650482 5.909579748 0.017249728 0.024446826 3.43E-09 4.87034E-07 

15925 0.662011 0.000265 0.6617455 0.057357352 11.53723961 0.025294671 0.024439598 8.56E-31 3.6478E-28 

16128 0.494665 0.013232 0.4814334 0.069263345 6.950767964 0.018512512 0.023168465 3.63E-12 7.73835E-10 

Ctrl Vs MELAS80 

Position on rCRS mu1 mu2 diff diff.se stat phi1 phi2 pval fdr 
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4919 0.234492 0.009559 0.2249335 0.04125243 5.452611008 0.017249728 0.017344436 4.96E-08 7.04825E-06 

9195 0.05212 0.457422 -0.4053022 0.083713121 -4.841560682 0.016986231 0.02017991 1.29E-06 0.000137197 

15925 0.662011 0.015789 0.646222 0.05966286 10.83122792 0.025294671 0.017700563 2.45E-27 1.04306E-24 

16128 0.494665 0.026701 0.4679644 0.070009576 6.684290564 0.018512512 0.017039688 2.32E-11 4.94258E-09 

Ctrl Vs MELAS_2 

Position on rCRS mu1 mu2 diff diff.se stat phi1 phi2 pval fdr 

4919 0.234492 0.009171 0.225321 0.041287834 5.457322384 0.017249728 0.015596294 4.83E-08 1.02957E-05 

10400 0.021798 0.308006 -0.2862075 0.061239854 -4.673549723 0.015921648 0.015446666 2.96E-06 0.000420374 

15925 0.662011 0.000208 0.6618025 0.057331895 11.54335708 0.025294671 0.017256234 7.98E-31 3.39738E-28 
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Appendix 7.2: Differential methylation on consensus sequences 
 

Haplogroup results 

H Vs J1 

Position on consensus mu1 mu2 diff diff.se stat phi1 phi2 pval fdr 

10400 7.10854E-05 8.10391E-05 -9.95367E-06 0.003162278 -0.003147627 0.016609169 0.013105445 0.99748856 0.9977468 

16128 0.07523248 0.02423998 0.0509925 0.027189258 1.87546505 0.016933241 0.009616188 0.06072877 0.9977468 

16360 0.02642609 0.01570084 0.01072525 0.016949165 0.632789498 0.013725968 0.010472008 0.52687112 0.9977468 

H Vs J2 

Position on consensus mu1 mu2 diff diff.se stat phi1 phi2 pval fdr 

1869 7.10854E-05 0.01949721 -0.01942612 0.014811539 -1.311553279 0.016609169 0.011946191 0.18967091 0.9997225 

12710 0.02642609 0.007133338 0.01929276 0.015389317 1.253646059 0.013725968 0.010946 0.20997068 0.9997225 

Fibroblasts results 

Ctrl Vs MELAS_1 

Position on consensus mu1 mu2 diff diff.se stat phi1 phi2 pval fdr 
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4919 0.00761739 0.000268358 0.007349032 0.008975105 0.818824052 0.019434329 0.024223657 0.412886806 0.983842179 

15925 0.000165539 0.013210537 -0.013044997 0.016262329 -0.802160477 0.020084262 0.023015874 0.422460135 0.983842179 

16128 0.012458564 0.000176506 0.012282058 0.009560461 1.284672186 0.015883316 0.02422999 0.198906862 0.983842179 

Ctrl Vs MELAS_2 

Position on consensus mu1 mu2 diff diff.se stat phi1 phi2 pval fdr 

4919 0.00761739 0.015760526 -0.008143137 0.019191991 -0.424298693 0.019434329 0.016962779 0.671347992 0.997244709 

9195 0.000165539 0.026653968 -0.026488428 0.019277807 -1.374037428 0.020084262 0.016362443 0.169430063 0.997244709 

15925 0.012458564 0.009536896 0.002921668 0.015082354 0.193714346 0.015883316 0.016636457 0.846399558 0.997244709 

16128 0.052060058 0.124146741 -0.072086683 0.067860766 -1.062273345 0.016915818 0.019606073 0.288111612 0.997244709 

Ctrl Vs MERRF 

Position on consensus mu1 mu2 diff diff.se stat phi1 phi2 pval fdr 

4919 0.00761739 0.000197718 0.007419671 0.008782773 0.844798271 0.019434329 0.018308715 0.39822348 0.999910706 

10400 0.012458564 0.009134981 0.003323583 0.015328868 0.21681858 0.015883316 0.016592072 0.828349731 0.999910706 

15925 0.0217785 0.02547097 -0.0036925 0.02527861 -0.1460709 0.01586039 0.01568607 0.8838654 0.99991071 
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