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Abstract Leo-II is an automated theorem prover for classical higher-order logic. The prover
has pioneered cooperative higher-order–first-order proof automation, it has influenced the
development of the TPTP THF infrastructure for higher-order logic, and it has been applied
in a wide array of problems. Leo-II may also be called in proof assistants as an external
aid tool to save user effort. For this it is crucial that Leo-II returns proof information in a
standardised syntax, so that these proofs can eventually be transformed and verified within
proof assistants. Recent progress in this direction is reported for the Isabelle/HOL system.
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1 Motivation and Background

Leo-II is a standalone, resolution-based higher-order (HO) automated theorem prover (ATP)
that is designed for cooperation with specialist provers for fragments of HO logic. The idea
is to combine the strengths of the different systems. On the other hand, Leo-II itself, as an
external reasoner, aims to support HO proof assistants such as Isabelle/HOL [47], HOL [34]
or HOL Light [36].

The predecessor of Leo-II, Leo-I [16], was originally designed as a fully-automated sub-
system of the interactive proof assistant and proof planner Ωmega [53]. Similar in spirit to
Andrews’ pioneering TPS system [4], Leo-I was intended to solve selected subgoals auto-
matically in order to save user interaction or support a proof planner. Technically, however,
the resolution-based Leo provers differ significantly from the matings-based TPS system.
Leo-I was hard-wired to the Ωmega proof assistant. The prover already supported native
(versus Huet’s axiomatic) treatment of the extensionality principles [8] and it cooperated
with first-order (FO) ATPs via the flexible ΩAnts agent architecture within Ωmega [26].
Both native extensionality treatment and cooperation with specialist reasoners for fragments
of HO logic have been adopted in Leo-II, and also in other systems, most notably in the
recent Satallax prover by Brown [30].

Leo-II’s calculus is based on Resolution by Unification and Equality [33]. That is, unifica-
tion constraints are disagreement pairs, and are amenable to resolution. The prover supports
primitive equality handling (in Leo-I equality was expanded using Leibniz’ definition),
calculus-level treatment of choice, and depth-bounded HO pre-unification.

The rest of the article is structured as follows. More information on the theory and back-
ground of Leo-II is provided in Sect. 2. The prover’s main loop and its direct collaboration
with FO ATPs are outlined in Sect. 3. An example proof of Leo-II is presented in Sect. 4.
The prover can also be used in interactive mode; however, this feature is not described here.
Leo-II also implements term sharing and term indexing (Sect. 5). Leo-II’s native input lan-
guage is TPTP THF0 [64]. Section 6 describes how the development of the THF0 language,
which in turn fostered significant improvements in HO theorem proving, has been paralleled
and influenced by the development of Leo-II. In that section it is also explained why Leo-II
(and other THF0 compliant provers) can readily be used for automating a wide spectrum of
quantified non-classical logics via semantic embeddings. Proof certificates, which have been
a central objective of the Leo provers from the beginning, are covered in Sect. 7. Leo-II’s
proof certificates are exploited in the prover’s recent integration with Isabelle/HOL, through
which Leo-II proofs can now be transformed and verified (Sect. 8). Section 9 summarises
selected applications of Leo-II and points to integrations of Leo-II with other systems.

The Leo-II prover can be easily deployed and installed. The source code is freely available
from http://www.leoprover.org under a BSD-style license.

2 Foundation of LEO-II

ATPs based on the resolution principle, such as Vampire [51], E [52], and SPASS [66], have
reached a high degree of sophistication. They can often find long proofs even for problems
having thousands of axioms.However, they are limited to FO logic.HO logic extendsFO logic
with lambda notation for functions, and with function and predicate variables. It supports
reasoning in set theory, using the obvious representation of sets by predicates. HO logic is
a natural language for expressing mathematics, and it has also found much use in formal
verification. Moving from FO to HO logic requires a more complicated proof calculus, but
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it often allows much simpler problem statements. HO logic’s built-in support for functions,
predicates and sets (as characteristic functions) often leads to shorter proofs. Moreover,
elementary identities (such as the distributive law for union and intersection) turn into difficult
problems when expressed in FO form.1

Benzmüller et al. [25] give a tour of models for HO logic. A family of weakmodels for HO
logic is presented, for which complete calculi can be defined. In a sense, equality is ‘native’ in
HO logic—for instance, the weakest of these models validates β-equivalence. The strongest
of these weak systems is calledHenkin semantics, and it is the semantics under which Leo-II
works.

Unlike in FO logic, terms in HO logic have a native equality defined on them through
λ-conversion. In Henkin semantics, this relation corresponds generally to αβη-conversion.
In HO logic, terms may be function-valued, and formulas are simply Boolean-valued terms.
Termequivalence is taken to bemoduloλ-conversion.Terms are represented, andβη-reduced,
in Leo-II as graphs.

Comprehension is another strength of HO logic over FO logic. Comprehension is a device
for defining sets through formulas. In FO logic, comprehension axioms need to be explicitly
stated, but these axioms are native toHO logic since sets are defined as formulas.2 Benzmüller
and Brown [15] identify comprehension as enabler for significantly shorter proofs in HO
logic, compared with using FO logic.

Handling equality is more challenging in HO logic since it now applies to function-
valued and Boolean-valued terms, and arriving at Henkin completeness requires handling the
extensionality of functions and propositions. The respective axiom and scheme for Boolean
extensionality (or propositional extensionality) and functional extensionality are ∀XoY ·
(X ←→ Y ) −→ X = Y and ∀Fτ→σG · (∀X τ · FX = GX) −→ F = G. As with
equality-handling in FO logic, better performance is achieved by extending a proof calculus
with equality-related rules rather than adding the characterising axioms to the logic [27].
The particular equality and extensionality rules of Leo-II have their roots in the work of
Benzmüller [7].

Leo-II also provides a calculus-level treatment of the axiom of choice (AC). The solution
in Leo-II [19] is inspired by work of Mints [44]. Choice is related to Skolemization. In HO
logic, Skolemization is not as straightforward as in FO logic [43]. Naïve Skolemization is
unsound wrt Henkin models that invalidate AC, and incomplete wrt Henkin models that
validate AC [5] [14, Sect. 3.2].

Leo-II is a resolution-based prover. In FO resolution-based theorem proving, clause nor-
malisation is only carried out once at the beginning of the process. In HO theorem proving,
clause normalisation might be carried out several times (at different points during the proof
process) since variables may be instantiated with formulas, and this may turn normal clauses
into non-normal ones.

In FO logic, unification is decidable, and it is used as an eager filter during resolution. HO
unification is undecidable in general, so it is used more carefully. Leo-II relies on a variant of
Huet’s pre-unification procedure, which is semi-decidable. It works by accumulating flex–

1 Cf. TPTP problem filesSET171+3.p and SET171ˆ3.p and their solutions. These files contain encodings
of the distributive law for union and intersection. In a way, the FO encoding provided in the former file is
already tailored to simplify the proof search, since irrelevant but challenging set theory axioms are omitted.
This is not the case for the latter HO encoding. SET171ˆ3.p can be solved by Leo-II and Satallax in a few
milliseconds, while prominent FO provers like Vampire (version 3.0), E (version 1.9) and SPASS (version
3.7) time out (after 300 seconds) for SET171+3.p according to the information provided on TPTP.
2 Andrews [3, p. 207] gives the Comprehension Axiom scheme as ∃Uσ→τ ∀V σ · UV = Aτ which, when
written in λ-notation, shows up as the β-conversion rule.
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flex unification pairs as unification constraints (in flex–flex unification pairs both terms to be
unified have variables at head position). When a clause consists only of flex–flex constraints
then it is considered to be empty, since, as Huet showed [38], such a system of equations
always has solutions. Thus, by employing unification constraints Leo-II delays and avoids
unnecessary enumerations and applications of certain unifiers. In addition to this, Leo-II’s
unification procedure interprets logical constants, such as conjunction, equality, etc.

Resolution and factorisation may be applied to the unification constraints too. Despite the
theoretical benefit of lazy filtering, this produces problems in practice owing to accumulation
of clauses, as described by Benzmüller [6, Sect. 3.3]. Though it was originally intended as an
alternative option for Leo-II’s architecture, lazy unification has not yet been implemented.
Eager unification in Leo-IIworks as follows: pre-unification is applied to clauses with a pre-
defined depth bound (e.g. maximally five3 nestings of the branching flex-rigid rule; modulo
this depth-bound HO pre-unification becomes decidable, but at the cost of incompleteness—
also for Leo-II). The solved unification constraints are exhaustively applied in the resulting
clauses, and any remaining flex–flex unification pairs are kept as unification constraints of
the result clause. Pre-unification may return an empty clause—that is, a clause which is either
literally empty or which consists only of flex–flex unification constraints, which always have
a solution.

Unification is used to find instantiations of variables of arbitrary type. In HO automated
theorem proving, an additional form of instantiation is required for completeness. This form
of instantiation, which is called primitive substitution, only concerns predicate variables. For
example, in order to prove ∃P ·P or ∃Q∃X ·Q X we cannot use unification. Guessing instanti-
ations for such variables is a comprehensive challenge since the search is infinitely-branching.
Whereas in FO logic one can have a complete resolution calculus using only the factorisation
and resolution rules, in HO resolution we need an additional rule for primitive substitution.

2.1 Calculus

We sketch the rules of Leo-II’s extensional RUE calculus. More details are presented in
earlier publications [13,20,58,59].

2.1.1 Normalisation rules

These rules deal with the normalisation of clauses. They are straightforward, except for a
special purpose, additional rule used for the exhaustive instantiation of some finite types τ

having cardinality n. The rule instantiates n clauses, each with a different term of type τ .
Currently, this only applies when τ is o, o → o or o → o → o. For example, when applied
to clause C ∨ [∀Po→o · q(o→o)→o P]tt the special purpose normalisation rule introduces the
clauses C ∨ [q λXo · X ]tt , C ∨ [q λXo · ¬X ]tt , C ∨ [q λXo · �]tt and C ∨ [q λXo · ⊥]tt ([·]tt
and [·]ff denote literals with positive and negative polarity).

2.1.2 Extensionality rules

To avoid the challenging extensionality axioms in the search space, Leo-II implements a
native support for extensionality reasoning based on the following rules (where X τ is a fresh
variable and skτ a Skolem term):

3 The pre-unification depth is a parameter in Leo-II that can be specified at the command line. By default
Leo-II currently operates with values up to depth 8. So far there has been no exhaustive empirical investigation
of the optimal setting of the pre-unification depth.
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C ∨ [Mσ→τ = Nσ→τ ]tt
C ∨ [M X = N X ]tt

C ∨ [Mσ→τ = Nσ→τ ]ff
C ∨ [Msk = Nsk]ff

C ∨ [Mo = No]α∈{tt,ff}

C ∨ [M ←→ N]α∈{tt,ff}

The rules operating on negative equality literals, i.e., unification constraints, are inte-
grated with in Leo-II’s pre-unification procedure. The positive rules are combined with the
normalisation rules.

2.1.3 Unification

This set of rules implements a variant of Huet’s pre-unification procedure that is augmented
with the negative extensionality rules from above and which employs a search depth limit as
parameter). The rules operate on unification constraints. The procedure, when applied to a
given clause D ∨ U, where U is set of unification constraints, returns a finite set of clauses of
form σ(D) ∨ σ(F) ∨ σ(B), where σ is a substitution, F is a possibly empty set of flex–flex
constraints, andB is a possibly empty set of non-normal literals obtained from applications of
the Boolean extensionality rule.4 Subsequent normalisation of such clauses may be required.

2.1.4 Resolution, Factorisation and Primitive Substitution

The resolution and factorisation rules in Leo-II introduce unification constraints, which Leo-
II attempts to (extensionally) pre-unify eagerly modulo the given unification depth, instead
of permanently delaying them as in Huet’s constrained resolution approach [37].

[A]p1 ∨ C [B]p2 ∨ D p1 
= p2
res

C ∨ D ∨ [A = B]ff
[A]p ∨ [B]p ∨ C

fac_restr[A]p ∨ C ∨ [A = B]ff

The primitive substitution rule, which is related to Huet’s splitting rule [39,40] and
Andrews’s primitive substitutions [2], guesses the top-level logical structure of the instanti-
ation term P, while further decisions on P are delayed. The hope is that they can eventually
be determined by pre-unification in subsequent resolution steps. Generally, however, subse-
quent applications of primitive substitution rule are permitted and the deeper logical structure
of P may thus be guessed later. It is an open challenge to suitably restrict this rule without
threatening completeness.

[Qτ U
n]p ∨ C P is an approximate binding for τ and a connective c

prim_subst
([Qτ U

n]p ∨ C)[P/Q]

As an example consider the formula ∃Q∃X. Q X . Negating and normalising the formula
gives the clause [Qσ→o X ]ff . Rule prim_subst offers the clause [¬H X ]ff by using λX ·
¬H X as approximate binding for σ → o and ¬. Further normalisation and resolution will
yield a singleton clause consisting of a flex–flex constraint—that is, an effectively empty
clause.

4 Leo-II employs some constraints regarding the Boolean extensionality rule. In particular, application of the
rule is enabled only when unification constraint [Mo = No]ff is the result of another pre-unification rule such
as decomposition, that is, entry level applications of the Boolean extensionality rule are not permitted.
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2.1.5 Choice

Recent versions of Leo-II also support a native treatment of choice. As for extensionality,
the motivation is to avoid the choice axiom(s) in the search space. More details have been
published elsewhere [13,20].

3 Cooperative Theorem Proving in LEO-II

Like many other provers, Leo-II spends its time looping during its exploration of the search
space—executing its main loop. By search space we mean the totality of clauses surveyed
by Leo-II during its execution. Each iteration of this loop might generate new clauses, thus
contributing to the representation of the search space that is kept by Leo-II. Each iteration
does not change the satisfiability of the problem and its search space; this is an invariant of
a prover’s main loop.

Unlike many provers Leo-II keeps an additional representation of the search space. This
is used to store the input to external provers. The contents of this store are produced by
translating the clauses in the main store. The source clauses consist of HO clauses, and the
target clauses are encoded in the target logic. Since Leo-II currently only cooperates with
FO provers, the target clauses consist of FO clauses.

The FO clauses are accumulated during iterations of Leo-II’s main loop, and are periodi-
cally sent to the external prover with which Leo-II is cooperating. If the external prover finds
the FO clauses to be inconsistent then, assuming that the translation was sound, it implies that
the original HO logic clauses must also be inconsistent. This refutation is accepted by Leo-II,
and presented to the user as a refutation of the initial conjecture. This setup is sketched in
Fig. 1.

Various translations from HO logic to FO logic are implemented in Leo-II [19]. These
translations differ in the amount of information they encode in the resulting FO formulas.
Encoding less information can lead to incompleteness. Leo-II also implements a method
devised by Claessen et al. [32], who describe an analysis on the cardinalities of types in order
to safely erase some information. As part of this analysis, SAT problems are generated, and
these are processed by MiniSat via an interface adapted from Satallax. The integration of
more recent improvements of these methods [29] remains future work.

Fig. 1 The main components involved in Leo-II’s cooperation with other provers
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4 Example Proof in LEO-II

We briefly illustrate Leo-II’s proof search for TPTP example SEV288ˆ5, which states that
Leibniz equality is identical to primitive equality (in Henkin semantics):

(λXαλY∀Q · QX −→ QY ) = (λXλY · X = Y )

Initially, the prover negates the conjecture and expands any contained defined constant sym-
bols. In our example, −→ is defined as λAλB · ¬A ∨ B. Because all terms in Leo-II are
kept in βη-normal form, the following clause is obtained (where [·]ff denotes a literal with
negative polarity):

[(λXαλY∀Q · ¬QX ∨ QY ) = (λXλY · X = Y )]ff
Negated equation literals are treated by Leo-II as unification literals, to which the prover
applies its extensional pre-unification algorithm. First, the outermost λ-abstractions are
replaced, that is, functional extensionality is applied to obtain

[∀Xα · (λY∀Q · ¬QX ∨ QY ) = (λY · X = Y )]ff
Next, the leading quantifier is eliminated (a is a fresh Skolem constant)

[(λY∀Q · ¬Qa ∨ QY ) = (λY · a = Y )]ff
This procedure is repeated to obtain (b is a fresh Skolem constant)

[(∀Q · ¬Qa ∨ Qb) = (a = b)]ff
Syntactical pre-unification fails at this point, nevertheless Leo-II’s extended pre-unification
process continues and applies Boolean extensionality to obtain

[(∀Q · ¬Qa ∨ Qb) ←→ (a = b)]ff
This clause is subsequently normalised and the following clauses are obtained

[Qa]ff ∨ [Qb]tt ∨ [a = b]tt [qa]tt ∨ [a = b]ff [qb]ff ∨ [a = b]ff
Then, Leo-II applies primitive substitution (with binding λX · X = a for Q)5 to derive

[a = a]ff ∨ [a = b]tt ∨ [b = a]tt
Pre-unification is applied and introduces clause

[a = b]tt ∨ [b = a]tt
The clauses [a = b]tt ∨ [b = a]tt , [qa]tt ∨ [a = b]ff and [qb]ff ∨ [a = b]ff (amongst others)
have been identified by Leo-II as input candidates for a FO prover, and suitably converted
copies of these clauses have been put into the FO store. In the next periodic call of a FO ATP
(e.g. E) to this store, a refutation based on these three clauses is found and reported. Leo-II
then stops its proof search, and, controlled by its flag settings, may even report a merged
proof consisting of Leo-II’s and E’s contributions.

The above proof is obtained when using the simple (and older) fully-typed trans-
lation to FO logic (flag --translation fully-typed) and when the automated
detection and replacement of Leibniz equations by primitive equations is disabled (flag

5 A more general approximate binding is λX · (RX) = (SX), where R and S are fresh variables; however,
Leo-II supports additional, heuristically motivated bindings such as the one used here.
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--notReplLeibnizEQ). The current version of Leo-II employs more sophisticated
translations to FO logic by default, as well as detecting Leibniz equations. Hence, in
its latest default setting a shorter proof is obtained for SEV288ˆ5. In this proof clause
[(∀Q ·¬Qa∨Qb) = (a = b)]ff is already converted into a refutable set of FO clauses for E.

Problem SEV288ˆ5may bemodified to obtain a slightly more challenging example. The
outermost primitive equality may be replaced by a Leibniz equation to obtain

∀R · R(λXαλY∀Q · QX −→ QY ) −→ R(λXλY · X = Y )

The initialisation process and clause normalisation in Leo-II turns this problem into the
following two clauses (where r is a fresh Skolem constant)

[r(λXαλY∀Q · ¬QX ∨ QY )]tt [r(λXλY · X = Y )]ff
Leo-II resolves these two clauses together to obtain the pre-unification problem

[r(λXαλY∀Q · ¬QX ∨ QY ) = r(λXλY · X = Y )]ff
After decomposing head symbol r the prover arrives at the situation as discussed above.

Like many other ATPs Leo-II has many flags which influence its detailed proof search
behaviour [19].Depending on their particular choice the provermay performquite differently.

5 Term Sharing and Term Indexing in LEO-II

Term indexing techniques are widely used in major FO ATPs [51,52,66]. The indexing data
structures store large numbers of terms and, for a given query term t , support the fast retrieval
of terms from the index that satisfy a certain relationwith t . Examples of such relations include
matching, unifiability, and syntactic equality [46]. Performance can be further enhanced by
representing terms in efficient data structures, such as shared terms—these are used in E [52].

HO term indexing techniques are rarely addressed in the literature, which hampers the
progress of systems in this field. An exception is Pientka [50]. Leo-II’s implementation
at term level is based on a perfectly shared term graph, i.e., syntactically equal terms are
represented by a single instance. Ideas from FO term sharing are adapted to HO logic by (1)
keeping indexed terms in βη-normal form (i.e., η-short and β-normal) and (2) using de Bruijn
indices [31] to allow λ-abstracted terms to be shared. The resulting data structure represents
terms in a directed acyclic graph (DAG). Leo-II also supports the visualization of such term
graphs6 and, more importantly, their statistical analysis. Future work will investigate whether
such information can be exploited for improving heuristic control.

Representation of terms in a shared graph naturally advances the performance of a number
of operations. For example, it allows fast lookup of all occurrences of syntactically equal
terms or subterms, and it improves the performance of rewrite operations, such as global
unfolding of definitions. Additionally, Leo-II employs a term-indexing data structure, which
is based on structural indexing methods from the FO domain [42,57], as well as road-sign
techniques. Road signs are features of the data structure which guide operations based on
graph traversal. They help to cut branches of the subgraph to be processed early and they are
employed, e.g., in the construction of partial syntax trees [65] in which all branches with no

6 To further visualise the evolution of the term graph during proof search, Leo-II has been modified to output
a snapshot of its state after each processing step. This data was used to create animations of dynamically
changing term graphs during proof search. The video clips can be obtained at http://christoph-benzmueller.
de/leo/art.html.
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occurrences of a given symbol or subterm are cut. This enables Leo-II to avoid potentially
costly operations, such as occurs checks, and to speed up basic operations on terms, such as
substitution.

6 TPTP THF0 and Semantic Embeddings

Leo-II’s native input language is TPTP THF0 [64]. Particularly during 2008 and 2009, there
has been a close collaboration and mutual fertilization between both evolving projects, and
Leo-II and TPTP THF0 have been applied as mutual α testers. Fostered by the evolution of
the TPTP THF infrastructure, HO ATP has recently made significant progress. At present
there are at least six THF0-compliant provers and model finders available. These systems
can be assessed online via the SystemOnTPTP tool [60], through which they can be easily
employed avoiding local installations.

The recent progress in automatingHO logic ismeasurable in terms of improvement rates in
the yearly THF0CASCcompetitions: 7 In 2010 thewinner Leo-II performed 56%better than
the 2009 champion TPS, the 2011 winner Satallax was 21% better than the 2010 champion
Leo-II, in 2012 Isabelle was 10% better than 2011 winner Satallax, and in 2013 winner
Satallax-MaLeS was 21% better than 2012 winner Isabelle.

To illustrate THF0 syntax we present in Fig. 2 a small example theory. This example
theory serves a second purpose for this article; namely it illustrates that quantified non-
classical logics can be modeled as natural fragments of classical HO logic and that they can
be be automated with provers like Leo-II. The particular logic embedded here is QCL—
quantified conditional logic [56]. Benzmüller [11] presents the theory and more details on
this embedding. The interesting point for this article is that these few axioms turn Leo-II (and
any other THF0-compliant ATP) into a sound and complete reasoner for QCL. Note that even
flexible combinations of varying and constant domain quantification are supported here. The
family of QCLs have many applications, including AI and computational linguistics. They
are challenging to automate and no other implemented provers for this logic currently exist.
QCLs are very expressive and they e.g. subsume quantified modal logic (cf. the definition of
box).

We now briefly describe THF0 syntax to explain the contents of Fig. 2. For details we
refer to [64]. The symbols $i and $o represent the HO logic base types i (individuals) and o
(propositions). The string $i>$o denotes the type of a function (more precisely, a predicate).
Function or predicate application, for example, the proposition (eiw V X), is encoded as
((eiw@V)@X) or simply as (eiw@V@X)—i.e., function application is represented by
@, and it is left-associative. Taking λAi�o∀Si (A S) as an example expression, universal
quantification and λ-abstraction are THF0-encoded as ˆ[A:$i>$o]:![S:$i]:(A@S).
The symbol ? denotes the existential quantifier, and ¬,∨,∧, and → (material implication)
are written as ~, |, &, and =>. Comments begin with%. Better-formatted and more readable
presentations of our THF0 code can easily be generated with the TPTP tools of [62]; here
we optimised for less space.

Figure 3 formulates awell-knownmeta-level correspondence theorem forQCL: the axiom
ID: ∀P(P ⇒ P), where⇒ is the conditional operator (not be confused with material impli-
cation→), is equivalent to the semantic condition ∀P∀w∀z( f w P z → P z) on the selection
function f (the conditional operator ⇒ appears as cond in Fig. 2). The statement in Fig. 3

7 http://www.cs.miami.edu/~tptp/CASC/.
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%---- file: QCLAxioms.thf ---------------------------------------------------
%--- type mu for individuals; the type $i is reserved for possible worlds
thf(mu,type,(mu:$tType)).
%--- reserved constant for selection function f
thf(f,type,(f:$i>($i>$o)>$i>$o)).
%--- ‘exists in world’ predicate for varying domains;
%--- for each w we get a non-empty subdomain eiw@w
thf(eiw,type,(eiw:$i>mu>$o)).
thf(nonempty,axiom,(![V:$i]:?[X:mu]:(eiw@V@X))).
%--- negation, disjunction, material implic. lifted to possible worlds
thf(not,type,(not:($i>$o)>$i>$o)).
thf(or,type,(or:($i>$o)>($i>$o)>$i>$o)).
thf(impl,type,(impl:($i>$o)>($i>$o)>$i>$o)).
thf(not_def,definition,(not = (^[A:$i>$o,X:$i]:~(A@X)))).
thf(or_def,definition,(or = (^[A:$i>$o,B:$i>$o,X:$i]:((A@X)|(B@X))))).
thf(impl_def,definition,(impl
= (^[A:$i>$o,B:$i>$o,X:$i]:((A@X)=>(B@X))))).

%--- conditionality lifted to possible worlds; f is the selection (cf.
%--- Stalnaker 1968)
thf(cond,type,(cond:($i>$o)>($i>$o)>$i>$o)).
thf(cond_def,definition,(cond
= (^[A:$i>$o,B:$i>$o,X:$i]:![W:$i]:((f@X@A@W)=>(B@W))))).

%--- quantification (constant & varying domain, propositional) lifted to
%--- possible worlds
thf(all_co,type,(all_co: (mu>$i>$o)>$i>$o)).
thf(all_va,type,(all_va:(mu>$i>$o)>$i>$o)).
thf(all,type,(all:(($i>$o)>$i>$o)>$i>$o)).
thf(all_co_def,definition,(all_co = (^[A:mu>$i>$o,W:$i]:![X:mu]:(A@X@W)))).
thf(all_va_def,definition,(all_va
= (^[A:mu>$i>$o,W:$i]:![X:mu]:((eiw@W@X)=>(A@X@W))))).

thf(all_def,definition,(all = (^[A:($i>$o)>$i>$o,W:$i]:![P:$i>$o]:(A@P@W)))).
%--- box operator based on conditionality (illustrates subsumtion of modal
%--- logics)
thf(box,type,(box:($i>$o)>$i>$o)).
thf(box_def,definition,(box = (^[A:$i>$o]:(cond@(not@A)@A)))).
%--- validity of a conditional logic formula (grounding of lifted formulas)
thf(vld,type,(vld:($i>$o)>$o)).
thf(vld_def,definition,(vld = (^[A:$i>$o]:![S:$i]:(A@S)))).
%---- end file: QCLAxioms.thf -----------------------------------------------

Fig. 2 Example THF0 encoding of quantified conditional logics (QCLs). Kripke style semantics of QCL [56]
is explicitly expressed in THF0. Varying and constant domain quantification are supported simultaneously.
This embedding turns Leo-II (and any other THF0-compliant prover) into an reasoner for QCL

%----------------------------------------------------------------------------
include(’QCLAxioms.ax’).
%---axiom ID entails associated semantic condition
thf(id_corr,conjecture,(

(vld @ (all@^[P:$i>$o]:(cond@P@P)))
<=> (![P:$i>$o,W:$i]:(![Z:$i]:((f@W@P@Z)=>(P@Z)))))).

%----------------------------------------------------------------------------

Fig. 3 THF0 encoding of a well known correspondence between QCL axiom ID and a semantic condition of
the selection function f

can be proved in a few milliseconds by Leo-II. Benzmüller [11] presents prominent default
reasoning examples from the AI literature that have been automated with this approach.

The Leo-II project has been active in submitting proof problems to the THF library.
In particular, many examples in the spirit of Figs. 2 and 3, which illustrate the immediate
applicability of THF0 reasoners for awide range of non-classical logics, stem from theLeo-II
initiative.
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7 LEO-II’s Proof Certificates

Running Leo-II on a problem can have several outcomes: the conjecture could be found to be
a theorem, or found to be a non-theorem, or the prover could give up (because of a timeout,
for instance). Leo-II conforms to the SZS standard ontology [61] for communicating the
outcome of a proof attempt. This makes it easier for external tools to interpret this outcome.

In addition to this, Leo-II can also output a proof certificate. This details the justification
for the outcome given by Leo-II, by providing the reasoning steps used by Leo-II to derive a
refutation. This could then be used by an independent system to check Leo-II’s reasoning, or
to use that derivation in a bigger formalisation. In Sect. 8we describe how such certificates are
imported into Isabelle/HOL, thus allowing us to translate Leo-II theorems into Isabelle/HOL
theorems.

Leo-II can generate proof certificates in two levels of detail. When called with the option
-po 1, Leo-II produces a proof containing the reasoning steps made by Leo-II alone—
information on the reasoning made by the cooperating FO ATP are omitted. When called
with option -po 2, Leo-II tries to merge the proof steps of the cooperating FO ATP with
its own steps in order to return a joint THF-FOF proof object [59]. The -po 2 mode is
unfortunately still very brittle and therefore not yet recommended for extensive use.

Leo-II’s proof certificates are encoded in the TPTP TSTP syntax [63], in which each
inference is encoded as an annotated formula. The inference’s conclusion appears as the
formula (e.g., in THF0 or FOF syntax), and the inference’s hypotheses and other meta-data
are referenced or encoded in the formula’s annotations. Examples of proofs in both levels of
detail are provided on the Leo-II website, at http://christoph-benzmueller.de/leo/download.
html.

8 Importing LEO-II Proofs into Isabelle/HOL

Proof certificates produced by ATPs are usually not for human consumption. Unlike proofs
in natural language, it is very difficult to extract an intuition from suchmachine-found proofs,
and this makes them difficult to understand and check manually. This also applies to Leo-II’s
HO resolution proofs.

Additional automated tools can be used to check such proofs. Leo-II’s proofs can be
imported into the proof assistant Isabelle/HOL, and the import only succeeds if Isabelle/HOL
succeeds in replaying Leo-II’s proof. Once a proof is imported, it can be used in other formal
developments within Isabelle/HOL.

The reconstruction involves the following stages:

1. The TPTP proof is parsed, and the Isabelle/HOL signature is extended with the types and
constants appearing in the TPTP proof. Then the formula comprising each inference is
interpreted as an Isabelle/HOL formula.

2. The proof is represented as a directed acyclic graph: vertices consist of formulas, and
arcs connect conclusions with hypotheses. Formulas are annotated with inference-related
information, such as the name of the inference rule used by Leo-II to derive that formula.

3. Proofs often need to be transformed prior to reconstruction. Transformation serves to
simplify the proof—for instance, it could remove redundant inferences, or break infer-
ences down into simpler inferences—and to analyse the proof to obtain information that
can help guide reconstruction—such as finding applications of splitting rules. At the end
of this process a proof skeleton is obtained, which is encoded using a simple intermediate
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language. Expressions in this skeleton will be interpreted by a virtual machine at a later
stage, to complete the reconstruction.

4. The set of inferences involved in a proof is extracted, using the graph from Step 2. Using
the inference name for guidance, each Leo-II inference is interpreted as an Isabelle/HOL
inference, using specialised tactics. The resulting Isabelle/HOL inferences are stored in
a dictionary. Taken together, these tactics serve as a mechanical implementation of Leo-
II’s calculus in Isabelle/HOL—excluding key features related to proof-search, such as the
given-clause algorithm and related data structures. However, some limited proof-search
capabilities have been implemented. This was intended to make the reconstruction more
robust, and also to reconstruct compound inferences (from shorter proof scripts). The
resulting implementation is a mini-prover that is parametrised by a set of rules: during
proof search the prover only uses a rule if it is in that set.

5. Finally, the proof skeleton from Step 3, enriched with the dictionary of inferences from
the previous step, is evaluated.

Leo-II’s reliance on collaboration with other provers complicates proof reconstruction
since Leo-II’s proofs may be hybrid proofs (cf. Sect. 7), consisting of contributions from
different provers. We currently only handle pure Leo-II proofs. Our approach is composi-
tional, and should be able to handle hybrid proofs, but it remains to implement the FO ATP
part.

The mapping of pure Leo-II proofs into Isabelle/HOL theorems is crucial to Step 4.
Intuitively, starting from the fact that every Leo-II type and term is an Isabelle/HOL type or
term, and then showing that every Leo-II inference can be emulated in Isabelle/HOL, we can
show that any Leo-II proof can be interpreted as an Isabelle/HOL theorem. We tested the
reconstructor on THF problems from TPTP v5.4.0, and were able to reconstruct over 93%
of the proofs found by Leo-II.

9 Applications of LEO-II

Section 6describes howQCLscanbemodeled and automated as natural fragments of classical
HO logic. In fact, many well-known non-classical logics can be analogously embedded in
HO logic and automated with Leo-II. In recent years this approach has inter alia been studied
for a range of quantified modal logics [18], security logics [9] and intuitionistic logic [17].
Moreover, classical HO logic is suited as a uniform framework for combining embedded
logics [10,12]. In all this research the Leo-II prover has been the primary debugging tool
supporting the formalization process and initial experiments.

For many challenging logics, like QCLs or HO modal logics, no theorems provers in the
direct approach have been implemented yet. By exploiting the embedding approach, Leo-II
and Satallax have pioneered the automation of such expressive logics, which have many
applications [23].

Leo-II played a key role in the formalization, mechanization and automation of Gödel’s
ontological proof of the existence of God [21,22]; the THF0 formalization and further
information is available online at http://github.com/FormalTheology/GoedelGod/. The sys-
tem was extensively used during the formalization, and it was the first prover to fully
automate the four steps as described in the notes on Gödel’s proof by Dana Scott [54].
Leo-II’s result was subsequently confirmed by Satallax. Interestingly, Leo-II can prove that
Gödel’s original axioms [55] are inconsistent: in these notes definition D2 (An essence of
an individual is a property possessed by it and necessarily implying any of its properties:
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φess · x ↔ φ(x) ∧ ∀ψ (ψ(x) → �∀y (φ(y) → ψ(y)))) is lacking conjunct φ(x), which
has been added by Scott. Gödel’s axioms are consistent only with this conjunct present. The
guess of a suitable instantiation for a predicate (set) variable via primitive substitution is a
key step in Leo-II’s inconsistency proof. Leo-II’s inconsistency result is new; it has not been
reported in philosophy publications.Meanwhile Leo-II has have been successfully employed
in further experiments in metaphysics [28].

Leo-II also performed well in experiments related to the Flyspeck project of Hales [35],
in which a formalised proof of the Kepler conjecture has been developed (mainly) in HOL
Light. In those experiments [41, Table 7], which inter alia investigated the potential of several
ATPs for automating subgoals in the Flyspeck corpus, Leo-II performed better than many
prominent FO provers, including Vampire, Satallax, and SPASS. On the other hand, the E-
based Leo-II prover performed worse than E itself on this corpus. There are a number of
possible reasons, including the different input encodings used in the experiments for HO
and FO ATPs, and the fact that E serves in Leo-II only as a subordinate reasoner whose full
potential for automating FO fragments of HO logic is still not optimally exploited.

It has also been shown that Leo-II can be employed for reasoning in expressive ontologies,
when it was integrated with the Sigma ontology engineering tool [48]. In recent experiments
[24], Leo-II was used to detect errors in the SUMO ontology that cannot be detected by FO
ATPs when applied to SUMO [1,49].

Leo-II has recently also been integrated with the heterogeneous tool set Hets [45].

10 Conclusion and Future Work

The development of the standalone resolution-based HO ATP Leo-II had a strong influence
on some relevant and important developments, most notably the development of TPTP THF0
(which, goaded by the yearly CASC competitions in the THF0 category, fostered significant
overall progress inHOATP), the automation of quantified non-classical logicswithHOATPs,
and the integration of heterogeneous provers. The latter aspect is pursued in theLeo-II project
in twoways:Leo-II internally cooperates with external ATPs, and it has itself been integrated
with other systems (such as Isabelle/HOL) which can verify proofs produced by Leo-II.

There remains much room for future work, including, for example, the incorporation
of term orderings in Leo-II’s proof calculus and proof search, the integration of integer
arithmetic, polymorphism and a calculus level support for induction.
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