
ADJOINT SELMER GROUPS OF AUTOMORPHIC GALOIS

REPRESENTATIONS OF UNITARY TYPE

JAMES NEWTON AND JACK A. THORNE

Abstract. Let ρ be the p-adic Galois representation attached to a cuspidal,

regular algebraic automorphic representation of GLn of unitary type. Under
very mild hypotheses on ρ, we prove the vanishing of the (Bloch–Kato) adjoint

Selmer group of ρ. We obtain definitive results for the adjoint Selmer groups

associated to non-CM Hilbert modular forms and elliptic curves over totally
real fields.
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Introduction

Context. Let F be a CM number field, with maximal totally real subfield F+.
Fix an algebraic closure F of F and a complex conjugation c ∈ Gal(F/F+). We say
that a cuspidal automorphic representation π of GLn(AF ) is of unitary type if it is
conjugate self-dual, i.e. if it satisfies the relation πc ∼= π∨. If π is conjugate self-dual
and moreover regular algebraic (a condition on π∞), then for any isomorphism
ι : Qp → C there is an associated p-adic Galois representation

rπ,ι : Gal(F/F )→ GLn(Qp),

characterized up to isomorphism by compatibility with the local Langlands corre-
spondence at each finite place of F . The conjugate self-duality of π implies the
existence of an isomorphism rcπ,ι

∼= r∨π,ι ⊗ ε1−n, where ε is the p-adic cyclotomic
character.

This paper concerns the adjoint Bloch–Kato Selmer group of such a representation.
To define it, we note that if V denotes the space on which rπ,ι acts, then the conjugate
self-duality of rπ,ι is reflected in the existence of a perfect, symmetric, and Galois
equivariant bilinear pairing

〈·, ·〉 : V c × V ⊗ εn−1 → Qp.
1
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The existence of this pairing allows us to extend the adjoint action of rπ,ι on End(V )

to an action of Gal(F/F+), where c ∈ Gal(F/F+) acts by the formula c ·X = −X∗
(and X∗ is the adjoint with respect to 〈·, ·〉).

We are interested in is the Bloch–Kato Selmer group

H1
f (F+,End(V )) ={

x ∈ H1(F+,End(V )) : xv ∈ H1
f (F+

v ,End(V )) for all finite places v
}

whereH1
f (F+

v ,End(V )) is ker
(
H1(F+

v ,End(V ))→ H1(F+
v ,End(V )⊗Qp

Bcrys)
)

for

v|p and H1
ur(F

+
v ,End(V )) for v - p.

General conjectures predict the vanishing of this group (see the introduction of
[All16] for a detailed discussion of this in the present context). We are content here
to note that this group parameterizes infinitesimal deformations of rπ,ι which are
at the same time conjugate self-dual and geometric, in the sense of p-adic Hodge
theory.

Our results. The following is the main theorem of this paper.

Theorem A. Let F be a CM number field, and let π be a regular algebraic, cuspidal
automorphic representation of GLn(AF ) of unitary type. Let p be a prime, and let
ι : Qp → C be an isomorphism. Suppose that rπ,ι(GF (ζp∞ )) is enormous, in the

sense of Definition 2.27. Then H1
f (F+, ad rπ,ι) = 0.

For some examples of enormous subgroups, see §2.32. For example, we note that
our condition is satisfied for any π such that for some finite place v of F , πv is a
twist of the Steinberg representation.

We compare Theorem A with some other results in the literature that are proved
using related techniques. Kisin [Kis04] proved the analogue of Theorem A for the
Galois representations attached to classical holomorphic modular forms under some
mild conditions on the residual representation. Allen [All16] proved a result similar
to Theorem A, but assuming a stronger condition on the residual representation rπ,ι,
requiring in particular that it be irreducible (similar results were also obtained by
Breuil–Hellmann–Schraen [BHS17]). These works use variants of the Taylor–Wiles
method, which is a powerful tool for studying the deformation theory of automorphic
Galois representations.

Our main motivation for this work was to prove a result valid under very weak
conditions on the residual representation. In particular, we allow the case p = 2 and
rπ,ι trivial, which is rather far from the cases allowed by [All16]. For example, we
obtain the following results for 2-dimensional representations over totally real fields.

Theorem B. Let F be a totally real number field, and let p be a prime.

(1) Let π be a non-CM, regular algebraic automorphic representation of GL2(AF ).
Then for any isomorphism ι : Qp → C, H1

f (F, ad rπ,ι) = 0.

(2) Let E be a non-CM elliptic curve over F , and let rp(E) : GF → GL2(Qp)
denote the associated p-adic representation. Then H1

f (F, ad rp(E)) = 0.

We emphasise that no additional conditions are required in either case in order
to conclude the vanishing of the adjoint Selmer group.

There are three main innovations that allow us to prove a result like Theorem
A. The first is a control theorem for studying the pseudodeformation theory of a
representation ρ : Γ → GLn(Zp) of a profinite group Γ. We recall that ρ has an
associated pseudocharacter tr ρ, which can be defined following either Chenevier



ADJOINT SELMER GROUPS OF UNITARY TYPE 3

[Che14] or Lafforgue [Laf18] (the proof that these two notions are equivalent being
due to Emerson [Eme18]). If the residual representation ρ is absolutely irreducible
then it is known that deforming tr ρ is equivalent to deforming ρ. In general any
deformation of ρ gives rise to a deformation of tr ρ, but the two notions are not
equivalent.

Here we use Lafforgue’s definition of pseudocharacter to show that that if ρ⊗ZpQp

is absolutely irreducible, then there is a reasonably strong link between deformations
and pseudodeformations with coefficients in the ring Zp ⊕ εZp/(pN ). Informally,
deformations and pseudodeformations are “the same”, up to bounded torsion which
depends only on the image ρ(Γ). See Proposition 2.9 for a precise statement.

The second innovation is the formulation, by Wake and Wang-Erickson [WWE19],
of functors of pseudodeformations satisfying deformation conditions (e.g. conditions
arising from p-adic Hodge theory). This is an indispensable tool for making an
effective comparison between pseudodeformation rings and Hecke algebras acting
on classical automorphic forms.

The third innovation is related to the use of Taylor–Wiles systems in our proof.
To make use of Taylor–Wiles systems in the study of automorphic forms with
integral coefficients, one needs to show that if q is a Taylor–Wiles place, then the
space of automorphic forms with unramified level at q is isomorphic to the space
of automorphic forms with Iwahori level at q, after localization with respect to a
suitable eigenvalue of the Uq operator (see for example [CG18, Lemma 5.8]). One
can argue along these lines only if the residual representation ρ, unramified at q
by hypothesis, has the property that ρ(Frobq) has distinct eigenvalues. This is
the reason for condition (2) in the statement of [Kis04, Introduction, Theorem]
and of course excludes the case where ρ is trivial. Without this “independence of
q” statement, one does not have the finiteness conditions needed to carry out the
Taylor–Wiles patching argument, at least as outlined in [Dia97].

In his thesis, Pan [Pan19] introduced a surprising technique to circumvent this
issue. Building on Scholze’s interpretation of the Taylor–Wiles patching argument
using ultrafilters [Sch18], Pan constructs a huge “pre-patched module”, and then
shows that using suitable Hecke operators it can be cut down to a size making it
suitable for use in the Taylor–Wiles argument. We have adapted his arguments
to our context (in some ways more elementary, since we work with fixed weight
automorphic forms, whereas [Pan19] works with completed cohomology).

Applications. Results such as Theorem A have applications to the geometry
of eigenvarieties, and this is one of the main motivations for proving them (as was
already the case for Kisin [Kis04]). This is because one can embed (at least locally
around an irreducible point) eigenvarieties inside deformation spaces of trianguline
representations. In many cases, the vanishing of H1

f (F+, ad rπ,ι) can be used to
prove that this embedding is in fact a local isomorphism.

For example, the vanishing of the adjoint Selmer group is a significant part of
what it means for a p-refined Hilbert modular form to be decent, in the sense of
[BH17], and therefore to admit a p-adic L-function with good interpolation properties.
Another application is that one can use an understanding of the geometry of the
eigenvariety to prove modularity results for Galois representations. This possibility
is already suggested in Kisin’s work [Kis03, (11.13)]. We will take this point of view
in [NT], where Theorem A is one of the key inputs to prove the automorphy of the
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symmetric power liftings of level one Hecke eigenforms (for example, Ramanujan’s
modular form ∆).

Organization of this paper. In Section 2 we establish our control theorem
relating pseudodeformations and deformations (up to bounded torsion), and set up
the Galois theoretic ingredients for the Taylor–Wiles method. In the short Section
3 we prove a simple representation-theoretic result which controls the difference
between spaces of automorphic forms with hyperspecial and Iwahori level at Taylor–
Wiles places. In Section 4 we carry out our variation on the Taylor–Wiles method
(inspired by Pan’s work) and prove a special case of Theorem A. Finally, the general
case of Theorem A, together with Theorem B and some other applications are
deduced in Section 5 using base change and potential automorphy.

Acknowledgements. J.T.’s work received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 714405). J.N. would like to thank Carl Wang-
Erickson for helpful discussions about the work [WWE19]. We are grateful to the
anonymous referee and to Florian Herzig for their detailed comments on this paper.

1. Notation and preliminaries

If F is a field of characteristic zero, we generally fix an algebraic closure F/F
and write GF for the absolute Galois group of F with respect to this choice. If F
is a number field, then we will also fix embeddings F → F v extending the map
F → Fv for each place v of F ; this choice determines a homomorphism GFv → GF .
When v is a finite place, we will write OFv ⊂ Fv for the valuation ring, $v ∈ OFv
for a fixed choice of uniformizer, Frobv ∈ GFv for a fixed choice of Frobenius lift,
k(v) = OFv/($v) for the residue field, and qv = #k(v) for the cardinality of the
residue field. When v is a real place, we write cv ∈ GFv for complex conjugation. If S
is a finite set of finite places of F then we write FS/F for the maximal subextension
of F unramified outside S and GF,S = Gal(FS/F ).

If p is a prime, then we call a coefficient field a finite extension E/Qp contained

inside our fixed algebraic closure Qp, and write O for the valuation ring of E, $ ∈ O
for a fixed choice of uniformizer, and k = O/($) for the residue field. We write CO
for the category of complete Noetherian local O-algebras with residue field k.

If A is a ring and ρ : Γ→ GLn(A) is a representation, we write ad ρ for Mn(A)
with its adjoint Γ-action, and ad0 ρ ⊂ ad ρ for the A[Γ]-submodule of trace 0 matrices.
We will use the self-duality ad ρ× ad ρ→ A, (X,Y ) 7→ trXY , to identify ad ρ with
its dual when we e.g. define dual Selmer conditions using Tate duality (see for
example §2.19).

If G is a locally profinite group and U ⊂ G is an open compact subgroup, then we
write H(G,U) for the set of compactly supported, U -biinvariant functions f : G→ Z.
It is a Z-algebra, where convolution is defined using the left-invariant Haar measure
normalized to give U measure 1; see [NT16, §2.2]. It is free as a Z-module, with
basis given by the characteristic functions [UgU ] of double cosets.

Let K be a non-archimedean characteristic 0 local field, and let Ω be an alge-
braically closed field of characteristic 0. We write WK ⊂ GK for the Weil group
of K and IK ⊂ WK for the inertia subgroup. We use the cohomological normali-
sation of class field theory: it is the isomorphism ArtK : K× → W ab

K which sends
uniformizers to geometric Frobenius elements. We use the Tate normalisation of
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the local Langlands correspondence for GLn: it is the bijection recTK between iso-
morphism classes of irreducible, admissible Ω[GLn(K)]-modules and isomorphism
classes Frobenius-semisimple Weil–Deligne representations over Ω of rank n which
is normalised as in [CT14, §2.1].

If ρ : GK → GLn(Qp) is a continuous representation (assumed to be de Rham
if p equals the residue characteristic of K), then we write WD(ρ) = (r,N) for the
associated Weil–Deligne representation, and WD(ρ)F−ss for its Frobenius semisim-
plification.

Definition 1.1. We say that a Weil–Deligne representation (r,N) is generic if
there is no non-zero morphism (r,N) → (r(1), N). We say that a continuous
representation ρ is generic if WD(ρ) is generic.

We note that if WD(ρ)F−ss is generic, then ρ is generic. It follows from [All16,
Lemma 1.1.3] that if π is a generic irreducible admissible Qp[GLn(K)]-module and

WD(ρ)F−ss = recTK(π), then ρ is generic.
If p equals the residue characteristic of K and V is the E-vector space on which

ρ acts (for some E ⊂ Qp finite over Qp with ρ(GK) ⊂ GLn(E)), we have subspaces

H1
f (K,V ) ⊂ H1

g (K,V ) ⊂ H1(K,V )

defined by

H1
f (K,V ) = ker

(
H1(K,V )→ H1(K,V ⊗Qp Bcrys)

)
H1
g (K,V ) = ker

(
H1(K,V )→ H1(K,V ⊗Qp

BdR)
)
.

We have H1
f (K,End(V )) = H1

g (K,End(V )) if and only if ρ is generic [All16, Remark

1.2.9]. Similarly, if p does not equal the residue characteristic of K, we have a
subspace H1

ur(K,V ) = ker
(
H1(K,V )→ H1(IK , V )

)
. For notational compatibility

with the p-adic case we write H1
f (K,V ) = H1

ur(K,V ) and H1
g (K,V ) = H1(K,V ).

Then we again have H1
f (K,End(V )) = H1

g (K,End(V )) if and only if ρ is generic.
Let F be a number field, and let S be a finite set of finite places of F , containing

the p-adic places Sp. Let r : GF,S → GLn(Qp) be a continuous representation, with
underlying E-vector space V . We have global Selmer groups

H1
f (F, V ) ⊂ H1

g,S(F, V ) ⊂ H1(FS/F, V )

defined by

H1
f (F, V ) = ker

(
H1(FS/F, V )→

∏
v∈S

H1(Fv, V )/H1
f (Fv, V )

)

H1
g,S(F, V ) = ker

(
H1(FS/F, V )→

∏
v∈S

H1(Fv, V )/H1
g (Fv, V )

)

= ker

H1(FS/F, V )→
∏
v∈Sp

H1(Fv, V )/H1
g (Fv, V )

 .

We note our convention that H1(FS/F, ∗) denotes group cohomology for the group
GF,S . The group H1

f (F, V ) does not change when S is enlarged (this is why we do

not record S in the notation).
If F is a number field and π is an automorphic representation of GLn(AF ), we say

that π is regular algebraic if π∞ has the same infinitesimal character as an irreducible
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algebraic representation of ResF/Q GLn. We recall (cf. [BLGGT14, §2.1]) that if F
is a totally real or CM number field, then a pair (π, χ) comprising an automorphic
representation π of GLn(AF ) and a Hecke character χ : (F+)×\(AF+)× → C×

is said to be polarized if there is an isomorphism πc ∼= π∨ ⊗ (χ ◦NF/F+) and, if
F is CM, then χv(−1) = (−1)n for each place v|∞ of F . (The sign condition of
[BLGGT14] in the case that F is totally real can be suppressed, as a consequence of
[Pat15, Theorem 2.1].) The automorphic representations of unitary type discussed
in our introduction correspond to polarized automorphic representations (π, δnF/F+),

where δF/F+ is the quadratic character for F/F+.
If (π, χ) is a regular algebraic, cuspidal, polarized automorphic representation,

then for any isomorphism ι : Qp → C there is an associated Galois representation
(we refer to [BLGGT14, Theorem 2.1.1] for its properties)

rπ,ι : GF → GLn(Qp).

If F is CM, then rπ,ι extends to a homomorphism rπ,ι : GF+ → Gn(Qp), with

multiplier character ν ◦ rπ,ι = ε1−nrχ,ι (Gn is the algebraic group defined in [CHT08,
§2.1]; here the word ‘extends’ is interpreted following the convention described at
the top of [CHT08, p. 8]). This defines an extension of the GF action on ad rπ,ι to
an action of GF+ . More explicitly, if we fix a choice c ∈ GF+ of complex conjugation,
there is a perfect, symmetric pairing 〈·, ·〉 on Q

n

p such that

〈rπ,ι(σ)v, rπ,ι(σ
c)w〉 = (ε1−nrχ,ι(σ))〈v, w〉

for all σ ∈ GF , v, w ∈ Q
n

p and c acts on ad rπ,ι = End(Q
n

p ) by X 7→ −X∗, where
X∗ is the adjoint with respect to 〈·, ·〉.

2. Pseudocharacters

In this paper we use Lafforgue’s notion of pseudocharacter for a reductive group
in the case of GLn (see [Laf18, §11] or [BHKT, §4]), and Chenevier’s notion of
group determinant [Che14]. In fact, these are equivalent, but both definitions are
useful. We will prove a new result about the deformation theory of pseudocharacters
(Proposition 2.9) using Lafforgue’s point of view, while we follow [WWE19] in using
Chenevier’s definition to impose deformation conditions on pseudocharacters.

2.1. Pseudocharacters vs. determinants. We begin by recalling the relevant
definitions. Let Γ be a group and fix n ≥ 1.

Definition 2.2. A pseudocharacter of Γ of dimension n over a ring A is a collec-
tion Θ = (Θm)m≥1 of algebra homomorphisms Θm : Z[GLmn ]GLn → Map(Γm, A)
satisfying the following conditions:

(1) For all k, l ≥ 1 and for each map ζ : {1, . . . , k} → {1, . . . , l}, each f ∈
Z[GLkn]GLn , and each γ1, . . . , γl ∈ Γ, we have

Θl(f
ζ)(γ1, . . . , γl) = Θk(f)(γζ(1), . . . , γζ(k)),

where fζ(g1, . . . , gl) = f(gζ(1), . . . , gζ(k)).

(2) For each k ≥ 1, for each γ1, . . . , γk+1 ∈ Γ, and for each f ∈ Z[GLkn]GLn , we
have

Θk+1(f̂)(γ1, . . . , γk+1) = Θk(f)(γ1, . . . , γkγk+1),

where f̂(g1, . . . , gk+1) = f(g1, . . . , gkgk+1).
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If ρ : Γ → GLn(A) is a representation, then we can define its associated pseu-
docharacter t = (tm)m≥1 = tr ρ by the formula

tm(f)(γ1, . . . , γn) = f(ρ(γ1), . . . , ρ(γm)).

One can define the operations of twisting and duality on pseudocharacters in a way
compatible with the usual operations on representations. For example, let i : GLn →
GLn be the involution given by i(g) = tg−1. If t is a pseudocharacter, then we define
a new pseudocharacter t∨ by the formula t∨m(f)(γ1, . . . , γm) = tm(f ′)(γ1, . . . , γm),
where f ′ ∈ Z[GLmn ] is defined by

f ′(g1, . . . , gm) = f(i(g1), . . . , i(gm)).

If t = tr ρ, then t∨ = tr ρ∨.
Similarly, if χ : Γ → A× is a character, then we define the twist t ⊗ χ by

the formula (t ⊗ χ)m(f)(γ1, . . . , γm) = f ′(γ1, . . . , γm), where f ′ ∈ A[GLmn ]GLn is
defined by the formula f ′(g1, . . . , gm) = f(χ1(γ1)g1, . . . , χm(γm)gm). If t = tr ρ,
then t⊗ χ = tr(ρ⊗ χ).

Before giving the definition of group determinant, we fix some notation. Let A
be a ring and let A -alg be the category of commutative A-algebras. If M is an
A-module, then we write hM : A -alg→ Sets for the functor B 7→M ⊗A B.

Definition 2.3. A group determinant of Γ of dimension n over a ring A is a natural
transformation of functors D : hA[Γ] → hA satisfying the following conditions on the
induced map B[Γ]→ B for every B ∈ A -alg:

(1) D(1) = 1.
(2) For any x, y ∈ B[Γ], D(xy) = D(x)D(y).
(3) For any x ∈ B[Γ], b ∈ B, D(bx) = bnD(x).

If ρ : Γ→ GLn(A) is a representation, then we can define its associated group
determinant D(x) = det(ρ(x)) (where we extend ρ to a homomorphism ρ : B[Γ]→
Mn(B) for any A-algebra B). We omit the formulae for the dual or twist of a group
determinant.

We now describe the relation between pseudocharacters and group determinants.
For each i = 0, . . . , n, let λi ∈ Z[GLn]GLn be defined by the equation det(X − g) =∑n
i=0(−1)iλi(g)Xn−i. If t is a pseudocharacter, we have functions (i = 0, . . . , n)

t[i] : Γ→ A

given by the formulae t[i](γ) = t1(λi)(γ). By [Don92, §3.1], for any m ≥ 1
Z[GLmn ]GLn is generated as a ring by the functions λi(gi1 . . . gir) (r ∈ N, 1 ≤
i1, . . . , ir ≤ m), together with det(g1 . . . gm)−1. The axioms defining a pseudochar-
acter show that we have

(2.3.1) tm(λi(gi1 . . . gir ))(γ1, . . . , γm) = t1(λi(g))(γi1 . . . γir ).

It follows that the functions t[i] (i = 0, . . . , n) together determine t.
If D is a group determinant, then we define functions (i = 0, . . . , n)

D[i] : Γ→ A

by the formula D(X − γ) =
∑n
i=0(−1)iD[i](γ)Xn−i (evaluation of D over the

ring A[X]). The functions D[i] (i = 0, . . . , n) together determine D (by Amitsur’s
formula, cf. [Che14, Lemma 1.12]).
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Theorem 2.4. For any group Γ and ring A, the pseudocharacters t of dimension
n are in canonical bijection with the group determinants D of dimension n. This
bijection is characterized by the equality t[i] = D[i] for each i = 0, . . . , n.

Proof. See [Eme18, Theorems 4.0.1 and 5.0.1], which explicitly construct a bijection
between the two classes of objects. Suppose that t, D are associated. Then for
any γ ∈ Γ, t1(γ) determines a ring homomorphism Z[GLn]GLn → A, hence a ring
homomorphism t1(γ)[X] : Z[GLn]GLn⊗ZZ[X]→ A[X]. We may think of det(X−g)
as an element of Z[GLn]GLn⊗ZZ[X], and the proof of [Eme18, Theorem 4.0.1] shows
that if γ ∈ Γ then D(X − γ) = t1(γ)[X](det(X − g)). This equality is equivalent to
equalities D[i](γ) = t[i](γ) (i = 0, . . . , n). �

We now discuss continuity. Suppose therefore that Γ is a profinite group and A
is a topological ring. The definitions are as follows.

Definition 2.5. Let t = (tm)m≥1 be a pseudocharacter. We say that t is continuous
if for each m ≥ 1, tm takes values in the set Mapcts(Γ

m, A) of continuous functions
Γm → A.

Definition 2.6. Let D be a group determinant. We say that D is continuous if
each function D[i] (i = 0, . . . , n) is continuous.

It is clear from the definitions that if ρ : Γ→ GLn(A) is a continuous representa-
tion, then tr ρ is continuous as a pseudocharacter.

Proposition 2.7. Let t = (tm)m≥1 and D be associated under the bijection of
Theorem 2.4. Then t is continuous if and only if D is.

Proof. In light of Theorem 2.4, it is enough to show that if t is a pseudocharacter
such that each function t[i] (i = 0, . . . , n) is continuous, then t is continuous. This
is again a consequence of (2.3.1) and [Don92, §3.1]. �

2.8. Pseudocharacters vs. representations. Now let p be a prime, let E/Qp be
a finite extension, and let Γ be a profinite group. Let ρ : Γ→ GLn(O) be a continuous
homomorphism which is absolutely irreducible over E. Let t = (tm)m≥1 = tr ρ
denote the pseudocharacter associated to ρ. We consider liftings of ρ and of t to the
ring A = O ⊕ εE/O (with ε2 = 0). Clearly if ρ′ : Γ→ GLn(A) is a lifting of ρ, in
the sense that ρ′ mod (ε) = ρ, then t′ = tr ρ′ is a lifting of t. We want to show that
in fact deforming ρ in this way is not too far from deforming t.

We write αk : A→ A for the O-algebra homomorphism which acts as multiplica-
tion by pk on the ideal (ε) ⊂ A. We will prove:

Proposition 2.9. There exists an integer k0 ≥ 0, depending only on ρ(Γ), with the
following properties:

(1) For any lifting t′ of t to A, there exists a homomorphism ρ′ : Γ→ GLn(A)
lifting ρ such that tr ρ′ = αk0 ◦ t′. If t′ is continuous, then ρ′ can be chosen
to be continuous.

(2) If ρ′1, ρ
′
2 : Γ→ GLn(A) are two liftings with tr ρ′1 = tr ρ′2, then αk0 ◦ ρ′1 and

αk0 ◦ ρ′2 are conjugate under the action of the group 1 + εMn×n(E/O) ⊂
GLn(A); and if X ∈Mn×n(E/O) is such that 1 + εX centralizes ρ′1, then
pk0X is a scalar matrix.

For any m ≥ 1, we define Xm = (GLn,O)m, and Ym = SpecO[GLmn ]GLn . We
write πm : Xm → Ym for the tautological morphism. We fix elements γ1, . . . , γm ∈ Γ
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such that ρ(γ1), . . . , ρ(γm) generate a Zariski dense subgroup of ρ(Γ). We may
assume that m ≥ 2.

Let

x = (g1, . . . , gm) = (ρ(γ1), . . . , ρ(γm)) ∈ Xm(O).

If γ, δ ∈ Γ, then we define

x(γ) = (ρ(γ1), . . . , ρ(γm), ρ(γ)) ∈ Xm+1(O)

and

x(γ, δ) = (ρ(γ1), . . . , ρ(γm), ρ(γ), ρ(δ)) ∈ Xm+2(O).

We define y = πm(x), y(γ) = πm+1(x(γ)), and y(γ, δ) = πm+2(x(γ, δ)). Before
going further, we recall the following lemma.

Lemma 2.10. Let π : X → Y be a separated morphism of schemes of finite type
over a base S. Let G be a separated group scheme, smooth and of finite type over S,
and suppose that G acts on X in such a way that π is G-equivariant for the trivial
action of G on Y . Then:

(1) There is a canonical morphism ΩX/Y → HomOS (LieG,OX) of coherent
sheaves of OX-modules.

(2) If π is a G-torsor, then this morphism is an isomorphism.

Proof. Let e : X → G×X be the morphism x 7→ (e, x), and let µ : G×X → X×Y X
be the morphism (g, x) 7→ (x, gx). Then µ ◦ e is the diagonal embedding, and both
e and µ ◦ e are closed immersions. The sheaf HomOS (LieG,OX) may be identified
with the conormal sheaf of the morphism e (see e.g. [GP11, II, Lemme 4.11.7])
while ΩX/Y may be identified with the conormal sheaf of the morphism µ ◦ e. The
existence of the morphism therefore follows from [Sta13, Lemma 01R4].

Now suppose that π is a G-torsor. In this case µ is an isomorphism, and the
statement is immediate. �

Let g = Lie PGLn,O and g∗ = Hom(g,O), g∗Xm = g∗ ⊗O OXm . We apply Lemma
2.10 to the morphisms πk : Xk → Yk, with G = PGLn,O, to obtain complexes (not
necessarily exact) of coherent sheaves on Xk:

(?k) : 0→ π∗kΩYk/O → ΩXk/O → g∗Xk → 0.

We observe that e.g. i∗x(?m) is the complex

i∗x(?m) : 0→ T ∗y Ym → T ∗xXm → g∗ → 0.

Here we write T ∗xXm = i∗xΩXm/O, by definition, and call it the Zariski cotangent
space of Xm at the point x.

Lemma 2.11. (1) The complex (?m)[1/p] on Xm[1/p] is an exact sequence of
locally free sheaves above a Zariski open neighbourhood of the point y.

(2) The complex (?m+1)[1/p] on Xm+1[1/p] is an exact sequence of locally free
sheaves above a Zariski open neighbourhood of the point y(γ), for any γ ∈ Γ.

(3) The complex (?m+2)[1/p] on Xm+2[1/p] is an exact sequence of locally free
sheaves above a Zariski open neighbourhood of the point y(γ, δ), for any
γ, δ ∈ Γ.

Proof. We show that πm[1/p] is a PGLn,E-torsor above a Zariski open neighbourhood
of y. The same proof shows the analogous statement for the points y(γ) and y(γ, δ),
and in each case implies the statement in the lemma (since a PGLn,E-torsor is in

https://stacks.math.columbia.edu/tag/01R4
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particular smooth). Let U denote the open subset of Xm[1/p] corresponding to
tuples (u1, . . . , um) which generate an absolutely irreducible subgroup of GLn. Then
[Ric88, Theorem 4.1] shows that U is precisely the set of stable points of Xm[1/p]
(for the action of PGLn,E). In particular, πm(U) is an open subset of Ym[1/p] and
U = π−1

m (πm(U)). Each point of U has a trivial stabilizer for the PGLn,E action
(Schur’s lemma), so it follows from [BR85, Proposition 8.2] that πm|U : U → πm(U)
is a PGLn,E-torsor, as required. �

We can use the compactness of Γ to upgrade the previous lemma to the following
uniform integral statement.

Lemma 2.12. We can find an integer k1 ≥ 0 with the following properties:

(1) The cohomology of the complex i∗x(?m) is annihilated by pk1 .
(2) For any γ ∈ Γ, the cohomology of the complex i∗x(γ)(?m+1) is annihilated by

pk1 .
(3) For any γ, δ ∈ Γ, the cohomology of the complex i∗x(γ,δ)(?m+2) is annihilated

by pk1 .

Proof. The first part of the lemma follows by Lemma 2.11. In fact, we can find
numbers k, k(γ), and k(γ, δ) such that the requirements of each point of the lemma
are satisfied if k1 is replaced by k, k(γ), and k(γ, δ) in each case. What we must
show is that we can find k1 which exceeds k, k(γ), and k(γ, δ) for all γ, δ ∈ Γ.

To this end, let us suppose that k, k(γ), and k(γ, δ) have been chosen to each
take their smallest possible values. It suffices to show that k(γ) and k(γ, δ) are
locally constant as functions of γ, δ ∈ Γ. Since Γ is compact, this will imply that
they are in fact bounded. This local constancy is a consequence of the second part
of Lemma 2.13 below. �

Lemma 2.13. Let Z be a scheme of finite type over O. If z ∈ Z(O), we write
iz : SpecO → Z for the corresponding morphism.

(1) Let F be a coherent sheaf on Z such that F [1/p] is locally free on a Zariski
open neighbourhood Vz of z ∈ Z[1/p]. Then for any z ∈ Z(O), there exists
an open (for the p-adic topology) neighbourhood U of z in Z(O) such that
for any z′ ∈ U , i∗z′F ∼= i∗zF as O-modules.

(2) Let z ∈ Z(O) and let

(?) : 0→ F1 → F2 → F3 → 0

be a complex of coherent sheaves on Z, not necessarily exact, but such that
on a Zariski open neighbourhood of z ∈ Z[1/p]

(?[1/p]) : 0→ F1[1/p]→ F2[1/p]→ F3[1/p]→ 0

is an exact sequence of locally free sheaves. Then there exists a p-adically
open neighbourhood U of z in Z(O) and an integer N ≥ 0 such that for all
z′ ∈ U , pNH∗(i∗z′(?)) = 0.

Proof. In each case we are free to replace Z by a Zariski open neighbourhood of the
closed point specializing z. We can therefore assume that Z = SpecB is affine. In
the first case we can assume that F corresponds to a finite B-module M and that
there is an exact sequence

Ba → Bb →M → 0.
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We may assume that F [1/p] has constant rank b− k on Vz, so we get a continuous
map Z(O) ∩ Vz(E)→Ma×b(O) ∩Ma×b,k(E), where Ma×b,k ⊂Ma×b is the locally
closed subscheme of matrices of rank k (equivalently with vanishing (k+ 1)× (k+ 1)
minors but at least one non-zero k × k minor). Note that Z(O) ∩ Vz(E) is p-
adically open in Z(O). We are therefore reduced to showing that any matrix
T ∈ Ma×b(O) ∩Ma×b,k(E) has an open neighbourhood U such that for T ′ ∈ U ,
Ob/T ′Oa is isomorphic to Ob/TOa. In other words, we need to show that there is
an open neighbourhood U in which the Smith normal form of T is constant. Let
m be the largest valuation of a non-zero minor of T . Choosing U so that for any
T ′ ∈ U , the minors of T ′ are congruent to those of T modulo $m+1, we see that the
Smith normal forms of T and T ′ are indeed equal. (Note that the assumption that
the E-rank is constant is necessary; otherwise we have the example of M = O[x]/x
at the point x = 0, where O is a limit of O/($N )’s.)

We now turn to the second part. It suffices to show that we can find an integer
N ≥ 0 and a p-adically open neighbourhood U of z such that for all z′ ∈ U , pN

annihilates ker(i∗z′F2 → i∗z′F3)/ im(i∗z′F1 → i∗z′F2). Our hypotheses imply that for
z′ in a Zariski open neighbourhood of z, this group is contained in the torsion
subgroup of i∗z′F2/ im(i∗z′F1 → i∗z′F2) = i∗z′(F2/ im(F1 → F2)), so the result follows
on applying the first part to F2/ im(F1 → F2). �

We are now in a position to prove Proposition 2.9. Recall that we write A =
O⊕εE/O. It is helpful to first note that if X is a scheme over O and x ∈ X(O), then
the fibre of X(A)→ X(O) above x is canonically identified with HomO(T ∗xX,E/O).

Proof of Proposition 2.9. Let the integer k1 be as in Lemma 2.12. We will show
that we can take k0 = 6k1. Taking the Pontryagin dual of i∗x(?m) and i∗x(γ)(?m+1)

gives us, for any γ ∈ Γ, a commutative diagram

0 // g⊗O E/O // HomO(T ∗xXm, E/O) // HomO(T ∗y Ym, E/O) // 0

0 // g⊗O E/O

OO

// HomO(T ∗x(γ)Xm+1, E/O) //

OO

HomO(T ∗y(γ)Ym+1, E/O) //

OO

0.

The first vertical arrow is the identity, while the other two vertical arrows correspond
to forgetting the last entry in GLm+1

n . Both rows have cohomology annihilated by
pk1 . Consequently the induced map

HomO(T ∗x(γ)Xm+1, E/O)

→ HomO(T ∗xXm, E/O)×HomO(T∗y Ym,E/O) HomO(T ∗y(γ)Ym+1, E/O)

(2.13.1)

has kernel and cokernel annihilated by p2k1 . In particular, given an element z of
the target we can define an element of the source unambiguously as follows: choose
a pre-image z′ of p2k1z. Then z′′ = p2k1z′ depends only on z and has image p4k1z.

Now suppose given a pseudocharacter t′ over A lifting t. The data of the pseu-
docharacter t′ (more precisely, t′m) determines an element y′ ∈ Hom(T ∗y Ym, E/O).

We fix a choice of x′ ∈ HomO(T ∗xXm, E/O) with image equal to pk1y′. This
corresponds to a tuple of elements (g′1, . . . , g

′
m) ∈ GLn(A)m lifting the element

(g1, . . . , gm) = (ρ(γ1), . . . , ρ(γm)). If x′′ is any other choice of element with image
equal to pk1y′, then pk1x− pk1x′′ is in the image of g⊗O E/O.
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The pseudocharacter t′ also determines elements

y′(γ) ∈ Hom(T ∗y(γ)Ym+1, E/O)

for any γ ∈ Γ, and the pair (pk1x′, p2k1y′(γ)) lies on the right-hand side of (2.13.1).
We may define ρ′(γ) uniquely as follows: it is the lift of p4k1(pk1x′, p2k1y′(γ))
associated to the map (2.13.1). Then ρ′ : Γ→ GLn(A) has associated trace function
tr ρ′ = α6k1 ◦t′, and its conjugacy class under 1+εg⊗OE/O is independent of choices.
We can verify that ρ′ is a homomorphism (i.e. that it respects multiplication) using
the fact that t′ is a pseudocharacter, together with a diagram with rows corresponding
to elements x(γδ) and x(γ, δ).

Now suppose given two liftings ρ′1, ρ
′
2 of ρ to A with tr ρ′1 = tr ρ′2 = t′, say.

This implies that for each γ ∈ Γ, the tuples (ρ′i(γ1), . . . , ρ′i(γm), ρ′i(γ)) (i = 1, 2),
when identified with elements of HomO(T ∗x(γ)Xm+1, E/O), have equal image in

HomO(T ∗y(γ)Ym+1, E/O). Consequently there is Xγ in g⊗O E/O taking αk1 of the

first tuple to αk1 of the second. Passing to the top row of the commutative diagram,
we see that for any γ, γ′ ∈ Γ, we have pk1(Xγ − Xγ′) = 0, hence X = pk1Xγ is
independent of γ ∈ Γ. It follows that X takes α2k1 ◦ ρ′1 to α2k1 ◦ ρ′2.

It remains to verify that if t′ is continuous, then so is ρ′. It is enough to show
that for each s ≥ 1, there exists an open subgroup N ⊂ Γ such that ρ′(N) takes
values in the subgroup 1 +$sMn(O) of GLn(A). Since Z[GLm+1

n ]GLn is a finitely
generated Z-algebra and Γ is compact, there exists r ≥ 1 such that t′m+1 takes
values in Map(Γm+1, Ar), where Ar = O ⊕ ε$−rO/O ⊂ A. Increasing s, we can
assume that s ≥ r, that ρ′(γ1), . . . , ρ′(γm) lie in GLn(As), and that there exists
an open subgroup N ⊂ Γ such that for all γ ∈ N , ρ(γ) ∈ 1 + $sMn(O) and
t′m+1(γ1, . . . , γm, γ) ≡ t′m+1(γ1, . . . , γm, 1) mod $sAs. We observe that for γ ∈ N ,
there is a commutative square

HomO(T ∗x(γ)Xm+1, $
−sO/O) //

��

HomO(T ∗xXm, $
−sO/O)×HomO(T ∗y(γ)Ym+1, $

−sO/O)

��

HomO(T ∗x(1)Xm+1, $
−sO/O) // HomO(T ∗xXm, $

−sO/O)×HomO(T ∗y(1)Ym+1, $
−sO/O)

where the horizontal arrows are the ones already considered in (2.13.1) (suppressing
the subscripts indicating the fibre product to save space), and the vertical ones
are bijections arising from the identification between HomO(T ∗x(γ)Xm+1, $

−sO/O)

and the fibre of Xm+1(O/$s ⊕ ε$−sO/O)→ Xm+1(O/$s) above x(γ) mod $s =
x(1) mod $s. The horizontal arrows have kernels annihilated by p2k1 . Our assump-
tions imply that the elements of

HomO(T ∗x(γ)Xm+1, $
−sO/O)

and

HomO(T ∗x(1)Xm+1, $
−sO/O)

corresponding to the images of ρ′(γ) and ρ′(1) in GLn(O/$s ⊕ ε$−sO/O) are
identified under the above bijection. This is what we needed to prove. �

2.14. Pseudocharacters – Galois deformation theory. We again fix a prime
p and a finite extension E/Qp with ring of integers O and residue field k. Let CO
be the category of complete Noetherian local O-algebras with residue field k.
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Let F be a number field, and let S be a finite set of finite places of F , containing
the p-adic ones. Let ρ : GF,S → GLn(k) be a continuous representation. Let D
denote the associated group determinant over k.

We write DefD,S : CO → Sets for the functor which associates to each A ∈ CO the

set of continuous group determinants D of GF,S over A such that D mod mA = D.

Proposition 2.15. The functor DefD,S is represented by an object RD,S ∈ CO.

Proof. See [Che14, §3.3]. (This reference deals with the case O = W (k), but the
extension to general coefficients is trivial.) �

Lemma 2.16. Fix an integer q ≥ 0. Then there exists an integer g0 = g0(S,D, q)
such that for any set Q of finite places of F such that |Q| ≤ q, there exists a
surjection OJX1, . . . , Xg0K→ RD,S∪Q.

Proof. Let L/F denote the extension cut out by ρ, and let MS∪Q denote the maximal
pro-p extension of L unramified outside S∪Q. Then there exists g1 = g1(S, ρ, q) such
that the group Gal(MS∪Q/F ) can be topologically generated by g1 elements (because
the dimension of the space H1(GL,S∪Q, k) can be bounded in a way depending

only on q). Moreover, any deformation of D to GF,S∪Q in fact factors through
Gal(MS∪Q/F ) (by [Che14, Lemma 3.8]). The statement of the lemma follows on
applying e.g. the results of [Che14, §2.37]. �

Now fix integers a ≤ b, and let E [a,b]
F,S denote the category of finite cardinality

Zp[GF,S ]-modules M such that for each place v|p of F , M is isomorphic as Zp[GFv ]-
module to a subquotient of lattice in a semistable representation of GFv with Hodge–
Tate weights in [a, b]. This defines a stable condition in the sense of [WWE19,
Definition 2.3.1].

We write Def
[a,b]

D,S
⊂ DefD,S for the subfunctor which assigns to A ∈ CO the set of

determinants D over A satisfying the following condition:

There exists a Cayley–Hamilton representation (O[GF,S ], D)→ (B,D′)

over A such that for each n ≥ 1, B/mnAB lies in E [a,b]
F,S ,when equipped

with its left GF,S-action.

(2.16.1)

The notion of Cayley–Hamilton representation is defined in [WWE19, Definition
2.1.8]. We recall that it is an O-algebra homomorphism ρ : O[GF,S ] → B, where
B is a finitely generated A-algebra and D′ : B → A is a determinant such that
D′ ◦ ρ = D and the associated Cayley–Hamilton ideal CH(D′) ⊂ B is zero. Note
that in this situation B is necessarily finitely generated as an A-module ([WWE19,
Proposition 2.1.7]).

Proposition 2.17. The functor Def
[a,b]

D,S
is represented by an object R

[a,b]

D,S
∈ CO.

Proof. See [WWE19, Theorem 2.5.5]. �

Now suppose given a lift ρ : GF,S → GLn(O) of ρ with the following properties:

• ρ⊗O E is absolutely irreducible.
• For each place v|p of F , ρ|GFv ⊗O E is semistable with Hodge–Tate weights

in the interval [a, b].
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Let D denote the associated group determinant over O. Then D determines a

homomorphism R
[a,b]

D,S
→ O. We write q for the kernel. Let W = ad ρ, WE =

W ⊗O E, WE/O = WE/W , Wm = ad ρ ⊗O O/$m. We have a Selmer group

H1

E[a,b]F,S

(F,Wm) defined by local conditions: if v 6∈ S, we take the unramified subgroup

of H1(Fv,Wm), if v ∈ S − Sp we impose no condition and if v ∈ Sp we take the
subspace of H1(Fv,Wm) corresponding to self-extensions of ρ|GFv ⊗O O/$

m which
are subquotients of lattices in semistable representations with Hodge–Tate weights
in the interval [a, b].

Proposition 2.18. There exists a canonical homomorphism

(2.18.1) trm : H1

E[a,b]F,S

(F,Wm)→ HomO(q/q2,O/$m).

Moreover, there is a constant c ≥ 1 depending only on ρ (and not on S, [a, b], or m)
such that for any m ≥ 1, the kernel and cokernel of trm are both annihilated by pc.

In applications of the proposition we will enlarge S by adding Taylor–Wiles places.
This is why it is important that the constant c is independent of the set S.

Proof. We first describe the map trm. Let Am = O⊕ ε$−mO/O ⊂ A = O⊕ εE/O.
If k ≥ 0, then we write αk : Am → Am for the O-algebra homomorphism that sends
ε to pkε. A class [φ] ∈ H1

E[a,b]F,S

(F,Wm) corresponds to an equivalence class of liftings

ρφ : GF,S → GLn(Am)

such that ρφ mod (ε) = ρ and for each N ≥ 1, ρφ mod $N ∈ E [a,b]
F,S (this can be

seen by considering the extension of scalars along the injective ring homomorphism

Am ↪→ O × O/$m[ε] and using the fact that E [a,b]
F,S is closed under taking sub-

Zp[GF,S ]-modules). On the other hand, we can identify HomO(q/q2,O/$m) with
the pre-image under the map

HomO(R
[a,b]

D,S
, Am)→ HomO(R

[a,b]

D,S
,O)

of the classifying map of D. The map trm is the one which sends [φ] to the classifying
map of the pseudocharacter tr ρφ over Am. Note that multiplication by pk on either
side of (2.18.1) corresponds at the level of representations (resp. determinants) to
composition with αk.

Next we analyze the kernel of trm. Suppose that tr ρφ = tr ρ. Let k0 be the
constant of Proposition 2.9: it depends only on ρ(GF,S) ⊂ GLn(O). Then we can
find X ∈Mn(E/O) such that

(1 + εX)ρpk0φ(1− εX) = ρ,

or equivalently such that pk0φ becomes a coboundary in H1(F,WE/O). Since the

kernel of H1(F,Wm) → H1(F,WE/O) is isomorphic to H0(F,WE/O) ⊗O/$m, it
is killed by a uniformly bounded power of p and we see that the same is true for the
kernel of trm.

Now we analyze the cokernel of trm. This is more subtle. Let D′ be a determinant
of GF,S over Am corresponding to an element of the right-hand side of (2.18.1). By
assumption, there exists a Cayley–Hamilton representation r : Am[GF,S ]→ B and a
determinant D′′ : B → Am such that D′ = D′′ ◦ r, and the finite quotients of B lie

in E [a,b]
F,S . We may assume without loss of generality that r is surjective. According
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to the characterization of ker(D′) ⊂ Am[GF,S ] given by [Che14, Lemma 1.19], we
have ker(r) ⊂ ker(D′).

By Proposition 2.9, there exists a homomorphism ρφ : GF,S → GLn(A) such that
the associated group determinant is αk0 ◦D′. It also follows from Proposition 2.9
that the associated cohomology class [φ] ∈ H1(F,WE/O) is killed by multiplication

by $mpk0 (as tr(ρ$mφ) = tr(ρ)). We deduce that pk0 [φ] is contained in the
image of H1(F,Wm) in H1(F,WE/O). So we may in fact assume that we have
ρφ : GF,S → GLn(Am) such that the associated group determinant is α2k0 ◦D′.

We must show that there is c ≥ 0 depending only on ρ such that for each N ≥ 1,

αc◦ρφ mod $N defines an object of E [a,b]
F,S (as then pc[φ] is a pre-image under (2.18.1)

of α2k0+c ◦D′).
Let Aφ = ρφ(Am[GF,S ]) ⊂ Mn(Am). Let k1 ≥ 0 be an integer such that

pk1Mn(O) ⊂ ρ(O[GF,S ]) (this exists since ρ ⊗O E is absolutely irreducible, by
assumption, and hence ρ(E[GF,S ]) = Mn(E)). Then Apk1φ contains pk1Mn(Am).
Indeed, let Eij denote the elementary matrix in Mn(O) with entries 1 in the (i, j)
spot and 0 elsewhere. Then pk1Eij ∈ ρ(O[GF,S ]), so there is Xij ∈ Mn(O/$m)
such that pk1Eij + εXij ∈ Aφ and pk1Eij + εpk1Xij ∈ Apk1φ. After multiplying by

ε, we see that pk1εEij ∈ Apk1φ for all (i, j), hence pk1Eij ∈ Apk1φ.
Let D′′′ : Apk1φ → Am denote the determinant induced by the natural inclu-

sion Apk1φ → Mn(Am). If x ∈ kerD′′′, then [Che14, Lemma 1.19] shows that

tr(xpk1Eij) = 0 for all i, j. (Here tr : Mn(Am) → Am is the usual trace of an
n×n matrix, not a pseudocharacter.) Hence kerD′′′ is contained in the intersection
of Apk1φ with Mn(Am)[pk1 ], and is therefore annihilated by the homomorphism
αk1 : Mn(Am)→Mn(Am).

It follows that there exists a commutative diagram of Am-algebras

Am[GF,S ]
ρ
pk1φ

//

r

��

Apk1φ

��

// Mn(Am)

αk1

��

B // Am[GF,S ]/ ker(α2k0+k1 ◦D′) // Mn(Am).

Indeed, the quotient map Am[GF,S ]→ Am[GF,S ]/ ker(α2k0+k1 ◦D′) factors through
B because ker(r) ⊂ ker(D′) ⊂ ker(α2k0+k1 ◦ D′), and bottom right arrow exists
because α2k0+k1 ◦D′ = D′′′ ◦ ρpk1φ. The existence of this diagram shows that the
finite quotients of Mn(Am), with induced action of Am[GF,S ] by left multiplication

via ρp2k1φ, satisfy condition E [a,b]
F,S (since this holds for finite quotients of B). This

implies that the finite quotients of α2k1 ◦ ρφ also satisfy the condition E [a,b]
F,S . We

deduce that the cokernel of trm is annihilated by p2k0+2k1 . �

2.19. Pseudocharacters – Taylor–Wiles data. We continue our discussion of
the Galois deformation theory of pseudocharacters, now focusing on what happens
when we impose conjugate self-duality conditions and allow additional primes of
ramification. We thus fix the following notation:

• p is a prime and E/Qp is a coefficient field.
• F/F+ is a CM quadratic extension of a totally real field.
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• S is a finite set of finite places of F+ containing the p-adic ones. We assume
that each place of S splits in F , and fix for each v ∈ S a choice of place ṽ

of F lying above v. We set Sp = {v | v|p} and S̃ = {ṽ | v ∈ S}.
• r : GF+,S → Gn(O) is a continuous representation such that r|GF,S ⊗O E

is absolutely irreducible. We set ρ = r|GF,S : GF,S → GLn(O) and write D

for the group determinant of ρ and D for its reduction modulo $. We set
χ = ν ◦ r. The existence of r implies that the O[GF,S ]-module structure on
W = ad ρ extends to an O[GF+,S ]-module structure (set W = ad r, where
ad r is defined as in [CHT08, §2.1]), and similarly for WE , Wm, etc.

• a ≤ b are integers such that D defines a homomorphism R
[a,b]

D,S
→ O. Thus

for each v ∈ Sp, ρ|GFṽ ⊗O E is semistable with all Hodge–Tate weights in

the range [a, b]. Note that χ|GFṽ is then semistable and there exists w ∈ Z
such that χεw has finite order. We assume moreover that a+ b = w.

Let RS denote the quotient of R
[a,b]

D,S
corresponding to pseudocharacters D′ such

that (D′)c = (D′)∨ ⊗ χ|GF,S . Then ρ determines a homomorphism RS → O, and
we write qS for its kernel.

We define Selmer conditions LS = {Lv} = {Lv,m} for Wm as follows: if v 6∈ S,
then Lv is the unramified subgroup of H1(F+

v ,Wm). If v ∈ S − Sp, then Lv =
H1(F+

v ,Wm). If v ∈ Sp, then Lv is the subspace of H1(F+
v ,Wm) corresponding to

self-extensions of ρ|GFṽ ⊗O O/$
m which are subquotients of lattices in semistable

representations with Hodge–Tate weights in the interval [a, b]. We define dual Selmer
conditions L⊥ = {L⊥v } to be given by the annihilators of Lv under local duality.

The corresponding Selmer groups are defined by

H1
LS (F+,Wm) = ker

(
H1(F+,Wm)→

∏
v

H1(F+
v ,Wm)/Lv,m

)

H1
L⊥S

(F+,Wm(1)) = ker

(
H1(F+,Wm(1))→

∏
v

H1(F+
v ,Wm(1))/L⊥v,m

)
.

These Selmer groups are finite length O-modules. We denote their length by
h1
LS (F+,Wm), h1

L⊥S
(F+,Wm(1)). Taking inverse limits with respect to the projection

maps Wm+1 →Wm and direct limits with respect to the injections Wm
∼= $Wm+1 ⊂

Wm+1, we also define Selmer groups with characteristic 0 and divisible coefficients:

H1
LS (F+,WE) =

(
lim←−
m

H1
LS (F+,Wm)

)
⊗O E

H1
LS (F+,WE/O) = lim−→

m

H1
LS (F+,Wm).

Proposition 2.18 has the following consequence:

Proposition 2.20. For each m ≥ 1, there is a canonical homomorphism

(2.20.1) trm,S : H1
LS (F+,Wm)→ HomO(qS/q

2
S ,O/$m).

Moreover, there is a constant d ≥ 0 depending only on r (and not on S, [a, b] or m)
such that pd annihilates the kernel and cokernel of trm,S.

Proof. The map (2.18.1) is Gal(F/F+)-equivariant for the action on the left-hand
side induced by the GF+,S action on Wm and the action on the right-hand side
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defined as follows: the non-trivial element c ∈ Gal(F/F+) acts on R
[a,b]

D,S
by sending

a pseudocharacter D′ to (D′)c,∨ ⊗ χ|GF,S , and this induces an action on the right-
hand side of (2.18.1). Note that this action makes sense because of our condition
a+ b = w. The right-hand side of (2.20.1) is the c-invariants in the right-hand side
of (2.18.1). The left-hand side of (2.20.1) maps to the c-invariants in the left-hand
side of (2.18.1) with bounded kernel and cokernel. This is enough. �

Here is a variant that will be useful when it comes to deduce our main vanishing
result.

Proposition 2.21. (1) There is an isomorphism trE,S : H1
LS (F+,WE) →

HomO(qS/q
2
S , E).

(2) The natural map H1
LS (F+,WE)→ H1(FS/F

+,WE) identifies H1
LS (F+,WE)

with the geometric Selmer group H1
g,S(F+,WE)

(3) Suppose that for each v ∈ S, ρ|GFṽ is generic. Then H1
g,S(F+,WE) =

H1
f (F+,WE).

Proof. The first part follows from Proposition 2.20 by taking the inverse limit over
m and inverting p. The main result of [Liu07] implies that H1

LS (F+,WE) classifies
(polarized) semistable self-extensions of ρE . A de Rham self-extension of ρE is
automatically semistable [Nek93, Corollary 1.27], so the second part follows. The
third part follows from the equality of the respective local Selmer groups in the
generic case. �

For m′ ≥ m the inverse image of Lv,m′ in H1(F+
v ,Wm) under the map

H1(F+
v ,Wm)→ H1(F+

v ,Wm′)

induced by the injection Wm → Wm′ equals Lv,m. Indeed, the natural map
H1(F+

v ,Wm)→ H1(F+
v ,Wm′) corresponds to pushing forward a GLn(Am)-valued

lifting to GLn(Am′), which preserves semistability (cf. the argument of [Ram93,
Proposition 1.1] – here are are writing Am = O ⊕ ε$−mO/O, as in the proof of
Proposition 2.18). We record a consequence of this in the following lemma.

Lemma 2.22. The natural map H1
LS (F+,Wm)→ H1

LS (F+,WE/O)[$m] is surjec-
tive.

Proof. We consider the commutative diagram with exact rows:

0 // H1
LS (F+,Wm) //

��

H1(FS/F
+,Wm) //

��

⊕
v∈Sp H

1(F+
v ,Wm)/Lv,m

��

0 // H1
LS (F+,WE/O)[$m] // H1(FS/F

+,WE/O)[$m] //
⊕

v∈Sp lim−→m′
H1(F+

v ,Wm′)/Lv,m′

The central vertical map is surjective. The right vertical map is injective (by the
observation preceding this lemma). So the left vertical map is surjective. �

If Q is a set of finite places of F+ and N is a positive integer, we say that Q is a
set of Taylor–Wiles places of level N (relative to r, S) if it satisfies the following
conditions:

• Q ∩ S = ∅.
• For each v ∈ Q, v = wwc splits in F ; and ρ(Frobw) has n distinct eigenvalues
αw,1, . . . , αw,n ∈ O.
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• For each v ∈ Q, qv ≡ 1 mod pN .

A Taylor–Wiles datum of level N ≥ 1 is a tuple (Q, Q̃, (αṽ,1, . . . , αṽ,n)ṽ∈Q̃), where

Q is a set of Taylor–Wiles places of level N , Q̃ is a set consisting of a choice, for each
v ∈ Q, of a place ṽ of F lying above v, and (αṽ,1, . . . , αṽ,n) is a choice of ordering
of the eigenvalues of ρ(Frobṽ).

Lemma 2.23. Suppose that the following conditions are satisfied:

(1) For each v ∈ S, ρ|GFṽ is generic.

(2) For each place v|∞, χ(cv) = −1.

Then there exists d ≥ 0 with the following property: for every N ≥ 1, every Taylor–

Wiles datum (Q, Q̃, (αṽ,1, . . . , αṽ,n)ṽ∈Q̃) of level N , and every 1 ≤ m ≤ N , we

have:

h1
LS∪Q(F+,Wm) ≤ d+ h1

L⊥S∪Q
(F+,Wm(1)) +mn|Q|+

∑
v∈Q

∑
i 6=j

ord$(αṽ,i − αṽ,j).

Proof. Fix a Taylor–Wiles datum. By the usual Greenberg–Wiles formula, we have

h1
LS∪Q(F+,Wm) = h1

L⊥S∪Q
(F+,Wm(1)) + h0(F+,Wm)− h0(F+,Wm(1))

+
∑

v∈S∪Q
(lv,m − h0(Fṽ,Wm))−

∑
v|∞

l((1 + cv)Wm),

where lv,m = l(Lv,m) and l denotes the length of an O-module. The contribution
from the infinite places is m[F+ : Q]n(n− 1)/2, up to a uniformly bounded error.
The global terms h0(F+,Wm) and h0(F+,Wm(1)) are both uniformly bounded, the
first since ρ is absolutely irreducible and the second since ρ is absolutely irreducible
and ρ, ρ(1) have different sets of Hodge–Tate weights.

If v ∈ Q, then (lv,m − h0(Fṽ,Wm)) = h0(Fṽ,Wm(1)) = h0(Fṽ,Wm), since we are
assuming m ≤ N , and this is bounded above by nm+

∑
i 6=j ord$(αṽ,i − αṽ,j). If

v ∈ S − Sp, then (lv,m − h0(Fṽ,Wm)) is uniformly bounded, by [All16, Proposition
1.2.2].

Finally, suppose that v ∈ Sp. Let R
�,[a,b]
v ∈ CO denote the object representing the

functor of lifts of ρ|GFṽ whose projections to Artinian quotients are subquotients of

lattices in semistable representations with all Hodge–Tate weights in the interval [a, b].

The representation ρ|GFṽ determines a homomorphism R
�,[a,b]
v → O. If qv denotes its

kernel, then by definition we have lv,m − h0(Fṽ,Wm) = l(qv/q
2
v ⊗O O/$m)−mn2.

We wish to show that lv,m − h0(Fṽ,Wm) − m[F+
v : Qp]n(n − 1)/2 is bounded

independently of m. This in turn will follow if we can show that qv/q
2
v ⊗O E has

dimension n2 + [F+
v : Qp]n(n− 1)/2 as E-vector space.

However, the argument of [Kis09, Proposition 2.3.5], together with [Liu07, Con-
jecture 1.0.1] (stated as a conjecture but proved in that paper), shows that the

completed local ring of R
�,[a,b]
v at qv represents the functor CE → Sets of lifts of

ρ|GFṽ ⊗O E whose Artinian quotients are semistable with all Hodge–Tate weights in

the interval [a, b]. The tangent space to this functor (which is equal to qv/q
2
v⊗OE) is

computed in the proof of [All16, Theorem 1.2.7], which gives the desired result. �

Lemma 2.24. Suppose M is a finitely generated O-module and let N ≥ 1 and
d, g ≥ 0 be integers. Suppose we know that for all m ≤ N we have

l(M/$m) ≤ gm+ d.
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Then there is a map Og →M/$N with cokernel of length ≤ d.

Proof. We prove the lemma by induction on the number of generators of M . The
lemma is obvious if M is cyclic. For a general M , we can first replace M by M/$N

without changing anything. Now let M ′ = M/C where C is a cyclic submodule of M
of maximal length and let N ′ ≤ N be the maximal length of a cyclic submodule of M ′.
It suffices to prove that there is a map Og−1 →M ′/$N ′ = M ′/$N with cokernel
of length ≤ d. For all m ≤ N ′ we have l(M ′/$m) = l(M/$m)−m ≤ (g − 1)m+ d.

By induction, we have the desired map Og−1 →M ′/$N ′ . �

Corollary 2.25. Suppose that ρ satisfies the hypotheses of Lemma 2.23. Then
there exists d ∈ N such that for all N ∈ N and every Taylor–Wiles datum of level
N , there is a map

On|Q| → H1
LS∪Q(F+,WN )

with cokernel of length ≤ d+ h1
L⊥S∪Q

(F+,WN (1)) +
∑
v∈Q

∑
i 6=j ord$(αṽ,i − αṽ,j).

Proof. Using Lemma 2.23 and Lemma 2.24, we see that it is enough to find d0, d1 ∈ N
such that for any 1 ≤ m ≤ N and any Taylor–Wiles datum of level N , we have

(2.25.1) l(H1
LS∪Q(F+,WN )/($m)) ≤ h1

LS∪Q(F+,Wm) + d0

and

(2.25.2) h1
L⊥S∪Q

(F+,Wm(1)) ≤ h1
L⊥S∪Q

(F+,WN (1)) + d1.

We treat these in turn. For the first inequality, we note that Lemma 2.22 shows
that the map

H1
LS∪Q(F+,Wm)→ H1

LS∪Q(F+,WE/O)[$m]

is surjective, with kernel a subquotient of H0(F+,WE/O). It follows that there is a
surjective homomorphism

H1
LS∪Q(F+,WN )/($m)→ H1

LS∪Q(F+,WE/O)[$N ]/($m)

with kernel a subquotient of H0(F+,WE/O). Since we have

l(H1
LS∪Q(F+,WE/O)[$N ]/($m)) = l(H1

LS∪Q(F+,WE/O)[$m]),

we see that (2.25.1) holds with d0 = h0(F+,WE/O).
For the second inequality, we note that the kernel of the natural map

(2.25.3) H1(FS/F
+,Wm(1))→ H1(FS/F

+,WN (1))

is contained in the kernel of the map

H1(FS/F
+,Wm(1))→ H1(FS/F

+,WE/O(1)),

which is a subquotient of H0(F+,WE/O(1)) (which is finite, by the same argument

showing boundedness of h0(F+,Wm(1)) in the proof of Lemma 2.23). We see
that (2.25.2) will hold with d1 = h0(F+,WE/O(1)) provided that the map (2.25.3)

sends H1
L⊥S∪Q

(F+,Wm(1)) into H1
L⊥S∪Q

(F+,WN (1)). Recalling the definition of

our local conditions, this means we must show that if v ∈ Sp, then the map
H1(F+

v ,Wm(1))→ H1(F+
v ,WN (1)) sends L⊥v,m to L⊥v,N . By duality, we must show

that if v ∈ Sp, then the map H1(F+
v ,WN )→ H1(F+

v ,Wm) induced by the surjection
WN → Wm sends Lv,N into Lv,m. However, this follows immediately from the
definitions. �
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For Corollary 2.25 to be useful, we need to be able to find Taylor–Wiles data
with good properties. To do this, we first introduce a useful definition.

Lemma 2.26. Let H ⊂ GLn(O) be a compact subgroup, and suppose the charac-
teristic polynomial of every element of H splits over E (this condition is always
satisfied after possibly enlarging E). Denote the associated representation of H by
ρ, so we have O[H]-modules W = ad ρ, WE, WE/O as above. Then the following
conditions are equivalent:

(1) For all simple E[H]-submodules V ⊂W 0
E = ad0 ρ⊗ E, we can find h ∈ H

with n distinct eigenvalues and α ∈ E such that α is an eigenvalue of h and
tr eh,αV 6= 0 (where eh,α ∈WE denotes the h-equivariant projection to the
α-eigenspace).

(2) For all simple E[H]-submodules V ⊂WE, we can find h ∈ H with n distinct
eigenvalues and α ∈ E such that α is an eigenvalue of h and tr eh,αV 6= 0.

(3) For all non-zero E[H]-submodules V ⊂ WE, there exists h ∈ H with n
distinct eigenvalues such that V 6⊂ (h− 1)WE.

(4) For all non-zero divisible O[H]-submodules V ⊂WE/O, there exists h ∈ H
with n distinct eigenvalues such that V 6⊂ (h− 1)WE/O.

Proof. We note that (1) and (2) are equivalent because the scalar matrices ZE ⊂WE

give a complement to W 0
E in WE , and the condition tr eh,αZE 6= 0 is satisfied for

any regular semisimple element h ∈ H and eigenvalue α ∈ E.
If h ∈ GLn(O) has n distinct eigenvalues, then it acts semisimply on WE . In

particular, there is a unique h-invariant direct sum decomposition WE = Wh
E ⊕

(h− 1)WE . If V ⊂WE is a h-invariant subspace, then there is a similar direct sum
decomposition V = V h ⊕ (h− 1)V . The condition that there exists an eigenvalue
α ∈ E of h such that tr eh,αV 6= 0 is equivalent to the condition that the projection
of V to Wh

E is non-zero, or equivalently that V h 6= 0. This is in turn equivalent to
the condition that V 6⊂ (h− 1)WE . This shows that (2) and (3) are equivalent.

Now we show that (3) and (4) are equivalent. For this we note that there is a
GLn(O)-equivariant, inclusion-preserving bijection between the E-subspaces of WE

and the divisible O-submodules of WE/O; this sends V ⊂ WE to V + W/W and
V ′ ⊂WE/O to

V = {v ∈WE | ∀n ≥ 0, $−nv mod W ∈ V ′}.
The proof in this case is complete on noting that (h− 1)WE corresponds to (h−
1)WE/O under this bijection. �

Definition 2.27. We say that a subgroup H ⊂ GLn(O) is enormous if for all
simple E[H]-submodules V ⊂WE, we can find h ∈ H with n distinct eigenvalues in
E and α ∈ E such that α is an eigenvalue of h and tr eh,αV 6= 0.

Remark 2.28. The above is a natural analogue of the definition of enormous sub-
groups in positive characteristic [KT17, Definition 4.10]. In contrast to the positive
characteristic case, we do not need to assume any vanishing of cohomology groups for
H. The necessary vanishing will follow from the purity of our Galois representations
(see [Kis04, Lemma 6.2], this goes back to Serre for Tate modules of abelian varieties
[Ser71]).

Lemma 2.29. Let H ⊂ GLn(O) be an enormous subgroup. Then H acts absolutely
irreducibly on En, and in particular we have H0(H,W 0

E) = 0.
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Proof. We need to show that the E-linear span of H in WE is everything (by
Burnside’s theorem on matrix algebras). Consider

U = {u ∈WE : tr(hu) = 0 ∀h ∈ H}.

If U is non-zero, let V be a simple E[H]-submodule of U so we have an h ∈ H with
α ∈ E such that tr eh,αV 6= 0. This is a contradiction, since eh,α is a polynomial in
h. We conclude that U = 0 and since the trace pairing on WE is perfect the span of
H is indeed WE . (Compare with [Tho12, Appendix, Lemma 1].) �

Lemma 2.30. Let q ≥ corankOH
1(FS/F

+,WE/O(1)), and suppose that ρ satisfies
the following conditions:

(1) For all but finitely many finite places v - S of F , the eigenvalues of ρ(Frobv)

are algebraic numbers which have absolute value q
w/2
v with respect to any

complex embedding.
(2) ρ(GF (ζp∞ )) is enormous.

Then there exists d ∈ N such that for any N ∈ N we can find a Taylor–Wiles datum

(Q, Q̃, (αṽ,1, . . . , αṽ,n)ṽ∈Q̃) of level N with |Q| = q such that

(1) for all v ∈ Q and i 6= j we have ord$(αṽ,i − αṽ,j) ≤ d
(2) h1

L⊥S∪Q
(F+,WN (1)) ≤ d.

Proof. If Q is a set of Taylor–Wiles places then we have an exact sequence

0→ H1
L⊥S∪Q

(F+,WN (1))→ H1
L⊥S

(F+,WN (1))→
⊕
v∈Q

H1(k(v),WN (1)).

Suppose we could find σ1, . . . , σq ∈ GF (ζp∞ ) such that

(a) for each i = 1, . . . , q, ρ(σi) has n distinct eigenvalues in E;
(b) the kernel of the map

H1(FS/F
+,WE/O(1))→

q⊕
i=1

H1(Ẑ,WE/O(1)) ∼=
q⊕
i=1

WE/O(1)/(σi − 1)WE/O(1)

(product of restriction maps associated to the homomorphisms Ẑ→ GF+,S ,

the ith such homomorphism sending 1 to σi) is a finite length O-module.

Then consideration of the following diagram:

0 // H0(F+,WE/O(1))/$N //

��

H1(FS/F
+,WN (1)) //

��

H1(FS/F
+,WE/O(1))[$N ] //

��

0

0 //
⊕q

i=1H
0(〈σi〉,WE/O(1))/$N //

⊕q
i=1H

1(〈σi〉,WN (1)) //
⊕q

i=1H
1(〈σi〉,WE/O(1))[$N ] // 0

shows that the kernel of the map

H1(FS/F
+,WN (1))→ ⊕qi=1H

1(〈σi〉,WN (1))

has length bounded independently of N (note that H0(F+,WE/O(1)) is a finite
length O-module). An application of the Chebotarev density theorem would then
yield the theorem.

To complete the proof, it therefore suffices to show that for any non-zero homomor-
phism f : E/O → H1(FS/F

+,WE/O(1)), we can find σ ∈ GF (ζp∞ ) such that ρ(σ)

has n distinct eigenvalues in E and Res
GF+,S

〈σ〉 ◦f : E/O →WE/O(1)/(σ−1)WE/O(1)
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is still non-zero (as then we can argue by induction to get σ1, . . . , σq satisfying con-
ditions (a), (b) above).

Let F∞ = F (ζp∞), let L′∞/F
+ be the extension cut out by WE(1), and let

L∞ = L′∞ · F∞. Then H1(L′∞/F
+,WE(1)) = 0, by [Kis04, Lemma 6.2]. (It is

in our appeal to this result that we make use of the purity assumption in the
statement of the lemma.) The extension L∞/L

′
∞ is finite (as E(εδF/F+) ⊂WE(1)),

so H1(L∞/F
+,WE(1)) = 0. It follows that H1(L∞/F

+,WE/O(1)) is killed by a
power of p and hence the homomorphism

Res
GF+,S

GL∞,SL∞
◦f : E/O →H1(FS/L∞,WE/O(1))GF+,S

∼= HomGF+,S
(GL∞,SL∞ ,WE/O(1))

is still non-zero. Let M ⊂WE/O(1) be the O-submodule generated by the elements
f(x)(σ), x ∈ E/O, σ ∈ GL∞ ; it is a non-zero divisible O[GF∞ ]-submodule of
WE/O(1). Using Lemma 2.26, we see that there exists σ ∈ GF∞ such that ρ(σ) has
n distinct eigenvalues in E and M 6⊂ (σ − 1)WE/O(1). Consequently, there exists
m ≥ 0 and τ ∈ GL∞ such that f(1/$m)(τ) 6∈ (σ − 1)WE/O(1).

If f(1/$m)(σ) 6∈ (σ − 1)WE/O(1), then we’re done: Res
GF+,S

〈σ〉 ◦f is non-zero.

Otherwise, we can assume f(1/$m)(σ) ∈ (σ− 1)WE/O(1), and then Res
GF+,S

〈τσ〉 ◦f is

non-zero. This completes the proof. �

Putting everything together, we obtain:

Corollary 2.31. Let q ≥ corankOH
1(FS/F

+,WE/O(1)), and suppose that ρ satis-
fies the following conditions:

(1) For all but finitely many finite places v - S of F , the eigenvalues of ρ(Frobv)

are algebraic numbers which have absolute value q
w/2
v with respect to any

complex embedding.
(2) For each v ∈ S, ρ|GFṽ is generic.

(3) For each place v|∞ of F+, χ(cv) = −1.
(4) ρ(GF (ζp∞ )) is enormous.

Then there exists d ∈ N such that for each N ∈ N we can find a Taylor–Wiles
datum QN of level N with |QN | = q and a map

OJx1, . . . , xnqK→ RS∪QN

such that the images of the xi are in qS∪QN and

qS∪QN /(q
2
S∪QN , x1, . . . , xnq)

is a quotient of (O/$d)g0 , where g0 = g0(S, ρ, q) is as defined in the statement of
Lemma 2.16.

Proof. Combining Proposition 2.20, Corollary 2.25 and Lemma 2.30 we deduce that
there exists a constant d such that for each N we can find QN of level N and an O-
module map Onq → qS∪QN /q

2
S∪QN ⊗OO/$

N with cokernel killed by $d (note that

the two O-modules qS∪QN /q
2
S∪QN⊗OO/$

N and HomO(qS∪QN /q
2
S∪QN ,O/$

N ) are

abstractly isomorphic). This allows us to define a map OJx1, . . . , xnqK → RS∪QN
with the xi mapping to images of generators of Onq in qS∪QN /q

2
S∪QN ⊗O O/$

N ,
so that

qS∪QN /(q
2
S∪QN , x1, . . . , xnq)⊗O O/$N
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is killed by $d. We need to explain how to deduce the slightly stronger result
in the statement of the corollary. We first note that qS∪QN /q

2
S∪QN is a quotient

of Og0 . Indeed, it is a finitely generated O-module, and there is an isomorphism
qS∪QN /q

2
S∪QN ⊗O O/$ ∼= mRS∪QN /(m

2
RS∪QN

, $), so we can apply Nakayama’s

lemma together with Lemma 2.16.
We may assume that N > d. In this case M = qS∪QN /(q

2
S∪QN , x1, . . . , xnq) is

a quotient of Og0 with the property that M/($N ) is killed by $d. This is only
possible if M is itself killed by $d, implying that M is a quotient of (O/$d)g0 . �

2.32. Some examples of enormous subgroups. Let E/Qp be a coefficient field,
and let H ⊂ GLn(O) be a compact subgroup.

Lemma 2.33. Suppose that for each h ∈ H, the characteristic polynomial of h has
all of its roots in E.

(1) Let H ′ ⊂ H be a closed subgroup. If H ′ is enormous, then so is H.
(2) Let G ⊂ GLn denote the Zariski closure of H. If G◦ contains regular

semisimple elements and acts absolutely irreducibly on En, then H is enor-
mous.

Proof. The first part is immediate from the definitions. For the second, we can
assume that G = G◦. Since G acts absolutely irreducibly, G(E) spans WE . Let
Hreg ⊂ H denote the set of regular semisimple elements. It is Zariski dense in G.
Indeed, by hypothesis Greg is a non-empty Zariski open subset of G. The Zariski
closure of H is contained in the union of the Zariski closure of Hreg and G−Greg.
This forces the Zariski closure of Hreg to be equal to G.

We must show that for any non-zero v ∈ WE , there exists h ∈ Hreg such that
trhv 6= 0. If trhv = 0 for all h ∈ Hreg, then Zariski density implies that tr gv = 0
for all g ∈ G. This contradicts the fact that the elements of G(E) span WE . �

Example 2.34. Let F be a totally real or CM number field, and let π be a regular
algebraic, cuspidal automorphic representation of GL2(AF ). Let ι : Qp → C be an

isomorphism, and let ρ : GF → GLn(O) be a model of Symn−1 rπ,ι defined over O.

If Sym2 π is cuspidal, then (after possibly enlarging E) ρ(GF (ζp∞ )) is an enormous
subgroup of GLn(O).

To see this, it is enough to note that the Zariski closure of the image of rπ,ι
contains SL2, and therefore that the Zariski closure of rπ,ι(GF (ζp∞ )) also contains
SL2 (because passage to derived subgroup respects Zariski closure, cf. [Bor91, Ch.
I, §2.1]). We can then appeal to Lemma 2.33.

We justify the claim that the Zariski closure of rπ,ι(GF ) contains SL2. The
identity component of the Zariski closure of rπ,ι(GF ) is a reductive subgroup of
GL2 which contains regular semisimple elements (by [Sen73, Theorem 1]). The
only possibility we need to rule out is that rπ,ι(GF ) normalizes a maximal torus
in GL2. In this case, there is a quadratic extension F ′/F such that rπ,ι|GF ′ is
reducible. It’s therefore enough to show that for any quadratic extension F ′/F ,
rπ,ι|GF ′ is irreducible. We observe that if rπ,ι|GF ′ is reducible, then it’s isomorphic
to a sum χ1⊕χ2 of characters. Moreover, χ1, χ2 are de Rham and almost everywhere
unramified, so therefore can be extended to compatible systems of 1-dimensional
Galois representations. It follows that rπ,ι′ |GF ′ is reducible for any other prime

p′ and isomorphism ι′ : Qp′ → C. In particular, Sym2 rπ,ι′ is reducible. However,
[BLGGT14, Theorem 5.5.2] implies that for a Dirichlet density 1 set of primes p′, the
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representation Sym2 rπ,ι′ is irreducible (note that for automorphic representations
of GL3(AF ) the asssumption of ‘extremely regular weight’ in loc. cit. coincides with
the usual notion of regular weight).

Example 2.35. Let F be a CM field, and let π be a polarizable automorphic
representation of GLn(AF ) such that for some finite place v0 of F , πv0 is a twist
of the Steinberg representation. Let ι : Qp → C be an isomorphism. Then
rπ,ι(GF (ζp∞ )) is enormous.

Indeed, let G denote the Zariski closure of rπ,ι(GF ). Local-global compatibility
at the place v0 implies that G◦ contains a regular unipotent element (if v0|p, we
argue as in [KS19, Lemma 3.2]), so in particular it acts absolutely irreducibly on En.
Then [Sch06, Proposition 4] (see also [Kat88, Classification Theorem 11.6]) shows
that the derived group of G◦ is one of a finite list of possibilities, and that in any
case it contains regular semisimple elements. We can again appeal to Lemma 2.33.

3. A result about Hecke algebras

Let p be a prime, let n ≥ 2, and let Fv/Ql be a finite extension for some l 6= p.
Let G = GLn(Fv), U = GLn(OFv ), and let I ⊂ U be the standard Iwahori subgroup
(i.e. the pre-image in U of the upper-triangular matrices in GLn(k(v))). Let E/Qp

be a coefficient field. For O sufficiently large (i.e. containing a square root of qv),
the Iwahori Hecke algebra HI = H(G, I)⊗Z O has the Bernstein presentation

HI ∼= O[X∗(T )]⊗̃O[I\U/I].

The map O[X∗(T )]→ HI sends a dominant cocharacter λ ∈ X∗(T )+ to the Hecke

operator q
−l(λ)/2
v [Iλ($v)I], where l(·) is the usual length function on the extended

affine Weyl group. The twisted tensor product indicates the usual tensor product
as O-modules, with the algebra structure on HI determined by the relations of
[Lus89, Proposition 3.6]. We identify O[X∗(T )] = O[x1, x

−1
1 , . . . , xn, x

−1
n ] (xi is the

cocharacter embedding Gm into the ith diagonal entry of T ). The centre, Z(HI), is
identified by the Bernstein presentation with the algebra of symmetric polynomials
O[X∗(T )]Sn = O[e1, e2, . . . , en, e

−1
n ] (e1, . . . , en are the usual elementary symmetric

polynomials in x1, . . . , xn).
Our identification of O[X∗(T )] with a polynomial algebra allows us to speak of

polynomials as being elements of the Hecke algebra. In particular, we can think of
∆ =

∏
1≤i<j≤n(xi − xj) as being an element of HI , and its square ∆2 as being an

element of the centre Z(HI).
To simplify notation, let R = O[X∗(T )]Sn , S = O[X∗(T )]. Then S is a free R-

module, a basis being given by the monomials xa = xa11 . . . xann for a = (a1, . . . , an) ∈
Zn satisfying 0 ≤ ai ≤ i− 1 for each i = 1, . . . , n. We write B for the set of tuples
a satisfying these conditions.

If M is an O[GLn(Fv)]-module M , then MU is an R-submodule of M I (and in
fact, if z ∈ Z(HI) and M ∈ MU , then we have the formula z ·m = ([U ]z) ·U m,
where ·U denotes the action of HU = H(G,U)⊗Z O on MU – see [HKP10, §4.6]).
Thus there there is a canonical (and functorial) morphism

(3.0.1) MU ⊗R S →M I ,

given by the formula m ⊗ s 7→ sm. Since S is free over R, MU ⊗R S may be
identified with ⊕a∈BM

U , and the above map with (ma)a∈B 7→
∑

a∈B xa ·ma.
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The aim of this short section is to prove the following result, which will be applied
in Section 4 (see Proposition 4.8).

Proposition 3.1. Let N ≥ 1, and let M be an O/$N [GLn(Fv)]-module. Suppose
that qv ≡ 1 mod $N . Then the above morphism MU ⊗R S → M I has kernel and
cokernel annihilated by ∆n!.

Note that ∆n! always lies in Z(HI). This is important for us since it means
that in the global situation, ∆n! will be in the image of the pseudodeformation ring
(through which decomposition groups act via a homomorphism to the Bernstein
centre).

Before proving the proposition, we establish an auxiliary result.

Lemma 3.2. Consider the n!×n! matrix P with coefficients in Z[x1, . . . , xn] given
by the formula Pσ,a = σ(xa) (σ ∈ Sn, a ∈ B). Then there exists a unique matrix
Q = (Qa,σ) with coefficients in Z[x1, . . . , xn] such that PQ = QP = ∆n!.

Proof. It suffices to show existence, since then uniqueness follows by linear algebra
over Q(x1, . . . , xn). The square of the determinant of P is equal to the discriminant
of the ring extension Z[e1, . . . , en] → Z[x1, . . . , xn]. Using [Sta13, Tag 0C17], we
see that the discriminant of this ring extension equals ∆n! (the different ideal is
generated by ∆). Therefore the determinant of P is equal to ∆n!/2, up to sign.

The existence of the adjugate matrix implies that there is a matrix Q′ with
coefficients in Z[x1, . . . , xn] such that PQ′ = ∆n!/2. We then take Q = ∆n!/2Q′. �

We observe that for all a ∈ B, σ, τ ∈ Sn, we have σ(Qa,τ ) = Qa,στ . Indeed, this
follows from the identity σ(P )σ(Q) = ∆n! and the uniqueness of inverses.

Proof of Proposition 3.1. Since qv ≡ 1 mod $N , we can identify O/$N [I\U/I] =
O/$N [Sn], andH(G, I)⊗ZO/$N with the group algebra of the extended affine Weyl
group X∗(T )oSn (because the Iwahori–Matsumoto relations are a q-deformation of
the relations defining the group algebra of the affine Weyl group). Let e =

∑
σ∈Sn σ ∈

O/$N [Sn] ⊂ H(G, I) ⊗Z O/$N . Then e = [U ], so in particular eM I ⊂ MU .
Recalling that [I] is the unit of HI , we note that e need not be an idempotent, since
e2 = [U : I]e (note that qv ≡ 1 mod $N =⇒ [U : I] ≡ n! mod $N , and we do not
rule out the case p ≤ n).

We have defined a map f : ⊕a∈BM
U →M I by the formula (ma)a∈B 7→

∑
a∈B xa·

ma. We define a map g : M I → ⊕a∈BM
U by the formula g(m) = (eQa,1m)a∈B .

We now compute f ◦ g and g ◦ f . We have for m ∈M I

f(g(m)) =
∑
a∈B

xaeQa,1m =
∑
a∈B

∑
σ∈Sn

xaσ(Qa,1)σ(m).

This in turn we can rewrite as∑
σ∈Sn

∑
a∈B

P1,aQa,σσ(m) = ∆n!m.

Similarly, we have for m = (ma)a∈B ∈ ⊕a∈BM
U :

g(f(m))a = eQa,1

∑
b∈B

xb ·mb =
∑
σ∈Sn

∑
b∈B

Qa,σPσ,bσ(mb).
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Note that Sn acts trivially on MU . We can therefore rewrite the above expression
as ∑

b∈B

∑
σ∈Sn

Qa,σPσ,bmb = ∆n!ma.

This completes the proof. �

4. Patching

In this section we prove our main technical result (Theorem 4.2).

4.1. Set-up. We suppose given the following data:

• A CM number field F with maximal totally real subfield F+. We assume
that F/F+ is everywhere unramified and that [F+ : Q] is even.
• An integer n ≥ 2 and a cuspidal, polarized, regular algebraic automorphic

representation (π, δnF/F+) of GLn(AF ) (i.e. π is of unitary type).

• A prime p and an isomorphism ι : Qp → C. We assume that for each place
w|p of F , πw has an Iwahori-fixed vector.
• A finite set S of finite places of F+, containing the set Sp of p-adic places

and all places above which π is ramified. We assume that each place of S
splits in F .

We recall that under these conditions we define an extension of rπ,ι to a homomor-
phism to Gn, which then gives the action of GF+ on ad rπ,ι (see §1).

Theorem 4.2. With set-up as above, assume moreover that rπ,ι(GF (ζp∞ )) is enor-
mous. Then

H1
f (F+, ad rπ,ι) = 0.

We note here that the assumptions of Lemma 2.23 hold for rπ,ι by [BLGGT14,
Theorem 2.1.1] (which collects together results of many people).

The proof of Theorem 4.2 will use automorphic forms on definite unitary groups.
To this end, we can find the following data:

• For each place v ∈ S, a choice of place ṽ of F lying above v. We set

S̃ = {ṽ | v ∈ S} and S̃p = {ṽ | v ∈ Sp}.
• A Hermitian form 〈·, ·〉 : Fn × Fn → F such that the associated unitary

group G (defined on R-points by G(R) = {g ∈ GLn(F ⊗F+ R) | g∗g = 1})
is definite at infinity and quasi-split at each finite place of F+.
• A reductive group scheme over OF+ extending G.
• For each finite place v = wwc of F+ which splits in F , an isomorphism
ιw : GO

F
+
v

→ ResOFw/OF+
v

GLn of group schemes over OF+
v

. We assume

that the induced isomorphism ιw : G(F+
v )→ GLn(Fw) is in the same inner

class as the isomorphism given by inclusion G(F+
v ) ⊂ GLn(Fw)×GLn(Fwc),

followed by projection to the first factor.
• An automorphic representation σ of G(AF+) with the following properties:

– For each finite inert place v of F+, σ
G(O

F
+
v

)

v 6= 0 and σv, πv are related
by unramified base change.

– For each split place v = wwc of F+, σv ∼= πw ◦ ιw.
– If v|∞ is a place of F+, then the infinitesimal character of σv respects

that of πv under base change. (We recall this relation more precisely
below.)
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• An open compact subgroup U =
∏
v Uv of G(A∞F+) with the following

properties:
– For each place v ∈ Sp, Uv = ι−1

ṽ (Iwṽ), where Iwṽ ⊂ GLn(OFṽ) is the
standard Iwahori subgroup (defined as in §3).

– For each inert place v of F+, Uv = G(OF+
v

).

– (σ∞)U 6= 0.
– U is sufficiently small: for all g ∈ G(A∞F+), gUg−1 ∩G(F+) = {1}.

(We can find such a G because [F+ : Q] is even. The existence of σ is deduced
from that of π using [Lab11, §5].) We can regard σ∞ as an algebraic representation

of the group (ResF+/QG)C. Let Ĩp ⊂ Hom(F,Qp) denote the set of embeddings

inducing places ṽ ∈ S̃p. Then our choices determine an isomorphism

(ResF+/QG)Qp

∼=
∏
τ∈Ĩp

GLn.

Let λ = (λτ )τ∈Ĩp ∈ (Zn+)Ĩp denote the highest weight of the algebraic representation

Vλ of (ResF+/QG)Qp
such that Vλ ⊗ι,Qp

C ∼= σ∨∞. We can define a highest weight

ξ for (ResF/Q GLn)Qp
by letting ξτ = λτ and ξτc = −w0λτ for τ ∈ Ĩp (w0 is the

longest element in the Weyl group of GLn). The infinitesimal character of π∞ is
the same as that of V ∨ξ ⊗ι,Qp

C.

The Hodge–Tate weights of rπ,ι may be described as follows: if τ ∈ Ĩp, then

HTτ (rπ,ι) = {λτ,1 + n− 1, λτ,2 + n− 2, . . . , λτ,n}.

We fix once and for all integers a ≤ b such that for all τ ∈ Hom(F,Qp), the elements
of HTτ (rπ,ι) are contained in [a, b] and a+ b = n− 1.

Let E/Qp be a coefficient field containing the image of every embedding F → Qp.
After possibly enlarging E, we can assume that there is a model ρ : GF,S → GLn(O)
of rπ,ι, which extends to a homomorphism r : GF+,S → Gn(O) such that ν ◦ r =

ε1−nδnF/F+ . Let D denote the group determinant of ρ, which is then defined over k.

With these choices the pseudodeformation ring denoted RS in §2.19 is defined,
as well as the prime ideal qS = ker(RS → O) determined by ρ. Moreover, for any

Taylor–Wiles datum (Q, Q̃, (αṽ,1, . . . , αṽ,n)v∈Q) we have the auxiliary ring RS∪Q.
We introduce one more object here: it is the maximal quotient RS∪Q → RS∪Q,ab
over which for each v ∈ Q, the restriction of the universal pseudocharacter to WFṽ

factors through W ab
Fṽ

. Thus we have a diagram

RS∪Q → RS∪Q,ab → RS .

4.3. Hecke algebras. We can find a representation Vλ of the group scheme
(ResOF+/ZG)O, finite free over O, and such that Vλ ⊗O Qp

∼= Vλ. (For exam-

ple, use the construction of [Ger19, §2.2].) Thus Vλ(O) is a finite free O-module
which receives an action of Up =

∏
v∈Sp Uv. For any open compact subgroup

V =
∏
v Vv ⊂ U , and any O-algebra A, we define Sλ(V,A) to be the set of func-

tions f : G(A∞F+) → Vλ(A) such that for each v ∈ V , γ ∈ G(F+), g ∈ G(A∞F+),
vpf(γgv) = f(g). We observe that

lim−→
Up

Sλ(UpUp, A)
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has a natural structure of A[Up]-module, and the Up-invariants are Sλ(U,A). It
follows that Sλ(U,A) has a natural structure of H(G(A∞,pF+ ), Up)-module. A stan-
dard argument (cf. [Ger19, Lemma 2.2.5]) shows that there is an isomorphism of
H(G(A∞,pF+ ), Up)-modules

Sλ(U,O)⊗ι,O C ∼= ⊕µ(µ∞)U ,

where the sum is over automorphic representations of G(AF+) (with multiplicity)
such that µ∞ ∼= σ∞.

If V =
∏
v Vv is an open compact subgroup of U and T is a finite set of places of

F+ containing all places such that Vv 6= G(OF+
v

), then we write TT
λ (V,A) for the

A-subalgebra of EndA(Sλ(V,A)) generated by the unramified Hecke operators at
split places away from T . After possibly enlarging E, the existence of σ implies the
existence of a homomorphism

hV,σ : TT
λ (V,O)→ O

giving the Hecke eigenvalues of ι−1σ∞. On the other hand, the results of [Lab11,
§5] imply the existence of a group determinant DV,λ of GF,T valued in TT

λ (V,O)
(construction as in [Tho15, Proposition 4.11]).

Let m ⊂ TS
λ(U,O) denote the unique maximal ideal containing kerhU,σ, and set

S∅ = Sλ(U,O)m,T∅ = TS
λ(U,O)m.

Then there is a surjective homomorphism RD,S → T∅ classifying DU,λ.

Lemma 4.4. The map RD,S → T∅ factors through the quotient RS.

Proof. If we invert p then T∅ ⊗O Qp =
∏
µEµ is a product of fields indexed

by automorphic representations µ of G(AF+) with µUm 6= 0 and µ∞ ∼= σ∞. To
prove the lemma, it suffices to show that each of the maps RD,S → Eµ factors
through the quotient RS : in other words, the conjugate self-duality condition and
the semi-stability condition of (2.16.1). These conditions follow from local–global
compatibility for the Galois representation associated to the base change of µ. �

4.5. Automorphic data associated to Taylor–Wiles data. Suppose given a
set Q of Taylor–Wiles places. In this case we define open compact subgroups
U0(Q) =

∏
v U0(Q)v and U1(Q) =

∏
v U1(Q)v as follows:

• If v 6∈ Q, then U0(Q)v = U1(Q)v = Uv.
• If v ∈ Q, then U0(Q)v = ι−1

ṽ (Iwṽ) and U1(Q)v is the smallest open subgroup
of U1(Q)v such that U0(Q)v/U1(Q)v is a p-group.

We set ∆Q = U0(Q)/U1(Q), which may be naturally identified with
∏
v∈Q k(v)×(p)n.

We write mQ for the intersection of m with TS∪Q
λ (U,O), m0,Q for the pre-image of

mQ in TS∪Q
λ (U0(Q),O), and m1,Q for the pre-image of m0,Q in TS∪Q

λ (U1(Q),O).
We define

T0,Q = TS∪Q
λ (U0(Q),O)m0,Q

,TQ = TS∪Q
λ (U1(Q),O)m1,Q

.

As in Lemma 4.4, we have a surjective map RS∪Q → TQ. Note that the natural

map TS∪Q
λ (U,O)mQ → T∅ is in fact an isomorphism, and so there are surjections

TQ → T0,Q → T∅.

So far we have not used any Hecke operators at places v ∈ Q. For any v ∈ Q,
α ∈ F×ṽ , and 1 ≤ i ≤ n, we let tv,i : F×ṽ → H(G(F+

v ), U1(Q)v) denote the composite



ADJOINT SELMER GROUPS OF UNITARY TYPE 29

with ι−1
ṽ of the homomorphism defined just above [ACC+18, Proposition 2.2.7] (and

denoted tv,i there). That proposition shows that if πv is an irreducible admissible

Qp[G(F+
v )]-module such that π

U1(Q)v
v 6= 0, then for any σ ∈WFṽ and α ∈ F×ṽ such

that ArtFṽ (α) = σ|Fab
ṽ

, the characteristic polynomial of recTFṽ (πv ◦ ι−1
ṽ ) on σ equals

(4.5.1)

n∑
i=0

(−1)iXn−iev,i(α, πv),

where ev,i(α) ∈ H(G(F+
v ), U1(Q)v) is the ith elementary symmetric polynomial in

tv,1(α), . . . , tv,n(α), and ev,i(α, πv) ∈ Qp is the scalar by which it acts on π
U1(Q)v
v .

The elements ev,i(α) generate the centre of H(G(F+
v ), U1(Q)v) ⊗O Qp, by [Fli11,

Proposition 4.11].

We define TQ
0,Q ⊂ End(Sλ(U0(Q),O)m0,Q

) to be the subalgebra generated by

T0,Q and the elements tv,i(α) for all v ∈ Q, i = 1, . . . , n and α ∈ F×ṽ . We define

TQ
Q ⊂ End(Sλ(U1(Q),O)m1,Q

) similarly. Thus TQ
Q is an O[∆Q]-algebra (the image

of O[∆Q] in TQ
Q is generated by the elements tv,i(α) with α ∈ O×Fṽ ). Neither TQ

0,Q

nor TQ
Q need be local rings. We denote by aQ the augmentation ideal of O[∆Q].

Lemma 4.6. Sλ(U1(Q),O) is a free O[∆Q]-module and the trace map induces
Sλ(U1(Q),O)/aQ ∼= Sλ(U0(Q),O).

Proof. The proof is identical to that of [CHT08, Lemma 3.3.1], using that U (and
hence any subgroup of U) is sufficiently small. �

We let AQ = ⊗v∈QO[tv,1($v)
±1, . . . , tv,n($v)

±1]. This is a polynomial subalge-
bra of ⊗v∈QH(G(F+

v ), U0(Q)v) that receives an action of the group WQ =
∏
v∈Q Sn.

For every m ≥ 1, we have a canonical morphism of TQ-modules

ηQ,m : Sλ(U,O/$m)m ⊗
A
WQ
Q

AQ → Sλ(U0(Q),O/$m)m0,Q
,

as in (3.0.1).
For each v ∈ Q, the universal pseudocharacter over RS∪Q,ab determines by

restriction an n-dimensional pseudocharacter γv of W ab
Fṽ

valued in RS∪Q,ab. Each

restriction γv|IFṽ factors through the quotient k(v)×(p) of ArtFṽ(O×Fṽ) (compare

[Che14, Lemma 3.8]).

On the other hand, for each i = 1, . . . , n, there is a character αv,i : W ab
Fṽ
→ (TQ

Q)×

given by the formula αv,i(ArtFṽ (α)) = tv,i(α). We write αv for the pseudocharacter
αv = αv,1 ⊕ · · · ⊕ αv,n.

These two families of pseudocharacters are related by the following lemma, which
is a formulation of local–global compatibility at v ∈ Q.

Lemma 4.7. (1) The map

RS∪Q → TQ

factors through the quotient RS∪Q,ab.

(2) Let v ∈ Q. The composite of γv with the map RS∪Q,ab → TQ ↪→ TQ
Q equals

αv.
(3) The image of the map

RS∪Q,ab → TQ ↪→ TQ
Q
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contains the Hecke operators ev,i(α) for each v ∈ Q, i = 1, · · · , n and
α ∈ F×ṽ .

Proof. If we invert p then TQ ⊗O Qp =
∏
µEµ is a product of fields indexed by

automorphic representations µ of G(AF+) with µ
U1(Q)
m1,Q 6= 0 and µ∞ ∼= σ∞. To prove

the first part of the lemma, it suffices to show that each of the maps RS∪Q → Eµ
factors through the quotient RS∪Q,ab. This follows from [ACC+18, Prop. 2.2.7].
The second and third parts of the lemma follow from the formula (4.5.1) which
computes the characteristic polynomials of recTFṽ (µṽ ◦ ι−1

ṽ ) evaluated on elements of
WFṽ . �

We caution the reader that the map RS∪Q,ab → TQ
Q is not in general surjective,

because of the presence of Hecke operators at Q which do not lie in the Bernstein
centre.

The following proposition will be crucial for controlling our patched modules of
automorphic forms. As mentioned in the introduction, this is inspired by arguments
of Pan [Pan19].

Proposition 4.8. Fix d ∈ N. There exists a constant c ∈ N (depending only on d)

such that, for any N and any Taylor–Wiles datum (Q, Q̃, (αṽ,1, . . . , αṽ,n)ṽ∈Q̃) for

rπ,ι of level N satisfying∑
v∈Q

∑
1≤i<j≤n

ord$(αṽ,i − αṽ,j) ≤ d,

there is an element fQ ∈ RS∪Q,ab such that

(1) fQ kills the kernel and cokernel of ηQ,m for all m ≤ N
(2) The image fQ,σ of fQ under the composition of maps

RS∪Q,ab → TQ

hU1(Q),σ→ O
satisfies ord$(fQ,σ) ≤ c.

Proof. We set

fQ =

∏
v∈Q

∏
1≤i<j≤n

(tv,i($v)− tv,j($v))
n!

 ∈ TQ
Q

and let fQ be a pre-image of fQ in RS∪Q,ab (such a pre-image exists by Lemma
4.7). It follows from Proposition 3.1 that fQ kills the kernel and cokernel of ηQ,m
for all m ≤ N . If we take c = n!d then, again using Lemma 4.7, we see that the
second part of the proposition is satisfied. �

We give one last piece of structure. Suppose fixed an ordering Q = {v1, . . . , vq}
and for each v ∈ Q a surjection Zp → k(v)×(p). This data determines a surjection
(Znp )q →

∏
v∈Q k(v)×(p)n = ∆Q, hence a surjective algebra homomorphism S∞ →

O[∆Q], where S∞ = OJy(i)
1 , . . . , y

(i)
q : 1 ≤ i ≤ nK. The group WQ =

∏
v∈Q Sn

acts on S∞ by permutation of co-ordinates, and the invariant subring S
WQ
∞ may

be identified with OJe(i)
1 , . . . , e

(i)
q : 1 ≤ i ≤ nK, where e

(i)
j is the ith elementary

symmetric polynomial in y
(1)
j , . . . , y

(n)
j . The ring S

WQ
∞ also has a role to play as a

consequence of the following easy lemma:
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Lemma 4.9. The functor of deformations of the trivial pseudocharacter of Zp of
dimension n is represented by OJX1, . . . , XnKSn , with the universal characteristic
polynomial χ(t) of 1 ∈ Zp given by

∏n
i=1((t− 1)−Xi).

Proof. Indeed, a residually trivial pseudocharacter of Zp of dimension n over a ring
A ∈ CO is precisely a point of (GLn�GLn)(A) lying over the image of the identity
in (GLn�GLn)(k). Now we use the identification of the adjoint quotient GLn�GLn
with the quotient of the diagonal maximal torus by the Weyl group. The universal
deformation is given by the orbit of the matrix diag(1 +X1, . . . , 1 +Xn). �

Consequently, there is a homomorphism S
WQ
∞ → RS∪Q,ab, classifying the pullback

of the tuple (γv)v∈Q to a tuple of n-dimensional pseudocharacters of the group Zp.

There is also a homomorphism S
WQ
∞ → TQ

Q, classifying the pullback of (αv)v∈Q
to a tuple of n-dimensional pseudocharacters of the group Zp. This coincides

with the restriction to S
WQ
∞ of the homomorphism S∞ → TQ

Q determined by the

O[∆Q]-algebra structure on TQ
Q. Lemma 4.7 has the following corollary.

Lemma 4.10. The map S
WQ
∞ → TQ

Q factors through TQ, and the map RS∪Q,ab →
TQ is a homomorphism of S

WQ
∞ -algebras.

4.11. The patching argument.

• Fix q = corankOH
1(FS/F

+, ad ρ(1) ⊗O E/O). Applying Corollary 2.31,
we fix for each N ≥ 1 a Taylor–Wiles datum QN of level N , and we write
∆N = ∆QN , aN = aQN , RN = RS∪QN ,ab, TN = TQN . We set R0 = RS .

We set qN = ker(RN
hU1(QN ),σ−−−−−−−→ O) and q0 = ker(R0

hU,σ−−−→ O). Thus qN is
the pre-image of q0 under the natural map RN → R0.

• Let S∞ = OJy(i)
1 , . . . , y

(i)
q : 1 ≤ i ≤ nK and fix orderings of QN and

generators of k(v)×(p) for all N and all v ∈ QN and thus surjective maps
S∞ → O[∆N ]. Let a∞ ⊂ S∞ be the augmentation ideal (equal to the
inverse image of aN under each of the previously defined maps).
• We moreover fix uniformisers $v for all v ∈ QN (for every N). This allows

us to think of the pseudocharacters γv as pseudocharacters of k(v)×(p)×Z.
Recalling that we have fixed a generator of k(v)×(p) and an ordering
on QN , for every N we have a q-tuple (γN,1, . . . , γN,q) of n-dimensional
pseudocharacters of (Zp × Z) with coefficients in RN .
• We have actions of tv,i($v) on Sλ(U0(QN ),O)m0,Q

and Sλ(U1(QN ),O)m1,Q

for each v ∈ QN and i = 1, . . . , n. Using these actions, together with the
fixed orderings on QN , we obtain an action of the algebra

A = ⊗qj=1O[(t
(1)
j )±1, . . . , (t

(n)
j )±1]

on these spaces, together with an identification of A with AQN sending t
(i)
j to

tvj ,i($vj ). We have characters α
(i)
j : Zp×Z→ (S∞⊗O A)× for i = 1, . . . , n

and j = 1, . . . , q. By Lemma 4.7, the pushforward of the pseudocharacter

αj = trα
(1)
j ⊕ · · · ⊕ α

(n)
j to EndO(Sλ(U1(QN ),O)m1,Q

) takes values in TN

and equals the pushforward of γN,j there.
• We can identify all the Weyl groups WQN (using our fixed orderings of
QN for each N). We denote them all by W . There is a natural W -action
on S∞, compatible with the maps to O[∆N ]. The invariants SW∞ are a
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regular local O-algebra, with S∞ a finite free SW∞ -algebra (SW∞ is a power

series algebra over the elementary symmetric polynomials in y
(1)
j , . . . , y

(n)
j

for each j). Write aW∞ = a∞ ∩ SW∞ , this is the ideal of SW∞ generated by the
elementary symmetric polynomials. There is also a natural W -action on A.
• We let g = nq and R∞ = OJx1, . . . , xgK, and let q∞ = (x1, . . . , xg) ∈

Spec(R∞). For each N we have a map R∞ → RN such that q∞RN ⊂ qN
and qN/(q

2
N , q∞) is killed by a power of $ which is independent of N .

• Fix a non-principal ultrafilter F on N, and let R =
∏
N∈NO. If I ∈ F , then

we define eI = (δN∈I)N∈N ∈ R. Then S = {eI | I ∈ F} is a multiplicative
subset of R, and we define RF = S−1R. The natural map R → RF is
surjective and factors through the projection

∏
N≥1O →

∏
N≥mO for any

m ≥ 1. The ring RF can also be described as the localization of R at the
prime ideal {(xN )N∈N | ∃I ∈ F ,∀N ∈ I, xN ∈ $O}.

Definition 4.12. We define

• M1 = lim←−m
(
RF ⊗R

∏
N≥m

(
Sλ(U1(QN ),O)m1,QN

/mmS∞

))
• M0 = lim←−m

(
RF ⊗R

∏
N≥m Sλ(U0(QN ),O/$m)m0,QN

)
• M = lim←−m

(
RF ⊗R

∏
N≥m Sλ(U,O/$m)m ⊗AWQN AQN

)
Here AWQN acts on Sλ(U,O/$m)m via the spherical Hecke algebra action at

places in QN . We note that we naturally obtain compatible actions of A on M ,

M0 and M1. Identifying Sλ(U,O)m with lim←−m
(
RF ⊗R

∏
N≥m Sλ(U,O/$m)m

)
,

we equip Sλ(U,O)m with an AW action (AW acts on the N factor in the product
via its identification with AWQN ) and we see that we have a natural isomorphism

M ∼= Sλ(U,O)m ⊗AW A.

Lemma 4.13. (1) M1 is a flat S∞-module.
(2) The trace maps induce M1/a∞ ∼= M0.
(3) We have a map η : M →M0 induced by the ηQN ,m, which has kernel and

cokernel killed by f , where f = (f2
QN

) ∈
∏
N∈NRN and fQN is as in the

statement of Proposition 4.8.

Proof. For the first two parts we apply [Pan19, Lemma 4.4.4(2)] (see also [Sta13,
Tag 0912]): it suffices to prove that for each m

M1,m = RF ⊗R

∏
N≥m

(
Sλ(U1(QN ),O)m1,QN

/mmS∞

)
is a flat S∞/m

m
S∞

-module, the natural transition maps M1,m+1 → M1,m induce
isomorphisms M1,m+1/m

m
S∞
∼= M1.m and the trace maps induce M1,m/a∞ ∼= M0,m.

Flatness of M1,m follows from flatness of Sλ(U1(QN ),O)m1,QN
over O[∆N ] (note

that S∞/m
N
S∞

is a quotient of O[∆N ]).
We have

M1,m+1/m
m
S∞ = RF ⊗R

∏
N≥m+1

(
Sλ(U1(QN ),O)m1,QN

/mmS∞

)
= M1,m

https://stacks.math.columbia.edu/tag/0912
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and

M1,m/a∞ = RF ⊗R

∏
N≥m

(
Sλ(U1(QN ),O)m1,QN

/(a∞ + mmS∞)
)

= RF ⊗R

∏
N≥m

(
Sλ(U0(QN ),O/$m)m0,QN

)
(see [Pan19, Lemma 4.5.9] for the first equalities).

The third part follows from [Pan19, Lemma 4.5.12]. �

Now we can define a patched pseudodeformation ring:

Definition 4.14. For m ≥ 1 we define Rp
m = RF ⊗R

∏
N≥1RN/(mRN fQN )m and

then define Rp = lim←−mR
p
m.

Lemma 4.15. For each m ≥ 1 there is an integer n(m) (independent of N) such
that (mRN fQN )n(m) annihilates Sλ(U1(QN ),O)m1,QN

/mmS∞ for all N ≥ m.

Proof. By considering the a∞-adic filtration on Sλ(U1(QN ),O)m1,QN
/mmS∞ it suffices

to prove that there is an integer n(m) (independent of N) such that (mRN fQN )n(m)

annihilates Sλ(U0(QN ),O/$m)m0,QN
for all N ≥ m.

Since fQNSλ(U0(QN ),O/$m)m0,QN
is a finite length O-module with length

bounded by qn! times that of Sλ(U,O/$m)m, its length as an RN -module is bounded

independently of N and therefore it is annihilated by a m
n(m)
RN

for some n(m)
independent of N . �

It follows from Lemma 4.15 that Rp acts on M1 (this is why Rp is defined the
way it is). We are going to use [Pan19, Lemma 4.5.3] a few times, so we restate it
here:

Lemma 4.16. Suppose for i ∈ N, Mi is an O-module equipped with a decreasing
filtration by O-modules Mi ⊃Mi,1 ⊃Mi,2 · · · . Then the natural map

∏
i≥1

Mi → lim←−
m

RF ⊗R

∏
i≥1

Mi/Mi,m


is surjective with kernel given by elements of the form (mi) such that for each m
there exists Im ∈ F with mi ∈Mi,m for all i ∈ Im.

We have a natural map
∏
N≥1RN → Rp which is surjective by Lemma 4.16. We

also have a natural map Rp → R0 given by taking the limit over m of

Rp
m → RF ⊗R

∏
N≥1

R0/(mR0
)m = R0/(mR0

)m.

Lemma 4.17. The map Rp → R0 we have just defined is surjective.

Proof. We again apply Lemma 4.16: this implies that the natural map

∏
N≥1

RN → lim←−
m

RF ⊗R

∏
N≥1

R0/(mR0)m


is surjective; on the other hand it factors through our map Rp → R0. �
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From the n-dimensional pseudorepresentations (γN,j)N≥1 (j = 1, . . . , q) with
coefficients in

∏
N≥1RN , we obtain n-dimensional pseudorepresentations γ∞,j (j =

1, . . . , q) of Zp × Z with coefficients in Rp. On the other hand, M1 has a natural

structure of S∞ ⊗O A-module, and we have defined characters α
(i)
j : Zp × Z →

(S∞ ⊗O A)× and pseudocharacters αj = trα
(1)
j ⊕ · · · ⊕ α

(n)
j .

Lemma 4.18. Fix 1 ≤ i ≤ q.
(1) Composing γ∞,i with the map Rp → R0 gives a pseudorepresentation which

is inflated from the ‘unramified quotient’ Zp × Z → Z (i.e. projection to
second factor).

(2) The composite of γ∞,j with the map Rp → End(M1) equals the composite
of αj with the map S∞ ⊗O A → End(M1). Consequently, the map Rp →
End(M1) is a homomorphism of SW∞ -algebras.

Proof. The first part follows from the analogous statement for each of the pseu-
dorepresentations γN,i (which holds because the pseudorepresentations classified by
R0 are unramified at places in QN ). The second part follows from Lemma 4.7. �

Definition 4.19. We let qp be the prime ideal in Rp given by the inverse image of
q0 ⊂ R0.

Lemma 4.20. The image of
∏

qN ⊂
∏
N≥1RN in Rp is equal to qp.

Proof. Write I for the kernel of
∏
N≥1RN → Rp and I ′ for the image of I in∏

N≥1RN/qN =
∏
N≥1O. It suffices to prove that the map

∏
N≥1RN → R0

induces an isomorphism∏
N≥1

RN

 /(I,
∏

qN ) =

∏
N≥1

O

 /I ′ ∼= R0/q0 = O.

The ideal I is the set of elements (xN ) ∈
∏
RN such that for each m ≥ 1 there

exists Im ∈ F with xN ∈ (mRN fQN )m for all N ∈ Im. We have (mRN fQN )m+qN =
($mfmQN ) + qN ⊂ ($m) + qN . It follows that I ′ is contained in the kernel of the

map
∏
N≥1O → O. We need to show that I ′ equals the kernel. To this end, choose

a tuple of elements (yN ) ∈
∏
N≥1O which does lie in the kernel. Recall that there

is a constant c such that the image of fQN in RN/qN = O has $-adic valuation
≤ c. Let Im = {N ≥ 1 | ord$ yN ≥ m(c + 1)}. Then I1 ⊃ I2 ⊃ I2 ⊃ . . . and
∩m≥1Im = ∅. Moreover, each Im is in F (since (yN ) is in the kernel of the map to
O).

We have (mRN fQN )m + qN = ($mfmQN ) + qN , and this contains ($(c+1)m) + qN .

Therefore we can for each m ≥ 1 and N ∈ Im find an element xN,m ∈ (mRN fQN )m

such that xN,m + qN = yN . We define a tuple (xN )N≥1 ∈
∏
N≥1RN by taking xN

to be an arbitrary pre-image of yN if N 6∈ I1 and xN = xN,m if N ∈ Im − Im+1.
Then (xN ) lies in I and its image in

∏
N≥1O equals (yN ), as required. �

Lemma 4.21. (1) We have an equality of ideals
∏
N≥1 q

m
N =

(∏
N≥1 qN

)m
in∏

N≥1RN .

(2) For m ≥ 1 the image of
∏
N≥1 q

m
N in Rp is equal to (qp)m.

The possibility of proving a statement like this one is mentioned in [Pan19,
Remark 4.6.10].
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Proof. It suffices to prove the first part. Recall from the proof of Corollary 2.31
that there exists an integer g0 such that for every N there exists a surjection
OJx1, . . . , xg0K → RN such that the images of the xi are in qN (since qN/q

2
N can

be generated by g0 elements). Now it suffices to prove that we have an equality

of ideals
∏
N≥1(x1, . . . , xg0)m =

(∏
N≥1(x1, . . . , xg0)

)m
in
∏
N≥1OJx1, . . . , xg0K.

We conclude using the fact that for any ring R and any ideal I ⊂ R we have

Im
∏
N≥1R =

(
I
∏
N≥1R

)m
, and we also have I

∏
N≥1R =

∏
N≥1 I when I is

finitely generated. �

For the statement of the next proposition, we recall that our data includes, for
each N ≥ 1, a map R∞ = OJx1, . . . , xgK→ RN sending the ideal q∞ = (x1, . . . , xg)
to qN . The diagonal map R∞ →

∏
N≥1RN induces a map R∞ → Rp which sends

q∞ into qp.

Proposition 4.22. (1) The O-module

qp/((qp)2, q∞)

is killed by $c, where c is as in Corollary 2.31.
(2) The natural map on completed local rings

(R∞) q̂∞ → (Rp) q̂p

is surjective. In particular, (Rp) q̂p is a complete Noetherian local E-algebra
with residue field E.

Proof. It follows from Corollary 2.31 that the cokernel of the map∏
N≥1

q∞/(q∞)2 →
∏
N≥1

qN/(qN )2

is killed by $c. Applying Lemmas 4.20 and 4.21, it remains to show that the image
of q∞/(q∞)2 in qp/(qp)2 is the same as the image of

∏
N≥1 q∞/(q∞)2. This is done

as in the proof of [Pan19, Prop. 4.6.16]: it suffices to show that the composition of
maps

q∞/(q∞)2 →
∏
N≥1

q∞/(q∞)2 → O⊗∏
N≥1O

∏
N≥1

q∞/(q∞)2

is surjective. Here the first map is the diagonal embedding and we regard O as a∏
N O-algebra via the map

∏
N O → Rp/qp ∼= O. We conclude using Lemma 4.23.

This shows the first part of the proposition. For the second, we see that the first
part implies that each of the maps

gi : (R∞/q
i
∞)q∞ → (Rp/(qp)i)qp

is surjective. To check that lim←−i gi is surjective, it is enough to note that the sequence

(ker gi)i≥1 satisfies the Mittag-Leffler condition (because each of these ideals has
finite length, being contained in an Artinian local ring). �

Lemma 4.23. Let R be a commutative ring and M a finitely generated R-module.

Suppose we have a R-algebra map
∏
N≥1R

λ→ R. Then the composite map

M →
∏
N≥1

M → R⊗∏
N≥1 R

∏
N≥1

M

is surjective.
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Proof. If M is finite free over R, then
∏
N≥1M has a (

∏
N R)-basis given by

diagonally embedded basis elements for M , and the statement is clear. In general,
we write M as a quotient of a finite free R-module F . The composition of F →
R⊗∏

N≥1 R

∏
N≥1 F → R⊗∏

N≥1 R

∏
N≥1M is surjective and factors through M . �

Remark 4.24. Note that we have not shown that qp is finitely generated, so we rely
on the comparison with R∞ to show that qp-adic completion (Rp) q̂p is qp-adically
complete!

Now we are going to consider the modules:

• m1 = (M1/a
2
∞)qp

• m0 = (M0)qp

• m = Mqp = Mq0 .

Lemma 4.25. (1) m1 is a finite free S∞,a∞/a
2
∞-module.

(2) The trace maps induce an isomorphism m1/a∞ ∼= m0.
(3) The map η induces an isomorphism η : m ∼= m0.

Proof. We start with the third part: this follows immediately from Lemma 4.13,
since by Proposition 4.8 the image of f in Rp is not in qp. The second part also
follows immediately from Lemma 4.13. It remains to show the first part. Since
the inverse image of qp in SW∞ is aW∞ , the action of S∞ on m1 factors through
the localisation S∞ ⊗SW∞ (SW∞ )aW∞ = S∞,a∞ (note that a∞ is the unique point of

Spec(S∞) in the pre-image of aW∞ under the finite map Spec(S∞) → Spec(SW∞ )).
We know from Lemma 4.13 that M1/a

2
∞ is a flat S∞/a

2
∞-module, so the localisation

m1 is a flat S∞/a
2
∞-module, and hence a flat S∞,a∞/a

2
∞-module. Since m1/a∞ is

finite dimensional (combining the second and third parts), m1 is finitely generated
over the Artinian local ring S∞,a∞/a

2
∞. �

Since m1 is a finite dimensional E-vector space, the action of the local E-algebra
(Rp)qp factors through an action by (an Artinian quotient of) (Rp) q̂p . It follows
from the third part of Lemma 4.25 that the action of (Rp) q̂p on m0

∼= m factors
through the composition of surjective maps

(4.25.1) (Rp) q̂p → (R0) q̂0
→ (T∅)q0

= E

Now we consider again our pseudorepresentations γ∞,j (1 ≤ j ≤ q) of Zp × Z
with coefficients in Rp.

Definition 4.26. For 1 ≤ j ≤ q, we let δj ∈ Rp denote the discriminant of the char-
acteristic polynomial χj(t) ∈ Rp[t] of (0, 1) ∈ Zp×Z under the pseudorepresentation
γ∞,j.

Lemma 4.27. For 1 ≤ j ≤ q, δj /∈ qp. Moreover, χj(t) mod qp splits into linear
factors in E[t].

Proof. To show that δj 6= 0, it suffices to show that for some m ≥ 1 the image of δj
under the composition

Rp → R0
hU,σ→ O → O/$m

is non-zero. Recall the constant d from Lemma 2.30. Choose m > dn(n− 1). Then
it follows from Lemma 2.30 that we will be done if we can identify the image of δj
in O/$m with the image of the discriminant of the characteristic polynomial of a
Frobenius element σṽ for some v ∈ QN . Choose m′ so that our map R0 → O/$m
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factors through R0/m
m′

R0
. Now we can identify the image of δj in R0/m

m′

R0
with the

image of an element (δj,N )N≥1 ∈
∏
N≥1R0/m

m′

R0
in RF ⊗R

∏
N≥1R0/m

m′

R0
, where

δj,N is the image of the discriminant for the Frobenius element at the jth element

of QN . We deduce that the image of δj in R0/m
m′

R0
coincides with one of these

Frobenius discriminants.
The same argument shows that the image of χj(t) mod qp splits into linear factors

in O/$m[t] for all m ≥ 1. Indeed, for each σṽ ∈ GF , the characteristic polynomial
of ρ(σṽ) has all of its roots in O (this is part of the definition of an enormous
subgroup of GLn(O)). Hensel’s lemma implies that χj(t) itself factors in O[t]. �

For each j ∈ {1, . . . , q} we fix an ordering x
(1)
j , . . . , x

(n)
j of the (pairwise distinct)

roots in E of the polynomial χj(t) mod qp. For each j, we may consider the
pseudorepresentation (γ∞,j)qp of Zp × Z with coefficients in (Rp) q̂p given by
composing γ∞,j with the natural map Rp → (Rp) q̂p . This pseudorepresentation is
residually multiplicity free.

Lemma 4.28. There is a unique collection of continuous characters γ
(i)
j : Zp×Z→

((Rp) q̂p)× (i = 1, . . . , n, j = 1, . . . , q) such that γ
(i)
j mod qp is the character

(a, b)→ (x
(i)
j )b and (γ∞,j)qp = tr γ

(1)
j ⊕ · · · ⊕ γ

(n)
j .

Proof. This follows from, e.g., [BC09, Proposition 1.5.1], since in a commutative
GMA we have (using the notation of loc.cit.) Ai,jAj,i = Aj,iAi,j ⊂ Ai,i ∩ Aj,j = 0
for i 6= j. �

The characters γ
(i)
j |Zp×0 : Zp → ((Rp) q̂p)× determine an extension of the

homomorphism SW∞ → Rp to a homomorphism S∞ → (Rp) q̂p . This in turn
naturally extends to a map from the formally smooth E-algebra (S∞) â∞ and we
choose a lift of this through the surjective map (see Proposition 4.22)

(R∞) q̂∞ → (Rp) q̂p

to equip (R∞) q̂∞ with a map from (S∞) â∞ . We denote by A′ the localization of

A at the prime ideal (t
(i)
j − x

(i)
j : 1 ≤ j ≤ q, 1 ≤ i ≤ n) and define

• m′1 = m1 ⊗A A′
• m′0 = m0 ⊗A A′.

(We recall that the ring A, defined at the beginning of §4.11, is a Laurent polynomial

ring in elements (t
(i)
j )±1 (j = 1, . . . , q, i = 1, . . . , n) which represent the patched

version of the Hecke operators tv,i($v)
±1 for Taylor–Wiles primes v.)

Remark 4.29. The above localization is our replacement for the usual ‘localization
with respect to a suitable eigenvalue of the Uq operator’ which appears in the
Taylor–Wiles method. We can only do this after patching and inverting p because
we do not assume that ρ(σṽ) has distinct eigenvalues for Taylor–Wiles places v.

Lemma 4.30. (1) For each i = 1, . . . , n and j = 1, . . . , q, the respective push-

forwards of the characters α
(i)
j , γ

(i)
j to End(m′1) are equal.

(2) The two structures of S∞-module on m′1 (the standard one, and the one
induced by the homomorphism S∞ → (Rp) q̂p constructed above) are the
same.

(3) The map (Rp) q̂p → (R0) q̂0
factors through the quotient (Rp) q̂p/a∞.
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(4) The trace maps induce m′1/a∞
∼= m′0.

(5) m′1 is a finite free (non-zero) S∞,a∞/a
2
∞-module.

Proof. Let X = {α(i)
j (z), γ

(i)
j (z) | z ∈ Zp × Z, i = 1, . . . , n, j = 1, . . . , q}. By

construction, the elements of X commute with each other; let T denote the E-
subalgebra of End(m′1) generated by the elements of X. Then T is an Artinian

E-algebra. The pushforwards of the characters α
(i)
j and γ

(i)
j take values in T and

the pseudocharacters trα
(1)
j ⊕ · · · ⊕ α

(n)
j and tr γ

(i)
j ⊕ · · · ⊕ γ

(n)
j are equal after

pushforward to T for each j = 1, . . . , q. To show that the characters α
(i)
j and γ

(i)
j are

equal after pushforward to T for each j = 1, . . . , q it is enough (after the uniqueness
assertion of [BC09, Proposition 1.5.1]) to show that they are equal after pushforward
to each residue field of T . However, our construction shows that for each i = 1, . . . , n

and j = 1, . . . , q the elements α
(i)
j (0, 1) − x(i)

j and γ
(i)
j (0, 1) − x(i)

j are commuting

nilpotent elements of End(m′1) and therefore their difference α
(i)
j (0, 1)−γ(i)

j (0, 1) lies
in the Jacobson radical of T . This proves the first part of the lemma. The second is
an immediate consequence since the two S∞-module structures are determined by

the two sets of characters α
(i)
j and γ

(i)
j .

The third part of the lemma is equivalent to the assertion that characters

γ
(i)
j |Zp×0 become trivial after pushforward along the map (Rp) q̂p → (R0) q̂0

. Since

the pseudocharacter tr γ
(1)
j ⊕ · · · ⊕ γ

(n)
j is residually multiplicity-free, the desired

statement follows from uniqueness and Lemma 4.18.
The fourth part of the lemma follows from the same statement before localisation

to A′ (Lemma 4.25). We now prove the final part of the lemma. Since m′1 is a
direct summand of m1, we just need to prove that m′1 is non-zero, or indeed that
m′0 is non-zero. For this, we note that it follows from Lemma 4.18 (compatibility
of Galois and automorphic pseudocharacters) and the observation above (4.25.1)

that the characteristic polynomial
∏n
i=1(t− t(i)j ) of (0, 1) under αj pushes forwards

to
∏n
i=1(t− x(i)

j ) = χj(t) mod qp in End(m0). It follows that AW acts on m0 via

the map AW → E induced by t
(i)
j 7→ x

(i)
j . Since the A-module m0 is isomorphic to

Sλ(U,O)q0
⊗AW A, we deduce that the localisation m′0 is non-zero. �

To complete the proof of this section’s main theorem, we recall Brochard’s freeness
criterion:

Theorem 4.31 (Theorem 1.1 of [Bro17]). Let A → B be a local morphism of
Noetherian local rings satisfying the inequality on embedding dimensions:

edim(B) ≤ edim(A).

Let M be a non-zero A-flat B-module which is finitely generated over B. Then M is
finite free over B.

Theorem 4.32. The map (R0) q̂0 → (T∅)q0 = E is an isomorphism, and as a
consequence we have

H1
f (F+, ad rπ,ι) = 0.

Proof. We apply Brochard’s criterion with A = S∞,a∞/a
2
∞, B = (R∞) q̂∞/a

2
∞,

M = m′1. Note that the embedding dimension of S∞,a∞/a
2
∞ is qn and, since

(R∞) q̂∞ is a power series ring over E in qn variables, the embedding dimension of
(R∞) q̂∞/a

2
∞ is ≤ qn.
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We conclude that m′1 is finite free over (R∞) q̂∞/a
2
∞ and therefore m′0 is finite

free over (R∞) q̂∞/a∞. Since the action of (R∞) q̂∞ on m′0 factors through the
action of (T∅)q0 , we deduce that each of the surjective maps

(R∞) q̂∞/a∞ → (Rp) q̂p/a∞ → (R0) q̂0
→ (T∅)q0

= E

are isomorphisms. The vanishing of the adjoint Selmer group follows from the
identification of this with the reduced tangent space of (R0) q̂0 (i.e. Proposition
2.21). �

Remark 4.33. We find it convenient (or amusing) to use Brochard’s freeness crite-
rion here, although we could alternatively have worked with the (S∞) â∞-module
lim←−m ((M1/a

m
∞)qp) in place of m1 and concluded using Auslander–Buchsbaum as in

the work of Diamond and Fujiwara.

5. Applications

We now deduce our main theorems. We begin with a useful lemma.

Lemma 5.1. Let F be a number field, and let E/Qp be a coefficient field. Let
ρ : GF → GLn(E) be a continuous representation which is unramified almost
everywhere. Let S be a finite set of places of F . Then we can find a finite set T of
places of F with the following property:

• T ∩ S = ∅.
• For any T -split finite extension F ′/F , ρ(GF ′(ζp∞ )) = ρ(GF (ζp∞ )).

Proof. After replacing ρ by ρ ⊕ ε, it is enough to show we can choose T so that
ρ(GF ) = ρ(GF ′) if F ′/F is T -split. Conjugate ρ so that it takes values in GLn(O),
and let L∞/F be the extension cut out by ρ, LN/F the extension cut out by
ρN = ρ mod $N . We have ρ(GF ) = lim←−N ρN (GF ), so it’s enough to show that we

can choose T so that if F ′/F is T -split, then ρN (GF ) = ρN (GF ′) for all N ≥ 1.
To this end, we let M/F be the compositum of all of the extensions of F cut out

by simple quotients of Gal(LN/F ) (for any N ≥ 1). The extension M/F is finite,
because simple quotients of Gal(LN/F ) (for varying N ≥ 1) correspond to simple
quotients of ρ(GF ) by closed normal subgroups. Since ρ(GF ) has a normal, closed
subgroup of finite index which is a topologically finitely generated pro-p group, these
quotients are finite in number.

We can therefore choose T to be any set disjoint from S and such that for each
intermediate field M/M ′/F with Gal(M ′/F ) simple, there exists v ∈ T which does
not split in M ′. �

We prove a theorem for regular algebraic, cuspidal, polarized automorphic repre-
sentations. First we treat the case of a CM base field.

Theorem 5.2. Let F be a CM number field, and let (π, χ) be a regular algebraic,
cuspidal, polarized automorphic representation of GLn(AF ). Let ι : Qp → C be an

isomorphism, and suppose that rπ,ι(GF (ζp∞ )) is enormous. Then H1
f (F+, ad rπ,ι) =

0.

Proof. As in the proof of [BLGHT11, Theorem 1.2], π has a twist which is polarized
with respect to δnF/F+ (i.e. of unitary type). The twist does not alter ad rπ,ι, so we
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can assume that π is of unitary type. For any finite extension F ′/F+, the induced
map

H1
f (F+, ad rπ,ι)→ H1

f (F ′, ad rπ,ι)

is injective. It is therefore enough to find a soluble totally real extension L+/F+

with the following properties:

• Let L = L+F . Then rπ,ι(GL(ζp∞ )) = rπ,ι(GF (ζp∞ )).
• Let πL denote the base change of π (which exists and is regular algebraic,

after [AC89, Ch. 3, Theorems 4.2, 5.1]). It is cuspidal, because rπ,ι|GL is
irreducible. Each place of L at which πL is ramified, or dividing p, is split
over L+.
• For every place w of L, πL,w has an Iwahori–fixed vector.

To achieve this, let S be the set of places of F+ dividing p or above which π is
ramified, and let SF denote the set of places of F lying above a place of S. Let
TF denote a set as provided by Lemma 5.1, disjoint from SF , and let T denote the
set of places of F+ lying below a place of TF . Then S and T are disjoint and if
L+/F+ is T -split, then L/F is TF -split. We can choose L+/F+ to be any T -split
soluble totally real extension which has the correct behaviour at the places in S, the
existence of such an extension being a consequence of [CHT08, Lemma 4.1.2]. �

Next we treat the case of a totally real base field F . We consider a regular
algebraic, cuspidal, polarized automorphic representation (π, χ) of GLn(AF ). Let
ι : Qp → C be an isomorphism, and suppose that rπ,ι is irreducible. Let V
denote the space on which rπ,ι acts. Then there is a unique GF -equivariant pairing
〈·, ·〉 : V ×V → ε1−nrχ,ι, which is symmetric if n is odd or n is even and rχ,ι(cv) = 1
(v|∞), or antisymmetric if n is even and rχ,ι(cv) = −1 (see [BC11] and [BLGGT14,
§2.1]). We thus obtain a homomorphism

r′π,ι : GF → GS(〈·, ·〉)(Qp)

to the general similitude group of the pairing 〈·, ·〉. We write gs for the Lie algebra
of this reductive group over Qp.

Theorem 5.3. Let F be a totally real number field, and let (π, χ) be a regular
algebraic, cuspidal, polarized automorphic representation of GLn(AF ). Let ι :
Qp → C be an isomorphism, and suppose that rπ,ι(GF (ζp∞ )) is enormous. Then

H1
f (F, gs) = 0.

Proof. This can be deduced from Theorem 5.2 using base change in the same
way that [All16, Theorem B] is deduced from [All16, Theorem A]. We omit the
details. �

When n = 2, these results take a particularly simple form:

Theorem 5.4. Let F be a totally real number field, and let π be a regular alge-
braic, cuspidal automorphic representation of GL2(AF ). Let ι : Qp → C be an
isomorphism. Suppose that one of the following holds:

(1) π does not have CM.
(2) π has CM by an extension K/F , and K 6⊂ F (ζp∞).

Then H1
f (F, ad rπ,ι) = 0.
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Proof. When n = 2, gs = gl2. Our result will follow from Theorem 5.3 if we can
verify that our hypotheses imply that rπ,ι(GF (ζp∞ )) is enormous. If π does not have
CM, this is example 2.34.

Suppose instead that π has CM by a CM quadratic extension K/F , and K is not
contained in F (ζp∞). To show that rπ,ι(GF (ζp∞ )) is enormous, it is enough to show
that we can find regular semisimple elements in the image of both GK(ζp∞ ) and
GF (ζp∞ ) −GK(ζp∞ ). Elements of the latter type exist because of our assumption
that K is not contained in F (ζp∞).

Now suppose for a contradiction that rπ,ι ∼= IndGFGK χ is scalar on restriction to

GK(ζp∞ ). This implies that χ/χc is trivial on GK(ζp∞ ), and hence that (χ/χc)2 = 1
(since c acts trivially on Gal(K(ζp∞)/K)). This contradicts the fact that χ/χc has
infinite order (because its Hodge–Tate weights are all non-zero, because π is regular
algebraic). This completes the proof. �

We can also prove results for elliptic curves.

Theorem 5.5. Let F be a totally real number field, and let E be an elliptic curve
over F . Let p be a prime, and suppose that one of the following holds:

(1) E does not have CM.
(2) E has CM by a quadratic field K/Q, and K 6⊂ F (ζp∞).

Then H1
f (F, adVp(E)) = 0.

Proof. If the elliptic curve E has CM, then its p-adic Galois representations are
automorphic and we can appeal to Theorem 5.4. If E does not have CM, then there
exists a totally real extension F ′/F such that the p-adic Galois representations of
EF ′ are automorphic (for example, by [Tay06]) and we can appeal again to the
same theorem. �

Combining our results with potential automorphy theorems, we can prove some
more general vanishing results. Here is an example for symmetric powers of two-
dimensional representions.

Theorem 5.6. Let F be a CM number field, and let (π, χ) be a regular algebraic,
cuspidal, polarized automorphic representation of GL2(AF ) such that Sym2 π is
cuspidal. Let p be a prime, and fix an isomorphism ι : Qp → C. Then for any

n ≥ 1, H1
f (F+, ad Symn−1 rπ,ι) = 0.

Proof. By [BLGGT14, Theorem 5.4.1], there exists a Galois, CM extension F ′/F
such that Symn−1 rπ,ι|GF ′ is automorphic. It suffices to show the vanishing of

H1
f ((F ′)+, ad Symn−1 rπ,ι), and this follows from Theorem 5.2 once we verify that

Symn−1 rπ,ι(GF ′(ζp∞ )) is enormous. However, this follows from Example 2.34. �

Finally, we give an application to vanishing results for anticyclotomic characters,
as predicted by the Bloch–Kato conjecture. Over a general CM field our main
theorem gives vanishing results which are not covered by known cases of the
anticyclotomic main conjecture (cf. those proved in [Hid09]).

Theorem 5.7. Let F be a CM number field, and let χ : F×\A×F → C× be a unitary

character of type A0. Let ι : Qp → C be an isomorphism, and suppose that the
following conditions are satisfied:

(1) χχc = 1.
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(2) The integers nτ (τ ∈ Hom(F,C)) defined by χv(z) = τ(z)nτ τc(z)nτc for
each place v|∞ are of constant parity, and none of them are zero.

(3) F 6⊂ F+(ζp∞).

Then H1
f (F, rχ,ι) = 0.

Proof. The given conditions imply that there is a character ψ : F×\A×F → C× of
type A0 such that ψ/ψc = χ. Given this, let π denote the automorphic induction
of ψ from F to F+. It is a regular algebraic, cuspidal automorphic representation

of GL2(AF+) and Ind
GF+

GF
rχ,ι is a subquotient of ad rπ,ι, so the desired vanishing

follows from Shapiro’s lemma for Bloch–Kato Selmer groups and Theorem 5.4.
Let us explain why ψ exists. Choose arbitrarily integers mτ such that 2mτ +

nτ = w, is independent of τ . Then mτc = w − mτ , so there exists a character
µ : F×\A×F → C× of type A0 such that µv(z) = τ(z)mτ τc(z)mτc . Moreover
mτ −mτc = −nτ , so χ0 = χ(µ/µc) has finite order and satisfies χ0χ

c
0 = 1. Lemma

5.8 implies that there exists another finite order Hecke character φ such that
φ/φc = χ0, so we can then take ψ = φµ−1. �

Lemma 5.8. Let F be a CM field, and let χ : GF → Q/Z be a continuous character
such that χχc = 1. Then there exists a continuous character φ : GF → Q/Z such
that φ/φc = χ.

Proof. It is equivalent to ask that H1(F/F+, H1(F,Q/Z)) = 0. We use the
Hochschild–Serre spectral sequence

Hp(F/F+, Hq(F,Q/Z))⇒ Hp+q(F+,Q/Z).

We recall that if K is a number field, then the product

Hr(K,Q/Z)→
∏
v|∞

Hr(Kv,Q/Z)

of restriction maps is an isomorphism when r ≥ 3 ([Mil06, Theorem 4.20]) and
that H2(K,Q/Z) = 0 (Tate’s theorem, see [Ser77, Theorem 4] or [Pat19, Theorem
2.1.1]). Since F has no real places, the groups Hr(F,Q/Z) vanish when r ≥ 2 and
so the spectral sequence in question has only two rows, and can be pieced together
into a long exact sequence (cf. [Wei94, Exercise 5.2.2]) including the terms

H2(F+,Q/Z) //H1(F/F+, H1(F,Q/Z))

��

H3(F/F+, H0(F,Q/Z)) //H3(F+,Q/Z).

The edge morphism H3(F/F+, H0(F,Q/Z)) → H3(F+,Q/Z) is inflation, and
is injective because the extension F/F+ is CM and the map H3(F+,Q/Z) →∏
v|∞H3(F+

v ,Q/Z) is bijective. This completes the proof. �
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modulaire de la variété trianguline, Math. Ann. 367 (2017), no. 3-4, 1587–1645.

[BLGGT14] Thomas Barnet-Lamb, Toby Gee, David Geraghty, and Richard Taylor, Potential
automorphy and change of weight, Ann. of Math. (2) 179 (2014), no. 2, 501–609.

[BLGHT11] Tom Barnet-Lamb, David Geraghty, Michael Harris, and Richard Taylor, A family
of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci. 47
(2011), no. 1, 29–98.

[Bor91] Armand Borel, Linear algebraic groups, second ed., Graduate Texts in Mathematics,

vol. 126, Springer-Verlag, New York, 1991.

[BR85] Peter Bardsley and R. W. Richardson, Étale slices for algebraic transformation groups
in characteristic p, Proc. London Math. Soc. (3) 51 (1985), no. 2, 295–317.

[Bro17] Sylvain Brochard, Proof of de Smit’s conjecture: a freeness criterion, Compositio

Mathematica 153 (2017), no. 11, 2310–2317.

[CG18] Frank Calegari and David Geraghty, Modularity lifting beyond the Taylor-Wiles
method, Invent. Math. 211 (2018), no. 1, 297–433.
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1990–91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 127–202.

[NT] James Newton and Jack A. Thorne, Symmetric power functoriality for holomorphic

modular forms, Preprint.
[NT16] , Torsion Galois representations over CM fields and Hecke algebras in the

derived category, Forum Math. Sigma 4 (2016), e21, 88.

[Pan19] Lue Pan, The Fontaine–Mazur conjecture in the residually reducible case, ArXiv
preprint arXiv:1901.07166 (2019).

[Pat15] Stefan Patrikis, On the sign of regular algebraic polarizable automorphic representa-

tions, Math. Ann. 362 (2015), no. 1-2, 147–171.
[Pat19] , Variations on a theorem of Tate, Mem. Amer. Math. Soc. 258 (2019),

no. 1238, viii+156.
[Ram93] Ravi Ramakrishna, On a variation of Mazur’s deformation functor, Compositio Math.

87 (1993), no. 3, 269–286.

[Ric88] R. W. Richardson, Conjugacy classes of n-tuples in Lie algebras and algebraic groups,
Duke Math. J. 57 (1988), no. 1, 1–35.

[Sch06] A. J. Scholl, On some l-adic representations of Gal(Q/Q) attached to noncongruence
subgroups, Bull. London Math. Soc. 38 (2006), no. 4, 561–567.

[Sch18] Peter Scholze, On the p-adic cohomology of the Lubin-Tate tower, Ann. Sci. Éc. Norm.
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