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Abstract 10 

Optical super-resolution microscopy techniques enable high molecular specificity with high spatial resolution 11 
and constitute a set of powerful tools in the investigation of  the structure of supramolecular assemblies 12 
such as viruses. Here, we report on a new methodology which combines Structured Illumination Microscopy 13 
(SIM) with machine learning algorithms to image and classify the structure of large populations of 14 
biopharmaceutical viruses with high resolution.  The method offers information on virus morphology that 15 
can ultimately be linked with functional performance. We demonstrate the approach on viruses produced 16 
for oncolytic viriotherapy (Newcastle Disease Virus) and vaccine development (Influenza). This unique tool 17 
enables the rapid assessment of the quality of viral production with high throughput obviating the need for 18 
traditional batch testing methods which are complex and time consuming.  We show that our method also 19 
works on non-purified samples from pooled harvest fluids directly from the production line. 20 

Introduction 21 

The potential of super-resolution microscopy (SRM) to unravel details of the structure and replication of 22 
viruses was recognised early on in the development of the methodology 1,2. Since then, SRM has been used 23 
to provide unprecedented insights into viral protein architecture 3–6. Previous work has focused on those 24 
SRM techniques that achieve the highest theoretical resolution, such as Stimulated Emission Depletion 25 
(STED) 7 and Single Molecule Localisation Microscopy (SMLM) 8,9. Whilst offering high fidelity data, the 26 
downside is the associated long acquisition time required by these methods, limiting their application to the 27 
imaging of static samples at low throughput. A much faster technique, although inferior in spatial resolution, 28 
is Structured Illumination Microscopy (SIM) 10,11 and this has been applied to study large viruses such as the 29 
prototypic poxvirus 5,12. In addition to understanding the structure of viruses, there is also need to identify 30 
and analyse classes of structures within large viral populations, especially in the biotechnology industry 31 
where virus quality is often compromised by large scale production operations and the virus product is often 32 
characterised by significant morphological heterogeneities. In particular, campaigns of influenza 33 
immunization rely heavily on the timely and efficient production of specific virus strains. Similarly, a deeper 34 
understanding of the structural heterogeneity of oncolytic viruses such as Newcastle Disease Virus (NDV) 13,14 35 
would enable optimization of the production processes and in turn improve the development of 36 
viriotherapy. However, quantifying and understanding this structural heterogeneity and relating it to virus 37 
efficacy requires the imaging of large numbers of viruses at sufficient spatial resolution to reveal 38 
characteristic morphological details. Typically, this is achieved by extracting batches from the production 39 
process, with elaborate subsequent purification and preparation steps before characterisation by 40 
Transmission Electron Microscopy (TEM) 15–17. Although TEM can achieve relatively high imaging throughput 41 
if the highest resolution is not necessary, its contrast remains unspecific and therefore typically does not 42 
permit discerning the presence of particular proteins in the virus envelope. Also, the typical signal-to-noise 43 
ratios achieved by are not sufficient to permit automated, robust and efficient downstream analysis of 44 
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structural features at the single particle level. It is therefore challenging for TEM to be of practical use during 45 
production operations. 46 

Here, we demonstrate that rapid high resolution imaging with Total Internal Reflection SIM fluorescence 47 
microscopy (TIRF-SIM) 18–20, combined with a machine learning (ML) approach to analyse and classify 48 
structures in virus batches offer a great opportunity to circumvent these problems. We present MiLeSIM 49 
(Machine Learning Structured Illumination Microscopy) as an efficient combination of SRM, ML-based 50 
classification 21,22 and advanced image analysis for the quantification of morphological heterogeneities in 51 
large virus populations. We use ML algorithms to perform a classification of super-resolved images of a 52 
heterogeneous virus population into particle classes with distinct and characteristic structural features (e.g. 53 
spherical, filamentous). The  classified subpopulations are then further analysed through image analysis 54 
pipelines that are specifically adapted for each structural class. We and others have shown that appropriate 55 
model fitting can lead to precision in structural parameters beyond the resolution of the images used 3,23. 56 
The method combines speed and specificity and allows an in-depth exploration of large virus populations 57 
that is unachievable by electron microscopy (EM). The method has potential in the industrial production of 58 
viruses e.g. for oncolytic viriotherapy and vaccine development. 59 

First, we compare TIRF-SIM with alternative imaging modalities and show that it is the method of choice to 60 
investigate virus structure at high-throughput (~220 virus particles/s, see Supplementary Note 1) with a 61 
spatial resolution reaching ~90 nm. The large datasets obtained with TIRF-SIM were then fed into an ML 62 
algorithm for the automated classification of Newcastle Disease Virus (NDV) and live attenuated influenza 63 
virus (LAIV) vaccines, enabling further shape-specific quantitative analyses for a structural description of viral 64 
subpopulations. The purpose of our study is to validate the MiLeSIM approach as a powerful analysis tool for 65 
biotechnological processes involving virus production both in industry and in the research laboratory.  66 

Results 67 

TIRF-SIM offers an optimal combination of throughput and resolution for the imaging of virus structure  68 

First, we explored and compared three common SRM modalities for the structural investigation of purified 69 
NDV virus, namely direct stochastic optical reconstruction microscopy, dSTORM, stimulated emission 70 
depletion microscopy, STED and TIRF-SIM. NDV viruses were labelled for the envelope glycoprotein 71 
Hemagglutinin-Neuraminidase (HN) and imaged with all three SRM imaging techniques (see Figure 1). 72 
Labelling for HN allows us to directly and specifically observe the shape of the virus particles. For 73 
comparison, a conventional (non-super-resolved) TIRF wide-field image is also shown. Typical shapes 74 
observed with TIRF-SIM are shown in Figure 1(b). TIRF-SIM provides clear structural details to discern 75 
filamentous, spherical and rod-like structures in large NDV populations. A comparison of performance 76 
parameters (resolution and imaging speed) for the different methods is presented in Figure 1 – Figure 77 
supplement 1(a). It is clear that improving resolution beyond the ~90 nm offered by TIRF-SIM (see Figure 1 – 78 
Figure supplement 1(b)) comes at a significant cost in acquisition times and throughput. Furthermore, 79 
although dSTORM and STED offer theoretically higher resolution than SIM, the images obtained with these 80 
methods do not reveal additional structural details that are not also resolved by TIRF-SIM images. This 81 
indicates that the ~2-fold resolution improvement provided by TIRF-SIM is sufficient for the structural study 82 
presented here. 83 

Traditionally, EM has been the method of choice for observing sub-diffraction structures of virus particles 84 
(see Figure 1 – Figure supplement 2 for examples of particles). Here we show that TIRF-SIM can offer 85 
significant advantages compared to EM (summarized in Table 1). The improvement in molecular specificity 86 
allows an unambiguous identification of viral components; the high signal-to-noise ratio (SNR) furthermore 87 
enables a robust and straightforward application of further image analysis steps (identification and 88 
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classification of virus particles).  Also, the capability of investigating unpurified and aqueous samples makes 89 
TIRF-SIM ideally suited to the present application.  90 

 91 
Figure 1: Super-resolution microscopy (SRM) for the study of NDV virus structure. (a) Representative images of purified NDV viruses with different 92 
imaging modalities. (b) Representative images of a purified NDV virus population imaged with TIRF-SIM and their corresponding TIRF wide-field 93 
image. WF: wide-field TIRF microscopy. Scale bar: 1 µm. 94 

 95 

Workflow of MiLeSIM 96 

The images obtained with TIRF-SIM show a number of stereotypical virus structures in NDV samples labelled 97 
for HN, indicating a large morphological diversity in the virus populations that may stem from variability 98 
occurring during viral replication or at the purification stage. Understanding the origins and consequences of 99 
such heterogeneity informs not only on the life cycle of the virus but can also provide essential insights into 100 
the virus production process to manufacturers of virus-based therapeutics. An automated classification of 101 
virus shapes would enable the quantification of virus heterogeneity and permit further analysis of each 102 
individual class independently. The workflow to achieve these goals is shown in Figure 2.  103 

Individual virus particles are first identified by automated segmentation and then fed to the ML routine for 104 
classification. We used a supervised ML algorithm (here a random forest algorithm 24) to ensure the 105 
robustness of the method and for ease of implementation. We identified 6 major structural classes in the 106 
NDV samples which we divide into long and short filamentous, small and large spherical, rod-like and 107 
unknown structures. The unknown class is made of clumps of viral material with no consistent and 108 
identifiable shapes. A control sample that was prepared identically to the other samples except without virus 109 
particles present allowed us to identify that non-specific bindings of antibodies appear as rare, dim and small 110 
point-like structures that could easily be discriminated and excluded from further analysis. 111 

The filamentous particles (long and short) class is further analysed by automatic extraction of the linear 112 
backbone of structures and measurement of their length. The width of these filamentous structures 113 
appeared to be limited by the resolution of the imaging technique (~90 nm for TIRF-SIM, see Figure 1 – 114 
Figure supplement 1, but also observed in higher resolution approaches such as dSTORM) and therefore, we 115 
considered the filamentous class as 1D structures. The spherical structures were analysed by estimating their 116 
equivalent radius from the area of the particle. We note that other methods for estimation of the radius, e.g. 117 
the ellipsoid localization microscopy (ELM) analysis 23, could also be used here. The latter fits a shape model 118 
to imaging data to permit the extraction of structural parameters with precision higher than the inherent 119 
resolution of the imaging method 3,23. A similar model-based fitting approach was used to fit rod-like viral 120 
particles and to obtain length and width parameters for this structural class (see materials and methods 121 
section and Figure 2 – Figure supplement 1 for details). 122 
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 123 

  124 
Figure 2: Workflow of automated detection, classification and analysis of NDV viral particles. SIM image (a) and segmented particles (b). The 125 
classified single-virus images (c) can be further analysed with a set of class-specific tools (d). For the backbone analysis the mask and backbone are 126 
showed in blue and white respectively. For the model-fitting approach (spherical and rod-like), the data and model are showed in green and 127 
magenta respectively. LF: long filamentous, SF: short filamentous, LS: large spherical, SS: small spherical, RD: rod-shape, UK: unknown. LF, DLS, LRD 128 
and WRD represents the length of the filamentous particles, the diameter of the large spherical, and the length of the rod-shaped particles and the 129 
width of the rod-shaped particles respectively. Images of individual particles cover a field of view of 1.6 x 1.6 µm. 130 

 131 

Classification of virus structures using supervised machine learning algorithms 132 

The structural classification was performed using a supervised ML algorithm which allows for rapid and 133 
automated classification of large datasets. The choice of algorithm and the set of features (often called 134 
predictors) extracted for each identified particle were optimised to maximise the overall accuracy of the 135 
model based on the training dataset (comprising of 370 manually annotated particles). Here, the model 136 
accuracy is defined as the fraction of correctly classified particles across all classes. Figure 3(a) describes the 137 
list of chosen individual features (selected from basic shapes features, Hu’s image moments 25, features 138 
obtained from the pre-trained convolutional neural network (CNN) AlexNet 26 and from Speeded Up Robust 139 
Features, SURF 27). The predictors were selected based on the following criteria: basic structural features of 140 
the particles (e.g. area, eccentricity) and Hu’s moments were chosen because they are rotationally and 141 
translationally symmetric. For the features from AlexNet and SURF a feature selection approach was 142 
designed based on maximising the standard deviation across the different structural classes. This approach 143 
constitutes a more rational choice compared to simple principal component analysis (PCA), which does not 144 
typically take the information regarding the classes into account, therefore our method selects for predictors 145 
that have high potential for class discrimination. This data reduction narrowed down the number of 146 
predictors to 6 for AlexNet and 6 for SURF.  147 
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A total of 24 predictors was finally chosen: 7 based on basic shapes (area, ratio of axis lengths, eccentricity, 148 
solidity, perimeter-to-area, mean intensity, standard deviation of pixel intensities), 5 of Hu’s image moments 149 
(Hu1, Hu4, Hu5, Hu6 and Phi4), 6 features obtained from the pre-trained convolutional neural network 150 
(CNN) AlexNet and 6 from a SURF bag of features. The classification workflow is described in Figure 3 – 151 
Figure supplement 1. 152 

 153 

 154 
Figure 3: Machine learning-based classification. (a) Building the list of predictors from basic features, image moments, convolutional neural 155 
network (CNN) features and SURF bag of features (BoF). (b) Example of 2D scatter plots of pairs of predictors showing how some predictors allow 156 
identification of class clusters. (c) Confusion matrix obtained from the random forest showing the high true positive rate (TPR) and positive 157 
predictive values (PPV) of the classification. All numbers shown here are in percentage. (d) Scoring of the predictors sorted in descending order. 158 
IM: image moment. AN: AlexNet feature. BoF: SURF features. L1/L2: ratio of long axis over short axis. <I>: average intensity. P/A: perimeter to area 159 
ratio. σI: standard deviation of intensity. LF: long filamentous, SF: short filamentous, LS: large spherical, SS: small spherical, RD: rod-shape, UK: 160 
unknown. 161 

 162 

Panels described in Figure 3(b) show examples of scatter plot from arbitrarily chosen pairs of predictors 163 
highlighting that some predictors support classification across specific classes better than other 164 
combinations (identifiable clusters of certain classes). Here, the training dataset was used to build a scatter 165 
plot of pairs of predictors with the knowledge of their true classification (see colour scheme). For instance, 166 
the pair of predictors L1/L2 and Area show a good separation between long filamentous (dark blue labels) 167 
and unknown structures (black labels). The confusion matrix (Figure 3(c)) highlights the effective true 168 
positive rate (TPR) and positive predictive values (PPV) across the different classes with a model accuracy of 169 
88.4%. We note that some long filamentous viruses are misclassified as small filamentous, some small 170 
filamentous are misclassified as small spherical and that, on occasion, some unknown structures populate 171 
the predicted long and large spherical structure classes. Considering the simple shapes of these viruses, it is 172 
expected that a small fraction of particles are misclassified as structures with close resemblance. 173 
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The scoring of the predictors presented in Figure 3(d) indicates the average accuracy of each individual 174 
predictor. A high score indicates a high capacity to discriminate between different classes. The scoring was 175 
performed by measuring the accuracy of the classification for many combinations of predictors and 176 
distributing the accuracy score across the predictors tested (see Materials and Methods for details). In other 177 
words, if a combination of 2 predictors alone give an accuracy of 60%, a score of 30% is awarded to both 178 
individual predictors. This method was repeated and scores represent averages across > 13,000 different 179 
combinations of predictors. 180 

Structural details of an NDV virus population  181 

We analysed a total of ~6,500 particles using MiLeSIM and established that 49.7% of NDV particles 182 
presented a filamentous shape whereas the large spherical, small spherical and rods represent 18.6%, 7.8% 183 
and 7.3% of the total population, respectively (Figure 4(a)). In addition to structural classification, the high-184 
resolution images also permitted a dimensional analysis to be performed at the single particle level. We 185 
estimated the particle radius from both small and large spherical particles by calculating the equivalent 186 
radius from the particle area; backbone extraction to the short and long filamentous particles, to estimate 187 
the particle length; and designed a model fitting for the rod structures. Figure 4 shows the distribution of 188 
structural parameters for each class. We observe that both long filamentous and large spherical are well 189 
described by a Gamma distribution whereas the small filamentous and small spherical are well described by 190 
a Gaussian distribution. The model-fitting applied to the rod-shaped particles (see materials and methods 191 
and Figure 2 – Figure supplement 1 for details) allows the extraction of both the width and length of each 192 
particle. Therefore, it is possible to plot the distribution of structural parameters as a contour plot Figure 193 
4(c)). 194 

We estimated the mean and standard deviation of the structural parameters from the distributions and 195 
obtained: LLF = 650 ± 430 nm, LSF = 200 ± 100 nm, DLS = 338 ± 94 nm, DSS = 190 ± 10 nm. For the rod-shaped 196 
particles, we observed that the width WRD = 135 ± 30 nm and the length LRD = 610 ± 350 nm (all rounded to 197 
two significant figures, ± represents the standard deviation of the distribution).  These values are distributed 198 
around two populations as shown on the contour plot in Figure 4(d). However, we note that the radius 199 
analysis based on the area of the particle used here constitutes an overestimate of the physical radius of the 200 
particle due to the broadening caused by the point-spread function. It is possible to estimate a more 201 
accurate diameter of the underlying spherical structures by using the ELM analysis. The results obtained 202 
from the ELM analysis of the large spherical structures are shown in Figure 4 – Figure supplement 1(a). The 203 
ELM diameter obtained for the large spherical particles (220 nm ± 69 nm) is in good agreement with an area-204 
based diameter of 338 nm and a resolution of 90 nm. 205 

It should be noted that the small spherical distribution is centred on the value of optical resolution of our 206 
SIM microscope, which indicates that the small spherical structures the small spherical structures are smaller 207 
than the point-spread-function. 208 
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  209 
Figure 4: Quantitative analysis of NDV. The distribution of structural parameters for all classes was obtained from a total of ~6,500 virus particles. 210 
LF: long filamentous, SF: short filamentous, LS: large spherical, SS: small spherical, RD: rod-shape, UK: unknown. Images of individual particles 211 
cover a field of view of 1.6 x 1.6 µm. 212 

 213 

MiLeSIM is capable of assaying influenza strains used for vaccine production in purified and non-purified 214 
samples from the production line 215 

We applied our approach to four different strains of Live Attenuated Influenza Virus (LAIV) immuno-labelled 216 
for the glycoprotein Hemagglutinin (HA) present on the exterior of the viral envelope. The shape of the virus 217 
particles obtained here were classified using the same classifier as for NDV. The LAIV virus population was 218 
dominated by spherical structures (> 60%). Figure 5 shows the distribution of particle sizes for four virus 219 
strains: a B-Victoria subtype (B/Brisbane/60/2008), a B-Yamagata subtype (B/Phuket/3073/2013) and two 220 
subtype A H1N1 strains (A/South Dakota /06/07 and A/Bolivia/559/2013). The fractions of small and large 221 
spherical particles are shown, as well as the equivalent radii and representative images of the viruses. It is 222 
clearly seen that B-Victoria particles consist of mostly large hollow particles with an equivalent radius of 223 
~130 nm, a value that is in good agreement with the ELM analysis and a resolution of 90 nm (Figure 4 – 224 
Figure supplement 1(b)).   225 

In contrast, the B-Yamagata strain shows small and large particles of equal amount, indicating that the 226 
particles sizes are distributed around the region of overlap between small and large particles. This is 227 
confirmed by the nearly identical equivalent radius distributions. 228 
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  229 
Figure 5: MiLeSIM approach applied to Live Attenuated Influenza Virus (LAIV). 2 types of B and A viruses were analysed here. The population was 230 
dominated by small and large spherical particles. The distributions of equivalent radius are shown here for both the large and small spherical for 231 
direct comparisons. The number of particles analysed were N=3,821, 4704, 1,062 and 1,756 for B/Brisbane/60/2008 (B-Victoria), 232 
B/Phuket/3073/2013 (B-Yamagata), A/South Dakota/06/2007 and A/Bolivia/559/2013 respectively. Images of individual particles cover a field of 233 
view of 1.6 x 1.6 µm. 234 

 235 

Both A strains appeared clearly dominated by small spherical particles with sizes close to the resolution limit 236 
of our imaging. However, our high-throughput approach reveals subtle differences in the distribution of 237 
small spherical structures where the A/South Dakota viruses appear more heterogeneous (standard 238 
deviation ~10 nm), whereas the A/Bolivia viruses are sharply distributed (standard deviation ~4 nm). 239 

We also investigated the potential of directly imaging pool harvested fluid (PHF). LAIV are commonly 240 
propagated in embryonated hens’ eggs where progeny viruses are released into the allantoic fluid of the 241 
egg. This fluid is harvested from numerous eggs and pooled. This constitutes a very basic and commonly 242 
used virus material. It is easy to produce and does not undergo any downstream purification. Consequently, 243 
PHF is impure, containing a variety of egg-derived impurities. The high molecular specificity of fluorescence 244 
microscopy allowed us to visualize the structure of the viruses with the same image quality directly in PHF 245 
despite the presence of a large amount of impurities (Figure 5 – Figure supplement 1(a)). The structural 246 
analysis of the B-Victoria strains from MVB (Figure 5) and PHF (Figure 5 – Figure supplement 1(b)) allows us 247 
to decipher the effect of purifications steps on the structural properties of the population. The fraction of 248 
unknown structures dropped from 23% to 8% between MVB and PHF respectively. This change in fraction of 249 
unknown structure may be a result of the different densities of viruses on the cover slip. We observed a 250 
lower density of virus particles in the PHF preparations, which may lead to fewer aggregated classes and 251 
therefore fewer unidentifiable structures. In addition, whereas the PHF shows a nearly equal amount of 252 
small and large spherical structures, the MVB preparation is missing a large population of small spherical 253 
compared to the PHF. This is also reflected by the larger average diameters observed in the MVB compared 254 
to the PHF (DSS = 191 ± 12 nm and 198 ± 14 nm and DLS = 241 ± 56 nm and 275 ± 49 nm for PHF and MVB 255 
respectively). 256 
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MiLeSIM therefore enables the study of unpurified samples and allows probing the virus production at any 257 
intermediate levels of production and purification. This constitutes a strong advantage over electron 258 
microscopy (EM) techniques which require the use of highly purified samples and elaborate preparation 259 
protocols.  260 

 261 

Discussion 262 

We have demonstrated the potential of high-throughput imaging of virus structures, taking advantage of the 263 
optimal combination of speed and resolution afforded by the TIRF-SIM imaging method. TIRF-SIM provided 264 
sufficient resolution to identify, discriminate and analyse individual viral structural classes with high 265 
specificity, even in non-purified samples. Our approach combines machine learning to classify NDV viruses, 266 
followed by a model-based or direct quantification of virus structural parameters.  The method yielded 267 
similar results both in purified samples and in samples from unfiltered PHF offering promise for use as an 268 
assay during virus production. We were able to image up to ~220 particles / second at 90 nm resolution, 269 
vastly increasing imaging throughput compared to alternative super-resolution methods, improving 270 
sensitivity and specificity in comparison to TEM. Furthermore EM does not feature the specificity to analyse 271 
virus samples in their aqueous, unaltered unpurified forms. We were able to observe large structural 272 
variabilities in the NDV population and also between different strains of LAIV.  273 

Our particular classification uses random forest with a selection of predictors from simple shape parameters, 274 
rotational and translational invariant image moments and features from AlexNet and common feature for 275 
image recognition such as SURF. The model accuracy is ~88.4% and the mis-classification occur between 276 
classes that are similar (between small spherical and small filamentous for instance). The structural 277 
parameters that we extract from the model fitting are precise beyond the image resolution as they take into 278 
account the finite optical resolution. This therefore reveals subtle differences in populations such as the two 279 
sub-classes observed in the rod-shaped class. This approach will be beneficial especially when 280 
heterogeneous populations are present and need to be quantified. In future, such information can be 281 
correlated with functional characteristics of produced virus classes and production parameters can 282 
accordingly be optimised. The approach thus holds great promise for the production of virus-based 283 
therapeutics. We note, however, that the methods presented are generally applicable to other systems and 284 
they are not restricted to a particular type of fluorescence microscopy, SRM or not.  285 

  286 
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Materials and methods 287 

Sample preparation. The purified NDV samples were prepared on cover slips as previously described 3. 288 
Briefly, viruses were adhered on poly-L-lysine-coated Ibidi 8-well dishes, fixed, permeabilised and immuno-289 
labelled for the envelope glycoprotein Hemagglutinin-Neuraminidase (HN) with primary antibodies (mouse 290 
anti-hemagglutinin-neuraminidase HN, Abcam, UK) followed by secondary labelling (goat anti-mouse 291 
labelled with Alexa Fluor 647 for dSTORM, with Alexa Fluor 488 for TIRF-SIM and with ATTO647-N for STED, 292 
Abcam, UK).  293 

The LAIV samples were prepared identically but using primary antibodies originating from MedImmune in-294 
house, non-commercially available monoclonals that target the viral glycoprotein Hemagglutinin (HA) 295 
present on the exterior of the viral envelope: F16 mouse antibody for B-Victoria, Infa0121 mouse antibody 296 
for B-Yamagata and FY1 human antibody 28 for A South Dakota and A Bolivia. The corresponding secondary 297 
antibodies were used (donkey anti-mouse DyLight 488 labelled or rabbit anti-human DyLight 488 labelled 298 
antibodies, ThermoFisher). All virus samples originated from the monovalent bulk (MVB) and are therefore 299 
highly purified, unless indicated in the text, where the direct pool harvest fluid (PHF) was used.  300 

TIRF-SIM, STED and dSTORM imaging. Our custom-built TIRF-SIM system was described previously 20. We 301 
used an Olympus UAPON 100x TIRF NA=1.49 and an Orca Flash 4.0 camera, with a sample pixel size of 64 302 
nm. A total of 9 SIM images were acquired (3 phases, 3 orientations) with a camera exposure time of 200 ms 303 
and ~250 µW of 488 nm laser, measured at the back aperture of the objective. The SIM images were 304 
obtained using the reconstruction code provided by Dr Lin Shao 18, providing images with doubled resolution 305 
and 32 nm final pixel size using a Wiener filter of 0.01. The STED imaging was performed on our custom-built 306 
STED microscope as described previously 29. The dSTORM imaging was performed on a custom-built single-307 
molecule microscope previously described 30,31 and with and mercaptoethylamine (MEA) buffer as previously 308 
described 3. The dSTORM image reconstruction was carried out using rapidSTORM 3 32.  309 

The resolution achieved by the TIRF-SIM  microscope was assessed by identifying the edge of the spatial 310 
frequency support using the SIMcheck plugin 33, as shown in Figure 1 – Figure supplement 1. For STED 311 
microscopy, the resolution was estimated from cross-sections of 20 nm beads and reporting the full width at 312 
half maximum (FWHM). The dSTORM resolution reported here was obtained from the FWHM of the 313 
localization precision, estimated by 34.  314 

Classification. All segmentations, predictors extractions and classifications were performed using MATLAB 315 
(Mathworks). A general diagram of the method is shown in Figure 1 – Figure supplement 1. The 316 
segmentation was obtained by an initial Otsu binarization and refined by active contour. This allowed a 317 
better outline of the particles and efficient separation of particles in close proximity. The particles that were 318 
judged too small or too dim to be real particles (based on criteria obtained from the control sample) were 319 
excluded from further analysis.  320 

The basic shape features were extracted using the function regionprops. Hu’s image moments were 321 
computed from the 71x71 pixels particle image centred on the centre of mass of the particle. The absolute 322 
values of the logarithm of the moments were used in the classification. For the features obtained from 323 
AlexNet 26, the individual 71x71 pixels images were resized to 227x227 pixels and used as all three color 324 
layers of the RGB images taken by AlexNet. Then, feature extraction was performed using AlexNet as a pre-325 
trained network. 4096 features were obtained and data reduction was performed to limit the number of 326 
predictors used. For this, the features were averaged within each individual class and the standard deviation 327 
of every feature across the classes was computed. The 6 features with the highest standard deviation was 328 
selected. For the SURF features, first a bag of visual words was created from the training dataset, this bag 329 
was then used to check the presence of visual words in the 71x71 pixels images of individual particles. 330 
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Similarly to AlexNet features, we selected only the 6 visual word features with the highest standard 331 
deviation across the different classes for classification. This allowed the computation of a total of 24 features 332 
for ML. 333 

The classification was performed using a random forest algorithm. The training dataset was made of 370 334 
manually labelled individual particles and was used to train the random forest across 60 epochs. The 335 
classification was validated by 10-fold cross validation on the same dataset. The confusion matrix obtained 336 
from this cross-validation is show in Figure 3. At the training stage, the training dataset was augmented 5-337 
fold by transforming the images with image translation and rotation randomly picked between 0 and 1 pixels 338 
and between 0 and 360 degrees respectively.  339 

The accuracy of the model was estimated by calculating the fraction of correctly classified particles across all 340 
classes. 341 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠  

Predictor scoring. The predictors were scored by computing the accuracy of the random forest trained on 342 
the training dataset but with only subsets of features. Out of the 24 predictors all combinations of 2, 3, 4, 24, 343 
23 and 22 predictors were tested corresponding to a total of 13,227 combinations of predictors . For each 344 
combination of predictors , the accuracy obtained was split equally across the different predictors used, 345 
producing a “local” accuracy for each feature. This local score was average across all combinations using a 346 
specific feature to obtain the global score. 347 

𝑆𝑖 =
1

𝑁𝑐
𝑖 ∑ 𝑎𝑖𝑗

𝑃𝑗
𝑛𝑗

𝑁𝑐

𝑗=1

 

Where Si is the global score of the feature i, Nc
i is the total number of combinations tested involving feature 348 

i, aij is a factor reflecting the presence of the feature i in the combination j. aij is equal to 1 if i  is present in j, 349 
0 otherwise. Pj is the accuracy of the combination j, Nc is the total number of combination tested and nj is 350 
the number of features present in the combination j.   351 

Quantitative analysis. All quantitative analyses were performed using MATLAB (Mathworks). The length of 352 
the filamentous structures were extracted by measuring the geodesic distance along the skeletonized image 353 
of the filament. The ELM analysis is freely available 23 and the code was adapted to insert within the 354 
workflow of our approach. For ELM analysis, we observed no significant ellipticity in the spherical virus 355 
particles and fitted spherical shapes to extract the radius of the particles (Figure 4 – Figure supplement 1). 356 

The equivalent radius r of the small spherical particles were simply calculated from the area A of the 357 
segmented particle. 358 

𝑟 = √𝐴
𝜋 

The image model for the rod-shaped particles is presented in Figure 1 – Figure supplement 1. Briefly, the 359 
backbone of the particle was extracted by image thinning and then dilated by a disk-shaped kernel of radius 360 
equal to half of the width of the rod. The length of the rod could be adjusted by shortening the ends of the 361 
backbone or by extrapolating it outwards to lengthen it. The interior pixels of the image obtained were 362 
removed to leave the outline of the particle shape. This outline was then convolved with a Gaussian kernel in 363 
order to take into account the effect of the image resolution (here 90 nm). The intensity, the width and 364 
length of the model image were adjusted to minimize the sum of the square difference of intensity χ2. 365 
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 366 

𝜒2 = ∑[𝐼𝑚(𝑖, 𝑗) − 𝐼𝑑(𝑖, 𝑗)]2

𝑖𝑗

 

Where i and j refer to the indices in the image, Im(i,j) is the image model, and Id(i,j) is the original image.  367 
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Supplementary information 455 

  456 
Figure 1 – Figure supplement 1: Resolution in SRM. (a) Typical spatial resolution and acquisition times for the imaging of NDV structures 457 
highlighting the trade-off between speed and resolution (b) Representative TIRF-SIM image obtained from purified B Victoria LAIV and its 458 
corresponding Fourier transform (c). The Fourier transform highlights the resolution ~90 nm. The plot was obtained using the SIMcheck plugin33. 459 
(d) Image and cross section of a single secondary antibody labelled with DyLight 488, showing a FWHM of ~90 nm. FFT: Fast Fourier transform. 460 

 461 
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 462 
Figure 1 – Figure supplement 2: Electron micrographs of NDV and B-Victoria viruses. These images were obtained from a Philips CM 100 463 
Compustage (FEI) TEM and negative staining. 464 

 465 

 TIRF-SIM EM 

Contrast Fluorescence Electron scattering 

Molecular specificity Very high Medium to low 

Spatial resolution achievable ~90 nm ~1 Å 

Acquisition time / 1000 virus 

particles* 
2 s 2 s 

Typical field of view size 30 µm x 30 µm 500 nm x 500 nm 

Sample preparation complexity Low Low to Medium 

Compatibility with aqueous buffers High Low 

Compatibility with non-purified 

samples 
High Low 

Signal to noise ratio achievable Very high Medium 

Sample preparation time Low (2-3h) Low to High 

Expertise required for imaging Medium Medium 

Cost Low (£100k) Medium (£250k) 
 466 

Table 1: Comparison of the key performance parameters of TIRF-SIM (proposed method) and EM in the context of high throughput imaging of 467 
virus structure. The resolution and acquisition time of EM were quoted for a standard TEM imaging (Philips CM 100 Compustage (FEI) 468 
Transmission Electron Microscope with an AMT CCD camera). *for a comparable field-of-view. 469 

 470 
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 471 
Figure 2 – Figure supplement 1: Image model for the analysis of the rod-shaped particles. The original image is segmented and thinned to obtain 472 
the backbone of the particle. The backbone is up-sampled and interpolated outside the particle. It is then used to compute the model scaffold. For 473 
this, each end of the backbone is independently grown or reduced to adjust its length, hence LRD = Ltot – L1 – L2, where Ltot is the maximum length of 474 
the extended backbone, and L1 and L2 are the adjusted distances by which the backbone length is adjusted on each end respectively. Then, the 475 
image is dilated by a disk-shaped kernel of radius equal to half WRD. The outline of this image gives the model scaffold. The scaffold is then 476 
convolved with a Gaussian kernel representing the effect of image resolution (here 90 nm) and the image is down-sampled again to the original 477 
image size. The optimal LRD and WRD are those that minimize the difference image and the χ2.  478 

 479 

 480 
Figure 3 – Figure supplement 1: Flowchart describing the machine learning pipeline used here for image classification. A strong emphasis should 481 
be put on the choice of predictors and the quality of the manual annotation (training dataset) prior to classification, as this will largely determine 482 
the quality of the classification. 483 

 484 

 485 
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 486 
Figure 4 – Figure supplement 1: ELM analysis of the large spherical NDV (a) and B-Victoria LAIV (b) viruses. The distribution of diameters were 487 
fitted to a Gamma and Gaussian distributions respectively. The mean diameters and standard deviations of the data are shown. 488 

 489 

 490 

 491 
Figure 5 – Figure supplement 1: Structural analysis of B-Victoria LAIV obtained from pool harvested fluid (PHF). (a) TIRF-SIM images. The images 492 
acquired here using PHF show an identical image quality as with highly purified samples. (b) Structural analysis of N = 1295 virus particles. Images 493 
of individual particles cover a field of view of 1.6 x 1.6 µm. 494 

 495 

 496 
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Supplementary Note 1: Throughput of the method. 498 

The imaging throughput of the method can be assessed in terms of number of particles imaged per second. 499 
The field-of-view achievable in our TIRF-SIM system is ~32 µm x 32 µm and a high quality sample preparation 500 
can yield a virus particle density of ~1 particle/µm2. Therefore, with an acquisition time of 200 ms/SIM raw 501 
frame (with a total of 9 frames), we assess that our single frame particle throughput can reach ~500 imaged 502 
particles/s. However, the acquisition of two consecutive fields-of-view are affected by imaging dead time as 503 
a consequence of stage movement and refocussing. In the study presented here, this step was done 504 
manually and took approximately 2-3 s. Therefore, a practical throughput achievable for the imaging is of 505 
the order of ~220 particles/s. We note however that both acquisition times and the stage movement time 506 
can be easily reduced by increasing illumination power and automation respectively. This makes the 500 507 
particles/s not an unreasonable estimation for the achievable throughput of a further optimised acquisition.  508 

The throughput of the method can also be regarded as the time necessary to perform the complete study 509 
from sample preparation to analysis. Table 2 indicates typical times necessary to perform the individual 510 
steps of the workflow. This table indicates that a full structural analysis of a particular sample can be 511 
obtained within a day. 512 

 513 

Step Description Time 
Sample preparation Plating, permeabilising and immune-labelling of 

virus particles 
2-3h 

Instrument set-up Quality check of set-up alignment, calibration and 
sample mounting 

30 min 

Imaging Image acquisition, stage movement and refocus 
for ~50,000 particles (50 fields-of-view) 

30 min 

SIM reconstruction SR reconstruction of 50 fields-of-view < 30 min 
Classification on unknown 
data 

Extraction of predictors and classification (for 50 
fields-of view) 

1h 

Structural analysis Extraction of structural parameters for each 
classes (for 50 fields-of view) 

1h 

 514 

Data curation for training 
dataset 

Generating manually labelled particle dataset 
(performed only once) for ~500 particles 

2h 

Generating classification 
model 

Data augmentation, extraction of predictors, 
training of the model, cross-validation on ~500 
particles (performed only once) 

5-6 h 

 515 

Table 2: Estimation of the time necessary to perform individual steps involved in MiLeSIM. Sample preparation was estimated based on standard 516 
immuno-labelling protocols. The computational times were assessed on an analysis machine with an i7 processor at 3.5 GHz and 64 GB of RAM. 517 
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