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Clifford algebras have been studied for many years and their algebraic properties are well 
known. In particular, all Clifford algebras have been classified as matrix algebras over one 
of the three division algebras. But Clifford Algebras are far more interesting than this 
classification suggests; they provide the algebraic basis for a unified language for physics 
and mathematics which offers many advantages over current techniques. This language is 
called geometric algebra - the name originally chosen by Clifford for his algebra - and 
this thesis is an investigation into the properties and applications of Clifford's geometric 
algebra. The work falls into three broad categories: 

• The formal development of geometric algebra has been patchy and a number of 
important subjects have not yet been treated within its framework. A principle fea
ture of this thesis is the development of a number of new algebraic techniques which 
serve to broaden the field of applicability of geometric algebra. Of particular inter
est are an extension of the geometric algebra of spacetime (the spacetime algebra) 
to incorporate multiparticle quantum states, and the development of a multivector 
calculus for handling differentiation wi th respect to a linear function. 

• A central contention of this thesis is that geometric algebra provides the natural 
language in which to formulate a wide range of subjects from modern mathematical 
physics. To support this contention, reformulations of Grassmann calculus, Lie 
algebra theory, spinor algebra and Lagrangian field theory are developed. In each 
case it is argued that the geometric algebra formulation is computationally more 
efficient than standard approaches, and that it provides many novel insights. 

• The ultimate goal of a reformulation is to point the way to new mathematics and 
physics, and three promising directions are developed. The first is a new approach 
to relativistic multiparticle quantum mechanics. The second deals with classical 
models for quantum spin-I/2. The third details an approach to gravity based on 
gauge fields acting in a fiat spacetime. The Dirac equation forms the basis of this 
gauge theory, and the resultant theory is shown to differ from general relativity in 
a number of its features and predictions. 
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Chapter 1 

Introduction 

This thesis is an investigation into the properties and applications of Clifford's geometric 
algebra. That there is much new to say on the subject of Clifford algebra may be a surprise 
to some. After all, mathematicians have known how to associate a Clifford algebra with 
a given quadratic form for many years [11 J and , by the end of the sixties , their algebraic 
properties had been thoroughly explored. The result of this work was the classification of 
all Clifford algebras as matrix algebras over one of the three associative division algebras 
(the real, complex and quaternion algebras) [12J-[16J. But there is much more to geometric 
algebra than merely Clifford algebra. To paraphrase from the introduction to "CliffoTd 
Algebm to GeometTic Calculus" [24], Clifford algebra provides the gmmmaT from which 
geometric algebra is constructed, but it is only when this grammar is augmented with a 
number of secondary definitions and concepts that one arrives at a true geometric algebra. 
In fact, the algebraic properties of a geometric algebra are very simple to understand, they 
are those of Euclidean vectors, planes and higher-dimensional (hyper)surfaces . It is the 
computational power brought to the manipulation of these objects that makes geometric 
algebra interesting and worthy of study. This computational power does not rest on the 
construction of explicit matrix representations, and very little attention is given to the 
matrix representations of the algebras used. Hence there is little common ground between 
the work in this thesis and earlier work on the classification and study of Clifford algebras . 

There are two themes running through this thesis: that geometric algebra is the nat
ural language in which to formulate a wide range of subjects in modern mathematical 
physics , and that the reformulation of known mathematics and physics in terms of geo
metric algebra leads to new ideas and possibilities. The development of new mathematical 
formulations has played an important role in the progress of physics. One need only con
sider the benefits of Lagrange's and Hamilton's reformulations of classical mechanics, or 
Feynman's path integral (re)formulation of quantum mechanics, to see how important the 
process of reformulation can be. Reformulations are often interesting simply for the novel 
and unusual insights they can provide. In other cases, a new mathematical approach can 
lead to significant computational advantages , as with the use of quaternions for combining 
rotations in three dimensions. At the back of any programme of reformulation, however, 
lies the hope that it will lead to new mathematics or physics. If this turns out to be 
the case, then the new formalism will usually be adopted and employed by the wider 
community. The new results and ideas contained in this thesis should support the claim 
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that geometric algebra offers distinct advantages over more conventional techniques, and 
so deserves to be taught and used widely. 

The work in this thesis falls broadly into the categories of formalism, reformulation 
and results. Whilst the foundations of geometric algebra were laid over a hundred years 
ago, gaps in the formalism still remain. To fill some of these gaps , a number of new alge
braic techniques are developed within the framework of geometric algebra. The process 
of reformulation concentrates on the subjects of Grassmann calculus, Lie algebra theory, 
spinor algebra and Lagrangian field theory. In each case it is argued that the geometric 
algebra formulation is computationally more efficient than standard approaches, and that 
it provides many novel insights . The new results obtained include a real approach to 
relativistic multiparticle quantum mechanics, a new classical model for quantum spin-1/2 
and an approach to gravity based on gauge fields acting in a fiat spacetime. Through
out, consistent use of geometric algebra is maintained and the benefits arising from this 
approach are emphasised. 

This thesis begins with a brief history of the development of geometric algebra and a 
review of its present state. This leads, inevitably, to a discussion of the work of David 
Hestenes [17J- [34]' who has done much to shape the modern form of the subject. A number 
of the central themes running through his research are described, with particular emphasis 
given to his ideas on mathematical design. Geometric algebra is then introduced, closely 
following Hestenes' own approach to the subject. The central axioms and definitions 
are presented, and a notation is introduced which is employed consistently throughout 
this work. In order to avoid introducing too much formalism at once, the material in 
this thesis has been split into two halves. The first half, Chapters 1 to 4, deals solely 
with applications to various algebras employed in mathematical physics . Accordingly, 
only the required algebraic concepts are introduced in Chapter 1. The second half of the 
thesis deals with applications of geometric algebra to problems in mechanics and field 
theory. The essential new concept required here is that of the differential with respect to 
variables defined in a geometric algebra. This topic is known as geometric calculus, and 
is introduced in Chapter 5. 

Chapters 2, 3 and 4 demonstrate how geometric algebra embraces a number of alge
braic structures essential to modern mathematical physics. The first of these is Grass
mann algebra, and particular attention is given to the Grassmann "calculus" introduced 
by Berezin [35J. This is shown to have a simple formulation in terms of the properties 
of non-orthonormal frames and examples are given of the algebraic advantages offered by 
this new approach. Lie algebras and Lie groups are considered in Chapter 3. Lie groups 
underpin many structures at the heart of modern particle physics, so it is important to 
develop a framework for the study of their properties within geometric algebra. It is 
shown that all (finite dimensional) Lie algebras can be realised as bivector algebras and it 
follows that all matrix Lie groups can be realised as spin groups. This has the interesting 
consequence that every linear transformation can be represented as a monomial of (Clif
ford) vectors . General methods for constructing bivector representations of Lie algebras 
are given, and explicit constructions are found for a number of interesting cases. 

The final algebraic structures studied are spinors. These are studied using the space
time algebra - the (real) geometric algebra of Minkowski spacetime. Explicit maps are 
constructed between Pauli and Dirac column spinol's and spacetime multivectors, and 
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it is shown that the role of the scalar unit imaginary of quantum mechanics is played 
by a fixed spacetime bivector. Changes of representation are discussed, and the Dirac 
equation is presented in a form in which it can be analysed and solved without requiring 
the construction of an explicit matrix representation. The concept of the multi particle 
spacetime algebra is then introduced and is used to construct both non-relativistic and 
relativistic two-particle states. $ome relativistic two-particle wave equations are consid
ered and a new equation, based solely in the multiparticle spacetime algebra, is proposed. 
In a final application, the multiparticle spacetime algebra is used to reformulate aspects 
of the 2-spinor calculus developed by Penrose & Rindler [36, 37]. 

The second half of this thesis deals with applications of geometric calculus . The essen
tial techniques are described in Chapter 5, which introduces the concept of the multivector 
derivative [18, 24]. The multivector derivative is the natural extension of calculus for func
tions mapping between geometric algebra elements (multivectors). Geometric calculus is 
shown to be ideal for studying Lagrangian mechanics and two new ideas are developed -
multivector Lagrangians and multivector-parameterised transformations. These ideas are 
illustrated by detailed application to two models for spinning point particles. The first, 
due to Barut & Zanghi [38], models an electron by a classical spinor equation. This model 
suffers from a number of defects, including an incorrect prediction for the precession of 
the spin axis in a magnetic field. An alternative model is proposed which removes many 
of these defects and hints strongly that, at the classical level, spinors are the generators 
of rotations . The second model is taken from pseudoclassical mechanics [39], and has the 
interesting property that the Lagrangian is no longer a scalar but a bivector-valued func
tion. The equations of motion are solved exactly and a number of conserved quantities 
are derived. 

Lagrangian field theory is considered in Chapter 6. A unifying framework for vectors, 
tensors and spinors is developed and applied to problems in Maxwell and Dirac theory. 
Of particular interest here is the construction of new conjugate currents in the Dirac 
theory, based on continuous transformations of multi vector spinors which have no simple 
counterpart in the column spinor formalism. The chapter concludes with the development 
of an extension of multivector calculus appropriate for multivector-valued linear functions. 

The various techniques developed throughout this thesis are brought together in Chap
ter 7, where a theory of gravity based on gauge transformations in a fiat spacetime is 
presented. The motivation behind this approach is threefold: (1) to introduce gravity 
through a similar route to the other interactions, (2) to eliminate passive transformations 
and base physics solely in terms of active transformations and (3) to develop a theory 
within the framework of the spacetime algebra. A number of consequences of this theory 
are explored and are compared with the predictions of general relativity and spin-torsion 
theories . One significant consequence is the appearance of time-reversal asymmetry in 
radially-symmetric (point source) solutions. Geometric algebra offers numerous advan
tages over conventional tensor calculus, as is demonstrated by some remarkably compact 
formulae for the Riemann tensor for various field configurations. Finally, it is suggested 
that the consistent employment of geometric algebra opens up possibilities for a genuine 
multiparticle theory of gravity. 
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1.1 Some History and Recent Developments 

There can be few pieces of mathematics that have been re-discovered more often than 
Clifford algebras [26]. The earliest steps towards what we now recognise as a geometric 
algebra were taken by the pioneers of the use of complex numbers in physics . Wessel, 
Argand and Gauss all realised th~ utility of complex numbers when studying 2-dimensional 
problems and, in particular, they were aware that the exponential of an imaginary number 
is a useful means of representing rotations . This is simply a special case of the more general 
method for performing rotations in geometric algebra. 

The next step was taken by Hamilton, whose attempts to generalise the complex num
bers to three dimensions led him to his famous quaternion algebra (see [40] for a detailed 
history of this subject). The quaternion algebra is the Clifford algebra of 2-dimensional 
anti-Euclidean space, though the quaternions are better viewed as a sub algebra of the 
Clifford algebra of 3-dimensional space. Hamilton's ideas exerted a strong influence on 
his contemporaries, as can be seen form the work of the two people whose names are most 
closely associated with modern geometric algebra - Clifford and Grassmann. 

Grassmann is best known for his algebra of extension. He defined hypernumbers 
ei, which he identified with unit directed line segments . An arbitrary vector was then 
written as aiei' where the ai are scalar coefficients. Two products were assigned to these 
hypernumbers, an inner product 

(1.1 ) 

and an outer product 
(1.2) 

The result of the outer product was identified as a directed plane segment and Grassmann 
extended this conce pt to include higher-dimensional objects in arbitrary dimensions . A 
fact overlooked by many historians of mathematics is that, in his later years, Grassmann 
combined his interior and exterior products into a single, central product [41]. Thus he 
wrote 

ab = a·b + al\b, (1.3) 

though he employed a different notation. The central product is precisely Clifford's prod
uct of vectors, which Grassmann arrived at independently from (and slightly prior to) 
Clifford. Grassmann's motivation for introducing this new product was to show that 
Hamilton's quaternion algebra could be embedded within his own extension algebra. It 
was through attempting to unify the quaternions and Grassmann's algebra into a sin
gle mathematical system that Clifford was also led to his algebra. Indeed, the paper in 
which Clifford introduced his algebra is entitled "Applications of Grassmann's extensive 
algebra" [42]. 

Despite the efforts of these mathematicians to find a simple unified geometric algebra 
(Clifford's name for his algebra), physicists ultimately adopted a hybrid system, due 
largely to Gibbs. Gibbs also introduced two products for vectors. His scalar (inner) 
product was essentially that of Grassmann, and his vector (cross) product was abstracted 
from the quaternions. The vector product of two vectors was a third, so his algebra 
was closed and required no additional elements. Gibbs' algebra proved to be well suited 
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to problems in electromagnetism, and quickly became popular. This was despite the 
clear deficiencies of the vector product - it is not associative and cannot be generalised 
to higher dimensions. Though special relativity was only a few years off, this lack of 
generalisability did not appear to deter physicists and within a few years Gibbs' vector 
algebra had become practically the exclusive language of vector analysis. 

The end result of these events was that Clifford's algebra was lost amongst the wealth 
of new algebras being created in the late 19th century [40]. Few realised its great promise 
and , along with the quaternion algebra, it was relegated to the pages of pure algebra 
texts. Twenty more years passed before Clifford algebras were re-discovered by Dirac in 
his theory of the electron. Dirac arrived at a Clifford algebra through a very different 
route to the mathematicians before him. He was attempting to find an operator whose 
square was the Laplacian and he hit upon the matrix operator ,l1-a/.i , where the ,-matrices 
satisfy 

(1.4 ) 

Sadly, the connection with vector geometry had been lost by this point, and ever since 
the , -matrices have been thought of as operating on an internal electron spin space. 

There the subject remained, essentially, for a further 30 years. During the interim 
period physicists adopted a wide number of new algebraic systems (coordinate geometry, 
matrix algebra, tensor algebra, differential forms, spinor calculus), whilst Clifford algebras 
were thought to be solely the preserve of electron theory. Then, during the sixties , two 
crucial developments dramatically altered the perspective. The first was made by Atiyah 
and Singer [43], who realised the importance of Dirac's operator in studying manifolds 
which admitted a global spin structure. This led them to their famous index theorems, and 
opened new avenues in the subjects of geometry and topology. Ever since, Clifford algebras 
have taken on an increasingly more fundamental role and a recent text proclaimed that 
Clifford algebras " emerge repeatedly at the very core of an astonishing variety of problems 

in geometry and topology" [15]. 
Whilst the impact of Atiyah's work was immediate, the second major step taken in 

the sixties has been slower in coming to fruition. David Hestenes had an unusual training 
as a physicist, having taken his bachelor 's degree in philosophy. He has often stated that 
this gave him a different perspective on the role of language in understanding [27]. Like 
many theoretical physicists in the sixties, Hestenes worked on ways to incorporate larger 
multiplets of particles into the known structures of field theory. During the course of these 
investigations he was struck by the idea that the Dirac matrices could be interpreted as 
vectors, and this led him to a number of new insights into the structure and meaning of 
the Dirac equation and quantum mechanics in general [27]. 

The success of this idea led Hestenes to reconsider the wider applicability of Clifford 
algebras. He realised that a Clifford algebra is no less than a system of directed numbers 
and , as such, is the natural language in which to express a number of theorems and results 
from algebra and geometry. Hestenes has spent many years developing Clifford algebra 
into a complete language for physics, which he calls geometric algebra. The reason for 
preferring this name is not only that it was Clifford's original choice, but also that it serves 
to distinguish Hestenes' work from the strictly algebraic studies of many contemporary 
texts. 

During the course of this development, Hestenes identified an issue which has been 
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coordinate geometry 
complex analysis 
vector analysis 
tensor analysis 
Lie algebras 
Clifford algebra 

spinor calculus 
Grassmann algebra 
Berezin calculus 
differential forms 
twistors 

Table 1.1: Some algebraic systems employed in modern physics 

paid little attention - that of mathematical design. Mathematics has grown into an 
enormous group undertaking, but few people concern themselves with how the results of 
this effort should best be organised. Instead, we have a situation in which a vast range of 
disparate algebraic systems and techniques are employed. Consider, for example, the list 
of algebras employed in theoretical (and especially particle) physics contained in Table 1.1. 
Each of these has their own conventions and their own methods for proving similar results. 
These algebras were introduced to tackle specific classes of problem, and each is limited 
in its overall scope. Furthermore, there is only a limited degree of integrability between 
these systems. The situation is analogous to that in the early years of software design. 
Mathematics has, in essence, been designed "bottom-up". What is required is a "top
down" approach - a familiar concept in systems design. Such an approach involves 
identifying a single algebraic system of maximal scope, coherence and simplicity which 
encompasses all of the narrower systems of Table 1.1. This algebraic system, or language, 
must be sufficiently general to enable it to formulate any result in any of the sub-systems 
it contains. But it must also be efficient, so that the interrelations between the subsystems 
can be clearly seen. Hestenes' contention is that geometric algebra is precisely the required 
system. He has shown how it incorporates many of the systems in Table 1.1, and part of 
the aim of this thesis is to fill in some of the remaining gaps. 

This "top-down" approach is contrary to the development of much of modern math
ematics, which attempts to tackle each problem with a system which has the minimum 
number of axioms. Additional structure is then handled by the addition of further axioms. 
For example, employing geometric algebra for problems in topology is often criticised on 
the grounds that geometric algebra contains redundant structure for the problem (in this 
case a metric derived from the inner product). But there is considerable merit to seeing 
mathematics the other way round. This way, the relationships between fields become 
clearer, and generalisations are suggested which could not be seen form the perspective 
of a more restricted system. For the case of topology, the subject would be seen in the 
manner that it was originally envisaged - as the study of properties of manifolds that are 
unchanged under deformations. It is often suggested that the geniuses of mathematics are 
those who can see beyond the symbols on the page to their deeper significance. Atiyah, 
for example, said that a good mathematician sees analogies between proofs, but a great 
mathematician sees analogies between analogies l . Hestenes takes this as evidence that 
these people understood the issues of design and saw mathematics "top-down", even if it 

1 I am grateful to Margaret J ames for this quote. 
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was not formulated as such. By adopting good design principles in the development of 
mathematics, the benefits of these insights would be available to all. Some issues of what 
constitutes good design are debated at various points in this introduction, though this 
subject is only in its infancy. 

In conclusion, the subject of geometric algebra is in a curious state. On the one 
hand, the algebraic structures keeps reappearing in central ideas in physics, geometry 
and topology, and most mathematicians are now aware of the importance of Clifford 
algebras. On the other, there is far less support for Hestenes ' contention that geometric 
algebra, built on the framework of Clifford algebra, provides a unified language for much 
of modern mathematics . The work in this thesis is intended to offer support for Hestenes' 
ideas . 

1.2 Axioms and Definitions 

The remaining sections of this chapter form an introduction to geometric algebra and to 
the conventions adopted in this thesis . Further details can be found in "Clifford algebra 
to geometric calculus" [24], which is the most detailed and comprehensive text on geo
metric algebra. More pedagogical introductions are provided by Hestenes [25, 26] and 
VoId [44, 45], and [30] contains useful additional material. The conference report on the 
second workshop on "Clifford algebras and their applications in mathematical physics" 
[46] contains a review of the subject and ends with a list of recommended texts , though 
not all of these are relevant to the material in this thesis. 

In deciding how best to define geometric algebra we arrive at our first issue of math
ematical design. Modern mathematics texts (see "Spin Geometry" by H.B Lawson and 
M.-L. Michelsohn [15], for example) favour the following definition of a Clifford algebra. 
One starts with a vector space 11 over a commutative field k, and supposes that q is a 
quadratic form on 11. The tensor algebra of 11 is defined as 

00 

7(11) = 2.:: @'T, (1.5) 
,' =0 

where @ is the tensor product. One next defines an ideal Iq (11) in 7(11) generated by all 
elements of the form v @ v + q( v) 1 for v E 11. The Clifford algebra is then defined as the 
quotient 

Cl(lI, q) == 7(1I)/Iq(1I). (1.6) 

This definition is mathematically correct, but has a number of drawbacks: 

1. The definition involves the tensor product, @ , which has to be defined initially. 

2. The definition uses two concepts, tensor algebras and ideals, which are irrelevant to 
the properties of the resultant geometric algebra. 

3. Deriving the essential properties of the Clifford algebra from (1.6) requires further 
work, and none of these properties are intuitively obvious from the axioms. 
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4. The definition is completely useless for introducing geometric algebra to a physi
cist or an engineer. It contains too many concepts that are the preserve of pure 
mathematics. 

Clearly, it is desirable to find an alternative axiomatic basis for geometric algebra which 
does not share these deficiencies .. The axioms should be consistent with our ideas of what 
constitutes good design. The above considerations lead us propose the following principle: 

The axioms of an algebraic system should deal directly with the objects of 
interest. 

That is to say, the axioms should offer some intuitive feel of the properties of the system 
they are defining. 

The central properties of a geometric algebra are the grading, which separates objects 
into different types, and the associative product between the elements of the algebra. With 
these in mind, we adopt the following definition. A geometric algebra 9 is a graded linear 
space, the elements of which are called multivectors. The grade-O elements are called 
scalars and are identified with the field of real numbers (we will have no cause to consider 
a geometric algebra over the complex field). The grade-l elements are called vectors, and 
can be thought of as directed line segments. The elements of 9 are defined to have an 
addition, and each graded subspace is closed under this. A product is also defined which 
is associative and distributive, though non-commutative (except for multiplication by a 
scalar) . The final axiom (which distinguishes a geometric algebra from other associative 
algebras) is that the square of any vector is a scalar. 

Given two vectors, a and b, we find that 

(a+b)(a+b) 

a2 + (ab + ba) + b2
. (1.7) 

It follows that 
(1.8) 

and hence that (ab + ba) is also a scalar. The geometric product of 2 vectors a, b can 
therefore be decomposed as 

ab = a·b+ a/\b, (1.9) 

where 

a· b = H ab + ba) (1.10) 

is the standard scalar, or inner, product (a real scalar), and 

a/\b = Hab - ba) (1.11) 

is the anti symmetric outer product of two vectors, originally introduced by Grassmann. 
The outer product of a and b anticommutes with both a and b, 

a(a/\b) Ha 2 b - aba) 

Hba 2 
- aba) 

- Hab - ba)a 

-(a/\b)a, 

8 
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so a 1\ b cannot contain a scalar component. The axioms are also sufficient to show that 
a 1\ b cannot contain a vector part. If we supposed that a 1\ b contained a vector part e, 
then the symmetrised product of a 1\ b with e would necessarily contain a scalar part. But 
e( a 1\ b) + (a 1\ b)e anticommutes with any vector d satisfying d· a = d· b = d· e = 0, and 
so cannot contain a scalar component. The result of the outer product of two vectors 
is therefore a new object, whic~ is defined to be grade-2 and is called a bivector. It can 
be thought of as representing a directed plane segment containing the vectors a and b. 
The bivectors form a linear space, though not all bivectors can be written as the exterior 
product of two vectors. 

The definition of the outer product is extended to give an inductive definition of the 
grading for the entire algebra. The procedure is illustrated as follows. Introduce a third 
vector e and write 

so that 

e( a 1\ b) !e(ab - ba) 

(a·e)b - (b·e)a - !(aeb - bea) 

2(a·e)b- 2(b·e)a + !(ab - ba)e, 

e(al\b) - (al\b)e = 2(a·e)b - 2(b·e)a. 

The right-hand side of (1.14) is a vector, so one decomposes e(al\b) into 

e(al\b) = e·(al\b) + el\(al\b) 

where 
e·(al\b) == ! [e(al\b) - (al\b)e] 

and 
el\(al\b) - ! [e(al\b) + (al\b)e]. 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

The definitions (1.16) and (1.17) extend the definitions of the inner and outer products 
to the case where a vector is multiplying a bivector. Again, (1.17) results in a new object, 
which is assigned grade-3 and is called a trivector. The axioms are sufficient to prove that 
the outer product of a vector with a bivector is associative: 

el\(al\b) ! [e(al\b) + (al\b)e] 

~ [cab - eba + abe - bae] 

~ [2(el\a)b + aeb + abe + 2b(el\a) - bea - eba] 

! [(el\a)b + b(el\a) + a(b·e) - (b·e)a] 

(el\a)l\b. (1.18) 

The definitions of the inner and outer products are extended to the geometric product 
of a vector with a grade-r multivector Ar as, 

aAr = a·A,. + al\Ar (1.19) 

where the inner product 

a·A,. == (aAr)"-l = !(aAr - (-I)"A,.a) (1.20) 
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lowers the grade of A,. by one and the outer (exterior) product 

aAA,. == (aAr),.+! = HaA,. + (-l)"A,.a) (1.21) 

raises the grade by one. We have used the notation (A),. to denote the result of the 
operation of taking the grade-r part of A (this is a projection operation). As a further 
abbreviation we write the scalar (grade 0) part of A simply as (A). 

The entire multi vector algebra can be built up by repeated multiplication of vectors. 
Multivectors which contain elements of only one grade are termed homogeneous, and will 
usually be written as A,. to show that A contains only a grade-r component. Homogeneous 
multivectors which can be expressed purely as the outer product of a set of (independent) 
vectors are termed blades. 

The geometric product of two multivectors is (by definition) associative, and for two 
homogeneous multi vectors of grade rand s this product can be decomposed as follows: 

(1.22) 

The "." and "A" symbols are retained for the lowest-grade and highest-grade terms of 
this series, so that 

A,.·Bs 

A,.ABs 

(AB) ls-,.1 

(AB)s+,., 

(1.23) 

(1.24) 

which we call the interior and exterior products respectively. The exterior product is 
associative, and satisfies the symmetry property 

A,.ABs = (_l)"s BsAAr ' (1.25) 

An important operation which can be performed on multi vectors is reversion, which 
reverses the order of vectors in any multi vector. The result of reversing the multi vector 
A is written A, and is called the reverse of A . The reverse of a vector is the vector itself, 
and for a product of multivectors we have that 

(ABr= BA. (1.26) 

It can be checked that for homogeneous multi vectors 

(1.27) 

It is useful to define two further products from the geometric product. The first is the 
scalar product 

(1.28) 

This is commutative, and satisfies the useful cyclic-reordering property 

(A ... BC) = (CA ... B). (1.29) 

In positive definite spaces the scalar product defines the modulus function 

(1.30) 
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The second new product is the commutator product, defined by 

A x B _ ~(AB - BA). (1.31) 

The associativity of the geometric product ensures that the commutator product satisfies 
the Jacobi identity 

Ax(BxC) + B x (C xA) + Cx(AxB) = O. (1.32) 

Finally, we introduce an operator ordering convention. In the absence of brackets) 
inner) outer and scalar products take precedence over geometric products. Thus a · bc 

means (a · b)e and not a· (be) . This convention helps to eliminate unruly numbers of 
brackets . Summation convention is also used throughout this thesis. 

One can now derive a vast number of properties of multivectors, as is done in Chapter 1 
of [24] . But before proceeding, it is worthwhile stepping back and looking at the system 
we have defined. In particular , we need to see that the axioms have produced a system 
with sensible properties that match our intuitions about physical space and geometry in 
general. 

1.2.1 The Geometric Product 

Our axioms have led us to an associative product for vectors, ab = a · b + a /\ b. We call 
this the geometric product. It has the following two properties : 

• Parallel vectors (e.g . a and aa) commute, and the the geometric product of parallel 
vectors is a scalar. Such a product is used , for example, when finding the length of 
a vector . 

• Perpendicular vectors (a, b where a·b = 0) anticommute, and the geometric product 
of perpendicular vectors is a bivector. This is a directed plane segment, or directed 
area, containing the vectors a and b. 

Independently, these two features of the algebra are quite sensible. It is therefore reason
able to suppose that the product of vectors that are neither parallel nor perpendicular 
should contain both scalar and bivector parts . 

But what does it mean to add a scalar to a bivector? 

This is the point which regularly causes the most confusion (see [47], for example) . 
Adding together a scalar and a bivector doesn't seem right - they are different types of 
quantities. But this is exactly what you do want addition to do. The result of adding a 
scalar to a bivector is an object that has both scalar and bivector parts, in exactly the 
same way that the addition of real and imaginary numbers yields an object with both 
real and imaginary parts. We call this latter object a "complex number" and, in the same 
way, we refer to a (scalar + bivector) as a "multivector", accepting throughout that we 
are combining objects of different types. The addition of scalar and bivector does not 
result in a single new quantity in the same way as 2 + 3 = 5; we are simply keeping 
track of separate components in the symbol ab = a· b + Cl /\ b or z = x + iy. This type 
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of addition, of objects from separate linear spaces, could be given the symbol EEl , but it 
should be evident from our experience of complex numbers that it is harmless, and more 
convenient, to extend the definition of addition and use the ordinary + sign. 

Further insights are gained by the construction of explicit algebras for finite dimen
sional spaces. This is achieved J;llost simply through the introduction of an orthonormal 
frame of vectors {O"d satisfying 

(1.33) 

or 
(1.34) 

This is the conventional starting point for the matrix representation theory of finite Clif
ford algebras [13,48]. It is also the usual route by which Clifford algebras enter particle 
physics, though there the {O"d are thought of as operators , and not as orthonormal vec
tors. The geometric algebra we have defined is associative and any associative algebra 
can be represented as a matrix algebra, so why not define a geometric algebra as a matrix 
algebra? There are a number of flaws with this approach, which Hestenes has frequently 
drawn attention to [26]. The approach fails, in particular, when geometric algebra is used 
to study projectively and conform ally related geometries [31] . There, one needs to be able 
to move freely between different dimensional spaces. Matrix representations are too rigid 
to achieve this satisfactorily. An example of this will be encountered shortly. 

There is a further reason for preferring not to introduce Clifford algebras via their 
matrix representations. It is related to our second principle of good design, which is that 

the axioms af an algebmic system should not intmduce Tedundant stnlctuTe. 

The introduction of matrices is redundant because all geometrically meaningful results 
exist independently of any matrix representations. Quite simply, matrices are irrelevant 
for the development of geometric algebra. 

The introduction of a basis set of n independent, orthonormal vectors {O"d defines a 
basis for the entire algebra generated by these vectors: 

1, ... , (1.35) 

Any multivector can now be expanded in this basis, though one of the strengths of geo
metric algebra is that it possible to carry out many calculations in a basis-fTee way. Many 
examples of this will be presented in this thesis, 

The highest-grade blade in the algebra (1.35) is given the name "pseudoscalar" (or 
directed volume element) and is of special significance in geometric algebra. Its unit is 
given the special symbol I (or i in three or four dimensions). It is a pure blade, and a 
knowledge of I is sufficient to specify the vector space over which the algebra is defined 
(see [24, Chapter 1]) . The pseudoscalar also defines the duality operation for the algebra, 
since multiplication of a grade-T multivector by I results in a grade-( n - T) multi vector. 

1.2.2 The Geometric Algebra of the Plane 

A I-dimensional space has insufficient geometric structure to be interesting, so we start 
in two dimensions, taking two orthonormal basis vectors 0"1 and 0"2. These satisfy the 
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relations 

and 

(0"1)2 = 1 

(0"2)2 = 1 

(1.36) 

(1.37) 

(1.38) 

The outer product 0"1/\ 0"2 represents the directed area element of the plane and we assume 
that 0"1, 0"2 are chosen such that this has the conventional right-handed orientation. This 
completes the geometrically meaningful quantities that we can make from these basis 
vectors: 

1, 
scalar 

{0"1,0"2}, 

vectors 
0"1/\0"2' 

bivector 
(1.39) 

Any multi vector can be expanded in terms of these four basis elements. Addition of 
multivectors simply adds the coefficients of each component. The interesting expressions 
are those involving products of the bivector 0"1/\0"2 = 0"10"2. We find that 

and 

(0"10"2)0"1 

(0"10"2)0"2 

0"1(0"10"2) = 0"2 

0"2(0"10"2) = -0"1· 

The only other product to consider is the square of 0"1/\0"2, 

(1.40) 

(1.41 ) 

(1.42) 

These results complete the list of the products in the algebra. In order to be completely 
explicit, consider how two arbitrary multi vectors are multiplied. Let 

then we find that 

where 
Po 
P1 
P2 
P3 

A 

B 

ao + a10"1 + a20"2 + a30"1/\ 0"2 

bo + b10"1 + b20"2 + b30"1/\ 0"2, 

aobo + a1 b1 + a2 b2 a3 b3, 

aOb1 + a 1bo + a3 b2 a2 b3, 

aOb2 + a 2bo + a1 b3 a3 b1, 

aOb3 + a3 bO + a1 b2 a2 b1. 

(1.43) 

(1.44) 

(1.45) 

(1.46) 

Calculations rarely have to be performed in this detail, but this exercise does serve to 
illustrate how geometric algebras can be made intrinsic to a computer language. One can 
even think of (1.46) as generalising Hamilton's concept of complex numbers as ordered 
pairs of real numbers. 
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The square of the bivector 0"11\0"2 is -1, so the even-grade elements z = x + YO"JO"2 form 
a natural subalgebra, equivalent to the complex numbers. Furthermore, 0"1 1\ 0"2 has the 
geometric effect of rotating the vectors {0"1' 0"2} in their own plane by 90° clockwise when 
multiplying them on their left . It rotates vectors by 90° anticlockwise when multiplying 
on their right. (This can be used to define the orientation of 0"1 and 0"2). 

The equivalence between the even sub algebra and complex numbers reveals a new 
interpretation of the structure of the Argand diagram. From any vector r = XO"I + Y0"2 we 
can form an even multi vector z by 

z = O"lr = x + Iy, (1.47) 

where 
(1.48) 

There is therefore a one-to-one correspondence between points in the Argand diagram 
and vectors in two dimensions, 

(1.49) 

where the vector 0"1 defines the real axis. Complex conjugation, 

z* - Z = 1'0"1 = X - I y, (1.50) 

now appears as the natural operation of reversion for the even multi vector z. Taking the 
complex conjugate of z results in a new vector 1'* given by 

1'* O"I Z 

( Z O"lr 

(O"I 1'O"lr 

0"11'0"1 

-0"2r 0"2· (1.51) 

Vie will shortly see that equation (1.51) is the geometric algebra representation of a 
reflection in the 0"1 axis. This is precisely what one expects for complex conjugation. 

This identification of points on the Argand diagram with (Clifford) vectors gives ad
ditional operational significance to complex numbers of the form exp( iO) . The even mu 1-
tivector equivalent of this is exp(IO), and applied to z gives 

(1.52) 

But we can now remove the 0"1, and work entirely in the (real) Euclidean plane. Thus 

(1.53) 

rotates the vector l' anticlockwise through an angle O. This can be verified from the fact 
that 

(1.54) 
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and 
(1.55) 

Viewed as even elements in the 2-dimensional geometric algebra, exponentials of "imag
inaries" generate rotations of real vectors. Thinking of the unit imaginary as being a 
directed plane segment removes much of the mystery behind the usage of complex num
bers. Furthermore, exponentials' of bivectors provide a very general method for handling 
rotations in geometric algebra, as is shown in Chapter 3. 

1.2.3 The Geometric Algebra of Space 

If we now add a third orthonormal vector 0"3 to our basis set, we generate the following 
geometric objects : 

I, 
scalar 

{O"1, 0"2, 0"3}, 

3 vectors 
{0"10"2, 0"20"3, 0"30"1}, 

3 bivectors 
area elements 

0"10"20"3· 

trivector 
volume element 

(1.56) 

From these objects we form a linear space of (1 + 3 + 3 + 1) = 8 = 23 dimensions. Many 
of the properties of this algebra are shared with the 2-dimensional case since the subsets 
{0"1, 0"2}, {0"2' 0"3} and {0"3, O"d generate 2-dimensional subalgebras. The new geometric 
products to consider are 

and 

( 0"10"2)0"3 

(0"1 0"20"3) O"k 

These relations lead to new geometric insights: 

0"10"20"3, 

O"k( 0"1 0"20"3) (1.57) 

(1.58) 

• A simple bivector rotates vectors in its own plane by 90 0
, but forms trivectors 

(volumes) with vectors perpendicular to it . 

• The trivector 0"11\0"21\0"3 commutes with all vectors, and hence with all multi vectors. 

The trivector (pseudoscalar) 0"10"20"3 also has the algebraic property of squaring to -1. In 
fact, of the eight geometrical objects, four have negative square, {0"10"2, 0"20"3, 0"30"d and 
O"W20"3. Of these, the pseudoscalar 0"10"20"3 is distinguished by its commutation properties 
and in view of these properties we give it the special symbol i, 

(1.59) 

It should be quite clear, however, that the symbol i is used to stand for a pseudoscalar 
and therefore cannot be used for the commutative scalar imaginary used, for example, 
in quantum mechanics. Instead, the symbol j is used for this uninterpreted imaginary, 
consistent with existing usage in engineering. The definition (1.59) will be consistent with 
our later extension to 4-dimensional spacetime. 
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The algebra of 3-dimensional space is the Pauli algebra familiar from quantum me
chanics. This can be seen by multiplying the pseudoscalar in turn by 0"3, 0"1 and 0"2 to 
find 

(1.60) 

which is immediately identifiable as the algebra of Pauli spin matrices. But we have 
arrived at this algebra from a totally different route, and the various elements in it have 
very different meanings to those assigned in quantum mechanics. Since 3-dimensional 
space is closest to our perception of the world, it is worth emphasising the geometry of 
this algebra in greater detail. A general multi vector M consists of the components 

NI= a + 
scalar 

a 
vector 

+ ib + if3 (1.61) 
bivector pseudoscalar 

where a = akO"k and b = bkO"k. The reason for writing spatial vectors in bold type is 
to maintain a visible difference between spatial vectors and spacetime 4-vectors. This 
distinction will become clearer when we consider relativistic physics. The meaning of the 
{O"d is always unambiguous, so these are not written in bold type. 

Each of the terms in (1.61) has a separate geometric significance: 

1. scalars are physical quantities with magnitude but no spatial extent. Examples are 
mass, charge and the number of words in this thesis. 

2. vectors have both a magnitude and a direction. Examples include relative positions, 
displacements and velocities. 

3. bivectors have a magnitude and an orientation. They do not have a shape. In Fig
ure 1.1 the bivector al\b is represented as a parallelogram, but any other shape could 
have been chosen. In many ways a circle is more appropriate, since it suggests the 
idea of sweeping round from the a direction to the b direction. Examples of bivec
tors include angular momentum and any other object that is usually represented as 
an "axial" vector. 

4. iriveciors have simply a handedness and a magnitude. The handedness tells whether 
the vectors in the product al\bl\c form a left-handed or right-handed set. Examples 
include the scalar triple product and, more generally, alternating tensors. 

These four objects are represented pictorially in Figure 1.1. Further details and discussions 
are contained in [25] and [44]. 

The space of even-grade elements of the Pauli algebra, 

'IjJ = a + ib, (1.62) 

is closed under multiplication and forms a representation of the quarternion algebra. 
Explicitly, identifying i, j , k with iO"l, -i0"2, i0"3 respectively, the usual quarternion 
relations are recovered, including the famous formula 

·2 ·2 k 2 • ·k 1 
't = J = = 'tJ • = - . (1.63) 
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• 
scalar vector 

lin.e segment 

~b 
bivector 

plane segment 
trivector 

volume segmen.t 

Figure 1.1: Pictorial representation of the elements of the Pauli algebra. 

The quaternion algebra sits neatly inside the geometric algebra of space and, seen in 
this way, the i, j and k do indeed generate 90° rotations in three orthogonal directions. 
Unsurprisingly, this algebra proves to be ideal for representing arbitrary rotations in three 
dimensions. 

Finally, for this section, we recover Gibbs' cross product . Since the x and !\ symbols 
have already been assigned meanings, we will use the ~ symbol for the Gibbs' prod
uct. This notation will not be needed anywhere else in this thesis. The Gibbs' product 
is given by an outer product together with a duality operation (multiplication by the 
pseudoscalar), 

a ~ b = -ia!\b. (1.64) 

The duality operation in three di.mensions interchanges a plane with a vector orthogonal 
to it (in a right-handed sense). In the mathematical literature this operation goes under 
the name of the Hodge dual. Quantities like a or b would conventionally be called "polar 
vectors" , while the "axial vectors" which result from cross-products can now be seen to be 
disguised versions of bivectors. The vector triple product a ~ (b ~ c) becomes -a·(b!\c), 
which is the 3-dimensional form of an expression which is now legitimate in arbitrary 
dimensions. We therefore drop the restriction of being in 3-dimensional space and write 

a · (b!\e) 

where we have recalled equation (1.14). 

H ab!\e - b!\ea) 

a·be - a ·eb 

1.2.4 Reflections and Rotations 

(1.65) 

(1.66) 

One of the clearest illustrations of the power of geometric algebra is the way in which it 
deals with reflections and rotations . The key to this approach is that, given any unit vector 
17, (17,2 = 1), an arbitrary vector a can be resolved into parts parallel and perpendicular to 
n, 

n(n·a + n!\a) 

all + a.l , 

17 

(1.67) 



where 

a-L 

a ·nn 

nnl\a. 

(1.68) 

(1.69) 

The result of reflecting a in the hyperplane orthogonal to n is the vector a-L - all , which 
can be written as 

nnl\a - a·nn 

-n ·an - nl\an 

-nan. (1. 70) 

This formula for a reflection extends to arbitrary multivectors . For example, if the vectors 
a and b are both reflected in the hyperplane orthogonal to n, then the bivector a 1\ b is 
reflected to 

(-nan)l\( -nbn) ~ (nannbn - nbnnan) 

nal\bn . (1. 71) 

In three dimensions, the sign difference between the formulae for vectors and bivectors 
accounts for the different behaviour of "polar" and "axial" vectors under reflections. 

Rotations are built from pairs of reflections. Taking a reflection first in the hyperplane 
orthogonal to n, and then in the hyperplane orthogonal to m, leads to the new vector 

-m(-nan)m 1nnanrn 

RaR (1.72) 

where 
R mn. (1. 73) 

The multivector R is called a rotor. It contains only even-grade elements and satisfies the 
identity 

(1. 74) 

Equation (1.74) ensures that the scalar product of two vectors is invariant under rotations, 

(RaR) · (RbR) (RaRRbR) 

(aRRbRR) 

(ab) 

a·b. (1.75) 

As an example, consider rotating the unit vector a into another unit vector b, leaving 
all vectors perpendicular to a and b unchanged. This is accomplished by a reflection 
perpendicular to the unit vector half-way between a and b (see Figure 1.2) 

n == (a + b)/Ja + bJ. (1.76) 
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b 

n 

-F-----a 

-l1an 

Figure 1.2: A rotation composed of two reflections. 

This reflects a into -b. A second reflection is needed to then bring this to b, which must 
take place in the hyperplane perpendicular to b. Together, these give the rotor 

R = bn = 1 + ba 
la + bl 

1 + ba 

which represents a simple rotation in the al\b plane. The rotation is written 

b = RaR, 

and the inverse transformation is given by 

a = RbR. 

(1. 77) 

(1. 78) 

(1. 79) 

The transformation a f-t RaR is a very general way of handling rotations. In deriving 
this transformation the dimensionality of the space of vectors was at no point specified. As 
a result, the transformation law works for all spaces, whateveT dimension. Furthermore, 
it works for all types of geometric object, whateveT gmde. We can see this by considering 
the image of the product ab when the vectors a and b are both rotated. In this case, ab 
is rotated to 

RaRRbR = RabR. (1.80) 

In dimensions higher than 5, an arbitrary even element satisfying (1.74) does not 
necessarily map vectors to vectors and will not always represent a rotation. The name 
"rotor" is then retained only for the even elements that do give rise to rotations. It can 
be shown that all (simply connected) rotors can be written in the form 

(1.81) 

where B is a bivector representing the plane in which the rotation is taking place. (This 
representation for a rotor is discussed more fully in Chapter 3.) The quantity 

(1.82) 
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is seen to be a pure vector by Taylor expanding in a, 

a 2 

b = a + aB ·a + 2!"B. (B·a) + .... (1.83) 

The right-hand side of (1.83) is a vector since the inner product of a vector with a bivector 
is always a vector (1.14). This method of representing rotations directly in terms of the 
plane in which they take place is very powerful. Equations (1.54) and (1.55) illustrated this 
in two dimensions, where the quantity exp( - le) was seen to rotate vectors anticlockwise 
through an angle e. This works because in two dimensions we can always write 

(1.84) 

In higher dimensions the double-sided (bilinear) transformation law (1.78) is required. 
This is much easier to use than a one-sided rotation matrix, because the latter becomes 
more complicated as the number of dimensions increases. This becomes clearer in three 
dimensions. The rotor 

a 
R = exp( -ia/2) = cos( lal/2) - i~ sin( lal/2) (1.85) 

represents a rotation of lal = (a 2)1/2 radians about the axis along the direction of a. 
This is already simpler to work with than 3 x 3 matrices. In fact, the representation of 
a rotation by (1.85) is precisely how rotations are represented in the quaternion algebra, 
which is well-known to be advantageous in three dimensions. In higher dimensions the 
improvements are even more dramatic. 

Having seen how individual rotors are used to represent rotations, we must look at 
their composition law. Let the rotor R transform the unit vector a into a vector b, 

b = RaR. 

Now rotate b into another vector b', using a rotor R'. This requires 

b' = R'bR' = (R' R)a(R' Rt 

so that the transformation is characterised by 

Rf----tR'R, 

(1.86) 

(1.87) 

(1.88) 

which is the (left-sided) group combination rule for rotors. It is immediately clear that 
the product of two rotors is a third rotor, 

R'R(R'Rt = R'RRR' = R'R' = 1, (1.89) 

so that the rotors do indeed form a (Lie) group . 
The usefulness of rotors provides ample justification for adding up terms of different 

grades. The rotor R on its own has no geometric significance, which is to say that no 
meaning should be attached to the individual scalar, bivector, 4-vector ... parts of R. 
When R is written in the form R = ±eB / 2, however, the bivector B has clear geometric 
significance, as does the vector formed from Rail. This illustrates a central feature of 
geometric algebra, which is that both geometrically meaningful objects (vectors, planes 
. .. ) and the elements that act on them (rotors, spinors ... ) are represented in the same 
algebra. 
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1.2.5 The Geometric Algebra of Spacetime 

As a final example, we consider the geometric algebra of spacetime. This algebra is 
sufficiently important to deserve its own name - spacetime algebra - which we will 
usually abbreviate to STA. The square of a vector is no longer positive definite, and we 
say that a vector x is timelike, lightlike or spacelike according to whether x 2 > 0, x 2 = 0 
or x 2 < 0 respectively. Spacetime consists of a single independent timelike direction, and 
three independent spacelike directions. The spacetime algebra is then generated by a set 
of orthonormal vectors {I J.L}' /-l = 0 ... 3, satisfying 

IJ.L ' IV = 'r/J.LV = diag( + - - -) . (1.90) 

(The significance of the choice of metric signature will be discussed in Chapter 4.) The 
full STA is 16-dimensional, and is spanned by the basis 

1, z. (1.91) 

The spacetime bivectors {O'k}, k = 1 ... 3 are defined by 

(1.92) 

They form an orthonormal frame of vectors in the space relative to the 10 direction. The 
spacetime pseudoscalar i is defined by 

Z 10/1/2/3 (1.93) 

and, since we are in a space of even dimension, i anticommutes with all odd-grade elements 
and commutes with all even-grade elements . It follows from (1.92) that 

(1.94) 

The following geometric significance is attached to these relations. An inertial system 
is completely characterised by a future-pointing timelike (unit) vector. We take this to 
be the 10 direction. This vector/observer determines a map between spacetime vectors 
a = aJ.LlJ.L and the even subalgebra of the full STA via 

where 

aO 

a 

(1.95) 

(1.96) 

(1.97) 

The even sub algebra of the STA is isomorphic to the Pauli algebra of space defined in 
Section 1.2.3. This is seen from the fact that the O'k = IklO all square to +1, 

(1.98) 

and anticommute, 

(1.99) 
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There is more to this equivalence than simply a mathematical isomorphism. The way we 
think of a vector is as a line segment existing for a period of time. It is therefore sensible 
that what we perceive as a vector should be represented by a spacetime bivector. In this 
way the algebraic properties of space are determined by those of spacetime. 

As an example, if x is the spacetime (four)-vector specifying the position of some point 
or event, then the "spacetime split" into the ,a-frame gives 

x,o = t + x, (1.100) 

which defines an observer time 
(1.101) 

and a relative position vector 
x = xl\,o. (1.102) 

One useful feature of this approach is the way in which it handles Lorentz-scalar quantities. 
The scalar x 2 can be decomposed into 

x2 x,o,ox 
(t+x)(t-x) 
t 2 _ x 2 , (1.103) 

which must also be a scalar. The quantity t 2 
- x 2 is now seen to be automatically 

Lorentz-invariant, without needing to consider a Lorentz transformation. 
The split of the six spacetime bivectors into relative vectors and relative bivectors is 

a frame/observer-dependent operation. This can be illustrated with the Faraday bivector 
F = ~FJ.lV'J.lI\,v, which is a full, 6-component spacetime bivector. The spacetime split 
of F into the ,a-system is achieved by separating F into parts which anticommute and 
commute with 'a. Thus 

F = E+iB, (1.104) 

where 

E HF -,oF,o) (1.105) 

iB HF + ,oF,o). (1.106) 

Here, both E and B are spatial vectors, and iB is a spatial bivector. This decomposes F 
into separate electric and magnetic fields, and the explicit appearance of 'a in the formulae 
for E and B shows that this split is observer-dependent. In fact , the identification 
of spatial vectors with spacetime bivectors has always been implicit in the physics of 
electromagnetism through formulae like Ek = FkO . 

The decomposition (1.104) is useful for constructing relativistic invariants from the E 
and B fields. Since F2 contains only scalar and pseudoscalar parts, the quantity 

(E + iB)(E + iB) 
E2 - B2 + 2iE.B (1.107) 

is Lorentz-invariant. It follows that both E2 - B2 and E· B are observer-invariant 
quantities. 
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Equation (1.94) is an important geometric identity, which shows that relative space 
and spacetime share the same pseudoscalar i . It also exposes the weakness of the matrix
based approach to Clifford algebras. The relation 

(1.108) 

cannot be formulated in conventional matrix terms, since it would need to relate the 
2 x 2 Pauli matrices to 4 x 4 Dirac matrices. Whilst we borrow the symbols for the 
Dirac and Pauli matrices, it must be kept in mind that the symbols are being used in 
a quite different context - they represent a frame of orthonormal vectors rather than 
representing individual components of a single isospace vector. 

The identification of relative space with the even sub algebra of the STA necessitates 
developing a set of conventions which articulate smoothly between the two algebras. This 
problem will be dealt with in more detail in Chapter 4, though one convention has already 
been introduced. Relative (or spatial) vectors in the I'o-system are written in bold type to 
record the fact that in the STA they are actually bivectors. This distinguishes them from 
spacetime vectors, which are left in normal type. No problems can arise for the {O"d, 
which are unambiguously spacetime bivectors, so these are also left in normal type. The 
STA will be returned to in Chapter 4 and will then be used throughout the remainder of 
this thesis. We will encounter many further examples of its utility and power. 

1.3 Linear Algebra 

We have illustrated a number of the properties of geometric algebra, and have given ex
plicit constructions in two, three and four dimensions . This introduction to the properties 
of geometric algebra is now concluded by developing an approach to the study of linear 
functions and non-orthonormal frames . 

1.3.1 Linear Functions and the Outermorphism 

Geometric algebra offers many advantages when used for developing the theory of linear 
functions . This subject is discussed in some detail in Chapter 3 of "CliffoTd algebm to 
geometTic calculus" [24], and also in [2] and [30]. The approach is illustrated by taking 
a linear function f (a) mapping vectors to vectors in the same space. This function in 
extended via outeTmoTphism to act linearly on multi vectors as follows, 

t(al\bl\ ... I\c) = f(a)l\f(b) .. ·I\f(c). (1.109) 

The underbar on f shows that f has been constructed from the linear function f. The def
inition (1.109) en~res that i i; a grade-preserving linear function mapping multivectors 
to multivectors. 

An example of an outermorphism was encountered in Section 1.2.4, where we consid
ered how multi vectors behave under rotations. The action of a rotation on a vector a was 
written as 

(1.110) 
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(1.110) 

23 



where B is the plane( s) of rotation. The outermorphism extension of this is simply 

(1.111) 

An important property of the outermorphism is that the outermorphism of the product 
of two functions in the product of the outermorphisms, 

1[g ( a )] /\ 1[g ( b) i . . . /\ f [g ( c) ] Dg(a)/\g(b) ... /\g(c)] 

D9..( a/\ b/\ . .. /\ c)]. (1.112) 

To ease notation, the product of two functions will be written simply as 19..(A), so that 
(1.112) becomes 

fg(a)/\fg(b) .. ·/\fg(c) = 19..(a/\b/\ ... /\c). (1.113) 

The pseudoscalar of an algebra is unique up to a scale factor, and this is used to define 
the determinant of a linear function via 

det(f) == 1(1)1-1
, (1.114) 

so that 
1(1) = det(f)I. (1.115) 

This definition clearly illustrates the role of the determinant as the volume scale factor. 
The definition also serves to give a very quick proof of one of the most important properties 
of determinants. It follows from (1.113) that 

and hence that 

l(det(g)I) 

det(g)l(1) 

det(f) det(g)1 

det(fg) = det(f) det(g). 

(1.116) 

(1.117) 

This proof of the product rule for determinants illustrates our third (and final) principle 
of good design: 

Definitions should be chosen so that the most important the01'ems can be pTOven 
most economically. 

The definition of the determinant clearly satisfies this criteria. Indeed, it is not hard to 
see that all of the main properties of determinants follow quickly from (1.115). 

The adjoint to f, written as 1, is defined by 

(1.118) 

where {eJ is an arbitrary frame of vectors, with reciprocal frame {e i
}. A frame-invariant 

definition of the adjoint can be given using the vector derivative, but we have chosen not 
to introduce multi vector calculus until Chapter 5. The definition (1.118) ensures that 

b·1(a) a·(b. ei1(ei)) 

a·Db). 

24 

(1.119) 



A symmetric function is one for which 1 = 1. 
The adjoint also extends via outermorphism and we find that, for example, 

f(al\b) f(a)I\](b) 
e i 1\ ej a . t( ei ) b . 1 ( e j ) 

~ 6! i 1\ ej (a. 1 ( ei) b . t( e j) - a· t( e j ) b . 1 ( ei ) ) 

~ e i 1\ ej 
( a 1\ b) . 1 ( e j 1\ ei) . 

By using the same argument as in equation (1.119), it follows that 

(t(A)B) = (A](B)) 

for all multi vectors A and B . An immediate consequence is that 

det f (1-1](1)) 
(1(1-1 )1) 

det f. 

Equation (1.121) turns out to be a special case of the more general formulae, 

AT ·](Bs ) 

t(A,.) ·Bs 

which are derived in [24, Chapter 3] . 

] [1(A,}Bs ] 

t[A, .. ](Bs )] 

As an example of the use of (1.123) we find that 

which is used to construct the inverse functions, 

T ~ S 

T ~ S, 

f-l(A) det(ft1](AI)I-1 

j-\A) = det(f)-1 1-11(1 A) . 

(1.120) 

(1.121) 

(1.122) 

(1.123) 

(1.124) 

(1.125) 

These equations show how the inverse function is constructed from a double-duality op
eration. They are also considerably more compact and efficient than any matrix-based 
formula for the inverse. 

Finally, the concept of an eigenvector is generalized to that of an eigenblade AT' which 
is an T-grade blade satisfying 

(1.126) 

where a is a Teal eigenvalue. Complex eigenvalues are in general not considered, since 
these usually loose some important aspect of the geometry of the function f. As an 
example, consider a function f satisfying 

f(a) 
f(b) 
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for some pair of vectors a and b. Conventionally, one might write 

f(a + jb) = -j(a + jb) (1.128) 

and say that a + bj is an eigenvector with eigenvalue - j. But in geometric algebra one 
can instead write 

t(a/\b) = b/\( -a) = a/\b, (1.129) 

which shows that a/\ b is an eigenblade with eigenvalue + 1. This is a geometrically more 
useful result, since it shows that the a/\b plane is an invariant plane of f. The unit blade 
in this plane generates its own complex structure, which is the more appropriate object 
for considering the properties of f. 

1.3.2 N on-Orthonormal Frames 

At various points in this thesis we will make use of non-orthonormal frames, so a number 
of their properties are summarised here. From a set of n vectors {ei}, we define the 
pseudoscalar 

(1 .130) 

The set {e;} constitute a (non-orthonormal) frame provided En -=I o. The reciprocal frame 
{e i } satisfies 

(1.131) 

and is constructed via [24, Chapter 1 J 

i (1)i-1 /\ v /\ En e = - e1 . .. ei . . . en , (1.132) 

where the check symbol on ei signifies that this vector is missing from the product. En is 
the pseudoscalar for the reciprocal frame, and is defined by 

The two pseudoscalars En and En satisfy 

and hence 

The components of the vector a in the ei frame are given by a · ei, so that 

from which we find that 

2a 2a · eie' 

eiaei + aeiei 

eiaei + na. 
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(1.134) 

(1.135) 

(1.136) 
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The fact that eiei = n follows from (1.131) and (1.132). From (1.137) we find that 

which extends for a multivector of grade r to give the useful results : 

e.iArei 

ei( ei . A,.) 

ei( ei !\ A,.) 
rAT, 

(n - r)A, .. 

(1.138) 

(1.139) 

For convenience, we now specialise to positive definite spaces. The results below are 
easily extended to arbitrary spaces through the introduction of a metric indicator function 
[28]. A symmetric metric tensor 9 can be defined by 

(1.140) 

so that, as a matrix, it has components 

(1.141) 

Since 
(1.142) 

it follows from (1.115) that 
(1.143) 

It is often convenient to work with the fiducial jmme {(Td, which is the orthonormal 
frame determined by the {ei} via 

(1.144) 

where h is the unique, symmetric fiducial tensor. The requirement that h be symmetric 
means that the {(Tk} frame must satisfy 

(1.145) 

which, together with orthonormality, defines a set of n 2 equations that determine the (Tk 
(and hence h) uniquely, up to permutation . These permutations only alter the labels for 
the frame vectors, and do not re-define the frame itself. From (1.144) it follows that 

(1.146) 

so that 
(1.147) 

(We are working in a positive definite space, so (Tj = (Tj for the orthonormal frame {(Tj}.) 
It can now be seen that h is the "square-root" of g, 

(1.148) 

It follows that 
det(h) = IEn l. (1.149) 
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The fiducial tensor, together with other non-symmetric square-roots of the metric tensor, 
find many applications in the geometric calculus approach to differential geometry [28]. 
We will also encounter a similar object in Chapter 7. 

We have now seen that geometric algebra does indeed offer a natural language for 
encoding many of our geometric perceptions. Furthermore, the formulae for reflections 
and rotations have given ample justification to the view that the Clifford product is a 
fundamental aspect of geometry. ' Explicit construction in two, three and four dimensions 
has shown how geometric algebra naturally encompasses the more restricted algebraic 
systems of complex and quaternionic numbers. It should also be clear from the preceding 
section that geometric algebra encompasses both matrix and tensor algebra. The following 
three chapters are investigations into how geometric algebra encompasses a number of 
further algebraic systems. 
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Chapter 2 

Grassmann Algebra and Berezin 
Calculus 

This chapter outlines the basis of a translation between Grassmann calculus and geo
metric algebra. It is shown that geometric algebra is sufficient to formulate all of the 
required concepts, thus integrating them into a single unifying framework. The transla
tion is illustrated with two examples, the "Grauss integral" and the "Grassmann Fourier 
transform" . The latter demonstrates the full potential of the geometric algebra approach. 
The chapter concludes with a discussion of some further developments and applications . 
Some of the results presented in this chapter first appeared in the paper "GTassmann 
calculus, pseudoclassical mechanics and geometric algebTa" [1]. 

2.1 Grassmann Algebra versus Clifford Algebra 

The modern development of mathematics has led to the popularly held view that Grass
mann algebra is more fundamental than Clifford algebra. This view is based on the idea 
(recall Section 1.2) that a Clifford algebra is the algebra of a quadratic form . But, whilst 
it is true that every (symmetric) quadratic form defines a Clifford algebra, it is certainly 
not true that the usefulness of geometric algebra is restricted to metric spaces. Like all 
mathematical systems, geometric algebra is subject to many different interpretations, and 
the inner product need not be related to the concepts of metric geometry. This is best 
illustrated by a brief summary of how geometric algebra is used in the study of projective 
geometry. 

In projective geometry [31], points are labeled by vectors, a, the magnitude of which is 
unimportant. That is, points in a projective space of dimension n - 1 are identified with 
rays in a space of dimension n which are solutions of the equation x 1\ a = O. Similarly, 
lines are represented by bivector blades, planes by trivectors, and so on. Two products 
(originally defined by Grassmann) are needed to algebraically encode the principle con
cepts of projective geometry. These are the progressive and regressive products, which 
encode the concepts of the join and the meet respectively. The progressive product of two 
blades is simply the outer product. Thus, for two points a and b, the line joining them 
together is represented projectively by the bivector al\b. If the grades of A,. and Bs sum 
to more than n and the vectors comprising AT and Bs span n-dimensional space, then 
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the join is the pseudoscalar of the space. The regres r
' 

the progressive product and duality. Duality is 
pseudoscalar, and is denoted A;. For two blades . 

. ::::} A,. V Bs = A; · Bs. 

It is implicit here that the dual is taken with respect to th~ 
example, in two-dimensional projective geometry (performed it.. 
space) the point of intersection of the lines given by A and B, WL 

A az 

B hi, 

is given by the point 

to [39] . More 
~ [51, 52], as 

. of Grass
ill Grass
'ariables 

(2.6) 

t of 
1es 

The definition of the meet shows clearly that it is most simply formulated in 
of the inner product, yet no metric geometry is involved. It is probably unsurprisin

L 

learn that geometric algebra is ideally suited to the study of projective geometry [3-,-. 
It is also well suited to the study of determinants and invariant theory [24], which are 
also usually thought to be the preserve of Grassmann algebra [49, 50]. For these reasons 
there seems little point in maintaining a rigid division between Grassmann and geometric 
algebra. The more fruitful approach is to formulate the known theorems from Grassmann 
algebra in the wider language of geometric algebra. There they can be compared with, and 
enriched by, developments from other subjects. This program has been largely completed 
by Hestenes, Sobczyk and Ziegler [24, 31]. This chapter addresses one of the remaining 
subjects - the "calculus" of Grassmann variables introduced by Berezin [35]. 

Before reaching the main content of this chapter, it is necessary to make a few com
ments about the use of complex numbers in applications of Grassmann variables (particu
larly in particle physics). We saw in Sections 1.2.2 and 1.2.3 that within the 2-dimensional 
and 3-dimensional real Clifford algebras there exist multi vectors that naturally play the 
role of a unit imaginary. Similarly, functions of several complex variables can be studied in 
a real2n-dimensional algebra. Furthermore, in Chapter 4 we will see how the Schrodinger, 
Pauli and Dirac equations can all be given real formulations in the algebras of space and 
spacetime. This leads to the speculation that a scalar unit imaginary may be unneces
sary for fundamental physics. Often, the use of a scalar imaginary disguises some more 
interesting geometry, as is the case for imaginary eigenvalues of linear transformations. 
However, there are cases in modern mathematics where the use of a scalar imaginary is 
entirely superfluous to calculations. Grassmann calculus is one of these. Accordingly, the 
unit imaginary is dropped in what follows, and an entirely real formulation is given. 

2.2 The Geometrisation of Berezin Calculus 

The basis of GrassmannjBerezin calculus is described in many sources . Berezin's "The 
method of second quantisation" [35] is one of the earliest and most cited texts, and a 
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the join is the pseudoscalar of the space. The regressive product, denoted V, is built from 
the progressive product and duality. Duality is defined as (right )-multiplication by the 
pseudoscalar, and is denoted A;. For two blades A j • and B s, the meet is then defined by 

(2.1) 

(2.2) 

It is implicit here that the dual is taken with respect to the join of Aj • and Bs. As an 
example, in two-dimensional projective geometry (performed in the geometric algebra of 
space) the point of intersection of the lines given by A and B , where 

is given by the point 

A 

B 

az 

bi , 

A V B = -a·B = - ial\b. 

(2.3) 

(2.4) 

(2.5) 
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2.2 The Geometrisation of Berezin Calculus 

The basis of Grassmann/Berezin calculus is described in many sources. Berezin's "The 
method of second quantisation" [35J is one of the earliest and most cited texts, and a 
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useful summary of the main results from this is contained in the Appendices to [39]. More 
recently, Grassmann calculus has been extended to the field of superanalysis [51 , 52], as 
well as in other directions [53, 54]. 

The basis of the approach adopted here is to utilise the natural embedding of Grass
mann algebra within geometric algebra, thus reversing the usual progression from Grass
mann to Clifford algebra via quantization. We start with a set of n Grassmann variables 
{(d , satisfying the anticommutation relations 

(2.6) 

The Grassmann variables {(d are mapped into geometric algebra by introducing a set of 
n independent Euclidean vectors {ed, and replacing the product of Grassmann variables 
by the exterior product, 

(2.7) 

Equation (2.6) is now satisfied by virtue of the anti symmetry of the exterior product, 

(2.8) 

In this way any combination of Grassmann variables can be replaced by a multi vector. 
Nothing is said about the interior product of the ei vectors, so the {ed frame is completely 
arbitrary. 

In order for the above scheme to have computational power, we need a translation for 
for the calculus introduced by Berezin [35] . In this calculus, differentiation is defined by 
the rules 

O(j 
Dij, 

O(i 
(2.9) 

t-o 
(j O(i Dij, (2.10) 

together with the "graded Leibnitz rule", 

(2.11) 

where [I1] is the parity of f1. The parity of a Grassmann variable is determined by 
whether it contains an even or odd number of vectors. Berezin differentiation is handled 
within the algebra generated by the {ed frame by introducing the reciprocal frame {e i }, 

and replacing 

so that 

o 
O(i ( 

(2.12) 

(2.13) 

It should be remembered that upper and lower indices are used to distinguish a frame from 
its reciprocal frame, whereas Grassmann algebra only uses these indices to distinguish 
metric signature. 
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The graded Leibnitz rule follows simply from the axioms of geometric algebra. For 
example, if hand hare grade-1 and so translate to vectors a and b, then the rule (2.11) 
becomes 

ei.(a/\b) = ei·ab - aei .b, 

which is simply equation (1.14) again. 
Right differentiation translates in a similar manner, 

(2 .14) 

(2.15) 

and the standard results for Berezin second derivatives [35] can also be verified simply. 
For example, given that F is the multi vector equivalent of the Grassmann variable f(O, 

shows that second derivatives anticommute, and 

shows that left and right derivatives commute. 

(e i /\e j
). F 

-e j
· (ei

. F) (2.16) 

(2.17) 

The final concept needed is that of integration over a Grassmann algebra. In Berezin 
calculus, this is defined to be the same as right differentiation (apart perhaps from some 
unimportant extra factors of j and 21l' [52]), so that 

f-- f-- f--

J f( Od(nd(n-l ... del = f( 0 8~n 8(~-1 ... 8~1 . (2.18) 

These translate in exactly the same way as the right derivative (2.12). The only important 
formula is that for the total integral 

(2.19) 

where again F is the multivector equivalent of f( 0, as defined by (2.6). Equation (2.19) 
picks out the coefficient of the pseudoscalar part of F since, if (F)n is given by aEn, then 

Thus the Grassman integral simply returns the coefficient a. 
A change of variables is performed by a linear transformation f, say, with 

e~ = f(ei) 

'* E~ = DEn) = det(J)En. 
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(2.22) 



" --1 
But the {et} must transform under f to preserve orthonormality, so 

e
i l 

= Y-\ei
) 

=} E nl = det(ft1 En, 

(2.23) 

(2.24) 

which recovers the usual result for a change of variables in a Grassmann multiple integral. 
That E~Enl = 1 follows from the definitions above. 

In the above manner all the basic formulae of Grassmann calculus can be derived in 
geometric algebra, and often these derivations are simpler. Moreover, they allow for the 
results of Grassmann algebra to be incorporated into a wider scheme, where they may 
find applications in other fields. As a further comment , this translation also makes it clear 
why no measure is associated with Grassmann integrals: nothing is being added up! 

2.2.1 Example I. The "Grauss" Integral 

The Grassmann analogue of the Gaussian integral [35], 

J exp{tajk(j(d d(n ... d(l = det(a)1/2, (2.25) 

where ajk is an antisymmetric matrix, is one of the most important results in applications 
of Grassmann algebra. This result is used repeatedly in fermionic path integration, for 
example. It is instructive to see how (2.25) is formulated and proved in geometric algebra. 
First, we translate 

1 J"k;-;- 1 J"k 1\ - A "2a ,>j,>k f--t za ej ek - ,say, 

where A is a general bivector. The integral now becomes 

((1 + A + A~A + " .)En). 
2. 

(2.26) 

(2.27) 

It is immediately clear that (2.27) is only non-zero for even n (= 2m say), in which case 
(2.27) becomes 

(2.28) 

This type of expression is considered in Chapter 3 of [24J in the context of the eigen
value problem for antisymmetric functions. This provides a good illustration of how the 
systematic use of a unified language leads to analogies between previously separate results. 

In order to prove that (2.28) equals det(a)1/2 we need the result that, in spaces with 
Euclidean or Lorentzian signature, any bivector can be written, not necessarily uniquely, 
as a sum of orthogonal commuting blades. This is proved in [24, Chapter 3J. Using this 
result, we can write A as 

(2.29) 

where 

A ·Aj -8ij (2.30) 

[A,AjJ 0 (2.31 ) 

A1A 2 ... Am I. (2.32) 
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· --1 
But the {et} must transform under f to preserve orthonormality, so 

ei l = 1-1 (e i
) 

::::} E nl = det(J)-lEn, 

(2.23) 

(2.24) 

which recovers the usual result for a change of variables in a Grassmann multiple integral. 
That E~Enl = 1 follows from the 'definitions above. 

In the above manner all the basic formulae of Grassmann calculus can be derived in 
geometric algebra, and often these derivations are simpler. Moreover, they allow for the 
results of Grassmann algebra to be incorporated into a wider scheme, where they may 
find applications in other fields. As a further comment, this translation also makes it clear 
why no measure is associated with Grassmann integrals: nothing is being added up! 

2.2.1 Example 1. The "Grauss" Integral 

The Grassmann analogue of the Gaussian integral [35] , 

J expHajk(j(d d(n ... del = det(a)1/2, (2.25) 

where ajk is an anti symmetric matrix, is one of the most important results in applications 
of Grassmann algebra. This result is used repeatedly in fermionic path integration, for 
example. It is instructive to see how (2.25) is formulated and proved in geometric algebra. 
First, we translate 

tajk(j(k f--+ tajkej/\ek = A, say, 

where A is a general bivector. The integral now becomes 

((1 + A + A~A + .. . )En). 
2. 

(2.26) 

(2.27) 

It is immediately clear that (2.27) is only non-zero for even n (= 2m say), in which case 
(2.27) becomes 

((1 + A + A~A + .. . )En) = ~((A)m En). (2.28) 
2. m. 

This type of expression is considered in Chapter 3 of [24] in the context of the eigen
value problem for antisymmetric functions. This provides a good illustration of how the 
systematic use of a unified language leads to analogies between previously separate results. 

In order to prove that (2.28) equals det( a )1/2 we need the result that, in spaces with 
Euclidean or Lorentzian signature, any bivector can be written, not necessarily uniquely, 
as a sum of orthogonal commuting blades. This is proved in [24 , Chapter 3] . Using this 
result, we can wri te A as 

(2.29) 

where 

Ai·Aj -8 .. tJ (2.30) 

[Ai,Aj ] 0 (2.31 ) 

A1A2 ... Am I. (2.32) 
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Equation (2.28) now becomes, 

((ala2' " am)I En) = det(gt1/2ala2 . .. am, 

where 9 is the metric tensor associated with the {ed frame (1.140). 
If we now introduce the function 

f(a) = a·A, 

we find that [24, Chapter 3] 

t(al\b) (a ·A)I\(b ·A) 
t(al\b).(AI\A) - (al\b)·AA. 

It follows that the A blades are the eigenblades of f, with 

and hence 

t(A) = a;A, 

t(J) = t(A1 I\A21\ .. . Am) = (ala2' " am)2 I 

=? det(J) = (ala2'" am)2. 

In terms of components, however, 

ff er f(e k
) 

Ik 
gjla , 

=? det(J) = det(g) det( a). 

Inserting (2.40) into (2.33) , we have 

as required. 
This result can be derived more succinctly using the fiducial frame (Ji 

write (2.27) as 

~((A')m /), 
m! 

(2 .33) 

(2.34) 

(2 .35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41 ) 

(2.42) 

where A' = ~ajk(Jj(Jk. This automatically takes care of the factors of det(g)1/2, though it 
is instructive to note how these appear naturally otherwise. 

2.2.2 Example 11. The Grassmann Fourier Thansform 

Whilst the previous example did not add much new algebraically, it did serve to demon
strate that notions of Grassmann calculus were completely unnecessary for the problem. 
In many other applications, however, the geometric algebra formulation does provide for 
important algebraic simplifications, as is demonstrated by considering the Grassmann 
Fourier transform. 
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In Grassmann algebra one defines Fourier integral transformations between anticom
muting spaces {(d and {pd by [39] 

G(O = J exp{j I:, (k pk}H(p)dpn ... dpl 
H(p) = En J exp{ -j I:, (kl}G(Od(n'" del, (2.43) 

where En = 1 for n even and j for n odd. The factors of j are irrelevant and can be 
dropped, so that (2.43) becomes 

G(O J exp{I:, (kl}H(p)dpn .. . dpl 
H(p) = (_l)n Jexp{-I:,(kl}G(Od(n ... d(I' (2.44) 

These expressions are translated into geometric algebra by introducing a pair of anticom
muting copies of the same frame, {ed, {Id, which satisfy 

(2.45) 

(2.46) 

The full set {ek ' Id generate a 2n-dimensional Clifford algebra. The translation now 
proceeds by replacing 

(2.4 7) 

where the {pk} have been replaced by elements of the reciprocal frame {Ik}. From (2.45), 
the reciprocal frames must also satisfy 

j k - I j Ik e · e - . . 

We next define the bivector (summation convention implied) 

The equality of the two expressions for] follows from (2.45), 

The bivector ] satisfies 

and it follows that 

eo .] 
J 

ej .] 

(a·])·] = -a, 

(2.48) 

(2.49) 

(2.50) 

(2.51 ) 

(2.52) 

for any vector a in the 2n-dimensional algebra. Thus] generates a complex structure, 
which on its own is sufficient reason for ignoring the scalar j. Equation (2.52) can be 
extended to give 

e-JB/2aeJB/2 = cosBa+sinBa·], (2.53) 
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from which it follows that exp{ J1f /2} anticommutes with all vectors. Consequently, this 
quantity can only be a multiple of the pseudoscalar and, since exp{ I7l,/2} has unit mag
nitude, we can define the orientation such that 

(2.54) 

This definition ensures that 
EnFn = EnFn = 1. (2.55) 

Finally, we introduce the notation 

(2.56) 

The formulae (2.44) now translate to 

n 

G(e) 'L(CjI\H(J)).Fn 
j=O 

n 

H(J) = (-It 'L(CjI\G( e)).En, (2.57) 
j=O 

where the convention is adopted that terms where Cj I\H or Cj I\G have grade less than 
n do not contribute. Since G and H only contain terms purely constructed from the {ed 
and {Jk} respectively, (2 .57) can be written as 

n 

G(e) 'L(Cn-jl\(H(J))J.Fn 
j=O 

n 

H(J) = 'L(-I)j((G(e))jI\Cn_j)·En. (2.58) 
j=O 

So far we have only derived a formula analogous to (2.44), but we can now go much 
further. By using 

eJO = cosn () + cosn-1 
() sin () Cl + ... + sinn () 1 (2.59) 

to decompose eJ (B+ 1r/2) = eJO 1 in two ways, it can be seen that 

Cn - r = (-lrC,.! = (-lr lC,., (2.60) 

and hence (using some simple duality relations) (2.58) become 

n 

G(e) 'LCj.HjEn 
j=O 

n 

H(J) = (-It 'L Gj·CjFn. (2.61 ) 
j=O 

Finally, since G and H are pure in the {ed and {Jk} respectively, the effect of dotting 
with Ck is simply to interchange each ek for an - Jk and each Jk for an ek. For vectors 
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this is achieved by dotting with J. But, from (2.53), the same result is achieved by a 
rotation through 7r /2 in the planes of J. Rotations extend simply via outermorphism, so 
we can now write 

G·c · .J J 

We thus arrive at the following equivalent expressions for (2.57): 

G(e) 

H(J) 

ehr/ 4 H(J)e-J-rr/4 En 

( _lte-J-rr/4G(e)ehr/ 4Fn. 

(2.62) 

(2.63) 

The Grassmann Fourier transformation has now been reduced to a rotation through 7r /2 
in the planes specified by J, followed by a duality transformation. Proving the "inversion" 
theorem ( i. e. that the above expressions are consistent) amounts to no more than carrying 
out a rotation, followed by its inverse, 

G(e) ehr/ 4 (( -lte-J-rr/4G( e)eJ-rr/4Fn) e-hr/ 4 En 

G(e)EnEn = G(e). (2.64) 

This proof is considerably simpler than any that can be carried out in the more restrictive 
system of Grassmann algebra. 

2.3 Some Further Developments 

We conclude this chapter with some further observations. We have seen how most aspects 
of Grassmann algebra and Berezin calculus can be formulated in terms of geometric al
gebra. It is natural to expect that other fields involving Grassmann variables can also be 
reformulated (and improved) in this manner. For example, many of the structures stud
ied by de Witt [52] (super-Lie algebras, super-Hilbert spaces) have natural multivector 
expressions, and the cyclic cohomology groups of Grassmann algebras described by Co
quereaux, Jadczyk and Kastler [53] can be formulated in terms of the multilinear function 
theory developed by Hestenes & Sobczyk [24, Chapter 3]. In Chapter 5 the formulation of 
this chapter is applied Grassmann mechanics and the geometric algebra approach is again 
seen to offer considerable benefits. Further applications of Grassmann algebra are consid
ered in Chapter 3, in which a novel approach to the theory of linear functions is discussed. 
A clear goal for future research in this subject is to find a satisfactory geometric algebra 
formulation of supersymmetric quantum mechanics and field theory. Some preliminary 
observations on how such a formulation might be achieved are made in Chapter 5, but a 
more complete picture requires further research. 

As a final comment, it is instructive to see how a Clifford algebra is traditionally built 
from the elements of Berezin calculus. It is well known [35] that the operators 

(2.65) 

37 



satisfy the Clifford algebra generating relations 

(2.66) 

and this has been used by Sherry to provide an alternative approach to quantizing a 
Grassmann system [55, 56J. The geometric algebra formalism offers a novel insight into 
these relations. By utilising the fiducial tensor, we can write 

h(ak)!\A + h-1(ak)·A 
h.(ak !\1l-1 (A)) + h.(sk·ll-l(A)) 
1l[akll-1(A)], (2.67) 

where A is the multivector equivalent of a( () and we have used (1.123). The operator Ch 
thus becomes an orthogonal Clifford vector (now Clifford multiplied), sandwiched between 
a symmetric distortion and its inverse. It is now simple to see that 

(2.68) 

The above is an example of the ubiquity of the fiducial tensor in applications involving 
non-orthonormal frames. In this regard it is quite surprising that the fiducial tensor is 
not more prominent in standard expositions of linear algebra. 

Berezin [35J defines dual operators to the Qk by 

(2.69) 

though a more useful structure is derived by dropping the j, and defining 

(2.70) 

These satisfy 
(2.71 ) 

and 
(2.72) 

so that the 1\, Ok span a 2n-dimensional balanced algebra (signature n, n). The Fk can be 
translated in the same manner as the Ok, this time giving (for a homogeneous multi vector) 

(2.73) 

The {ad frame now sits to the right of the multivector on which it operates. The factor 
of (-1 Y accounts for the minus sign in (2.71) and for the fact that the left and right 
multiples anticommute in (2.72). The Ok and Fk can both be given right analogues 
if desired, though this does not add anything new. The {Od and {Fd operators are 
discussed more fully in Chapter 4, where they are related to the theory of the general 
linear group . 
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Chapter 3 

Lie Groups and Spin Groups 

This chapter demonstrates how geometric algebra provides a natural arena for the study of 
Lie algebras and Lie groups. In particular, it is shown that every matrix Lie group can be 
realised as a spin group. Spin groups consist of even products of unit magnitude vectors, 
and arise naturally from the geometric algebra treatment of reflections and rotations 
(introduced in Section 1.2.4). The generators of a spin group are bivectors, and it is 
shown that every Lie algebra can be represented by a bivector algebra. This brings the 
computational power of geometric algebra to applications involving Lie groups and Lie 
algebras. An advantage of this approach is that, since the rotors and bivectors are all 
elements of the same algebra, the discussion can move freely between the group and its 
algebra. The spin version of the general linear group is studied in detail, revealing some 
novel links with the structures of Grassmann algebra studied in Chapter 2. An interesting 
result that emerges from this work is that every linear transformation can be represented 
as a (geometric) product of vectors. Some applications of this result are discussed. A 
number of the ideas developed in this chapter appeared in the paper "Lie gTOUpS as spin 
gTOUpS" [2]. 

Throughout this chapter, the geometric algebra generated by p independent vectors 
of positive norm and q of negative norm is denoted as ~p,q. The grade-k subspace of 
this algebra is written as ~;,q and the space of vectors, ~~,q, is abbreviated to ?Rp,q. The 
Euclidean algebra ~n,O is abbreviated to ~n, and the vector space ~~ is written as ?Rn. 
Lie groups and their algebras are labeled according to the conventions of J.F. Cornwell's 
"GTOUp TheoTY in Physics", Vol. 2 [57]. (A useful table of these conventions is found on 
page 392). 

3.1 Spin Groups and their Generators 

In this chapter we are interested in spin groups. These arise from the geometric algebra 
representation of orthogonal transformations - linear functions on ?Rp,q which preserve 
inner products. We start by considering the case of the Euclidean algebra ?Rn. The 
simplest orthogonal transformation of ~n is a reflection in the hyperplane perpendicular 
to some unit vector n, 

ll(a) = -nan, (3.1) 
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where we have recalled equation (1.70) . (A convenient feature of the underbar/overbar 
notation for linear functions is that a function can be written in terms of the multi vector 
that determines it.) The function rr satisfies 

!l(a) ·!l(b) = (nannbn) = a·b, (3 .2) 

and so preserves the inner product. On combining !l with a second reflection m , where 

rn(a) = -ma'm, (3.3) 

the function 
m rr( a) = mnanm (3.4) 

is obtained. This function also preserves inner products, and in Section 1.2.4 was identified 
as a rotation in the m /\ n plane. The group of even products of unit vectors is denoted 
spin(n) . It consists of all even multivectors (rotors) satisfying 

RR= 1 (3.5) 

and such that the quantity RaR is a vector for all vectors a. The double-sided action of 
a rotor R on a vector a is written as 

R(a) = RaR (3 .6) 

and the R form the group of rotations on ~n, denoted SO(n). The rotors afford a spin-1/2 
description of rotations, hence rotor groups are referred to as spin groups. 

In spaces with mixed signature the situation is slightly more complicated. In order to 
take care of the fact that a unit vector can now have n 2 = ±1 , equation (3.1) must be 
modified to 

!l( a) = -nan-1
. (3.7) 

Taking even combinations of reflections now leads to functions of the type 

(3.8) 

as opposed to 1111 aNI. Again, the spin group spin(p, q) is defined as the group of even 
products of unit vectors, but its elements now satisfy NI M = ±1. The term "rotor" 
is retained for elements of spin(p, q) satisfying RR = 1. The subgroup of spin(p, q) 
containing just the rotors is called the rotor group (this is sometimes written as spin+(p, q) 
in the literature). The action of a rotor on a vector a is always defined by (3.6). Spin 
groups and rotor groups are both Lie groups and, in a space with mixed signature, the spin 
group differs from the rotor group only by a direct product with an additional subgroup 
of discrete transformations. 

The generators of a spin group are found by adapting the techniques found in any of 
the standard texts of Lie group theory (see [57], for example) . We are only interested 
in the subgroup of elements connected to the identity, so only need to consider the rotor 
group. We introduce a one-parameter set of rotors R(t), so that 

R(t)aR(t) = (R(t)aR(t)h (3.9) 
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for all vectors a and for all values of the parameter t. On differentiating with respect to 
t, we find that the quantity 

R'aR+RaR' R'R(RaR) + (RaR)RR' 
R'RCRaR) - (RaR)R'R 

must be a vector, where we have used RR = 1 to deduce that 

R'R = -RR'. 

(3.10) 

(3.11) 

The commutator of R'R with an arbitrary vector therefore results in a vector, so R'R can 
only contain a bivector part. (R' R cannot contain a scalar part, since (R' Rr = - R' k) 
The generators of a rotor group are therefore a set of bivectors in the algebra containing 
the rotors. 

A simple application of the Jacobi identity gives, for vectors a, b, c, and d, 

(a/\b) x (c/\d) = [(a/\b)·c]/\d - [(a/\b)·d]/\c, (3.12) 

so the commutator product of two bivector blades results in a third bivector. It follows 
that the space of bivectors is closed under the commutator product, and hence that the 
bivectors (together with the commutator product) form the Lie algebra of a spin group. 
It should be noted that the commutator product, x, in equation (3.12) differs from the 
commutator bracket by a factor of 1/2. The commutator product is simpler to use, since 
it is the bivector part of the full geometric product of two bivectors A and B: 

where 

AB = A·B + A x B + A/\B 

A·B + A/\B 
AxB 

HAB+BA), 

HAB -BA) . 

For this reason the commutator product will be used throughout this chapter. 

(3.13) 

(3.14) 

(3.15) 

Since the Lie algebra of a spin group is generated by the bivectors, it follows that all 
rotors simply connected to the identity can be written in the form 

(3.16) 

which ensures that 
(3.17) 

The form of a rotor given by equation (3.16) was found in Section 1.2.4, where rotations 
in a single Euclidean plane were considered. The factor of 1/2 is included because rotors 
provide a half-angle description of rotations. In terms of the Lie algebra, the factor of 
1/2 is absorbed into our use of the commutator product, as opposed to the commutator 
bracket . 
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It can be shown that, in positive definite spaces, all rotors can be written in the form 
of (3.16). The bivector B is not necessarily unique, however, as can be seen by considering 
the power series definition of the logarithm, 

where 

H3 H 5 

InX=2[H+-+-+···] 
3 5 

X-I 
H= X+1' 

(3.18) 

(3.19) 

It is implicit in this formula that 1 + X is invertible, and the logarithm will not be well
defined if this is not the case. For example, the pseudoscalar I in R4 ,0 is a rotor (I j = 1), 
the geometric effect of which is to reverse the sign of all vectors. But 1 + I is not invertible, 
since (1 + 1)2 = 2(1 + 1). This manifests itself as a non-uniqueness in the logarithm of I 
- given any bivector blade B satisfying B2 = -1, I can be written as 

7r 
1= exp{B(l - 1)2} ' (3.20) 

Further problems can arise in spaces with mixed signature. In the spacetime algebra, for 
example, whilst the rotor 

(3.21) 

can be written as 
(3.22) 

the rotor 
(3.23) 

cannot be written as the exponential of a bivector. The problem here is that the series 
for In( -X) is found by replacing H by H-1 in equation (3.18) and, whilst 1 + R = 

2 + (,0 + 11h2 is invertible, 1 - R = -(,0 + 11h2 is null and therefore not invertible. 
Further examples of rotors with no logarithm can be constructed in spaces with other 

signatures. Near the identity, however, the Baker-Campbell-Hausdorff formula ensures 
that , for suitably small bivectors, one can always write 

(3.24) 

So, as is usual in Lie group theory, the bulk of the properties of the rotor (and spin) 
groups are transferred to the properties of their bivector generators. 

In the study of Lie groups and their algebras, the adjoint representation plays a partic
ularly important role. The adjoint representation of a spin group is formed from functions 
mapping the Lie algebra to itself, 

AdM(B) == 1\1! BN!-1 = M(B). (3.25) 

The adjoint representation is therefore formed by the outermorphism action of the linear 
functions N!(a) = MaM-1. For the rotor subgroup, we have 

AdR(B) = R(B) = RBR. (3.26) 
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It is immediately seen that the adjoint representation satisfies 

(3 .27) 

The adjoint representation of the Lie group induces a representation of the Lie algebra as 

or 

The Jacobi identity ensures that 

adA/2 (B) = AxB, 

adA(B) = 2AxB. 

2[Ax(BxC) - Bx(AxC)] 

2(AxB)xC 

adAxB(C) . 

(3.28) 

(3.29) 

(3 .30) 

The Killing form is constructed by considering adA as a linear operator on the space of 
bivectors, and defining 

(3.31) 

For the case where the Lie algebra is the set of all bivectors, we can define a basis set of 
bivectors as Bl( = ei A ej (i < j) with reciprocal basis BK = ej A ei. Here, the index K 
is a simplicial index running from 1 to n(n - 1)/2 over all combinations of i and j with 
i < j. A matrix form of the adjoint representation is now given by 

so that the Killing form becomes 

K(A,B) 

Now, 

and 

n(n-1)/2 

4 L (AxBJ)·Bl((BxBK) ·B J 

J,K=1 
2[A x (B x (eiAej))] .(ej 

Aei
) 

(AB eiAejej Aei - AeiAejBej Aei
) 

eiejejAei 

n(n-1) 

eiejBej 
Aei 

eiej B ej ei - eiejei . ej B 

[(n - 4)2 - n]B 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

where we have used equations (1.139). On recombining (3.34) and (3.35), the Killing form 
on a bivector algebra becomes 

K(A, B) = 8(n - 2)(AB) (3.36) 
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Eij eJ\ej (i < j i,j = 1. . . p) 
Fij fi I\fJ (i < j i,j = 1. . . q) 
Gij ei I\fJ (i = 1. . . p, j = 1. . . q). 

Table 3.1 : Bivector Basis for so(p,q) 

and so is given by the scalar part of the geometric product of two bivectors. The constant 
is irrelevant, and will be ignored . The same form will be inherited by all sub-algebras of 
the bivector algebra, so we can write 

K(A, B) == A·B (3 .37) 

as the Killing form for any bivector (Lie) algebra. This product is clearly symmetric, and 
is invariant under the adjoint action of any of the group elements. The fact that both 
the scalar and bivector parts of the geometric product of bivectors now have roles in the 
study of Lie algebras is a useful unification - rather than calculate separate commutators 
and inner products, one simply calculates a geometric product and reads off the parts of 
interest. 

As an example, the simplest of the spin groups is the full rotor group spin(p, q) in 
some ~p,q. The Lie algebra of spin(p, q) is the set of bivectors ~;,q . By introducing a 
basis set of p positive norm vectors {ei} and q negative norm vectors {fd, a basis set 
for the full Lie algebra is given by the generators in Table 3.1. These generators provide 
a bivector realisation of the Lie algebra so(p,q). When the {ed and {fd are chosen to 
be orthonormal, it is immediately seen that the Killing form has (p(p - 1) + q( q - 1)) /2 
bivectors of negative norm and pq of positive norm. The sum of these is n(n -1)/2, where 
n = p + q. The algebra is unaffected by interchanging the signature of the space from ~p,q 
to ~q,p. Compact Killing metrics arise from bivectors in positive (or negative) definite 
vector spaces. 

We now turn to a systematic study of the remaining spin groups and their bivector 
generators. These are classified according to their invariants which, for the classical 
groups, are non-degenerate bilinear forms. In the geometric algebra treatment, bilinear 
forms are determined by certain multivectors , and the groups are studied in terms of these 
invariant multi vectors. 

3.2 The Unitary Group as a Spin Group 

It has already been stressed that the use of a unit scalar imaginary frequently hides useful 
geometric information. This remains true for the study of the unitary groups. The basic 
idea needed to discuss the unitary groups was introduced in Section 2.2.2. One starts in 
an n-dimensional space of arbitrary signature, and introduces a second (anticommuting) 
copy of this space. Thus, if the set {ei} form a frame for the first space, the second space 
is generated by a frame {fd satisfying equations (2.45) and (2.46). The spaces are related 
by the "doubling" bivector J , defined as (2.49) 

(3.38) 
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We recall from Section 2.2.2 that J satisfies 

(a·J)·J = -a (3.39) 

for all vectors a in the 2n-dimensional space. From J the linear function J is defined as 

(3.40) 

The function 1 satisfies 
(3.41 ) 

and provides the required complex structure - the action of J being equivalent to mul
tiplication of a complex vector by j. 

An important property of J is that it is independent of the frame from which it was 
constructed. To see this, consider a transformation fl taking the {ed to a new frame 

e~ = h.( ei ) 
" --1 ' 

::::} et = h (et ) 

so that the transformed J is 

J' h.( ej) /\ 71,-1 (fj) 

(ekek. h.( ej )) /\71,-1 (fj) . 

But h.( ej ) remains in the space spanned by the {ed , so 

and now 

J' 

fk. fl(fj ) 

fJ .h(fk), 

ek/\ (fj' h(fk) 71,-1 (fj)) 
--1- k 

ek/\h h(l") 

J. 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

We now turn to a study of the properties of the outermorphism of L A simple 
application of the J acobi identity yields 

(a/\b) x J (a· J)/\b + a/\ (b · J) 

l(a)/\b + a/\J(b) 

and, using this result again, we derive 

[( a /\ b) x J] x J 

It follows that 

12(a)/\b + J(a)/\J(b) + l(a)/\l(b) + a/\J2(b) 

2(J(a/\b) - a/\b). 

J (B) = B + H B x J) x J, 
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We recall from Section 2.2.2 that 1 satisfies 

(a·1)·1 = -a (3.39) 

for all vectors a in the 2n-dimensional space. From 1 the linear function 1 is defined as 

(3.40) 

The function 1 satisfies 
(3.41 ) 

and provides the required complex structure - the action of 1 being equivalent to mul
tiplication of a complex vector by j . 

An important property of 1 is that it is independent of the frame from which it was 
constructed. To see this, consider a transformation II taking the {ed to a new frame 

e~ = Mei) 
., --1 . 

=? et = h (et) 

so that the transformed 1 is 

l' ll( ej) l''}I,-1 (fj) 

(ek ek ·ll( ej)) /\ X-I (fj). 

But M ej ) remains in the space spanned by the {ed, so 

and now 

l' 

jk .1l(fJ) 

fJ ·X(fk) , 

ek/\ (fJ·X(fk)X- 1 (fj)) 
--1- k 

ek/\h h(r) 

1. 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

We now turn to a study of the properties of the outermorphism of 1 . A simple 
application of the J acobi identity yields 

(a/\b) x 1 (a· 1) /\b + a/\(b · 1) 
J...(a)/\b + a/\J...(b) 

and, using this result again, we derive 

[ ( a /\ b) x 1] x 1 

It follows that 

J...2(a)/\b + l(a)/\l(b) + J...(a)/\l(b) + a/\12(b) 
2(J...(a/\b) - a/\b) . 

J...(B) = B+ HB x 1) x 1, 

45 
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for all bivectors B. If the bivector B commutes with J, then we see that 

J..(B) = B, (3.50) 

so that B is an eigenbivector of J.. with eigenvalue + 1. The converse is also true - all 
eigenbivectors of J with eigenvalue +1 commute with J. This result follows by using 

J(B) = B (3 .51) 

to write the eigenbivector B as 

B = HB + J..(B)) . (3.52) 

But, for a blade al\b, 

[al\b + J(al\b)] x J J..(a)l\b+ aI\J(b) + J 2 (a)I\J..(b) + J..(a)I\J2 (b) 
0, (3.53) 

and the same must be true for all sums of blades. All bivectors of the form B + J..(B) 
therefore commute with J, from which it follows that all eigenbivectors of J also commute 
with J. In fact, since the action of J.. on bivectors satisfies 

(3.54) 

any bivector of the form B + J..(B) is an eigenbivector of L 
The next step in the study of the unitary group is to find a representation of the 

Hermitian inner product. If we consider a pair of complex vectors u and v with components 
{ud and {vd, where 

then 

Xk + jYk 

T'k + jSk, 
(3.55) 

(3.56) 

Viewed as a pair of real products, (3.56) contains a symmetric and askew-symmetric 
term. The symmetric part is the inner product in our 2n-dimensional vector space. Any 
skew-symmetric inner product can be written in the form (a 1\ b) . B, where B is some 
bivector. For the Hermitian inner product this bivector is J, which follows immediately 
from considering the real part of the inner product of c(ja, b). The form of the Hermitian 
inner product in our 2n-dimensional vector space is therefore 

c(a,b) = a·b+ (al\b)·Jj. (3.57) 

This satisfies 
c(b,a) = a·b- (al\b)·Jj = c(a,b)*, (3.58) 

as required. The introduction of the j disguises the fact that the Hermitian product 
contains two separate bilinear forms, both of which are invariant under the action of the 
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unitary group. All orthogonal transformations leave a· b invariant, but only a subset will 
leave (a 1\ b) . J invariant as well. These transformations must satisfy 

(D a) 1\ D b)) . J = (a 1\ b) .]( J) = (a 1\ b)· J (3.59) 

for all vectors a and b. The invariance group therefore consists of all orthogonal transfor
mations whose outermorphism satisfies 

DJ) = 1. (3 .60) 

This requirement excludes all discrete transformations, since a vector n will only generate 
a symmetry if 

rr(J) = nJn-1 = J 

n·J = 0, (3.61) 

and no such vector n exists . It follows that the symmetry group is constructed entirely 
from the double sided action of the elements of the spin group which satisfy 

IvIJ = J IvI. (3.62) 

These elements afford a spin group representation of the unitary group. 
Equation (3 .62) requires that, for a rotor R simply connected to the identity, the 

bivector generator of R commutes with J. The Lie algebra of a unitary group is therefore 
realised by the set of bivectors commuting with J, which we have seen are also eigen
bivectors of J. Given an arbitrary bivector E, therefore, the bivector 

EJ = E + J(E) (3.63) 

is contained in the bivector algebra of u(p,q) . This provides a quick method for writing 
down a basis set of generators. It is convenient at this point to introduce an orthonormal 
frame of vectors {ei' Jd satisfying 

ei ' ej = Ji' fJ = T/ij 

ei' fJ = 0, 

(3.64) 

(3 .65) 

where T/ij = T/iOjk (no sum) and T/i is the metric indicator (= 1 or -1). This frame is used 
to write down a basis set of generators which are orthogonal with respect to the Killing 
form. Such a basis for u(p,q) is contained in Table 3.2. This basis has dimension 

~n(n - 1) + ~n(n - 1) + n = n 2
. (3 .66) 

Of these, p2 + q2 bivectors have negative norm, and 2pq have positive norm. 
The algebra of Table 3.2 contains the bivector J, which commutes with all other 

elements of the algebra and generates a U(1) subgroup. This is factored out to give the 
basis for su(p,q) contained in Table 3.3. The Hi are written in the form given to take care 
of the metric signature of the vector space. When working in ~2n one can simply write 

(3.67) 
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(i <j = l ... n) 
11 

(i=l ... n). 

Table 3.2: . Bivector Basis for u(p,q) 

eiej + IifJ 
edj - fiej 
edi - ei+ 1 pH 

(i<j=l ... n) 
11 

(i=l ... n-l). 

Table 3.3: Bivector Basis for su(p,q) 

The use of Hermitian forms hides the properties of J in the imaginary j, which makes 
it difficult to relate the unitary groups to other groups. In particular, the group of linear 
transformations on ~2n whose outermorphism leaves J invariant form the symplectic 
group Sp(n,R). Since U(n) leaves a·b invariant as well as J , we obtain the group relation 

U(n) ~ 0(2n) n Sp(n,R). (3.68) 

More generally, we find that 

U(p, q) ~ 0(2p, 2q) n Sp(p, q,R), (3.69) 

where Sp(p, q,R) is group of linear transformations leaving J invariant in the mixed
signature space ~2p,2q. The geometric algebra approach to Lie group theory makes rela
tions such as (3.69) quite transparent. Furthermore, the doubling bivector J appears in 
many other applications of geometric algebra - we saw one occurrence in Section 2.2.2 in 
the discussion of the Grassmann-Fourier transform. Other applications include multipar
ticle quantum mechanics and Hamiltonian mechanics [32] . Consistent use of geometric 
algebra can reveal these (often hidden) similarities between otherwise disparate fields. 

3.3 The General Linear Group as a Spin Group 

The development of the general linear group as a spin group parallels that of the unitary 
groups. Again, the dimension of the space is doubled by introducing a second space, but 
this time the second space has opposite signature. This leads to the development of a 
Grassmann structure, as opposed to a complex structure. Vectors in ~p,q are then replaced 
by null vectors in ~n,n, where n = p + q. Since a (positive) dilation of a null vector can 
also be given a rotor description, it becomes possible to build up a rotor description of the 
entire general linear group from combinations of dilations and orthogonal transformations. 

The required construction is obtained by starting with a basis set of vectors {ed in 
~p,q, and introducing a second space of opposite signature. The second space is generated 
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by a set of vectors {Ji} satisfying 

(3 .70) 

(3.71) 

and the full set {ei' Ji} form a basis set for 2Rn ,n. The vector space 2Rn ,n is split into two 
null spaces by introducing the bivec'tor f( defined by 

(3.72) 

Again, f( is independent of the initial choice of the {ed frame. The bivector f( determines 
the linear function f( by 

The function f( satisfies 

and 

for all vectors a . 

f(( ei) 
f(( ei ) 

f((a) == a· f(. 

f((fi) 
f((P) 

(3.73) 

(3.74 ) 

(3.75) 

Proceeding as for the complexification bivector J we find that, for an arbitrary bivector 
B, 

f((B) = -B+ HBxf()xf(. (3.76) 

Any bivector commuting with f( is therefore an eigenbivector of f(, but now with eigen
value -1. 

An arbitrary vector a in 2Rn ,n can be decomposed into a pair of null vectors, 

where 

Ha + f((a)), 
Ha - f((a)). 

That a+ is null follows from 

(a+)2 i (a2 + 2a·(a · f() + (a.f().(a.f()) 

i(a2 - [(a · f() · f(] ·a) 
i(a2 - ( 2) 

0, 

(3 .77) 

(3.78) 

(3.79) 

(3.80) 

and the same holds for a_. The scalar product between a+ and a_ is, of course, non-zero: 

(3.81) 
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This construction decomposes ~n,n into two separate null spaces, vn and Vn*, defined by 

so that 

I((a) 
I((a) 

a 
-a 

Va E vn 
Va E Vn *, 

, ~n,n = Vn EEl Vn*. 

A basis is defined for each of vn and Vn* by 

Wi 

*' W 

respectively. These basis vectors satisfy 

H ei + I( ( ei) ) 

He i 
- I((e i

)), 

*' *J 0 Wi'Wj = W · W = 

and 

(3.82) 

(3.83) 

(3.84) 

(3.85) 

(3.86) 

(3.87) 

In conventional accounts, the space vn would be recognised as a Grassmann algebra (all 
vector generators anticommute), with Vn * identified as the dual space of functions acting 
on Vn, In Chapter 2 we saw how both vn and Vn* can be represented in terms of functions 
in a single n-dimensional algebra. Here, a different construction is adopted in which the vn 
and V n * spaces are kept maximally distinct, so that they generate a 2n-dimensional vector 
space. This is the more useful approach for the study of the Lie algebra of the general 
linear group . We shall shortly see how these two separate approaches are reconciled by 
setting up an isomorphism between operations in the two algebras. 

We are interested in the group of orthogonal transformations which keep the vn and 
Vn * spaces separate. For a vector a in Vn , the orthogonal transformation t must then 
satisfy 

1(a) = 1(a)·I(. (3,88) 

But , since a = a·I( and t- 1 = f , equation (3.88) leads to 

a·I( f[t(a).I(] 

a·f(I(), (3.89) 

which must hold for all a. It follows that 

t(I() = I( (3.90) 

and we will show that the t satisfying this requirement form the general linear group 
GL(n,R) . The orthogonal transformations satisfying (3.90) can each be given a spin de
scription, which enables the general linear group to be represented by a spin group, The 
elements of this spin group must satisfy 

1\1 I( = I( M. (3.91) 
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(i <j = 1 ... n) 
11 A A 

eiej - eiej 

eiei (i=I. .. n). 

Table 3.4:. Bivector Basis for gl(n,R) 

eiej - eiej 

eiej - eiej 
A A 

eiei - ei+l ei+l 

(i <j = I. .. n) 
11 

(i=I. .. n-l). 

Table 3.5: Bivector Basis for sl(n,R) 

The generators of the rotor part of the spin group are therefore the set of bivectors which 
commute with K, which are eigenbivectors of K with eigenvalue -l. 

Before writing down an orthogonal basis for the Lie algebra, it is useful to introduce 
some further notation. We now take {ed to be an orthonormal basis for the Euclidean 
algebra ~n, and {ed to be the corresponding basis for the anti-Euclidean algebra ~O,n. 
These basis vectors satisfy 

ei ·ej = Oij = -ei·ej 

ei' ej = O. 

The hat also serves as a convenient abbreviation for the action of K on a vector a, 

a = K(a). 

(3.92) 

(3.93) 

Since all bivectors in the Lie algebra of GL(n,R) are of the form B - K(B), an orthogonal 
basis for the Lie algebra can now be written down easily. Such a basis is contained in 
Table 3.4. The algebra in Table 3.4 includes K, which generates an abelian subgroup. 
This is factored out to leave the Lie algebra sl(n,R) contained in Table 3.5. 

The form of the Lie algebra for the group GL(n,R) is clearly very close to that for 
U(n) contained in Table 3.2. The reason can be seen by considering the bilinear form 
generated by the bivector K, 

E(a, b) = a·K(b). 

If we decompose a and b in the orthonormal basis of (3.92), 

we find that 

a 

b 

xiei + y iei 

T i e' + s ie ' t t , 

( b) i i i i 
E a, = x s - Y T , 

(3.94) 

(3.95) 

(3.96) 

(3.97) 

which is the component form of the symplectic norm in ~2n . We thus have the group 
relation 

GL(n ,R) ~ O(n,n) n Sp(n,R), (3.98) 
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which is to be compared with (3.68) and (3.69). The differences between the Lie algebras 
of GL(n,R) and U(n) are due solely to the metric signature of the underlying vector 
space which generates the bivector algebra. It follows that both Lie algebras have the 
same complexification, since complexification removes all dependence on signature. In 
the theory of the classification of the semi-simple Lie algebras, the complexification of the 
su(n) and sl(n,R) algebras is denoted An-I ' 

An alternative basis for sl( n,R) can be given in terms of the {wd and {wn null frames, 
which are now defined as 

The {wd and {wn frames satisfy 

and 

w · • 
wi 

Hei + ei) 
Hei - ei). 

(3.99) 

(3.100) 

(3.101) 

which are identifiable as the relations of the algebra of fermionic creation and annihilation 
operators. The pseudoscalars for the the vn and Vn* spaces are defined by 

respectively. If we now define 

and 

WI W2 . . . Wn 

w~w~ .. . w~ 

Ii1 HEij + Fij) 
~(ei - ei)(ej + ej) 
2wiwj 

Iij HEij - Fij) 
~(ei + ei)(ej - ej) 

-2wjwi' 

(3 .102) 

(3.103) 

(3.104 ) 

we see that a complete basis for sl( n,R) is defined by the set {T!;, Iij, Hi}. This corresponds 
to the Chevalley basis for An-I . Furthermore, a complete basis set of generators for 
GL(n,R) is given by the set {wiI\Wj}, defined over all i, j. This is perhaps the simplest 
of the possible basis sets for the Lie algebra, though it has the disadvantage that it is not 
orthogonal with respect to the Killing form. 

We now turn to a proof that the subgroup of the spin group which leaves J( invariant 
does indeed form a representation of GL(n,R). With a vector Cl in ~n represented by the 
null vector a+ = (Cl + a) in ~n,n, we must prove that an arbitrary linear transformation 
of Cl, Cl f--t t( Cl) , can be written in ~n,n as 

(3.105) 
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where !vI is a member of the spin group spin(n, n) which commutes with f(. We start by 
considering the polar decomposition of an arbitrary matrix M. Assuming that det M i- 0, 
the matrix M M can be written (not necessarliy uniquely) as 

MM =SAS (3.106) 

where S is an orthogonal transformat,ion (which can be arranged to be a rotation matrix), 
and A is a diagonal matrix with positive entries . One can now write 

(3 .107) 

where A 1
/

2 is the diagonal matrix of positive square roots of the entries of A and R is a 
matrix defined by 

The matrix R satisfies 

RR A-1/ 2 SM MSA- 1/ 2 

A -1/2 AA -1/2 

I 

(3 .108) 

(3.109) 

and so is also orthogonal. It follows from (3.107) that an arbitrary non-singular matrix 
can be written as a diagonal matrix with positive entries sandwiched between a pair of 
orthogonal matrices. As a check, this gives n 2 degrees of freedom. To prove the desired 
result, we need only show that orthogonal transformations and positive dilations can be 
written in the form of equation (3 .105). 

We first consider rotations. The Eij generators in Table 3.4 produce rotors of the form 

R = exp{(E - E)j2}, (3 .110) 

where 
(3.111) 

and the aij are a set of scalar coefficients. The effect of the rotor R on a+ generates 

R(a + cl)R 
RaR + (RaR).f( 
eE / 2ae-E / 2 + (e E / 2ae-E / 2).f( (3.112) 

and so accounts for all rotations of the vector a in ~n. To complete the set of orthogonal 
transformations, a representation for reflections must be found as well. A reflection in 
the hyperplane orthogonal to the vector n in ~n is represented by the element nn in ~n,n' 
Since nfl:fin = -I, nn is not a rotor and belongs to the disconnected part of spin(n, n). 
That nn commutes with f(, and so is contained in spin(n, n), is verified as follows, 

nnf( 2nn· f( + nf( n 

2n 2 + 2n · f( n + f(ni~ 
2(n2 + n2

) + f(m?' 

f(nn . 
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The action of nn on a vector is determined by (3.8), and gives 

-nnann - (nnann)·J( 

-nan - (nan)·J(, (3.114) 

as required. 
Finally, we need to see how positive dilations are given a rotor description. A dilation 

in the n direction by an amount eA is generated by the rotor 

R = e- Ann/2, (3.115) 

where the generator -Ann/2 is built from the le in Table 3.4. Acting on the null vector 
n+ = n + 17" the rotor (3.115) gives 

e -Ann/2n+ e +Ann/2 

e-Ann(n +n) 
(cosh A - nnsinhA)(n + n) 
( cosh A + sinh A) (n + n) 

A e n+. (3.116) 

In addition, for vectors perpendicular to n in ~n, the action of R on their null vector 
equivalents has no effect. These are precisely the required properties for a dilation in 
the n direction. This concludes the proof that the general linear group is represented by 
the subgroup of spin( n, n) consisting of elements commuting with J(. As an aside , this 
construction has led us to the Eij and J(i generators in Table (3.4). Commutators of the 
Eij and J(i give the remaining Fij generators, which are sufficient to close the algebra. 

The determinant of ,a linear function on ~n is easily represented in ~n,n since 

(3.117) 

becomes 
(3.118) 

in the null space of Vn
. Here 111 is the spin group element representing the linear function 

L From the definitions of vVn and VV; (3.102), we can write 

(3.119) 

from which many of the standard properties of determinants can be derived. 

3.3.1 Endomorphisms of ~n 

We now turn to a second feature of ~n,n, which is its effectiveness in discussing endomor
phisms of ~n. These are maps of ~n onto itself, and the set of all such maps is denoted 
end(~n). Since the algebra ~n is 2n-dimensional, the endomorphism algebra is isomorphic 
to the algebra of real 2n x 2n matrices, 

(3.120) 
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But the Clifford algebra Rn,n is also isomorphic to the algebra of 2n x 2n matrices, so 
every endomorphism of Rn can be represented by a multivector in Rn,n 1. Our first task is 
therefore to find how to construct each multi vector equivalent of a given endomorphism. 

Within Rn, endomorphisms are built up from the the primitive operations of the inner 
and outer products with the {ed. It is more useful, however, to adopt the following basis 
set of functions, 

~i(A) 

fi( A) 
ei·A + ei l\A = eiA 

-ei·A + eil\A = Aei, 

where the hat (parity) operation in Rn is defined by 

A7• == (-IrA,. 

(3.121) 

(3.122) 

(3.123) 

and serves to distinguish even-grade and odd-grade multivectors. The reason for the use 
of the hat in both Rn and ?Rn,n will become apparent shortly. The {~d and {fi} operations 
are precisely those found in Section 2.3 in the context of Berezin calculus, though with 
the fiducial tensor II now set to the identity. They satisfy the relations 

~i~j + ~j~i 28ij 

e·e·+e·e· - t -J -J-t -28·· tJ (3.124 ) 

e·e· + e·e· -t-J -J-t 0, (3.125 ) 

which are the defining relations for a vector basis in Rn,n' This establishes the isomorphism 
between elements of end(?Rn ) and multivectors in Rn,n ' Any element of end(?Rn ) can be 
decomposed into sums and products of the {~d and {fd functions, and so immediately 
specifies a multivector in Rn,n built from the same combinations of the {ed and { ei } basis 
vectors. 

To complete the construction, we must find a 2n -dimensional subspace of ?Rn,n on 
which endomorphisms of Rn are faithfully represented by (left) multiplication by elements 
of Rn,n ' The required subspace is a minimal left ideal of Rn,n and is denoted In. It is 
constructed as follows. We define a set of bivector blades by 

(3.126) 

Here, and in the remainder of this section, we have dropped the summation convention. 
The J(i satisfy 

J(i' J(j 

J(i X J(j 

and the bivector J( is can be written as 

(3.127) 

(3.128) 

(3 .129) 

11 am grateful to Frank Sommen and Nadine Van Acker for pointing out the potential usefulness of 
this result. 
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A family of commuting idempotents are now defined by 

and have the following properties: 

12 - I· i - t 

IJj = IjIi 

eJi = Wi = eJi 

Iiei = wi = - Iiei 

ICIi = Ii. 

From the Ii the idempotent I is defined by 

n 

I = IT Ii = 1112 . . . In = W~W1W;W2 . . . w~wn = lIV:Wn. 
i=l 

I has the following properties: 

I 

and 

(3 .130) 

(3.131) 

(3.132) 

(3.133) 

(3.134) 

(3.135) 

(3.136) 

(3.137) 

(3.138) 

(3.139) 

where En is the pseudoscalar for the Euclidean algebra ~n and En is the pseudoscalar 
for the anti-Euclidean algebra ~O,n. The relationships in (3.139) establish an equivalence 
between the ?Rn, ?RO ,n and vn vector spaces. 

Whilst the construction of I has made use of an orthonormal frame, the form of I is 
actually independent of this choice. This can be seen by writing I in the form 

I -~( }( J(I\J( J(I\J(I\ . . . I\J() 
- 2n 1 + + 2! + .. . + n! (3.140) 

and recalling that J( is frame-independent. It is interesting to note that the bracketed term 
in (3 .140) is of the same form as the Grassmann exponential considered in Section 2.2.l. 

The full 2n-dimensional space In is generated by left multiplication of I by the entire 
algebra ~n,n, 

(3.141) 

Since multiplication of I by ei and ei are equivalent, every occurrence of an ei in a multi
vector in ~n,n can be replaced by an ei, so that there is a simple 1 ~ 1 equivalence between 
elements of ?Rn and In . The action of an element of end(~n) can now be represented in 
~n,n by left multiplication of In by the appropriate multi vector. For a multi vector AT in 
~n the equivalence between the basic operators (3.122) is seen from 

(3.142) 
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and 
(3.143) 

The parity operation on the right-hand side of (3.143) arises because the ei vector must 
be anticommuted through each of the vectors making up the A j • multi vector. This is 
the reason for the different uses of the overhat notation for the ~n and ~n,n algebras. 
Symbolically, we can now write 

eiI n +--+ ei~n 

eiIn +--+ ~n ei · 

Also, from the definitions of Wi and wi (3.99), we find the equivalences 

WiIn +--+ ei 1\ ~n 

W *In , - , e In , "i . ::Tln , 

(3.144) 

(3.145) 

(3.146) 

(3.147) 

which establishes contact with the formalism of Grassmann/Berezin calculus given in 
Chapter 2. We can now move easily between the formalism with dot and wedge products 
used in Chapter 2 and the null-vector formalism adopted here. The chosen application 
should dictate which is the more useful. 

We next consider the quantity nit, where n is a unit vector. The action of this on In 

(3.148) 

The operation on the right-hand side is the outermorphism action of a reflection in the 
hyperplane perpendicular to n. In the previous section we used a double-sided application 
of n1'l on null vectors to represent reflections in ~n . We now see that the same object can 
be applied single-sidedly in conjunction with the idempotent I to also produce reflections. 
The same is true of products of reflections. For example, the rotor (3.110) gives 

(3.149) 

demonstrating how the two-bladed structure of the Eij generators is used to represent 
concurrent left and right multiplication in ~n' 

The operation ~n f---7 ~n is performed by successive reflections in each of the ei direc
tions. We therefore find the equivalence 

(3.150) 

But 
(3.151) 

is the unit pseudoscalar in ~n,n, so multiplication of an element of In by En,n corresponds 
to the parity operation in ~n' As a check, (En,n)2 is always +1 , so the result of two parity 
operations is always the identity. 

The correspondence between the single-sided and double-sided forms for a dilation are 
not quite so simple. If we consider the rotor exp{ -).,nn,j2} again, we find that, for the 
vector n, 

(3.152) 
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For vectors perpendicular to n, however, we find that 

(3.153) 

so the single-sided formulation gives a stretch along the n direction of exp{ A}, but now 
combined with an overall dilation of exp{-A/2}. This overall factor can be removed by 
an additional boost with the exponential of a suitable multiple of K. It is clear, however, 
that both single-sided and double-sided application of elements of the spin group which 
commute with K can be used to give representations of the general linear group. 

Finally, we consider even products of the null vectors 'Wi and 'Wi . These generate the 
operations 

t-7 ei . ( ei !\ ~n) 

t-7 ei !\ ( ei . ~n) (3.154 ) 

which are rejection and projection operations in ~n respectively. For a vector a in ~n ' 

the operation of projecting a onto the ei direction is performed by 

P(a) = e·e··a 'l. 1. t , (3.155) 

and for a general multivector, 
(3.156) 

This projects out the components of A which contain a vector in the ei direction. The 
projection onto the orthogonal complement of ei (the rejection) is given by 

(3.157) 

Projection operations correspond to singular transformations, and we now see that these 
are represented by products of null multivectors in ~n,n' This is sufficient to ensure that 
singular transformations can also be represented by an even product of vectors, some of 
which may now be null. 

Two results follow from these considerations. Firstly, every matrix Lie group can be 
represented by a spin group - every matrix Lie group can be defined as a subgroup 
of GL(n ,R) and we have shown how GL(n,R) can be represented as a spin group. It 
follows that every Lie algebra can be represented by a bivector algebra, since all Lie 
algebras have a matrix representation via the adjoint representation. The discussion of 
the unitary group has shown, however, that subgroups of GL(n,R) are not, in general, 
the best way to construct spin-group representations. Other, more useful, constructions 
are given in the following Sections. Secondly, every linear transformation on ~n can be 
represented in ~n,n as an even product of vectors, the result of which commutes with 
K. It is well known that quaternions are better suited to rotations in three dimensions 
than 3 x 3 matrices. It should now be possible to extend these advantages to arbitrary 
linear functions . A number of other applications for these results can be envisaged. For 
example, consider the equation 

u'(s) = M(s)u(s) , (3.158) 
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Pi ( a) = ei ei . a, (3.155) 

and for a general multivector, 
Pi ( A) = ei!\ ( ei . A) . (3.156) 
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Projection operations correspond to singular transformations, and we now see that these 
are represented by products of null multivectors in ~n,n. This is sufficient to ensure that 
singular transformations can also be represented by an even product of vectors, some of 
which may now be null. 

Two results follow from these considerations. Firstly, every matrix Lie group can be 
represented by a spin group - every matrix Lie group can be defined as a subgroup 
of GL(n ,R) and we have shown how GL(n,R) can be represented as a spin group . It 
follows that every Lie algebra can be represented by a bivector algebra, since all Lie 
algebras have a matrix representation via the adjoint representation. The discussion of 
the unitary group has shown, however, that subgroups of GL(n,R) are not, in general, 
the best way to construct spin-group representations. Other, more useful, constructions 
are given in the following Sections. Secondly, every linear transformation on ~n can be 
represented in ~n,n as an even product of vectors, the result of which commutes with 
K. It is well known that quaternions are better suited to rotations in three dimensions 
than 3 x 3 matrices. It should now be possible to extend these advantages to arbitrary 
linear functions. A number of other applications for these results can be envisaged. For 
example, consider the equation 

u'(s) = M(s)u(s), (3.158) 

58 



where u( s) and M (s) are vector and matrix functions of the parameter s and the prime 
denotes the derivative with respect to s. By replacing the vector u by the null vector u 
in ?Rn,n, equation (3.158) can be written in the form 

u' = B(s) ·u, (3.159) 

where B(s) is a bivector. If we now wri.te u = RuoR, where Uo is a constant vector, then 
equation (3.158) reduces to the rotor equation 

R' = IBR 
2 ' 

(3.160) 

which may well be easier to analyse (a similar rotor reformulation of the Lorentz force 
law is discussed in [20]). 

3.4 The Remaining Classical Groups 

We now turn attention to some of the remaining matrix Lie groups . Again, all groups 
are realised as subgroups of the orthogonal group and so inherit a spin-group represen
tation. The various multi vectors and linear functions which remain invariant under the 
group action are discussed, and simple methods are given for writing down the Bivector 
generators which form the Lie algebra. The results from this chapter are summarised in 
Section 3.5. 

3.4.1 Complexification - so(n,C) 

Complexification of the Orthogonal groups O(p, q) leads to a single, non-compact, Lie 
group in which all reference to the underlying metric is lost. With the Uk and Vk defined 
as in Equation (3.55), the invariant bilinear form is 

(3.161) 

This is symmetric, and the real part contains equal numbers of positive and negative norm 
terms. The Lie group O(n,C) will therefore be realised in the "balanced" algebra ?Rn,n. To 
construct the imaginary part of (3.161), however, we need to find a symmetric function 
which squares to give minus the identity. This is in contrast to the J{ function, which is 
antisymmetric, and squares to + 1. The solution is to introduce the "star" function 

(3.162) 

so that 
er = ei 
er = -ei· 

(3.163) 

The use of the * notation is consistent with the definitions of {wd and {wn bases (3.99). 
The star operator is used to define projections into the Euclidean and anti-Euclidean 
subspaces of ?Rn,n: 

En(a) = !(a + a*) = a·EnE;:l 
En(a) = Ha - a*) = aI\EnE;:l. 

59 

(3.164 ) 



r 
eiej - eiej 
eiej + eiej. 

(i <j = l ... n) 
11 

Table 3.6: Bivector Basis for so(n,C) 

The Euclidean pseudoscalar En anticommutes with K, so the star operator anticommutes 
with the K function. It follows that the combined function 

K*(a) == K(a*) (3.165) 

satisfies 

K*2(a) K[K( a*)*] 
-K[K(a**)] 
-a (3.166) 

and 

K*(a) -[K(a)]* 
K*(a), (3.167) 

and so has the required properties. The complex symmetric norm can now be written on 
~n,n as 

E(a , b) = a·b + ja·K*(b), 

which can verified by expanding in the {ei' ed basis of (3.92). 
An orthogonal transformation t will leave E( a, b) invariant provided that 

K*[(a) = t K*(a), 

(3.168) 

(3.169) 

which defines the group O(n,C). Each function t in O(n,C) can be constructed from the 
corresponding elements of spin(n, n), which defines the spin-group representation. The 
bivector generators must satisfy 

which reduces to the requirement 

K*(B·a) = B·K*(a) 
::::} B·a = -K*[B·K*(a)] = -K*(B)·a 
::::} K*(B) = -B. 

(3.170) 

(3 .171) 

(3.172) 

(3.173) 

Since K*2(B) = B for all bivectors B, the generators which form the Lie algebra so(n,C) 
are all of the form B - K*(B). This is used to write down the bivector basis in Table 3.6. 
Under the commutator product, the Eij form a closed sub-algebra which is isomorphic 
to so(n). The Fij fulfil the role of "jEi/. The Killing metric has n(n - 1)/2 entries of 
positive and signature and the same number of negative signature. 
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3.4.2 Quaternionic Structures - sp(n) and so*(2n) 

The quaternionic unitary group (usually denoted Sp(n) or HU(n)) is the invariance group 
of the Hermitian-symmetric inner product of quaternion-valued vectors. By analogy with 
the unitary group, the quaternionic structure is introduced by now quadrupling the real 
space ?Rn or ?Rp,q to ~4n or ~4p,4q. We deal with the Euclidean case first and take {ed to 
be an orthonormal basis set for ~n. Three further copies of ?Rn are introduced, so that 
{ei' e}, e; , en form an orthonormal basis for ~4n. Three "doubling" bivectors are now 
defined as 

(3.174) 

which define the three functions 
(3.175) 

(The introduction of an orthonormal frame is not essential since each of the Ji are inde
pendent of the intial choice of frame. Orthonormal frames do ease the discussion of the 
properties of the Ji , however, so will be used frequently in this and the following sections). 

The combined effect of 1..1 and J 2 on a vector a produces 

b(a). (3.176) 

The J i functions therefore generate the quaternionic structure 

(3.177) 

The Hermitian-symmetric quaternion inner product can be realised in ~4n by 

c(a,b) = a·b+ a·1..1 (b)i + a·J2(b)j + a'b(b)j, (3.178) 

where {i,j, k} are a basis set of quaterions (see Section 1.2.3). The inner product (3.178) 
contains four separate terms, each of which must be preserved by the invariance group. 
This group therefore consists of orthogonal transformations satisfying 

i(Ji ) = Ji i = 1 ... 3 (3.179) 

and the spin group representation consists of the elements of spin( 4n) which commute 
with all of the Ji . The bivector generators of the invariance group therefore also commute 
with the Ji . The results established in Section 3.2 apply for each of the Ji in turn , so an 
arbitrary bivector in the Lie algebra of Sp(n) must be of the form 

(3.180) 

This result is used to write down the orthogonal basis set in Table 3.7. The algebra has 
dimension 2n? + n and rank n. 
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Eij 

Fij 

G ij 

Hij 

Fi 

Gi 

Hi 

(i <j = l ... n) 
11 

11 

11 

(i=l ... n) 
11 

11 

Table 3.7: Bivector Basis for sp(n) 

The above extends easily to the case of sp(p, q) by working in the algebra ~4]J,4q. With 
{ed now a basis for ~]J,q, the doubling bivectors are defined by 

(3.181) 

and the quaternion relations (3.177) are still satisfied. The Lie algebra is then generated 
in exactly the same may. The resultant algebra has a Killing metric with 2(p2 + q2) + p + q 
negative entries and 4pq positive entries. 

The properties of the I(* function found in Section 3.4.1 suggests that an alternative 
quaternionic structure could be found in ~2n,2n by introducing anticommuting I(* and J 
functions. This is indeed the case. With {ed and {fd a pair of anticommuting orthonor
mal bases for ?Rn, a basis for ~2n,2n is defined by {ei' f i' ei, id. The hat operation is now 
defined by 

a = I((a) = a·I( 

with 
I( = eiei + fdi. 

A complexification bivector is defined by 

and additional doubling bivectors are defined by 

eiei - fdi 

edi + fi h 

The set {J, I(1, I(d form a set of three bivectors, no two of which commute. 
With pseudoscalars En and Fn defined by 

e1 e2 ··· en 
hh···fn, 

the star operation is defined by 
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Eij 
Fij 
Gij 
Hij 
Hi 

eiej + fdj - eiej - fjiJ 
edj - fiej + ei~j - ~iej 

eiej + ejej + fdj + fdj 
edj + fi~j - fiej - edj 

edi + edi 

(i<j=1. .. n) 
11 

11 

11 

(i = 1. . . n) 

Table 3.8: Bivector Basis for so* (n) 

Kr operations are now defined by 

These satisfy 

and 

K~K;(a) Kl[Kz(a*)*] 

-K1Kz(a) 
l(a). 

The J and K: therefore form a quaternionic set of linear functions satisfying 

(3.188) 

(3.189) 

(3.190) 

(3.191) 

Orthogonal functions commuting with each of the J and K: functions will therefore leave 
a quaternionic inner product invariant. This inner product can be written as 

E(a, b) = a·Bb) + ia·b + ja·K~(b) + ka·K;(b), (3.192) 

which expansion in the {ei' fi' ei, id frame shows to be equivalent to the skew-Hermitian 
quaternionic inner product 

(3.193) 

The invariance group of (3.193) is denoted SO*(2n) (or Sk(n,H)). The bivector generators 
of the invariance group must satisfy J(B) = Band Kr(B) = -B and so are of the form 

BH • = B + I(B) - K~(B) - K;(B). (3.194) 

This leads to the orthogonal set of basis generators in Table 3.8. 
The bivector algebra so*(n) has dimension n(2n - 1) and a Killing metric with nZ 

negative entries and n Z 
- n positive entries. This algebra is one of the possible real 

forms of the complexified algebra Dn. Some of the properties of so*(2n), including its 
representation theory, have been discussed by Barut & Bracken [58]. 
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K· t] 

Fij 
Gij 
If·· t] 

Ji 

I(i 

eiej + fdj - eiej - 1jfJ 
edj - fi ej - edj + fiej 

eiej - e}ej + fdj - idj 

cdj + fi ej - f iej - edj 

edi - edi . 

eiei + fdi 

(i <j = I. . . n) 
11 

11 

11 

(i=I. . . n) 
11 

Table 3.9: Bivector Basis for gl( n,C) 

3.4.3 The C omplex and Quaternionic General Linear Groups 

The general linear group over the complex field, GL(n,C) , is constructed from linear 
functions in the 2n-dimensional space ?R2n which leave the complex structure intact , 

R( a ) . J = h.( a . J). (3.195) 

These linear functions can be represented by orthogonal functions in ?R2n
,2n using the 

techniques introduced in Section 3.3. Thus, using the conventions of Section 3.4.2, a 
vector a in ?R2n is represented in ?R2n,2n by the null vector a+ = a + a, and the complex 
structure is defined by the bivector J of equation (3.184) . These definitions ensure that 
the J.. function keeps null vectors in the same null space, 

I( J..(a) = J I((a) 

::::} (a ·J) ·I( - (a ·I() ·J = a·(JxI() = 0, 

(3.196) 

(3.197) 

which is satisfied since JxI( = o. The spin group representation of GL(n,C) consists of 
all elements of spin(2n, 2n) which commute with both J and I( and hence preserve both 
the null and complex structures. The bivector generators of the Lie algebra gl( n , C) are 
therefore of the form 

Bc = B + J..(B) - I((B) - I( J..(B) (3.198) 

which yields the set of generators in Table 3.9. This algebra has 2n2 generators, as is to 
be expected. The two abelian subgroups are removed in the usual manner to yield the 
Lie algebra for sl(n,C) given in Table 3.10. The Killing metric gives n 2 

- 1 terms of both 
positive and negative norm. 

The general linear group with quaternionic entries (denoted U*(2n) or GL( n,H)) is 
constructed in the same manner as the above, except that now the group is contained 
in the algebra ?R4n ,4n . Thus we start in the algebra ?R4n and introduce a quaternionic 
structure through the Ji bivectors of equations (3.174). The ?R4n algebra is then doubled 
to a ?R4n ,4n algebra with the introduction of a suitable I( bivector , and the Ji are extended 
to new bivectors 

J: = Ji - Ji . (3 .199) 

The spin-group representation of U*(2n) then consists of elements of spin( 4n, 4n) which 
commute with all of the JI and with I(. The bivectors generators are all of the form 

BH = B + J~ (B) + J..;(B) + ~(B) - I( [B + J~ (B) + J..;(B) + ~(B)l · (3.200) 
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Eij 
Fij 
Gij 
Hij 
Gi 

Hi 

eiej + fdj - eiej - fdj 
edj - f ie j - eJj + iej 

eiej - ei ej + fJj - idj 
edj + f iej - f iej - edj 
Ji - Ji+1 

le - K i+1 

(i <j = I. .. n) 

" 
" 
" 

(i = I. .. n-l) 

" 

Table 3.10: Bivector Basis for sl(n,C) 

The result is a (4n 2 )-dimensional algebra containing the single abelian factor K. This is 
factored out in the usual way to yield the bivector Lie algebra su*(2n). 

3.4.4 The symplectic Groups Sp(n,R) and Sp(n,C) 

The symplectic group Sp(n,R) consists of all linear functions h. acting on )R2n satisfying 
h( J) = J, where J is the doubling bivector from the )Rn algebra to the )R2n algebra. A 
spin-group representation is achieved by doubling to )R2n,2n and constructing Sp(n,R) as 
a subgroup of GL(2n ,R). In ~2n , the symplectic inner product is given by (a A b)·J. In 
)R2n,2n, with K defined as in Equation (3.183), the vectors a and b are replaced by the 
null vectors a+ and b+. Their symplectic inner product is given by 

(3.201 ) 

The symplectic bivector in )R2n,2n satisfies 

K(Js ) = Js (3.202) 

and so is defined by 
(3.203) 

(This differs from the J defined in equation (3.184), so generates an alternative complex 
structure). The group Sp(n ,R) is the subgroup of orthogonal transformations on ~2n,2n 
which leave both Js and K invariant. The spin-group representation consists of all ele
ments which commute with both Js and K. The bivector generators of Sp(n,R) are all 
of the form 

Bsp = B + ls(B) - K(B) - K J s(B). (3.204) 

An orthogonal basis for the algebra sp(n,R) is contained in Table 3.11. This has dimension 
n(2n + 1) and a Killing metric with n 2 negative entries and n 2 + n positive entries . The 
same construction can be used to obtain the algebras for sp(p, q,R) by starting from )Rp,q 

and doubling this to )R2p,2q. 

The group Sp( n,C) consists of functions on )R4n satisfying h( J1 ) = J1 and which also 
preserve the complex structure, 

(3.205) 
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Eij eiej + fdj - eiej - !jiJ (i <j = I. .. n) 
Fij edj - f iej - ed) + fiej " 
Gij eiej - e}ej - fdj + fdj " 
H ·· edj - fi~j + fiej - edj " 'J 

F , edi - edi (i = 1. . . n) 
Gi eiei - fdi " 
Hi edi + fiei " 

Table 3.11: Bivector Basis for sp(n,R) 

The complex and symplectic structures satisfy b(Jd = - J1, so J3 and J1 do not com
mute. Instead they are two-thirds of the quaternionic set of bivectors introduced in 
Section 3.4.2. The C-skew inner product on ~4n is written 

(3.206) 

By analogy with Sp(n,R), a spin-group representation of Sp(n,C) is constructed as a 
subgroup of GL(2n,C)in ~4n,4n . With the null structure defined by J(, the symplectic 
structure is now determined by 

(3.207) 

and the complex structure by 
J = J2 - J((J) . (3 .208) 

The Lie algebra sp(n,C) is formed from the set of bivectors in ~~n,4n which commute with 
all of the J(, J and Js bivectors . With this information, it is a simple matter to write 
down a basis set of generators . 

3.5 Summary 

In the preceding sections we have seen how many matrix Lie groups can be represented 
as spin groups, and how all (finite dimensional) Lie algebras can be realised as bivector 
algebras. These results are summarised in Tables 3.12 and 3.13. Table 3.12 lists the 
classical bilinear forms, their invariance groups, the base space in which the spin group 
representation is constructed and the general form of the bivector generators. The re
maining general linear groups are listed in Table 3.13. Again, their invariant bivectors 
and the general form of the generators are listed. For both tables, the conventions for 
the various functions and bivectors used are those of the section where the group was 
discussed. 

A number of extensions to this work can be considered. It is well known , for example, 
that the Lie group G2 can be constructed in ~O,7 as the invariance group of a particular 
trivector (which is given in [46]). This suggests that the techniques explored in this chapter 
can be applied to the exceptional groups. A geometric algebra is a graded space and in 
Chapter 5 we will see how this can be used to define a multi vector bracket which satisfies 
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Base Form of Bivector 
Type Form of E(a, b) Group Space Generators 

R-symmetric a·b SO(p, q) ~p,q B 
R-skew a·J(b) Sp(n,R) ~2n,2n B + ls(B) - K(B + ls(B)) 
C-symmetric a· b + j a . K* ( b) SO(n,C) ~n,n B - K*(B) 
C-skew a·Jl(b) + ja·J2(b) Sp(n,C) ~4n,4n B + l(B) + ls(B) + J ls(B) 

-K( 11 ) 
C-Hermitian a·b + ja'Bb) U(p, q) ~2p,2q B + l(B) 
H-Hermitian a·b+ a·Jl(b)i + Sp(n) ~4n B + 11(B) + 12(B) + b(B) 

a·J2(b)j + a'b(b)j 
H-Skew a·J(b) + a · K~(b)+ SO*(2n) ~2n,2n B + l(B) - K~(B) - K;(B) 

a·bi + a·K;(b)k 

Table 3.12: The Classical Bilinear Forms and their Invariance Groups 

the super-Jacobi identities . This opens up the possibility of further extending the work of 
this chapter to include super-Lie algebras . Furthermore, we shall see in Chapter 4 that the 
techniques developed for doubling spaces are ideally suited to the study of multiparticle 
quantum theory. Whether some practical benefits await the idea that all general linear 
transformations can be represented as even products of vectors remains to be seen. 

Group 

GL(n,R) 
GL(n,C) 
GL(n,H) / SU*(n) 

Base 
Space Invariants 

~n,n K 
~2n,2n K, J 
~4n,4n K, J{, J~, J~ 

Form of Bivector 
Generators 

B - K(B) 
B + l(B) - K(B + J(B)) 

B + J~ (B) + J;(B) + J;(B) 
-K( 11 ) 

Table 3.13: The General Linear Groups 
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Chapter 4 

Spinor Algebra 

This chapter describes a translation between conventional matrix-based spinor algebra 
in three and four dimensions [59, 60], and an approach based entirely in the (real) geo
metric algebra of spacetime. The geometric algebra of Minkowski spacetime is called the 
spacetime algebra or, more simply, the STA. The STA was introduced in Section 1.2.5 as 
the geometric algebra generated by a set of four orthonormal vectors {//-L}, It = o ... 3, 
satisfying 

I/-L 'IV = "'/-LV = diag( + - - -). (4.1 ) 

Whilst the {//-L} satisfy the Dirac algebra generating relations, they are to be thought 
of as an orthonormal frame of independent vectors and not as components of a single 
"isospace" vector. The full STA is spanned by the basis 

1, {//-L} {O"k' iO"d, { i,/-L}, z, (4.2) 

where 

z 10/1/2/3 (4.3) 

and 

O"k == Ik'O· ( 4.4) 

The meaning of these equation was discussed in Section 1.2.5 . 
. The aim of this chapter is to express both spinors and matrix operators within the 

real STA. This results in a very powerful language in which all algebraic manipulations 
can be performed without ever introducing a matrix representation. The Pauli matrix 
algebra is studied first, and an extension to multiparticle systems is introduced. The Dirac 
algebra and Dirac spinors are then considered. The translation into the STA quickly yields 
the Dirac equation in the form first found by Hestenes [17, 19, 21, 27] . The concept of 
the multi particle STA is introduced, and is used to formulate a number of two-particle 
relativistic wave equations. Some problems with these are discussed and a new equation, 
which has no spinorial counterpart, is proposed. The chapter concludes with a discussion 
of the 2-spinor calculus of Penrose & Rindler [36] . Again, it is shown how a scalar unit 
imaginary is eliminated by the use of the real multiparticle STA. Some sections of this 
chapter appeared in the papers "States and operators in the spacetime algebra" [6] and 
"2-SpinorsJ twistors and supersymmetry in the spacetime algebra [4]. 
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4.1 Pauli Spinors 

This section establishes a framework for the study of the Pauli operator algebra and Pauli 
spinors within the geometric algebra of 3-dimensional space. The geometric algebra of 
space was introduced in Section 1.2.3 and is spanned by 

1, z. ( 4.5) 

Here the {O"d are a set of three relative vectors (spacetime bivectors) in the ,a-system. 
Vectors in this system are written in bold type to distinguish them from spacetime vectors. 
There is no possible confusion with the {O"d symbols, so these are left in normal type. 
When working non-relativistically within the even subalgebra of the full STA some nota
tional modifications are necessary. Relative vectors {O"d and relative bivectors {iO"d are 
both bivectors in the full STA, so spatial reversion and spacetime reversion have different 
effects . To distinguish these, we define the operation 

(4.6) 

which defines reversion in the Pauli algebra. The presence of the ,a vector in the definition 
of Pauli reversion shows that this operation is dependent on the choice of spacetime frame. 
The dot and wedge symbols also carry different meanings dependent on whether their 
arguments are treated as spatial vectors or spacetime bivectors. The convention adopted 
here is that the meaning is determined by whether their arguments are written in bold 
type or not. Bold-type objects are treated as three-dimensional multivectors , whereas 
normal-type objects are treated as belonging to the full STA. This is the one potentially 
confusing aspect of our conventions, though in practice the meaning of all the symbols 
used is quite unambiguous. 

The Pauli operator algebra [59J is generated by the 2 x 2 matrices 

A (0 1) A (0 -j) 
0"1 = 1 0 ' 0"2 = j 0 ' 

A (1 0 ) 
0"3 = 0 -1 . ( 4.7) 

These operators act on 2-component complex spinors 

( 4.8) 

where'l/J1 and 'l/J2 are complex numbers. We have adopted a convention by which standard 
quantum operators appear with carets, and quantum states are written as kets and bras. 
We continue to write the unit scalar imaginary of conventional quantum mechanics as j, 
which distinguishes it from the geometric pseudoscalar i. 

To realise the Pauli operator algebra within the algebra of space, the column Pauli 
spinor I'l/J) is placed in one-to-one correspondence with the even multivector 'l/J (which 
satisfies 'l/J = ,a'l/J,a) through the identification 1 

( 4.9) 

lThis mapping was first found by Anthony Lasenby. 
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In particular, the basis spin-up and spin-down states become 

( 4.1 0) 

and 

( 4.11) 

The action of the four quantum operators {o-k, j} can now be replaced by the operations 

(k = 1,2,3) ( 4.12) 

and 
(4.13) 

Verifying these relations is a matter of routine computation, for example 

( 4.14) 

With these definitions, the action of complex conjugation of a Pauli spinor translates to 

(4 .15) 

The presence of a fixed spatial vector on the 1 eft-hand side of 'lj; shows that complex 
conjugation is a frame-dependent concept . 

As an illustration, the Pauli equation (in natural units), 

( 4.16) 

can be written (in the Coulomb gauge) as [22J 

~ . 1( 2 . 22) e Ut'lj;Z0'3 = - -V 'lj; + 2eA· V'lj;Z0'3 + e A 'lj; - -B'lj;0'3 + eV'lj;, 
2m 2m 

( 4.1 7) 

where B is the magnetic field vector BkO'k. This translation achieves two important 
goals. The scalar unit imaginary is eliminated in favour of right-multiplication by i0'3, 
and all terms (both operators and states) are now real-space multi vectors. Removal of 
the distinction between states and operators is an important conceptual simplification. 

We next need to find a geometric algebra equivalent of the spinor inner product ('lj; 1<fJ). 
In order to see how to handle this, we need only consider its real part. This is given by 

so that, for example, 

((aO - iajO'j)(aO + iakO'k)) 

(aO
)2 + (/a k

. 
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In particular, the basis spin-up and spin-down states become 

( 4.10) 

and 

(4.11 ) 

The action of the four quantum operators {ak, j} can now be replaced by the operations 

(k = 1,2,3) ( 4.12) 

and 
(4.13) 

Verifying these relations is a matter of routine computation, for example 

( 4.14) 

With these definitions, the action of complex conjugation of a Pauli spinor translates to 

(4.15) 

The presence of a fixed spatial vector on the left-hand side of 'ljJ shows that complex 
conjugation is a frame-dependent concept. 

As an illustration, the Pauli equation (in natural units), 

( 4.16) 

can be written (in the Coulomb gauge) as [22] 

~ . 1 (2 . 2 2) e 01. 01. Ut'ljJUJ"3 = - -V' 'ljJ + 2eA· V''ljJW3 + e A 'ljJ - -Btp0"3 + eV tp, 
2m 2m 

( 4.17) 

where B is the magnetic field vector BkO"k. This translation achieves two important 
goals. The scalar unit imaginary is eliminated in favour of right-multiplication by i0"3, 
and all terms (both operators and states) are now real-space multivectors . Removal of 
the distinction between states and operators is an important conceptual simplification. 

VYe next need to find a geometric algebra equivalent of the spinor inner product ('ljJ Iq'i). 
In order to see how to handle this, we need only consider its real part. This is given by 

so that , for example, 

((aO - iajO"j)(aO + iakO"k)) 

(aO)2 + akak. 
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Since 
NI cjJ) = ~(7/; IcjJ) - j~( 7/; Ij cjJ), ( 4.20) 

the full inner product becomes 

(4.21 ) 

The right hand side projects out the {I, i0'3} components from the geometric product 
'1j}cjJ. The result of this projection on a multi vector A is written (A)s. For Pauli-even 
multivectors this projection has the simple form 

( 4.22) 

As an example of (4.21), consider the expectation value 

( 4.23) 

which gives the mean value of spin measurements in the k direction. The STA form 
indicates that this is the component of the spin vector s = 7/;0'37/; t in the O'k direction, 
so that s is the coordinate-free form of this vector. Since 7/;0'37/;t is both Pauli-odd and 
Hermitian-symmetric (reverse-symmetric in the Pauli algebra), s contains only a vector 
part. (In fact, both spin and angular momentum are better viewed as bivector quantities, 
so it is usually more convenient to work with is instead of s.) 

Under an active rotation, the spinor 7/; transforms as 

( 4.24) 

where Ro is a constant rotor. The quantity 7/; ' is even, and so is a second spinol'. (The 
term "spinor" is used in this chapter to denote any member of a linear space which is 
closed under left-multiplication by a rotor Ro.) The corresponding transformation law for 
S IS 

( 4.25) 

which is the standard double-sided rotor description for a rotation, introduced in Sec
tion 1.2.4. 

The definitions (4.9), (4 .12) and (4.13) have established a simple translation from the 
language of Pauli operators and spinors into the geometric algebra of space. But the STA 
formulation can be taken further to afford new insights into the role of spinors in the 
Pauli theory. By defining 

p = 7/;7/; t ( 4.26) 

the spinor 7/; can be written 
7/; = pl/2R, ( 4.27) 

where R is defined as 
R = p-l/27/;. ( 4.28) 

R satisfies 
RRt = 1 ( 4.29) 
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and is therefore a spatial rotor. The spin vector can now be written 

( 4.30) 

which demonstrates that the double-sided construction of the expectation value (4.23) 
contains an instruction to rotate and dilate the fixed 0"3 axis into the spin direction. The 
original states of quantum mechanics have now become operators in the STA, acting on 
vectors. The decomposition of the spinor 'ljJ into a density term p and a rotor R suggests 
that a deeper substructure underlies the Pauli theory. This is a subject which has been 
frequently discussed by David Hestenes [19, 22, 23, 27]. As an example of the insights 
afforded by this decomposition, it is now clear "why" spinors transform single-sidedly 
under active rotations of fields in space. If the vector s is to be rotated to a new vector 
RosR6 then, according to the rotor group combination law, R must transform to RoR. 
This produces the spinor transformation law (4 .24). 

We should now consider the status of the fixed {O"d frame. The form of the Pauli 
equation (4.17) illustrates the fact that, when forming covariant expressions, the {O"d 
only appear explicitly on the right-hand side of'ljJ . In an expression like 

(4.31 ) 

for example, the quantity A is a spatial vector and transforms as 

A f-7 A' = RoAR6. ( 4.32) 

The entire quantity therefore transforms as 

( 4.33) 

so that A'ljJ0"3 is another spinor, as required. Throughout this derivation, the 0"3 sits on 
the right-hand side of 'ljJ and does not transform - it is part of a fixed frame in space. 
A useful analogy is provided by rigid-body dynamics, in which a rotating frame {ed, 
aligned with the principal axes of the body, can be related to a fixed laboratory frame 
{O"d by 

(4.34) 

The dynamics is now completely contained in the rotor R. The rotating frame {ed IS 

unaffected by the choice of laboratory frame. A different fixed laboratory frame, 

( 4.35) 

simply requires the new rotor 
R' = RRi ( 4.36) 

to produce the same rotating frame. Under an active rotation, the rigid body is rotated 
about its centre of mass, whilst the laboratory frame is fixed. Such a rotation takes 

( 4.37) 

which is enforced by the rotor transformation R f-7 RoR. The fixed frame is shielded from 
this rotation, and so is unaffected by the active transformation. This is precisely what 
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happens in the Pauli theory. The spinor 't/J contains a rotor, which shields vectors on the 
right-hand side of the spinor from active rotations of spatial vectors . 

Since multiplication of a column spinor by j is performed in the STA by right-sided 
multiplication by ia3, a U(l) gauge transformation is performed by 

( 4.38) 

This right-sided multiplication by the rotor R = exp{ </>ia3} is equivalent to a rotation 
of the initial (fixed) frame to the new frame {RakRt}. Gauge invariance can therefore 
now be interpreted as the requirement that physics is unaffected by the position of the al 

and a2 axes in the ia3 plane. In terms of rigid-body dynamics, this means that the body 
behaves as a symmetric top. These analogies between rigid-body dynamics and the STA 
form of the Pauli theory are quite suggestive. We shall shortly see how these analogies 
extend to the Dirac theory. 

4.1.1 Pauli Operators 

In our geometric algebra formalism, an arbitrary operator IV! I't/J) is replaced by a linear 
function lVI( 't/J) acting on even multi vectors in the algebra of space. The function J\I[( 't/J) 
is an example of the natural extension of linear algebra to encompass linear operators 
acting on multivectors . The study of such functions is termed "multilinear function the
ory" and some preliminary results in this field, including a new approach to the Petrov 
classification of the Riemann tensor, have been given by Hestenes & Sobczyk [24]. Since 
't/J is a 4-component multivector, the space of functions lVI( 't/J) is 16-dimensional, which 
is the dimension of the group GL( 4,R) . This is twice as large as the 8-dimensional Pauli 
operator algebra (which forms the group GL(2,C)). The subset of multilinear functions 
which represent Pauli operators is defined by the requirement that M( 't/J) respects the 
complex structure, 

j 1\1 (j I 't/J) ) 
=? lVI( 't/Jia3)ia3 

-1\II 't/J) 
-lVI('t/J). 

The set of 1\1[( 't/J) satisfying (4.39) is 8-dimensional, as required. 
The Hermitian operator adjoint is defined by 

In terms of the function lVI ('t/J), this separates into two equations 

and 

( 4.39) 

( 4.40) 

(4.41 ) 

( 4.42) 

where the subscript on lVIHA labels the STA representation of the Pauli operator adjoint. 
The imaginary equation (4.42) is automatically satisfied by virtue of (4.41) and (4.39). 
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The adjoint of a multilinear function is defined in the same way as that of a linear function 
(Section 1.3), so that 

(lIl[(1/;)cfJ) = (1/;NI(cfJ))· ( 4.43) 

The Pauli operator adjoint is therefore given by the combination of a reversion, the 
geometric adjoint, and a second reversion, 

( 4.44) 

For example, if M(1/;) = A1/;B, then 

NJ( 1/;) = B1/;A ( 4.45) 

and 

( 4.46) 

Since the STA action of the o-k operators takes 1/; into ak1/;a3, it follows that these operators 
are, properly, Hermitian. Through this approach, the Pauli operator algebra can now be 
fully integrated into the wider subject of multilinear function theory. 

4.2 Multiparticle Pauli States 

In quantum theory, 2-particle states are assembled from direct products of single-particle 
states. For example, a basis for the outer-product space of two spin-l/2 states is given 
by the set 

(4.4 7) 

To represent these states in the STA, we must consider forming copies of the STA itself. 
We shall see shortly that, for relativistic states, multiparticle systems are constructed by 
working in a 4n-dimensional configuration space. Thus, to form two-particle relativis
tic states, we work in the geometric algebra generated by the basis set {,!, ,;}, where 
the basis vectors from different particle spacetimes anticommute. (The superscripts la
bel the particle space.) If we wanted to adopt the same procedure when working non
relativistically, we would set up a space spanned by {a-;, an, where the basis vectors from 
different particle spaces also anticommute. This construction would indeed suffice for an 
entirely non-relativistic discussion. The view adopted throughout this thesis, however, 
is that the algebra of space is derived from the more fundamental relativistic algebra of 
spacetime. The construction of multiparticle Pauli states should therefore be consistent 
with the construction of relativistic multiparticle states. It follows that the spatial vectors 
from two separate copies of spacetime are given by 

a 1 
t 

2 
a· t 
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and so satisfy 
( 4.50) 

In constructing multiparticle Pauli states, we must therefore take the basis vectors from 
different particle spaces as commuting. In fact, for the non-relativistic discussion of this 
section, it does not matter whether these vectors are taken as commuting or anticommut
ing. It is only when we come to considel: relativistic states, and in particular the 2-spinor 
calculus, that the difference becomes important . 

Since multi particle states are ultimately constructed in a subalgebra of the geometric 
algebra of relativistic configuration space, the elements used all inherit a well-defined 
Clifford multiplication. There is therefore no need for the tensor product symbol 0 , 
which is replaced by simply juxtaposing the elements . Superscripts are used to label 
the single-particle algebra from which any particular element is derived. As a further 
abbreviation i1ai is written, wherever possible, as iai etc. This helps to remove some of 
the superscripts. The unit element of either space is written simply as 1. 

The full 2-particle algebra generated by commuting basis vectors is 8 x 8 = 64 dimen
sional. The spinor subalgebra is 4 x 4 = 16 dimensional, which is twice the dimension of 
the direct product of two 2-component complex spinors. The dimensionality has doubled 
because we have not yet taken the complex structure of the spinors into account. While 
the role of j is played in the two single-particle spaces by right multiplication by ia~ and 
iaj respectively, standard quantum mechanics does not distinguish between these opera
tions. A projection operator must therefore be included to ensure that right multiplication 
by ia~ or iaj reduces to the same operation. If a two-particle spin state is represented by 
the multivector 'ljJ, then 'ljJ must satisfy 

from which we find that 

'ljJ = -'ljJia~iaj 

=> 'ljJ = 'ljJ!(1 - ia~iaj). 

On defining 

it is seen that 

(4.51 ) 

( 4.52) 

( 4.53) 

(4.54) 

( 4.55) 

so right multiplication by E is a projection operation. It follows that the two-particle 
state'ljJ must contain a factor of E on its right-hand side. We can further define 

( 4.56) 

so that 
( 4.57) 

Right-sided multiplication by J takes over the role of j for multiparticle states. 

75 



The STA representation of a 2-particle Pauli spinor is now given by 'ljJl(f} E, where 'ljJl 
and cjY2 are spinors (even multi vectors ) in their own spaces. A complete basis for 2-particle 
spin states is provided by 

1 1 
E 

0 0 0 
0 "1 -i(Jl E 
1 0 0 2 

1 0 
( 4.58) 

0 -i(J2E 
0 1 2 

0 
0 

0 . l ' 2E 
1 1 

Z(J2 Z(J2 . 

This procedure extends simply to higher multiplicities. All that is required is to find 
the "quantum correlator" En satisfying 

for all j, k. ( 4.59) 

En can be constructed by picking out the j = 1 space, say, and correlating all the other 
spaces to this, so that 

( 4.60) 

The form of En is independent of which of the n spaces is singled out and correlated to. 
The complex structure is defined by 

(4.61 ) 

where i(J~ can be chosen from any of the n spaces . To illustrate this consider the case of 
n = 3, where 

and 

Both E3 and J3 are symmetric under permutations of their indices. 

( 4.62) 

( 4.63) 

(4.64) 

A significant feature of this approach is that all the operations defined for the single
particle STA extend naturally to the multiparticle algebra. The reversion operation, for 
example, still has precisely the same definition - it simply reverses the order of vectors 
in any given multi vector. The spinor inner product (4.21) also generalises immediately, 
to 

('IjJ,cjY)s = (En)-l[('ljJtcjYEn)En - ('IjJtcjYJn)JnJ. ( 4.65) 

The factor of (En) -1 is included so that the operation 

( 4.66) 
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is a projection operation (i.e. P(M) satisfies P2(M) = P(M)). The fact that P(M) is a 
projection operation follows from the results 

P(En) (En)-l[(EnEn)En - (EnJn)Jnl 
(En)-l[(En)En - (EniO"~)Jnl 
En ( 4 .67) 

and 

P(Jn) (En)-l[(JnEn)En - (JnJn)Jnl 
I n. ( 4.68) 

4.2.1 The Non-Relativistic Singlet State 

As an application of the formalism outlined above, consider the 2-particle singlet state 
lE), defined by 

lE) = ~ { ( ~ ) ® ( ~ ) - ( ~ ) ® ( ~ ) } . ( 4 .69) 

This is represented in the two-particle STA by the multivector 

(4.70) 

The properties of E are more easily seen by writing 

(4.71) 

which shows how E contains the commuting idempotents !(1 + iO"iiO"i) and !(1 + iO"§iO"j) . 
The normalisation ensures that 

(E,E)S 2(Et E)E2 

4(!(1 + iO"iiO"~H(1 + iO"~iO"~))E2 
E2 . 

The identification of the idempotents in E leads immediately to the results that 

and 

and hence that 

(4.72) 

(4.73) 

(4.74) 

(4.75) 

If Ml is an arbitrary even element in the Pauli algebra (M = lI!{O + MkiO"t) , then it follows 
that E satisfies 

(4.76) 

This provides a novel demonstration of the rotational invariance of E. Under a joint 
rotation in 2-particle space, a spinor 'IjJ transforms to Rl R2'IjJ, where Rl and R2 are copies 
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of the same rotor but acting in the two different spaces. The combined quantity Rl R2 is a 
rotor acting in 6-dimensional space, and its generator is of the form of the Eij generators 
for SU(n) (Table 3.3). From equation (4.76) it follows that, under such a rotation, E 

transforms as 
(4.77) 

so that E is a genuine 2-particle scalar. . 

4.2.2 Non-Relativistic Multiparticle Observables 

Multiparticle observables are formed in the same way as for single-particle states. Some 
combination of elements from the fixed {an frames is sandwiched between a multiparticle 
wavefunction'IjJ and its spatial reverse 'ljJt. An important example of this construction is 
provided by the multi particle spin current. The relevant operator is 

(4.78) 

and the corresponding observable is 

('IjJ,Sk('IjJ))S = -(En) -l('ljJt(ia~'ljJia~ + ... + iaJ:'ljJia;)En)En 
+(En)-l('ljJt(ia~'ljJia~ + ... + iaJ:~pia;)Jn)Jn 
_2n-l[((ia~ + ... + iaJ:)'ljJJ'ljJt)En + ((ia~ + ... + iaJ:)'IjJ'ljJt)JnJ 

_2n-l(ia~ + ... + iaJ:) * ('ljJJ'ljJt)En. (4.79) 

The multiparticle spin current is therefore defined by the bivector 

( 4.80) 

where the right-hand side projects out from the full multivector 'ljJJ'ljJ t the components 
which are pure bivectors in each of the particle spaces. The result of projecting out from 
the multivector M the components contained entirely in the ith-particle space will be 
denoted (M) i, so we can write 

(4.81 ) 

Under a joint rotation in n-particle space, ~p transforms to Rl ... Rn'IjJ and S therefore 
transforms to 

( 4.82) 

Each of the single-particle spin currents is therefore rotated by the same amount in its 
own space. That the definition (4.80) is sensible can be checked with the four basis 
states (4.58). The form of S for each of these is contained in Table 4.l. 

Other observables can be formed using different fixed multivectors. For example, a 
two-particle invariant is generated by sandwiching a constant multi vector I; between the 
singlet state E, 

( 4.83) 
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Pauli M ul ti vector Spin 
State Form Current 

In) E2 icr1 + icr2 
3 3 

I H) , 2E 
-Z~2 2 icr1 - icr2 

3 3 

111) , lE -zcr2 2 -icr1 + icr 2 
3 3 

111) , l' 2E zcr2 zcr2 2 -icr1 - icr2 
3 3 

Table 4.1: Spin Currents for 2-Particle Pauli States 

Taking ~ = 1 yields 

M = EEt = 2~(1 + icr~icr~H(1 + icr~icrD = ~(1 + icriicr; + icr~icr~ + icr~icrD 
and ~ = i 1 i 2 gives 

(4.84) 

( 4.85) 

This shows that both icrlicr~ and crlcr~ are invariants under two-particle rotations. In 
standard quantum mechanics these invariants would be thought of as arising from the 
"inner product" of the spin vectors a-l and o-r Here, we have seen that the invariants 
arise in a completely different way by looking at the full multi vector at. It is interesting to 
note that the quantities icrlicr~ and crlcr~ are similar in form to the symplectic (doubling) 
bivector J introduced in Section 3.2. 

The contents of this section should have demonstrated that the multiparticle STA 
approach is capable of reproducing most (if not all) of standard multiparticle quantum 
mechanics. One important result that follows is that the unit scalar imaginary j can be 
completely eliminated from quantum mechanics and replaced by geometrically meaningful 
quantities. This should have significant implications for the interpretation of quantum 
mechanics. The main motivation for this work comes, however, from the extension to 
relativistic quantum mechanics. There we will part company with operator techniques 
altogether, and the multiparticle STA will suggest an entirely new approach to relativistic 
quantum theory, 

4.3 Dirac Spinors 

We now extend the procedures developed for Pauli spinors to show how Dirac spinors can 
be understood in terms of the geometry of real spacetime. This reveals a geometrical role 
for spinors in the Dirac theory (a role which was first identified by Hestenes [19 , 21]). 
Furthermore, this formulation is 1'epreseniaiion-jree, highlighting the intrinsic content of 
the Dirac theory. 

We begin with the , -matrices in the standard Dirac-Pauli representation [59], 

A (1 0) ,0 = 0-1 and ( 4.86) 
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A Dirac column spinor I ~) is placed in one-to-one correspondence with an 8-component 
even element of the STA via [4, 61] 

( 4.87) 

With the spinor I ~ ) now replaced by an even multivector, the action of the operators 
{ '1' J.L' '1'5, j} (where '1'5 = '1'5 = - j '1'0'1'd'2'1'3) becomes 

'1'J.L I ~) 
j I ~) 

'1'51~) 

'J.L ~'O (f-l = 0, ... , 3) 
~ i0"3 
~0"3, 

which are verified by simple computation; for example 

( 

-b3 + jbO 
) 

h _b1 - jb2 

'5 1 ~)= aO+ja3 ~ 
-a2 + ja1 

b3 bO b1· b2· - + 0"3 + Z0"2 - ZO"l ° 3 2 1 = ~0"3. +a 0"3 + a i-a 0"1 + a 0"2 

Complex conjugation in this representation becomes 

( 4.88) 

( 4.89) 

( 4.90) 

which picks out a preferred direction on the left-hand side of ~ and so is not a Lorentz
invariant operation. 

As a simple application of (4.87) and (4.88), the Dirac equation 

(4.91) 

becomes, upon postmultiplying by ,0, 

(4.92) 

which is the form first discovered by Hestenes [17] . Here \l = ,J.L[)J.L is the vector derivative 
in spacetime. The properties of \l will be discussed more fully in Chapter 6. This 
translation is direct and unambiguous, leading to an equation which is not only coordinate
free (since the vectors \l = ,J.L[)J.L and A = ,J.L AJ.L no longer refer to any frame) but is 
also representation-free. In manipulating (4.92) one needs only the algebraic rules for 
multiplying spacetime multivectors, and the equation can be solved completely without 
ever having to introduce a matrix representation. Stripped of the dependence on a matrix 
representation, equation (4.92) expresses the intrinsic geometric content of the Dirac 
equation. 

To discuss the spinor inner product, it is necessary to distinguish between the Hermi
tian and Dirac adjoint. These are written as 

Dirac adjoint 
Hermitian adjoint, 
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which translate as follows, 

( 4.94) 

This makes it clear that the Dirac adjoint is the natural frame-invariant choice. The inner 
product is handled in the same manner 'as in equation (4.21), so that 

( 4.95) 

which is also easily verified by direct calculation. In Chapters 6 and 7 we will be interested 
in the STA form of the Lagrangian for the Dirac equation so, as an illustration of (4.95), 
this is given here: 

( 4.96) 

By utilising (4.95) the STA forms of the Dirac spinor bilinear covariants [60] are readily 
found. For example, 

( 4.97) 

identifies the vector 'Ij;,o'(/; as the coordinate-free representation of the Dirac current . Since 
'Ij;,(/; is even and reverses to give itself, it contains only scalar and pseudoscalar terms. We 
can therefore define 

(4.98) 

Assuming p -I- 0, 'Ij; can now be written as 

( 4.99) 

where 
( 4.100) 

The even multivector R satisfies RR = 1 and is therefore a spacetime rotor. Double-sided 
application of R on a vector Cl produces a Lorentz transformation. The STA equivalents 
of the full set of bilinear covariants [33] can now be written as 

Scalar 
Vector 

Bivector 
Pseudovector 
Pseudoscalar 

where 

and 

({;I'Ij;) 
({; I'YJL 1'Ij;) 

({;lj'YJLV 1'Ij;) 
({;I'YJL'Ys l'lj;) 
({;lj'Ysl'lj;) 

v 
s 

t--t 

t--t 

t--t 

t--t 

t--t 

.5 = isv. 
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('Ij;,(/;) = pcos(3 

'Ij;,o'(/; = pv 
'lj;i(J"31~ = pe if3 .5 (4.101) 

'Ij;,3'1j; = ps 
('Ij;,(/;i) = -p sin (3, 

( 4.102) 

( 4.103) 



These are summarised neatly by the equation 

'IjJ(1 + 1'0)(1 + h3)~ = P cos{3 + pv + peifJ S + ips + ip sin{3. ( 4.104) 

The full Dirac spinor 'IjJ contains (in the rotor R) an instruction to carry out a rotation 
of the fixed {I'J.,} frame into the frame of observables. The analogy with rigid-body 
dynamics discussed in Section 4.1 therefqre extends immediately to the relativistic theory. 
The single-sided transformation law for the spinor 'IjJ is also "understood" in the same way 
that it was for Pauli spinors. 

Once the spinor bilinear covariants are written in STA form (4.101) they can be manip
ulated far more easily than in conventional treatments. For example the Fierz identities, 
which relate the various observables (4.101), are simple to derive [33]. Furthermore, recon
stituting 'IjJ from the observables (up to a gauge transformation) is now a routine exercise, 
carried out by writing 

('IjJ)s 

so that 

~ ('IjJ + ,o'IjJ,o - i0'3( 'IjJ + ,o'IjJ,O)i0'3) 

H'IjJ + ,o'IjJl'o + 0'3'IjJ0'3 + 1'3'IjJ1'3) , ( 4.105) 

( 4.106) 

The right-hand side of (4.106) can be found directly from the observables, and the left
hand side gives 'IjJ to within a complex multiple. On defining 

( 4.107) 

we find that, up to an arbitrary phase factor, 

(4.108) 

An arbitrary Dirac operator 1\1 1'IjJ) is replaced in the STA by a multilinear function 
M('IjJ), which acts linearly on the entire even sub algebra of the STA. The 64 real dimen
sions of this space of linear operators are reduced to 32 by the constraint (4.39) 

(4.109) 

Proceeding as at (4.44), the formula for the Dirac adjoint is 

( 4.110) 

Self-adjoint Dirac operators satisfy l'I1( 'IjJ) = M(~) and include the 1w The Hermitian 
adjoint, MHA , is derived in the same way: 

(4.111) 

in agreement with the non-relativistic equation (4.44). 
Two important operator classes of linear operators on 'IjJ are projection and symmetry 

operators. The particle/antiparticle projection operators are replaced by 
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-(m'IjJ =F P'IjJ,o) , 
2m 

(4.112) 



and the spin-projection operators become 

( 4.113) 

Provided that p. s = 0, the spin and particle projection operators commute. 
The three discrete symmetries C, P and T translate equally simply (following the 

convention of Bjorken & Drell [59]): 

'yo'IjJ(;c),O 
'ljJCJl 

hO'IjJ(-X),l' 

w here x = 10X,o is (minus) a reflection of x in the time-like 10 axis. 

( 4.114) 

The STA representation of the Dirac matrix algebra will be used frequently throughout 
the remainder of this thesis. In particular, it underlies much of the gauge-theory treatn"lent 
of gravity discussed in Chapter 7. 

4.3.1 Changes of Representation - Weyl Spinors 

In the matrix theory, a change of representation is performed with a 4 x 4 complex matrix 
S. This defines new matrices 

( 4.115) 

with a corresponding spinor transformation 1'IjJ) 1-----+ S 1'IjJ). For the Dirac equation, it is 
also required that the transformed Hamiltonian be Hermitian, which restricts (4.115) to 
a unitary transformation 

sst = 1. (4.116) 

The STA approach to handling alternative matrix representations is to find a suitable 
analogue of the Dirac-Pauli map (4.87) which ensures that the effect of the matrix oper
ators is still given by (4.88). The relevant map is easy to construct once the .5 is known 
which relates the new representation to the Dirac-Pauli representation. One starts with a 
column spinor 1'IjJ)' in the new representation, constructs the equivalent Dirac-Pauli spinor 
stl'IjJ)', then maps this into its STA equivalent using (4.87) . This technique ensures that 
the action of j and the {1iL,1s} matrices is still given by (4.88), and the C, P and T 
operators are still represented by (4.114). The STA form of the Dirac equation is always 
given by (4.92) and so is a truly representation-free expression. 

The STA from of the Dirac and Hermitian adjoints is always given by the formu
lae (4.110) and (4.111) respectively. But the separate transpose and complex conjugation 
operations retain some dependence on representation. For example, complex conjugation 
in the Dirac-Pauli representation is given by (4.90) 

(4.117) 

In the Majorana representation, however, we find that the action of complex conjugation 
on the Majorana spinor produces a different effect on its STA counterpart, 

( 4.118) 
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In the operator/matrix theory complex conjugation is a representation-dependent con
cept. This limits its usefulness for our representation-free approach. Instead, we think 
of 'I/J ~ - /2'I/J12 and 'I/J ~ 'I/J(J2 as distinct operations that can be performed on the 
multivector 'I/J . (Incidentally, equation 4.118 shows that complex conjugation in the Ma
jorana representation does indeed coincide with our STA form of the charge conjugation 
operator (4. 114) , up to a conventional phase factor.) 

To illustrate these techniques consider the Weyl representation, which is defined by 
the matrices [60] 

~ , _ (0 -J) 
10 - -J 0 and ~ , _ (0 -o-k) 

Ik - ~ O · (Jk ( 4.119) 

The Weyl representation is obtained from the Dirac-Pauli representation by the unitary 
matrix 

~ 1 (J J) 
1l = V2 -J J . 

A spinor in the Weyl representation is written as 

where Ix) and 117) are 2-component spinors. Acting on I'I/J) ' with ut gives 

utl 'I/J )' = l ( Ix) - 117) ) 
-/2 Ix) + 117)' 

Using equation (4.87), this is mapped onto the even element 

( 4. 120) 

(4.121) 

(4.122) 

( 4.123) 

where X and 17 are the Pauli-even equivalents of the 2-component complex spinors Ix) and 
117), as defined by equation (4.9). The even multivector 

'I/J = x~ (1 + (J3) - 17 ~(1- (J3) ( 4. 124) 

is therefore our STA version of the column spinor 

I'I/J)' = ( l ~? ) , ( 4.125) 

where 17p)' is acted on by matrices in the Weyl representation. As a check, we observe 
that 

~ 'I 'I/J) ' = ( -117) ) 
10 -Ix) ( 4.126) 

and 

(We have used equation (4.12) and the fact that 10 commutes with all Pauli-even ele
ments.) The map (4.123) does indeed have the required properties. 
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4.4 The Multiparticle Spacetime Algebra 

We now turn to the construction of the relativistic multiparticle STA. The principle is 
simple. vVe introduce a set of four (anticommuting) basis vectors {,~}, fl = 0 ... 3, 
i = 1 ... n where n is the number of particles. These vectors satisfy 

'Vi . 'Vj = fjij 'l1 / JL . / v ./ JLV ( 4.128) 

and so span a 4n-dimensional space. We interpret this as n-particle configuration space. 
The construction of such a space is a standard concept in classical mechanics and non
relativistic quantum theory, but the construction is rarely extended to relativistic systems. 
This is due largely to the complications introduced by a construction involving multiple 
times. In particular, Hamiltonian techniques appear to break down completely if a strict 
single-time ordering of events is lost. But we shall see that the multiparticle STA is ideally 
suited to the construction of relativistic states. Furthermore, the two-particle current no 
longer has a positive-definite timelike component, so can describe antiparticles without 
the formal requirement for field quantisation. 

We will deal mainly with the two-particle STA. A two-particle quantum state is rep
resented in this algebra by the multi vector 'IjJ = wE, where E = E2 is the two-particle 
correlator (4.54) and I]i is an element of the 64-dimensional direct product space of the 
two even sub-algebras of the one-dimensional algebras. This construction ensures that 'IjJ 
is 32-dimensional, as is required for a real equivalent of a 16-component complex column 
vector. Even elements from separate algebras automatically commute (recall (4.50)) so a 
direct product state has 'IjJ = 'ljJl'IjJ2 E = 'ljJ2'IjJ1 E. The STA equivalent of the action of the 
two-particle Dirac matrices 1;, is defined by the operators 

( 4.129) 

These operators satisfy 

(3;{3;(~jJ ) = ,;,;'IjJ,g,6 = ,;,;'IjJ,6,g = (3;{3;('IjJ) ( 4.130) 

and so, despite introducing a set of anticommuting vectors, the (3~ from different particle 
spaces commute. In terms of the matrix theory, we have the equivalences 

1JL ® II'IjJ) 

I ® 1JL I'IjJ) 

Conventional treatments (e.g. COl·son [62]) usually define the operators 

(3JL('IjJ) = t[{3;('IjJ) + (3;('IjJ) ], 

which generate the well-known Duffin-Kemmer ring 

{3JL{3v{3p + {3p{3v{3JL = 'f/vp{3JL + 'f/VJL{3p. 

This relation is verified by first writing 

(3v{3p('IjJ) 

:::} (3JL{3v{3p( 'IjJ) 

85 

(4.131) 

( 4.132) 

( 4.133) 

( 4.134) 

(4.135) 

(4.136) 



where IILV = IILIV etc. In forming (3/L(3v(3p + (3p(3v(3/L we are adding a quantity to its reverse, 
which simply picks up the vector part of the products of vectors sitting on the left-hand 
side of 'IjJ in (4.136). We therefore find that 

((3 (3 f3 + f3 f3 f3 )0/' 1 [( 1 2 1 2 1 + 2 1) 0/' 1 + 
1£ 1£ p p v 1£ 'I-' = 4 I/Lvp + Ivpl/L + l/Lv1p I/Lplv 1'1-'/0 

( 2 1 2 1 2 1 2) 0/' 2] I/Lvp + Ivp1/L + IW1p + I/Lplv 1'1-'/0 

~[7]/L~/~ + 7]vP/~]'IjJ,~ + ~[7]I"V/~ + 7]vP/~]'IjJ,~ 
7]/Lv(3P('IjJ) + 7]vP(3IL('IjJ). (4.137) 

The realisation of the Duffin-Kemmer algebra demonstrates that the multiparticle STA 
contains the necessary ingredients to formulate the relativistic two-particle equations that 
have been studied in the literature. 

The simplest relativistic two-particle wave equation is the Duffin-Kemmer equation 
(see Chapter 6 of [62]) , which takes the form 

(4.138) 

Here, 'IjJ is a function of a single set of spacetime coordinates x/L, and 01£ = Ox,",. Equa
tion (4.138) describes a non-interacting field of spin 0 EB 1. Since the wavefunction is 
a function of one spacetime position only, (4.138) is not a genuine two-body equation. 
Indeed, equation (4.138) has a simple one-body reduction, which is achieved by replacing 
'IjJ by a 4 x 4 complex matrix [62, 63]. 

The first two-particle equation to consider in which 'IjJ is a genuine function of position 
in configuration space is the famous Bethe-Salpeter equation [64] 

( 4.139) 

where VI 1~Ox,",1 etc . and I is an integral operator describing the inter-particle in
teraction (Bethe & Salpeter [64] considered a relativistic generalisation of the Yukawa 
potential). The STA version of (4.139) is 

VlV2'IjJ1~/~ + [mlV2 'IjJ,~ + m2Vl'IjJ,~ - I( 'IjJ )]J = m 1m 2'IjJ, (4.140) 

where VI and V 2 are vector derivatives in the particle 1 and particle 2 spaces respectively. 
An alternative approach to relativistic two-body wave equations was initiated by 

Breit [65] in 1929. Breit wrote down an approximate two-body equation based on an 
equal-time approximation and applied this approximation to the fine structure of ortho
helium. Breit's approach was developed by Kemmer [66] and Fermi & Yang [67], who 
introduced more complicated interactions to give phenomenological descriptions of the 
deuteron and pions respectively. More recently, this work has been extended by a number 
of authors (see Koide [68] and Galeoa & Leal Ferriara [63] and references therein). These 
approaches all make use of an equation of the type (in STA form) 

(4.141) 

where 'IjJ = 'IjJ( xl, x 2) is a function of position in configuration space and I( 'IjJ) again 
describes the inter-particle interaction. Equation (4.141) can be seen to arise from an 
equal-time approximation to the STA equation 

( 4.142) 
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In the case where the interaction is turned off and 1jJ is a direct-product state, 

( 4.143) 

equation (4.142) recovers the single-particle Dirac equations for the two separate particles. 
(This is also the case for the Bethe-Salpeter equation (4.139).) The presence of the 16 and 
IJ on the left-hand side mean that equation (4.142) is not Lorentz covariant, however, 
so can at best only be an approximate equation. From the STA form (4.139), one can 
immediately see how to proceed to a fully covariant equation. One simply removes the 
10 's from the left. The resultant equation is 

( 4.144) 

and indeed such an equation has recently been proposed by Krolikowski [69 , 70J (who did 
not use the STA). 

These considerations should make it clear that the multiparticle STA is entirely suffi
cient for the study of relativistic multi particle wave equations. Furthermore, it removes 
the need for either matrices or an (uninterpreted) scalar imaginary. But, in writing 
down (4.144), we have lost the ability to recover the single-particle equations. If we set 
I(1jJ) to zero and use (4.143) for 1jJ, we find that 

(1jJ2('\11jJi'3)1 + 1jJ1('\11jJi'3)2 - (m1 + m2)1jJ11jJ2) E = O. (4.145) 

On dividing through by 1jJ11jJ2 we arrive at the equation 

( 4.146) 

and there is now no way to ensure that the correct mass is assigned to the appropriate 
particle. 

There is a further problem with the equations discussed above. A multiparticle action 
integral will involve integration over the entire 4n-dimensional configuration space. In 
order that boundary terms can be dealt with properly (see Chapter 6) such an integral 
should make use of the configuration space vector derivative '\1 = '\11 + '\12

. This is not the 
case for the above equations, in which the '\11 and '\12 operators act separately. We require 
a relativistic two-particle wave equation for particles of different masses which is derivable 
from an action integral and recovers the individual one-particle equations in the absence of 
interactions. In searching for such an equation we are led to an interesting proposal - one 
that necessitates parting company with conventional approaches to relativistic quantum 
theory. To construct a space on which the full '\1 can act, the 32-dimensional spinor 
space considered so far is insufficient. We will therefore extend our spinor space to the 
the entire 128-dimensional even sub algebra of the two-particle STA. Right multiplication 
by the correlator E then reduces this to a 64-dimensional space, which is now sufficient 
for our purposes. With 1jJ now a member of this 64-dimensional space, a suitable wave 
equation is 

(4.147) 

The operator ('\1 1/m1 + '\12/m2) is formed from a dilation of '\1, so can be easily in
corporated into an action integral (this is demonstrated in Chapter 6). Furthermore, 
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equation (4.147) is manifestly Lorentz covariant. In the absence of interactions, and with 
1j; taking the form of (4.143), equation (4.147) successfully recovers the two single-particle 
Dirac equations. This is seen by dividing through by 1j;11j;2 to arrive at 

( 
1 \7

1 
l' 1 1 \72 2' 2 1 2) 

./,1 -11j; ZO'3 + ./,2 -21j; ZO'3 - 10 - 10 E = O. 
'f/ 1n 'f/ 1n 

( 4.148) 

The bracketed term contains the sum ~f elements from the two separate spaces, so both 
terms must vanish identically. This ensures that 

1 \71 1· 1 
./,1 -11j; ZO' 3 
'f/ m 
=? \711j;li()"~ 

1 
10 

( 4.149) 

with the same result holding in the space of particle two. The fact that the particle 
masses are naturally attached to their respective vector derivatives is interesting, and will 
be mentioned again in the context of the STA gauge theory of gravity (Chapter 7). 

No attempt at solving the full equation (4.147) for interacting particles will be made 
here (that would probably require a thesis on its own). But it is worth drawing attention 
to a further property of the equation. The current conjugate to gauge transformations is 
given by 

'1 '2 
. J J 
J=-+-

m 1 m 2 
( 4.150) 

where p and p are the projections of (1j;(,6 + 16),(fh into the individual particle spaces. 
The current j satisfies the conservation equation 

\7';=0 (4.151) 

or 

(4.152) 

For the direct-product state (4.143) the projections of j into the single-particle spaces 
take the form 

' 1 
J 
' 2 

J 

(1j; 2,(f 2)( 1j;1/6,(f1) 
(1j;1,(f1) (1j;2/6,(f2). 

(4.153) 

But the quantity (1j;,(f ) is not positive definite, so the individual particle currents are no 
longer necessarily future-pointing. These currents can therefore describe antiparticles. (It 
is somewhat ironic that most of the problems associated with the single-particle Dirac 
equation can be traced back to the fact that the timelike component of the current is 
positive definite. After all, producing a positive-definite density was part of Dirac's initial 
triumph.) Furthermore, the conservation law (4.151) only relates to the total current in 
configuration space, so the projections onto individual particle spaces have the potential 
for very strange behaviour. For example, the particle 1 current can turn round in space
time, which would be interpreted as an annihilation event. The interparticle correlations 
induced by the configuration-space current j also afford insights into the non-local aspects 
of quantum theory. Equation (4.147) should provide a fruitful source of future research, 
as well as being a useful testing ground for our ideas of quantum behaviour. 
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4.4.1 The Lorentz Singlet State 

Returning to the 32-dimensional spinor space of standard two-particle quantum theory, 
our next task is to find a relativistic analogue of the Pauli singlet state discussed in 
Section 4.2.l. Recalling the definition of E (4.70), the property that ensured that E was a 
singlet state was that 

k = 1 ... 3. ( 4.154) 

In addition to (4.154), a relativistic singlet state, which we will denote as 'fl, must satisfy 

It follows that 'fl satisfies 

so that 

k = 1 ... 3. 

'1 ·2 -z z 'fl 
1(1 '1 '2) 2 - z z 'fl. 

( 4.155) 

(4.156) 

(4.157) 

( 4.158) 

Such a state can be formed by multiplying E by the idempotent (1- i 1 i 2 )/2. We therefore 
define 

( 4.159) 

This satisfies 
k = 1 ... 3 ( 4.160) 

and 
1 1 ·1 ·2 '2 ' 2 2 ak'fl = -akz Z 'fl = z zak'fl = -ak'fl k = 1 ... 3. (4.161) 

These results are summarised by 
( 4.162) 

where M is an even multivector in either the particle 1 or particle 2 STA. The proof that 
'fl is a relativistic invariant now reduces to the simple identity 

( 4.163) 

where R is a relativistic rotor acting in either particle-one or particle-two space. 
Equation (4.162) can be seen as arising from a more primitive relation between vectors 

in the separate spaces . Using the result that ,6,6 commutes with 'fl, we can derive 

112211 
II-LIOIO'fllOlOlO 

,6( II-LIO)1'fll6 
2 2 2 2 

10 10 '1-L'fl,O 
2 2 

'1-L'fl,O, 

and hence we find that, for an arbitrary vector a, 
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Equation (4.162) follows immediately from (4.165) by writing 

a1b1rrY~,~ 

a1b2r1/61~ 

b2a11n~,6 

b2 2 2 2 
a rl/olo 

(ba?'fl . ( 4.166) 

Equation (4.165) can therefore be viewed as the fundamental property of the relativistic 
invariant 'fl. 

From'fl a number of Lorentz-invariant two-particle multivectors can be constructed by 
sandwiching arbitrary multivectors between 'fl and ij. The simplest such object is 

(4.167) 

This contains a scalar + pseudoscalar term, which is obviously invariant, together with 
the invariant grade-4 multivector ((jk(jf - i(jki(jD. The next simplest object is 

1 (1 . 1· 2 . 1· 2 . 1 · 2) 1 (1 .1.2) 1 2 "2 + W 1 Z(j1 + Z(j2 Z(j2 + Z(j3 W 3"2 - Z Z 1010 
1 ( 1 2 ·1·2 1 2 ·1 ·2 1 2 1 2) 
4" 1010 + Z Z Ik Ik - Z Z 1010 - Ik Ik 
1( 1 2 12)(1 .1 ·2) 4" 1010 - Ik Ik - Z Z • (4.168) 

On defining the symplectic (doubling) bivector 

(4.169) 

and the two-particle pseudoscalar 

(4.170) 

the invariants from (4.168) are simply J and I J . As was disussed in Section (3.2) , the 
bivector J is independent of the choice of spacetime frame, so is unchanged by the two
sided application of the rotor R = R1 R2. It follows immediately that the 6-vector I J is 
also invariant. 

From the definition of J (4.169), we find that 

JI\J 2 1 2 1 2 (1 2)1\( 1 2) - lOlOlklk + Iklk Ijlj 

2( 1 2 . 1· 2) (jk(jk - Z(jkZ(jk , (4.171) 

which recovers the 4-vector invariant from (4.167). The complete set of two-particle invari
ants can therefore be constructed from J alone, and these are summarised in Table 4.2. 
These invariants are well-known and have been used in constructing phenomenological 
models of interacting particles [63, 68]. The STA derivation of the invariants is quite new, 
however, and the role of the doubling bivector J has not been previously noted. 
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Type of 
Invariant Interaction Grade 

1 Scalar 0 
J Vector 2 

J/\J Bivector 4 
IJ Pseudovector 6 
I Pseudoscalar 8 

Table 4.2: Two-Particle Relativistic Invariants 

4.5 2-Spinor Calculus 

We saw in Section 4.3.1 how spinors in the Weyl representation are handled within the 
(single-particle) STA. We now turn to a discussion of how the 2-spinor calculus developed 
by Penrose & Rindler [36 , 37] is formulated in the multiparticle STA. From equation (4.87), 
the chiral projection operators H1 ± i~) result in the STA multivectors 

~ (1 + i~) 11/J ) , 

~(1 - i~) 11/J)' 
1/J~(1 + a3) = X h(1 + a3) 
1/JH1 - a3) = -il h(1 - a3). 

The 2-spinors Ix) and Ifl) can therefore be given the STA equivalents 

Ix) 
lil) 

Xh(1 + a3) 
-il h(1 - a3). 

(4.172) 

(4.173) 

These differ from the representation of Pauli spinors, and are closer to the "minimal left 
ideal" definition of a spinor given by some authors (see Chapter 2 of [13], for example). 
Algebraically, the (1 ± a3) projectors ensure that the 4-dimensional spaces spanned by 
elements of the type Xh(1 + a3) and ilh(1- a3) are closed under left multiplication by 
a relativistic rotor. The significance of the (1 ± a3) projectors lies not so much in their 
algebraic properties, however, but in the fact that they are the ,a-space projections of 
the null vectors 'a ±,3 . This will become apparent when we construct some 2-spinor 
"observables" . 

Under a Lorentz transformation the spinor 1/J transforms to R1/J, where R is a relativistic 
rotor. If we separate the rotor R into Pauli-even and Pauli-odd terms, 

where 

~(R + ,oR,o) 
HR -,oR,o), 
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then we can write 

RX J2(1 + 0"3) 
Rij )z(1 - 0"3) 

R+X )z(1 + 0"3) + R_X0"3)z(1 + 0"3) 
R+ij )z(1 - 0"3) - R_ij0"3)z(1 - 0"3)' 

The transformation laws for the Pauli-even elements X and ij are therefore 

X 1--+ R+X + R-X0"3 

ij 1--+ R+ij - R-ij0"3, 

( 4.177) 

(4.178) 

(4.179) 

which confirms that Ix) transforms under the operator equivalent of R, but that lij) 
transforms under the equivalent of 

(4.180) 

This split of a Lorentz transformations into two distinct operations is an unattractive 
feature of the 2-spinor formalism, but it is an unavoidable consequence of attempting to 
perform relativistic calculations within the Pauli algebra of 2 x 2 matrices. The problem 
is that the natural anti-involution operation is Hermitian conjugation. This operation is 
dependent on the choice of a relativistic timelike vector, which breaks up expressions in 
a way that disguises their frame-independent meaning. 

The 2-spinor calculus attempts to circumvent the above problem by augmenting the 
basic 2-component spinor with a number of auxilliary concepts. The result is a language 
which has proved to be well-suited to the study of spinors in a wide class of problems and it 
is instructive to see how some features of the 2-spinor are absorbed into the STA formalism. 
The central idea behind the 2-spinor calculus is that a two-component complex spinor 11\:) , 
derived form the Weyl representation (4.121), is replaced by the complex "vector" I\:A . 

Here the A is an abstract index labeling the fact that I\:A is a single spinor belonging to 
some complex, two-dimensional linear space. We represent this object in the STA as 

(4.181) 

(The factor of 1/2 replaces 1/V2 simply for convenience in some of the manipulations 
that follow.) The only difference now is that, until a frame is chosen in spin -space, we 
have no direct mapping between the components of I\:A and 1\:. Secifying a frame in 
spin space also picks out a frame in spacetime (determined by the null tetrad). If this 
spacetime frame is identified with the {,I-'} frame, then the components I\:A of I\:A specify 
the Pauli-even multivector I\: via the identification of equation (4.9). A second frame in 
spin-space produces different components I\: A , and will require a different identification 
to equation (4.9), but will still lead to the same multivector 1\:~(1 + 0"3)' 2-Spinors are 
equipped with a Lorentz-invariant inner product derived from a metric tensor fAB . This 
is used to lower indices so, for every 2-spinor I\: A , there is a corresponding I\:A. Both of 
these must have the same multi vector equivalent, however, in the same way that al-' and 
al-' both have the STA equivalent a. 

To account for the second type of relativistic 2-spinor, lij) (4.121), a second linear 
space (or module) is introduced and elements of this space are labeled with bars and 
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primed indices. Thus an abstract element of this space is written as wA'. In a given basis, 
the components of wA ' are related to those of wA by complex conjugation, 

(4.182) 

To construct the STA equivalent of wA ' we need a suitable equivalent for this operation. 
Our equivalent operation should satisfy the following criteria: 

1. The operation can only affect the right-hand side w(1 + (53)/2, so that Lorentz 
invariance is not compromised; 

2. From equation (4.173), the STA equivalent of wA ' must be a multivector projected 
by the (1-(53)/2 idempotent, so the conjugation operation must switch idempotents; 

3. The operation must square to give the identity; 

4. The operation must anticommute with right-multiplication by i(53' 

The only operation satisfying all of these criteria is right-multiplication by some combi
nation of (51 and (52. Choosing between these is again a matter of convention, so we will 
represent 2-spinor complex conjugation by right-multiplication by -(51. It follows that 
our representation for the abstract 2-spinor wA ' is 

(4.183) 

Again, once a basis is chosen, w is constructed using the identification of equation (4.9) 
with the components wO = wo' and w 1 = w1'. 

4.5.1 2-Spinor Observables 

Our next step in the STA formulation of 2-spinor calculus is to understand how to rep
resent quantities constructed from pairs of 2-spinors. The solution is remarkably simple. 
One introduces a copy of the STA for each spinor, and then simply multiplies the STA 
elements together, incorporating suitable correlators as one proceeds. For example, the 
quantity n:AK;A' becomes 

( 4.184) 

To see how to manipulate the right-hand side of (4 .184) we return to the relativistic 
two-particle singlet 1] (4.159). The essential property of 'Tl under multiplication by even 
elements was equation (4.162). This relation is unaffected by further multiplication of 'Tl 
on the right-hand side by an element that commutes with E. We can therefore form the 
object 

( 4.185) 

(not to be confused with the non-relativistic Pauli singlet state) which will still satisfy 

(4.186) 
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for all even multivectors lVI. The 2-particle state E is still a relativistic singlet in the sense 
of equation (4.163). From (4.185) we see that E contains 

~(1 - i1i2H(1 + dH(1 - iO"~iO"D ~(1- iO"~i2H(1 + O"~)E 
HI - iO"~i2H(1 + O"~)E 
HI + O"~H(1 + O"~)E, (4.187) 

so we can write 

E = ~(iO"~ - iO"DHl + O"~H(1 + O"~)E. (4.188) 

A second invariant is formed by right-sided multiplication by (1- 0"J)/2, and we define 

E = 1]~(1- O"~). (4.189) 

Proceeding as above, we find that 

- 1 ( . 1 . 2)1(1 2)1(1 1)E E = Vi 20"2 - 20"2 2: - 0"3 2: - 0"3 . (4 .190) 

This split of the full relativistic invariant 1] into E and E lies at the heart of much of the 
2-spinor calculus. To see why, we return to equation (4.184) and from this we extract the 
quantity HI + O"~H(1 - 0"5H(1 - iO"~iO"5). This can be manipulated as follows: 

~(1 + 0"~)~(1 - O"~)E 16~(1 - O"~H(1- O"D~(1- 0"~)E,6 
16iO"~~(1 - O"~)(-iO"~)~(1 - 0"~)~(1 - 0"~)E,6 
l' 21(1 1)(' 1 . 2)1(1 1)1(1 2)E 1 1020"22: - 0"3 20"2 - 20"2 2: - 0"3 2: - 0"3 10 
l' 2 1 (1 1)- 1 ,020"2Vi -0"3 E/o 

1 (1 1) ' 1- 1 - Vi 10 + 13 W 2E/0, (4.191) 

which shows how an E arises naturally in the 2-spinor product. This f is then used to 
project everything to its left back down to a single-particle space. We continue to refer 
to each space as a "particle space" partly to stress the analogy with relativistic quantum 
states, but also simply as a matter of convenience. In 2-spinor calculus there is no actual 
notion of a particle associated with each copy of spacetime. 

Returning to the example of I\:A/i;A' (4.184), we can now write 

_1\:1 1\:2iO"~~(1 + O"~H(1 - O"~)E 

1\:11\:2 ~(,6 + 1~)E/6 
[I\: ~( 10 + 13) i{, ] 1 E/6 . ( 4.192) 

The key part of this expression is the null vector 1\:(,0 + ~(3)i{,/V2, which is formed in the 
usual STA manner by a rotation/dilation of the fixed null vector (,0 +/3)/V2 by the even 
multi vector 1\:. The appearance of the null vector (,0 + 13) / V2 can be traced back directly 
to the (1 + 0"3)/2 idempotent, justifying the earlier comment that these idempotents have 
a clear geometric origin. 

There are three further manipulations of the type performed in equation (4.191) and 
the results of these are summarised in Table 4.3. These results can be used to find a 
single-particle equivalent of any expression involving a pair of 2-spinors. We will see 
shortly how these reductions are used to construct a null tetrad, but first we need to find 
an STA formulation of the 2-spinor inner product. 
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I 

~(1 + ajH(1 - aDE 
~(1 - aj)~(1 + aj)E 
HI + a~H(1 + aj)E 
HI - aD~(1 - aDE 

Table 4.3: 2-Spinor Manipulations 

4.5.2 The 2-spinor Inner Product 

Spin-space is equipped with an anti-symmetric inner product, written as either Ii:AWA 

or Ii:AWBcAB' In a chosen basis, the inner product is calculated as 

( 4.193) 

which yields a Lorentz-invariant complex scalar. The anti symmetry of the inner product 
suggests forming the STA expression 

The anti symmetric product therefore picks out the scalar and pseudoscalar parts of the 
quantity Ii:( a? + ia~)w . This is sensible, as these are the two parts that are invariant 
under Lorentz transformations. Fixing up the factor suitably, our STA representation of 
the 2-spinor inner product will therefore be 

( 4.195) 

That this agrees with the 2-spinor form in a given basis can be checked simply by ex
panding out the right-hand side of (4.195). 

A further insight into the role of the 2-spinor inner product is gained by assembling 
the full even multi vector (an STA spinor) 

The 2-spinor inner product can now be written as 

[1i:~(1 + a3) + wia2~(1- a3)][-Hl + a3)ia2w + ~(1- a3);;;] 
-1i:~(1 + a3) ia2w + wia2~(1 - a3);;; 
-(Ii:(al + ia2)w)O,4 

( 4.1 96) 

( 4.197) 

which recovers (4.195). The 2-spinor inner product is therefo~e seen to pick up both the 
scalar and pseudoscalar parts of a full Dirac spinor product 'IjJ'IjJ . Interchanging Ii: and W in 
'IjJ (4.196) is achieved by right-multiplication by at, which immediately reverses the sign 
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I , 
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~(1 + O"~H(1 - O"DE 
~(1 - 0"~)~(1 + O"~)E 
HI + O"~H(1 + O"DE 
~(1 - O"~H(1 - O"~)E 

Table 4.3 : 2-Spinor Manipulations 

4.5.2 The 2-spinor Inner Product 

Spin-space is equipped with an anti-symmetric inner product, written as either I>:AWA 

or I>:AW
B 

cAB . In a chosen basis, the inner product is calculated as 

( 4.193) 

which yields a Lorentz-invariant complex scalar. The antisymmetry of the inner product 
suggests forming the STA expression 

The antisymmetric product therefore picks out the scalar and pseudoscalar parts of the 
quantity 1>:( O"i + iO"Dw. This is sensible, as these are the two parts that are invariant 
under Lorentz transformations. Fixing up the factor suitably, our STA representation of 
the 2-spinor inner product will therefore be 

( 4.195) 

That this agrees with the 2-spinor form in a given basis can be checked simply by ex
panding out the right-hand side of (4.195). 

A further insight into the role of the 2-spinor inner product is gained by assembling 
the full even multi vector (an STA spinor) 

The 2-spinor inner product can now be written as 

[ 1>:~(1 + 0"3) + wiO"z~(1- 0"3)][-Hl + 0"3)iO"zw + ~(1 - 0"3)~J 
-1>:~(1 + 0"3)iO"zw + wiO"z~(1 - 0"3)~ 

-(1):(0"1 + iO"Z)W )o ,4 

(4.196) 

( 4.197) 

which recovers (4 .195). The 2-spinor inner product is therefore seen to pick up both the 
scalar and pseudoscalar parts of a full Dirac spinor product 'IjJ,(j; . Interchanging I>: and w in 
'IjJ (4.196) is achieved by right-multiplication by 0"1, which immediately reverses the sign 
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of'l/J-0. An important feature of the 2-spinor calculus has now emerged, which is that the 
unit scalar imaginary is playing the role of the spacetime pseudoscalar. This is a point 
in favour of 2-spinors over Dirac spinors, but it is only through consistent employment of 
the STA that this point has become clear. 

The general role of the tAB tensor when forming contractions is also now clear. In the 
STA treatment, tAB serves to antisymmetrise on the two particle indices carried by its 
STA equivalent. (It also introdl~ces a factor of .J2, which is a result of the conventions 
we have adopted.) This antisymmetrisation always results in a scalar + pseudoscalar 
quantity, and the pseudoscalar part can always be pulled down to an earlier copy of 
spacetime. In this manner, antisymmetrisation always removes two copies of spacetime, 
as we should expect from the contraction operation. 

4.5.3 The Null Tetrad 

An important concept in the 2-spinor calculus is that of a spin-fmme. This consists of 
a pair of 2-spinors, n;A and wA say, normalised such that n;AwA = 1. In terms of the 
full spinor 'l/J (4.196) , this normalisation condition becomes 'l/J-0 = 1. But this is simply 
the condition which ensures that 'l/J is a spacetime rotor! Thus the role of a "normalised 
spin-frame" in 2-spinor calculus is played by a spacetime rotor in the STA approach. This 
is a considerable conceptual simplification. Furthermore, it demonstrates how elements of 
abstract 2-spinor space can be represented in terms of geometrically meaningful objects 
- a rotor, for example, being simply a product of an even number of unit vectors. 

Attached to the concept of a spin-frame is that of a null tetrad. Using n;A and wA as 
the generators of the spin frame, the null tetrad is defined as follows: 

l a = n;Aj\;A' ~ -n;1n;2~(1 + 0"~)iO";H1 - O"~)E 

= ~[n;(Jo + 13)K]lE/6 

= ['l/J ~(Jo + 13)-0PE/ 6, (4.198) 

na = wAwA' -w1w2~(1 + O"DiO"d(1- O"~)E 
1 [ ( r ]1 - 1 = V2 w 10 + 13 W Eto 

= ['l/J ~(Jo -/3)-0Ph6, ( 4.199) 

1na = n;AwA' -n;lw2~(1 + 0"~)i0"2H1 - O"~)E 
1 [ ( r]l - 1 = V2 n; ,0 + ,3 W Eto 

= ['l/J ~(Jl + i/2 )-0PE/ 6, ( 4.200) 

and 

fha = wAj\;A' _w1 n;2~(1 + 0"~)i0"2~(1 - O"~)E 
1 [ ( rp- 1 = Vz W ,0 + 13 n; Eto 

= ['l/J ~(Jl - i/2 )-0]lE/ 6' (4 .201 ) 
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of 'IjJ,(f;. An important feature of the 2-spinor calculus has now emerged, which is that the 
unit scalar imaginary is playing the role of the spacetime pseudoscalar. This is a point 
in favour of 2-spinors over Dirac spinors, but it is only through consistent employment of 
the STA that this point has become clear. 

The general role of the tAB tensor when forming contractions is also now clear. In the 
STA treatment, tAB serves to aJ;ltisymmetrise on the two particle indices carried by its 
STA equivalent. (It also introduces a factor of y'2, which is a result of the conventions 
we have adopted.) This antisymmetrisation always results in a scalar + pseudoscalar 
quantity, and the pseudoscalar part can always be pulled down to an earlier copy of 
spacetime. In this manner, antisymmetrisation always removes two copies of spacetime, 
as we should expect from the contraction operation. 

4.5.3 The Null Tetrad 

An important concept in the 2-spinor calculus is that of a spin-fmme. This consists of 
a pair of 2-spinors, n;A and wA say, normalised such that n;Aw A = 1. In terms of the 
full spinor 'IjJ (4.196), this normalisation condition becomes 'IjJ,(f; = 1. But this is simply 
the condition which ensures that 'IjJ is a spacetime rotor! Thus the role of a "normalised 
spin-frame" in 2-spinor calculus is played by a spacetime rotor in the STA approach. This 
is a considerable conceptual simplification. Furthermore, it demonstrates how elements of 
abstract 2-spinor space can be represented in terms of geometrically meaningful objects 
- a rotor, for example, being simply a product of an even number of unit vectors. 

Attached to the concept of a spin-frame is that of a null tetrad. Using n;A and wA as 
the generators of the spin frame, the null tetrad is defined as follows: 

la = n;A x;A' ~ -n;1n;2t(1 + (T~)i(T~t(1- (T;)E 

= Jz[n;bo + 13);WEI~ 
= ['IjJ )zbo + 13),(f;PEI~' ( 4.198) 

n a = wAwA' -w1w2t(1 + (T~)i(T2t(1 - (TDE 
1 [ ( rp- 1 = Y2 w 10 + 13 W Efo 

= ['IjJ Jzbo - 13),(f;11h~, ( 4.199) 

Tn a = n;AwA' -n;lw2t(1 + (T~)i(T2t(1- (T;)E 
1 [ ( rp- 1 = Y2 n; ,0 + 13 W Efo 

= ['IjJ Jzbl + i'2),(f;PE,~, ( 4.200) 

and 

1'iia = wAx;A' _w1 n;2t(1 + (T~)i(T2t(1 - (TDE 

= )z[wbo + 13);Wh~ 
= ['IjJ )zbl - i'2)1~11 E,~. (4.201 ) 
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The key identity used to arrive at the final two expression is 

'IjJ(1 + 0"3 hI ~ 
1>:(1 + 0"3 hI ~ 
-1>:,1 (1 + 0"3)i0"2W 

-K, l(1 + 0"3)0"1W 

Kho + 13)W, ( 4.202) 

The simplest spin frame is formed when 'IjJ = 1. In this case we arrive at the following 
comparison with page 120 of Penrose & Rindler [36]; 

la = h(ta + za) +-+ hho + 13) 
na = h(ta - za) +-+ hho -,3) 

ma = h(xa _ jya) +-+ hhl + i{2) 
( 4.203) 

ma = h(xa + jya) +-+ hhl - i{2)' 

The significant feature of this translation is that the "complex vectors" m a and ma have 
been replaced by vector + trivector combinations. This agrees with the observation that 
the imaginary scalar in the 2-spinor calculus plays the role of the spacetime pseudoscalar. 
We can solve (4.203) for the Minkowski frame {ta, xa, ya, za} (note how the abstract 
indices here simply record the fact that the t ... z are vectors). The only subtlety is 
that, in recovering the vector ya from our expression for jya, we must post-multiply our 
2-particle expression by iO"~. The factor of (1 + O"~) means that at the one-particle level 
this operation reduces to right-multiplication by i. We therefore find that 

10 
11 

(4.204) 

The only surprise here is the sign of the y-vector 12. This sign can be traced back 
to the fact that Penrose & Rindler adopt an usual convention for the 0"2 PauE matrix 
(page 16). This is also reflected in the fact that they identify the quaternions with vectors 
(page 22), and we saw in Section 1.2.3 that the quaternion algebra is generated by the 
spatial bivectors {iO"l, -i0"2, i0"3}. 

An arbitrary spin-frame, encoded in the rotor R, produces a new null tetrad simply 
by Lorentz rotating the vectors in (4.203), yielding 

n 
Rh(,o + 13)R, 
R.)zho -'3)R, 

m 

m 

Rhhl + i,2)R, 
Rhhl - i,2 )R. 

( 4.205) 

In this manner, the (abstract) null tetrad becomes a set of four arbitrary vector/trivector 
combinations in (4.205), satisfying the anticommutation relations [4] 

Hl,n} = 1, Hm,m} = 1, all others = O. ( 4.206) 
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4.5.4 The \7A'A Operator 

The final 2-spinor object that we need a translation of is the differential operator V A ' A . 

The translation of V A' A will clearly involve the vector derivative V = Il-tf}x~' and this must 
appear in such a way that it picks up the correct transformation law under a rotation in 
two-particle space. These observations lead us to the object 

so that, under a rotation, 

R1V R2q~ 

(RV R)lq~, 

( 4.207) 

( 4.208) 

and the V does indeed inherit the correct vector transformation law. In this chapter 
we are only concerned with the "flat-space" vector derivative V; a suitable formulation 
for "curved-space" derivatives will emerge in Chapter 7. A feature of the way that the 
multiparticle STA is employed here is that each spinor K(l + 0"3)/2 is a function of position 
in its own spacetime, 

( 4.209) 

When such an object is projected into a different copy of spacetime, the position depen
dence must be projected as well. In this manner, spinors can be "pulled back" into the 
same spacetime as the differential operator V. 

We are now in a position to form the contraction VA'AKBcAB. We know that the role 
of the CAB is to antisymmetrise on the relevant particle spaces (in this case the 2 and 3 
spaces), together with introducing a factor ofV2. Borrowing from the 2-spinor notation, 
we denote this operation as C2,3 . We can now write 

( 4.210) 

where we have introduced the notation cij for the c invariant (singlet state) under joint 
rotations in the ith and jth copies of spacetime. Equation (4.210) is manipulated to give 

n112 1 31(1 3)E v c 10K 2 + 0"3 3C2,3 
nl 1 ( . 1 . 2) 31(1 + 1)1(1 + 2)1(1 + 3)E 1 v V2 20"2 - 20"2 K 2 0"3 2 0"3 2 0"3 3c2,3/0 

= VI Jz (-iO"~((O"I + i0"2)K )~ ,4 + (i0"2(0"1 + i0"2)K)~,4) ~(1 + 0"~)c23/~Ei4.211) 
and projecting down into particle-one space, the quantity that remains is 

We now require the following rearrangement: 

[i0"2(K(0"1 + i0"2) )0 ,4 + (K(O"I + i0"2)i0"2)0,4H(1 + 0"3) 
[i0"2((Ki0"2) - i (KiO"I )) - (K) + i(Ki0"3)H(1 + 0"3) 

[-(K) + iO"k(KiO"k )H(1 + 0"3) 

( 4.212) 

-KH1 + 0"3). (4.213) 
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Using this, we find that 

",A' A 
v A:A ( 4.214) 

where pulling the ,0 across to the left-hand side demonstrates how the V'A'A switches 
between idempotents (modules) . Equation (4.214) essentially justifies the procedure de
scribed in this section, since the translation (4.214) is "obvious" from the Weyl represen
tation of the Dirac algebra (4.119). The factor of 1/V2 in (4.214) is no longer a product 
of our conventions, but is an unavoidable aspect of the 2-spinor calculus. It remains to 
find the equivalent to the above for the expression V'AA'WA', The translation for V'AA' is 
obtained from that for V'A'A by switching the "particle" indices, so that 

( 4.215) 

Then, proceeding as above, we find that 

",AA' -
v WA' ( 4.216) 

4.5.5 Applications 

The above constitutes the necessary ingredients for a complete translation of the 2-spinor 
calculus into the STA. We close this chapter by considering two important applications. 
It should be clear from both that, whilst the steps to achieve the STA form are often 
quite complicated, the end result is nearly always more compact and easier to understand 
than the original 2-spinor form. An objective of future research in this subject is to 
extract from 2-spinor calculus the techniques which are genuinely powerful and useful. 
These can then be imported into the STA, which will suitably enriched by so doing. The 
intuitive geometric nature of the STA should then make these techniques available to a 
wider audience of physicists than currently employ the 2-spinor calculus . 

The Dirac Equation 

The Dirac equation in 2-spinor form is given by the pair of equations [36, page 222] 

( 4.217) 

The quantity f-l is defined to be m/V2, where m is the electron mass. The factor of 1/V2 
demonstrates that such factors are intrinsic to the way that the V'A'A symbol encodes the 
vector derivative. The equations (4.217) translate to the pair of equations 

V' A:~(1 + 0"3),0 
- V'wi0"2~(1- 0"3),0 

If we now define the full spinor 'ljJ by 

99 

mwi0"2~(1 - 0"3) 

mA:~(1 + 0"3)' 
( 4.218) 

( 4.219) 



we find that 

m[W0"2!(1 - 0"3) - m,,;! (1 + 0"3)]i 

-m'ljJi0"3. 

We thus recover the STA version of the Dirac equation (4.92) 

( 4.220) 

(4.221) 

Of the pair of equations (4.217), Penrose & Rindler write "an advantage of the 2-spinoT 
desaiption is that the ,-matTices disappeaT completely - and complicated ,-matTix identi
ties simply evapomte!" [36 , page 221]. Whilst this is true, the comment applies even more 
strongly to the STA form of the Dirac equation (4.221), in which complicated 2-spinor 
identities are also eliminated! 

Maxwell's Equations 

In the 2-spinor calculus the real, anti symmetric tensor Fab is written as 

( 4.222) 

where 'ljJAB is symmetric on its two indices. We first need the STA equivalent of 'ljJAB. 
Assuming initially that 'ljJAB is arbitrary, we can write 

( 4.223) 

where 'ljJ is an arbitrary element of the product space of the two single-particle Pauli
even algebras. A complete basis for 'ljJ is formed by all combinations of the 7 elements 
{1, iO"k, iO"n. The presence of the singlet f allows all elements of second space to be 
projected down into the first space, and it is not hard to see that this accounts for all 
possible even elements in the one-particle STA. We can therefore write 

( 4.224) 

where I'll! is an arbitrary even element. The condition that 'ljJAB is symmetric on its two 
indices now becomes (recalling that f is antisymmetric on its two particle indices) 

=} NI = -111. 

( 4.225) 

( 4.226) 

This condition projects out from 111 the components that are bivectors in particle-one 
space, so we can write 

( 4.227) 

where F is now a bivector. For the case of electromagnetism, F is the Faraday bivector, 
introduced in Section (1.2.5). The complete translation of Fab is therefore 

( 4.228) 
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where TJ is the full relativistic invariant. 
The 2-spinor form of the Maxwell equations an be written 

( 4.229) 

where J AA' is a "real" vector (i. e. it has no trivector components). Recalling the con
vention that E

ij denotes the singlet state in coupled {i, j}-space, the STA version of 
equation (4.229) is 

VlE12,ciF3E34E2,4 = -J1
E

13,ci· 
This is simplified by the identity 

( 4.230) 

(4.231) 

which is proved by expanding the left-hand side and then performing the antisymmetri
sation. The resultant equation is 

( 4.232) 

which has a one-particle reduction to 

VF=J. ( 4.233) 

This recovers the STA form of the Maxwell equations [17] . The STA form is remarkably 
compact, makes use solely of spacetime quantities and has a number of computational 
advantages over second-order wave equations [8]. The 2-spinor calculus also achieves a 
first-order formulation of Maxwell's equations, but at the expense of some considerable 
abstractions . We will return to equation (4.233) in Chapters 6 and 7. 
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Chapter 5 

Point-particle Lagrangians 

In this chapter we develop a multivector calculus as the natural extension of the calculus 
of functions of a single parameter. The essential new tool required for such a calculus is 
the multivector derivative, and this is described first. It is shown how the multivector 
derivative provides a coordinate-free language for manipulating linear functions (forming 
contractions etc.). This supersedes the approach used in earlier chapters, where such 
manipulations were performed by introducing a frame. 

The remainder of this chapter then applies the techniques of multi vector calculus 
to the analysis of point-particle Lagrangians. These provide a useful introduction to the 
techniques that will be employed in the study of field Lagrangians in the final two chapters. 
A novel idea discussed here is that of a multivector-valued Lagrangian. Such objects are 
motivated by the pseudoclassical mechanics of Berezin & Marinov [39], but can only 
be fully developed within geometric algebra. Forms of Noether 's theorem are given for 
both scalar and multivector-valued Lagrangians, and for transformations parameterised 
by both scalars and multi vectors. This work is applied to the study of two semi-classical 
models of electron spin. Some aspects of the work presented in this chapter appeared 
in the papers "Gmssmann mechanics) multivector derivatives and geometric algebm" [3] 
and" Gmssmann calculus) ]Jseudoclassical mechanics and geometric algebm" [1]. 

5.1 The Multivector Derivative 

The idea of a vector derivative was partially introduced in Chapter 4, where it was seen 
that the STA form of the Dirac equation (4.92) required the operator \7 = ,I-'ax !" where 
xl-' = ,I-' ·x. The same operator was later seen to appear in the STA form of the Maxwell 
equations (4.233), \7 F = J. We now present a more formal introduction to the properties 
of the vector and multi vector derivatives. Further details of these properties are contained 
in [18] and [24 , Chapter 2], the latter of which is particularly detailed in its treatment. 

Let X be a mixed-grade multi vector 

X = 2: X,., (5.1 ) 
,. 

and let F(X) be a general multivector-valued function of X. The grades of F(X) need 
not be the same as those of its argument X. For example, the STA representation of a 
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Dirac spinor as 'IjJ( x) is a map from the vector x onto an arbitrary even element of the 
STA. The derivative of F(X) in the A direction, where A has the same grades as X, is 
defined by 

A*OxF(X) == lim F(X + TA) - F(X) . 
r->O T 

(5.2) 

(It is taken as implicit in this definition that the limit exists.) The operator A*ox satisfies 
all the usual properties for partial ·derivatives. To define the multi vector derivative Ox, we 
introduce an arbitrary frame {ej} and extend this to define a basis for the entire algebra 
{eJ}, where J is a general (simplicial) index. The multivector derivative is now defined 
by 

Ox = L eJ eJ*ox. (5.3) 
J 

The directional derivative eJ*ox is only non-zero when eJ is of the same grade( s) as X, so 
Ox inherits the multi vector properties of its argument X. The contraction in (5.3) ensures 
that the quantity Ox is independent of the choice of frame, and the basic properties of 
Ox can be formulated without any reference to a frame. 

The properties of Ox are best understood with the aid of some simple examples. The 
most useful result for the multi vector derivative is 

ox(XA) = Px(A), (5.4) 

where Px(A) is the projection of A on to the grades contained in X. From (5.4) it follows 
that 

Ox (X A) = Px(A) 
o,y (XA) = Px(A). 

(5.5) 

Leibniz' rule can now be used in conjunction with (5.4) to build up results for the action 
of Ox on more complicated functions. For example, 

(5.6) 

The multivector derivative acts on objects to its immediate right unless brackets are 
present, in which case Ox acts on the entire bracketed quantity. If Ox acts on a multivector 
that is not to its immediate right, we denote this with an over dot on the Ox and its 
argument. Thus 8x AB denotes the action of Ox on B, 

(5.7) 

The overdot notation is an invaluable aid to expressing the properties of the multi vector 
derivative. In particular, it neatly encodes the fact that, since Ox is a multivector, it does 
not necessarily commute with other multivectors and often acts on functions to which it 
is not adjacent. As an illustration, Leibniz' rule can now be given in the form 

(5.8) 

The only drawback with the overdot notation comes in expressions which involve time 
derivatives. It is usually convenient to represent these with overdots as well, and in such 
instances the overdots on multivector derivatives will be replaced by overstars. 
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The most useful form of the multi vector derivative is the derivative with respect to a 
vector argument, oa or OX. Of these, the derivative with respect to position x is particularly 
important. This is called the vector derivative, and is given special the symbol 

(5.9) 

The operator \7 sometimes goes under the name of the Dirac operator , though this name 
is somewhat misleading since Ox is well-defined in all dimensions and is in no way tied 
to quantum-mechanical notions. In three dimensions, for example, Ox = V contains all 
the usual properties of the div, grad and curl operators. There are a number of useful 
formulae for derivatives with respect to vectors, a selection of which is as follows : 

oaa·b b 
oaa2 2a 
oa ·a n 

oa 1\ a 0 (5.10) 
oaa· Ar rAr 

Oaa1\ A j • (n - r)Aj. 
OaAra (-lY(n - 2r)An 

where n is the dimension of the space. The final three equations in (5.10) are the frame
free forms of formulae given in Section (1.3.2). 

Vector derivatives are very helpful for developing the theory of linear functions, as 
introduced in Section (1.3). For example, the adjoint to the linear function t can be 
defined as 

(5.11 ) 

It follows immediately that 

(5.12) 

Invariants can be constructed equally simply. For example, the trace of t( a) is defined by 

(5.13) 

and the "characteristic bivector" of t( a) is defined by 

(5.14) 

An anti-symmetric function t = -7 can always be written in the form 

t(a) = a·B (5 .15) 

and it follows from equation (5.10) that B is the characteristic bivector. 
Many other aspects of linear algebra, including a coordinate-free proof of the Cayley

Hamilton theorem, can be developed similarly using combinations of vector derivatives [24, 
Chapter 3]. 
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5.2 Scalar and Multivector Lagrangians 

As an application of the multivector derivative formalism just outlined, we consider 
Lagrangian mechanics. We start with a scalar-valued Lagrangian L = L(Xi' .t), where 
the Xi are general multivectors, and Xi denotes differentiation with respect to time. We 
wish to find the Xi(t) which extremise the action 

(5.16) 

The solution to this problem can be found in many texts (see e.g. [71]) . We write 

(5.17) 

where Yi is a multi vector containing the same grades as Xi and which vanishes at the 
endpoints, E is a scalar and X? represents the extremal path. The action must now 
satisfy fJfS = 0 when E = 0, since E = 0 corresponds to Xi(t) taking the extremal values. 
By applying the chain rule and integrating by parts, we find that 

fJfS = It2 dt ((fJfXi)*fJxjL + (fJfXi)*fJfc L) 
tl 

It2 dt (Y *fJvL + ~*fJ · L) t ..1\1 t Xi 
tl 

I t2 dt Yi * (fJxjL - fJt( fJ)(jL)) . 
tl 

(5.18) 

Setting E to zero now just says that Xi is the extremal path, so the extremal path is 
defined by the solutions to the Euler-Lagrange equations 

(5 .19) 

The essential advantage of this derivation is that it employs genuine derivatives in place 
of the less clear concept of an infinitessimal. This will be exemplified when we study 
Lagrangians containing spinor variables . 

We now wish to extend the above argument to a multivector-valued Lagrangian L. 
Taking the scalar product of L with an arbitrary constant multivector A produces a scalar 
Lagrangian (LA). This generates its own Euler-Lagrange equations, 

(5.20) 

A "permitted" multi vector Lagrangian is one for which the equations from each A are 
mutually consistent, so that each component of the full L is capable of simultaneous 
extremisation. 

By contracting equation (5 .20) on the right-hand side by fJA , we find that a necessary 
condition on the dynamical variables is 

(5.21) 

For a permitted multi vector Lagrangian, equation (5.21) is also sufficient to ensure that 
equation (5.20) is satisfied for all A. This is taken as part of the definition of a multivector 
Lagrangian. We will see an example of how these criteri a can be met in Section 5.3. 
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5.2.1 Noether's Theorem 

An important technique for deriving consequences of the equations of motion resulting 
from a given Lagrangian is the study of the symmetry properties of the Lagrangian itself. 
The general result needed for this study is Noether's theorem. We seek a form of this 
theorem which is applicable to both scalar-valued and multivector-valued Lagrangians. 
There are two types of symmetry to consider, depending on whether the transformation 
of variables is governed by a scalar or by a multi vector parameter. We will look at these 
separately. 

It is important to recall at this point that all the results obtained here are derived in 
the cooTdinate-free language of geometric algebra. Hence all the symmetry transforma
tions considered are active. Passive transformations have no place in this scheme, as the 
introduction of an arbitrary coordinate system is an unnecessary distraction. 

5.2.2 Scalar Parameterised Transformations 

Given a Lagrangian L = L(Xi' Xi), which can be either scalar-valued or multivector
valued, we wish to consider variations of the variables Xi controlled by a single scalar 
parameter, CY. We write this as 

(5.22) 

and assume that XI( CY = 0) = Xi. We now define the new Lagrangian 

L'(X X·) = L(X' X') t, tt' t' (5.23) 

which has been obtained from L by an active transformation of the dynamical variables. 
Employing the identity L' = (L' A)OA' we proceed as follows: 

(Oo:X;)*ox/(L' A)OA + (Oa X;) *oxl (L' A)OA 
I I 

(OaX:) * (ox:(L' A) - Ot(o)(:(L' A))) OA + Ot (( oaX;) *o,,;:L') . (5.24) 

The definition of L' ensures that it has the same functional form of L, so the quantity 

(5.25) 

is obtained by taking the Euler-Lagrange equations in the form (5.20) and replacing the 
Xi by XI. If we now assume that the XI satisfy the same equations of motion (which 
must be checked for any given case), we find that 

(5.26) 

and, if L' is independent of CY, the corresponding quantity (OaXI) * oXIL' is conserved. 
I 

Alternatively, we can set CY to zero so that (5.25) becomes 

(5.27) 

which vanishes as a consequence of the equations of motion for Xi. We therefore find that 

(5.28) 
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which is probably the most useful form of Noether's theorem, in that interesting conse
quences follow from (5.28) regardless of whether or not L' is independent of a . A crucial 
step in the derivation of (5.28) is that the Euler-Lagrange equations for a multivector
valued Lagrangian are satisfied in the form (5.20). Hence the consistency of the equa
tions (5 .20) for different A is central to the development of the theory of multi vector 
Lagrangians. 

To illustrate equation (5 .28), consider time translation 

X:(t, a) 

=? oaX:la=o 
Xi(t + a) 
Xi. 

Assuming there is no explicit time-dependence in L, equation (5 .28) gives 

OtL = Ot(.Xi*O~Yi L), 

from which we define the conserved Hamiltonian by 

H = Xi*oj(;L - L. 

If L is multivector-valued, then H will be a multivector of the same grade(s). 

5.2.3 Multivector Parameterised Transformations 

(5.29) 

(5.30) 

(5 .31) 

(5.32) 

The most general single transformation for the variables Xi governed by a multivector M 
can be written as 

X: = f(X i , 1\1£), (5.33) 

where f and M are time-independent functions and multi vectors respectively. In gen
eral f need not be grade-preserving, which provides a route to deriving analogues for 
supersymmetric transformations . 

To follow the derivation of (5.26), it is useful to employ the differential notation [24], 

(5.34) 

The function iM(Xi , A) is a linear function of A and an arbitrary function of M and Xi. 
vVith L' defined as in equation (5 .23), we derive 

iM(Xi , A)*ox[L' + Dv/(Xi , j'vf)*o~y[ L' 

iM(Xi , A)* (ox[{L' B) - Ot( 0Jy[{L' B))) OB + Ot (Dv/Xi, A)*oJy[L') 

Ot (Lv/Xi, A) *oJy;L') , (5.35) 

where again it is necessary to assume that the equations of motion are satisfied for the 
transformed variables. We can remove the A-dependence by differentiating, which yields 

(5.36) 

and, if L' is independent of J\I!, the corresponding conserved quantity is 

(5.37) 

107 



* * where the overstar on IvI denote the argument of aM. 
It is not usually possible to set .NI to zero in (5.35), but it is interesting to see that 

conserved quantities can be found regardless. This shows that standard treatments of 
Lagrangian symmetries [71] are unnecessarily restrictive in only considering infinitesimal 
transformations . The subject is richer than this suggests, though without multivector 
calculus the necessary formulae are hard to find . 

In order to illustrate (5.37), consider reflection symmetry applied to the harmonic 
oscillator Lagrangian 

L( . ) 1 ( . 2 2 2) X,X = 2" x - w x . (5 .38) 

The equations of motion are 
(5 .39) 

and it is immediately seen that, if x is a solution, then so to is x', where 

x' = -nxn-1. (5.40) 

Here n is an arbitrary vector, so x' is obtained from x by a reflection in the hyperplance 
orthogonal to n. Under the reflection (5.40) the Lagrangian is unchanged, so we can find 
a conserved quantity from equation (5.37) . With f( x, n) defined by 

f(x, n) = - nxn-1 

we find that 

f () -1 + -1-1 x,a = -axn nxn an . 
-n 

Equation (5 .37) now yields the conserved quantity 

aa(axxn-1 - axxn-1) 

(xxn-1 - xxn-1h 
2(x!\x).n-1. 

(5.41) 

(5.42) 

(5.43) 

This is conserved for all n, from which it follows that the angular momentum x !\ x 
is conserved. This is not a surprise, since rotations can be built out of reflections and 
different reflections are related by rotations. It is therefore natural to expect the same 
conserved quantity from both rotations and reflections. But the derivation does show 
that the multi vector derivative technique works and, to my knowledge, this is the first 
time that a classical conserved quantity has been derived conjugate to transformations 
that are not simply connected to the identity. 

5.3 Applications - Models for Spinning Point Par
ticles 

There have been numerous attempts to construct classical models for spin-half particles 
(see van Holten [72] for a recent review) and two such models are considered in this 
section. The first involves a scalar point-particle Lagrangian in which the dynamical 
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variables include spinor variables. The STA formalism of Chapter 4 is applied to this 
Lagrangian and used to analyse the equations of motion. Some problems with the model 
are discussed, and a more promising model is proposed. The second example is drawn 
from pseudoclassical mechanics. There the dynamical variables are Grassmann-valued 
entities, and the formalism of Chapter 2 is used to represent these by geometric vectors. 
The resulting Lagrangian is multivector-valued, and is studied using the techniques just 
developed. The equations of motIon are found and solved, and again it is argued that the 
model fails to provide an acceptable picture of a classical spin-half particle. 

1. The Barut-Zanghi Model 

The Lagrangian of interest here was introduced by Barut & Zanghi [38J (see also [7 , 61]) 
and is given by 

(5.44) 

where \If is a Dirac spinor. Using the mapping described in Section (4.3), the Lagran
gian (5.45) can be written as 

(5.45) 

The dynamical variables are x, p and 'l/J, where 'l/J is an even multivector, and the dot 
denotes differentiation with respect to some arbitrary parameter T. 

The Euler-Lagrange equation for 'l/J is 

o,pL 

::::} aT (i0"3~) 
::::} 'l/Ji0"3 

where 

oT(o~L) 

- i0"3~ - 2,o~p + 2q,o~A 
P'l/J,o, 

P = p - qA. 

(5.46) 

(5.47) 

In deriving (5.46) there is no pretence that 'l/J and ~ are independent variables . Instead 
they represent two occurrences of the same variable 'l/J and all aspects of the variational 
principle are taken care of by the multivector derivative. 

The p equation is 
(5.48) 

but, since x2 = p2 is not, in general, equal to 1, T cannot necessarily be viewed as the 
proper time for the particle. The x equation is 

p q\lA(x)·('l/J,o~) 
q(\l!\A)·x+qx ·\lA 

::::}P qF·x. (5.49) 

We now use (5.28) to derive some consequences for this model. The Hamiltonian is 
given by 

H x*od;L + ~*o~L - L 
p·x, 
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and is conserved absolutely. The 4-momentum and angular momentum are only conserved 
if A = 0, in which case (5.45) reduces to the free-particle Lagrangian 

(5 .51) 

The 4-momentum is found from translation invariance, 

X' = x + aa, (5 .52) 

and is simply p. The component of p in the x direction gives the energy (5.50). The 
angular momentum is found from rotational invariance, for which we set 

x' 
p' 

'ljJ' 

eCiB /2 xe-CiB /2 
eCiB/2pe-CiB/2 
eCiB/2'ljJ. 

It is immediately apparent that L~ is independent of a, so the quantity 

is conserved for arbitrary B . The angular momentum is therefore defined by 

(5.53) 

(5.54) 

(5.55) 

which identifies -'ljJia-3,(j; /2 as the internal spin. The factor of 1/2 clearly originates from 
the transformation law (5 .53). The free-particle model defined by (5.51) therefore does 
have some of the expected properties of a classical model for spin, though there is a 
potential problem with the definition of J (5.55) in that the spin contribution enters with 
the opposite sign to that expected from field theory (see Chapter 6). 

Returning to the interacting model (5.45), further useful properties can be derived 
from transformations in which the spinor is acted on from the right. These correspond 
to gauge transformations, though a wider class is now available than for the standard 
column-spinor formulation. From the transformation 

(5.56) 

we find that 
(5 .57) 

and the transformation 
(5.58) 

yields 
OT(i'ljJ ,(j; ) = -2p· ('ljJi3 ,(j; ). (5.59) 

Equations (5 .57) and (5.59) combine to give 

(5.60) 

Finally, the duality transformation 
(5.61) 
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yields 
(5.62) 

A number of features of the Lagrangian (5.45) make it an unsatisfactory model a clas
sical electron . We have already mentioned that the parameter T cannot be identified with 
the proper time of the particle. This is due to the lack of reparameterisation invariance 
in (5.45). lYlore seriously, the model predicts a zero gyromagnetic moment [61]. Further
more, the P equation (5.49) cannot be correct, since here one expects to see p rather than 
P coupling to F·x. Indeed, the definition of P (5.47) shows that equation (5.49) is not 
gauge invariant, which suggests that it is a lack of gauge invariance which lies behind 
some of the unacceptable features of the model. 

2. Further Spin-half Models 

We will now see how to modify the Lagrangian (5.45) to achieve a suitable set of classical 
equations for a particle with spin. The first step is to consider gauge invariance. Under 
the local gauge transformation 

(5.63) 

the "kinetic" spinor term (~i(J3.(fi) transforms as 

(5.64) 

The final term can be written as 

(5.65) 

and, when \7 cP is generalised to an arbitrary gauge field qA, (5.64) produces the interaction 
term 

(5.66) 

This derivation shows clearly that the A field must couple _to x and not to 1/YYo.(fi, as it is 
not until after the equations of motion are found that 'l/J,o'l/J is set equal to x. That there 
should be an x· A term in the Lagrangian is natural since this is the interaction term for 
a classical point particle, and a requirement on any action that we construct is that it 
should reproduce classical mechanics in the limit where spin effects are ignored (i. e. as 
1i f--t 0). But a problem still remains with (5.66) in that the factor of 'l/J.(fi is unnatural 
and produces an unwanted term in the 'l/J equation .. To remove this, we must replace the 
(~i(J3.(fi) term by 

(5.67) 

where, for a spinor 'l/J = (pe i f3 )1/2 R, 

(5.68) 

In being led the term (5.67) , we are forced to break with conventional usage of column 
spinors. The term (5.67) now suggests what is needed for a suitable classical model. The 
quantity (~i(J3 1f;- 1) is unchanged by both dilations and duality transformations of 'l/J and 
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so is only dependent on the rotor part of 'IjJ. It has been suggested that the rotor part 
of'IjJ encodes the dynamics of the electron field and that the factor of (pexp{ifJ} )1/2 is 
a quantum-mechanical statistical term [29]. Accepting this, we should expect that our 
classical model should involve only the rotor part of'IjJ and that the density terms should 
have no effect . Such a model requires that the Lagrangian be invariant under local changes 
of pexp{ifJ}, as we have seen is the case for Lo (5.67). The remaining spinorial term is 
the current term 1jrYo;f; which is ali'eady independent of the duality factor fJ. It can be 
made independent of the density p as well by dividing by p. From these observations we 
are led to the Lagrangian 

(5.69) 

The p equation from (5.69) recovers 

x = 'IjJ,o;f; / p = R,oR, (5.70) 

so that x2 = 1 and T is automatically the affine parameter. This removes one of the 
defects with the Barut-Zanghi model. The x equation gives, using standard techniques , 

p = qF·x, (5.71) 

which is now manifestly gauge invariant and reduces to the Lorentz force law when the 
spin is ignored and the velocity and momentum are collinear, p = mx. Finally, the 'IjJ 
equation is found by making use of the results 

and 

to obtain 

O>jJ ( 'IjJ!vI 'IjJ-l) = !vI 'IjJ -l + fJ>jJ('IjJ.fI![ ~-l) = 0 

:::} o>jJ (1'v[ 'IjJ-l ) = - 'ljJ-l!vI 'IjJ-l 

. 1 - -
- 'IjJ-l'IjJia3'IjJ-1 - -(2,o'IjJp - 2'IjJ-1(p'IjJ,o'IjJ)) = Or (ia3'IjJ -1). 

p 

By multiplying equation (5.75) with 'IjJ, one obtains 

IS' . 2 = pAx, 

where 
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Thus the 'Ij; variation now leads directly to the precession equation for the spin. The 
complete set of equations is now 

S 

x 

p 

2pl\x 

R,oR 
qF·x 

(5.78) 

(5.79) 

(5.80) 

which are manifestly Lorentz covariant and gauge invariant. The Hamiltonian is now p' x 
and the free-particle angular momentum is still defined by J (5.55), though now the spin 
bivector S is always of unit magnitude. 

A final problem remains, however, which is that we have still not succeeded in con
structing a model which predicts the correct gyromagnetic moment. In order to achieve 
the correct coupling between the spin and the Faraday bivector, the Lagrangian (5.69) 
must be modified to 

(5.81) 

The equations of motion are now 

S 2pl\i+!LFxS 
m 

x R,oR (5.82) 
. q 

qF·x - -2 "VF(x)'S, 
m 

p 

which recover the correct precession formulae in a constant magnetic field. When p is set 
equal to mi, the equations (5.82) reduce to the pair of equations studied in [72]. 

3. A Multivector Model - Pseudoclassical Mechanics Recon
sidered 

Pseudoclassical m.echanics [39 , 73, 74] was originally introduced as the classical analogue 
of quantum spin one-half (i.e. for particles obeying Fermi statistics). The central idea is 
that the "classical analogue)) of the Pauli or Dirac algebras is an algebra where all inner 
products vanish, so that the dynamical variables are Grassmann variables. From the 
point of view of this thesis, such an idea appears fundamentally flawed. Furthermore, we 
have already seen how to construct sensible semi-classical approximations to Dirac theory. 
But once the Grassmann variables have been replaced by vectors through the procedure 
outlined in Chapter 2, pseudoclassical Lagrangians do become interesting, in that they 
provide examples of acceptable multi vector Lagrangians. Such a Lagrangian is studied 
here, from a number of different perspectives. An interesting aside to this work is a new 
method of generating super-Lie algebras, which could form the basis for an alternative 
approach to their representation theory. 

The Lagrangian we will study is derived from a pseudoclassical Lagrangian introduced 
by Berezin & Marinov [39]. This has become a standard example in non-relativistic pseu
doclassical mechanics [73, Chapter 11]. With a slight change of notation, and dropping 
an irrelevant factors of j, the Lagrangian can be written as 

(5.83) 
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where the {Cd are formally Grassmann variable and the {wd are a set of three scalar 
constants. Here, i runs from 1 to 3 and, as always, the summation convention is implied . 
Replacing the set of Grassmann variables {Cd with a set of three (Clifford) vectors {ed, 
the Lagrangian (5 .83) becomes [1] 

where 
w = ~EijkWiejek = wl(e2Ae3) + w2( e3Ael) + w3(elAe2) . 

The equations of motion from (5.84) are found by applying equation (5.21) 

Oei !(ejAej -w) 

=? ei + 2EijkWj ek 

=? ei 

We have used the 3-dimensional result 

otlOei !( ejAej - w) ] 
- Otei 

(5 .84) 

(5.85) 

(5.86) 

(5 .87) 

and we stress agam that this derivation uses a genuine calculus, so that each step is 
well-defined. 

We are now in a position to see how the Lagrangian (5.84) satisfies the criteria to 
be a "permitted)) multivector Lagrangian. If E is an arbitrary bivector, then the scalar 
Lagrangian (LE) produces the equations of motion 

(5 .88) 

For this to be satisfied for all E, we simply require that the bracketed term vanishes . 
Hence equation (5.86) is indeed sufficient to ensure that each scalar component of L is 
capable of simultaneous extremisation. This example illustrates a further point . For a 
fixed E, equation (5.88) does not lead to the full equations of motion (5.86). It is only 
by allowing E to vary that we arrive at (5 .86) . It is therefore an essential feature of the 
formalism that L is a multivector, and that (5 .88) holds for all E . 

The equations of motion (5.86) can be written out in full to give 

- W2 e3 + W 3 e2 

-W3 el + wl e3 (5 .89) 

which are a set of three coupled first-order vector equations. In terms of components, 
this gives nine scalar equations for nine unknowns, which illustrates how multivector 
Lagrangians have the potential to package up large numbers of equations into a single, 
highly compact entity. The equations (5 .89) can be neatly combined into a single equation 
by introducing the reciprocal frame {e i } (1.132) , 

etc . (5.90) 
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where 
En == el!\e2!\e3· 

With this, the equations (5.89) become 

• t 
ei = e ·W, 

(5.91) 

(5.92) 

which shows that potentially int~resting geometry underlies this system, relating the 
equations of motion of a frame to its reciprocal. 

We now proceed to solve equation (5.92). On feeding (5.92) into (5.85), we find that 

w = 0, (5.93) 

so that thew plane is constant. We next observe that (5.89) also imply 

En = 0, (5.94) 

which is important as it shows that, if the {ed frame initially spans 3-dimensional space, 
then it will do so for all time. The constancy of En means that the reciprocal frame (5.90) 
satisfies 

We now introduce the symmetric metric tensor fL' defined by 

This defines the reciprocal bivector 

w* fL-l(W) 

wl(e2!\e3) +w2(e3!\e1) +w3(e1!\ e
2

), 

so that the reciprocal frame satisfies the equations 

But, from (1.123), we have that 

* - l() -l( i ) ei . w = ei· fL W = fL e· W . 

Now, using (5.92), (5.98) and (5.99), we find that 

:::} fL = o. 

(5.95) 

(5.96) 

(5.97) 

(5.98) 

(5.99) 

(5.100) 

(5.101) 

Hence the metric tensor is constant, even though its matrix coefficients are varying. The 
variation of the coefficients of the metric tensor is therefore purely the result of the time 
variation of the frame, and is not a property of the frame-independent tensor. It follows 
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that the fiducial tensor (1.144) is also constant, and suggests that we should look at the 
equations of motion for the fiducial frame O"i = II -1 (ei). For the {O"d frame we find that 

If we define the bivector 

II -1 (ei) 
II -1 (ll -1 (O"i) ·W) 

O"i ·1l-1(w). (5.102) 

(5.103) 

(which must be constant, since both II and ware), we see that the fiducial frame satisfies 
the equation 

(;-i = O"i· [2. (5.104 ) 

The underlying fiducial frame simply rotates at a constant frequency in the [2 plane. If 
O"i(O) denotes the fiducial frame specified by the initial setup of the {ed frame, then the 
solution to (5.104) is 

O"i(t) = e-Ot/20"i(0) eOt/2, 

and the solution for the {ei} frame is 

ei(t) = h.( e-Ot/20"i(0) eOt/2) 
ei(t) = 11-1(e-Ot/20"i(0) eOt/2). 

(5.105) 

(5.106) 

Ultimately, the motion is that of an orthonormal frame viewed through a constant (sym
metric) distortion. The {ed frame and its reciprocal representing the same thing viewed 
through the distortion and its inverse. The system is perhaps not quite as interesting as 
one might have hoped, and it has not proved possible to identify the motion of (5.106) 
with any physical system, except in the simple case where II = I. On the other hand, we 
did start with a very simple Lagrangian and it is reassuring to recover a rotating frame 
from an action that was motivated by the pseudo classical mechanics of spin. 

Some simple consequences follow immediately from the solution (5.106). Firstly, there 
is only one frequency in the system, v say, which is found via 

v2 _[22 

Secondly, since 

the vectors 

and 
* -1 ( ) tl=fl tl, 

are conserved. This also follows from 

tl 

tl* 

116 

(5.107) 

(5.108) 

(5.109) 

(5.110) 

(5.111) 

(5.112) 



Furthermore, 

eiei h.( O"i)h.( O"i) 

O"ifl(O"i) 

Tr(fl) (5.113) 

must also be time-independent (as ~an be verified directly from the equations of motion). 
The reciprocal quantity eiei = Tr(fl-l) is also conserved. We thus have the set of four 
standard rotational invariants, O"iO"i, the axis, the plane of rotation and the volume scale
factor, each viewed through the pair of distortions ll, ll-l. This gives the following set of 
8 related conserved quantities: 

{ i i * * E En} ei ei, e e , U, U , w, W, n, . (5.114) 

Lagrangian Symmetries and Conserved Quantities 

We now turn to a discussion of the symmetries of (5.84). Although we have solved the 
equations of motion exactly, it is instructive to derive some of their consequences directly 
from the Lagrangian. We only consider continuous symmetries parameterised by a single 
scalar, so the appropriate form of Noether's theorem is equation (5.28), which takes the 
form 

(5.115) 

In writing this we are explicitly making use of the equations of motion and so are finding 
"on-shell" symmetries. The Lagrangian could be modified to extend these symmetries 
off-shell, but this will not be considered here. 

We start with time translation. From (5.32), the Hamiltonian is 

(5.116) 

which is a constant bivector, as expected. The next symmetry to consider is a dilation, 

(5.117) 

For this transformation, equation (5.115) gives 

(5.118) 

so dilation symmetry shows that the Lagrangian vanishes along the classical path. This 
is quite common for first-order systems (the same is true of the Dirac Lagrangian), and 
is important in deriving other conserved quantities. 

The final "classical" symmetry to consider is a rotation, 

(5.119) 

Equation (5.115) now gives 

(5.120) 
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but, since L = 0 when the equations of motion are satisfied, the left hand side of (5.120) 
vanishes, and we find that the bivector ei 1\ (B· ei) in conserved. Had our Lagrangian 
been a scalar, we would have derived a scalar-valued function of B at this point, from 
which a single conserved bivector - the angular momentum - could be found. Here our 
Lagrangian is a bivector, so we find a conserved bivector-valued function of a bivector -
a set of 3 x 3 = 9 conserved scalars. The quantity ei 1\ (B· ei) is a symmetric function of 
B, however, so this reduces to 6 independent conserved scalars. To see what these are 
we introduce the dual vector b = iB and replace the conserved bivector eil\(B·ei) by the 
equivalent vector-valued function , 

(5.121) 

This is conserved for all b, so we can contract with Eh and observe that -2Tr(~) is constant. 
It follows that fL(b) is constant for all b, so rotational symmetry implies conservation of 
the metric tensor - a total of 6 quantities, as expected. 

Now that we have derived conservation of fL and w, the remaining conserved quantities 

can be found. For example, En = det(fL)1/2i shows that En is constant. One interesting 
scalar-controlled symmetry remains, however, namely 

where a is an arbitrary constant vector. For this symmetry (5.115) gives 

tal\il = Ot (teil\(wia)) 

::::} al\u = 0, 

(5.122) 

(5.123) 

(5.124) 

which holds for all a. Conservation of u therefore follows directly from the symmetry 
transformation (5.122). This symmetry transformation bears a striking resemblance to 
the transformation law for the fermionic sector of a supersymmetric theory [75J. Although 
the geometry behind (5.122) is not clear, it is interesting to note that the pseudoscalar 
transforms as 

E~ = En + aal\w, ( 5.125) 

and is therefore not invariant. 

Poisson Brackets and the Hamiltonian Formalism 

Many of the preceding results can also be derived from a Hamiltonian approach. As a 
by-product, this reveals a new and remarkably compact formula for a super-Lie bracket. 
We have already seen that the Hamiltonian for (5.84) is w, so we start by looking at 
how the Poisson bracket is defined in pseudoclassical mechanics [39J. Dropping the j and 
adjusting a sign, the Poisson bracket is defined by 

(5.126) 

The geometric algebra form of this is 

(5 .127) 
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where A and B are arbitrary multivectors. We will consider the consequences of this 
definition in arbitrary dimensions initially, before returning to the Lagrangian (5.84) . 
Equation (5 .127) can be simplified by utilising the fiducial tensor, 

he[he -1 (A) · O"k] Ahe[O"k' h.-1 (B)] 
he[(he -1 (A)· O"k) A (O"k ' he-I (B) )]. (5.128) 

If we now assume that A and B are homogeneous, we can employ the rearrangement 

to write the Poisson bracket as 

~((ArO"k - (-lYO"kAr)(O"kBs - (-1)SBsO"k))1'+s_2 
~(nArBs - (n - 2r)ArBs - (n - 2s)ArBs 

+[n - 2(r + s - 2)]A1·Bs)r+s-2 

(A1·Bs)T+S-2 (5.129) 

(5 .130) 

This is a very neat representation of the super-Poisson bracket. The combination rule is 
simple, since the he always sits outside everything: 

(5 .131) 

Clifford multiplication is associative and 

(5.132) 

so the bracket (5.130) generates a super-Lie algebra. This follows from the well-known 
result [76] that a graded associative algebra satisfying the graded commutator rela
tion (5 .132) automatically satisfies the super-Jacobi identity. The bracket (5.130) there
fore provides a wonderfully compact realisation of a super-Lie algebra. We saw in Chap
ter 3 that any Lie algebra can be represented by a bivector algebra under the commutator 
product. We now see that this is a special case of the more general class of algebras closed 
under the product (5 .130). A subject for future research will be to use (5 .130) to extend 
the techniques of Chapter 3 to include super-Lie algebras. 

Returning to the system defined by the Lagrangian (5 .84), we can now derive the 
equations of motion from the Poisson bracket as follows, 

ei {ei,H}PB 

hc(O"i'D,) 
ei·w. (5.133) 

It is intersting to note that, in the case where he = I, time derivatives are determined 
by (one-half) the commutator with the (bivector) Hamiltonian. This suggests an inter
esting comparison with quantum mechanics, which has been developed in more detail 
elsewhere [1]. 
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Similarly, some conservation laws can be derived, for example 

(5.134) 

and 

{W,H}PB = ll(nnh = 0 (5.135) 

show that En and ware conserved respectively. The bracket (5.130) gives zero for any 
scalar-valued functions, however, so is no help in deriving conservation of eiei. Further
more, the bracket only gives the correct equations of motion for the {ei} frame, since 
these are the genuine dynamical variables . 

This concludes our discussion of pseudo classical mechanics and multi vector Lagran
gians in general. Multivector Lagrangians have been shown to possess the capability to 
package up large numbers of variables in a single action principle, and it is to be hoped 
that further, more interesting applications can be found. Elsewhere [1], the concept of a 
bivector-valued action has been used to give a new formulation of the path integral for 
pseudo classical mechanics. The path integrals considered involved genuine Riemann inte
grals in parameter space, though it has not yet proved possible to extend these integrals 
beyond two dimensions. 
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Chapter 6 

Field Theory 

We now extend the multivector derivative formalism of Chapter 5 to encompass field 
theory. The multivector derivative is seen to provide great formal clarity by allowing 
spinors and tensors to be treated in a unified way. The relevant form of Noether's theorem 
is derived and is used to find new conjugate currents in Dirac theory. The computational 
advantages of the multi vector derivative formalism are further exemplified by derivations 
of the stress-energy and angular-momentum tensors for Maxwell and coupled Maxwell
Dirac theory. This approach provides a clear understanding of the role of antisymmetric 
terms in the stress-energy tensor, and the relation of these terms to spin. This chapter 
concludes with a discussion of how the formalism of multivector calculus is extended to 
incorporate differentiation with respect to a multilinear function. The results derived 
in this section are crucial to the development of an STA-based theory of gravity, given 
in Chapter 7. Many of the results obtained in this chapter appeared in the paper "A 
multivector del'ivative approach to Lagrangian field theory" [7]. 

Some additional notation is useful for expressions involving the vector derivative V. 
<-

The left equivalent of V is written as V and acts on multi vectors to its immediate left. 
<- <-

(It is not always necessary to use V, as the overdot notation can be used to write A V as 

AV.) The operator V acts both to its left and right, and is taken as acting on everything 
within a given expression, for example 

+-+ • • 

A V B = AVB+AVB. (6 .1) 

Transformations of spacetime position are written as 

x'=f( x). (6.2) 

The differential of this is the linear function 

f(a)=a ·Vf(x)=f (a), 
- "-X 

(6.3) 

where the subscript labels the position dependence. A useful result for vector derivatives 
is that 

Oaa ·Vx 
Oa( Cl' V xx') · V Xl 
Oat( Cl ) • V Xl 

fX(VXI). 
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6.1 'The Field Equations and Noether's Theorem 

In what follows, we restrict attention to the application of multi vector calculus to rela
tivistic field theory. The results are easily extended to include the non-relativistic case. 
Furthermore, we are only concerned with scalar-valued Lagrangian densities. It has not 
yet proved possible to construc,t a multivector-valued field Lagrangian with interesting 
properties. 

We start with a scalar-valued Lagrangian density 

(6.5) 

where { ~d are a set of multivector fields. The Lagrangian (6.5) is a functional of ~i and 
the directional derivatives of ~i' In many cases it is possible to write £ as a functional of 
~ and \J~, and this approach was adopted in [7J. Our main application will be to gravity, 
however , and there we need the more general form of (6.5). 

The action is defined as 
(6.6) 

where Id4xl is the invariant measure. Proceeding as in Chapter 5, we write 

(6.7) 

where cPi contains the same grades as ~i' and ~? is the extremal path. Differentiating, 
and using the chain rule, we find that 

J Id4xl [(a~~i)*aWi£ + (a~~i,~)*aWi , ,..£J 

J Id4xl [cPi*aWi £ + (cPi,~)*aWi,,..£J · (6.8) 

Here, a fixed frame {,~} has been introduced, determining a set of coordinates x~ - ,~·x. 

The derivative of ~i with respect to x~ is denoted as ~i,w The multivector derivative 
aWi ,,.. is defined in the same way as aWi ' The frame can be eliminated in favour of the 
multi vector derivative by defining 

(6.9) 

(6.10) 

It is now possible to perform all manipulations without introducing a frame. This ensures 
that Lorentz invariance is manifest throughout the derivation of the field equations. 

Assuming that the boundary term vanishes, we obtain 

(6.11) 
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Setting E = 0, so that the 'l/Ji takes their extremal values, we find that the extremal path 
is defined by the solutions of the Euler-Lagrange equations 

(6.12) 

The multi vector derivative allows for vectors, tensors and spinor variables to be handled 
in a single equation - a useful and 'powerful unification. 

Noether's theorem for field Lagrangians is also be derived in the same manner as in 
Chapter 5. We begin by considering a general multivector-parameterised transformation , 

(6.13) 

where f and IvI are position-independent functions and multi vectors respectively. \Vith 
£' = £('l/JL a · \l'l/J:) , we find that 

D,,f( 'l/Ji, A) *f}1jJi£' + i M( f}a' \7'l/Ji, A) *f}1jJi,a£' 

\7. [f}aiM( 'l/Ji, A)*f}1jJi,a£'J + Dv! ( 'l/Ji, A)* [f}1jJi£' - f}a' \7( f}1jJi,a£')J· (6 .14) 

If we now assume that the 'l/J: satisfy the same field equations as the 'l/Ji (which must again 
be verified) then we find that 

(6.15) 

This is a very general result, applying even when 'l/J: is evaluated at a different spacetime 
point from 'l/Ji, 

(6.16) 

By restricting attention to a scalar-parameterised transformation, we can write 

(6.17) 

which holds provided that the 'l/Ji satisfy the field equations (6.12) and the transformation 
is such that 'l/J:( a. = 0) = 'l/Ji. Equation (6 .17) turns out, in practice, to be the most useful 
form of Noether's theorem. 

From (6.17) we define the conjugate current 

(6.18) 

If £' is independent of a., j satisfies the conservation equation 

\7-j = o. (6.19) 

An inertial frame relative to the constant time-like velocity /0 then sees the charge 

(6 .20) 

as conserved with respect to its local time. 
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6.2 Spacetime Transformations and their Conjugate 
Tensors 

In this section we use Noether's theorem in the form (6.17) to analyse the consequences of 
Poincare and conformal invariance. These symmetries lead to the identification of stress
energy and angular-momentum tensors , which are used in the applications to follow. 

1. 'Translations 

A translation of the spacetime fields 'l/Ji is achieved by defining new spacetime fields 'l/J: by 

(6.21) 

where 
X' = x + an. (6.22) 

Assuming that £1 is only x-dependent through the fields 'l/Ji ( x), equation (6.17) gives 

n·V£ = V·[Oa(n·V'l/Ji)*O,pi,a £] 

and from this we define the canonical stress-energy tensor by 

T(n) = Oa(n· V'l/Ji)*O,pi,a£ - n£. 

The function T(n) is linear on n and, from (6.23), T(n) satisfies 

V·T(n) = O. 

(6.23) 

(6.24) 

(6.25) 

To write down a conserved quantity from T( n) it is useful to first construct the adjoint 
function 

T(n) ob(nT(b)) 

ob(n·oa(b· V'l/Ji)*O,pi,a £ - n·b£) 

V(~i O,pin £) - n£. 

This satisfies the conservation equation 

T(V) = 0, 

which is the adjoint to (6.25). In the /0 frame the field momentum is defined by 

p = J Id3xl T(,o) 

(6.26) 

(6.27) 

(6.28) 

and, provided that the fields all fall off suitably at large distances, the momentum p is 
conserved with respect to local time. This follows from 

/0· Vp J Id3xl 1'(,0/0· V) 

-J Id3xl 1'(,0/0/\ V) 
O. (6 .29) 

The total field energy, as seen in the /0 frame, is 

E = J Id3x It0· T (,0). (6.30) 
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6.2 Spacetime Transformations and their Conjugate 
Tensors 

In this section we use Noether's theorem in the form (6.17) to analyse the consequences of 
Poincare and conformal invariance. These symmetries lead to the identification of stress
energy and angular-momentum te~lsors, which are used in the applications to follow. 

1. Translations 

A translation of the spacetime fields 'l/Ji is achieved by defining new spacetime fields 'l/J~ by 

(6.21) 

where 
x' = x + a.n. (6.22) 

Assuming that £' is only x-dependent through the fields 'l/Ji( x), equation (6.17) gives 

n·\l£ = \1. [Oa(n·\l'l/Ji)*O,pi,a£] 

and from this we define the canonical stress-energy tensor by 

T(n) = Oa(n· \l'l/Ji)*O,pi,a£ - ne. 

The function T(n) is linear on n and, from (6.23), T(n) satisfies 

\l·T(n) = O. 

(6.23) 

(6.24) 

(6.25) 

To write down a conserved quantity from T( n) it is useful to first construct the adjoint 
function 

T(n) ob(nT(b)) 

ob(n·oa(b· \l'l/Ji) *O,pi,a£ - n · be) 

V (~iO,p i ,n £) - ne. 

This satisfies the conservation equation 

T(V) = 0, 

which is the adjoint to (6.25). In the 10 frame the field momentum is defined by 

P = J Id3 xl T(,o) 

(6.26) 

(6.27) 

(6.28) 

and, provided that the fields all fall off suitably at large distances, the momentum P is 
conserved with respect to local time. This follows from 

10' \lp J Id3 xl 1'('010 ' '<!J) 

-J Id3 xl 1'(,010/\ '<!J) 

O. (6.29) 

The total field energy, as seen in the 10 frame, is 

E = J Id3 xlio ·T(,0). (6.30) 
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2. Rotations 

If we assume initially that all fields 'l/Ji transform as spacetime vectors, then a rotation of 
these fields from one spacetime point to another is performed by 

(6.31) 

where 
(6.32) 

This differs from the point-particle transformation law (5.53) in the relative directions of 
the rotations for the position vector x and the fields 7/Ji, The result of this difference is a 
change in the relative sign of the spin contribution to the total angular momentum. In 
order to apply Noether's theorem (6.17), we use 

and 
Oa£'la=O = -(B·x)·\l£ = \l·(x·B£). 

Together, these yield the conjugate vector 

which satisfies 
\l·L(B) = O. 

The adjoint to the conservation equation (6.36) is 

o for all B 

O. 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

The adjoint function J( n) is a position-dependent bivector-valued linear function of the 
vector n. We identify this as the canonical angular-momentum tensor. A conserved 
bivector in the ID-system is constructed in the same manner as for T(n) (6.28). The 
calculation of the adjoint function J(n) is performed as follows: 

J(n) OB (l(B)n) 
OB((B x'l/Ji - B·(x/\ \l)'1f;i)*01j;;,n£ + B·x£n) 

-x /\ [V;Pi*01j;;,n£ - n£] + ('l/Ji x 01j;;,,,£h 

T(n)/\x + Ni x 01j;;,n£h· (6.38) 

If one of the fields 'l/J, say, transforms single-sidedly (as a spinor) , then J(n) contains the 
term (~'l/Jo1j; ,n £h. 

The first term in J(n) (6.38) is the routine p/\x component, and the second term is 
due to the spin of the field . The general form of J( n) is therefore 

J(n) = T(n)/\x + S(n). (6.39) 
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By applying (6.37) to (6.39) and using (6.27), we find that 

T(V)l\x + 5(V) = o. (6.40) 

The first term in (6.40) returns (twice) the characteristic bivector of T(n). Since the 
anti symmetric part of T( n) can be written in terms of the characteristic bivector B as 

(6.41) 

equation (6.40) becomes 
B = -5(V). (6.42) 

It follows that, in any Poincare-invariant theory, the anti symmetric part of the stress
energy tensor is a total divergence. But, whilst T_(n) is a total divergence, x 1\ T_(n) 
certainly is not. So, in order for (6.37) to hold, the anti symmetric part of T(n) must be 
retained since it cancels the divergence of the spin term. 

3. Dilations 

While all fundamental theories should be Poincare-invariant, an interesting class go be
yond this and are invariant under conformal transformations. The conformal group con
tains two further symmetry transformations, dilations and special conformal transfor
mations. Dilations are considered here, and the results below are appropriate to any 
scale-invariant theory. 

A dilation of the spacetime fields is achieved by defining 

'lj;~(x) = edia1Pi(X') (6.43) 

where 
(6.44) 

(6.45) 

If the theory is scale-invariant, it is possible to assign the "conformal weights" di in such 
a way that the left-hand side of (6.17) becomes 

Oa£'la=O = \7·(x£). 

In this case, equation (6.17) takes the form 

\7·(x£) = \7. [oa(di'lj;i + X·\7'lj;i)*01/Ji,a£ j, 

from which the conserved current 

j = dioa'lj;i*01/Ji a£ + T(x) 

is read off. Conservation of j (6.48) implies that 

\7 ·T(x) = OaT(a) = -\7. (dioa'lj;i*01/Ji ,a £) 

(6.46) 

(6.4 7) 

(6.48) 

(6.49) 

so, in a scale-invariant theory, the trace of the canonical stress-energy tensor is a total 
divergence. By using the equations of motion, equation (6.49) can be written, in four 
dimensions, as 

di('lj;i01/Ji£) + (di + l)(oa·\7'lj;i)*01/Ji ,a£ = 4£, (6.50) 

which can be taken as an alternative definition for a scale-invariant theory. 

126 



4. Inversions 

The remaining generator of the conformal group is inversion, 

x'= x-1
. (6.51) 

As it stands, this is not parameterised by a scalar and so cannot be applied to (6.17). In 
order to derive a conserved tensor, the inversion (6.51) is combined with a translation to 
define the special conformal transformation [77J 

x' = h(x) == (x- 1 + cm)-l = x(l + anxtl. (6.52) 

From this definition, the differential of h( x) is given by 

11(a) = a·Vh(x) = (1 + axn)-la(l + anx)-l (6.53) 

so that 11 defines a spacetime-dependent rotation/dilation. It follows that 11 satisfies 

l1(a)·l1(b) = A(x)a·b (6.54) 

where 
(6.55) 

That the function l1( a) satisfies equation (6.54) demonstrates that it belongs to the con
formal group. 

The form of l1( a) (6.53) is used to postulate transformation laws for all fields (including 
spinors, which transform single-sidedly) such that 

which implies that 

Since 

it follows that 

We also find that 

and these results combine to give 

00'£'10'=0 = -8x· n£ - (xnx)· V £ = - V· (xnx£). 

Special conformal transformations therefore lead to a conserved tensor of the form 

Tsc (n) Oa(( -(xnx)· V'ljJi + oO''ljJ~(x ))*OljJi,a £ + xnx£)O'=o 
-T(xnx) + Oa ((OO''ljJ~ (X))*O,pi,a £) O'=O. 
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(6.59) 

(6.60) 

(6.61) 
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The essential quantity here is the vector - xnx, which is obtained by taking the constant 
vector n and reflecting it in the hyperplane perpendicular to the chord joining the point 
where n is evaluated to the origin. The resultant vector is then scaled by a factor of x 2 . 

In a conformally-invariant theory, both the antisymmetric part of T( n) and its trace 
are total divergences. These can therefore be removed to leave a new tensor T'(n) which 
is symmetric and traceless. The complete set of divergenceless tensors is then given by 

{T'(x), T'(n), xT'(n) x, J'(n) = T'(n)l\x} (6.63) 

This yields a set of 1 + 4 + 4 + 6 = 15 conserved quantities - the dimension of the 
conformal group . All this is well known, of course, but it is the first time that geometric 
algebra has been systematically applied to this problem. It is therefore instructive to 
see how geometric algebra is able to simplify many of the derivations, and to generate a 
clearer understanding of the results. 

6.3 Applications 

We now look at a number of applications of the formalism established in the preceding 
sections. We start by illustrating the techniques with the example of electromagnetism. 
This does not produce any new results, but does lead directly to the STA forms of the 
Maxwell equations and the electromagnetic stress-energy tensor. We next consider Dirac 
theory, and a number of new conjugate currents will be identified. A study of coupled 
Maxwell-Dirac theory then provides a useful analogue for the discussion of certain aspects 
of a gauge theory of gravity, as described in Chapter 7. The final application is to a two
particle action which recovers the field equations discussed in Section 4.4. 

The essential result needed for what follows is 

01j;,a (b· \l7/;M) a~01j;'J" ((bv7/;,vNJ) 
a·bP1j;(NI) (6.64) 

where P1j; (A1) is the projection of NI onto the grades contained in 7/;. It is the result (6.64) 
that enables all calculations to be performed without the introduction of a frame. It 
is often the case that the Lagrangian can be written in the form £(7/;i' \l7/;i) , when the 
following result is useful: 

1. Electromagnetism 

01j;,a (b· \l7/;M ab) 
a·bP1j; (MOb) 

P1j;(Ma). 

The electromagnetic Lagrangian density is given by 

£ = -A·J + ~F.F, 
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where A is the vector potential, F = V /\A, and A couples to an external current J which 
is not varied. To find the equations of motion we first write F· F as a function of V A, 

F·F ~((V A - (V An2) 

~(V AV A - V A(V An. 

The field equations therefore take the form 

-J - ab' V~(V Ab - (V Arbh 
~ - J - ab' V F· b 

~ V·F 

o 
o 
J. 

(6.67) 

(6.68) 

This is combined with the identity V /\F = 0 to yield the full set of Maxwell's equations, 
V F = J. 

To calculate the free-field stress-energy tensor, we set J = 0 in (6.66) and work with 

(6.69) 

Equation (6.26) now gives the stress-energy tensor in the form 

(6.70) 

This expression is physically unsatisfactory as is stands, because it is not gauge-invariant. 
In order to find a gauge-invariant form of (6.70), we write [60] 

(V /\A)·(F·n) + (F·n)· V A 
F·(F·n) - (F· V)·nA (6.71) 

and observe that, since V·F = 0, the second term is a total divergence and can therefore 
be ignored. What remains is 

F·(F·n) - ~nF.F 

~FnF, (6.72) 

which is the form of the electromagnetic stress-energy tensor obtained by Hestenes [17]. 
The tensor (6.72) is gauge-invariant, traceless and symmetric. The latter two properties 
follow simultaneously from the identity 

- 1 -
OaTem(a) = oa"2 FaF = O. (6.73) 

The angular momentu~1 is obtained from (6.38), which yields 

(6.74 ) 

where we have used the stress-energy tensor in the form (6.70). This expression suffers 
from the same lack of gauge invariance, and is fixed up in the same way, using (6.71) and 

- (F·n)/\A + x/\ [(F · V).nA] = x/\ [(F ~7).nA], (6.75 ) 
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which is a total divergence. This leaves simply 

(6.76) 

By redefining the stress-energy tensor to be symmetric, the spin contribution to the 
angular momentum is absorbed into ,( 6.72). For the case of electromagnetism this has the 
advantage that gauge invariance is manifest, but it also suppresses the spin-1 nature of 
the field. Suppressing the spin term in t.his manner is not always desirable, as we shall 
see with the Dirac equation. 

The free-field Lagrangian (6.69) is not only Poincare-invariant; it is invariant under 
the full conformal group of spacetime [7 , 77]. The full set of divergenceless tensors for 
free-field electromagnetism is therefore Tem(x), Tem(n), xTem(n)x, and Tem(n) Ax. It is a 
simple matter to calculate the modified conservation equations when a current is present. 

2. Dirac Theoryl 

The multi vector derivative is particularly powerful when applied to the STA form of the 
Dirac Lagrangian. We recall from Chapter 5 that the Lagrangian for the Dirac equation 
can be written as (4.96) 

(6.77) 

where ~j; is an even multi vector and A is an external gauge field (which is not varied). To 
verify that (6.77) does give the Dirac equation we use the Euler-Lagrange equations in 
the form 

(6.78) 

to obtain 

(6.79) 

Reversing this equation, and postmultiplying by 10, we obtain 

(6.80) 

as found in Chapter 4 (4.92). Again, it is worth stressing that this derivation employs a 
genuine calculus, and does not resort to treating 'lj; and ~ as independent variables. 

We now analyse the Dirac equation from the viewpoint of the Lagrangian (6.77). 
In this Section we only consider position-independent transformations of the spinor 'lj;. 
Spacetime transformations are studied in the following section. The transformations we 
are interested in are of the type 

(6.81) 

where 1'1I! is a general multi vector and a and M are independent of position. Operations 
on the right of 'lj; arise naturally in the STA formulation of Dirac theory, and can be 

lThe basic idea developed in this section was provided by Anthony Lasenby. 
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thought of as generalised gauge transformations. They have no such simple analogue in 
the standard column-spinor treatment. Applying (6 .17) to (6 .81), we obtain 

(6.82) 

which is a result that we shall exploit by substituting various quantities for lvI. If M is 
odd both sides vanish identically, so useful information is only obtained when NI is even. 
The first even .1\11 to consider is a scalai', A, so that ('ljJMi / 3.(fi h is zero. It follows that 

oa (e
2a

'\ £) 10=0 = 0 

:::} £ = 0, (6 .83) 

and hence that, when the equations of motion are satisfied, the Dirac Lagrangian vanishes. 
Next, setting NI = i, equation (6.82) gives 

- \7. (ps) 

:::} \7. (ps) 

-mOa(e2ia pei,6) la=0 ' 

-2mp sin (3, (6.84) 

where ps = 'ljJ'3.(fi is the spin current. This equation is well-known [33], though it is not 
usually observed that the spin current is the current conjugate to duality rotations. In 
conventional versions, these would be called "axial rotations", with the role of i taken by 
15 . In the STA approach, however, these rotations are identical to duality transformations 
for the electromagnetic field . The duality transformation generated by eia is also the 
continuous analogue of the discrete symmetry of mass conjugation, since'ljJ f--7 'ljJi changes 
the sign of the mass term in £ . It is no surprise, therefore, that the conjugate current, 
ps, is conserved for massless particles. 

Finally, taking NI to be an arbitrary bivector B yields 

\7 . ('ljJB ·(i /3 ).(fi ) 2(\7'ljJiB· /3 .(fi - eA'ljJB ·,o.(fi) 

= ( eA'ljJ (a3Ba3 - Bho.(fi) , (6.85) 

where the Dirac equation (6.80) has beed used. Both sides of(6.85) vanish for B = ia!, ia2 
and a3, with useful equations arising on taking B = aI, a2 and ia3' The last of these, 
B = ia3, corresponds to the usual U(1) gauge transformation of the spinor field, and gives 

\7·J=O, (6 .86) 

where J = 'ljJ'0.(fi is the current conjugate to phase transformations, and is strictly con
served. The remaining transformations generated by eaul and ea/72 give 

\7 . (pel) 2epA· e2 

\7. (pe2) = - 2epA· el, 
(6.87) 

where peJ-! = 'ljJ'J.L.(fi. Although these equations have been found before [33], the role of 
pel and pe2 as currents conjugate to right-sided eaa2 and eaul transformations has not 
been noted . Right multiplication by al and a2 generates charge conjugation, since the 
transformation'ljJ f--7 'ljJ ' - 'ljJal takes (6 .80) into 

\7'ljJ'ia3 + eA'ljJ' = m'ljJ',o, (6.88) 

It follows that the conjugate currents are conserved exactly if the external potential van
ishes, or the particle has zero charge. 
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3. Spacetime Transformations in Maxwell-Dirac Theory 

The canonical stress-energy and angular-momentum tensors are derived from spacetime 
symmetries. In considering these it is useful to work with the full coupled Maxwell-Dirac 
Lagrangian, in which the free-field term for the electromagnetic field is also included . This 
ensures that the Lagrangian is Poincan~-invariant . The full Lagrangian is therefore 

(6.89) 

in which both 'IjJ and A are dynamical variables. 
From the definition of the stress-energy tensor (6.26) and the fact that the Dirac part 

of the Lagrangian vanishes when the field equations are satisfied (6.83), T(n) is given by 

(6.90) 

Again, this is not gauge-invariant and a total divergence must be removed to recover a 
gauge-invariant tensor. The manipulations are as at (6.71), and now yield 

(6 .91) 

where J = 'IjJ'o'IjJ . The tensor (6.91) is now gauge-invariant, and conservation can be 
checked simply from the field equations. The first and last terms are the free-field stress
energy tensors and the middle term, -n ·J A, arises from the coupling. The stress-energy 
tensor for the Dirac theory in the presence of an external field A is conventionally defined 
by the first two terms of (6 .91), since the combination of these is gauge-invariant . 

Only the free-field electromagnetic contribution to T md (6.91) is symmetric; the other 
terms each contain antisymmetric parts. The overall anti symmetric contribution is 

HT md(n) - T md(n)] 

tn. [AJ\J - '\JJ\(;Pi,3{;h ] 

tn.(AJ - \1'IjJi'3{; + '\J(;Pi,3{;)s)2 
n· (\1. (~ips)) 
n·( -i\1 J\(~ps)), (6.92) 

and is therefore completely determined by the exterior derivative of the spin current [78]. 
The angular momentum is found from (6.39) and, once the total divergence is removed, 

the gauge-invariant form is 

(6.93) 

The ease of derivation of J(n) (6.93) compares favourably with traditional operator-based 
approaches [60]. It is crucial to the identification of the spin contribution to the angular 
momentum that the anti symmetric component of T md(n) is retained. In (6.93) the spin 
term is determined by the trivector is, and the fact that this trivector can be dualised to 
the vector s is a unique property of four-dimensional spacetime. 
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The sole term breaking conformal invariance in (6.89) is the mass term (m'ljJ{j;), and 
it is useful to consider the currents conjugate to dilations and special conformal transfor
mations, and to see how their non-conservation arises from this term. For dilations, the 
conformal weight of a spinor field is ~, and equation (6.48) yields the current 

(after subtracting out a total divergence). The conservation equation is 

Oa· T md(a) 
(m'ljJ{j;) . 

Under a spacetime transformation the A field transforms as 

A(x) f-+ A'(x) == J[A(x')]' 

where x' = f(x). For a special conformal transformation, therefore, we have that 

A'(x) = (1 + anxt1 A(x')(l + axntl. 

(6.94) 

(6.95) 

(6.96) 

(6.97) 

Since this is a rotation/ dilation, we postulate for 'ljJ the single-sided transformation 

(6 .98) 

In order to verify that the condition (6.56) can be satisfied, we need the neat result that 

(6.99) 

This holds for all vectors n, and the bracketed term is immediately a solution of the 
massless Dirac equation (it is a monogenic function on spacetime). It follows from (6.56) 
that the conserved tensor is 

Tsc(n) = -Tmd(xnx) -n·(ix!\(ps)). (6 .100) 

and the conservation equation is 

V·'I'.sc(xnx) = -2(m'ljJ{j;)n ·x. (6.101) 

In both (6 .95) and (6.101) the conjugate tensors are conserved as the mass goes to zero, 
as expected. 

4. The Two-Particle Dirac Action 

Our final application is to see how the two-particle equation (4.147) can be obtained from 
an action integral. The Lagrangian is 

(6.102) 
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where 1/J is a function of position in the 8-dimensional configuration space, and VI and 
V 2 are the vector derivatives in their respective spaces. The action is 

(6.103) 

If we define the function h. by 

. '1 '2 

h( ) - '1~ '2~ _a-z l+ Z 2' m m 
(6.104 ) 

where i 1 and i 2 are the pseudoscalars for particle-one and particle-two spaces respectively, 
then we can write the action as 

(6.105) 

Here V = VI + V 2 is the vector derivative in 8-dimensional configuration space. The field 
equation is 

which leads to 

The reverse of this equation is 

and post-multiplying by (,6 + ,6) obtains 

VI V2 

(-1 + -2)1/JJ = 1/J(t~ + ,6), 
m m 

as used in Section 4.4. 
The action (6.102) is invariant under phase rotations in two-particle space, 

1/J t---+ 1/J' = 1/J e - OI J , 

and the conserved current conjugate to this symmetry is 

J Oa( -1/JJ)*O,p,a£ 

Oa(1/JE(t~ + 16);fih.(a)) 
h(1/JE(t~ + 16);fih-

This current satisfies the conservation equation 

V-j=O 

or, absorbing the factor of E into 1/J, 

VI V
2 

1 2) - ) (-1 + -2)' (1/J(to + 10 1/J 1 = O. 
rn 1n 

Some properties of this current were discussed briefly in Section 4.4. 
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6.4 Multivector Techniques for Functional Differen
tiation 

We have seen how the multivector derivative provides a natural and powerful extension 
to the calculus of single-variable functions. We now wish to extend these techniques to 
encompass the derivative with respect to a linear function h.( a). We start by introducing 
a fixed frame {ei}, and define the scalar coefficients 

(6.114) 

Each of the scalars hij can be differentiated with respect to, and we seek a method of 
combining these into a single multivector operator. If we consider the derivative with 
respect to hij on the scalar h.( b) . e, we find that 

fA;j (bke l hkl ) 

b'd. 

If we now multiply both sides of this expression by a· eiej we obtain 

(6.115) 

(6.116) 

This successfully assembles a frame-independent vector on the right-hand side, so the op
erator a'eiejBh;j must also be frame-independent. We therefore define the vector functional 
derivative B!!(a) by 

B!!(a) - a· eiejBh;j' (6.117) 

where all indices are summed over and hij is given by (6.114). 
The essential property of Bl1.(a) is, from (6.116), 

Bl1.(a)h.(b)·e = a·be (6.118) 

and this result, together with Leibniz' rule, is sufficient to derive all the required properties 
of the B!!(a) operator. The procedure is as follows. With B a fixed bivector , we write 

Bl1.(a) (h.( b!\ e )B) 

which extends, by linearity, to give 

8!!(a)(h,(b)ll(e)B) - 8!!(a)(~(e)h.(b)B) 
(l. bll( c) · B - (l·ell(b)· B 

Il[ (l . ( b !\ c) ]· B 

B!!(a)(h.(A)B) = h.(a·A)·B, 

(6.119) 

(6.120) 

where A and B are both bivectors. Proceeding in this manner, we find the general formula 

(6.121) 
r 
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For a fixed grade-r multivector AI') we can now write 

8fl(a) (h.( A?,)Xr )8xr 
(h.(a· A?,)X7·h8xr 
(n - r + 1)h.(a·A?,), (6 .122) 

where n is the dimension of the space and a result from page 58 of [24J has been used. 
Equation (6 .121) can be used to derive formulae for the functional derivative of the 

adjoint. The general result is 

8fl(a) (h.(Xr )A7' )8xr 
(h.(a .X?' )A?'h8xr. 

When A is a vector, this admits the simpler form 

8fl(a)h(b) = ba . 

( 6.123) 

(6.124) 

If II is a symmetric function then II = h, but this cannot be exploited for functional 
differentiation, since II and h are independent for the purposes of calculus . 

As two final applications, we derive results for the functional derivative of the deter
minant (1.115) and the inverse function (1.125). For the determinant, we find that 

8fl(a)1l(I) h.(a·I) 

=? 8fl(a) det(ll) h.( a· I)1- 1 

--1 
det(ll)h (a), ( 6.125) 

where we have recalled the definition of the inverse (1.125). This coincides with standard 
formulae for the functional derivative of the determinant by its corresponding tensor. The 
proof given here, which follows directly from the definitions of the determinant and the 
inverse, is considerably more concise than any available to conventional matrix/tensor 
methods. The result for the inverse function is found from 

(6.126) 

from which it follows that 

(6.127) 

where use has been made of results for the adjoint (1.123). 
We have now assembled most of the necessary formalism and results for the application 

of geometric calculus to field theory. In the final chapter we apply this formalism to 
develop a gauge theory of gravity. 
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For a fixed grade-r multivector AT) we can now write 

Ofl(a) (MAr )Xj • )OXr 
(M a· A j • )Xj • h OXr 

(n - r + l)M a· AI') , (6.122) 

where n is the dimension of the space a~d a result from page 58 of [24] has been used. 
Equation (6.121) can be used to derive formulae for the functional derivative of the 

adjoint. The general result is 

Ofl(a) (MX j • )Ar )OXr 

(M a· -,t.)Aj')18xr . 

When A is a vector, this admits the simpler form 

Ofl(a)71,(b) = ba. 

(6.123) 

(6.124) 

If h. is a symmetric function then h. = 71" but this cannot be exploited for functional 
differentiation, since h. and 71, are independent for the purposes of calculus. 

As two final applications, we derive results for the functional derivative of the deter
minant (1.115) and the inverse function (1.125). For the determinant, we find that 

Ofl(a)M1) 
=} o!J:.(a) det(h.) 

h.( a · 1) 
Ma· 1)1-1 

--1 
det(h.)h (a), (6.125) 

where we have recalled the definition of the inverse (1.125). This coincides with standard 
formulae for the functional derivative of the determinant by its corresponding tensor. The 
proof given here, which follows directly from the definitions of the determinant and the 
inverse, is considerably more concise than any available to conventional matrix/tensor 
methods. The result for the inverse funct ion is found from 

(6.126) 

from which it follows that 

- (h.[a· h.-I (ET )]71,-1 (AI' ))1 
--1 --1 

-(h (a)·ETh (Aj·)h, (6.127) 

where use has been made of results for the adjoint (1.123) . 
We have now assembled most of the necessary formalism and results for the application 

of geometric calculus to field theory. In the final chapter we apply this formalism to 
develop a gauge theory of gravity. 
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Chapter 7 

Gravity as a Gauge Theory 

In this chapter the formalism described throughout the earlier chapters of this thesis is 
employed to develop a gauge theory of gravity. Our starting point is the Dirac action, and 
we begin by recalling how electromagnetic interactions arise through right-sided transfor
mations of the spinor field 'ljJ . We then turn to a discussion of Poincare invariance, and 
attempt to introduce gravitational interactions in a way that closely mirrors the intro
duction of the electromagnetic sector. The new dynamical fields are identified, and an 
action is constructed for these. The field equations are then found and the derivation 
of these is shown to introduce an important consistency requirement. In order that the 
correct minimally-coupled Dirac equation is obtained, one is forced to use the simplest 
action for the gravitational fields - the Ricci scalar. Some free-field solutions are ob
tained and are compared with those of general relativity. Aspects of the manner in which 
the theory employs only active transformations are then illustrated with a discussion of 
extended-matter distributions. 

By treating gravi ty as a gauge theory of active transformations in the (flat) spacetime 
algebra, some important differences from general relativity emerge. Firstly, coordinates 
are unnecessary and play an entirely secondary role. Points are represented by vectors, 
and all formulae given are coordinate-free. The result is a theory in which spacetime does 
not play an active role, and it is meaningless to assign physical properties to spacetime. 
The theory is one of forces, not geometry. Secondly, the gauge-theory approach leads 
to a first-order set of equations. Despite the fact that the introduction of a set of coor
dinates reproduces the matter-free field equations of general relativity, the requirement 
that the first-order variables should exist globally has important consequences. These are 
illustrated by a discussion of point-source solutions. 

There has, of course, been a considerable discussion of whether and how gravity can 
be formulated as a gauge theory. The earliest attempt was by Utiyama [79], and his 
ideas were later refined by Kibble [80]. This led to the development of what is now 
known as the Einstein-Cartan-Kibble-Sciama (ECKS) theory of gravity. A detailed review 
of this subject was given in 1976 by Hehl et al. [81]. More recently, the fibre-bundle 
approach to gauge theories has been used to study general relativity [82]. All these 
developments share the idea that, at its most fundamental level, gravity is the result 
of spacetime curvature (and, more generally, of torsion). Furthermore, many of these 
treatments rely on an uncomfortable mixture of passive coordinate transformations and 
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active tetrad transformations. Even when active transformations are emphasised, as by 
Hehl et al., the transformations are still viewed as taking place on an initially curved 
spacetime manifold. Such ideas are rejected here, as is inevitable if one only discusses the 
properties of spacetime fields, and the interactions between them. 

7.1 Gauge Theories and Gravity 

We prepare for a discussion of gravity by first studying how electromagnetism is introduced 
into the Dirac equation. We start with the Dirac action in the form 

(7.1 ) 

and recall that, on defining the transformation 

(7.2) 

the action is the same whether viewed as a function of 1/J or 1/J'. This is global phase 
InvarIance. The transformation (7.2) is a special case of the more general transformation 

(7.3) 

where Ro is a constant rotor. We saw in Chapter 4 that a Dirac spinor encodes an 
instruction to rotate the {-Ill} frame onto a frame of observables {ell}. 1/J' is then the 
spinor that generates the same observables from the rotated initial frame 

It is easily seen that (7.3) and (7.4) together form a symmetry of the action, since 

(V1/JRoiRo/3RoRo;j; - m1/JRoRo;j;) 
(V1/Ji /3 ;j; - m1/J;j;). 

(7.4) 

(7.5) 

The phase rotation (7.2) is singled out by the property that it leaves both the time-like 
lo-axis and space-like 13-axis unchanged. 

There is a considerable advantage in introducing electromagnetic interactions through 
transformations such as (7.3). When we come to consider spacetime rotations, we will find 
that the only difference is that the rotor Ro multiplies 1/J from the left instead of from the 
right . We can therefore use an identical formalism for introducing both electromagnetic 
and gravitational interactions . 

Following the standard ideas about gauge symmetries, we now ask what happens if 
the phase cP in (7.2) becomes a function of position. To make the comparison with gravity 
as clear as possible, we write the transformation as (7 .3) and only restrict Ro to be of 
the form of (7.2) once the gauging has been carried out . To study the effect of the 
transformation (7.3) we first write the vector derivative of 1P as 

(7.6) 
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which contains a coordinate-free contraction of the directional derivatives of'ljJ with their 
vector directions . Under the transformation (7.3) the directional derivative becomes 

a· \l'ljJ' 

where 

a· \1 ('ljJRo) 
a· \l'ljJRo + 'ljJa · \1 Ro 
.a·\l'ljJRo - ~'ljJRox(a), 

x(a) = -2Roa·\lRo. 

(7.7) 

(7 .8) 

From the discussion of Lie groups in Section (3.1), it follows that x(a) belongs to the 
Lie algebra of the rotor group, a.nd so is a (position-dependent) bivector-valued linear 
function of the vector a. 

It is now clear that, to maintain local invariance, we must replace the directional 
derivatives a· \1 by covariant derivatives D a , where 

(7.9) 

We are thus forced to introduce a new set of dynamical variables - the bivector field 
f2( a). The transformation properties of f2( a) must be the same as those of x( a) . To find 
these, replace 'ljJ ' by 'ljJ and consider the new transformation 

(7 .10) 

so that the rotor Ro is transformed to RoR = (RRor The bivector x(a) then transforms 
to 

x'(a) -2(RRo)a· \1 (RRor 
Rx(a)R - 2Ra· \1 R. 

It follows that the transformation law for f2( a) is 

which ensures that 

f2(a) f-+ f2'(a) == Rf2(a)R - 2Ra · \1 R, 

a· \1 ('ljJR) + ~'ljJRf2'(a) 
a· \1 ('ljJR) + ~'ljJR(Rf2(a)R - 2Ra · \1 R) 

a· \l1pR + ~'ljJf2(a)R 
Da('ljJ)R. 

The action integral (7.1) is now modified to 

from which the field equations are 
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which contains a coordinate-free contraction of the directional derivatives of'ljJ with their 
vector directions. Under the transformation (7.3) the directional derivative becomes 

a· \l'ljJ' 

where 

a·\l('ljJRo) 
a· \l'ljJRo + 'ljJa· \l Ro 
a· \l'ljJRo - t'ljJRox(a), 

x(a) = -2Roa·\lRo. 

(7.7) 

(7.8) 

From the discussion of Lie groups in Section (3.1), it follows that x(a) belongs to the 
Lie algebra of the rotor group, and so is a (position-dependent) bivector-valued linear 
function of the vector a. 

It is now clear that, to maintain local invariance, we must replace the directional 
derivatives a· \l by covariant derivatives D a , where 

(7.9) 

We are thus forced to introduce a new set of dynamical variables - the bivector field 
n( a). The transformation properties of n( a) must be the same as those of X( a) . To find 
these, replace 'ljJ ' by 'ljJ and consider the new transformation 

(7.10) 

so that the rotor Ro is transformed to RoR = (RRof The bivector x(a) then transforms 
to 

x'(a) -2(RRo)a· \l(RRot 
Rx(a)R - 2Ra· \l R. 

It follows that the transformation law for n( a) is 

which ensures that 

n(a) f--7 n'(a) = Rn(a)R - 2Ra· \l R, 

a . \l ( 1P R) + t 'ljJ Rn' ( a ) 

a· \l('ljJR) + t'ljJR(Rn(a)R - 2Ra · \l R) 

a·\l'ljJR+ t'ljJn(a)R 

Da('ljJ )R. 

The action integral (7.1) is now modified to 

from which the field equations are 
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For the case of electromagnetism, the rotor R is restricted to the form of (7.2), so the 
most general form that !1( a) can take is 

!1(a) = 2a·(eA)i0"3' (7.16) 

The "minimally-coupled" equation is now 

(7.17) 

recovering the correct form of the Dirac equation in the presence of an external A field. 

7.1.1 Local Poincare Invariance 

Our starting point for the introduction of gravity as a gauge theory is the Dirac action 
(7.1), for which we study the effect of local Poincare transformations of the spacetime 
fields . We first consider translations 

'ljJ(x) ~ 'ljJ'(x) = 'ljJ(x'), (7.18) 

where 
x ' = x + a (7.19) 

and a is a constant vector. To make these translations local, the vector a must become a 
function of position. This is achieved by replacing (7.19) with 

x'=f(x), (7.20) 

where f(x) is now an arbitrary mapping between spacetime positions. We continue to 
refer to (7.20) as a translation, as this avoids overuse of the word "transformation". It 
is implicit in what follows that all translations are local and are therefore determined by 
completely arbitrary mappings . The translation (7.20) has the interpretation that the 
field 'ljJ has been physically moved from the old position x' to the new position x. The 
same holds for the observables formed from 'ljJ, for example the current J( x) = ~/YYo;j; is 
transformed to J'(x) = J( x'). 

As it stands, the translation defined by (7 .20) is not a symmetry of the action, since 

\l'ljJ'(x) 

and the action becomes 

\l 'ljJ (J(x)) 
j(\lxl)'ljJ(X') , (7.21) 

(7.22) 

To recover a symmetry from (7.20), one must introduce an arbitrary, position-dependent 
linear function h. The new action is then written as 

(7.23) 
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Under the translation 
~(x) f--7 ~/(X) ~(J(X)), (7.24) 

the action Sh transforms to 

(7.25) 

and the original action is recovered provided that 11, has the transformation law 

where x' = f(x). (7.26) 

This is usually the most useful form for explicit calculations, though alternatively we can 
write 

- -I --

hx f--7 hx == hXI f X l where x = f(x ' ), (7.27) 

which is sometimes more convenient to work with. 
In arriving at (7.23) we have only taken local translations into account - the currents 

are being moved from one spacetime position to another. To arrive at a gauge theory 
of the full Poincare group we must consider rotations as well. (As always, the term 
"rotation" is meant in the sense of Lorentz transformation.) In Chapter 6, rotational 
invariance of the Dirac action (7.1) was seen by considering transformations of the type 
~(x) f--7 Ra~(RaxRa), where Ra is a constant rotor. By writing the action in the form 
of (7.23), however, we have already allowed for the most general type of transformation 
of position dependence. We can therefore translate back to x, so that the rotation takes 
place at a point. In doing so, we completely decouple rotations and translations. This is 
illustrated by thinking in terms of the frame of observables {ell}' Given this frame at a 
point x, there are two transformations that we can perform on it . We can either move 
it somewhere else (keeping it in the same orientation with respect to the f,ll} frame), 
or we can rotate it at a point. These two operations correspond to different symmetries. 
A suitable physical picture might be to think of "experiments" in place of frames . We 
expect that the physics of the experiment will be unaffected by moving the experiment 
to another point, or by changing its orientation in space. 

Active rotations of the spinor observables are driven by rotations of the spinor field, 

(7.28) 

Since 11,( a) is a spacetime vector field, the corresponding law for 11, must be 

11,( Cl ) f--7 h' ( a) == Ra 11, ( Cl ) Ra. (7.29) 

By writing the action (7.23) in the form 

(7 .30) 

we observe that it is now invariant under the rotations defined by (7 .28) and (7.29). All 
rotations now take place at a point , and the presence of the 11, field ensures that a rotation 
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at a point has become a global symmetry. To make this symmetry local, we need only 
replace the directional derivative of 'Ij; by a covariant derivative, with the property that 

(7.31) 

where R is a position-dependent rotor. But this is precisely the problem that was tackled 
at the start of this section, the only difference being that the rotor R now sits to the left 
of 'Ij;. Following the same arguments, ;'e immediately arrive at the definition: 

Da'lj; == (a· \7 + ~D(a))'Ij;, (7.32) 

where D( a) is a (position-dependent) bivector-valued linear function of the vector a. Under 
local rotations 'Ij; I----t R'Ij; , D( a) transforms to 

D(a) I----t D(a)' == RD(a)R - 2a · \7 RR. (7.33) 

Under local translations, D(a) must transform in the same manner as the a . \7 RR term, 
so 

if x' = f(x), 
if x = f(x ' ). 

(The subscript x on ,OX( a) labels the position dependence.) 
The action integral 

(7.34) 

(7 .35) 

is now invariant under both local translations and rotations. The field equations derived 
from S will have the property that, if {'Ij; , h, D} form a solution, then so too will any 
new fields obtained from these by local Poincare transformations . This local Poincare 
symmetry has been achieved by the introduction of two gauge fields, hand ,0, with a 
total of (4 X 4) + (4 X 6) = 40 degrees of freedom. This is precisely the number expected 
from gauging the 10-dimensional Poincare group. 

Before turning to the construction of an action integral for the gauge fields, we look 
at how the covariant derivative of (7.32) must extend to act on the physical observables 
derived from 'Ij;. These observables are all formed by the double-sided action of the spinor 
field 'Ij; on a constant multivector f (formed from the {/,J.t}) so that 

(7.36) 

The multivector A therefore transforms under rotations as 

A I----t RAR, (7.37) 

and under translations as 

A(x) I----t A(f(x)). (7.38) 

We refer to objects with the same transformation laws as A as being covaTiant (an example 
is the current, J = 'Ij;/'o;f;). If we now consider directional derivatives of A, we see that 
these can be written as 

a· \7 A = (a· \7'1j;)f;f; + 'lj;f(a· \7'1j;t, (7.39) 
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derived from '0. These observables are all formed by the double-sided action of the spinor 
field '0 on a constant multi vector r (formed from the {'J.L}) so that 

A = '0r,(j;. (7.36) 

The multi vector A therefore transforms under rotations as 

A I--t RAR, (7.37) 

and under translations as 

A(x) I--t A(f(x)). (7.38) 

We refer to objects with the same transformation laws as A as being covariant (an example 
is the current, J = '0'O,(j;) . If we now consider directional derivatives of A, we see that 
these can be written as 

(7.39) 
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which immediately tells us how to turn these into covariant derivatives. Rotations of A are 
driven by single-sided rotations of the spinor field 1/J, so to arrive at a covariant derivative 
of A we simply replace the spinor directional derivatives by covariant derivatives, yielding 

(Da1/J)f~ + 1/Jf(Da1/Jr 
(a· \71/J)f~ + 1/Jf(a · \71/Jr + ~n(a)1/Jf~ - ~1/Jf~n(a) 

= a· \7(1/Jf~) + n(~) x (1/Jf~). 

We therefore define the covariant derivative for "observables" by 

DaA == a· \7 A + n(a) x A. 

(7.40) 

(7.41) 

This is applicable to all multivedor fields which transform double-sidedly under rotations. 
The operator Da has the important property of satisfying Leibniz' rule, 

so that Da is a derivation. This follows from the identity 

n(a)x(AB) = (n(a) x A)B+ A(n(a)xB). 

For notational convenience we define the further operators 

and for the latter we write 

where 

D1/J 
DA 

h(Oa)Da1/J 
h(oa)DaA, 

DA = D·A + Di\A, 

D·A). 
Di\A). 

(DA))'-l 

(DA)r+l' 

(7.42) 

(7.43) 

(7.44) 

(7.45) 

(7.46) 

(7.47) 

(7.48) 

The operator D can be thought of as a covariant vector derivative. D and D have the 
further properties that 

a·D 
a·D 

Db:.(a) 
Db:.(a). 

7.1.2 Gravitational Action and the Field Equations 

(7.49) 

(7.50) 

Constructing a form of the Dirac action that is invariant under local Poincare transfor
mations has required the introduction of hand n fields, with the transformation proper
ties (7.26), (7.29), (7.33) and (7.34). We now look for invariant scalar quantities that can 
be formed from these. VIle start by defining the field-strength R(ai\b) by 

(7.51) 
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so that 
R(al\b) = a· Vn(b) - b· Vn(a) + n(a) x n(b). (7.52) 

R( a 1\ b) is a bivector-valued function of its bivector argument a 1\ b. For an arbitrary 
bivector argument we define 

R(al\c + cAd) = R(al\b) + R(cl\d) (7.53) 

so that R(B) is now a bivector-valued linear function of its bivector argument B. The 
space of bivectors is 6-dimensional so R(B) has , at most , 36 degrees of freedom . (The 
counting of degrees of freedom is somewhat easier than in conventional tensor calculus , 
since two of the symmetries of RCi(3-yO are automatically incorporated.) R( B) transforms 
under local translations as 

where x' = f(x), (7.54) 

and under local rotations as 
R(B) f-t RoR(B)Ro. (7.55) 

The field-strength is contracted once to form the linear function 

R(b) = h(8a )·R(al\b), (7.56) 

which has the same transformation properties as R(B). VVe use the same symbol for 
both functions and distinguish between them through their argument, which is either a 
bivector (B or al\b) or a vector (a). 

Contracting once more, we arrive at the ("Ricci") scalar 

(7.57) 

R transforms as a scalar function under both rotations and translations. As an aside, 
it is interesting to construct the analogous quantity to R for the electromagnetic gauge 
sector. For this we find that 

(7.58) 

(7.59) 

Interestingly, this suggests that the bivector h(F) has a similar status to the Ricci scalar, 
and not to the field-strength tensor. 

Since the Ricci scalar R is a covariant scalar , the action integral 

(7.60) 

is invariant under all local Poincare transformations. The choice of action integral (7.60) is 
the same as that of the Hilbert-Palatini principle in general relativity, and we investigate 
the consequences of this choice now. Once we have derived both the gravitational and 
matter equations, we will return to the subject of whether this choice is unique. 
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From (7.60) we write the Lagrangian density as 

£G = ~Rdetll-l = £G(h(a),n(a),b·Vn(a)) . (7 .61) 

The action integral (7.60) is over a region of flat spacetime, so all the variational princi
ple techniques developed in Chapter 6 hold without modification. The only elaboration 
needed is to define a calculus for n( a). Such a calculus can be defined in precisely the 
same way as the derivative of!(a) was defined (6.117). The essential results are: 

OO(a) (n( b )B) 
OO(b),a (c· Vn( d)B) 

where B is an arbitrary bivector. 
We assume that the overall action is of the form 

a·bB 
a·cb ·dB, 

(7.62) 

(7.63) 

(7.64) 

where £M describes the matter content and K = 87rG. The first of the field equations is 
found by varying with respect to h, producing 

~C%(a) ((h( Ob /\ Oc)R( c/\ b)) det ll-l) 

(R(a) - ~ll-l(a)R)detll-l . (7.65) 

The functional derivative with respect to h( a) of the matter Lagrangian is taken to define 
the stress-energy tensor of the matter field through 

so that we arrive at the field equations in the form 

It is now appropriate to define the functions 

R(a/\b) 
R(a) 

9 

Rll(a/\b) 
Rll( a) = oa· R( a /\ b) 

R(a) - ~aR. 

(7.66) 

(7.67) 

(7.68) 

(7.69) 

(7.70) 

These are covariant under translations (they simply change their position dependence), 
and under rotations they transform as e.g. 

(7.71) 

Equation (7 .71) is the defining rule for the transformation properties of a tensoT) and 
we hereafter refer to (7 .68) through to (7.70) as the Riemann, Ricci and Einstein tensors 
respectively. We can now write (7.67) in the form 

9(a) = KT(a), (7.72) 
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which is the (fiat-space) gauge-theory equivalent of Einstein's field equations. 
In the limit of vanishing gravitational fields (h(a) I---t a and D(a) I---t 0) the stress

energy tensor defined by (7.66) agrees with the canonical stress-energy tensor (6.24), up 
to a total divergence. When D( a) vanishes, the matter action is obtained from the free
field £('l/Ji, a· \7'I/Ji) through the introduction of the transformation defined by x' = h(x). 
Denoting the transformed fields by. 'l/Ji, we find that 

(7.73) 

and 

~(a)£( 'I/J:, ll( b)· \7'I/J:) Ib:=l 
~(a) ['I/J: * fJ,pj£ + (fJb· h(\7)'I/J:) * fJ,pj,b£]b:=I 

fJb(a· \7'I/Ji)*fJ,pj,b£ + ~(a)~:*[fJifJj£ + l1(fJb)· VfJ,p j,b£]b:=I. (7.74) 

When the field equations are satisifed, the final term in (7.74) is a total divergence, and 
we recover the stress-energy tensor in the form (6.24) . This is unsurprising, since the 
derivations of the functional and canonical stress-energy tensors are both concerned with 
the effects of moving fields from one spacetime position to another. 

The definition (7.66) differs from that used in general relativity, where the functional 
derivative is taken with respect to the metric tensor [83]. The functional derivative with 
respect to the metric ensures that the resultant stress-energy tensor is symmetric. This is 
not necessarily the case when the functional derivative is taken with respect to h( a). This 
is potentially important, since we saw in Chapter 6 that the antisymmetric contribution 
to the stress-energy tensor is crucial for the correct treatment of the spin of the fields. 

We next derive the field equations for the D( a) field. We write these in the form 

fJO(a)£G - fJb· \7 (fJO(a) ,b£G) 

= n:{fJO(a)£M - fJb'\7(fJO(a),b£M)} == n:S(a)det11-I, (7.75) 

where the right-hand side defines the function S(a). Performing the derivatives on the 
left-hand side of the equation gives 

det11-1D(b) x (h(fJb)l\h(a)) +fJb·\7 (h(b)l\h(a)det11-l) = n:S(a)det11-l. (7.76) 

On contracting (7.76) with 11-I(fJa), we find that 

n:11-l(fJa)·S(a) det11- 1 

fJa· [D(b) x (h( fJb) I\a)] det 11-1 + 11-1 (fJa)· {fJb· \7 (h(b) 1\ h( a) det 11-1
) } 

2h(fJa)·D(a) det11- 1 
- 3h(V det11- 1

) - h(V)l1-l(fJa)·h(a) det11- 1 

+h(V)det11-1
. (7.77) 

If we now make use of the result that 

- 1 
-(a· \7h(fJb))*~(b) det11-

-a' \7 det11- 1 (chain rule), (7.78) 
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from which it follows that 

we find that 

h(V) (h(a)fl-1(Oa) detfl-1) = -h(V detfl-1), 

K,fl-1(Oa)·S(a) detfl-1 = 2h(oa) ·0(a) detfl-1 - 2h(V detfl-1) 

= -2vJi(Oa detfl-1) . 

(7 .79) 

(7.80) 

We will see shortly that it is crucial to the derivation of the correct matter field equations 
that 

Vah(Oa detfl-1) = O. (7.81) 

This places a strong restriction on the form of £M, which must satisfy 

fl-1(Oa) ' (OO(a)£M - Ob,V(OO(a),b£M)) = o. (7 .82) 

This condition is satisfied for our gauge theory based on the Dirac equation, since the 
bracketed term in equation (7.82) is 

--+ - - 1- -
(OO(a) - Ob' V OO(a),J (D7jJh37jJ - m7jJ7jJ) = "2 h( a)· (7jJh37jJ) 

1 -
= -"2ih(a)/\s . 

It follows immediately that the contraction in (7.82) vanishes, since 

fl-1(Oa)·(ih(a)/\s) = -ioa/\a/\s = O. 

We define S by 

so that we can now write 
S(a) = h(a)·S. 

Given that (7.81) does hold, we can now write (7.76) in the form 

K,S( a) h(V)/\h(a) + O(b) x (h(ob)/\h(a)) - (O(b).h(Ob))/\h(a) 

h ( Ob ) /\ (b. V h ( a) + 0 ( b) . h ( a ) ) 

V/\h(a). 

(7.83) 

(7.84) 

(7.85) 

(7.86) 

(7.87) 

The right-hand side of this equation could be viewed as the torsion though, since we are 
working in a flat spacetime, it is preferable to avoid terminology borrowed from Riemann
Cartan geometry. When the left-hand side of (7.87) vanishes, we arrive at the simple 
equation 

V/\h(a) = 0, (7.88) 

valid for all constant vectors a. All differential functions t( a) = a·V f( x) satisfy V /\j( a) = 
0, and (7.88) can be seen as the covariant generalisation of this result . Our gravitational 
field equations are summarised as 

g(a) 
V/\h(a) 

which hold for all constant vectors a. 
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7.1.3 The Matter-Field Equations 

We now turn to the derivation of the matter-field equations . We start with the Dirac 
equation, and consider the electromagnetic field equations second. 

The Dirac Equation 

We have seen how the demand for invariance under local Poincare transformations has 
led to the action 

(7.91) 

Applying the Euler-Lagrange equations (6.12) to this, and reversing the result, we find 
that 

which can be written as 

(7.93) 

We now see why it is so important that Vah( oa det h.-I) vanishes. Our point of view 
throughout has been to start from the Dirac equation, and to introduce gauge fields to 
ensure local Poincare invariance. We argued initially from the point of view of the Dirac 
action, but we could equally well have worked entirely at the level of the equation. By 
starting from the Dirac equation 

(7.94) 

and introducing the hand n( a) fields in the same manner as in Section 2.1, we find that 
the correct minimally coupled equation is 

(7.95) 

If we now make the further restriction that our field equations are derivable from an 
action principle, we must demand that (7.93) reduces to (7.95). We are therefore led to 
the constraint that Vah( oa det h.-I) vanishes. To be consistent, this constraint must be 
derivable from the gravitational field equations. We have seen that the usual Hilbert
Palatini action satisfies this requirement, but higher-order contributions to the action 
would not. This rules out, for example, the type of "R+R2

" Lagrangian often considered 
in the context of Poincare gauge theory [84, 85, 86]. Satisfyingly, this forces us to a theory 
which is first-order in the derivatives of the fields. The only freedom that remains is the 
possible inclusion of a cosmological constant, though such a term would obviously violate 
our intention that gravitational forces should result directly from interactions between 
particles. 

The full set of equations for Dirac matter coupled to gravity is obtained from the 
action 

(7.96) 
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and the field equations are 

9(a) 
VAh(a) 

D'ljJi0"3 

K,(a · D'ljJii3;j;h 

K,h( a)· (~'ljJh3;j;) = K,h( a)· (~is) 
m'ljJio. 

(7.97) 

(7.98) 

(7.99) 

It is not clear that self-consistent solutions to these equations could correspond to any 
physical situation, as such a solution would describe a self-gravitating Dirac fluid. Self
consistent solutions have been found in the context of cosmology, however, and the solu
tions have the interesting property of forcing the universe to be at critical density [10]. 

The Electromagnetic Field Equations 

We now return to the introduction of the electromagnetic field. From the action (7.91), 
and following the procedure of the start of this chapter, we arrive at the action 

(7.100) 

The field equation from this action is 

(7.101 ) 

where we have introduced the notation 

A = h(A). (7.102) 

It is to be expected that A should appear in the final equation, rather than A. The 
vector potential A originated as the generalisation of the quantity \7 <p. If we examine 
what happens to this under the translation <p(x) t----+ <p(x' ), with x' = f(x), we find that 

(7.103) 

It follows that A must also pick up a factor of 1 as it is moved from x' to x, 

A(x) t----+ f(A(X')), (7.104 ) 

so it is the quantity A that is Poincare-covariant, as are all the other quantities in equa
tion (7.101). However, A is not invariant under local U(l) transformations. Instead, we 
must construct the Faraday bivector 

F = \7 AA. (7.105) 

It could be considered a weakness of conventional spin-torsion theory that, in order to 
construct the gauge-invariant quantity F, one has to resort to the use of the flat-space 
vector derivative. Of course, in our theory background spacetime has never gone away, 
and we are free to exploit the vector derivative to the full. 

The conventional approach to gauge theories of gravity (as discussed in [81], for ex
ample) attempts to define a minimal coupling procedure for all matter fields, preparing 
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the way for a true curved-space theory. The approach here has been rather different, in 
that everything is derived from the Dirac equation, and we are attempting to put electro
magnetic and gravitational interactions on as similar a footing as possible. Consequently, 
there is no reason to expect that the gravitational field should "minimally couple" into the 
electromagnetic field. Instead, we must look at how F behaves under local translations. 
We find that 

F(x) f-+ \l !\fA(x' ) 

so the covariant form of F is 
:F == h(F) . 

f(\lx,!\A(x')) 

fF(x'), 

(7.106) 

(7.107) 

(7.108) 

:F is covariant under local Poincare transformations, and invariant under U (1) transfor
mations. The appropriate action for the electromagnetic field is therefore 

(7.109) 

which reduces to the standard electromagnetic action integral in the limit where h is the 
identity. To find the electromagnetic field equations, we write 

(7.110) 

and treat the hand J fields as external sources. There is no D-dependence in (7.109), so 
.LEM satisfies the criteria of equation (7.82). 

Variation of .LEM with respect to A leads to the equation 

(7.111) 

which combines with the identity 
\l!\F = 0 (7.112) 

to form the Maxwell equations in a gravitational background. Equation (7.111) corre
sponds to the standard second-order wave equation for the vector potential A used in 
general relativity. It contains only the functions llh = g-l and det II -1 = (det 9 )1/2, 
where 9 is the symmetric "metric" tensor. The fact that equation (7.111) only involves II 
through the metric tensor is usually taken as evidence that the electromagnetic field does 
not couple to torsion. 

So far, we only have the Maxwell equations as two separate equations (7.111) and 
(7.112). It would be very disappointing if our STA approach did not enable us to do better 
since one of the many advantages of the STA is that , in the absence of a gravitational 
field, Maxwell 's equations 

\l·F = J \l!\F = 0 (7.113) 

can be combined into a single equation 

\IF = J. (7.114) 
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This is more than a mere notational convenience. The \7 operator is invertible, and can be 
used to develop a first-order propagator theory for the F-field [8]. This has the advantages 
of working directly with the physical field, and of correctly predicting the obliquity factors 
that have to be put in by hand in the second-order approach (based on a wave equation 
for A). It would undermine much of the motivation for pursuing first-order theories if 
this approach cannot be generalised to include gravitational effects . Furthermore, if we 
construct the stress-energy tensor, we find that 

which yields 

tf%(a) (h(F)h(F) det11-1
) 

(h(a.F) .F - t11-1 (a)F.F) det11- 1
, 

-(F·a)·F - ~aF·F 

-~FaF. 

(7.115) 

(7.116) 

This is the covariant form of the tensor found in Section (6 .2). It is intersting to see how 
the definition of TEM as the functional derivative of £ with respect to f%(a) automatically 
preserves gauge invariance. For electromagnetism this has the effect of forcing TEM to 
be symmetric. The form of TEM (7.116) makes it clear that it is F which is the genuine 
physical field, so we should seek to express the field equations in terms of this object . To 
achieve this, we first write the second of the field equations (7.90) in the form 

VAh(a) = h(\7 Aa) + Kh(a)·S, 

which holds for all a. If we now define the bivector B = aAb, we find that 

VAh(B) [VAh(a) ] Ah(b) - h(a)AVAh(b) 
h(\7 Aa)Ah(b) - h(a)Ah(\7 Ab) + K(h(a) ·S)Ah(b) 

-Kh(a)A(h(b).S) 
h(\7 AB) - Kh(B) x S, 

which is used to write equation (7.112) in the form 

VAF - KS xF = h(\7 AF) = O. 

(7 .117) 

(7.118) 

(7 .119) 

Next, we use a double-duality transformation on (7.111) to write the left-hand side as 

so that (7 .111) becomes 

i\7 A (ill( F) det 11-1
) 

i\7 A (h- 1 (iF)) 

ih-1 (V A (iF) + K( iF) x S) , 
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Writing 
J = 11-1 (1) (7.122) 

we can now combine (7.119) and (7.121) into the single equation 

IXF - ",SF = J, (7.123) 

which achieves our objective. The gravitational background has led to the vector deriva
tive \l being generalised to V - ",S. Equation (7.123) surely deserves considerable study. 
In particular, there is a clear need for a detailed study of the Green's functions of the 
V - ",S operator. Furthermore, (7.123) makes it clear that, even if the A equation does 
not contain any torsion term, the F equation certainly does . This may be of importance 
in studying how F propagates from the surface of an object with a large spin current. 

7.1.4 Comparison with Other Approaches 

We should now compare our theory with general relativity and the ECKS theory. In 
Sections 7.2 and 7.3 a number of physical differences are illustrated, so here we concentrate 
on the how the mathematics compares. To simplify the comparison, we will suppose 
initially that spin effects are neglible. In this case equation (7.90) simplifies to V/\h( a) = o. 
This equation can be solved to give D( a) as a function of h( a). This is achieved by first 
"protracting" with ll-l(aa): 

ll-l(aa)/\ [h(\l)/\h(a) + h(ab)/\(D(b).h(a))] 

II -1 (ab) /\ h(\l) /\ h(b) + 2h( ab) /\D(b) = o. 

Contracting this expression with the vector II -1 (a) and rearranging yields 

where 

2D(a) = -2h(ab)/\(D(b)·ll-l(a)) - ll-l(a)·ll-l(ab)h(\l)/\h(b) 

+ll -1( ab) /\ (a· \lh(b)) - II -1 (ab) /\ h("9)h(b) . ll-1 (a) 

-2h(\l /\g(a)) + h(\l)/\ll-l(a) - h("9)/\hg(a) 
+ll -1( ab) /\ (a· \lh(b)) 
-h(\l /\g(a)) + ll-l(ab)/\(a.\lh(b)), 

(7.124 ) 

(7.125 ) 

(7.126) 

The quantity g(a) is the gauge-theory analogue of the metric tensor. It is symmetric, and 
arises naturally when forming inner products, 

(7.127) 

Under translations g( a) transforms as 

gx(a) f---t f xgx,L,(a) , where x' = f(x) , (7.128) 
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and under an active rotation g( a) is unchanged. The fact that g( a) is unaffected by active 
rotations limits its usefulness, and this is a strong reason for not using the metric tensor 
as the foundation of our theory. 

The comparison with general relativity is clarified by the introduction of a set of 4 
coordinate functions over spacetime, xJ.L = xJ.L( x). From these a coordinate frame is defined 
by 

where f}J.L = f}xlL The reciprocal frame is defined as 

and satisfies 
v _ (-':'l ') n ,v _ -':'l v _ £V e ·eJ.L- UJ.LX · vX -UxJ.LX -UJ.L . 

From these we define a frame of "contravariant" vectors 

and a dual frame of "covariant" vectors 

These satisfy (no torsion) 

and 

gJ.L = h( e~L). 

8~, 
o 

(7.129) 

(7.130) 

(7.131) 

(7.132) 

(7 .133) 

(7.134 ) 

(7.135) 

(7 .136) 

The third of these identities is the flat-space equivalent of the vanishing of the Lie bracket 
for a coordinate frame in Riemannian geometry. 

From the {gJ.L} frame the metric coefficients are defined by 

(7 .137) 

which enables us to now make contact with Riemannian geometry. Writing DJ.L for D(e~L)' 
we find from (7.125) that 

The connection is defined by 

f}v( a· g,\) - a· (Dvg>.) 

g,\ . (Dv a ) 
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as required - the connection records the fact that, by writing a). 

x-dependence is introduced through the 9,\ . 

By using (7.138) in (7.139), r~). is given by 

a . 9,\, additional 

(7.141) 

which is the conventional expression for the Christoffel connection. In the absence of 
spin, the introduction of a coordinate frame unpackages our equations to the set of scalar 
equations used in general relativity. The essential difference is that in GR the quantity 9!-'v 

is fundamental, and can only be defined locally, whereas in our theory the fundamental 
variables are the hand n fields, which are defined globally throughout spacetime. One 
might expect that the only differences that could show up from this shift would be due 
to global, topological considerations. In fact, this is not the case, as is shown in the 
following sections. The reasons for these differences can be either physical, due to the 
different understanding attached to the variables in the theory, or mathematical, due often 
to the constraint that the metric must be generated from a suitable h function . It is not 
always the case that such an h function can be found, as is demonstrated in Section 7.2.1. 

The ability to develop a coordinate-free theory of gravity offers a number of advantages 
over approaches using tensor calculus. In particular, the physical content of the theory 
is separated from the artefacts of the chosen frame. Thus the hand n fields only differ 
from the identity and zero in the presence of matter. This clarifies much of the physics 
involved, as well as making many equations easier to manipulate. 

Many of the standard results of classical Riemannian geometry have particularly simple 
expressions in this STA-based theory. Similar expressions can be found in Chapter 5 of 
Hestenes & Sobczyk [24], who have developed Riemannian geometry from the viewpoint 
of geometric calculus. All the symmetries of the Riemann tensor are summarised in the 
single equation 

Oa/\R(a/\b) = O. (7.142) 

This says that the trivector oa /\ R( a /\ b) vanishes for all values of the vector b, and so 
represents a set of 16 scalar equations. These reduce the 36-component tensor R(B) to a 
function with only 20 degrees of freedom - the correct number for Riemannian geometry. 
Equation (7 .142) can be contracted with Ob to yield 

Oa/\ R(a) = 0, (7.143) 

which says that the Ricci tensor is symmetric. The Bianchi identity is also compactly 
written: 

where the overdot notation is defined via 

VT(M) - DT(lvI) - oaT(a·D!l1). 

Equation (7.144) can be contracted with Ob/\Oa to yield 

Ob' (R(V/\b) - V/\R(b)) 

-2R(V) + DR = O. 
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It follows that 
(7.147) 

which, in conventional terms, represents conservation of the Einstein tensor. Many other 
results can be written equally compactly. 

The inclusion of torsion leads us to a comparison with the ECKS theory, which is 
certainly closest to the approach adopted here. The ECKS theory arose from attempts 
to develop gravity as a gauge theory, and modern treatments do indeed emphasise active 
transformations [81]. However, the spin-torsion theories ultimately arrived at all involve 
a curved-space picture of gravitational interactions, even if they started out as a gauge 
theory in flat space. Furthermore, the separation into local translations and rotations is 
considerably cleaner in the theory developed here, as all transformations considered are 
finite, rather than infinitessimal. The introduction of a coordinate frame can be used 
to reproduce the equations of a particular type of spin-torsion theory (one where the 
torsion is generated by Dirac matter) but again differences result from our use of a flat 
background spacetime. The inclusion of torsion alters equations (7.142) to (7.147). For 
example, equation (7.142) becomes 

(7.148) 

equation (7.143) becomes 
(7.149) 

and equation (7.144) becomes 

VA R(B) + ",S X R(B) = O. (7.150) 

The presence of torsion destroys many of the beautiful results of Riemannian geometry 
and, once the connection between the gauge theory quantities and their counterparts in 
Riemannian geometry is lost, so too is much of the motivation for adopting a curved-space 
viewpoint. 

Finally, it is important to stress that there is a difference between the present gauge 
theory of gravity and Yang-Mills gauge theories. Unlike Yang-Mills theories, the Poincare 
gauge transformations do not take place in an internal space, but in real spacetime - they 
transform between physically distinct situations. The point is not that all physical ob
servables should be gauge invariant, but that the fields should satisfy the same equations, 
regardless of their state. Thus an accelerating body is subject to the same physical laws 
as a static one, even though it may be behaving quite differently (it could be radiating 
away electromagnetic energy, for example). 

7.2 Point Source Solutions 

In this section we seek solutions to the field equations in the absence of matter. In this 
case, the stress-energy equation (7.67) is 

R(a) - ~aR = 0, (7.151) 
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which contracts to give 

Our field equations are therefore 

R=O. 

Vl\h(a) 
R(a) 

h(\ll\a) 
o. 

(7.152) 

(7.153) 

As was discussed in the previous section; if we expand in a basis then the equations for 
the coordinates are the same as those of general relativity. It follows that any solution 
to (7.153) will generate a metric which solves the Einstein equations. But the converse 
does not hold - the additional physical constraints at work in our theory rule out certain 
solutions that are admitted by general relativity. This is illustrated by a comparison of 
the Schwarzschild metric used in general relativity with the class of radially-symmetric 
static solutions admitted in the present theory. Throughout the following sections we use 
units with G = 1. 

7.2.1 Radially-Symmetric Static Solutions 

In looking for radially-symmetric solutions to (7.153), it should be clear that we are ac
tually finding possible field configurations around a o-function source (a point of matter). 
That is, we are studying the analog of the Coulomb problem in electrostatics. In gen
eral, specifying the matter and spin densities specifies the hand n fields completely via 
the field equations (7.89) and (7.90). Applying an active transformation takes us to a 
different matter configuration and solves a different (albeit related) problem. This is not 
the case when symmetries are present, in which case a class of gauge transformations 
exists which do not alter the matter and field configurations. For the case of point-source 
solutions, practically all gauge transformations lead to new solutions. In this case the 
problem is simplified by imposing certain symmetry requirements at the outset. By this 
means , solutions can be classified into equivalence classes. This is very natural from the 
point of view of a gauge theory, though it should be borne in mind that in our theory 
gauge transformations can have physical consequences. 

Here we are interested in the class of radially-symmetric static solutions. This means 
that, if we place the source at the origin in space, we demand that the hand n fields only 
show dependence on x through the spatial radial vector (spacetime bivector) 

x = xl\,o. (7.154) 

Here 10 is a fixed time-like direction. We are free to choose this as we please, so that a 
global symmetry remains. This rigid symmetry can only be removed with further physical 
assumptions; for example that the matter is comoving with respect to the Hubble flow of 
galaxies (i. e. it sees zero dipole moment in the cosmic microwave background anisotropy). 

To facilitate the discussion of radially-symmetric solutions, it is useful to introduce a 
set of polar coordinates 

t 
r 

cos B 
tan cP 

10·x 
Ixl\,ol 
-/3· x / r 
12 . x / (,1 . x) 
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where the h'l )/2, 13} frame is a fixed, arbitrary spatial frame. From these coordinates, 
we define the coordinate frame 

et = Ot X = 10 
er = Orx = sine COScPl1 + sine sincP/2 + COSe,3 

eo = oox = r( cose COScPl1 + cose sincP/2 - sine,3) 
e,p = o,px = r sine( - sincPl1 + COScP/2)' 

(7.156) 

The best-known radially-symmetric solution to the Einstein equations is given by the 
Schwarzschild metric, 

(7.157) 

from which the components of gJ.LV = gJ.L·gv can be read straight off. Since g/1 = 11-l(ev), 
we need to "square root" gJ.LV to find a suitable II -1 (and hence h) that generates it. This 
II -1 is only unique up to rotations. If we look for such a function we immediately run into 
a problem - the square roots on either side of the horizon (at l' = 2M) have completely 
different forms. For example, the simplest forms have 

gt = (1 - 2IVI/r)1/2 et go = eo } for l' > 2IVI 
g,. = (1 - 2M/1't1/2e,. g,p = e,p 

(7.158) 

and 
gt = (2M/1' - 1)1/2e,. go = eo } for l' < 2111. 
gr = (2111/1' - 1)-1/2et g,p = e,p 

(7.159) 

These do not match at l' = 2M, and there is no rotation which gets round this problem. As 
we have set out to find the fields around a o-function source, it is highly undesirable that 
these fields should be discontinuous at some finite distance from the source. Rather than 
resort to coordinate transformations to try and patch up this problem, we will postulate 
a suitably general form for 71, and n, and solve the field equations for these. Once this is 
done, we will return to the subject of the problems that the Schwarzschild metric presents. 

We postulate the following form for 71,( a) 

71,( et) 
, 71,( e,. ) 

het + ize!. 
gl e,. + g2 et 

71,(eo) 
71,(e ,p ) 

(7.160) 

where Ji and gi are functions of l' only. We can write 71, in the more compact form 

(7.161) 

and we could go further and replace e!. and r by the appropriate functions of x. This 
would show explicitly how 71,( a) is a linear function of a and a non-linear function of xl\,O' 
We also postulate a suitable form for n(a), writing nJ.L for n(eJ.L), 

no = (f31 e!. + f32 et)eo / r 
n,p = (f31er + f32et)e,p / r, 

with a and f3i functions of l' only. More compactly, we can write 
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We could have used (7.138) to solve for !1(a) in terms of the fi and gi, but this vastly 
complicates the problem. The second-order form of the equations immediately introduces 
unpleasant non-linearities, and the equations are far less easy to solve. The better asp
proach is to use (7.138) to see what a suitable form for !1(a) looks like, but to then leave 
the functions unspecified. Equations (7.160) and (7.162) do not account for the most 
general type of radially-symmetric static solution. The trial form is chosen to enable us 
to find a single solution. The complete Class of solutions can then be obtained by gauge 
transformations, which will be considered presently. 

The first of the field equations (7.153) can be written as 

which quickly yields the four equations 

gd{ - g2f~ + a(f1 2 - 122) = 0 

glg~ - g~g2 + a(JIg2 - hg1) = 0 

gl = (31 + 1 

g2 = (32, 

(7.164) 

(7.165) 

(7.166) 

(7.167) 

(7.168) 

where the primes denote differentiation with respect to r. We immediately eliminate (31 
and (32 using (7.167) and (7.168). Next, we calculate the field strength tensor. Writing 
RJ.Lv for R( eJ.L 1\ ev), we find that 

Rtr 
RtfJ 

R t</> 
Rro 
Rr</> 
Ro</> 

-a'eret 
a(glet + g2 er)eo/r 
a(glet + g2 er)e</>/r 
(g~ e,. + g~et)eo/r 
(g~ er + g~et)e</>/r 
(g1 2 - g22 - 1)eoe</>/r2. 

(7.169) 

Contracting with gJ.L and setting the result equal to zero gives the final four equations 

2a + a'r = 0 

2g~ + fla'r = 0 

2g~ + ha'r = 0 

ar(f1g1 - hg2) + r(glg~ - g2g~) + g1 2 - g22 - 1 = o. 

The first of these (7.170) can be solved for a immediately, 

1\11 
a= - 2' 

r 

(7.170) 

(7.171) 

(7.172) 

(7.173) 

(7.174) 

where M is the (positive) constant of integration and represents the mass of the source. 
Equations (7.171) and (7.172) now define the fi in terms of the gi 

aJI = g~ 

ah = g~. 
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These are consistent with (7.166), and substituted into (7.165) yield 

(flgl - hg2)' = o. 
But the quantity /lgl - hg2 is simply the determinant of h, so we see that 

det h. = /lgl - hg2 = constant . 

(7.177) 

(7 .178) 

We expect the effect of the source to fall away to zero at large distances, so h should tend 
asymptotically to the identity function. It follows that the constant det h. should be set 
to 1. All that remains is the single differential equation (7.173) 

to which the solution is 
g1 2 - g22 = 1 - 2lvljr, 

ensuring consistency with det h. = 1. 
We now have a set of solutions defined by 

a 
2 2 gl - g2 

AI/I 
lvlh 

lvljr2 

1 - 2lvlj r 
r2g~ 

r2g~. 

(7.179) 

(7.180) 

(7.181) 

The ease of derivation of this solution set compares very favourably with the second-order 
metric-based approach. A particularly pleasing feature of this derivation is the direct 
manner in which a is found . This is the coefficient of the Dt bivector, which accounts 
for the radial acceleration of a test particle. We see that it is determined simply by the 
N ewtonian formula! 

The solutions (7.181) are a one-parameter set. We have a free choice of the g2 function, 
say, up to the constraints that 

(7.182) 

and 

(7.183) 

As an example, which will be useful shortly, one compact form that the solution can take 
IS 

gl = cosh(Aljr) - eMIr Mlr 

g2 = - sinh(lvllr) + eM/ I'Allr 
/1 = cosh(Allr) + elvJ

/
I'Allr 

12 = - sinh(Mlr) - eM/Tlvllr. 
(7 .184 ) 

The solution (7.181) can be substituted back into (7.169) and the covariant field 
strength tensor (Riemann tensor) is found to be 

R(B) 

(7.185) 

159 

~,. ) 



It can now be confirmed that oa' R( a!\ b) = O. Indeed, one can simultaneously check 
both the field equations and the symmetry properties of R(B), since R(a) = 0 and 
oa!\ R( a!\ b) = 0 combine into the single equation 

OaR(a!\b) = o. (7.186) 

This equation greatly facilitates the study of the Petrov classification of vacuum solutions 
to the Einstein equations, as is demonstrated in Chapter 3 of Hestenes & Sobczyk [24]. 
There the authors refer to oa·R( a!\b) as the contTaction and oa!\R( a!\b) as the PTotTaction. 
The combined quantity oaR(a!\b) is called simply the tTaction. These names have much 
to recommend them, and are adopted wherever necessary. 

Verifying that (7.185) satisfies (7.186) is a simple matter, depending solely on the 
result that, for an arbitrary bivector B, 

Oa(a!\b + 3BabB-1 
- 3Ba.bB-1

) 

oa(a!\b - 3a·b) 

oa(ab - 4a·b) 

O. (7.187) 

The compact form of the Riemann tensor (7.185), and the ease with which the field 
equations are verified, should serve to demonstrate the power of the STA approach to 
relativistic physics. 

Radially-Symmetric Gauge Transformations 

From a given solution in the set (7.181) we can generate further solutions via radially
symmetric gauge transformations. We consider Lorentz rotations first. All rotations 
leave the metric terms 91-'1/ = 91-' . 91-' unchanged, since these are defined by invariant inner 
products, so 912 - 92

2
, f12 - 122, h92 - 1291 and det h. are all invariant. Since the fields 

are a function of x!\ et only, the only Lorentz rotations that preserve symmetry are those 
that leave x!\et unchanged. It is easily seen that these leave the Riemann tensor (7.185) 
unchanged as well. There are two such transformations to consider; a rotation in the 
eo!\ e1> plane and a boost along the radial axis . The rotors that determine these are as 
follows: 

Rotation: 

Radial Boost: 

R = exp(X(T)ie,.et/2); 

R = exp(X(T )e,.et/2). 

(7.188) 

(7.189) 

Both rotations leave nt untransformed, but introduce an 0" . and transform the no and 
0,1> terms. 

If we take the solution in the form (7.184) and apply a radial boost determined by the 
rotor 

R = exp (~ e,.et ) , 

we arrive at the following, highly compact solution 

111 
h(a) a + - a ·e_e_ 

T 

111 
n(a) -2 (e_!\a + 2e_·ae,.et) 

T 
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where 
(7.192) 

Both the forms (7.191) and (7.184) give a metric which, in GR, is known as the (advanced
time) Eddington-Finkelstein form of the Schwarzschild solution, 

There are also two types of transformation of position dependence to consider. The 
first is a (radially-dependent) translation up and down the eraxis, 

x t = J ( x) = x + u ( 1" ) et . (7 .1 94 ) 

(We use the dagger to denote the transformed position, since we have already used a 
prime to denote the derivative with respect to 1".) From (7.194) we find that 

and that 

(7.195) 

(7.196) 

(7.197) 

Since all x-dependence enters h through xAet it follows that hx! = hx and Ox! = Ox' The 
transformed functions therefore have 

-t 
h (et ) (I1 + u'g2)et + (12 + u'gl)eT (7.198) 
-t 
h (e1· ) h( eT) (7.199) 

ot (et ) O( et) (7.200) 

ot( eT ) (NI u' /1"2) e1.et, (7.201) 

with all other terms unchanged. The Ji's transform, but the g/s are fixed. A time 
translation can be followed by a radial boost to replace the ot (e 1,) term by O( eT), and so 
move between solutions in the one-parameter set of (7.181). 

The final transformation preserving radial symmetry is a radial translation, where the 
fields are stretched out along the radial vector. We define 

so that 

I x t A et I = u ( 1" ) 

xt Aet 
I x t A et I et = e1

,· 

The differential of this transformation gives 

L(a) 

- 1 J- (a) 
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and 
(7.207) 

The new function ht = hxty-l has an additional dilation in the eee</J plane, and the 
behaviour in the e"et plane is defined by 

f/(r) 
g!(r) 

(7.208) 

(7.209) 

The horizon has now moved from l' = 2M to rt = 2M, as is to be expected for an 
active radial dilation. The physical requirements of our theory restrict the form that 
the transformation (7.202) can take. The functions l' and u(r) both measure the radial 
distance from a given origin, and since we do not want to start moving the source around 
(which would change the problem) we must have u(O) = O. The function u(r) must 
therefore be monotomic-increasing to ensure that the map between l' and 1" is I-to-I. 
Furthermore, u(r) must tend to l' at large l' to ensure that the field dies away suitably. It 
follows that 

u'(r) > 0, (7.210) 

so the transformation does not change the sign of det ll. 
We have now found a 4-parameter solution set, in which the elements are related via 

the rotations (7.188) and (7.189) and the transformations (7.194) and (7.202). The fields 
are well-defined everywhere except at the origin, where a point mass is present. A second 
set of solutions is obtained by the discrete operation of time-reversal, defined by 

f( x) = - etxet 

:::} f(x)l\ et = -(etxet )l\et = xl\et · 

(7.211) 

(7.212) 

This translation on its own just changes the signs of the f i functions, and so reverses the 
sign of det ll. The translation therefore defines fields whose effects do not vanish at large 
distances . To correct this, the hand n fields must also be time-reversed, so that the new 
solution has 

hT (a) 

and 

- eth!(x)( - etaet )et 

eth(etaet)et 

etn!(x)( -etaet) et 

-etn( etaet)et. 

(7.213) 

(7 .214) 

For example, the result of time-reversal on the solution defined by (7.191) IS the new 
solution 

-T 
h (a) 

M 
et [etaet + -(etaet)· e_ e-let 

l' 

1\1 
a + -a' e+e+ 

l' 
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and 

(7.216) 

where e+ = et + e j •• This new solution reproduces the metric of the retarded-time 
Eddington-Finkelstein form of the Schwarzschild solution. Time reversal has therefore 
switched us from a solution where particles can cross the horizon on an inward journey, 
but cannot escape, to a solution where particles can leave, but cannot enter. Covariant 
quantities, such as the field strength (7.169), are, of course, unchanged by time reversal. 
From the gauge-theory viewpoint, it is natural that the solutions of the field equations 
should fall into sets which are related by discrete transformations that are not simply con
nected to the identity. The solutions are simply reproducing the structure of the Poincare 
group on which the theory is constructed. 

Behaviour near the Horizon 

For the remainder of this section we restrict the discussion to solutions for which det 11 = 1. 
For these the line element takes the form 

ds2 = (1 - 2NIjr)dt2 - (fIg2 - hg1)2dT dt - (1/ - h 2)dr2 

_T2( dfP + sin2 e d<p2). 

The horizon is at r = 2M, and at this distance we must have 

But, since det11 = fIg1 - hg2 = I, we must also have 

11g2 - hg1 = ±1 at r = 2M, 

(7.217) 

(7.218) 

(7.219) 

so an off-diagonal term must be present in the metric at the horizon. The assumption that 
this term can be transformed away everywhere does not hold in our theory. This resolves 
the problem of the Schwarzschild discontinuity discussed at the start of this section. The 
Schwarzschild metric does not give a solution that is well-defined everywhere, so lies 
outside the set of metrics that are derivable from (7.181). Outside the horizon, however, 
it is always possible to transform to a solution that reproduces the Schwarzschild line 
element, and the same is true inside. But the transformations required to do this do 
not mesh at the boundary, and their derivatives introduce 6-functions there. Because 
the Schwarzschild line element is valid on either side of the horizon, it reproduces the 
correct Riemann tensor (7.185) on either side. Careful analysis shows, however, that 
the discontinuities in the ne and nq, fields required to reproduce the Schwarzschild line 
element lead to 6-functions at the horizon in R( a /\ b). 

The fact that the 11g2 - hg1 term must take a value of ±1 at the horizon is interesting, 
since this term changes sign under time-reversal (7.213). Once a horizon has formed, it 
is therefore no longer possible to find an h such that the line element derived from it is 
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invariant under time reversal. This suggests that the f1g2 - hg1 term retains information 
about the process by which the horizon formed - recording the fact that at some earlier 
time matter was falling in radially. Matter infall certainly picks out a time direction, 
and knowledge of this is maintained after the horizon has formed. This irreversibility is 
apparent from the study of test particle geodesics [9]. These can cross the horizon to 
the inside in a finite external coordinate time, but can never get back out again, as one 
expects of a black hole. 

The above conclusions differ strongly from those of GR, in which the ultimate form 
of the Schwarzschild solution is the Kruskal metric. This form is arrived at by a series 
of coordinate transformations, and is motivated by the concept of "maximal extension" 
- that all geodesics should either exist for all values of their affine parameter, or should 
terminate at a singularity. None of the solutions presented here have this property. The 
solution (7.191), for example, has a pole in the proper-time integral for outgoing radial 
geodesics. This suggests that particles following these geodesics would spend an infinite 
coordinate time hovering just inside the horizon. In fact, in a more physical situation 
this will not be the case - the effects of other particles will tend to sweep all matter 
back to the centre. The solutions presented here are extreme simplifications, and there 
is no compelling physical reason why we should look for "maximal" solutions. This is 
important, as the Kruskal metric is time-reverse symmetric and so must fail to give a 
globally valid solution in our theory. There are a number of ways to see why this happens. 
For example, the Kruskal metric defines a spacetime with a different global topology to 
flat spacetime. We can reach a similar conclusion by studying how the Kruskal metric 
is derived from the Schwarzschild metric. We assume, for the time being, that we are 
outside the horizon so that a solution giving the Schwarzschild line element is 

where 

gl = 6,1/2 

f1 = 6, -1/2 
g2 = 0 
h = 0 

6, = 1 - 2lVI/r. 

(7.220) 

(7.221) 

The first step is to re-interpret the coordinate transformations used in general relativity 
as active local translations. For example, the advanced Eddington-Finkelstein metric is 
reached by defining 

t - (1' + 2M In(r - 21\1)) 

l' 

or 
xt = x - 2lVIln(r - 2lVI)et, 

(7.222) 

(7.223) 

(7.224) 

which is now recognisable as a translation of the type of equation (7.194). The result of 
this translation is the introduction of an fJ function 

j t __ 21\1 6,-1/2 
2 - , (7.225) 

r 

which now ensures that fig! - fJgi = 1 at the horizon. The translation (7.224), which 
is only defined outside the horizon, has produced a form of solution which at least has a 
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chance of being extended across the horizon. In fact, an additional boost is still required 
to remove some remaining discontinuities. A suitable boost is defined by 

(7.226) 

where 
(7.227) 

and so is also only defined outside the horizon. The result of this pair of transformations 
is the solution (7.191), which now extends smoothly down to the origin. 

In a similar manner, it is possible to reach the retarted-time Eddington-Finkelstein 
metric by starting with the translation defined by 

t + (r + 2M In( r - 2M)) 

r. 

(7.228) 

(7.229) 

The Kruskal metric, on the other hand, is reached by combining the advance and retarded 
coordinates and writing 

which defines the translation 

t - (r + 2NI In(r - 2NI)) 

t + (r + 2Mln(r - 2111)), 
(7.230) 

(7.231) 

(7.232) 

This translation is now of the type of equation (7.202), and results in a completely dif
ferent form of solution. The transformed solution is still only valid for r > 2M, and the 
transformation (7.232) has not introduced the required jlgZ - izgl term. No additional 
boost or rotation manufactures a form which can then be extended to the origin. The 
problem can still be seen when the Kruskal metric is written in the form 

where 

'ID 

z 

_l_(r _ 2M)e-T / ZM 

2M 

tanh (4~) , 

(7.233) 

(7.234) 

(7.235) 

which is clearly only defined for r > 2M. The loss of the region with r < 2NI does not 
present a problem in GR, since the r-coordinate has no special significance. But it is a 
problem if r is viewed as the distance from the source of the fields, as it is in the present 
theory, since then the fields must be defined for all r. Even in the absence of torsion, the 
flat-space gauge-theory approach to gravity produces physical consequences that clearly 
differ from general relativity, despite the formal mathematical similarities between the 
two theories. 
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7.2.2 Kerr-Type Solutions 

We now briefly discuss how the Kerr class of solutions fit into the present theory. The 
detailed comparisons of the previous section will not be reproduced, and we will simply 
illustrate a few novel features. Our starting point is the Kerr line element in Boyer
Lindquist form [87] 

ds2 = dt2 _ p2(dr2 + d82) _ (r2 + L2)sin28dcj>2 _ 2Mr (Lsin28dcj> _ dt)2, 
~ ~ 

where 

r2+L2cos28 

r2 - 2Mr + L2. 

(7.236) 

(7.237) 

(7.238) 

The coordinates all have the same meaning (as functions of spacetime position x) as 
defined in the preceding section (7.155), and we have differed from standard notation 
in labelling the new constant by L as opposed to the more popular a. This avoids any 
confusion with our use of a as a vector variable and has the added advantage that the 
two constants, L and M, are given similar symbols. It is assumed that ILl < !ll, as is 
expected to be the case in any physically realistic situation. 

The solution (7.236) has two horizons (at ~ = 0) where the line element is singular and, 
as with the Schwarzschild line element, no continuous function h exists which generates 
(7.236). However, we can find an h which is well-behaved outside the outer horizon, and 
a suitable form is defined by 

h( et) 
r2 + L2 L 
~1/2 et - -e</> p rp 

h(eT ) 

~1/2 
--e,. 

p 

h(eo) 
r 
- eo 
p 

h(e</» 
r Lr2 sin2 8 

(7.239) -e</> -
p~1/2 et· 

p 

The Riemann tensor obtained from (7.236) has the remarkably compact form 

(7 .240) 

(This form for J?(B) was obtained with the aid of the symbolic algebra package Maple.) 
To my knowledge, this is the first time that the Riemann tensor for the Ken solution has 
been cast in such a simple form. 

Equation (7.240) shows that the Riemann tensor for the Ken solution is algebraically 
very similar to that of the Schwarzschild solution, differing only in that the factor of 
(r - iL cos 8? replaces r3. The quantity r - iL cos 8 is a scalar + pseudoscalar object and 
so commutes with the rest of J?(B). It follows that the field equations can be verified in 
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T 
I 
i 
I 
I 
I I precisely the same manner as for the Schwarzschild solution (7.187). It has been known 
I for many years that the Kerr metric can be obtained from the Schwarzschild metric via 

a complex coordinate transformation [88, 89]. This "trick" works by taking the Schwarz
schild metric in a null tetrad formalism and carrying out the coordinate transformation 

t f--t r - j L cos (). (7.241) 

Equation (7.240) shows that there is more to this trick than is usually supposed. In 
particular, it demonstrates that the unit imaginary in (7.241) is better thought of as a 
spacetime pseudoscalar. This is not a surprise, since we saw in Chapter 4 that the role of 
the unit imaginary in a null tetrad is played by the spacetime pseudoscalar in the STA 
formalism. 

The Riemann tensor (7.240) is clearly defined for all values of r (except l' = 0). vVe 
therefore expect to find an alternative form of h which reproduces (7.240) and is also 
defined globally. One such form is defined by 

h(ee) 

with 

1 2 . 2 L 
et + -2 (2Mr + L SIll ())e_ - - er/> 

2p rp 

er + -\-(2l\!{r - L2 sin2 ())e_ 
2p 

r 
- ee 
p 
r Lr2 sin2

() 
-er/> - e_, 
p p2 

(7.242) 

(7.243) 

This solution can be shown to lead to the Riemann tensor in the form (7.240). The 
solution (7.242) reproduces the line element of the advanced-time Eddington-Finkelstein 
form of the Ken solution. Alternatives to (7.242) can be obtained by rotations, though 
at the cost of complicating the form of R(B). One particular rotation is defined by the 
rotor 

R = exp {~eel\(et - er) } , 
2rp 

which leads to the compact solution 

- Mr L r 
h(a) = a + -2 a·e_e_ - -a· e,.e,p + (- - l)al\(eret)eret. 

p rp p 

(7.244) 

(7.245) 

None of these solutions correspond to the original form found by Ken [90]. Ken's 
solution is most simply expressed as 

h(a) = a - aa·nn (7.246) 

where a is a scalar-valued function and n 2 = O. The vector n can be written in the form 

(7.247) 
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Figure 7.1: Incoming light paths for the Ken solution I - view from above. The paths 
terminate over a central disk in the z = 0 plane. 

where n is a spatial vector. The explicit forms of n and a can be found in Schiffer et al. [89] 
and in Chapter 6 of "The mathematical theo1'Y of black holes" by S. Chandrasekhar [91]. 
These forms will not be repeated here. From the field equations it turns out that n 
satisfies the equation [89] 

n·Vn = O. (7.248) 

The integral curves of n are therefore straight lines, and these represent the possible 
paths for incoming light rays. These paths are illustrated in figures (7.1) and (7.2). The 
paths terminate over a central disk, where the matter must be present. The fact that the 
solution (7.246) must represent a disk of matter was originally pointed out by Ken in a 
footnote to the paper of Newman and Janis [88]. This is the paper that first gave the 
derivation of the Kerr metric via a complex coordinate transformation. Kerr's observation 
is ignored in most modern texts (see [91] or the popular account [92]) where it is claimed 
that the solution (7.246) represents not a disk but a ring of matter - the ring singularity, 
where the Riemann tensor is infinite. 

The transformations taking us from the solution (7.246) to solutions with a point 
singularity involve the translation 

which implies that 

f(x) = x' == x - L X·(i(T3), 
l' 

(1")2 = 1'2 + L2 cos2 8. 

Only the points for which T satisfies 

l' ~ IL cos 81 
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Figure 7.2: Incoming null geodesics for the Kerr solution II - view from side on. 

are mapped onto points in the transformed solution, and this has the effect of cutting out 
the central disk and mapping it down to a point. Curiously, the translation achieves this 
whilst keeping the total mass fixed (i. e. the mass parameter M is unchanged). The two 
types of solution (7.242) and (7.246) represent very different matter configurations, and 
it is not clear that they can really be thought of as equivalent in anything but an abstract 
mathematical sense. 

7.3 Extended Matter Distributions 

As a final application of our flat-space gauge theory of gravity, we study how extended 
matter distributions are handled. We do so by concentrating on gravitational effects in 
and around stars. This is a problem that is treated very successfully by general relativ
ity (see [93, Chapter 23] for example) and, reassuringly, much of the mathematics goes 
through unchanged in the theory considered here. This is unsurprising, since we will as
sume that all effects due spin are neglible and we have already seen that, when this is the 
case, the introduction of a coordinate frame will reproduce the field equations of GR. It 
will be clear, however, that the physics of the situation is quite different and the central 
purpose of this section is to highlight the differences. Later in this section we discuss some 
aspects of rotating stars, which remains an active source of research in general relativity. 
Again, we work in units where G = 1. 

We start by assuming the simplest distribution of matter - that of an ideal fluid. 
The matter stress-energy tensor then takes the form 

T(a) = (p + p)a·uu - pa, (7.252) 

where p is the energy density, p is the pressure and u is the 4-velocity field of the fluid. 
We now impose a number of physical restrictions on T(a). We first assume that the 
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matter distribution is radially symmetric so that p and p are functions of l' only, where l' 
is the (flat-space!) radial distance from the centre of the star, as defined by (7.155). (We 
use translational invariance to choose the centre of the star to coincide with the spatial 
point that we have labelled as the origin). Furthermore, we will assume that the star is 
non-accelerating and can be taken as being at rest with respect to the cosmic frame (we 
can easily boost our final answer to ·take care of the case where the star is moving at a 
constant velocity through the cosmic microwave background). It follows that the velocity 
field u is simply et, and T now takes the form 

(7.253) 

This must equal the gravitational stress-energy tensor (the Eintein tensor), which is gen
erated by the hand n gauge fields. Radial symmetry means that h will have the general 
form of (7.160). Furthermore, the form of Q(a) derived from (7.160) shows that 12 and g2 
must be zero, and hence that h is diagonal. This conclusion could also have been reached 
by considering the motions of the underlying particles making up the star. If these follow 
worldlines X(T), where T is the affine parameter, then u is defined by 

u = 11-l(x), 

=? x = h.( et) . 

(7.254) 

(7.255) 

A diagonal h ensures that x is also in the et direction, so that the consituent particles 
are also at rest in the 3-space relative to et. That this should be so could have been 
introduced as an additional physical requirement. Either way, by specifying the details of 
the matter distribution we have restricted h to be of the form 

The ansatz for the gravitational fields is completed by writing 

a( l' )e,. et 
o 

(g(1') - 1)e,.eo/1' 
(g(1') - 1)er eq, /1', 

(7.256) 

(7.257) 

where again it is convenient to keep a(1') as a free variable, rather than solving for it in 
terms of 1 and g. The problem can now be solved by using the field equations on their 
own, but it is more convenient to supplement the equations with the additional condition 

T(iJ) = 0, 

which reduces to the single equation 

p'(r) = a1 (p + p). 
9 

(7.258) 

(7.259) 

Solving the field equations is now routine. One can either follow the method of Section 3.1 , 
or can simply look up the answer in anyone of a number of texts. The solution is that 

(7 .260) 
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where 
m(r) = foT 4'TfT,2 p(r' ) dr'. (7.261) 

The pressure is found by solving the Oppenheimer-Volkov equation 

, (p + p)(m(r) + 41l' r 3p) 
p--- r(r - 2m(r)) , (7.262) 

subject to the condition that p(R) = 0, where R is the radius of the star. The remaining 
term in h is then found by solving the differential equation 

subject to the constraint that 

Finally, a(r) is given by 

1'(r) 
f( r) 

m(r) + 41l' r 3p 
r(r - 2m(r)) 

f(R) = (1 - 2m(R)j Rt1
/

2
. 

The complete solution leads to a Riemann tensor of the form 

(7.263) 

(7.264) 

(7.265) 

(7.266) 

which displays a neat split into a surface term, due to the local density and pressure, and 
a (tractionless) volume term, due to the matter contained inside the shell of radius r. 

The remarkable feature of thie solution is that (7.261) is quite clearly a flat-space 
integral! The importance of this integral is usually downplayed in GR, but in the context 
of a flat-space theory it is entirely natural - it shows that the field outside a sphere of 
radius r is determined completely by the energy density within the shell. It follows that 
the field outside the star is associated with a "mass" M given by 

rR 
2 M = la 41l'r' p( r') dT' . (7 .267) 

We can understand the meaning of the definition of m(r) by considering the covariant 
integral of the energy density 

Eo et i J ll-l ( d3 
X ) P 

foR 41l'r,2(1 - 2m(r')jr')-1/2 p(r') dr'. (7.268) 

This integral is invariant under active spatial translations of the energy density. That 
is to say, Eo is independent of where that matter actually is. In particular, Eo could 
be evaluated with the matter removed to a sufficiently great distance that each particle 
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making up the star can be treated in isolation. It follows that Eo must be the sum of 
the individual mass-energies of the component particles of the star - Eo contains no 
contribution from the interaction between the particles . If we now expand (7.268) we find 
that 

Eo ~ foR 47riJ2 (p(r') + p(r')m(r')/r') dr' 

M - Potential Energy. (7.269) 

The external mass M is therefore the sum of the mass-energy Eo (which ignored interac
tions) and a potential energy term. This is entirely what one expects. Gravity is due to 
the presence of energy, and not just (rest) mass. The effective mass seen outside a star 
is therefore a combination of the mass-energies of the constituent particles, together with 
the energy due to their interaction with the remaining particles that make up the star. 
This is a very appealing physical picture, which makes complete sense within the context 
of a flat-space gauge theory. Furthermore, it is now clear why the definition of I'll is not 
invariant under radial translations. Interpreted actively, a radial translation changes the 
matter distribution within the star, so the component particles are in a new configuration. 
It follows that the potential energy will have changed, and so too will the total energy. 
An external observer sees this as a change in the strength of the gravitational attraction 
of the star . 

An important point that the above illustrates is that, given a matter distribution in 
the form of T(a) and (more generally) S(a), the field equations are sufficient to tie down 
the gauge fields uniquely. Then, given any solution of the field equation Q(a) = 87rT(a), a 
new solution can always be reached by an active transformation. But doing so alters T(a), 
and the new solution is appropriate to a different matter distribution. It is meaningless 
to continue talking about covariance of the equations once the matter distribution is 
specified. 

Whilst a non-vanishing T( a) does tie down the gauge fields, the vacuum raises a 
problem. When T( a) = 0 any gauge transformation can be applied, and we seem to have 
no way of specifying the field outside a star, say. The resolution of this problem is that 
matter (energy) must always be present in some form, whether it be the sun's thermal 
radiation, the solar wind or, ultimately, the cosmic microwave background. At some level, 
matter is always available to tell us what the hand n fields are doing. This fits in with 
the view that spacetime itself does not play an active role in physics and it is the presence 
of matter, not spacetime curvature, that generates gravitational interactions. 

Since our theory is based on active transformations in a flat spacetime, we can now 
use local invariance to gain some insights into what the fields inside a rotating star might 
be like. To do this we rotate a static solution with a boost in the e", direction. The rotor 
that achieves this is 

R = exp{ w(r, e)~ed (7.270) 

where 
~ = e", /(r sine). (7.271) 

The new matter stress-energy tensor is 

T( a) = (p + p)a · (coshw et + sinhw ~)( cosh wet + sinhw~) - pa, . (7.272) 
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and the Einstein tensor is similarly transformed. The stress-energy tensor (7.272) can 
only properly be associated with a rotating star if it carries angular momentum. The 
definitions of momentum and angular momentum are, in fact, quite straight-forward. 
The flux of momentum through the 3-space defined by a time-like vector a is T (a) and 
the angular momentum bivector is de~ned by 

J(a) = xI\T(a). (7.273) 

Once gravitational interactions are turned on, these tensors are no longer conserved with 
respect to the vector derivative, 

(7 .274) 

and instead the correct law is (7.258) . This situation is analogous to that of coupled 
Dirac-Maxwell theory (see Section 6.3). Once the fields are coupled, the individual (free
field) stress-energy tensors are no longer conserved. To recover a conservation law, one 
must either replace directional derivatives by covariant derivatives, or realise that it is 
only the total stress-energy tensor that is conserved. The same is true for gravity. Once 
gravitational effects are turned on, the only quantity that one expects to be conserved is 
the sum of the individual matter and gravitational stress-energy tensors. But the field 
equations ensure that this sum is always zero, so conservation of total energy-momentum 
ceases to be an issue. 

If, however, a global time-like symmetry is present, one can still sensibly separate 
the total (zero) energy into gravitational and matter terms. Each term is then separately 
conserved with respect to this global time. For the case of the star, the total 4-momentum 
is the sum of the individual fluxes of 4-momentum in the et direction. We therefore define 
the conserved momentum P by 

P = J d3 xT(ed 

and the total angular momentum J by 

Concentrating on P first, we find that 

where 

(7.275) 

(7.276) 

(7.277) 

(7.278) 

The effective mass .NITot reduces to M when the rotation vanishes, and rises with the 
magnitude of w, showing that the internal energy of the star is rising. The total 4-
momentum is entirely in the et direction, as it should be. Performing the J integral next , 
we obtain 

(7.279) 
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so the angular momentum is contained in the spatial plane defined by the Jet direc
tion. Performing an active radial boost has generated a field configuration with suitable 
momentum and angular momentum properties for a rotating star. 

Unfortunately, this model cannot be physical, since it does not tie down the shape of 
the star - an active transformation can always be used to alter the shape to any desired 
configuration. The missing ingredient' is that the particles making up the star must satisfy 
their own geodesic equation for motion in the fields due to the rest of the star. The simple 
rotation (7.270) does not achieve this. 

Attention is drawn to these points for the following reason. The boost (7.270) produces 
a Riemann tensor at the surface of the star of 

(7.280) 

which is that for a rotated Schwarzschild-type solution, with a suitably modified mass. 
This form is very different to the Riemann tensor for the Kerr solution (7.240), which 
contains a complicated duality rotation. Whilst a physical model will undoubtedly require 
additional modifications to the Riemann tensor (7.280) , it is not at all clear that these 
modifications will force the Riemann tensor to be of Kerr type. Indeed, the differences 
between the respective Riemann tensors would appear to make this quite unlikely. The 
suggestion that a rotating star does not couple onto a Ken-type solution is strengthened 
by the fact that , in the 30 or so years since the discovery of the Kerr solution [90], no-one 
has yet found a solution for a rotating star that matches onto the Kerr geometry at its 
boundary. 

7.4 Conclusions 

The gauge theory of gravity developed from the Dirac equation has a number of inter
esting and surprising features. The requirement that the gravitational action should be 
consistent with the Dirac equation leads to a unique choice for the action integral (up to 
the possible inclusion of a cosmological constant). The result is a set of equations which 
are first-order in the derivatives of the fields. This is in contrast to general relativity, 
which is a theory based on a set of second-order partial differential equations for the met
ric tensor. Despite the formal similarities between the theories, the study of point-source 
solutions reveals clear differences . In particular, the first-order theory does not admit 
solutions which are invariant under time-reversal. 

The fact that the gauge group consists of active Poincare transformations of spacetime 
fields means that gauge transformations relate physically distinct situations. It follows 
that observations can determine the nature of the hand n fields . This contrasts with 
Yang-Mills theories based on internal gauge groups, where one expects that all observables 
should be gauge-invaTiant. In this context, an important open problem is to ascertain 
how the details of radial collapse determine the precise nature of the hand n fields around 
a black hole. 

A strong point in favour of the approach developed here is the great formal clarity that 
geometric algebra brings to the study of the equations. This is illustrated most clearly in 
the compact formulae for the Riemann tensor for the Schwarzschild and Kerr solutions 
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and for radially-symmetric stars. No rival method (tensor calculus, differential forms, 
Newman-Penrose formalism) can offer such concise expressions. 

For 80 years, general relativity has provided a successful framework for the study of 
gravitational interactions. Any departure from it must be well-motivated by sound phys
ical and mathematical reasons. The mathematical arguments in favour of the present 
approach include the simple manner ' in which transformations are handled, the alge
braic compactness of many formulae and the fact that torsion is perhaps better viewed 
as a spacetime field than as a geometric effect. Elsewhere, a number of authors have 
questioned whether the view that gravitational interactions are the result of spacetime 
geometry is correct (see [94], for example). The physical motivation behind the present 
theory is provided by the identification of the hand n fields as the dynamical variables. 
The physical structure of general relativity is very much that of a classical field theory. 
Every particle contributes to the curvature of spacetime, and every particle moves on 
the resultant curved manifold. The picture is analogous to that of electromagnetism, in 
which all charged particles contribute to an electromagnetic field (a kind of global ledger). 
Yet an apparently crucial step in the development of Q.E.D. was Feynman's realisation 
(together with Wheeler [95, 96]) that the electromagnetic field can be eliminated from 
classical electrodynamics altogether. A similar process may be required before a quantum 
multiparticle theory of gravity can be constructed. In the words of Einstein [97] 

.. . the energy tensor can be regarded only as a provisional means of represent
ing matte?'. In reality) matter consists of electrically charged particles . .. 

The status of the hand n fields can be regarded as equally provisional. They may simply 
represent the aggregate behaviour of a large number of particles, and as such would not 
be of fundamental significance. In this case it would be wrong to attach too strong a 
physical interpretation to these fields (i. e. that they are the result of spacetime curvature 
and torsion). 

An idea of how the h field could arise from direct interparticle forces is provided by the 
two-particle Dirac action constructed in Section 6.3. There the action integral involved 
the differential operator \71 Im 1 + \72 1m2

, so that the vector derivatives in each particle 
space are weighted by the mass of the particle. This begins to suggest a mechanism by 
which, at the one-particle level, the operator h(\7) encodes an inertial drag due to the 
other particle in the universe. This is plausible, as the h field was originally motivated 
by considering the effect of translating a field . The theory presented here does appear 
to contain the correct ingredients for a generalisation to a multiparticle quantum theory, 
though only time will tell if this possibility can be realised. 
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