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Introduction. In healthcare, change is usually detected by statistical techniques comparing outcomes before and after an
intervention. A common problem faced by researchers is distinguishing change due to secular trends from change due to an
intervention. Interrupted time-series analysis has been shown to be effective in describing trends in retrospective time-series
and in detecting change, but methods are often biased towards the point of the intervention. Binary outcomes are typically
modelled by logistic regression where the log-odds of the binary event is expressed as a function of covariates such as time,
making model parameters difficult to interpret. )e aim of this study was to present a technique that directly models the
probability of binary events to describe change patterns using linear sections. Methods. We describe a modelling method that
fits progressively more complex linear sections to the time-series of binary variables. Model fitting uses maximum likelihood
optimisation and models are compared for goodness of fit using Akaike’s Information Criterion. )e best model describes the
most likely change scenario. We applied this modelling technique to evaluate hip fracture patient mortality rate for a total of
2777 patients over a 6-year period, before and after the introduction of a dedicated hip fracture unit (HFU) at a Level 1, Major
Trauma Centre. Results. )e proposed modelling technique revealed time-dependent trends that explained how the
implementation of the HFU influenced mortality rate in patients sustaining proximal femoral fragility fractures. )e technique
allowed modelling of the entire time-series without bias to the point of intervention. Modelling the binary variable of interest
directly, as opposed to a transformed variable, improved the interpretability of the results. Conclusion. )e proposed seg-
mented linear regression modelling technique using maximum likelihood estimation can be employed to effectively detect
trends in time-series of binary variables in retrospective studies.

1. Introduction

When randomised controlled trials are not feasible, re-
searchers often employ observational study designs to
evaluate the impact of an intervention. Change is usually
investigated using statistical analysis that compares pre-
intervention to postintervention data. Typically, statistical
methods range from simple group comparisons that ignore
temporal trends to more sophisticated interrupted time-
series (ITS) analyses [1, 2].

Group comparison is generally considered unreliable as
it can be influenced by secular trends which are often too

subtle to detect by data inspection alone [3]. By accom-
modating for temporal trends, ITS enables more reliable
conclusions but can suffer from bias because its application
is focused on a designated point in time (usually the point of
the intervention). Consequently, change unrelated to the
intervention can be erroneously credited to the intervention.
While statistical variations that aim to rectify these short-
comings do exist, they tend to be too mathematically
complex or too arbitrary to be reliable and amenable to
healthcare researchers [4].

When the outcome under consideration is a binary
event, modelling of the time-series usually involves logistic
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(logarithm of the odds) regression to ensure that the pa-
rameters of the model are mathematically sound. Linear
regression of a binary variable may result in predicted
probabilities greater than 1 or less than 0. Logistic regression
avoids this by finding the logarithm of the odds of the binary
event (logit). Despite being mathematically sound, any
change in the logit represents a change in the log odds rather
than the probability of the binary event, making the detected
change difficult to interpret.

)e aim of this study was to attempt to rectify these
issues by proposing a novel modelling and model-fitting
method which describes change patterns in the time-series
of a random binary event without bias to the point of the
intervention. )e proposed method uses piecewise linear
sections and finds the best combination of these sections
using a systematic procedure that addresses three impor-
tant limitations of commonly used change detection
techniques:

(1) Enforcing a specific model to fit the data: an ideal
modelling technique must allow multiple models to
be tested to determine which is the best description
of the time-series.

(2) Modelling the logarithm of the odds of a binary
variable: directly modelling the binary variable rather
than the logarithm of its odds allows for any tem-
poral variation/change to be expressed as that of the
probability of the random event.

(3) Bias to the point of the studied intervention: an ideal
modelling technique will allow an inflection point
between two or more temporal segments at time-
points separate to the intervention. )is is a sig-
nificant limitation of the classic ITS technique [5].

)e proposed modelling method is applied to a retro-
spective study investigating the trends in patient mortality
following fragility neck of femur fractures at a Level 1 Major
Trauma Centre over a period of six years.

2. Methods

2.1. Segmented Linear Regression to Model Time-Series.
We have previously published a modelling technique
employing segmented least-squares linear regression to fit a
set of progressively more complex models to the time-series
of outcome measures in a large retrospective study [5]. )e
models were either a simple plateau or a single straight line
or a combination of these by using adjoining sections.

Adjoining linear segments to model the time-
dependence of a variable are known as “splines” and have
received considerable attention in scientific literature [6–11].
Several models can be created, each model with a greater
number of splines or with a greater degree of freedom,
creating a set of nested models of increasing complexity.

In this study, we utilise the same set of progressively
more complex segmented linear regression models but
employ maximum likelihood regression rather than least-

squares regression and discuss its advantages when mod-
elling binary variables.

2.2. Models. We model the binary dependent variable y
(taking values 0 or 1) as a piecewise linear function of the
independent variable time t. )e following four models are
proposed to fit the time-series (ti, yi) of the binary data, i= 1
to n. 􏽢yi denotes the modelled values of the probability of the
binary event.

(i) “Plateau”: a simple average value
􏽢yi � k, for all ti. (1)

)is simplest of models assumes that the probability
of the event remains unchanged over the study
period and uses the average value of the time-series
of events to represent its probability.

(ii) “Line”: a single straight line of non-zero gradient
􏽢yi � c + m · ti, i � 1 to n. (2)

)is model determines two parameters (y-axis in-
tercept c and gradientm) that fit a straight line to the
data to describe the influence of time on probability.
Constraints must be placed to ensure values pre-
dicted by the model within the time range con-
sidered are between 0 and 1.

(iii) “Line-plateau/plateau-line”: a straight line joined to
a plateau or a plateau joined to a straight line.
Line-plateau:

􏽢yi � mti + c, for i � 1 to j,

􏽢yi � k, for i � j + 1 to n,
(3)

where k � mti + c.
Plateau-line:

􏽢yi � k, for i � 1 to j,

􏽢yi � m ti − tj􏼐 􏼑 + k, for i � j + 1 to n.
(4)

)is model joins a linear section to a plateau at a
knot to model the temporal variation of probability.
)e plateau can precede or follow the linear section.
)e model is described by three parameters, two of
which are the parameters of the straight line (y-axis
intercept c and slopem) and the third of which is the
time instant tj that corresponds to the knot. Con-
straints must be placed to ensure that the model
yields values 􏽢y between 0 and 1 over the entire time
interval.

(iv) “Line-line”: a straight line joined to another straight line
􏽢yi � m1ti + c, for i � 1 to j,

􏽢yi � m2 ti − tj􏼐 􏼑 + k, for i � 1 to j,
(5)

where k � m1ti + c.
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)ismodel fits two straight line sections which are joined
at a knot to model probability. Both sections can have non-
zero slopes and are joined at the time instant tj, thus re-
quiring a total of four parameters to describe it. Similarly,
constraints must be placed to ensure that values 􏽢yi are always
between 0 and 1.

2.3. Model-Fitting. )e parameters (intercepts, slopes, and
plateaus) of the proposed set of models are derived to
maximise the likelihood of the experimental data and, as
such, their values are maximum likelihood estimates (MLE)
[12]. )e plateau model is derived as the average value of y
which is also a MLE of the value k of equation (1). For the
other models we use constrained optimisation algorithms to
determine MLE values of the model parameters [13]. Such
algorithms are typically available as featured functions or
procedures in most current programming and statistical
packages.

More specifically, we seek values of the parameters m
and c for model (ii- “Line”), or the parameters m, c and j for
model (iii- “Line-Plateau/Plateau-Line”), or the parameters
m1,m2, c, and j for the model (iv- “Line-line”) that maximise
the likelihood function:

L � 􏽙
i

􏽢y
yi

i 1 − 􏽢yi( 􏼁
1− yi( ), (6)

or, equivalently, that maximise the (natural) logarithm of the
likelihood function:

ln L � 􏽘
i

yi . 􏽢yi + 􏽘
i

1 − yi( 􏼁 1 − 􏽢yi( 􏼁, (7)

where yi is the value of the ith binary event and 􏽢yi is the
probability predicted by the model for time ti.

Practically, we minimise the logarithm of the likelihood
(equation (7)) as the likelihood becomes unmanageably
small for data sets that feature more than a small number of
values.

We used the fmincon function in MATLAB®, Math-
works, to implement constrained optimisation to find those
values of the parameters of the linear sections that yield the
minimum of –ln L (which corresponds to the maximum of
ln L in equation (7)) for each of models (ii), (iii), and (iv)
[14]. )e need for constrained optimisation is necessary to
avoid yielding negative values of y or values of y exceeding 1
at any point in the time-series.

Finding the MLEs of the parameters in models (iii) and
(iv) involves selecting the knot that corresponds to the
largest among the MLEs of the parameters for i� 1 to n. )is
means splitting the data into two sets, evaluating the MLEs
for all possible values of the splitting point j and finally
selecting j as the one that yields the supremum amongMLEs.

A detailed description of the constrained optimisation
procedure that we used, or its background, is beyond the
scope of this work as these are well documented and featured
in most public domain programming languages [15].

2.4. Selecting theBest-FittingModel. Once all four models are
fitted, the best model must be selected to represent the best

description of how the time-series changes over the period
studied.

More complexmodels (those withmore parameters and/
or more segments) expectedly fit the data better than those
with fewer parameters, yielding larger likelihood values [16].
However, we applied the null hypothesis of most modelling
methods that states that unless a more complex model fits
the data significantly better, a simpler model should be
preferred. To compare models, we chose to use Akaike’s
information criterion (AIC) as a measure of the goodness of
fit of each model [17]:

AIC(q) � 2r(q) − 2 ln L(q)􏼐 􏼑, (8)

where q is the model descriptor q= (i), (ii), (iii), or (iv), rq is
the number of parameters used by the qth model, and ln(Lq)

is the logarithm of the likelihood of the qth model. It is
readily deduced that r(i) = 1 (plateau), r(ii) = 2 (single line),
r(iii) = 3 (line-plateau or plateau–line), and r(iv) = 4 (twin
line). )e AIC is a compromise between goodness of fit and
simplicity and is a widely accepted tool in model selection
[17, 18]. )e model with the smallest AIC is chosen as the
best model to describe the temporal change of the proba-
bility of the binary random event.

Although the model with the smallest AIC prevails, the
other models need not be discarded. )ey are compared to
the best-fitting model by noting their relative likelihood
RL(q) which is obtained as per Keith and Allison [18]:

RL(q) � e
AIC(best) − AIC(q)( 􏼁/2

. (9)

)e relative likelihood RL(q) can then be used to de-
termine whether the best model is significantly better than
another model (q) using typical hypothesis testing criteria
with a specific level of significance p. For example, if the
relative likelihoods RL(q)< 0.05 for all alternative models (q),
then this will be sufficient to reject all other models in favour
of the best-fitting one at the 5% level. In inferential statistics,
this means that the probability of erroneously rejecting the
other models is less than 5%.

Finally, the best model is used to describe the time-series
whereby it is possible to detect change and reveal secular
trends.

2.5. Application of the Modelling Technique to Hip Fracture
Patient Outcomes. )is modelling technique was applied to
a time-series of data from a Level 1 Major Trauma Centre in
the United Kingdom. As part of a retrospective study, pa-
tient survival data were collected from April 2011 to Sep-
tember 2016 for patients sustaining fragility fractures of the
proximal femur. In July 2015, on the 1551st day (2179th
fracture) of the study, a dedicated hip fracture unit (HFU)
was introduced within the trust. Results from this study,
including an evaluation on the effectiveness of the in-
troduction of the HFU using segmented least-squares linear
regression (without the adaptation for binary variables),
have been previously published [5]. Using the modelling
technique described in the current study, we reanalysed the
same retrospective dataset.
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We applied the modelling technique to three time-series:
30-day, 120-day, and 365-day patient mortality. Specifically,
our data consisted of two sets of 2851 binary values for 30-
day and 120-day mortality and a set of 2494 binary values for
365-day mortality over a period of 1995 days (365-day
mortality was monitored up to 12th January 2016 resulting in
fewer postintervention data points).

We used basic statistical tests to compare patient
mortality before the intervention (pre-HFU) to that fol-
lowing the intervention (post-HFU). Since the pre-HFU and
post-HFU mortality data are unpaired and categorical, we
used Fischer’s exact test for this purpose. Subsequently, we
compared the conclusions drawn from these basic statistical
tests with those drawn using our proposed modelling
technique, to assess the potential benefits of the technique.

3. Results

Scatter diagrams of binary event series are much less in-
formative when compared to scatter diagrams of continuous
variables when investigating time-dependent trends. Ex-
pectedly, with data values being grouped at y� 1 and y� 0, a
scatter diagram of patient mortality does not offer any
discernible information. Figure 1 is a scatter diagram for 30-
day mortality.

By fitting the set of four piecewise linear models to each
time-series, it is possible to discern trends. )ese are shown
in Figures 2–4 for 30-day, 120-day, and 365-day mortality
respectively. Data values are not shown as they are points at
either y= 0 or 1. )e best model for each time-series, as
designated using AIC, is shown by a solid red line while the
other three models (in black solid lines) are superimposed
on the graphs for comparison. A dashed vertical line depicts
the point of the intervention (introduction of the HFU).

3.1. 30-DayMortality. Using Fischer’s exact test, we found a
significant reduction in average 30-daymortality from 5.47%
pre-HFU to 3.13% post-HFU (p � 0.014).

)e best model to describe the time-series is the line-line
(iv) model (Figure 1). Plateau is 0.043 as likely, line is 0.793
as likely, and plateau-line is 0.293 as likely. )e plateau-line
model is indistinguishable from the line model in the figure
as its plateau section occupies a very brief initial phase only.

3.2. 120-DayMortality. Using Fischer’s exact test, we found
a non-significant drop in 120-day mortality from 12.68%
pre-HFU to 10.13% post-HFU (p � 0.078).

)e best model to describe the time-series is the plateau-
line (iii) model. Plateau is 0.013 as likely, line is 0.2144 as
likely, and line-line is 0.7011 as likely.

3.3. 365-DayMortality. Using Fischer’s exact test, we found
a small and non-significant reduction in 365-day mortality
from 21.46% pre-HFU to 20.57% post-HFU (p � 0.769).

)e best model to describe the time-series is the line (ii)
model. Plateau is 0.185 as likely, line-plateau is 0.6269 as
likely, and line-line is 0.7098 as likely.

4. Discussion

Using a novel technique for modelling binary variables in
retrospective time-series, this study demonstrates the ad-
vantage of piecewise linear sections in conveyingmeaningful
information. We employed the presented technique to
model change in hip fracture patient outcomes to evaluate
the effectiveness of introducing a dedicated HFU.

4.1. Model Application to the HFU Study. Following pre-
and post-intervention group comparison, we inferred that
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Figure 1: Scatter diagram of the time-series of 30-day mortality.
Dashed vertical line is the onset of the HFU. Mortality data values
are shown at either y� 0 or 1.
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Figure 2: Modelling of the time-series of 30-day mortality. Solid
red line is the best model. Solid black lines are the other models.
Dashed vertical line is the onset of the HFU. Data values are not
shown as they are points at either y� 0 or 1. (i) Plateau model
􏽢yi � 0.0505. (ii) Line model 􏽢y � − 0.000020t+ 0.0711. (iii) Plateau-
line model 􏽢y � 0.0706 for t� 0 to 25.1 days and 􏽢y � − 0.000020
(t − 25.1) + 0.0706 for t� 25.1 to 1995 days. (iv) Line-line model
􏽢y � − 0.000016t+ 0.0683 for t� 0 to 1880.4 days and 􏽢y � − 0.000328
(t − 1880.4) + 0.0375 for t� 1880.4 to 1995 days.
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there was a significant reduction in average 30-day mortality
from 5.47% pre-HFU to 3.13% post-HFU (p � 0.014).
However, applying ourmodelling technique and finding that
the line-line is the best model suggest that 30-day mortality
declined at a rate of 0.06% per month from 6.8% at the onset
of the study and then accelerated to a rate of decline of 1%
per month after the 1730th day reaching a near-zero value at
the end of the study period.)e models help explain that the
difference found by group comparison via statistical testing
was not an immediate consequence of the HFU but the result
of a gradual decline which was nonetheless accelerated about
a year after the HFU. Bearing in mind that models are not
necessarily exclusive, the single line model is a close second-
best model. It can therefore be concluded that 30-day
mortality did not stay unchanged (p � 0.041) but decreased
over the entire study period. Its decrease seems to have
accelerated (but this does not reach significance) after about
a year following the onset of the HFU.

Pre- and postintervention group comparison inferred
that there was a nonsignificant drop in 120-day mortality
from 12.68% pre-HFU to 10.13% post-HFU (p � 0.078).)e
plateau-line is the best model, and this supports the effec-
tiveness of the HFU in reducing 120-day mortality especially
as the knot (joining point) is shortly after the onset of the
HFU. Although group comparison found a nonsignificant
change, the likelihood of 120-day mortality to be a mere
plateau is very small (p � 0.013). It can therefore be con-
cluded that the HFU caused a significant but gradual re-
duction in 120-day mortality which started to appear about
six months after the onset of the HFU.

Pre- and postintervention group comparison inferred
that there was a small and nonsignificant reduction of

average 365-day mortality from 21.46% pre-HFU to 20.57%
post-HFU (p � 0.769). Among the four models, the line was
deemed the best model. As relative likelihoods are rather
large, this does not designate any of the other models as
significantly worst. It is therefore impossible to exclude the
possibility that 365-day mortality remained unchanged.
Bearing in mind that many patients sustaining proximal
femoral fragility fractures are frail with an already elevated
preinjury mortality rate, it may not be surprising that 365-
day mortality is less influenced by improvement in hip
fracture management when compared to shorter-term
survival.

4.2. Evaluation of the Modelling Technique. )e current
study demonstrates how temporal analysis using the pro-
posed modelling method can elucidate the outcomes of
group comparisons which are known to be unreliable es-
pecially when the data spans a long period. Importantly, by
modelling the entire time-series without bias toward the
point of intervention, the proposed modelling method offers
an unbiased picture of the temporal evolution of the out-
come measures and provides a valuable tool in the retro-
spective assessment of interventions. It allows delayed or
anticipatory effects that may be connected to the in-
tervention to be revealed without extra computation [8].
Modelling the binary variable of interest directly, as opposed
to modelling a transformed variable as in logistic regression,
improves the interpretability of the results.

We have previously published the use of segmented linear
regression and demonstrated its application to hip fracture
patient outcomes [5]. Although ITS is the considered the gold
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Figure 3: Modelling of the time-series of 120-day mortality. Solid
red line is the best model. Solid black lines are the other models.
Dashed vertical line is the onset of the HFU. Data values are not
shown as they are points at either y� 0 or 1. (i) Plateau model
􏽢y � 0.1221. (ii) Line model 􏽢y � − 0.000030t+ 0.1531. (iii) Plateau-
line model 􏽢y � 0.1291 for t� 0 to 1358.1 days and
􏽢y � − 0.000341t+ 0.1291 for t� 1358.1 to 1995 days. (iv) Line-line
model 􏽢y � − 0.000015t+ 0.1423 for t� 0 to 1731.2 days and
􏽢y � − 0.000328 (t − 1731.2) + 0.1172 for t� 1731.2 to 1995 days.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

HFUPre-HFU

Time/days

2011 2012 2013 2014 2015 2016

0

0.05

0.1

0.15

0.2

0.25

0.3

36
5-

da
y 

m
or

ta
lit

y 
ra

te

Figure 4: Modelling of the time-series of 365-day mortality. Solid
red line is the best model. Solid black lines are the other models.
Dashed vertical line is the onset of the HFU. Data values are not
shown as they are points at either y� 0 or 1. (i) Plateau model
􏽢y � 0.2144. (ii) Line model 􏽢y � − 0.000037t+ 0.2481. (iii) Line-pla-
teau model 􏽢y � − 0.000047t+ 0.2549 for t� 0 to 1711 days and
􏽢y � 0.1912 for t� 1711 to 1747.4 days (iv) Line-line model
􏽢y � − 0.000054t+ 0.2580 for t� 0 to 1583.3 days and 􏽢y � 0.000460
(t − 1583.3) + 0.1834 for t� 1583.3 to 1747.4 days.
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standard for evaluating the effectiveness of interventions in
retrospective time-series, unlike our technique, it does not
allow multiple linear segments to describe the time-series
and is biased to detecting change at the point of the in-
tervention [5].

In this study, we developed the segmented modelling
technique further and tailored it to binary variables by using
MLE. )is exhibits the following advantages:

(1) Using linear regression, it is possible that the best-fit
lines will predict unrealistic values of greater than 1
or smaller than 0. By using MLE, we avoid this
possibility.

(2) When using F-tests it is necessary to ensure nor-
mality of residuals, though this is impossible when
studying binary variables. By using AIC instead of
F-tests, we overcome this hurdle.

(3) Previously, we employed F-tests to determine the
best model that was significantly better than any
other model. However, it is pragmatic to conclude
that more than one model may be a good descriptor
of the time-series. )e technique presented in this
paper allows us to exclude unlikely models (p< 0.05)
when compared to the best model but not imme-
diately reject other models with p> 0.05. Conse-
quentially, we can deduce a relative likelihood for
each acceptable (p> 0.05) model compared to the
best model. )is provides researchers with more
information and reflects the possibility that one
model is not necessarily the only plausible de-
scription of the time-series.

4.3. Limitations. )e set of proposed models are limited to
two adjoining linear segments and as such may be unable to
track more complex change over a long time-period. To
address this, the method could be extended to include more
adjoining linear segments, but this needs to be undertaken
with caution to prevent overcomplicating a simple and
meaningful approach to modelling trends.

Second, the method does not always yield certain “yes/
no” answers for determining the effectiveness of an in-
tervention; more than one model can be deemed “accept-
able” (p> 0.05) when compared to the best model. However,
given the plethora of possibilities of change and trends
before and after interventions, our method is not intended to
always yield a clear answer and represents a pragmatic,
informative tool for researchers investigating retrospective
time-series.

Finally, application of the method requires some dedi-
cated programming as most statistical packages do not allow
users to fit more than one linear section.

4.4. Future Work. )e proposed sequence of models ranges
from a single plateau to more complex forms, including a
twin line that can track more complex temporal change. )e
method can be extended to include higher order models with
three of more segments to accommodate yet more complex
change. Moreover, disjointed segments can be allowed to

model sudden change [4, 18]. Adaptations such as including
autoregressive terms to account for periodicity can also be
implemented tomodel events that exhibit seasonal variation.
In this case, the periodic component of variation should be
subtracted from the model in order to allow for the detection
of other (non-seasonal) change which may be attributed to
an intervention [19].

5. Conclusion

)e proposed segmented linear regression modelling tech-
nique can be used to detect trends in time-series of binary
variables in retrospective studies. )is can be used to
evaluate the effectiveness of healthcare interventions and to
highlight secular trends.
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