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Two dimensional (2D) materials are a rapidly growing area of interest for wearable electronics, due to their flexible and 

unique electrical properties. All-textile based wearable electronic components are key to enable future wearable electronics. 

Single component electrical elemements have been demonstrated however heterostructure-based assemblies, combining 

eletrically condutive and dieletric textiles  such as all-textile capacitors are currently missing. Here we demonstrate a 

superhydrophobic conducting fabric with a sheet resistance ~2.16 kΩ □-1, and a pinhole-free dielectric fabric with a relative 

permittivity εr ~ 2.35 enabled by graphene and hexagonal boron nitride inks, respectively. The different fabrics are then 

integrated to engineer the first example of an all-textile-based capacitive heterostructure with an effective capacitance ~ 26 

pF cm-2 and flexibility down to at least 1 cm bending radius. The capacitor sustains 20 cylces of repeated washing and more 

than 100 cycles of repeated bending. Finally, an AC low-pass filter with cutoff frequency ~ 15 kHz is integrated by combining 

the conductive polyester and the capacitor.These results pave the way toward all-textile vertically integrated electronic 

devices.

1 Introduction 

Wearable electronics require flexibility, durability, resistance to 

washing, comfortable sensation and lightweight components.1-

3 In recent years, electronic textiles, or fiber-based clothing 

systems have emerged as the ideal platforms for future 

wearable electronics4, 5 because of their softness, breathability 

and biocompatibility, compared to other substrates, such as 

plastic, paper or elastomers6. Electronic fabrics composing 

these devices encompass conductors,7 resistors,8 capacitors,9 

transistors,10 have been demonstrated using metals,11 

polymers12 or carbon-based materials13 through various 

methods of textile integration, such as coating,14 deposition,15 

spinning,16 printing,17 and chemical functionalization.18 

However, the stability of conductive polymer to washing 

strongly affects the fabric performance. For instance, ref19 

showed the resistances of conductive interconnections on 

textiles prepared by Poly(3,4-ethylenedioxythiophene)-

poly(styrenesulfonate) (PEDOT:PSS) increased by one order of 

magnitude after 15 washing cycles.  On the other hand, the low 

biocompatibility of metallic fibre composites makes them 

hardly compatible with biological cells. In fact, metal 

nanoparticles used to fabricate textile electronics such as 

nickel,20 silver21 and copper22 all have shown cytotoxicity. Ref22 

proved that the survival of hepatocytes (i.e. liver cells) after 

exposure to Cu nanoparticles was no more than 60% as 

assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) assay (which is a method to 

assess cell metabolic activity).23 In addition, the hydrophobic 

property of fabrics are highly common on technical textiles and 

would have significant role on protecting wearable electronics24 

and improve their washability, thus making it a requirement. 

Graphene and other two-dimensional (2D) materials show 

outstanding thermal, electrical, optical and mechanical 

properties,25 and they can be easily processed in solution26 in 

large quantities27,28 to produce printable inks29,30 and thin 

films.31 The environmental-stability and biocompatibility of 

graphene inks32,33 has recently sparked huge interest in the 

textile industry enabling environmentally-friendly, bendable, 

and washable conductive fabric34 and polymer.35 Examples of 

graphene-based conductive textiles36,37 currently employ 

graphene oxide (GO) because of its oxygen functional groups 

such as epoxide (C-O-C), hydroxyl (-OH), and carboxyl (-

COOH),36 providing strong affinity to cotton, wool and silk 

textiles, via hydrogen bonding. The GO fabric usually requires a 

chemical or thermal reduction step, to improve the 

conductivity, during the graphene fabric manufacturing 

process,38,39 however high temperature and strong chemical 

reactions might damage the textile fibers.40,41 Recently, a 

graphene-cotton strain sensor with sheet resistance (Rs) as low 

as 500 Ω □-1 has been demonstrated using a low-temperature 

(180 °C) reduced graphene oxide (RGO) coating via hot-press 34. 

However, RGO still retained a more defective structure than the 

pristine graphene counterpart. In this regard, fabric 
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incorporating pristine graphene could offer a cheap and 

environment-friendly option for highly conducting and flexible 

textiles, while avoiding the reduction step. 

The future development of wearable electronic textiles 

requires also indispensable components such as charge storage 

devices in the form of textiles, able to store electric,42,43 

thermal,44 solar energy.45 CNT/graphene hybrid textile 

electrodes and a filter paper separator are reported to operate 

as flexible and wearable electrochemical capacitors in Na2SO4 

electrolyte.46 However, capacitors using aqueous electrolytes 

have handling difficulties and the potential risk of leakage,47 

making it incompatible with wearable devices. Pristine 

graphene and hexagonal boron nitride (h-BN) inks produced by 

liquid-phase exfoliation (LPE) have enabled printed graphene/h-

BN/graphene solid state capacitor on PET,48 and graphene/h-BN 

heterostructure FETs and integrated circuits on textile,30. 

Despite these advances, the combination of electrical textile 

components into an electronic textile heterostructure is still 

missing from literature and will be essential to advance the 

functionality of wearable electronics. 

Here we demonstrate conducting graphene/polyester and 

dielectric h-BN/polyester textiles by uniformly coat polyester 

fabric with graphene and h-BN inks. The two functional textiles 

are then vertically stacked into an all-fabric graphene/h-BN 

capacitor heterostructure achieving a capacitance of ~ 26 pF cm-

2. 

2 Results and discussion 

2.1 Graphene and h-BN Inks 

We prepare the graphene and h-BN inks by ultrasonication of 

graphene nanoplatelets (GNP) in ethanol and h-BN flakes in 

deionized water respectively (see ‘Methods’). We disperse the 

flakes in solvents with a low boiling point (< 101 °C) to easily 

enable solvent removal at room temperature, hastening the 

throughput of the ‘dip and dry’ process. The concentrations of 

GNP (cGNP) and h-BN (ch-BN) flakes in the inks are estimated from 

the optical absorption spectra of GNP (black curve) and h-BN 

(red curve) inks in Fig. 1(a) via the Beer-Lambert law. 

Considering the absorption coefficients (at 660 nm) of GNP 

(2460 L g-1 m-1)26 and h-BN (2350 L g-1 m-1) 49 with the respective 

dilution ratio, we obtain cGNP ~ 3.77 mg ml-1 and ch-BN ~ 0.20 

mg ml-1. 

We monitor the quality of GNP and h-BN flakes by Raman 

spectroscopy. Fig. 1(b) shows characteristic peaks of GNP at ~ 

1337, ~ 1574 and ~ 2687 cm-1 (black curve), which correspond 

to the D, G, and 2D band, respectively. While G peak is always 

present in GNP, originating from the E2g phonon vibration mode, 

the D peak is activated by a defect.50, 51 However we mainly 

attribute the origin of most of these defects to the edges of GNP, 

rather than to defects in the basal plane.52 The 2D peak is the 

second order resonance of the G peak and no defects are 

required for its activation. For the h-BN (red curve), a single 

peak appears at ~ 1367 cm-1 corresponding to E2g phonon 

vibration mode.53,54 

The atomic force microscopy (AFM) statistics reveal the 

lateral size (S) and thickness (t) of GNP and h-BN flakes. Figure 

1c shows the distributions of the lateral size of GNP (black) and 

h-BN flakes (red), respectively. The log-normal fits (black and 

red curves) are peaked at ~ 2189 nm and ~ 567 nm, respectively. 

Figure 1d plots the thickness distributions of GNP (black) and h-

BN (red) flakes, respectively. The log-normal fit is peaked at ~ 5 

nm for GNP (black curve), ~ 31 nm for h-BN flakes (red curve), 

indicating the presence of single and multi-layer flakes with an 

average number of layers per flake of ~ 12 for GNP, and ~ 89 for 

h-BN, assuming an approximate 1 nm water layer55 and 

interlayer distance of 0.34 nm. 

 
Fig. 1 (a) The optical absorption spectra of ethanol-based GNP 

ink (black curve) and water-based h-BN ink (red curve). (b) The 

Raman spectra of GNP (black curve) and h-BN (red curve) flakes 

acquired on Si/SiO2 substrate. The (c) lateral size and (d) 

thickness log-normal distributions of GNP and h-BN flakes from 

atomic force microscopy statistics. 

 

2.2 GNP/polyester and h-BN/polyester Fabrics 

‘Dip and dry’ process is a one-step common approach to deposit 

functional materials on textile by immersion into solution 

followed by solvent removal. We prepare GNP/polyester and h-

BN/polyester fabrics as follows. We use repeated ‘dip and dry’ 

processes (see ‘Methods’) of a pristine polyester fabric in GNP 

and h-BN inks respectively, obtaining GNP textile 

(GNP/polyester) from GNP ink and polyester, and h-BN textile 

(h-BN/polyester) from h-BN ink and polyester. An additional 

hot-press (200 °C) step on GNP/polyester is performed to 

enhance the adhesion between GNP and polyester, following 

the strategy proposed in ref.56 

The preparation of both functional textiles is monitored and 

characterized by optical microscopy, SEM, electrical and contact 

angle measurements as follows. Fig. 2(a) shows the optical 

image of the white pristine polyester fabric, which then is 

coated by GNP ink in Fig. 2(b). Fig. 2(c) shows the SEM 

micrograph of the pristine polyester fabric organized in a 
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compact woven textile with fiber size ranging from 15 to 20 μm, 

while Fig. 2(d) shows the SEM micrograph of GNP/polyester 

fabric coated with 10 repeated cycles of GNP by ‘dip and dry’ 

process. The fabric surface is uniformly covered with the GNP 

deposited layer and both the weave structure and the gaps 

between the fibers can hardly be seen after the coating. Similar 

results have been reported by ref14 for graphene nanosheets 

coated onto polyester fabric by a similar ‘dip and dry’ method, 

which are attributed to the strong adhesion of graphene 

nanosheets on polyester via the strong Van Der Waals 

interactions between them, as well as between neighbouring 

graphene nanosheets.57 

 
Fig. 2 The optical microscopy of (a) pristine polyester fabric and 

(b) polyester fabric coated by GNP ink. The SEM micrographs 

revealing the micromorphology of (c) pristine polyester and (d) 

GNP/polyester (after 10 cycles of ‘dip and dry’ GNP coating). 

 

We also monitor the mass loading (mGNP) of GNPs onto 

GNP/polyester fabric as a function of ‘dip and dry’ process 

cycles from Fig. 3(a). Importantly, we notice that the mGNP as a 

function of coating cycles increases almost linearly (where the 

red line shows the linear fit in Fig. 3(a)) over 10 cycles and 

eventually reaching ~ 1 mg cm-2. 

The electrical properties of the GNP/polyester fabric are then 

investigated by measuring Rs as a function of the ‘dip and dry’ 

cycles as shown in Fig. 3(b). The Rs decreases asymptotically 

reaching a stable value after 7 cycles, going from Rs ~ 573 MΩ 

□-1 after the 1st cycle (mGNP ~ 0.11 mg cm-2), to Rs ~ 15.78 kΩ 

□-1 after the 8th cycle (mGNP ~ 0.80 mg cm-2) and Rs ~ 15.13 kΩ 

□-1 after the 10th cycle (mGNP ~ 1.06 mg cm-2). We limit the 

coating cycle repetitions to 10 due to the negligible reduction in 

Rs beyond the 7th cycle (< 3.9 % from the 8th cycle to the 10th 

cycle). 

Temperature annealing via hot-press has shown to improve 

the adhesion of a graphene-based ink coating onto a fabric 

substrate.56 We treat our GNP/polyester with a hot-press step 

(4 min at 200 °C) to promote the adhesion between graphene 

flakes and polyester fabric. Considering the pristine polyester 

melting point between 205 to 260 °C, we select 200 °C as 

suitable hot-press temperature that approaches the melting to 

improve adhesion, but not beyond the melting temperature to 

avoid weakening the mechanical property of polyester fabric. 

Then we investigate the Rs of GNP/polyester (mGNP ~ 1.06 mg 

cm-2) as a function of hot-press time. Fig. 3(c) shows Rs 

decreasing from ~ 6.21 kΩ □-1 (after 30 sec annealing), to ~ 4.68 

kΩ □-1 (after 2 min annealing) before plateauing to ~ 2.16 kΩ □-

1 (beyond 3 min annealing). The little increase on Rs from 3 min 

to 5 min of hot-press is irrelevant as their values fall within the 

error bars. Fig. 3(d) exhibits the comparison of the SEM cross 

sectional micrographs of GNP/polyester before and after the 

hot-press step (200 °C, 4 min), with an evident difference in the 

micromorphology of the fabric. 

 
Fig. 3 (a) The GNP loading as a function of ‘dip and dry’ cycles, 

where the red line shows the linear fit. Plots of Rs of 

GNP/polyester as a function of (b) ‘dip and dry’ cycles from 1 to 

10 (the insert shows a zoom in the range of 4 to 10 cycles), and 

(c) hot-press time across 5 min. (d) The comparison of cross-

sectional SEM micrographs of GNP/polyester before and after 

the hot-press step (200 °C, 4 min). 

 

Such difference in micromorphology caused by the hot-press 

step has already been reported for pristine graphene/cotton56 

and GO/cotton fabrics.34 This could certainly contribute to 

improve the conductivity of our GNP/polyester as already 

demonstrated for graphene inks.56 However, given the almost 

irrelevant Rs reduction in the first minute of heat-treatment, we 

tend to exclude a main role of the mechanical pressure as we 

rather attribute the Rs reduction to an improvement of the 

crystallinity of the GNP flakes. This is further supported by the 

Raman spectra (in the 1000 – 2000 cm-1 region, Fig. 4(a)) of 

GNP/polyester, as a function of hot-press time. The inset shows 

the reduction in the ratio of the intensity of D peak, I(D) over 

the intensity of the G peak, I(G) as a function of the hot-press 

time. I(D)/I(G) decreases from ~ 0.85 before hot-press 

treatment to ~ 0.5 between 1 – 5 min of hot press time, 

suggesting a slight increase in the average size of the sp2 

domains and deoxygenation in the functional groups,29 as 

shown for a GO/cotton fabric in our previous work.34 
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Hydrophobicity is key to protect wearable electronics. Fig. 

4(b) shows water droplets spherically assembled on a 

GNP/polyester after the hot-press step confirming water-

resistant performance. To further investigate the hydrophobic 

properties of our fabric, we measure the contact angle (CA) and 

sliding angle (SA) of GNP/polyester, before and after the hot-

press step. Fig. 4(c) and (d) show the CA (black curve) and SA 

(blue curve) as a function of ‘dip and dry’ cycles and hot-press 

time, respectively. Before the hot-press step, the 

GNP/polyester (mGNP ~ 1.06 mg cm-2) shows CA ~ 141.41° and 

SA ~ 21°, while the pristine polyester only possess CA ~ 80°. The 

hot-press step (4 min) causes it to reach CA ~ 153.28° and SA ~ 

5°, consistent with a superhydrophobic behavior (which is 

defined as a surface displaying a CA of water greater than 150° 

and a SA less than 10°),58 which is generally formed by a 

hydrophobic materials with rough micro/nanostructures.59 It is 

worth noting that functional fabrics prepared by coating GO or 

RGO on textile achieved a maximum CA of ~ 143° 60 and ~ 140°,61 

respectively. Hence, the super-hydrophobic behaviour in our 

GNP/polyester fabric results from the lower amount of 

hydrophobic polar groups on hot-pressed GNPs with respect to 

RGO. 

The h-BN/polyester was also prepared by repeated ‘dip and 

dry’ coating process of polyester fabric in h-BN ink. The h-BN 

mass loading (mh-BN) reaches 0.76 mg cm-2 after 12 cycles, but 

can hardly be increased by further coating cycles. The thickness 

(t) of h-BN/polyester is t ~ 0.04 mm. 

 
Fig. 4 (a) The Raman spectra (in the 1000 – 2000 cm-1 region) of 

GNP/polyester as a function of hot-press time. (b) The 

GNP/polyester (mGNP ~ 1.06 mg cm-2) hydrophobic property 

after the hot-press step (200 °C, 4 min). The CA (black curves) 

and SA (blue curves) as a function of (c) ‘dip and dry’ cycles from 

1 to 10, and (d) hot-press time. 

 

2.3 Flexible Textile-Based Capacitor 

The flexible textile-based capacitor (FTC) is composed of the 

GNP/polyesters (Rs ~ 2.16 kΩ □-1, CA ~ 153.28°, SA ~ 5°) and the 

h-BN/polyester (mh-BN ~ 0.76 mg cm-2, t ~ 0.04 mm) as 

electrodes and dielectric layers, respectively. We design the FTC 

by stacking these functional textiles to form a 

conductive/dielectric/conductive (CDC) sandwich-like 

heterostructure, resembling that of a typical parallel plate 

capacitor, following the schematic in Fig. 5(a). The CDC 

heterostructure is sealed at the edges with 0.1 mg of 

polyurethane (Puruikai Co.,Ltd, China), to avoid disturbing the 

contact between fabrics. Then it is pressed mechanically using 

a Manual Hydraulic Press (Specac, UK) at 5 kPa for 1 min at 

ambient temperature, to improve adhesion between the layers. 

Subsequently, we heat the CDC heterostructure at 70 °C for 1 h 

to anneal the polyurethane and create the FTC. Fig. 5(b) shows 

the cross-section images of the FTC heterostructure. The 

specific design of the FTC is described in Fig. 5(c), where the h-

BN/polyester dielectric has a lager width (w ~ 1.5 cm) than the 

GNP/polyester (w ~ 1.0 cm), resulting in an area of the capacitor 

(A) of ~ 1 cm2 (1 cm × 1 cm). 

We also consider the case where the pristine polyester and 

CMC present in the dielectric fabric may affect the capacitance. 

Hence, to quantify the effect of h-BN on the dielectric layer of 

the textile capacitor, we create a control capacitor (FCC) using 

same GNP/polyester electrodes and a polyester dielectric fabric 

coated with CMC only in the same proportion used for the FTC, 

but excluding the h-BN flakes. Impedance spectroscopy (IS) is 

used to characterise the capacitance of FTC and FCC as it is most 

accurate at measuring capacitances in the pF range, typically 

not achievable by cyclic voltammetry (CV). 30Bode plots of FTC 

and FCC are shown in Fig. 5(d) and (e), where the impedance 

amplitude (|Z|) as a function of frequency is measured with an 

impedance analyzer. Using an equivalent circuit model of a 

resistor and capacitor (R-C) in series, the impedance amplitude 

can be expressed as |Z|= (R2 + (2π f C)-2)0.5, where Z is the 

impendence, R is the series resistance, f is the frequency and C 

is the capacitance.48 The capacitance per unit area of the FTC 

(CFTC) is ~ 26 pF cm-2 while the FCC only shows a maximum 

capacitance (CFCC) of ~ 5 fF cm-2, demonstrating that the charge 

storage contribution due to the CMC polymer is negligible, and 

CFTC is mainly originating from the presence of h-BN flakes. 

We can estimate the approximate relative permittivity (εr) of 

h-BN/polyester from the relationship formula: εr = C d (ε0 Aeff)-

1,48 where the d is distance between two electrodes, the ε0 is 

the permittivity of the vacuum and Aeff is the effective area of 

the capacitor. However, the texture and roughness of the 

GNP/polyester and h-BN/polyester can make partial, full or no 

contact with each other in the FTC, thus affecting Aeff. This is 

confirmed by the roughness of the weave observed on surface 

of GNP/polyester (mGNP ~ 0.69 mg cm-2) in Fig. 5(f) and the clear 

textile of ‘hills’ and ‘valleys’ in the GNP/polyester and h-

BN/polyester (see Fig. 5(b)) caused by the weave. To quantify 

this contribution on the final Aeff, we describe the woven 

structure of the textile as shown in Fig. 5(g). The whole fabric 

can be subdivided into many repeated units as red squares (area 

of single red square is marked as A0), where four ‘hills’ (light red 

squares) exist in single repeated units and their area are marked 

as A1, A2, A3, A4, separately. We then define the contact ratio 

(CR) as (A1+A2+A3+A4)/A0, which results in CR = 0 when 

A1+A2+A3+A4 = 0 (i.e. no contact between GNP/polyester and h-
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BN/polyester, giving Aeff = 0) and CR = 1 when A1+A2+A3+A4 = A0 

(i.e. full contact between GNP/polyester and h-BN/polyester is 

made, giving Aeff = A). We estimated a CR ~ 0.5 by contrast 

analysis (see ‘Methods’) on SEM micrographs, acquired on 

GNP/polyester and h-BN/polyester (Fig. 1S) meaning Aeff = 0.5 

A. Using C ~ 26 pF cm-2, A ~ 0.5 cm2, ε0 ~ 8.854 × 10-12 F m-1 and 

d ~ 0.04 mm as the values for our FTC, we obtain approximate 

relative permittivity of εr ~ 2.35 for h-BN/polyester, which is in 

line with values reported previously for h-BN inks (i.e. εr ~ 2 – 8) 
30, 48 and greater than the dielectric permittivity of polyester (εr 

~ 1.44).62  

 
Fig. 5 (a) The schematic of the textile-based capacitor 

integrating GNP/polyesters as electrodes and h-BN/polyester as 

dielectric. (b) The cross-sectional SEM micrograph of FTC 

showing the functional textile heterostructure. (c) The layout of 

FTC (left) showing h-BN/polyester and CMC/polyester optical 

image (right). Typical Bode plots obtained for (d) FCC and (e) FTC, 

which follow an R-C equivalent circuit model. (f) The top-view 

SEM micrograph of GNP/polyester (mGNP ~ 0.69 mg cm-2) and (g) 

the diagram of the weave in the fabric with the repeating units 

in red. 

 

The flexibility (measured in terms response to uniaxial 

bending) is an important performance metric for wearable 

electronics. The flexibility of the GNP/polyester electrodes and 

the FCT is tested by measuring Rs and C, respectively, as a 

function of different bending radii (using rods from 3.0 to 1.0 

cm diameter). Fig. 6(a) shows a photograph of the 

GNP/polyester (mGNP ~ 1.06 mg cm-2, after 4 min of hot-press) 

under 180° bending. Fig. 6(b) shows the Rs change (R/R0), 

defined as the value of Rs (R) upon bending over the original 

value of Rs (R0) as a function of bending radius, where the ∞ 

corresponds to the GNP/polyester in its original flat state. We 

obtained R/R0 ~ 0.93 at a bending radius of 1.0 cm, 

demonstrating a negligible change in Rs with bending, 

compared to recently reported Rs response to bending of am 

RGO-coated cotton fabric showing more than one order of 

magnitude at a bending radius of 2.5 cm.34 This large change 

was attributed to the cracking and subsequent sliding and 

rearranging of the fractured islands of RGO film under tension.34 

Here we attribute the small Rs change to the transition between 

cracks and overlaps34 on the conductive coating of textile. As 

described in Fig. 6(c), there is a counterbalancing effect 

between the two sides of the fabric upon bending. The cracks 

on the compressed side of GNP/polyester tend to be narrower 

and eventually overlap, resulting in a reduced Rs. On the other 

hand, the cracks on the side under tension would widen, thus 

resulting in an increase of Rs, which compensates the overall 

resistance keeping Rs unchanged. 

We also tested the flexibility of FTC (C ~ 17.83 pF cm-2), under 

the same bending condition as above. Fig. 6(d) shows an image 

of FTC while bending. The C change (C/C0, defined as the value 

of C upon bending over the original value of C) of FTC is 

presented in Fig. 6(e) as a function of the bending radius. The 

estimated C/C0 is less than 4% across different bending radii: ~ 

0.99 (radius ~ 3.0 cm), ~ 1.02 (radius ~ 2.5 cm), ~ 0.98 (radius ~ 

2.0 cm), ~ 0.97 (radius ~ 1.5 cm), ~ 1.03 (radius ~ 1.0 cm). It is 

important to note that C in our devices is acquired while 

bending, unlike previous reports where C acquisition is 

performed after bending.63-65,66 The FTC in our work shows a 

consistent response under flexion, which is essential in textile 

electronics. We further investigate the stability of FTC after 

repeated bending and washing cycles. The FTC (see 

Supplementary Information) can sustain 20 cycles of repeated 

washing and more than 100 cycles of repeated bending. 

In order to demonstrate the potential applications of FTC, we 

designed an all-textile AC low-pass filter device. The R-C series 

filter is composed of an FTC (C ~ 11.82 pF) and a GNP/polyester 

fabric engineered to match a resistance of 1.5 MΩ. The 

response versus frequency in decibel (Bode plot) of the filter (fig. 

6f) shows a typical curve of a low-pass filter with a cutoff 

frequency at ~ 15 kHz, from the formula of f = (2πRC)−1. 67 

 
Fig. 6 (a) The GNP/polyester upon 180° bending. (b) The R/R0 of 

GNP/polyester as a function of bending radius. (c) The proposed 

mechanism resulting in negligible Rs change in GNP/polyester 

during bending. (d) The FTC upon bending. (e) The C/C0 of FTC 

as a function of bending radius. (f) An all-textile AC low-pass R-

C filter. 

3 Methods 

3.1 Formulation of GNP and h-BN Inks 
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The graphene (Cambridge Nanosystems, GR1) produced by 

cracking methane and carbon dioxide in a plasma torch, are 

dispersed in ethanol via ultrasonic bath (Fisherbrand FB15069, 

800 W) for 3 h to create a GNP ink. The h-BN flakes are dispersed 

in deionized water via ultrasonic bath for 24 h with 

carboxymethylcellulose sodium salt (CMC, average molecular 

weight MW = 700,000) (4 mg ml-1) as polymer stabilization 

agent.30 Then the h-BN dispersion is centrifuged (Beckman 

Coulter Proteomelab XL-A, with a SW 32 Ti swinging bucket 

rotor) at 3000 rpm for 20 min, and the top 80% of the 

centrifuged dispersion is collected for further characterization. 

 

3.2 Preparation of Conductive and Dielectric Textiles 

Commercial polyester fabrics (unit mass of 6.73 mg cm-2) are 

cleaned by deionized water to remove the dust and 

contaminants, and then is dried. Subsequently, the cleaned 

polyester fabrics (1 cm × 2 cm), are immersed into the GNP ink 

with continuous stirring for 3 min, then transferred on glass 

slides and dried in an oven at 60 °C for 5 min to evaporate the 

ethanol solvent. The above process is defined as ‘dip and dry’ 

coating and can be repeated for several cycles to prepare 

GNP/polyester with a higher concentration of GNP flakes. The 

fabrication of h-BN/polyester is similar to that of GNP/polyester, 

using 12 cycles of repeated ‘dip and dry’ processes by h-BN ink 

(with 4 mg ml-1 CMC). The hot-press step of GNP/polyester is 

set at 200 °C on a Pixmax G3 SWING 38. 

 

3.3 Characterization 

The Rs of GNP/polyester is tested by a source measure unit SMU 

Instruments (KEITHLEY 2400 SourceMeter, US) and a 

multimeter (Resistance Model ~ 10 kΩ, 100 kΩ, Extech 

Instruments, US). The capacitances of the FTC and the FCC are 

estimated by Bode plots by using an impedance analyzer 

(Agilent 4294A Precision Impedance Analyzer). The CA and SA 

tests on GNP/polyesters are performed by a Drop Shape 

Analyzer 100 (KRÜSS GmbH, Germany), using deionized water 

droplets at ambient temperature in volume of 5 μL and 10 μL, 

respectively. The weight of textile is measured by using an 

Automatic Weighing machine (Sartorius weighing technology 

GmbH, Germany). The thickness of h-BN/polyester is 

determined using a YG141 Fabric-Thickness Gauge (Ningfang 

Company, China). The bending tests on GNP/polyesters and 

FTCs are carried by adhering them onto rods with bending 

radius of 1.0, 1.5, 2.0, 2.5, 3.0 cm, while the repeated bending 

test is carried on FTC with bending radius of 1.0 cm. The UV−vis 

absorption spectra of GNP and h-BN inks are measured on an 

Agilent Technologies Cary 7000 with wavelength from 200 nm 

to 1400 nm. The flake concentration of the GNP ink and h-BN 

ink can be estimated via the Beer-Lambert law that A = αcl, 

where A is the absorbance, l is the light path length, c is the 

concentration of dispersed flakes, and α is the absorption 

coefficient.68 The GNP and h-BN inks are diluted 1:100 and 1:20 

with ethanol and water/CMC, respectively. The Raman spectra 

using to monitor the quality of GNP and h-BN flakes, is acquired 

using a Renishaw inVia Raman spectrometer (Renishaw PLC, UK) 

with a 514 nm laser. A Bruker Dimension Icon Atomic Force 

Microscope (AFM) in Peak Force Tapping mode is used to 

estimate the lateral size and thickness distribution of GNP and 

h-BN flakes, where the statistics are based on 100 individual 

flakes. The lateral size S of flake is defined as S = (xy)0.5, where x 

and y are the length and width of flake. The average number of 

flake layers on ink are calculated by assuming an approximate 1 

nm water layer55 and an interlayer distance of 0.33 nm for GNP, 

0.55 nm for h-BN flake). The scanning electron microscope (SEM) 

images of pristine polyester fabric, GNP/polyester are 

characterized on a sigma HD FE-SEM unit (FEI Magellan 400L 

XHR, US). The cross-section SEM images of GNP/polyester 

before and after hot-press step, and FTC are characterized on a 

SU1510 SEM unit (Hitachi, Ltd, Japan). The optical images of 

GNP/polyester and FTC are caught by an Optiphot 300 (Nikon, 

Japan). The SEM images of GNP/polyester (mGNP ~ 0.69 mg cm-

2) are used to estimate the A0, A1, A2, A3, A4 of each repeated 

unit, where the CR of capacitor is determined from average 

value of (A1+A2+A3+A4)/A0 from 15 individual repeated units. In 

washing test, a waterproof polyurethane-protective layer 

(WBM Seam Tapes) was hot pressed (PixMax Swing heat press) 

around the top and bottom of the FTC at 120 °C for 5 s in-line 

with current industry standards to protect textile eletronics. 

The sample was then placed inside a rotawash washing fastness 

tester (Skyline, SL-F09) to wash the sample for 20 cycles 

according to the international standard ISO105-C06-A1S. 

Conclusions 

In this work, we have reported a highly flexible, conductive, 

superhydrophobic polyester fabric ( sheet resistance of ~ 2.16 

kΩ □-1, contact angle of ~ 153.28°, sliding angle of ~ 5°) and a 

flexible dielectric polyester fabric (approximate relative 

permittivity ~ 2.35) by simple ‘dip and dry’ coating of graphene 

ink and h-BN ink, respectively. We use these functional fabrics 

to assemble the first all-textile flexible capacitive 

heterostructure, demonstrating an effective capacitance of ~ 26 

pF cm-2 and robust flexibility (down to bending radius of 1 cm) 

that the capacitor can undergo repeated washing and bending 

test. An application of AC low-pass filter is demonstrated by 

combining the conductive polyester and the capacitor 

heterostructure. Our results demonstrate the key role of 2D 

materials in the development of wearable electronics, and set 

the ground for new strategies for the integration of two-

dimensional materials with textiles to create unique devices. 
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