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Adjoint-based sensitivity analysis for a reacting
jet in crossflow

By P. Sashittal†, T. Sayadi†‡, P. J. Schmid¶
I. Jang AND L. Magri

With current advances in computational resources, high-fidelity simulations of reactive
flows are increasingly being used as predictive tools in various industrial applications. In
order to accurately capture the combustion process, detailed/reduced chemical mecha-
nisms are employed, which in turn rely on various model parameters. Therefore, it would
be of great interest to quantify the sensitivities of the predictions with respect to the in-
troduced models. Due to the high dimensionality of the parameter space, methods such
as finite differences which rely on multiple forward simulations prove to be very costly,
and adjoint-based techniques are a suitable alternative. The complex nature of the gov-
erning equations, however, renders an efficient strategy in finding the adjoint equations a
challenging task. In this study, we employ the modular approach of Fosas de Pando et al.
(2012) to build a discrete adjoint framework applied to a reacting jet in crossflow. The
developed framework is then used to extract the sensitivity of the integrated heat release
with respect to the existing combustion parameters. Analyzing the sensitivities in the
three-dimensional domain provides insight toward the specific regions of the flow that
are more susceptible to the choice of the model. Masking functions are also employed in
order to isolate specific regions within the computational domain for analysis.

1. Introduction

Accurate numerical simulation of multiphysics and multiscale phenomena is critical
for many industrial applications. Over the past decade, numerical simulations of com-
plex flows have advanced remarkably. High-fidelity simulations of complex physical pro-
cesses, including multiphase flows, combustion and acoustic problems, and turbulent and
thermal flows, are now being used in design and performance analysis of engineering
systems.

Simulations of reacting flows involve the use of detailed/reduced chemistry models in
order to capture the chemical mechanisms occurring in the flow. This introduces chem-
istry model parameters that are not always known a priori with high precision. Therefore,
it is of practical interest to determine the uncertainties in the simulations with respect
to these governing parameters or initial conditions. As an added complication, the large
number of these parameters causes a purely forward approach to become very expensive
and almost infeasible. Therefore, we propose the use of adjoint-based algorithms in or-
der to identify and quantify the underlying sensitivities. This adjoint framework bears
a great advantage in a case such as this, where a large input space is analyzed, since a
single forward and backward sweep provides all the sensitivity information.

The adjoint solution in effect provides gradient or sensitivity information about an
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optimization problem. Given a cost functional or optimization objective while the gov-
erning equations are satisfied. This gradient is computed in the form of algebraic expres-
sions based on the problem’s Lagrange multipliers or adjoint variables, which in turn
is used in standard optimization algorithms that rely on Jacobian information, such as
the conjugate-gradient family (Guégan et al. 2006). Once the gradient information is
extracted from the simulation, it can be used in its own right: it can provide physical
insight into highly sensitive regions in the flow, point towards weak links in complex
feedback loops, identify robust flow features for model reduction, and many other ap-
plications. The gradient-based analysis of fluid models has recently been applied to flow
problems. However, most of the applications have been limited to linear or linearized
problems (Kim et al. 2006). Only recently, nonlinear problems have been tackled, within
the context of finding initial conditions that optimally trigger transition to turbulence,
the enhancement of mixing efficiency or thermoacoustic instabilities (Rabin et al. 2012;
Foures et al. 2014; Juniper 2010). The extra effort that arises from the nonlinear prob-
lem has been rather limited in these applications; more complex simulations dealing with
reactive flows constitute a far larger step in complexity (Magri et al. 2014; Lemke et al.
2014; Braman et al. 2015).

This study outlines the use of discrete adjoints for optimization and sensitivity analysis
in the context of a reacting jet in crossflow. Section 2 briefly describes the mathematical
formalism for the sensitivity analysis. Section 3 describes the numerical details for the
application to a reacting jet in crossflow. The results are outlined in Section 4, where
the optimal initial condition that yields the maximum heat release rate at some finite
time T is derived. Using this initial condition, the sensitivity of the integral heat release
with respect to the combustion model parameters is extracted. Concluding remarks are
presented in Section 5.

2. Mathematical description

The sensitivity information with respect to the model parameters can be computed
using the adjoint framework. In this section we outline the mathematical formalism to
extract these sensitivities. The forward/direct equation constitutes the evolution of the
state variables, q(t), forward in time defined by

dq
dt

= ∂F
∂q

∣∣∣∣∣
q̄

q = f(q,g), q(0) = q0, (2.1)

where F is the discrete nonlinear equation that governs the state variables, g represents
a set of model parameters, q0 is the initial condition, and q̄ is the base solution about
which the governing equations are linearized. Since the quantity of interest is integrated
in time, the objective functional J can be defined as

J(q) = φ(q(T )) +
∫ T

0
ψ(q(t))dt, (2.2)

where φ is the contribution from the terminal state and ψ accounts for the path taken
to reach this terminal state. Using this objective functional, we can form the Lagrange
functional L as

L(q,g,η, ξ) = J(q)−
∫ T

0
η ·
(
dq
dt
− f(q,g)

)
dt− ξ(q(0)− q0), (2.3)
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where we introduce η and ξ as Lagrange multipliers. Since, in this project, the focus
lies in optimizing the integral heat release of the reactive flow, the term φ(q(T )) in the
description of the objective functional can be neglected, and ψ(q(t)) = 〈b · q(t),b ·
q(t)〉, where b · q(t) results in the linearized heat release rate. The inner product is
defined as 〈u,v〉 = v>Du, where D represents a symmetric positive-definite mass matrix
that accounts for the volume integral of the discretized domain. Setting the variation of
the Lagrange functional with respect to the state variables to zero leads to the adjoint
equation defined by

−dη

dt
=
(
∂f

∂q

)>

η + 2Mq(t), η(T ) = 0, (2.4)

where M = b>Db. Hence, the equation governing the evolution of the adjoint variable is
forced by the solution of the direct system, q. This implies that q needs to be stored and
used when solving the adjoint equations for each time step, even if the direct equations
are linear. From a numerical point of view, large storage capabilities are required to
store the whole time history of q(t). One possible solution is to use a checkpointing
algorithm, in which the solution is stored at strategically chosen time locations. The
forward problem is solved in between the stored time intervals, and the adjoint equation
is solved backward in time (Griewank et al. 2000; Wang et al. 2009).

Finally, the equation defining the final sensitivities is obtained by finding the variation
of the Lagrange functional with respect to the modal parameters,

δL

δg = ∂φ

∂g +
∫ T

0

[
∂ψ

∂g +
(
∂f

∂g

)>

η

]
dt, (2.5)

=
∫ T

0

(
∂f

∂g

)>

ηdt. (2.6)

This equation can be written in differential form with the introduction of an auxiliary
variable s

−ds
dt

=
(
∂f

∂g

)>

η, s(T ) = 0. (2.7)

Introducing this variable allows the sensitivity equation to be solved simultaneously with
the adjoint equation. The algorithm can be summarized as follows;

(i) Given an initial condition q0, solve the direct problem forward in time,
(ii) Solve the adjoint equation (Eq. 2.4) and the sensitivity equation (Eq. 2.7) backward

in time to get η(0) and s(0),
(iii) The final sensitivity is given by s(0).

3. Numerical approach

Direct numerical simulation is performed using a modified version of the solver de-
veloped by Nagarajan et al. (2003) and Sayadi et al. (2013), where the compressible
Navier-Stokes equations, including reactions, are solved. An explicit third-order Runge-
Kutta scheme is used for time stepping. The spatial discretization is on a structured
curvilinear grid with staggered variables in space.
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3.1. Chemistry

We employ operator splitting to solve the reacting part of the governing equations. The
stiff source terms, related to the chemistry, are integrated in time using a fifth-order
backward differentiation method (Brown et al. 1989). The chemistry is modeled using a
simple one-step combustion model with lean chemistry approximations (Blanchard et al.
2015).

The combustion source terms, that is, the fuel mass depletion rate ω̇f and reaction
heat release rate ω̇T , in the non-dimensional form are,

ω̇f = Da ρYf exp
(
−Ze
T

)
,

ω̇T = Ce ω̇f ,

where Da is the Damköhler number, Ze is the Zeldovich number and Ce is the heat
release parameter. For this study we have chosen Da = 10, Ze = 5 and Ce = 10. So the
state variables and governing parameters for this study are

q = [ρ ρu1 ρu2 ρu3 E ρYf ]>,
g = [Da Ze Ce]>,

where ρ is the density, ui is the velocity in the i-th direction, E is the total energy and
Yf is the mass fraction of the fuel.

3.2. Base flow computation

The base flow solution q̄ is taken as the steady state solution of the nonlinear governing
equations. We employ selective frequency damping (SFD) (Akervik et al. 2006) to obtain
the base flow by solving the following system of equations until convergence is achieved,

dq
dt

= f(q,g)− χ(q − q̄), (3.1)

dq̄
dt

= (q − q̄)
∆ . (3.2)

Here, χ and ∆ are user-defined filter parameters that control the filter width and cutoff
frequency of the filter.

3.3. Adjoint-based framework

The derivation of adjoint equations can be carried out in two ways. In the continuous
approach, a variational principle is applied to the unconstrained optimization problem
and adjoint equations are derived by setting first variations with respect to all depen-
dent variables to zero, leading to the governing equations for the adjoint variables with
appropriate boundary conditions and initial conditions. The resulting set of equations
is then discretized and implemented. This process is very cumbersome and error prone,
especially for sophisticated systems with elaborate objective functions. Alternatively, the
spatially discretized equations can be fed into an automatic-differentiation (AD) software
to produce the associated adjoint code. This process, although simple to implement, of-
ten leads to overly inflated and thus very inefficient and ultimately impractical code. As
an alternative, we employ the approach outlined in Fosas de Pando et al. (2012). The
discrete adjoint operators are obtained by taking the transconjugate of the discretized
direct operator. This approach has been used in Fosas de Pando et al. (2012) to improve
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airfoil shape design in aeroacoustic applications and in Blanchard et al. (2015) it was
recently applied to an axi-symmetric M-flame where the inverse problem was solved for
a frequency response analysis of the flame to acoustic waves.

4. Application to a reacting jet in crossflow

We consider a transverse jet entering a crossflow boundary layer with a free-stream
Mach number Ma = 0.2. The jet to free-stream velocity ratio is R = 3, resulting in
a Mach number of 0.6 at the jet inlet. The reference Reynolds number, based on the
distance from the leading edge of the plate xref , is Reref = 104. All distances are non-
dimensionalized by this reference length such that x/xref = Rex/104. The inlet of the
computational domain is at xinlet = 0.7 measured from the leading edge of the plate and
the jet is located at the distance of xjet = 0.92. The jet diameter is D = 0.0495. The
domain lengths in the streamwise, wall-normal and spanwise directions are 1.2, 0.4 and
0.5, respectively. In this study, we chose the Prandtl number to be 0.7 and the Lewis
number is set to be unity.

The velocity profile at the inlet of the jet is prescribed using an inhomogeneous bound-
ary condition, through wall-normal velocity at the plate (Bagheri et al. 2009). Due to
a compressible framework, we also impose a temperature profile at the jet inlet that
satisfies pipe Poiseuille flow distribution. Isothermal wall boundary conditions are pre-
scribed everywhere else on the plate. Periodic boundary conditions are used along the
spanwise and streamwise directions. To account for the spatially growing boundary layer
in a streamwise periodic domain, we reshape and re-scale the profile at the end of the
domain into a similarity solution of a laminar compressible boundary layer at the inflow.
Sponges are used at all the boundaries except for the wall boundary at the location of
the plate to ensure nonreflective inflow and outflow.

4.1. Optimal initial condition

The initial condition used to perform the sensitivity analysis is chosen to be the optimal
initial perturbation, resulting in the maximum rate of heat release at terminal time
T . This terminal time is chosen to be one-third of the flow through time, defined by
the free-stream velocity, which allows for the perturbations to travel from their place
of origin, close to the inlet of the jet, to the counter-rotating vortex pair in the base
flow. The optimal initial condition is extracted using the adjoint-based framework and
consists of perturbations around the base state. Figure 1 shows the vortical structures
in the instantaneous and base flow fields. The counter-rotating vortex pair (CVP) is
observed in the base flow and it develops, as expected, along the jet trajectory shown in
the instantaneous flow field. Figure 1(b) shows the optimal initial condition (green), the
optimal solution at time T (blue) superimposed on the base flow (red) visualized through
Q criterion (Chakraborty et al. 2005) iso-surfaces. The perturbations which originate near
the wall, in the shear layer upstream of the jet inflow, are convected downstream along
the jet trajectory. The perturbations grow in amplitude and surround the CVP of the
base flow as they are convected. The steepest descent approach described in Gunzburger
(2003) is employed to extract the optimal solution at time T .

4.2. Sensitivities with respect to the terminal heat release

As a first step, the sensitivities of the rate of heat release at terminal time T are extracted
with respect to the combustion parameters. This setup simplifies Eq.(2.4) by removing
the last term on the right-hand side and, hence, the need for a checkpointing strategy.
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(a) (b)

Figure 1: The red iso-surfaces of Q criterion indicate vortical sturctures in the (a)
instantaneous and (b) base flow fields. The green and blue iso-surfaces show the initial
condition and optimal solution at time T , respectively. Gray contours depict a streamwise
velocity contour of the mean flow close to the wall.
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Figure 2: Convergence of (a) the rate of heat release at time T and (b) its sensitivities
with respect to the combustion parameters.

Figure 2 shows the convergence of the terminal heat release rate and its sensitivities with
increasing iterations of the steepest descent algorithm. The quantity of interest increases
monotonically with each iteration until it reaches near convergence. The sensitivities also
simultaneously reach a steady value. This confirms that the adjoint equation is well posed
and initialized solely by the terminal state.

The relative parametric sensitivity of the terminal rate of heat release is shown in
Figure 3. It is clear that the Zeldovich number, Ze, is the most influential combustion
parameter. The sensitivities with respect to the heat release parameter, Ce, and the
Damköhler number Da are almost the same and lower than that of Ze. This is because
Ze influences the heat release rate exponentially, whereas Da and Ce have only a linear
effect. The sensitivity with respect to all the parameters is positive, which means that an
increase in these parameters results in an increase in the rate of heat release at terminal
time T .
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Figure 3: Relative sensitivity of the rate of heat release at time T with respect to the
combustion model parameters.

Figure 4: The colors represent total energy E for an instantaneous reacting jet in a
crossflow flow field on the symmetry plane. The black line shows the contour for the
reaction rate threshold used for the masking function.

4.3. Sensitivities with respect to the integral heat release

Here, the sensitivity of the integral heat release with respect to the combustion param-
eters are extracted. The objective functional is calculated within a time horizon [0, T ],
and due to the presence of a time integral, the adjoint equation is driven at each time
step by the solution of the forward problem, making the use of a checkpointing algo-
rithm necessary. To this end, we use REVOLVE (Griewank et al. 2000), a checkpointing
algorithm that employs a binomial strategy that is provably optimal, i.e., minimizes the
amount of re-computations of the forward solution for a given number of checkpoints. In
order to characterize the dependence of the extracted sensitivities on the domain under
consideration, a masking function is introduced that excludes (masks) certain regions of
the computational domain. For the purpose of this study, since the interest lies in the
sensitivities of the reactive process to the combustion model parameters, the masking
function, W , is designed to isolate the contribution of the reactions from the hydrody-
namic effects,

W (x, y, z) =
{

0 ω̇f < K,

1 otherwise

where, K is some pre-defined threshold for the reaction rate of the base flow, and
(x, y, z) ∈ Ω, where Ω denotes the physical domain. In the discretized framework, this
function translates to a diagonal matrix operation with the diagonal elements either 0
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Figure 5: Relative sensitivity of the integral heat release for time period [0, T ] with (a)
the entire computational domain and (b) a masked domain with respect to combustion
model parameters.

Figure 6: Black and white contours show positive and negative sensitivity of the integral
heat release with respect to the Zeldovich number Ze. Black lines are wall-normal velocity
contours of the base flow, representing the shear layer upstream and downstream of the
jet inlet.

or 1, depending on whether the reaction rate is above or below the threshold. Figure 4
shows the contour for the reaction rate threshold along with the total energy E for an
instantaneous flow field in a reacting jet in crossflow. The region inside the black contour,
which includes the jet inlet, is considered when computing the quantity of interest while
the domain outside the black contour is masked.

The relative sensitivities shown in Figure 5 suggest that, in the case of a one-step
chemistry model employed in this study, and for both the masked and unmasked quan-
tities of interest, the Zeldovich number is potentially the largest source of uncertainty
compared to the Damköhler number and the heat release parameter. This trend matches
the previous case of the terminal heat release rate. Masking the hydrodynamic effects
leads to a decrease in the sensitivity of the integral heat release.
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The advantage of using an adjoint-based algorithm for defining the sensitivities is
that, independent of the size of the parameter space, all sensitivities are extracted with
a single forward and backward sweep of the algorithm. Therefore, it would be beneficial
to consider each parameter as a scalar field that varies in all spatial directions and study
the sensitivities of the quantity of interest with respect to each parameter locally. This
approach would help identify regions in the physical domain that are more susceptible
to the uncertainty in the model parameters. These results are shown in Figure 6 for
the integrated heat release as the quantity of interest. Based on this figure, the most
susceptible region lies in the shear layer upstream of the jet, close to the wall. This is the
same region where the initial perturbation is also located.

Since the sensitivity to different parameters is an integral of different linear combina-
tions of the adjoint solution, the location of the sensitivity is similar for all the parameters
as shown in Figure 6. The local sensitivities for the masked quantity of interest, using
the same masking function as described above, also show similar behavior. However, the
value of the sensitivity is lower due to the masking of the hydrodynamic effects.

5. Conclusion

In this study we introduced a versatile discrete adjoint framework for the calculation
of parametric sensitivities and optimization of reacting flows. A Lagrangian approach is
employed to derive the sensitivity and adjoint equations for a given objective functional.
Gradient information is used to find the optimal initial condition, yielding maximum
rate of heat release at terminal time. Sensitivity with respect to the combustion model
parameters gives details about the response behavior of the system with this initial
condition, as these parameters are varied.

The sensitivity of two objective functionals is computed: the rate of heat release at
terminal time and the integral heat release for the entire time period. Both objective
functionals were most sensitive with respect to the Zeldovich number. Sensitivities to-
ward variation in the Damköhler number and the heat release parameter were lower.
We employ a masking function in the integral heat release study to exclude the effects
of hydrodynamics and isolate the combustion effects. We find that although the trend
across different parameters is retained, the sensitivities are lower for the masked objective
functional. Finally, we exploit the computational efficiency of adjoint methods by finding
field sensitivities of the integral heat release with respect to the combustion parameters.
The regions most susceptible to the uncertainty in the model parameters lie in the shear
layer upstream of the jet, close to the wall.

The methods used in this study are readily applicable to more realistic combustion
models with considerably more governing parameters. Access to the gradient information
is essential in a number of parameter-dependent studies. The sensitivity information can
be used not only to quantify the uncertainty but also to develop better reduced-order
chemistry models. In future work, we will examine more detailed combustion models and
also consider nonlinear governing equations.
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