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Abstract

This paper explores optimal treatment of an SIS (Susceptible-Infected-Susceptible)

disease that has two strains with different infectivities. When we assume that neither

eradication nor full infection are possible, it is shown that there are two categories of

equilibria. First, there are two continua of interior equilibria characterised by a fixed,

positive total level of infection, where both strands of the disease prevail. It is hypoth-

esised that a Skiba curve of indifference lies between them. Second, there are two sets

of equilibria where one strand of the disease is eradicated asymptotically. The feasibil-

ity of equilibria depends on parameter assumptions; a combination of low natural rate

of recovery and large difference between infectivities leaves only a small proportion of

equilibria as feasible. Simulations exploring the relationship between cost and optimal

policy are carried out. There exists a parameter range such that, counter-intuitively, it is

optimal to allow the high-infectivity strain of the disease to prevail, while asymptotically

eradicating the low-infectivity strain. Within this parameter range, there is added benefit

from policy flexibility. At higher costs, simulations of the interior equilibria demonstrate

the existence of a Skiba curve. The curve delineates two regions, each of which has a

clear optimal policy.
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1 Introduction

Epidemiology, as it is studied today, originated in the early 20th century and has since

developed into a multi-faceted field that combines the skills of mathematicians, biologists and,

most recently, economists. One predominant area of epidemiology focuses on transmission

system models. These models are built on differential equations that describe the evolution

of disease prevalence over time as a function of parameters. Often a point of criticism, these

models assume homogeneous mixing within populations, identical agents and no behavioural

adaptation. Although this produces the benefit of parsimony, allowing significant predictive

power and the ability to work with data, there is a strand of the literature that argues this

simplicity comes at the price of applicability (Epstein 2009). Nevertheless, few advances have

been made in other approaches to epidemiology that have received the backing that these

types of models have.

In the standard Susceptible-Infected-Susceptible (SIS) model, individuals move between

two states, susceptible and infected, based on exogenous probabilities. The probability of an

individual catching a disease when he encounters an infected person depends on an infectivity

or transmission parameter. This parameter is predominantly assumed to be homogeneous,

a simplification that does not allow for policy differentiation if there exist several strands of

infection. Infections in reality are frequently present in more than one form. To motivate an

infection stratified by transmission parameter, consider the case of HIV as an example. HIV

has two main strains: HIV-1 and HIV-2. Studies show that the less common HIV-2 strain is

also less infectious than its counterpart for most of its infectious period.1 This motivates us

to ask how a policymaker deals with the presence of several variants of an infection in the

population that vary by transmission risk. There is a trade-off between treating individuals,

which is costly but offers a welfare benefit, and saving money. There is a further trade-off

between treating individuals infected with the more infectious versus less infectious strand.

Supposing the policymaker can differentiate policy by infection type, does she treat the more

infectious or less infectious first? What is the prevalence of the different infection strands in

equilibrium?

Variations on standard epidemiological models are common in the mathematical liter-

ature, where researchers detail dynamics and equilibria but do not look at optimality and

intervention. In direct relevance to this paper, Castillo-Chavez, Huang and Li (1999) develop

an SIS model with a two-strand disease where individuals are genetically predisposed to a

specific strand. They derive stability conditions on the various equilibria of the model, which

include boundary (one or both strands eradicated) and coexistence (both strands prevail)

equilibria. These are equilibria the system tends towards when there is no intervention. Hy-

man and Li (1997) analyse an SIS STD model with multiple groups where interaction between

1More information on this can be found at the Centers for Disease Control and Prevention
(http://www.cdc.gov/hiv/topics/basic) as well as the charity AVERT (http://www.avert.org/hiv-types.htm).
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groups is behaviourally variable and depends on prevalence levels in the different groups. The

development of the infection is complex and depends on how these interactions take place;

individuals may reduce their contacts with individuals in high prevalence groups, which may

reduce overall prevalence. Biological epidemiology brings models to the data. Truscott et al

(2011) show that accurate modelling of influenza should not neglect the presence of several

strains; they construct a model with two strains and show that its predictions are close to

data on influenza. This paper develops a model with multiple strains akin to those studied by

mathematical and biological epidemiologists while simultaneously introducing the economic

consideration of optimal intervention.

Economic research into epidemiology is fast-growing. Research has focused on two main

areas relevant to the present paper: optimal intervention and empirical work. Optimal inter-

vention has been studied in several extensions to the standard model, including the consider-

ation of spatial factors, budget constraints and the availability of several policy instruments.

Rowthorn, Laxminarayan and Gilligan (2009) focus on the spatial dynamics of disease. They

answer the question of optimal control of infections via treatment in the case of metapopula-

tions, defined as subpopulations within a population that mix at a lower rate than individuals

within each subpopulation. Although intuition may suggest that equalising infection rates

across subpopulations leads to the highest level of welfare, this turns out to be the worst

possible solution. Another policy-relevant aspect is the role of budget constraints. Rowthorn

(2004) examines this in the context of optimal control of a disease using treatment and shows

that funds should never be retained as long as there are individuals that can be treated.

Rowthorn and Toxvaerd (2011) examine analytically the trade-off between vaccination and

treatment as two instruments available to the policy-maker. Gersovitz and Hammer (2004)

provide a fruitful discussion of this issue of targeting when these two policy instruments are

available. In particular, they argue that while naturally one would assume only infected peo-

ple are treated and susceptible people are vaccinated, there may be other targeting functions,

especially if the policymaker is unable to perfectly observe infection levels in the population.

Significant empirical work has been carried out on infectious disease. Several studies

have been carried out aiming to verify the responsiveness of risky behaviour to changes in

perceived risk of contracting infections such as HIV/AIDS. St. Lawrence et al (1991) look

at differences in risky behaviour across two cities with different prevalence rates. They find

startling differences with risky behaviour being as much as three times more common in the

low-prevalence city as compared to the high-prevalence city. Similarly, Dupas (2005) looks

at whether a public health information program that teaches teenagers about relative risks

of contracting HIV/AIDS depending on partner age group has an effect on their behaviour.

Dupas finds that the information campaign reduces childbearing by 1.7% in the treatment

group, representing a 31% decrease in childbearing. In terms of age group, there is a reduction

in cross-generational pregnancies of 65%.

Oster (2005) provides a detailed simulation-based analysis on the effects of changes in
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transmission rates and partner choice on national HIV/AIDS prevalence levels. Using actual

transmission rates and sexual behaviour parameters, the paper predicts an HIV/AIDS infec-

tion prevalence of 0.23% in the United States and 12.7% in Africa, close to actual prevalence

rates of 0.15% and 11.9%. Estimates are then carried out using US sexual behaviour parame-

ters but Sub-Saharan African transmission rates. This results in an estimated prevalence rate

of over 11% for the United States, suggesting that it is the transmission rate that is driving the

higher HIV/AIDS prevalence rates observed in Africa when compared to the United States.

This shows that the transmission rate is an important determinant of prevalence levels.

The present paper is a natural next step for the literature. While the case of several policy

instruments has been considered in the theoretical literature, it has not been considered in

conjunction with more than one infection type, a scenario that brings this type of modelling

closer to the realities faced by policymakers. Further, the empirical literature highlights the

importance of modelling transmission parameters correctly. This paper explores an SIS model

with two infection strains and provides answers on optimal policy in various situations. We

show that the model has two categories of steady state. First, there are two continua of

steady states where both infection strains prevail. Second, there are asymptotic equilibria

where one of the strains is eliminated asymptotically, while the other is endemic. Under

certain parameter assumptions, it is optimal to asymptotically eliminate the less infectious

strand while allowing the high infectivity strand to prevail. This interesting case is explored by

way of simulations, where optimality under fixed policy and variable policy is explored. The

role of cost of treatment in governing optimal policy is explored in detail. We also examine

the interior equilibria where both infection strains prevail and demonstrate the existence of

a Skiba curve of indifference between them.

The rest of the paper is structured as follows. Section 2 introduces the basic model and

Section 3 develops the model to encompass two infection types. Section 4 provides examples

of simulations. Section 5 concludes.

2 The basic SIS model

2.1 Overview

The results of the basic SIS model with treatment are discussed in this section, following

Rowthorn (2004) and Goldman and Lightwood (2002). It has become standard to assume

random mixing in models of this type. Typically, these models also assume a homogeneous

transmission parameter. This assumption does not provide an accurate representation of the

way disease spreads when it exists in different forms. Indeed, awareness of the improved

predictions resulting from accurate transmission parameters has been raised by Oster (2005).
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These observations provide the impetus for an extension to the basic SIS model, which is

presented in Section 4.

The standard SIS model is in continuous time. There are two possible states: individuals

are susceptible (proportion S of the total population) or infected (proportion I). They can

move between the two states an unlimited number of times. Agents are homogeneous and

the population is closed. Perfect or homogeneous mixing is assumed between agents, with a

uniform transmission probability (β). A proportion f of infected individuals is treated, with

the success rate of treatment (which can be interpreted as a rate of recovery) given by the

parameter α. There is also the possibility of spontaneous or natural recovery at rate τ . The

evolution of the two subpopulations, susceptible and infected, is described by the following

differential equations:

İ(t) = I(t)S(t)β − I(t)(f(t)α+ τ), (1)

Ṡ(t) = I(t)(f(t)α+ τ)− I(t)S(t)β. (2)

Optimal policy is derived via the introduction of an objective function. Typically inter-

vention takes the form of either vaccination or treatment. The latter is studied in the present

paper. Intervention affects welfare consequences directly by influencing the rate of movement

between the susceptible and infected subpopulations.

Objective functions can take many forms, from a social planner’s welfare maximisation

function, to an individual’s utility maximisation function. There is also the possibility of

cost minimisation, prevalence minimisation, and so on and so forth. One natural objective

function to add to this model is social welfare, determined by the proportion of infected and

susceptible individuals and the expenditure on treatment:

W (I0) =

∫ ∞
0

e−δt(pN(1− I(t))− cf(t)I(t))dt. (3)

In this simple case, infected individuals have a value of zero while susceptible individuals

have a value of p; treatment has a constant marginal cost of c per instant per individual.

The problem is solved as a Hamiltonian optimal control problem, normalising population to

1: S(t) + I(t) = N = 1 for all t. This allows (1) and (2) to collapse to one constraint.

It is assumed that

f ∈ [0, 1]

I(0) = I0 > 0 given
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The current value Hamiltonian function is

H = p(1− I)− cfI + γI((1− I)β − fα− τ) (4)

where γ is the shadow price of infection. Differentiating the Hamiltonian with respect to

the control variable gives us the solution, which is of "bang-bang" form:

f∗


= 0

∈ (0, 1)

= 1

 if γ∗


>

=

<

− c

α
. (5)

Policy can either be at an interior level f∗ ∈ (0, 1), or at a boundary level, f∗ = 0 or

1. The interpretation is as follows. The multiplier is the shadow price of another infected

individual. It will always be negative. The higher is this shadow price in absolute terms, the

more costly it is to social welfare to have an additional infected person. On the other hand,
c
α is the relative price of treating an infected individual - it is the ratio of cost to treatment

effectiveness. The negative of this price of treatment is the welfare cost from treating an

additional individual. These concepts clarify the intuition behind the solution; it is clear

that if the cost of infection exceeds the cost of treatment, everyone is treated. Similarly,

when the cost of treatment is higher than the cost of infection, no one is treated. When they

are equal, any interior level of treatment is optimal subject to parameters.

Note that the equation of motion for the multiplier is

γ̇ = δγ − ∂H

∂I
= p+ cf − γ((1− 2I)β − fα− τ − δ). (6)

Let us examine the cases of interior and boundary policies more closely.

2.2 Policy is interior

For an interior policy to be optimal, the Hamiltionian conditions require that γ = − c
α .

Differentiating this gives us γ̇(t) = 0. Further, it must be that İ(t) = 0 if we are in steady

state. These three conditions give us steady state solutions I = I∗, γ = γ∗ and f = f∗:

I∗ =
αp+ c(β − δ − τ)

2cβ
, (7)
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f∗ =
c(β + δ − τ)− αp

2cα
, (8)

γ∗ = − c
α
. (9)

Thus, a path with interior policy has I = I∗, γ = γ∗ and f = f∗. Note that f∗ may lie

outside the range (0, 1), in which case no feasible interior policy exists.

2.3 Policy is at a boundary

There are two feasible boundary policies that can be optimal in steady state: f = 0 or f = 1.

Consider the case where γ > − c
α . Under this policy it must be that f = f∗∗ = 0. Solving

İ(t) = 0 yields

I∗∗ = 1− τ

β
. (10)

The disease is endemic as long as τ < β. It is eradicated if τ > β. Setting γ̇(t) = 0 yields

γ∗∗ =
p

τ − β − δ . (11)

Another possibility is that γ > − c
α . In this case, f = f∗∗∗ = 1. Solving İ(t) = 0 and

γ̇(t) = 0 yields

I∗∗∗ = 1− α+ τ

β
,

γ∗∗∗ =
p+ c

α+ τ − β − δ .

The disease is endemic as long as α+ τ < β. It is eradicated if α+ τ > β.
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2.4 Optimal policy

Policy can be either at one of the boundaries or at an interior level, depending on the value of

the shadow price. Rowthorn (2004) and Goldman and Lightwood (2002) show that optimal

policy will take on one of the two boundary values. It is never optimal to treat partially.

This is because the shadow price is a single-valued function of the state variable, so optimal

policy can have at most one switch point. The interior steady state can only be reached by

a path that zig-zags back on itself. In contrast, each of the boundary steady states can be

reached by a path with at most one switch point, with the precise path depending on the

initial infection level. Which policy of the two boundaries is optimal will depend on the value

of parameters.

3 The SIS model with two strains of infection

3.1 Overview

In the model of the previous section, the transmission rate is uniform and there is one policy

instrument. In this section we relax both of these assumptions. Suppose there are two

variants of infection, one more infectious than the other. The more infectious variant H

has transmission rate βH while the less infectious variant L is characterised by transmission

rate βL. The policymaker has two policy instruments at her disposal (fH and fL), each

targeting one of the infection strands. There is an implicit assumption that the policymaker

can distinguish the two strains and therefore target therapy perfectly. This we can relate

to the discussion of Gersovitz and Hammer (2004). We assume that the policymaker has

perfect information about each strain of the disease and its prevalence in the population.

Other versions are possible of course; for example, a policymaker may know an individual is

ill but not which strain of the disease he has. In this case the policymaker would effectively

have only one policy instrument at hand.

A further assumption of the model is that individuals can catch either infection strand at

the outset. When infected they transmit the strand that they themselves are infected with.

Super-infection is not possible: individuals cannot become infected with both strains of the

infection at the same time. Similar to the previous section, there is a possibility of exogenous

recovery. If individuals recover, they are again susceptible to either infection strain. The

proportion of the total population infected with H is IH . The proportion infected with L

is IL. The total population is normalised to size 1: IH + IL + S = 1. The policymaker

maximises the social welfare function

V (I0H , I
0
L) =

∫ ∞
0

e−δt(p(1− IH(t)− IL(t))− c(fH(t)IH(t) + fL(t)IL(t)))dt (12)
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subject to the equations of motion for the two infection types:

İH = βHIH(t)(1− IH(t)− IL(t))− IH(t)(τ + αfH(t)), (13)

İL = βLIL(t)(1− IH(t)− IL(t))− IL(t)(τ + αfL(t)). (14)

All parameters are strictly positive. Further,

fH , fL ∈ [0, 1]

IH(0) = I0H > 0 given

IL(0) = I0L > 0 given

I0H + I0L < 1

In addition,

βH > βL > τ + α. (15)

The inequalities in (15) ensure that neither variant of the disease can be eliminated even

asymptotically by treating all infected people. Thus, at any steady state, IH , IL > 0. They

also ensure that IH(t) + IL(t) < 1 for all t.

The current value Hamiltonian is

H = p(1− IH − IL)− c(fHIH + fLIL)

+λH(βHIH(1− IH − IL)− IH(τ + fHα)

+λL(βLIL(1− IH − IL)− IL(τ + fLα) (16)

The first order-conditions yield the following solution:

f∗H


= 0

∈ (0, 1)

= 1

 if λ∗H


>

=

<

− c

α
, (17)

f∗L


= 0

∈ (0, 1)

= 1

 if λ∗L


>

=

<

− c

α
. (18)

9



The equations of motion for the two costate variables are

λ̇H = δλH −
∂H

∂IH
= p+ cfH − λH (−δ + βH(1− IH − IL)− τ − αfH)

+(λHβHIH + λLβLIL), (19)

λ̇L = δλL −
∂H

∂IL
= p+ cfL − λL (−δ + βL(1− IH − IL)− τ − αfL)

+(λHβHIH + λLβLIL). (20)

In the next section we derive the equilibria of this model.

3.2 Fixed points

3.2.1 The set of feasible fixed points

We are interested in the fixed points or steady states of the system. The reason we are inter-

ested in fixed points is because they are the states the system converges to. This convergence

takes place only in the limit in the special case of the Asymptotic Fixed Points (AFPs), which

will be defined shortly.

We assume that there are no cycles: the system always converges to one of our potential

fixed points or AFPs. A proof of the non-existence of cycles is beyond the scope of this paper.

Let us examine the fixed points in more detail.

Definition 1 A fixed point (FP) is a solution (f∗H , f
∗
L, I
∗
H , I

∗
L, λ

∗
H , λ

∗
L) satisfying equations

(13), (14), (17), (18), (19) and (20) as well as İH = İL = λ̇H = λ̇L = ḟH = ḟL = 0.

There are nine potential fixed points, listed below. The notation Aab denotes the fixed

point with policy f∗H = a, f∗L = b for a, b = 0 or 1. The notation a, b = 2 denotes an interior

policy.
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A00 : fH = 0, fL = 0

A01 : fH = 0, fL = 1

A02 : fH = 0, fL ∈ (0, 1)

A10 : fH = 1, fL = 0

A11 : fH = 1, fL = 1

A12 : fH = 1, fL ∈ (0, 1)

A20 : fH ∈ (0, 1), fL = 0

A21 : fH ∈ (0, 1), fL = 1

A22 : fH ∈ (0, 1), fL ∈ (0, 1)

Definition 2 An asymptotic fixed point (AFP) is a solution (f∗H , f
∗
L, I
∗
H , I

∗
L, λ

∗
H , λ

∗
L) where

at least one component in each of the pairs (IH , IL), (λH , λL) comes arbitrarily close to its

solution but only converges to it in the limit. At least one equality in each of the following

pairs does not hold: {İH = 0, İL = 0}, {λ̇H = 0, λ̇L = 0}. The condition ḟH = ḟL = 0 holds.

We refer to AFPs and FPs jointly as ’equilibria’. The key difference between AFPs and

FPs is that some variables at an AFP are not constant. They move towards a constant but

only reach it in the limit. There are two potential types of AFPs, each encompassing several

potentially optimal policies. They are listed below:

A13 : IH → 0, IL = I∗L, f
∗
H = 1, fL = f∗L ∈ [0, 1]

A31 : IL → 0, IH = I∗H , f
∗
L = 1, fH = f∗H ∈ [0, 1]

Overall this gives us a large set of potential equilibria. Let us reduce this set by showing

the infeasibility of certain fixed points.

Lemma 3 All fixed points are of type A10, A12, or A20.

Proof. Consider A22. Suppose fH ∈ (0, 1) and fL ∈ (0, 1) during a finite interval of time.

Then λH = λL = − c
α and thus λ̇H = λ̇L = 0 within this interval. Subtracting (20) from (19)

yields:
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c

α
(βH − βL)(1− IL − IH) = 0

This is not possible since the left hand side is strictly positive. This demonstrates that

A22 does not satisfy the Hamiltonian conditions and is not feasible. Thus, the Hamiltonian

conditions imply that at least one of the control variables at a steady state is on the boundary.

Since IH , IL > 0, we can rewrite the equations of motion as follows:

İH
IH

= βH(1− IH − IL)− τ − fHα (21)

İL
IL

= βL(1− IH − IL)− τ − fLα (22)

At a fixed point the right hand sides of the above equations must be zero. This implies

that

fH =
βH(1− IH − IL)− τ

α
, (23)

fL =
βL(1− IH − IL)− τ

α
. (24)

Subtracting (24) from (23) yields

fH − fL =
(βH − βL)(1− IH − IL)

α
> 0. (25)

This is not satisfied by fixed points A00, A01, A11, A02 and A21. This reduces the set of

feasible FPs to F = {A10, A12, A20}.

3.2.2 Characteristics of fixed points A10 and A12

Fixed points A10 and A12 are the case when f∗H = 1 and f∗L = 1 in the former while f∗L ∈ (0, 1)

in the latter. By setting İH = 0, İL = 0 and f∗H = 1 we obtain the treatment levels that

characterise these fixed points. Except in the special case of strict equality of 1 ≥ (βH−βL)
βH

τ+α
α ,

the fixed point is type A12. The fixed point A10 is a boundary fixed point and will be addressed

in Section 4.2.5. It can be shown that there is a line of fixed points in (IH , IL) space of type

A12 that satisfies the Hamiltonian conditions with the following properties (derivations can

be found in the Appendix):
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I∗H + I∗L = 1− τ + α

βH

λ∗H = − c
α

[
1 +

(βH − βL)

βH

τ + α

δ

]
< − c

α

λ∗L = − c
α

f∗H = 1

f∗L = 1− (βH − βL)

βH

τ + α

α

3.2.3 Characteristics of fixed point A20

Fixed point A20 is the case when f∗H ∈ (0, 1) and f∗L = 0. At fixed point A20, setting f∗L = 0,

İH = 0 and İL = 0 yields the optimal treatment levels. Except in the special case of strict

equality of 1 ≥ (βH−βL)
βL

τ
α , the fixed point is of type A20. In the case of strict equality, this

fixed point becomes A10. It can be shown that there is a line of fixed points of type A20 that

satisfy the Hamiltonian conditions with the following properties:

I∗∗H + I∗∗L = 1− τ

βL

λ∗∗H = − c
α

λ∗∗L = − c
α

[
1− (βH − βL)

βL

τ

δ

]
> − c

α

f∗∗H =
(βH − βL)

βL

τ

α

f∗∗L = 0

Derivations of this can be found in the Appendix. Let us label fixed points A12 and A20
as Interior Fixed Points (IFPs) for ease of exposition, as they are fixed points that induce one

policy instrument to be at an interior level. It is interesting to notice the similarity between

the fixed points when policies are at boundary levels in the two-strain and one-strain cases.

Setting policy to (1, 1) or (0, 0) in A12 or A20 gives us prevalence levels that look similar to

what we observed when we had one strain. They differ in the constants due to the fact that

the transmission parameter in the two-type case is not homogeneous; rather, it is a weighted

average depending on the prevalence of each strain in the population.
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3.2.4 Characteristics of asymptotic fixed points

For the analysis of asymptotic fixed points we need to define the concept of a Most Rapid

Approach Path (MRAP).

Definition 4 An MRAP is a path with a policy that ensures convergence to the fixed point
in less time than any other policy.

First, consider A13. IH tends asymptotically towards zero and IL converges to some

equilibrium level:

A13 : IH −→ 0, IL = I∗L

For IH to asymptotically tend to zero, we require İH
IH

< 0 at all points in time, for which

the MRAP is f∗H = 1. Combining these features gives İH
IH

= βH(1 − IH − I∗L) − α − τ ≈
βH(1 − I∗L) − α − τ , for IH suffi ciently close to zero. This needs to be negative, so the

condition required for this to be a feasible AFP is

1− α+ τ

βH
< I∗L. (26)

Similarly, IL converges to I∗L, which requires
İL
IL

= 0. Using this we can solve for I∗L:

I∗L = 1− τ + αf∗L
βL

. (27)

Thus, (26) simplifies to

τ + αf∗L
βL

<
α+ τ

βH
. (28)

Any f∗L chosen to satisfy this will cause IH to converge asymptotically to zero and IL to

I∗L as defined above. Thus there exists a fixed point of type A13, which involves asymptotic

convergence of IH to zero:
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IH −→ 0

I∗L = 1− τ + αf∗L
βL

f∗H = 1

Similarly, consider fixed point A31, where IL tends towards zero asymptotically and IH
converges to I∗H :

A31 : IH = I∗H , IL −→ 0

For IL to tend asymptotically to zero, we require
İL
IL
< 0 at all points in time, for which

the MRAP is f∗L = 1. Combining these features gives İL
IL

= βL(1 − I∗H − IL) − α − τ ≈
βL(1− I∗H)−α− τ , for IL suffi ciently close to zero. This needs to be negative, which requires

1− α+ τ

βL
< I∗H . (29)

Similarly, IH converges to I∗H , which requires
İH
IH

= 0. Using this we can solve for I∗H :

I∗H = 1− τ + αf∗H
βH

. (30)

Thus, (29) simplifies to

τ + αf∗H
βH

<
α+ τ

βL
. (31)

Any f∗H chosen to satisfy this will cause IL to converge asymptotically to zero and IH to

I∗H as defined above. Thus, there exists a fixed point of type A31, which involves asymptotic

convergence of IL to zero:

IL −→ 0

I∗H = 1− τ + αf∗H
βH

f∗L = 1
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Note that both asymptotic fixed points can be feasible at the same time. Rearranging

(28) and (31) gives:

τ(
1

βL
− 1

βH
) <

α

βH
− αf∗L

βL
,

τ(
1

βL
− 1

βH
) >

αf∗H
βH
− α

βL
.

Both conditions can be satisfied as long as f∗H , f
∗
L < 1. The case of fH = fL = 1 deserves

further attention and is examined more fully in Section 4.2.6. Although both asymptotic

fixed points can be feasible at the same time, asymptotic eradication of both strains of the

disease is never possible:

Proposition 5 Both variants of the disease cannot be simultaneously eradicated even as-
ymptotically in equilibrium, i.e. we cannot have both I∗H → 0 and I∗L → 0, if we assume that

τ + α

βH
< 1,

τ

βL
< 1,

τ + α

βL
< 1.

Proof. In the Appendix.

This Proposition shows that in the case of the AFPs, one strain of the disease always

prevails. This becomes important when it is shown in a later section that under some pa-

rameter constellations, the only feasible fixed points are of the asymptotic type and thus in

these cases asymptotic eradication of both strains of the disease is not possible.

3.2.5 Regimes of feasibility: fixed points

Following Wagener (2003), the parameter space can be split into different regimes which

mandate which fixed points are feasible under every possible parameter constellation. Define

the constant K as

K =
βH − βL
βL

τ

α

16



The parameter space can now be divided into three regimes of feasibility.

Proposition 6 If K < 1, there exist a line of fixed points of type A12 and a line of fixed

points of type A20. If K = 1, there exists a fixed point of type A10. If K > 1, there are no

ordinary fixed points.

Proof. In the Appendix.

The proof of this Proposition shows that if K < 1, there are two lines of fixed points with

total infection levels:

I∗H + I∗L = 1− τ + α

βH
,

I∗∗H + I∗∗L = 1− τ

βL
.

Subtracting,

(I∗∗H + I∗∗L )− (I∗H + I∗L) =
α

βH

(
1− (βH − βL)

βL

τ

α

)
> 0

This shows that A20 always has higher total infection than A12. This is obvious as in the

latter, both treatment levels are higher.

3.2.6 Regimes of feasibility: asymptotic fixed points

We examine further the role of K in the feasibility of the AFPs. Let us denote A013 as the

AFP A13 when f∗H = 1 and f∗L = 0. Further denote the AFP A13 when f∗H = 1 and f∗L = 1 as

A113. Last, A
i
13 is the AFP A13 when f∗H = 1 and f∗L ∈ (0, 1). Symmetrically, we can define

A031, A
i
31 and A

1
31 as the AFP A31 when f∗H = 0, f∗H ∈ (0, 1) and f∗H = 1 respectively and

f∗L = 1 in all cases.

Proposition 7 If K < 1, there exist AFPs of type A031, A
i
31, A

1
31, A

0
13 and A

i
13. If K ≥ 1,

there exist AFPs of type A031, A
i
31, and A

1
31.
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Figure 1: The set of feasible equilibria when K > 1.

Proof. In the Appendix.

The set of feasible equilibria when K > 1 is depicted in Figure 1. The feasible set when

K = 1 is shown in Figure 2. Figure 3. shows the set of feasible equilibria when K < 1. The

AFPs with interior policies are not depicted in these graphs as they are only pinned down

once the treatment levels are known.

3.2.7 Feasible policy along the path

It is necessary to consider the path towards each of the steady states, and in particular which

policies are feasible under which conditions. Policies along the path will always be boundary

policies, as these are Most Rapid Approach Paths (MRAPs). We take each of the boundary

policies in turn and examine the feasibility conditions required for IH and IL to converge to

their steady state values. Details of this are provided in the Appendix. Letting Pab denote

the policy fH = a, fL = b, the conditions for feasibility are summarised in the table below:
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Figure 2: The set of feasible equilibria when K = 1.

Figure 3: The set of feasible equilibria when K < 1.
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Figure 4: Feasible policies depicted for the case when K < 1.

Table 1 (Feasible policies along the path)

İH , İL > 0 İH , İL < 0

P00 1− τ
βL

> IH + IL 1− τ
βH

< IH + IL

P10 1− τ
βL

> IH + IL 1− τ+α
βH

< IH + IL

P11 1− τ+α
βL

> IH + IL 1− τ+α
βH

< IH + IL

P01 1− τ+α
βL

> IH + IL 1− τ
βH

< IH + IL

Figure 4 shows which policies are feasible in different regions of initial infection levels.

3.3 Optimal policy

3.3.1 Optimal policy in the neighbourhood of the IFPs

Having derived feasibility conditions for the various policies, the obvious question is which

policies are optimal. We explore the behaviour of the path in approaching each of the interior

fixed points. Specifically, what is the policy along the path near to the fixed point? We know

that policies along the path will be at a boundary as these are MRAPs. Therefore, we

examine those policies that are at an interior level at the steady state, as they are likely to

have a switch point along the path. The approach is to perturb the fixed point slightly and

derive the policy in the neighbourhood of the fixed point.

20



Proposition 8 The optimal policy when approaching A12 from above is f∗L = 1. The optimal

policy when approaching this fixed point from below is f∗L = 0. The optimal value of f∗H is

equal to its steady state value, f∗H = 1, throughout. For fixed point A20, the optimal policy

when approaching from above is f∗H = 1 and f∗H = 0 when approaching from below. The

optimal value of f∗L is at its steady state value, f
∗
L = 0.

Proof. In the Appendix.

Comparing these optimal policies to the feasibility conditions of the previous section, we

find that all of the optimal policies are feasible. From the conditions derived for policy along

the path, it is clear that, for example, the upper line I∗∗H + I∗∗L = 1 − τ
βL
is attainable from

the top using both P11 and P10. It is also clear that P11 is the MRAP. However, we find that

P10 is the optimal policy. The intuition for this is as follows. This is because if f∗L = 0 at the

fixed point, then λ∗L > − c
α . Since λL is continuous it must be that λ

∗
L > − c

α in the vicinity

of the fixed point. Hence f∗L = 0 in the vicinity of the fixed point and it cannot be optimal

to reach this fixed point with P11. Similar intuition applies for the optimal policy for A12.

3.3.2 Skiba Hypothesis

Definition 9 A Skiba point is a point of indifference where two separate solutions for the

optimal control problem exist (Wagener 2003).

We hypothesise the existence of a Skiba curve along which conditions prescribe indifference

between selecting the path towards A20 versus A12. Note that these paths are the optimal

paths derived in the previous section. Following on from these results, the hypothesis is that

there is a Skiba curve lying between the two lines of fixed points. If the initial point
(
I0H , I

0
L

)
lies between the origin and the Skiba curve, then optimal policy is

fH = 1, fL = 0 for I0H + I0L < 1− τ + α

βH

fH = 1, fL = 1 for I0H + I0L > 1− τ + α

βH

fH = 1, fL = 1− (βH − βL)

βH

τ + α

α
for I0H + I0L = 1− τ + α

βH

If the initial point
(
I0H , I

0
L

)
lies on the opposite side of the Skiba curve from the origin,

then optimal policy is
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Figure 5: Optimal policies and the Skiba curve.

fH = 0, fL = 0 for I0H + I0L < 1− τ

βL

fH = 1, fL = 0 for I0H + I0L > 1− τ

βL

fH =
(βH − βL)

βL

τ

α
, fL = 0 for I0H + I0L = 1− τ

βL

Note that all these optimal policies satisfy the feasibility conditions set out in Table 1. The

sets of optimal policies are depicted in Figure 5. Skiba curves cannot be derived analytically.

Their presence can only be detected by means of simulations.

3.3.3 Optimal policy in the neighbourhood of the AFPs

We have already shown that optimal policy for A31 will involve f∗L = 1 as this is the MRAP.

Similarly, optimal policy for A13 will involve f∗H = 1. The question is which policy is optimal

of the range available to fH in A31 and fL in A13. In order to draw conclusions on this we

observe that the asymptotic fixed points always involve one strand of the infection that is

asymptotically eradicated. As a result, the behaviour of the system in the neighbourhood

of the fixed point can be approximated by the behaviour of a one-infection system. This

is because the behaviour of the system for small IL is very similar to the behaviour when

IL = 0. Naturally this holds for IH close to zero as well.
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The behaviour of a one-infection system has been analysed in Section 3. As was discussed,

Rowthorn (2004) shows that only extreme values for policy are optimal. This is because a

one-infection system has a costate variable that is single-valued in the infection level along

the optimal path, which implies that the optimum path cannot be a spiral. In our case the

costate variable λH is defined as

λH =
∂V (IH , IL)

∂IH
,

which for small IL is single-valued along the optimal path. Similarly,

λL =
∂V (IH , IL)

∂IL
,

which for small IH is single-valued along the optimal path. Interior policies involve spirals.

This implies that optimal policy for the AFPs will only ever involve boundary values, which

allows us to eliminate Ai31 and A
i
13 as steady states that are never optimal. Therefore, when

K > 1, the set of feasible equilibria is F = {A031, A131}, one of which will be optimal. When
K < 1, the set of feasible equilibria is F = {A12, A20, A031, A131, A013}, one of which will be
optimal. Similarly, when K = 1, the feasible set is F = {A10, A031, A131}. We cannot make
any further conclusions on the optimality of these remaining feasible fixed points. Optimality

will depend on parameter values. This will be explored by way of simulations in the next

section.

4 Simulations

The purpose of simuations is to enable the identification of optimal policy under different

parameters. Examples are provided of optimal policy in the case of various parameter assump-

tions. Simulations are carried out using the fourth-order Runge-Kutta method. Recalling

the constant K = βH−βL
βL

τ
α , there are three cases that can be evaluated: K < 1, K = 1 and

K > 1. We separate these into two cases: the case when K > 1 and there are only two

feasible fixed points: A031 and A
1
31, and the case when K ≤ 1 and the interior fixed points are

feasible.
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4.1 Paths with fixed policy

The case when K > 1 is interesting because it suggests that with an appropriate set of

parameters, it may be optimal to only eradicate the low infectivity strain, while allowing the

high infectivity strain to be endemic, with full or maybe even no treatment. Further, this

case will allow the clearest policy recommendations as the number of possible optimal policies

is small.

The following parameter assumptions ensure that K > 1:

Table 2 (Parameter values)

Parameter Value

βH 0.95

βL 0.4

τ 0.15

α 0.2

In addition, we assume that p = 1 and δ = 0.111. The goal is to evaluate whether, under

different scenarios, it is better to move towards A031 or A
1
31. In Section 4.2.4 it was shown

that in the neighbourhood of A031, optimal policy is (f∗H , f
∗
L) = (0, 1). In the neighbourhood

of A131, optimal policy is (f∗H , f
∗
L) = (1, 1). These policies may not be optimal along the

entire path towards these fixed points. However, we begin with a simple thought experiment

where we assume that the policymaker can only choose one policy and cannot change it.

This may happen in reality, for example, if the policymaker commits to a certain treatment

level and purchases the requisite amount of material. Organising additional treatment may

take time. Further, there may be political factors as agencies responsible for treatment may

not be able to secure additional funds from governements in the short run. We carry out

simulations where we assume that this is the case. In the next section, we allow for flexibility

of treatment across time. The simulations in this section are carried out with t = 90. We

can interpret each t as being one day, which implies that the results simulate an infection

evolving over approximately 90 days.

Optimal policy is evaluated based on the value of the integral, V , under each policy. We

fix policy at the beginning and allow the system to converge to steady state. In order to

analyse policy under various scenarios, we focus on the cost paremeter c, which we vary. The

initial value for the L infection is constant across all simulations and is set at a value close

to zero: I0L = 0.1. We find that there are three regions of values for c, each of which involve

a different optimal policy. These are shown in the table below:
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Table 3 (Regions of optimal policy as c varies when I0L = 0.1)

Region c f∗H f∗L

I (low costs) c < 0.2875 1 1

II (intermediate costs) 0.2875 ≤ c ≤ 0.3006 0 or 1, depending on I0H 1

III (high costs) c > 0.3006 0 1

Let us look at examples from each region and compare the value of V when starting at

different initial points I0H and setting fH = 0 or fH = 1. Note that when we are at A131,

I∗H = 1 − τ+α
βH

= 0.6316. When we are at A031, I
∗
H = 1 − τ

βH
= 0.8421. We take five initial

infection levels for the H type, distributed evenly across the interval I0H ∈ [0.6316, 0.8421].

First, consider Region I. Let c = 0.1. The table below gives the prevalence of each

infection type when steady state is reached and the value of the integral of moving to that

steady state. The policy with the higher value of V - the optimal policy - is emphasised in

bold.

Table 4 ( c = 0.1)

fH = 1 (path towards A131) fH = 0 (path towards A031)

I0H I∗L I∗H V I∗L I∗H V

0.6667 0.0000110 0.6316 2.3134 0.00000027 0.8421 1.3883

0.7018 0.0000109 0.6316 2.2641 0.00000026 0.8421 1.3425

0.7369 0.0000108 0.6316 2.2170 0.00000026 0.8421 1.2989

0.7719 0.0000107 0.6316 2.1720 0.00000026 0.8421 1.2572

0.8070 0.0000106 0.6316 2.1287 0.00000026 0.8421 1.2172

In this scenario, policy is independent of the initial value. It is always optimal to set

f∗H = 1 and treat everyone. As costs rise, we enter Region II. As an example of policy

evaluation for costs in this region, we set c = 0.295. The table below shows details of the

value of the integral and the infection levels for this parameter combination:

Table 5 ( c = 0.295)

fH = 1 (path towards A131) fH = 0 (path towards A031)

I0H I∗L I∗H V I∗L I∗H V

0.6667 0.0000110 0.6316 1.4806 0.00000027 0.8421 1.4636

0.7018 0.0000109 0.6316 1.4223 0.00000026 0.8421 1.4184

0.7369 0.0000108 0.6316 1.3668 0.00000026 0.8421 1.3753

0.7719 0.0000107 0.6316 1.3138 0.00000026 0.8421 1.3342

0.8070 0.0000106 0.6316 1.2628 0.00000026 0.8421 1.2947
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From the simulations it is clear that for I0H ≤ 0.7018, the policy f∗H = 1 is optimal. For

I0H ≥ 0.7369, the policy f∗H = 0 is optimal. However, we can be more specific than this. In

the region I0H ∈ (0.7018, 0.7369), there is a Skiba point as hypothesised, where the initial

value is such that policy is indifferent between setting f∗H = 0 and f∗H = 1. Simulations show

that this value is Ĩ0H = 0.7125, where V = 1.4051 for both policies. Optimal policy when

c = 0.295 is summarised in the table below:

Table 6 (Optimal policy when c = 0.295)

I0H f∗H f∗L

I0H < 0.7125 1 1

I0H = 0.7125 (Skiba point) 0 or 1 1

I0H > 0.7125 0 1

The remaining region to be considered is Region III, where c > 0.3006 and optimal policy

is f∗H = 0. Let us take c = 0.5 as an example. The table below details the values of the

relevant variables from the simulations:

Table 7 ( c = 0.5)

fH = 1 (path towards A131) fH = 0 (path towards A031)

I0H I∗L I∗H V I∗L I∗H V

0.6667 0.0000110 0.6316 0.2900 0.00000027 0.8421 1.3806

0.7018 0.0000109 0.6316 0.2228 0.00000026 0.8421 1.3361

0.7369 0.0000108 0.6316 0.1585 0.00000026 0.8421 1.2936

0.7719 0.0000107 0.6316 0.0971 0.00000026 0.8421 1.2530

0.8070 0.0000106 0.6316 0.0381 0.00000026 0.8421 1.2140

When c = 0.5, the optimal policy is f∗H = 0. This is the optimal policy for any c in

Region III. Note that all of the above simulations show the same qualitative results for

smaller values of I0L, namely I
0
L = 0.01, I0L = 0.001 and I0L = 0.0001.

These simulations show a fairly intuitive result, namely that as costs rise, we move from

the optimal treatment of everyone to the optimal treatment of only the L strain. They also

demonstrate an interesting finding, whereby there is a small range of costs for which optimal

policy is dependent on initial prevalence of infection.

4.2 Hamiltonian paths with variable policy

In this section we allow policy to vary in the case where K > 1. We also look at strictly

Hamiltonian paths i.e. those that satisfy the Hamiltonian conditions for optimality. In order
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to check that paths are Hamiltonian paths, costate variables are required. We examine each

initial point studied above and solve for values of the costate variables at these points using

the facts that

λH =
∂V (IH , IL)

∂IH
,

λL =
∂V (IH , IL)

∂IL
.

These partial derivatives can be approximated by perturbing the infection levels slightly.

Thus, for initial infection levels I0H and I0L,

λ0H ≈ V (I0H + ∆, I0L)− V (I0H , I
0
L)

∆
, (32)

λ0L ≈ V (I0H , I
0
L + ∆)− V (I0H , I

0
L)

∆
, (33)

for small ∆. In these simulations we set ∆ = 0.001. Table 8 depicts the Hamiltonian

conditions required for our two potential policies to be optimal:

Table 8 (Hamiltonian optimality conditions)

Policy Condition

f∗H = 1, f∗L = 1 λ∗H < − c
α , λ

∗
L < − c

α

f∗H = 0, f∗L = 1 λ∗H > − c
α , λ

∗
L < − c

α

In order to test whether our paths are Hamiltonian paths, for each initial infection level

we find the initial costate variables, λ0H and λ0L, using (32) and (33). We then test whether

either of the two candidate policies satisfies the Hamiltonian conditions. If one does, we

simulate the path from this initial point, using values for our costate variables to test for

optimal policy at each time increment. This allows policy to vary optimally. We then plot

graphs of the evolution of the policy variables over time along with the state variables IH and

IL. This will allow us to see whether there are any switch points (i.e. changes) in policy, and

at what levels of IH and IL they occur. We also simulate the paths ’backwards’, from the

initial point in the direction away from steady state. This gives us an indication of the path

and any possible switch points before the system reaches IH = I0H , IL = I0L. The backwards

paths are necessarily Hamiltonian paths as long as the Hamiltonian conditions for the forward

paths are satisfied. This is because the backwards paths are merely a continuation, albeit in

the opposite direction, of the Hamiltonian paths.
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Figure 6: Evolution of system towards fixed point. I0H = 0.7719, c = 0.1.

Let us begin with the lowest costs, c = 0.1. Solving for the costate variables and checking

the Hamiltonian conditions shows that there is a Hamiltonian path from each initial point,

with optimal policy (1, 1) along the entire path. There are no switch points. One example

of such a path is depicted in Figure 6. The simulations in this section are carried out with

t = 30. Therefore, the graphs show the infection evolving over approximately 30 days. This

path is simple. It is optimal to treat everyone. The control variables do not change over

time and the system gradually moves towards the fixed point, with IH dipping slightly before

converging to the steady state level. Fixing policy is optimal. This is in line with our findings

from the previous section, where moving to A131 was optimal when c = 0.1.

When the paths are run backwards, four of the five initial points exhibit a switch point

to the policy (0, 1). One example of such a path is given in Figure 7. Careful interpretation

of this graph is required. It depicts movement away from steady state, so it in effect needs to

be read ’backwards’, from right to left. The switch point implies that if we begin at an initial

infection level further away from our (I0H , I
0
L) - in particular, before the switch point - then

optimal policy will begin at (0, 1) and switch to (1, 1), remaining at (1, 1) until convergence.

Further simulations are carried out on paths when c = 0.295. Each of our five initial

points has a Hamiltonian path. All paths have one switch point. Simulations show that all

paths converge to fixed point A131, somewhat unexpectedly as, for all, initial optimal policy

is (0, 1). These details are shown in Table 9. It is interesting to compare this to the results

of the previous section. We find that only treating the L strain is initially optimal, but early

on there is an optimal switch to the policy of treating everyone The system never optimally
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Figure 7: Evolution of system away from fixed point. I0H = 0.7719, c = 0.1.

converges to A031 in contrast to the case of fixed policy. Policy is dependent on initial values,

but not in the same way that we observed in the previous section.

Table 9 (Switch points for Hamiltonian paths when c = 0.295)

I0H Initial (f∗H , f
∗
L) ∆f∗H ∆f∗L IH at switch IL at switch I∗H

0.6667 (0, 1) 0→ 1 None 0.7401 0.0734 0.6316

0.7018 (0, 1) 0→ 1 None 0.7482 0.0728 0.6316

0.7369 (0, 1) 0→ 1 None 0.7558 0.0722 0.6316

0.7719 (0, 1) 0→ 1 None 0.7626 0.0717 0.6316

0.8070 (0, 1) 0→ 1 None 0.7692 0.0714 0.6316

An example of one of these paths is depicted in Figure 8. The behaviour is different to

what we observed in Figure 6. There is a switch point early on, after which optimal policy

is to treat everyone. Prior to the switch point, prevalence of the H strand rises. It then

undershoots, growing slightly to converge to the low prevalence steady state. The intuition

behind the switch point is that initially, prevalence of the H strand is not high enough to

justify full treatment - the marginal cost of an additional infected person is lower than the

relative cost of treatment. As IH rises, there comes a point when this marginal cost exceeds

the relative cost of treatment. At this point, policy switches to treating everyone.

When running the path backwards, there is again one switch point. This is shown in

Figure 9. Reading the graph from right to left, it is clear that optimal policy begins with
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Figure 8: Evolution of system towards fixed point. I0H = 0.7369, c = 0.295.

treating no one, with f∗L switching to full treatment as we approach IH = 0.7369. Thereafter,

the path follows what is depicted in Figure 8.

Next, we turn to the example of high costs, when c = 0.5. Only three of our five initial

points have a Hamiltonian path. Despite each path beginning with only treating the L strain,

similar to our results in the previous section with non-variable policy, all three paths switch

to the policy of full treatment after a short period and converge to the fixed point with lower

infection level. Thus, the paths we derived in the previous section when c = 0.5 were not

Hamiltonian along their entirety. The details of the switch points when c = 0.5 are given in

the table below:

Table 10 (Switch points for Hamiltonian paths when c = 0.5)

I0H Initial (f∗H , f
∗
L) ∆f∗H ∆f∗L IH at switch IL at switch I∗H

0.6667 (0, 1) 0→ 1 None 0.7608 0.0619 0.6316

0.7018 (0, 1) 0→ 1 None 0.7641 0.0617 0.6316

0.7369 (0, 1) 0→ 1 None 0.7672 0.0615 0.6316

Figure 10 depicts an example of such a path. The behaviour of the system is similar to

the case when c = 0.295. There is a sharper rise in IH than in the previous example, but

the system still converges to A131 after the policy switch. The path approaching I
0
H is shown

in Figure 11. When approaching the fixed point, optimal policy does not treat anyone for a

large segment of the path. There is a policy switch very close to I0H . This is similar to the

behaviour observed at low costs, c = 0.1, and in contrast to the behaviour observed when

c = 0.295. This is likely to be because c = 0.295 is within the range of costs where optimal
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Figure 9: Evolution of system away from fixed point. I0H = 0.7369, c = 0.295.

Figure 10: Evolution of system towards fixed point. I0H = 0.7369, c = 0.5.
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Figure 11: Evolution of system away from fixed point. I0H = 0.7369, c = 0.5.

policy is not clear and instead depends on prevalence levels. Thus, we expect to observe more

policy switches in this intermediate case than we observe at the extreme cases.

There are several points to take away from these simulations. First, when policy is

variable, all simulations converge to the fixed point A131. This is interesting because, despite

the policy of only treating the L strain being optimal on segments of some of the paths, it is

still optimal to converge to the low infection state. Thus, the simulations suggest that it is

always better to attempt to lower prevalence of the H strand as much as possible. Another

observation to note is that when costs are suffi ciently low, our paths are simple, with no

switch points. They retain the same optimal policy that they began with, namely treating

everyone. Fixed policy is optimal at low cost levels. As costs rise, the paths become more

complex. We observe switch points and the policymaker is better off if she has flexibility in

her actions. This is relevant in particular for the paths modelled moving away from the fixed

point. Here, the extreme examples of c = 0.1 and c = 0.5 exhibit simple paths with only one

policy switch. In contrast, the paths when c = 0.295 are complex. This provides evidence

for the intuitive idea that when costs are extremely low or extremely high, optimal policy is

likely to be simple to predict. When costs are somewhere in the intermediate range, optimal

policy is likely to be complex and change frequently over the course of the epidemic.

The examples in this section pointed towards A131 as the sole optimal fixed point. We

ask ourselves whether there are any parameters such that it is optimal to move to or remain

at fixed point A031, where I
∗
H is higher than at A131. This question is addressed in the next

section.
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4.3 The Skiba curve

In this section we address the case when K ≤ 1. In this scenario, it is possible to have steady

states where both strains of the disease prevail. Section 3.3.2 hypothesised the existence of a

Skiba curve between the two lines of interior fixed point. This hypothesis is explored in this

section. We set βH = 0.6 in order to ensure that K < 1. Note that K = 1 is a simplified

case of K < 1 with no Skiba curve, so K < 1 is the more interesting case to simulate. All

other parameters are the same as in the previous section, apart from costs which are set to

c = 0.6. We run paths between the two lines of fixed points and look for initial values (I0H , I
0
L)

where the values of the integral of taking the path towards A12 versus A20 are equal. We

take several paths starting at A12 and looking for the Skiba point along each of those paths.

We then use these Skiba points to infer the Skiba curve.

The value of total infection and optimal policy at each line of fixed points is given in the

table below:

Table 11 (Characteristics of interior fixed points)

Fixed point I = IH + IL f∗H f∗L

A12 1− τ+α
βH

= 0.4167 1 1− (βH−βL)
βH

τ+α
α = 0.416

A20 1− τ
βL

= 0.6250 (βH−βL)
βL

τ
α = 0.375 0

We split the total value of infection at A12, which we will refer to as I12, into twenty

equal segments. This gives us twenty initial points (I0H , I
0
L)i, i = 1, ..., 20. We run the path

from these points towards A20. In each of these cases it is better to stay at A12 than to

move towards A20. However, it is also better to stay at A20 than to move towards A12.

This suggests that there is a point of indifference along each path where moving towards A12
versus A20 leaves the policymaker indifferent. We take several points along each path and

examine the value of the integral of going forward towards A20 or back towards A12. We

record the (I0H , I
0
L) where V (go to A20) = V (go to A12). In addition, we explore in further

detail initial values where the point of indifference is likely to lie on one of the fixed point

line. Put simply, these are the two points where the Skiba line intersects each fixed point

line. Exploring these points with greater precision allows a more accurate Skiba line to be

plotted. This is shown in Figure (12).

It is clear that the Skiba curve exists, which confirms our hypothesis. However, it is not

a straight line and it intersects each of the fixed point lines. It is also of a slightly steeper

slope than the two lines of fixed points. This is because of the higher infectivity of the H

strain. When I0H is high and I0L is low, we reach A20 faster than when I
0
H is low and I0L is

high. Similarly, when I0H is low and I
0
L is high, we reach A12 faster than when I

0
H is high and

I0L is low. We are more likely to observe indifference closer to A20 when I
0
H is high and closer

to A12 when I0H is low.
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Figure 12: The estimated Skiba curve.

We also hypothesise that the Skiba line continues beyond the points where it intersects

the fixed point lines. Specifically, the two paths that begin at the points of intersection with

the fixed point lines and move away from each of these lines are assumed to represent the

continuation of the Skiba line. We call this continuation, combined with the estimated Skiba

points, the ’extended’Skiba line. The extended Skiba line in fact delineates two areas. Above

the extended Skiba line, it is always optimal to go to A20, even if this involves crossing fixed

point line A12. Below the line, it is always optimal to go to A12, even if this involves crossing

A20. It is optimal to go to the fixed point that is further away.

These results show that when costs are high but K < 1, we can reach the interior fixed

points. There exists a curve of indifference between the two lines where moving towards the

fixed point with higher total prevalence is just as valuable as moving towards the fixed point

with lower total prevalence. Further, there are areas where although it is faster to reach one

fixed point, it is optimal to take the longer path towards the other fixed point. These areas

are shown by the Skiba continuation lines. The Skiba curve provides a delineation of two

areas, each of which have a clear optimal policy. This is useful: a policymaker tackling any

initial infection level that lies in one of these two areas immediately knows the optimal policy

for the situation at hand.
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4.4 Optimal policy lessons from the simulations

Three sets of simulations were carried out. Each taught us different lessons about optimal

policy. First, simulations were carried out with fixed policy, where both infection strains

were initially prevalent at a positive level. In this case, treating everyone and converging

to a lower prevalence of the H strain was optimal with low costs. As costs rose, optimal

policy was ambiguous and began to depend on the initial prevalence level. The further away

we started from A131, the more likely it was that converging to A
0
31 would be optimal. As

costs rose further, optimal policy unambiguously pointed towards not treating anyone and

allowing the system to converge to the fixed point with higher prevalence of H. From this

set of simulations we learn that when policy needs to be fixed, optimal policy is definitely

dependent on costs and may also be dependent on initial prevalence levels.

The second set of simulations allowed policy to vary. Here we observed that regardless of

the costs and the initial prevalence level, the system always optimally instructed us to treat

everyone when close to steady state. It was never optimal to allow the H strain to prevail

at the higher level. However, the policy almost always exhibited switch points, the exception

being the case when c = 0.1. Let us consider the intuition behind switch points. In most

cases optimal policy began with treating only the L strain, switching to full treatment when

the system was closer to equilibrium. This suggests that as long as policy can vary, we can

reach A131 without needing to set fH = 1 throughout. In fact, as long as we are allowed some

periods where the IH types are not treated, it is always optimal to, eventually, bring them

down to a low prevalence level. Thus: as long as we have flexibility in the policy instrument,

we can always reach A131. This is true for intermediate and high costs. The reason why this

is not the case with high costs and fixed policy is because treating everyone for the whole

duration of the epidemic proves to be too expensive to be worth it. Some interesting lessons

were observed from the backwards simulations as well, which simply reinforce the idea that

flexibility often induces switch points which allow us to reach ’better’equilibria.

The third set of simulations focused on the Skiba line. It was shown that the Skiba

hypothesis is valid: there exists a line of indifference that lies between the two lines of fixed

points. There is a further continuation of the Skiba line beyond the two lines of fixed points,

which helps delineate two areas that determine which fixed point is optimal. In general, the

higher the total infection level I0H + I0L, the more likely it is that movement to A20 is optimal.

This is intuitive: if the infection is very prevalent, it is more costly to move to the fixed point

with lower total infection. For a given total initial infection level, the higher the proportion

of I0H in the total, the more likely it is that fixed point A20 is optimal. This is because

the H strain is more diffi cult to treat due to its higher infectivity. Similarly the higher the

proportion of I0L in the total, the more likely it is that fixed point A12 is optimal. Thus, we

learn that when we are in the interior region of initial infection levels, two factors determine

which policy is optimal: the total initial infection level and its composition of H and L types.
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5 Conclusion

This paper has explored an SIS model with two variants of infection differentiated by trans-

mission risk. It has been shown that there are two types of steady states. First, there is a set

of fixed points with one treatment level at the boundary and one at an interior level. These

fixed points form two lines in (IH , IL) space and are only feasible under certain parameter

combinations. Only the total level of infection is pinned down here; the distribution of this

total infection between the two strains will depend on initial levels. Optimal policy for these

steady states is derived; along the path, optimal policy is always at a boundary, after which

it may switch to an interior level when steady state is reached. There are also asymptotic

fixed points that involve asymptotic eradication of one strand, while the other strand remains

endemic. Under the same parameter combinations that eliminate the interior fixed points, we

are left only with those asymptotic fixed points that asymptotically eradicate the L strand,

leaving the H strand to prevail. This is interesting as it suggests that sometimes it may be

optimal for the policymaker to focus treatment on the less infective strand, which may seem

counterintuitive. It is also shown that simultaneous asymptotic eradication of both strands

is not possible.

Simulations focus on two cases: when only asymptotic eradication of the L strand is

feasible, and when the interior fixed points are feasible. In the first case, we consider two

situations: when policy is fixed throughout the epidemic and when policy is flexible. We vary

costs and compare policy across different parameter combinations. The results are insightful.

When policy is fixed, there is a clear relationship between costs and optimal policy. There is

a small intermediate range of costs where optimal policy is dependent on initial value. This

range contains a Skiba point. When policy is allowed to vary, all paths converge to the steady

state with full treatment, even at high costs. At low costs, optimal policy is fixed and there

is no added benefit from being able to vary policy. As costs rise, policy exhibits switch points

and there is additional benefit from variable policy. In the second case the interior fixed

points are feasible and simulations show the Skiba line. The total initial infection level and

the proportion of H versus L types determine whether the policymaker should move towards

A20 or A12 or whether he is indifferent between the two.

There are several points to take away from these results. There are many possible steady

states, and feasibility will depend on paremeters. Simulations show that in the case of a

reduced set of feasible steady states, optimal fixed policy is clearly related to cost of treatment.

The non-equality of optimal fixed policy and optimal variable policy in most cases suggests

that there is an added benefit from policy flexibility. Therefore, our policy recommendation

is that treatment agencies should negotiate flexible terms with their suppliers and their

governments so that they have the option to change policy over time.

Further research should consider extending the simulations to look at other parameter

combinations. It would also be interesting to extend this model to include protection via
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vaccination as another instrument available to the policymaker.

A Analysis of interior fixed points

A.1 Fixed point A12

At fixed point A12, we can characterise the total level of infection:

I∗H + I∗L = 1− τ + α

βH
.

Further, the equation of motion for λH is given by

λ̇H = 0

= p+ cf∗H + δλ∗H − λ∗H

(
İH
I∗H

)
+ (λ∗HβHI

∗
H + λ∗LβLI

∗
L)

= p+ cf∗H + δλ∗H + (λ∗HβHI
∗
H + λ∗LβLI

∗
L).

where the second equality follows from the fact that İH = 0 at a steady state. Similarly,

λ̇L = 0

= p+ cf∗L + δλ∗L − λ∗L

(
İL
I∗L

)
+ (λ∗HβHI

∗
H + λ∗LβLI

∗
L)

= p+ cf∗L + δλ∗L + (λ∗HβHI
∗
H + λ∗LβLI

∗
L).

By subtraction,

c(f∗H − f∗L) + δ(λ∗H − λ∗L) = 0.

Since f∗L is interior, it must be that λ
∗
L = − c

α . Thus,

λ∗H = − c
α

[
1 +

(βH − βL)

βH

τ + α

δ

]
.

Since βH − βL > 0, it follows that λ∗H < − c
α , as required by the Hamiltonian conditions.

Thus, there is a line of fixed points in (IH , IL) space of type A12 that satisfies the Hamiltonian

conditions with the following properties:
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I∗H + I∗L = 1− τ + α

βH

λ∗H = − c
α

[
1 +

(βH − βL)

βH

τ + α

δ

]
< − c

α

λ∗L = − c
α

f∗H = 1

f∗L = 1− (βH − βL)

βH

τ + α

α

A.2 Fixed point A20

Rearranging İH = 0 and İL = 0 gives us the total level of infection,

I∗∗H + I∗∗L = 1− τ

βL
.

The equations of motion for the costate variables are,

λ̇H = 0

= p+ cf∗∗H + δλ∗∗H − λ∗∗H

(
İH
I∗∗H

)
+ (λ∗∗H βHI

∗∗
H + λ∗∗L βLI

∗∗
L )

= p+ cf∗∗H + δλ∗∗H + (λ∗∗H βHI
∗∗
H + λ∗∗L βLI

∗∗
L ),

λ̇L = 0

= p+ cf∗∗L + δλ∗∗L − λ∗∗L

(
İL
I∗∗L

)
+ (λ∗∗H βHI

∗∗
H + λ∗∗L βLI

∗∗
L )

= p+ cf∗∗L + δλ∗∗L + (λ∗∗H βHI
∗∗
H + λ∗∗L βLI

∗∗
L ).

Employing the same method as in the previous section, we subtract to yield

c(f∗∗H − f∗∗L ) + δ(λ∗∗H − λ∗∗L ) = 0.
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Since f∗∗H is interior it must be that λ∗∗H = − c
α . Thus,

λ∗∗L = − c
α

[
1− (βH − βL)

βL

τ

δ

]
.

Since βH − βL > 0 it follows that λ∗L > − c
α always holds, as required by the Hamiltonian

conditions. Thus, there is a line of fixed points of type A20 that satisfy the Hamiltonian

conditions with the following properties:

I∗∗H + I∗∗L = 1− τ

βL

λ∗∗H = − c
α

λ∗∗L = − c
α

[
1− (βH − βL)

βL

τ

δ

]
> − c

α

f∗∗H =
(βH − βL)

βL

τ

α

f∗∗L = 0

B Asymptotic eradication

Proposition 10 Both variants of the disease cannot be simultaneously eradicated even as-
ymptotically in equilibrium, i.e. we cannot have both I∗H → 0 and I∗L → 0, if we assume that

τ + α

βH
< 1,

τ

βL
< 1,

τ + α

βL
< 1.

Proof. To see this, first consider the case of the interior fixed points. Here, it is trivial. In
the case of A12, I∗H + I∗L = 1 − α+τ

βH
. We cannot have I∗H + I∗L = 0. Similarly for A20 where

I∗H + I∗L = 1− τ
βL
, it is not possible to have I∗H + I∗L = 0. Next, consider the asymptotic fixed

points. In the case of A31, we know that I∗L → 0 so the question is what happens to I∗H . For

IL to tend towards zero asymptotically, the necessary condition is IH > 1 − α+τ
βL
. Clearly

IH 6= 0 is necessary for this to be satisfied. Similarly, fixed point A13 implies that I∗H → 0.

The necessary condition for this is IL > 1− α+τ
βH
, which can only be satisfied if IL 6= 0. Thus,

both variants of the disease cannot be eradicated in equilibrium, even asymptotically.
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C Regimes of feasibility

Proposition 11 If K < 1, there exist a line of fixed points of type A12 and a line of fixed

points of type A20. If K = 1, there exists a fixed point of type A10. If K > 1, there are no

ordinary fixed points.

Proof. The conditions for the two kinds of interior fixed points to exist are as follows:

A12 : fH = 1, fL ∈ (0, 1) needs 1 >
(βH − βL)

βH

τ + α

α

A20 : fH ∈ (0, 1), fL = 0 needs 1 >
(βH − βL)

βL

τ

α

These two conditions are, in fact, identical. To see this, consider the following rearrange-

ment of the condition for A12:

1 >
(βH − βL)

βH

τ + α

α

⇔ βHα > (βH − βL)(τ + α)

⇔ βL(τ + α) > βHτ

⇔ βLα > (βH − βL)τ

⇔ 1 >
(βH − βL)

βL

τ

α

This demonstrates that both conditions are equivalent to βL(τ+α) > βHτ . The condition

1 > (βH−βL)
βL

τ
α is identical to K < 1.

If K = 1, this implies that (βH−βL)βL

τ
α = (βH−βL)

βH

τ+α
α = 1, and both A12 and A20 become

the fixed point of type A10. Total infection is characterised by the equation:

IH + IL = 1− τ + α

βH
= 1− τ

βL
.

If K > 1, none of the conditions for A12, A20 nor A10 are satisfied. Therefore there are

no ordinary fixed points.

Proposition 12 If K < 1, there exist AFPs of type A031, A
i
31, A

1
31, A

0
13 and A

i
13. If K ≥ 1,

there exist AFPs of type A031, A
i
31, and A

1
31.

Proof. First, note that the necessary condition for the feasibility of A31 (
τ+αf∗H
βH

< α+τ
βL
) is

satisfied independently of the value of K.
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Next, consider K < 1 and A13. The necessary condition for this AFP to be feasible is
τ+αf∗L
βL

< α+τ
βH
. This is never satisfied for f∗L = 1. However, it may be satisfied for small

enough f∗L. In particular, when K < 1, it is satisfied when f∗L = 0. Thus, the AFPs that

are feasible when K < 1 are A031, A
i
31, A

1
31, A

0
13 and A

i
13. Here, A

i
13 is defined such that f

∗
L is

small enough to satisfy the feasibility condition for this AFP.

Next, consider K ≥ 1. For A13 to be a feasible equilibrium, we require τ+α
βH

>
τ+αf∗L
βL

,

which is violated for all values of f∗L when K ≥ 1. Thus, the set of AFPs that are feasible

when K ≥ 1 is A031, A
i
31 and A

1
31.

D Feasible policy along the path

In order to derive which policies are feasible along the path towards steady state, it is nec-

essary to examine each MRAP policy in turn and derive the conditions that are required for

IH and IL to converge.

First, consider P00. This policy implies

İH
IH

= βH(1− IH − IL)− τ ,

İL
IL

= βL(1− IH − IL)− τ .

There are two ways of approaching a fixed point with this policy. First, we can have

İH , İL > 0 (i.e. IH and IL are increasing towards I∗H and I∗L). The required conditions for

this are

1− τ

βL
> IH + IL

1− τ

βH
> IH + IL

which collapse to

1− τ

βL
> IH + IL.

Similarly, we can have İH , İL < 0 (i.e. IH and IL are decreasing towards I∗H and I
∗
L). The

required conditions for this are
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1− τ

βL
< IH + IL

1− τ

βH
< IH + IL

which collapse to

1− τ

βH
< IH + IL.

Next, consider P10. For İH , İL > 0, the required conditions are

1− τ

βL
> IH + IL

1− τ + α

βH
> IH + IL

where the overriding condition is

1− τ

βL
> IH + IL.

For İH , İL < 0, we require

1− τ

βL
< IH + IL

1− τ + α

βH
< IH + IL

both of which are satisfied when

1− τ + α

βH
< IH + IL.
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Third, take P11. For İH , İL > 0, we need to satisfy

1− τ + α

βH
> IH + IL

1− τ + α

βL
> IH + IL

where the overriding condition is

1− τ + α

βL
> IH + IL.

For İH , İL < 0, we require

1− τ + α

βH
< IH + IL

1− τ + α

βL
< IH + IL

both of which are satisfied when

1− τ + α

βH
< IH + IL.

Last, consider P01. For İH , İL > 0, we need to satisfy

1− τ

βH
> IH + IL

1− τ + α

βL
> IH + IL

where the overriding condition is

1− τ + α

βL
> IH + IL.

For İH , İL < 0, we require
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1− τ

βH
< IH + IL

1− τ + α

βL
< IH + IL

both of which are satisfied when

1− τ

βH
< IH + IL.

E Optimal policy in the region of the IFPs

Proposition 13 The optimal policy when approaching A12 from above is f∗L = 1. The

optimal policy when approaching this fixed point from below is f∗L = 0. The optimal value of

f∗H is equal to its steady state value, f∗H = 1, throughout. For fixed point A20, the optimal

policy when approaching from above is f∗H = 1 and f∗H = 0 when approaching from below.

The optimal value of f∗L is at its steady state value, f
∗
L = 0.

Proof. First, take A12. Let us perturb the solution by changing fL from f∗L to f
∗
L + ∆fL

whilst leaving fH unchanged at its steady state value. Immediately following this change,

İH = 0, İL = −αI∗L∆fL 6= 0, λ̇H = 0 and λ̇L = 0. Differentiating (20) yields

λ̈L = (c+ αλ∗L)ḟL − λ̇L (−δ + βL(1− I∗L − I∗H)− τ − αf∗L) + λ∗LβL(İH + İL)

+(λ̇HβHI
∗
H + λ̇LβLI

∗
L) + (λ∗HβH İH + λ∗LβLİL)

= 2λ∗LβLİL

= −2
c

α
βL(−αI∗L)∆fL

= 2cβLI
∗
L∆fL 6= 0

Thus, there is a policy switch. To see this, consider the following. If ∆fL > 0 then λ̈L > 0

and İL < 0. Since we require λL = − c
α at the fixed point, this implies that λL < −

c
α when

approaching the fixed point from above. The Hamiltonian conditions imply that fL = 1 along

this segment of the path. Likewise, if ∆fL < 0 then λ̈L < 0 and İL > 0. This implies that

λL > − c
α when approaching the fixed point from below, and hence from the Hamiltonian

conditions it must be that fL = 0. Since λ̇H = 0 and λH < − c
α at the fixed point, it must

be that λH < − c
α holds on either side of the fixed point, by continuity. This demonstrates

that there is a Hamiltonian path to A12 which involves boundary values of fH and fL until

it reaches the fixed point, when it switches to an interior value of fL. There is no change in

fH .
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Next, take A20. Perturb the solution by altering fH from f∗∗H to f∗∗H + ∆fH , leaving

f∗L = 0. Immediately following this change, İH = −αI∗∗H ∆fH 6= 0, İL = 0, λ̇H = 0 and

λ̇L = 0. Differentiating λ̇H we see that in the proximity to this fixed point,

λ̈H = (c+ αλ∗∗H )ḟH − λ̇H (−δ + βH(1− I∗∗H − I∗∗L )− τ − αf∗∗H ) + λ∗∗H βH(İH + İL)

+(λ̇HβHI
∗∗
H + λ̇LβLI

∗∗
L ) + (λ∗∗H βH İH + λ∗∗L βLİL)

= 2λ∗∗H βH İH

= −2
c

α
βH(−αI∗∗H )∆fH

= 2cβHI
∗∗
H ∆fH 6= 0

Again, there will be a policy switch. If ∆fH > 0 then λ̈H > 0 and İH < 0. This implies

that λH < − c
α when approaching the fixed point from above, and hence from the Hamiltonian

conditions it must be that fH = 1. Likewise, if ∆fH < 0 then λ̈H < 0 and İH > 0. This

implies that λH > − c
α when approaching the fixed point from below, and hence it must be

the case that fH = 0. By continuity, λL > − c
α and fL = 0 on both sides of the fixed point.

Thus, there is a Hamiltonian path to this fixed point which involves boundary values of fH
and fL and a switch to an interior value of fH on reaching the fixed point, while retaining

the boundary value for fL.
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