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A B S T R A C T

Novel methods for measuring large-scale dynamic brain organisation are needed to provide new biomarkers of
schizophrenia. Using a method for modelling dynamic modular organisation (Mucha et al., 2010), evidence
suggests higher ‘flexibility’ (switching between multilayer network communities) to be a feature of schizo-
phrenia (Braun et al., 2016). The current study compared flexibility between 55 patients with schizophrenia and
72 controls (the COBRE Dataset). In addition, novel methods of ‘between resting state network synchronisation’
(BRSNS) and the probability of transition from one community to another were used to further describe group
differences in dynamic community structure. There was significantly higher schizophrenia group flexibility
scores in cerebellar (F (1124) = 9.33, p (FDR) = 0.017), subcortical (F (1124) = 13.14, p (FDR) = 0.005), and
fronto-parietal task control (F (1124) = 7.19, p (FDR) = 0.033) resting state networks (RSNs), as well as in the
left thalamus (MNI XYZ: -2, -13, 12; F(1, 124) = 17.1, p (FDR) < 0.001) and the right crus I (MNI XYZ: 35, -67,
-34; F (1, 124) = 19.65, p (FDR) < 0.001). Flexibility in the left thalamus reflected transitions between com-
munities covering default mode and sensory-somatomotor RSNs. BRSNS scores suggested altered dynamic inter-
RSN modular configuration in schizophrenia. This study suggests less stable community structure in a schizo-
phrenia group at an RSN and node level and provides novel methods of exploring dynamic community structure.
Mediation of group differences by mean time window correlation did however suggest flexibility to be no better
as a schizophrenia biomarker than simpler measures and a range of methodological choices affected results.

Acronyms

BRSNS – Between Resting State Network Synchronisation
ORSNS – Out of Resting State Network Synchronisation
RSN – Resting State Network

1. Introduction

Schizophrenia has been conceptualised as a disorder of dysconnec-
tivity (Pettersson-Yeo et al., 2011), which is supported by meta-ana-
lyses of structural (Ellison-Wright and Bullmore, 2009) and functional
imaging studies (Dong et al., 2017; O'Neill et al., 2018). Resting state
functional connectivity studies have implicated altered connectivity of
the default mode network (Dong et al., 2017; Kühn and Gallinat, 2011;
O'Neill et al., 2018), cortical-subcortical dysconnectivity

(Damaraju et al., 2014; Woodward et al., 2012), and abnormal whole
brain network topology measures such as lower connectedness of hubs
(Lynall et al., 2010) and lower network modularity (Alexander-
Bloch et al., 2010; Lerman-Sinkoff and Barch, 2016; Yu et al., 2012).

Functional connectivity alterations in schizophrenia are suggested
to be both complex (Dong et al., 2017) and transitory, with intermittent
states of dysconnectivity apparent over the course of a scan
(Damaraju et al., 2014; Du et al., 2017; Rashid et al., 2016, 2014). The
difficulties of characterising functional connectivity alterations that are
both complex and time varying highlights the need for novel methods
that can simultaneously take into account large-scale brain organisation
and dynamics. A development in the ‘dynamic network neuroscience’
field has been the application of multilayer community detection, a
method for modelling time-varying community structure across the
course of a scan (Mucha et al., 2010).
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Multilayer community detection has been used to explore the
“flexibility” (Bassett et al., 2011) or “node switching” (Pedersen et al.,
2018; Telesford et al., 2017) of brain areas. Multilayer community
detection describes the clustering of highly connection regions, al-
lowing community structure to change over time. Flexibility can be
seen as a generic measure of dynamic community structure and is not
specifically related to concepts such as cognitive flexibility. For in-
stance, flexibility has been related to diverse aspects of cognition, such
as motor learning (Bassett et al., 2011), recognition memory
(Telesford et al., 2016), attention (Shine et al., 2016; Telesford et al.,
2016), working memory (Braun et al., 2016), executive function
(Braun et al., 2015), cognitive inhibition, cognitive flexibility, proces-
sing speed, and planning (Pedersen et al., 2018). It has also been as-
sociated with fatigue, surprise and positive affect (Betzel et al., 2017),
and depression (Zheng et al., 2018).

One study to date has explored flexibility in schizophrenia, sug-
gesting whole brain flexibility to be higher in patients with schizo-
phrenia during a working memory task (Braun et al., 2016). The current
study builds on this research by comparing flexibility scores between a
patient group with schizophrenia and a healthy control group during a
resting state fMRI scan. In addition, the current study used two novel
methods in an attempt to further characterise group differences in dy-
namic modular configuration. One approach used the “module alle-
giance matrix” (Bassett et al., 2015) in order to measure the level of
synchronisation between brain areas and between previously defined
resting state networks (RSNs) (Power et al., 2011). A second method
used K-means clustering and transition matrices in order to make group
comparisons of the probability of transition between communities. The
aim of this study was to build on the previous finding of Braun et al.
(2016) and to provide novel methods of exploring dynamic functional
connectivity in schizophrenia.

1.1. Hypotheses

The main hypothesis was that when assessed in the resting state,
flexibility scores would be higher in patients with schizophrenia than
controls. We tested this hypothesis at a whole brain, RSN, and node
level. Multilayer community assignment was further described in an
exploratory analysis using two novel measures, between resting state
network synchronisation (BRSNS) and the probability of transition
between communities. In order to validate these methods and to pro-
vide a normative model, flexibility and module allegiance was first
tested in the control sample alone.

2. Methods

2.1. Participants

The COBRE dataset has 72 patients with schizophrenia and 75
healthy controls. Participants underwent a 5 minute resting state scan
(TR = 2s, TE = 29 ms, 150 volumes, matrix size = 64 × 64, 32 slices,
voxel size = 3 × 3 × 4 mm3). Two controls and 19 patients were
removed during preprocessing (see below), and two participants with-
drew their data, leaving data from 72 controls and 55 patients for
analysis. Group characteristics are described in Table 1.

2.2. Preprocessing

Preprocessing followed the same steps as in Patel et al. (2014) using
AFNI version 17.2.17 (Cox, 1996) and FSL version 5.0.11
(Jenkinson et al., 2012). Briefly this involved slice timing correction,
rigid-body head movement realignment to the first volume, co-regis-
tration to structural image using a gray matter mask, transformation to
MNI space, spatial smoothing with a 6 mm FWHM, wavelet despiking
using the BrainWavelet Toolbox with default settings (www.
brainwavelet.org), regression of 6 movement parameters (x, y, z,

pitch, roll, and yaw) and CSF based confounding signal. A band-pass
filter of 0.08 < f < 0.15 Hz was applied, which is the same frequency
band studied in a previous investigation of flexibility in schizophrenia
(Braun et al., 2016).

Although the Wavelet Despiking algorithm is a robust movement
correction procedure (Patel et al., 2014) there was a significant dif-
ference in median mean spike percentage (a measure of movement
related noise) between the two groups (U = 1598, p < 0.001). Parti-
cipants with a mean spike percentage > 7.5% were excluded from the
analysis, however there was still a higher median mean spike percen-
tage in the patient group (U = 1477, p = 0.014). As a result, mean
spike percentage was included as a covariate in the group comparisons.

Resting state scans were parcellated using the Power et al. (2011)
atlas (5mm spheres around suggested coordinates). This atlas was
chosen as it has pre-defined allocations of nodes into RSNs. The
Power et al. (2011) atlas has 12 RSNs: default mode, cerebellar, cin-
gulo-opercular task control, sensory-somatomotor hand / mouth, sub-
cortical, fronto-parietal task control, visual, memory retrieval, salience,
dorsal attention, ventral attention, and auditory. In the current study
the two sensory-somatomotor networks were combined. To confirm
results main group comparisons of flexibility were repeated using the
Gordon et al. (2016) atlas, which contains a similar set of 11 RSNs, with
the omission of the cerebellar, subcortical, and memory retrieval net-
works, and the addition of the retrosplenial-temporal and cingulo-par-
ietal RSNs. These two atlases were chosen as they have pre-defined
allocations of nodes into RSNs.

Areas of signal drop out were defined as those with a mean time-
series signal intensity z score (across nodes) less than or equal to 1.64 in
any subject, corresponding to outliers > 95th percentile or < 5th
percentile. These nodes were removed from the analysis, leaving 207
regions in the Power et al. (2011) parcellation and 268 in the
Gordon et al. (2016) parcellation. Areas of signal loss were mostly in
ventral prefrontal and temporal areas, which is a common issue in MRI
imaging (Deichmann et al., 2003).

Table. 1
Demographics of the COBRE dataset used in this study, including gender, age
(mean and standard deviation), and handedness. Chi-squared / Mann-Whitney
U / Fischer's Exact tests were used to judge whether group differences were
problematic. For the patient group Positive and Negative Syndrome Scale
(PANSS) scores are given, as well as medication (olanzapine equivalent dose in
mg), age of onset of psychotic symptoms, and duration of psychotic illness in
years.

Patients
(N = 55)

Controls
(N = 72)

Significance Test P

Gender X2 (1) = 3.23 0.072
Male (%) 46.00

(83.64)
49.00
(68.06)

Female (%) 9.00 (16.36) 23.00
(31.94)

Mean Age (SD) 36.11
(13.59)

35.86
(11.67)

T (106.32) = -0.11 0.914

Handedness Fischer's Exact Test 0.012
Right (%) 46.00

(83.64)
69.00
(85.83)

Left (%) 8.00 (14.55) 1.00 (1.39)
Both (%) 1.00 (1.82) 2.00 (2.78)
PANSS
Positive 14.82 (4.75)
Negative 14.49 (5.13)
General 29.33 (8.28)
Olanzapine

Equivalent (mg)
10.65 (6.24)

Age of Onset (years) 20.85 (7.78)
Duration of Illness

(years)
15.00
(12.53)

G. Gifford, et al. NeuroImage: Clinical 25 (2020) 102169

2

http://www.brainwavelet.org
http://www.brainwavelet.org


2.3. Sliding time windows

Time-series data were split into a consecutive series of non-over-
lapping windows. Similar to Braun et al. (2016) scans were cut into 30 s
/ 15 TR segments. Additionally, flexibility results were repeated with
25 TRs (50 s) and 30 TRs (60 s) window sizes, in order to report
whether window size affected results. These window sizes were chosen
so that the total number of volumes (150) was divisible by each window
length and because it has been suggested that 30–60 s time windows are
reasonable in studying fMRI based dynamic functional connectivity
(Leonardi and Van De Ville, 2015) and such window sizes have typi-
cally been used in dynamic functional connectivity studies (Allen et al.,
2014; Chang and Glover, 2010; Hutchison et al., 2013; Sakoğlu et al.,
2010; Shirer et al., 2012; Gonzalez-Castillo et al., 2013). It has been
suggested also that the minimum window size that can be used in a
dynamic functional connectivity study is 1/fmin, where fmin is the
minimum frequency included (Leonardi and Van De Ville, 2015). In the
present study this would allow for a window size of 12.5 s (1/
0.08 = 12.5). However, window sizes below 30 s appeared to have low
variance of flexibility across participants and across nodes (supple-
mentary materials Section 1).

Windowed correlation matrices were proportionally thresholded at
10% to give a series of weighted adjacency matrices. Adjacency ma-
trices in sequence were used as ordered layers in the multilayer net-
work. Additionally, the analysis was repeated at 5 and 15% thresholds,
as well as over a range of parameters specific to the multilayer com-
munity detection algorithm: γ (0.9, 1, 1.1) and ω (0.5, 0.75, 1)
(Pedersen et al., 2018). The parameter γ controls the size and therefore
number of communities within layers of the network (larger γ = more
communities). The parameter ω in the current study controls the
number of communities found across layers (larger ω = less commu-
nities) (Bassett et al., 2013). An exploration of how these parameters
affected flexibility and group differences is shown in the supplementary
materials Section 1.

2.4. Multilayer community detection

Communities describe groups of nodes more strongly connected to
each other than to nodes outside of their community, as compared to a
null model representing what would be expected in a network of similar

size and density with randomly distributed connections
(Newman, 2006). Modularity describes a formal measurement of this
(Newman and Girvan, 2004), which can be used in iterative processes
of finding a partition of a network with an optimal set of community
assignments. In the current study the GenLouvain community detection
algorithm was used (Jutla et al., 2011; Mucha et al., 2010), which in-
volves the following modularity measurement that is formulated to
work on multilayer networks:

∑= − +Q
μ

A γ P δ δ ω δ g g1
2

[( ) ] ( , )
ijlr

ijl l ijl lr ij jlr il jr

Here μ is the total edge weight of the network, Aijl is the adjacency
matrix between nodes i and j at layer l. Pijl describes the matrix of
expected weights under the null model. The structural resolution
parameter γl sets the weight of intralayer edges, and the temporal ωjlr

resolution parameter sets the weight of inter layer edges (here
γl = ωjlr = 1). g refers to community assignments: gil and gjr are the
community assignments of node i in layer l, and node j in layer r (re-
spectively). δ describes the Kronecker delta, which for δ(gil, gjr) is 1 if
il = jr, and 0 if il ≠ jr (Bassett, Porter, et al., 2013)

In the current study the GenLouvain community detection algo-
rithm was used on each participant's sequence of weighted adjacency
matrices (node x node x layer). Here, the network was treated as or-
dinal, with interlayer links between sequential layers for nodes at the
same position. This was a similar implementation used in previous
studies (Bassett et al., 2011; Braun et al., 2016; Pedersen et al., 2018;
Telesford et al., 2016) (Fig. 1).

2.5. Module allegiance and between / out of RSN synchronisation

In order to measure the dynamic reorganisation of communities
between RSNs the concept of a “module allegiance matrix”
(Bassett et al., 2015; Zheng et al., 2018) was used. This concept has also
been termed the “temporal co-occurrence matrix” in a previous study
(Chen et al., 2016). The benefit of the module allegiance matrix is that
it allows for the level of synchronisation between specific nodes or RSNs
to be measured. To create each participant's module allegiance matrix a
node x node matrix was formed with each element giving the propor-
tion of times a node shared a community with another node over the

Fig. 1. (A) Blood oxygen level-dependent (BOLD) signals from 207 regions (Power et al. (2011); ROIs with low SNR areas removed) were extracted and non-
overlapping windowed segments were used to create a sequence of node by node correlation matrices. (B) Thresholded correlation matrices were used to create a
multilayer network with inter-layer edges connecting nodes at the same location in each windowed graph. (C) A multilayer community detection algorithm was used
(Mucha et al., 2010) to give community assignments at each window. Flexibility was computed as the mean number of times a node changed community assignment.

G. Gifford, et al. NeuroImage: Clinical 25 (2020) 102169

3



course of the scan.
Mean module allegiance between RSNs was found in order to give a

measure of synchronisation between pairs of RSNs. We refer to this
measure as ‘between RSN synchronisation’ (BRSNS). To provide a
summary measure of how often RSNs coupled with nodes outside of
their network, the mean of all out of RSN module allegiance values for
each RSN was taken. For simplicity we refer to this measure as ‘out of
RSN synchronisation’ (ORSNS). This is a similar concept to “temporal
flexibility” proposed by Chen et al. (2016). ORSNS was measured in
controls in order to validate the module allegiance procedure, by
comparing relative levels with suggested ‘processing / control’ profiles
of RSNs (Power et al., 2011), which are described based on profiles of
inter and intra RSN connectivity.

2.6. Transition matrices

A transition matrix containing the probability of transition from one
community to another was formed for each participant. Group differ-
ences were then tested using permutation tests (two tailed; 5000 per-
mutations of group assignments). Transition matrices were treated as
undirected by averaging inward and outward transition probabilities.

K means clustering was used (Scikit-Learn: Pedregosa et al., 2011)
in order to label the communities found in each participant into a set of
standard communities shared across subjects. This approach is com-
monly used with dynamic functional connectivity as it provides a way
to standardise participant's sliding time windows into a set of group
meta-states (Allen et al., 2014; Damaraju et al., 2014; Rashid et al.,
2014; Shakil et al., 2016). Every community from every participant was
entered into the k means algorithm, the feature space being a vector of
probability of node assignment for all nodes (207 features). A full de-
scription of the k means procedure is given in the supplementary ma-
terials Section 2. Each cluster was equally represented in patient and
controls groups (supplementary materials Table 2.1).

2.7. Confounding factors

Group characteristics suggested a significant difference in the pro-
portions of left and right handed participants (Fischer's Exact Test,
p = 0.012). As some cell counts would be too small to enter as a cov-
ariate in a logistic regression the results were instead repeated in-
cluding only right handed participants. In addition, the analysis was
repeated using overlapping windows (in steps of 1 TR), as previous
studies have used both overlapping / non overlapping windows
(Bassett et al., 2011; Braun et al., 2016; Pedersen et al., 2018;
Telesford et al., 2016).

It is also the case that complex measures such as flexibility may be
explained by simpler network characteristics. The current study tested
whether the mean number of communities in time windows and the
mean of time windowed correlation matrices were mediators in the
relationship between group assignment and flexibility.

2.8. Ethics statement

The COBRE (The Centre for Biomedical Research Excellence) da-
taset was obtained through the International Neuroimaging Data-
sharing Initiative (http://fcon_1000.projects.nitrc.org/indi/retro/
cobre.html). This was originally released under Creative Commons –
Attribution Non-Commercial. Written informed consent was obtained
for all participants.

2.9. Code availability

In order to aid reproducibility and transparency, tailor made scripts
used in this study have been made available (https://github.com/
george-gifford/COBRE_multilayer_community). Statistical analysis was
performed using R version 3.5.1. The current study used a Matlab
version 9.2.0. when implementing the GenLouvain multilayer com-
munity detection algorithm, which is currently available from (netwi-
ki.amath.unc.edu/GenLouvain/GenLouvain) (Jutla et al., 2011).

Fig. 2. Distribution of Flexibility (for 15, 25, and 30 TRs) and static (whole time series) strength (weighted degree) for all nodes within controls.
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3. Results

3.1. Flexibility in controls

We first investigated whether flexibility correlated with static
strength (weighted degree). In each of the 15 TR (rs = 0.55, p <
0.001), 25 TR (rs = 0.42, p < 0.001), and 30 TR windows (rs = 0.42, p
< 0.001) strength was significantly correlated with flexibility. This
suggests that higher degree nodes typically had higher flexibility. The
distribution of flexibility values across nodes for all window sizes in-
dicated a normal distribution, and static strength followed a power law
distribution with a minority of high strength nodes (Fig. 2).

3.2. Most / least flexible nodes in controls

The nodes with the highest flexibility scores across window sizes
were located in the bilateral precentral gyrus, right post-central gyrus,
left supplementary motor cortex, lateral occipital cortex, right middle
temporal gyrus, right supramarginal gyrus, and the right precuneous
cortex. Nodes with the lowest flexibility scores were in the right middle
frontal gyrus, right parahippocampal gyrus, bilateral precentral gyrus,
right superior frontal gyrus, left brain stem, right anterior cingulate
gyrus, left para-cingulate gyrus, left posterior cingulate gyrus, left
thalamus, and right posterior cingulate gyrus (Fig. 3, also see supple-
mentary materials Section 3). Taking the mean flexibility scores of
nodes within each RSN the default mode consistently showed the lowest
flexibility scores across window sizes. The auditory, dorsal attention,
and ventral attention RSNs consistently showed the highest flexibility
scores.

3.3. Module allegiance in controls

A node x node matrix of mean module allegiance values across
controls showed higher module allegiance of nodes within each RSN,
particularly within visual, default mode, and sensory-somatomotor
networks (Fig. 4). ORSNS for each RSN was highest for the ventral at-
tention and cerebellar RSNs and lowest for the sensory-somatomotor,
default mode, and visual RSNs (Fig. 4). This was consistent over
window sizes (supplementary materials Section 4). The highest BRSNS
score was between the default mode and memory retrieval, the salience
and subcortical, and subcortical and cerebellar networks. The lowest
BRSNS score was between the memory retrieval and auditory, dorsal
attention and subcortical, and subcortical and sensory-somatomotor
networks. Results for 25 and 30 TR windows are shown in the sup-
plementary materials Section 4.

3.4. Group comparisons – Whole brain

Whole brain mean flexibility values were compared between patient
and control groups. This was done whilst controlling for mean spike
percentage using Analysis of Covariance (ANCOVA) (Table 2). Group
distributions of flexibility are shown in Fig. 5. Flexibility was not sig-
nificantly different between patients and controls at the 15, 25, and 30
TR window sizes. Bootstrapped confidence intervals of beta values
suggested a trend for significantly higher flexibility in the schizophrenia
patient group (Table 2). Results using the Gordon et al. (2016) par-
cellation are shown in supplementary materials Section 5.1.

3.5. Group comparisons – Resting state networks

RSN mean flexibility values were compared between the patient and
control groups. This was done whilst controlling for spike percentage

Fig. 3. Upper: Violin plots of mean flexibility scores averaged within each resting state network for each participant for 15, 25, and 30 TR windows. Lower: Mean
flexibility (zscore) across all controls for 15, 25, and 30 TR thresholds projected onto a cortical surface.
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using an ANCOVA. All results were non-significant (see supplementary
materials Section 6 for full results) apart from in the cerebellar (F
(1124) = 9.33, p (FDR) = 0.017), subcortical (F (1124) = 13.14, p
(FDR) = 0.005), and fronto-parietal task control networks (F
(1124) = 7.19, p (FDR) = 0.033) when using 15 TR windows. Bar
charts of RSN flexibility values are shown in Fig. 5. Results using the
Gordon et al. (2016) parcellation are shown in supplementary materials
Section 5.2.

3.6. Group comparisons – All nodes

Group comparisons of flexibility were made at a node level between
patients and controls. When controlling for multiple comparisons (FDR)
two regions were significantly different in terms of flexibility for the 15
TR window size: a node in the left thalamus (MNI XYZ: -2, -13, 12; F (1,
124) = 17.1, p (FDR) < 0.001) and the right crus I, which is part of the
cerebellum (MNI XYZ: 35, -67, -34; F (1, 124) = 19.65, p (FDR) <
0.001). For the Gordon et al. (2016) parcellation likewise no regions
were found to be significant at the 15 TR window size. When using 25
TR windows a node in the right insula was found to be more flexibility
in patients with schizophrenia (MNI XYZ: 39.6, 10.4, -1.6; F
(1124) = 15.04, p (FDR) < 0.001).

3.7. Correlation with PANSS scores, age of onset, medication, and duration
of illness

Within the patient group, whole brain flexibility as well as flexibility
in brain areas / RSNs that were significantly different between groups
was compared with positive and negative PANSS scores, age of onset of
psychotic symptoms, and duration of psychosis. Positive PANSS scores
were weakly significantly negatively correlated with whole brain

flexibility (15 TR) (Rs = -0.27, p = 0.042) and duration of illness was
moderately significantly negatively correlated with flexibility within
the subcortical RSN (Rs = -0.30, p = 0.025). No correlations were
significant after correcting for multiple comparisons. Full results are
shown in Table 3. Results using the Gordon et al. (2016) parcellation
shown in supplementary materials Section 6.

3.8. Group comparisons – Module allegiance

The aim of using module allegiance was to further describe group
differences in the dynamic configuration of communities in an ex-
ploratory manner. To do so independent group t tests were performed
for group differences of BRSNS scores for all RSN pairs (Table 4). An
FDR correction was applied to p values across 66 tests. This was done
for 15 TR windows only as there were no significant differences in
flexibility for the 25 and 30 TR windows at the RSN level.

There were also significant correlations between BRSNS scores and
positive PANSS symptom scores for sensory somatomotor / salience
(r = -0.33, p = 0.014) and salience / subcortical RSNs (r = -0.27,
p = 0.045), and negative PANSS symptom scores for auditory / cere-
bellar RSNs (r = 0.30, p = 0.025). No BRSNS scores were correlated
with illness duration, age of onset of psychotic symptoms or medication
use. These correlations were not significant when controlling for mul-
tiple comparisons (Fig. 6).

3.9. Transition matrices

Using communities tokenised by a K means clustering procedure,
matrices of the probability of transition from one community to another
were created for all nodes. This was done at the whole brain level
(mean transition matrices across nodes) and for the node located in the

Fig. 4. (A) Node x node module allegiance matrix. Bar shows proportion of times nodes share the same community. (B) Violin plot of resting state network (RSN) out
of network synchronisation (ORSNS) for each RSN. Both plots show results for 15 TR windows.

Table. 2
Group mean and standard deviation whole brain flexibility for 15, 25, and 30 TR window sizes. F and P values are displayed. CI: Bootstrapped (5000 permutations)
95% confidence intervals of Beta values.

Window size Patient Mean (SD) Control Mean (SD) F, DOF (1124) P B Bootstrapped 95% CI

15 TR 0.47 0.03 0.46 0.04 2.82 0.095 0.005 0.000 0.011
25 TR 0.38 0.05 0.38 0.05 0.95 0.331 0.004 -0.005 0.013
30 TR 0.35 0.07 0.34 0.05 1.01 0.317 0.005 -0.005 0.016
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Fig. 5. Left column: Violin plots of whole brain (mean across nodes) flexibility for patients and controls for 15, 25, and 30 TR window sizes. Right column: mean
flexibility values for patients with schizophrenia and controls averaged across resting state networks for each TR window size. Asterix show P< 0.05 (FDR corrected)
for group differences, whilst controlling for spike percentage.

Table. 3
Spearman's Rho correlations of PANSS scores (positive, and negative), medication use at time of scan (Olanzapine equivalent in mg), duration of psychotic illness,
and age of onset of psychotic symptoms, with whole brain (15, 25, and 30 TR windows), resting state network (RSN), and node flexibility values, within the patient
group. P values reported as uncorrected for multiple comparisons. Fronto-parietal TC = Fronto-parietal Task Control.

PANSS Positive P PANSS Negative P Olanzapine Equivalent P Duration of Illness P Illness Onset P

Whole Brain 15 TR -0.27 0.042 0.09 0.495 0.02 0.886 -0.07 0.626 -0.17 0.230
Whole Brain 25 TR -0.24 0.078 0.12 0.366 0.07 0.613 -0.26 0.054 -0.13 0.359
Whole Brain 30 TR -0.06 0.658 0.01 0.915 0.16 0.242 0.00 0.990 -0.12 0.405
Left Thalamus -0.13 0.351 0.00 0.986 0.05 0.702 -0.18 0.182 0.02 0.895
Right Crus I 0.02 0.891 0.02 0.864 0.07 0.600 -0.19 0.179 0.13 0.363
Cerebellar RSN -0.10 0.481 -0.01 0.925 0.01 0.951 0.07 0.592 0.08 0.575
Fronto-Parietal TC RSN -0.26 0.058 -0.01 0.940 -0.15 0.299 0.01 0.958 0.09 0.537
Subcortical RSN -0.15 0.270 0.02 0.901 0.01 0.945 -0.30 0.025 -0.10 0.483
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left thalamus (MNI XYZ: -2, -13, 12), which was previously found to
have significantly higher flexibility scores in the patient group (Fig. 7).
This was done as the thalamus is known to be an important hub,
mediating connections between subcortical, sensory-motor, and cortical
regions (Hwang et al., 2017) and has particular importance in schizo-
phrenia pathology (Andreasen et al., 1994; Anticevic et al., 2013;
Bernard et al., 2015, 2017). Transition matrices were created for 15 TR
windows only.

Statistical comparisons of group mean transition probabilities were
made using permutation tests of group differences (two tailed; 5000
permutations of group assignments). There were no significant group
differences in the probability of transition between any of the com-
munities at the whole brain level. For the left thalamus, there was a
significantly greater group mean probability of transition in patients
between communities 1 and 4 (mean difference = 0.13, p = 0.025).
Probability of transition between communities 1 and 4 in patients was
not associated with PANSS positive (rs = 0.17, p = 0.201) or negative
(rs = 0.08, p = 0.582) symptom scores, but was significantly positively
correlated with duration of psychotic illness (rs = 0.29, p = 0.031).
When visualising cluster centres from the K mean clustering procedure,
averaged within each RSN, it appeared that community 1 represented
the default mode / memory retrieval networks and community 4 the
sensory-somatomotor network (Fig. 7).

3.10. Confounding factors

Restricting results to right handed participants gave similar results
in terms of group differences of flexibility scores at the whole brain and
RSN level. At the node level, results were similar, however flexibility
scores were suggested to be higher in patients for nodes in four addi-
tional regions: the left posterior cingulate gyrus (MNI: -2, -35, 31; F
(1124) = 12.40, p (FDR) < 0.001), the right middle frontal gyrus
(MNI: 31, 33, 26; F (1124) = 13.30, p (FDR) < 0.001), and the right
thalamus (MNI: 6, -24, 0; F (1124) = 11.15, p (FDR) = 0.001).

Using overlapping time windowed correlation matrices (15 TR
windows incrementing in 1 TR steps) resulted in non-significant results
at the whole brain and RSN level. The left thalamus still appeared to
have significantly higher flexibility scores in patients (F
(1124) = 15.24, p (FDR) < 0.001). Flexibility scores from overlapping
and non-overlapping windows at the whole brain level were however
strongly correlated R = 0.52, p < 0.001 across participants.

The mean number of communities in time windows was not sig-
nificantly different between the two groups (t (97.60) = -0.24,
p = 0.813). It was also not correlated with flexibility scores in the
cerebellar (R = 0.01, p = 0.950), fronto-parietal task control
(R = 0.05, p = 0.570), or subcortical networks (R = 0.10, p = 0.242).
Neither was it correlated with flexibility scores in the left thalamus
(R = 0.04, p = 0.632). This suggests it did not act as a mediator for the
relationship between group assignment and flexibility.

3.11. Association between mean correlation of time windows and flexibility

There were significant median group differences in the mean cor-
relation across time windows (mean of each correlation matrix, aver-
aged across time windows), suggesting control group time windows to
have higher functional connectivity (patient median (IQR) = 0.19
(0.12), control median (IQR) = 0.27 (0.17); Mann Whitney U = 2875,
p < 0.001). It was therefore tested whether mean time window cor-
relation accounted for group differences in flexibility scores. To do so, a
mediation analysis was carried out with flexibility score as the depen-
dent variable (for nodes and RSNs found to be significantly different
between groups), group assignment as the independent variable, and
mean time window correlation as the mediator. It appeared that for all
significant results the relationship between group assignment and
flexibility score was accounted for by the mean of time window cor-
relation matrices (supplementary materials Section 8).

4. Discussion

Higher flexibility (network community switching) scores in patients
with schizophrenia has been suggested to show less organised and less
stable network modular organisation in schizophrenia (Braun et al.,
2016). The current study aimed to both confirm this finding and to
explore novel methods to further describe alterations in dynamic
modular structure. We found higher flexibility scores in participants
with schizophrenia in cerebellar, subcortical, and fronto-parietal task
control RSNs, as well as in an area of the left thalamus and right crus I
(an area of the cerebellum). Such findings support the suggestions that
schizophrenia involves altered brain network dynamics
(Damaraju et al., 2014; Du et al., 2017; Sakoğlu et al., 2010) and ex-
tends the suggestion of disorganised and unstable network dynamics in
schizophrenia to the brain at rest. The present study tested a range of
methodological factors which appeared to impact results, highlighting a
need for further exploration as to what measures such as flexibility
represent.

In addition to the measure of flexibility, patterns of over and under
‘between resting-state network synchronisation’ suggested a complex
pattern of over and under synchronisation of brain areas in patients
with schizophrenia, highlighting the likely complexity of altered dy-
namic modular structure in schizophrenia. The current study also
supports evidence of altered dynamic functional connectivity of the
thalamus in schizophrenia (Damaraju et al., 2014), highlighting its
importance in schizophrenia pathology (Woodward et al., 2012). This
was further supported by a post-hoc analysis which used the frequency
of transitions between community assignments of the left thalamus.

4.1. Flexibility in controls

Across nodes flexibility scores were moderately positively corre-
lated with strength, suggesting that it was higher for well-connected
nodes. Similar to previous studies, the relative flexibility scores within

Table. 4
Patient and control mean and standard deviation (SD) of between RSN syncrhonisation (BRSNS) scores for each pair of RSN found to have significantly different
means after FDR correction. Table shows T tests with degrees of freedom (DOF), and FDR corrected P values.

Resting State Network Pairs Patient Mean Patient SD Control Mean Control SD T DOF P (FDR)

SSM Salience 0.21 0.03 0.19 0.04 3.61 123.97 0.010
SSM Subcortical 0.21 0.05 0.18 0.06 3.51 123.72 0.010
DA Salience 0.24 0.04 0.21 0.05 2.77 119.49 0.047
DA Subcortical 0.21 0.05 0.18 0.05 3.35 118.74 0.014
Memory Cerebellar 0.18 0.07 0.27 0.10 -5.36 124.51 0.000
Memory Subcortical 0.21 0.06 0.25 0.11 -2.86 113.03 0.041
Auditory Cerebellar 0.27 0.08 0.23 0.07 2.93 102.14 0.039
Auditory Subcortical 0.30 0.06 0.26 0.07 3.22 122.99 0.018
Salience Subcortical 0.26 0.05 0.31 0.08 -4.26 119.93 0.001
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RSNs only partially followed the suggested control / processing con-
nectivity profiles suggested by Power et al. (2011). The ORSNS measure
however, followed the suggested attributes of the RSNs more closely,
with the ‘processing’ systems (default mode, visual, sensory-somato-
motor) (Power et al., 2011) typically having the lowest out of RSN
synchronisation. This suggests some credibility for the module alle-
giance procedure used in the current study.

4.2. Group differences in flexibility

Significantly higher flexibility scores within the cerebellar, sub-
cortical and salience networks suggested higher flexibility scores to be
driven by community switching in these RSNs. This appears plausible
given evidence of altered fronto-parietal RSN functional connectivity in
schizophrenia (Chang et al., 2014; Rotarska-Jagiela et al., 2010;
Sheffield et al., 2015; Skudlarski et al., 2010; Zhou et al., 2007), that
the subcortical network contains areas involved in dopaminergic

Fig. 6. (A) Network showing absolute group mean differences of between RSN synchronisation (BRSNS) scores, computed as the proportion of time two nodes share
the same community averaged across nodes of each RSN pair. Red edges indicate p (FDR) < 0.05 group difference from an independent samples t test. (B) Control
and schizophrenia group BRSNS scores for all RSN pairs. SSM = Sensory-SomatoMotor, DA = Dorsal Attention, VA = Ventral Attention, DM = Default Mode, FP =
FrontoParietal task control, Aud = Auditory, Mem = Memory, Sub = Subcortical, Sal = salience, C-O = Cingulo-Opercular task control, Cer = Cerebellar. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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pathways (Howes and Kapur, 2009), and given studies implicating the
importance of the functional connectivity of the cerebellum in schizo-
phrenia (Chen et al., 2013; Collin et al., 2011; Liu et al., 2011; Yu et al.,
2013).

Higher flexibility scores in the patient group may suggest flexibility
to represent a compensatory feature of brain dynamics in schizo-
phrenia, which is supported by the tendency for flexibility to be higher
during demanding cognitive tasks in healthy participants (Bassett et al.,
2011; Pedersen et al., 2018; Telesford et al., 2016) and the “excess” of
flexibility of participants with schizophrenia during a working memory
task (Braun et al., 2016). Though the current study involved functional
connectivity at rest, resting state functional connectivity is suggested to
involve a constant reorganisation between ‘task negative’ and ‘task
positive’ systems (Chai et al., 2012; Chang and Glover, 2010; Fox et al.,
2005).

The inclusions of the subcortical and cerebellar networks in sig-
nificant group differences of BRSNS suggests higher flexibility scores to
be related to dynamic changes in the communication between RSN
systems. The particular pattern of over and under synchronisation in
the schizophrenia group suggests a complex time varying evolution of
community structure which is altered in patients with schizophrenia.
This is a novel finding that needs to be replicated in future studies.

4.3. Higher flexibility in the left thalamus

At the node level flexibility scores were significantly greater in a
node covering the left thalamus. The thalamus is suggested to act as a
major relay hub, regulating inputs from multiple brain areas, and may
have a particular role in the pathophysiology of schizophrenia
(Andreasen et al., 1994; Shenton et al., 2001). Disordered connectivity
between the thalamus and other brain areas has been described in pa-
tients with schizophrenia (Anticevic et al., 2013; Klingner et al., 2014;
Woodward et al., 2012) and those with prodromal symptoms (Anticevic

et al., 2015; Bernard et al., 2017).
When looking at the probability of transition between tokenised

communities in patients with schizophrenia, the left thalamus was more
likely to transition between a community representing the default mode
network and a community mostly covering the sensory-somatomotor
networks. This supports evidence of hyper-connectivity between the
thalamus and sensory-motor areas in schizophrenia populations
(Anticevic et al., 2013, 2015; Damaraju et al., 2014; Klingner et al.,
2014). A study using the same freely available dataset also reported
hyper-connectivity between the thalamus and sensorimotor brain areas
(Chen et al., 2019).

4.4. Limitations

Though results were plausible and functional connectivity is sug-
gested to be estimable from similarly sized time frames
(Hutchison et al., 2013; Jones et al., 2012; Wilson et al., 2015), because
fMRI data were only acquired for 5 minutes, there were relatively few
time-points (150 volumes), which is not ideal for a dynamic functional
connectivity analysis. Future studies may benefit from exploring
methods that allow for a close to single time point resolution. These
include Instantaneous Phase Synchrony (Glerean et al., 2012; Pedersen
et al., 2018; Ponce-Alvarez et al., 2015) and Multiplication of Temporal
Derivatives (Shine et al., 2015).

A number of other factors appeared to influence flexibility scores.
The current study repeated group comparisons using another parcel-
lation scheme (Gordon et al., 2016) and found this to affect results,
suggesting that region of interest definition can have a problematic
impact on findings (Smith et al., 2011). Results were also only sig-
nificant at the RSN and node level for 15 TR windows, which may have
been due to the smaller number of time windows when using larger
window sizes. Future studies using larger datasets or longer / lower TR
resting state scans may be better suited to analyses of this type. Using

Fig. 7. (A) Heatmap showing K means cluster centres
averaged within each RSN and z score standardised.
(B) Probability of node assignment to each clustered
community centre projected onto a cortical surface.
(C) Network showing the difference (patients – con-
trols) of the probability of transition from one toke-
nised community to another for all brain areas. Size
of edge represents edge weight. (D) Network
showing the difference (patients – controls) of the
probability of transition from one tokenised com-
munity to another for a node in the left thalamus
found to have significantly different flexibility be-
tween groups (MNI XYZ: -2, -13, 12). Red colour
indicates p < 0.05. (For interpretation of the refer-
ences to color in this figure legend, the reader is
referred to the web version of this article.)
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overlapping windows appeared to reduce power of group comparisons,
suggesting this to add no benefit over the use of non-overlapping
windows. Varying multilayer community detection parameters as well
as proportional cost thresholds of weighted adjacency matrices ap-
peared to have unpredictable effects on group differences (supple-
mentary material figure 1.2). The variability of results relating to
methodological choices or “researcher degrees of freedom”
(Simmons et al., 2011; Wicherts et al., 2016) suggests that care needs to
be taken in interpreting measures derived from multilayer community
detection. Group differences in flexibility and between RSN synchro-
nisation also appeared to be dependent on differences in the mean
correlation of windowed correlation matrices, suggesting that multi-
layer community assignment based measures may be no better than
simpler network measures as simple biomarkers for schizophrenia.

Results in the present study were specific to a frequency range of
0.08-0.15Hz. This may be problematic, as the influence of high fre-
quency physiological noise is unknown. It is further complicated by the
interaction between the window size used and the frequencies included.
The suggested “rule of thumb” for the minimum window size (Leonardi
and Van De Ville, 2015) suggests that a minimum window size of 100 s
is appropriate for a typical band-pass of 0.01–0.1 Hz, which was not
included in our study, in view of the limited number of time points. It is
possible more typical frequency ranges such as 0.01-0.1Hz could con-
tain clinically useful information if studied with the current metho-
dology, which warrants investigation in future studies with longer
scanning sessions. A general limitation for analyses using sliding time
windows is that there is no established ground truth for functional
connectivity estimates, although several studies have used simulated
data to explore the effects of frequency and window size (Leonardi and
Van De Ville, 2015; Sakoğlu et al., 2010; Shakil et al., 2016).

4.5. Conclusions and future directions

Consistent with previous findings (Braun et al., 2016) the current
study suggested flexibility (multilayer community switching) to be
higher in patients with schizophrenia than controls. Data from the
present study suggests that this may be driven by alterations in the
dynamic modular configuration of subcortical, fronto-parietal task
control, and cerebellar networks, and that the thalamus and right crus I
area of the cerebellum may be of particular importance. This paper
exhibits novel methods of BRSNS and probability of transition between
K means tokenised communities. Though these novel methods pro-
duced plausible results, they are presented as exploratory and as such
need to be validated in further samples.

This paper highlights the impact of a range of methodological
choices on results, such as window size, level of thresholding for
graphs, and multilayer community detection resolution parameters.
Despite methodological complexity, multilayer community detection
offers unique time dependent ways of analysing fMRI data and allows
for other measures not explored here, e.g. promiscuity
(Papadopoulos et al., 2016). Future studies may benefit from exploring
such alternative methods as well as the novel methods described in the
current study.
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