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Abstract

Objectives A central issue in experiments is protecting the integrity of causal identifi-
cation from treatment spillover effects. The objective of this article is to demonstrate a
bright line beyond which spillover of treatment renders experimental results mislead-
ing. We focus on a highly publicized recent test of police body cameras that violated the
key assumption of a valid experiment: independence of treatment conditions for each
unit of analysis.
Methods In this article, we set out arguments for and against particular units of random
assignment in relation to protecting against spillover effects that violate the Stable Unit
Treatment Value Assumption (SUTVA).
Results Comparisons to methodological solutions from other disciplines demon-
strate several ways of dealing with interference in experiments, all of which
give priority to causal identification over sample size as the best pathway to
statistical power.
Conclusions Researchers contemplating which units of analysis to randomize can use
the case of police body-worn cameras to argue against research designs that guarantee
large spillover effects.
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In any counterfactual evaluation, experimenters try to establish “what would have
happened otherwise.” In the case of randomized designs, those units in the treatment
and control groups should be exchangeable (see Hartman et al. 2015). In quasi-
experimental designs, the analysis mimics a randomized controlled trial (RCT) by
conditioning on control variables, by matching, or by using an instrumental variable
approach (see Morgan and Winship 2007, 2015). Whether a treatment is randomized is
arguably less important than whether it is compared to similar units that do not receive
the treatment. The logical meaning of “what would have happened otherwise” collapses
if the control group receives the treatment (Nagin and Sampson 2018). Yet in the
pursuit of other important principles, such as sample size, researchers can sometimes
neglect the primacy of the counterfactual principle. Perhaps the time of greatest risk for
that loss comes in the selection of units of analysis.

Several factors influence the choice of the unit of randomization in an RCT.
Cost is one. Other factors include information about the intervention design, its
delivery logistics (see e.g., Craig et al. 2008). In simple interventions such as a tax
compliance letter, these issues are less problematic, although still salient. In more
complex social interventions involving interactions between people and/or places,
the unit of randomization must be directly informed by the nature of the interven-
tion. Specific features of interventions mean that one unit of randomization is
more suitable than another for plausibly answering the question, “What would
have happened otherwise?”

A fundamental rule of RCTs is the axiom to “analyze as you randomize”
(Boruch 1997:203; Senn 2004). Unlike non-experimental designs, in which the
choice of analysis unit can be more dynamic, experiments are stuck with the units
to which treatments were assigned. Whichever unit was chosen as the unit of
random assignment in the experimental protocol should be the unit of analysis to
estimate the causal relationship between the independent and dependent variables.
Deviations from this rule are possible, but when they occur, the grading of the
study is automatically reduced from a true experiment to a quasi-experimental
design. The key message is that the unit of randomization matters immensely in
experimental criminology.

A corollary of the analyze-as-you-randomize principle is the “independence princi-
ple”: that there should be integrity in treating each unit with independence from the
ways in which other units are treated (Gottfredson et al. 2015). Failure to adhere to the
independence principle a well-known but often neglected issue with spillover effects. A
major critique of field experiments, in fact, suggests that the principle is so difficult to
follow that many randomized trials lack internal validity (Sampson 2010). While we
disagree with Sampson’s conclusion that randomized trials are at greater risk of this
threat per se, we agree with the crucial importance of the principle.

In this article, we provide a clear demonstration of Sampson’s (2010)
concern for the potential violations of the independence principle, known to
statisticians as “SUTVA”—the Stable Unit Treatment Value Assumption. Our
case in point is a highly publicized experiment (see Ripley 2017) on the effect
of police body-worn cameras (BWCs) on the rates of documented use of force
and civilian complaints against police officers. Some 2000 police officers were
divided randomly to two groups: a treatment group instructed to wear BWCs
while on patrol and a control group who were not given the devices. The unit
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of randomization was the individual officer. This study could have been pow-
erful enough to detect small effect sizes.1

However, there is a catch: the design does not take into account the fact that many—
if not most—police–public encounters that require use of force or could lead to
complaints are dealt with by at least two officers. For example, many police patrol
cars in the US are assigned to have two officers work together. Even with one-officer
cars, the odds of two cars responding to the same encounter are high. Given this fact,
assignment of cameras to individual officers creates a strong degree of treatment
“spillover” (diffusion). Control group officers (with no cameras) who attend calls with
treatment officers (who are wearing cameras) are, by definition, contaminated. By
being exposed to the (manipulated) presence of the camera for the treatment officers,
the control officers’ treatment is no longer independent from the treatment of the
experimental officers. The control officers may behave differently when working with
a camera-wearing officer than when a camera is not present. The risk of spillover
becomes even more pronounced when three or more officers attend the same encoun-
ters. This means that the proposed study’s fidelity is at risk due to the unit of random
assignment, because of experimental circumstances in which both arms are exposed to
the same intervention.

Such spillover is exactly what occurred in the BWC experiment with the individual
officer as the unit of analysis (Yokum et al. 2017). As one might expect, the RCT
concluded that the intervention was not effective in reducing rates of either complaints
or use of force, when comparing officers assigned cameras to officers who were not. It
appears that the contamination is so extensive that an “intention to treat” analysis—that
is, one in which all units are analyzed in the groups to which they were randomized—
would result in no measurable impact. Such a study was, by the most basic principles of
field experiments, not capable of fairly falsifying the null hypothesis of no differences
between outcomes of two different study conditions. The conditions were virtually
identical in both groups: encounters with citizens in which some officers wore cameras
and others did not. If the conditions are identical, no test of causality is possible.

This example illustrates the importance of the initial choice of the appropriate unit of
randomization in designs for experimental criminology. At the planning stage, exper-
imentalists face tough choices that are simultaneously theoretical, statistical, and
practical: should we randomly allocate individuals? If that does not allow independent
treatment of each unit, then what about places? Or different times of day? Or clusters of
any of the foregoing? The decision is critical. Ultimately, the choice of unit is a
compromise between the best unit in principle and the optimal unit possible. It may
also mean that scientists can make science better by refusing to conduct “randomized”
trials when they know in advance that the treatments received cannot possibly be kept
independent of each other for each unit (or most units) of analysis.

This case study begins by discussing the general problem of spillover and how
critical it is when estimating the overall treatment effect. Next, we provide a strategic
approach to tackling the spillover problem through careful pre-test planning. Because

1 Even with a very conservative power calculation where alpha is 5%, desired power is 80%, 50:50
treatment:control allocation and no baseline variables, the minimum detectable effect size is d = 0.125
(Calculated using PowerUp!; Dong and Maynard 2013).
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most field trials would suffer some type and degree of spillover effects, our recom-
mendation is not to abandon experiments altogether (Greene 2014),2 but rather to craft
experiments that will minimize the risk of spillover effects as much as possible. That
task can be accomplished by emphasizing independence over sample size in choosing
the unit of analysis. Causal identification, and not sample size, has already been found
to matter more in one large review of criminological field experiments (Weisburd,
Petrosino and Mason 1993). Causal identification is, both empirically and theoretically,
the most appropriate criterion for choosing the unit of analysis—whether individuals,
places, groups, times, shifts or clusters.

We conclude this article by showing that some studies may suffer interference but
result in significant results despite modest amounts of treatment spillover. Such exper-
iments can be said to have arrived at a more conservative estimation of the treatment
effect, but in the hypothesized direction. Moreover, some studies have positive spill-
overs that can be said to be desirable outcomes, thus contributing to our understanding
of group dynamics, learning theories, and cost-effectiveness dilemmas. Yet these
possibilities do not in any way alter the bright line between a massive and a minor
violation of the SUTVA.

The spillover problem in randomized trials

Major interference

In a randomized experiment, we expect that the outcome of one unit does not depend
on the outcome of any other unit. When there is interference, we can assume that the
treatment effect is either inflated or deflated, meaning that the true impact of the
intervention on the outcome is masked to some degree, depending on the extent of
contamination. This is called the “spillover effect.” There are two broad types of
spillover effects: major interference and partial interference (Sobel 2006). Major
interference is the contamination of the control group, whereas partial interference
means spillover effects within the same treatment group. Both types are important, but
partial interference is a relatively new topic of interest for experimentalists (Baird et al.
2016). We discuss major interference here and partial interference in the next section.

Spillovers in randomized trials corrupt the core counterfactual comparison of the
experimental design. The spillovers can operate at different levels, bleeding from
treatment to control, between different treatment groups, within statistical blocks or
clusters or within individual treatment units (Baird et al. 2016; Campbell and Stanley
1966; Shadish et al. 2002). For example, when the threat of spillover comes from major
interference of the treatment group treatments into the control group, it leads to
contaminated control conditions; this challenges the desired counterfactual contrast
between units that were exposed to the intervention and units that were not. Rubin
(1980; see also Cox 1958) and others refer to this type of contamination as a violation
of the SUTVA. Put another way, when conducting an experiment—following Cox
(1958) and Rubin (1980)—we are assuming that the effect of an intervention on any

2 Recalling that the origins of experimental science were actual trials in fields conducted by Sir Ronald Fisher
(see the discussion in Armitage 2003).
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one individual/unit, “unit A” for example, is unrelated to the treatment assignments of
other people/units in the study (units B, C, D and so on).

When spillover occurs, participants (or units) in the control group experience a direct
or indirect treatment effect from the program. While not allocated to the experimental
group, controls may experience a spillover from other individuals/units who were
assigned to a treatment group. In the case of spillover from treatment to control, in
which everyone gets some treatment, differences between the two groups are shrunk.
This damages the primary intention to treat (ITT) analysis (Peto et al. 1976). This
“analyze as you randomize” rule is the preferred method of dealing with crossover
among medical scholars (e.g., Armitage 1991). Because the ITT is the only point at
which differences are truly randomized, it is the only point of sorting units that has the
logical power to eliminate rival hypotheses by “controlling” for baseline differences
across units. Analyses of compliance with allocation subsequent to randomization,
although potentially informative, suffer from the limitation that compliance is non-
random. Since only the ITT analysis can hold all other factors (except for the treatment)
equal, then there is limited value in analyzing any other comparisons besides groups
divided by that randomly assigned intention.

While spillover effects are problematic, they are often unavoidable. Some studies
have therefore dealt directly with ways of minimizing the threat of spillover to internal
validity. As Gilbert et al. (2016:1) point out, the literature includes studies…

that uncover network effects using experimental variation across treatment
groups, leave some members of a group untreated, exploit plausibly exogenous
variation in within-network treatments, or intersect an experiment with pre-
existing networks. Further progress has been made by exploiting partial popula-
tion experiments, in which clusters are assigned to treatment or control, and a
subset of individuals are offered treatment within clusters assigned to treatment.

The authors’ conclusion is that major interference is part and parcel of studies involving
human beings, so we need to “relax the assumption around interference between units”
(ibid). However, interference cannot be completely ignored; Baird et al. (2016) do not
advocate this, nor do we. Empirically, the presence of spillovers may vary widely,
leading to the same question that faces ITT itself (Peto et al. 1976): how much is too
much? If only 10% of an intended treatment group is actually treated, compared to 5%
of a no-treatment control group, many would think that ITT analysis is pointless. Yet if
85% of a treatment group received treatment, and only 15% of the controls did, there
may be source of high validity for the ITT analysis.

Similarly, if 5% of controls experience spillover, we might think the ITT analysis
would still have high internal validity—but not if 85% of controls experienced spill-
over. The issue in both cases is not whether imperfections exist, but how much
tolerance the design has for such imperfections, as the history of precision engineering
clearly demonstrates (Winchester 2018). The more pronounced the spillover effect, at
least for a treatment that truly has an effect, the more likely the study will result in no
difference (or non-significant differences) between study arms.

In these situations, we cannot actually determine whether the treatment does not
have an effect, or if in fact the study’s design (and SUTVA violation) made it
impossible to detect an effect. This is the fundamental problem with SUTVAviolations
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and why we should acknowledge them. Less prosaically, this technical violation of the
experimental design undermines the conclusions drawn, meaning that policy recom-
mendations are based on flawed evidence. Nonetheless, we can see that the question of
where to draw the line remains central (Sherman 1993).

While policing experiments may have underemphasized the issue of spillover and
interference effects (but cf. Braga et al. 2018), a relatively developed and formalized
literature in other experimental disciplines has paid closer attention to these concerns—
mainly in statistics (see an early review by Page 1978 and more recently by Bowers
et al. 2018, see also Hudgens and Halloran 2008 and Rosenbaum 2007).3 Kruskal
(1988), for example, discusses the causal assumption of independence and makes a key
observation. “[I]ndependence seems rare in nature, and when we really want it, we go
to great pains to achieve it, for example […] in randomization for allocation of
treatments in experiments. […] An almost universal assumption in statistical models
for repeated measurements of real-world quantities is that those measurements are
independent, yet we know that such independence is fragile” (p. 935–6). At the same
time, common statistical models assume independence, and when interference occurs,
some fundamental assumptions of these models are not met.

Partial interference

A second component of the spillover problem is often overlooked: partial interference
(Sobel 2006). For purposes of simplicity, we can define this problem (in experimental
criminology) as the effects of treatment heterogeneity on the treaters, the treated, or
both, which may then amplify or restrict the level of heterogeneity in the treatment
actually applied to the units being treated. Beyond the assumption that the outcome of
the control units will not depend on the outcome of the treatment units—and vice
versa—we may also assume that, for a test of causal “efficacy,” a single version of each
treatment level is applied wholly to each experimental unit—“treatment homogeneity.”
For example, every police officer assigned to wear BWCs will use the device across all
(eligible) interactions with members of the public, without exception. (Note that in
“effectiveness” trials, this assumption is often relaxed, suggesting that all field exper-
iments in criminology might be better thought of as effectiveness trials with heteroge-
neous treatment delivery rather than as efficacy trials with homogeneous treatment.)

Likewise, in an efficacy study (Gottfredson et al. 2015) of the effect of text messages
sent to remind officers to activate their BWCs, the assumption was that every partic-
ipating officer had received, read, and then acted upon the message in the same way (as
implausible as that is). To emphasize, the same assumption about treatment homoge-
neity also applies to the other trial arms. That is, if there are more treatment conditions,
then we assume that each condition was adhered to equally across units and that,
crucially, the control condition (whether they receive placebos, no-treatments, business

3 Still, these disciplines are not immune from these errors. Perhaps one reason for misunderstandings about
independence is inadequate training in classrooms and lectures: “In a modest probe, I looked at two issues of
the Journal of the American Statistical Association and counted 11 reviews of introductory textbooks. I
inspected the six of these books in our library and graded their treatments of independence tolerantly: no As,
one B, two Cs, one D, and three Fs, an unhappy record” (Kruskal 1988, footnote 135)
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as usual interventions, or anything else) was maintained fully and equally across units
randomly assigned to the control group.

However, in experiments in which either the treated units or their treaters interact
with one another—police officers working in the same department, pupils in the same
school, patients in the same care facility, offenders living in the same community—the
effect from one treatment arm may often spill over to other treatment arms. Participants
in the experimental group are exposed not only to the direct treatment effect from the
program to which they were assigned; they are also exposed to and experience the
spillover effect from the treatment of other participants in their treatment group, which
may act to reinforce treatment effects. For example, if the officers are asked to video-
record their interactions with members of the public, and they are often video-recorded
by other officers who wear cameras and have attended the interaction, then they may be
more likely to comply with the rules themselves if they know other officers are
complying (and whose video-recorded evidence can get them into trouble). Even if
they are not directly recorded by other officers’ cameras, those other officers may
behave differently because their actions might be recorded (assuming of course there is
a true deterrent treatment effect of fearing that BWCs are recording officers’ behaviors).

Consequently, there are two overlapping treatment effects: first, a direct treatment
effect on treatment units (absent of any spillover effects); and second, a reinforcement
spillover effect on the treated caused by other treatment units. This effect of treatment
of one unit on the treatment effects of another unit is what is meant by partial
interference. Thus, the ITT analysis includes the sum of these two effects of what we
call treatment interference and what is called, in relation to spillover effects, partial
interference.

We find the concept of partial interference to be badly labeled. For present purposes,
we would prefer to describe it as “contagion effects,” or “synergistic effects,” similar to
the concept of “herd immunity” in vaccinations (Anderson and May 1985). The basic
idea is that when a critical mass of treatments of individuals is delivered, then the effect
of treatment on the treated is magnified by synergy of spillover across units within the
treatment group.

Understanding what is called partial interference (or contagion effects) has direct
implications for policy because it addresses two interrelated issues: treatment intensity
and group dynamics.

Treatment intensity Treatment intensity, or dosage levels, is a measure designed to
detect the level of treatment applied that is necessary to cause some level of an effect. In
the study described above, assume that the protocol dictates that police officers are
supposed to use cameras in every police–public encounter. However, some officers
deliberately breach protocol and do not record public disorder and police-initiated
contacts (e.g., stop and search and checking suspicious vehicles) because these partic-
ipants feel that recording such interactions will diminish the ability of the officers to
form a rapport with the subjects. While this perception may be true (Tankebe and Ariel
2016), in practice, this means there is a reduction in treatment intensity because officers
are not complying with the protocol. The scope of reduction in intensity then depends
on implementation—the more officers use their discretion, the more the study suffers
from low fidelity and partial interference (Ariel et al. 2016).
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A similar example is a study in which officers make a decision to start or stop recording
an interaction at the very beginning of the encounter (Sykes 2015). Again, while theremay
be benefits for this type of activation policy (Ariel et al. 2017), it reduces the average
assigned dosage because some other officers are likely to comply more fully with the
policy. Since we are interested in the relative effect of the cameras compared to control
conditions, the treatment dosage is diluted. Now, assume that these studies had detected
significant treatment effects, meaning that they provide evidence against the null hypoth-
esis of no difference. The policy implication is that BWCs are effective, but the magnitude
of the effect is diminished: the intensity of the intervention is weaker than expected
because the intervention was not delivered as intended.

Group dynamics The second issue, group dynamics, is more difficult to measure but
creates the most difficulty in characterizing partial interference. Amature body of research
offers insight into the ways in which individuals act when they are in social or group
situations and the processes involved when they interact with each other in a group.
Reference groups (Shibutani 1955), small-group psychology (Shaw 1911), Lucifer effects
(Zimbardo 2007), social identity (Stott and Drury 1999), and a myriad of effects would
either negatively or positively motivate participants in the group to act in various ways.

In the context of experiments and treatment heterogeneity, group dynamic effects
can be manifested in the pull or push effects on participants to adhere to the experi-
mental protocol. For example, imagine a study in which the unit of analysis is the
police squad; some squads are assigned to treatment, and others are assigned to control
conditions. If a particular officer in the treatment group is generally in favor of using
body cameras in policing, but the rest of his/her squad members are against it, the group
dynamics may push this officer into noncompliance with the protocol. On the other
hand, if the majority of the squad members favor complying with the protocol but one
officer has negative views about the usefulness of the cameras, it can create group
pressure on him/her (e.g., peer pressure, informal retribution, or direct demands) to
comply with the protocol. At the least, the analysis would have to be done on a squad-
by-squad basis. At worst, the heterogeneity within squads would be greater than within
individuals, requiring an even larger sample size for random assignment to “control”
squad-level differences.

Spillover effects and units of analysis

Not all spillovers are created equal; as noted above, spillovers can vary considerably.
Contamination effects are especially problematic when the sample size is large relative to
the experimenter’s resources tomanage implementation, and thus high fidelity across units
is more challenging (Weisburd, Petrosino and Mason 1993; Weisburd et al. 2001).4

4 We note that an additional consideration is the size of the sample of officers. If a police department has 500
officers and 250 have cameras, then the opportunity for contamination is greater, but if a department has 500
officers and less than 100 officers have cameras and random assignment is stratified by a method described
above, then the potential for contamination effects is much less. Similarly, if a department has 50 officers and
25 have cameras, this is a problem because police in smaller departments are more likely to run into one
another during a shift. Department size matters too; see Braga et al. (2018) for further considerations.
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Experimenter resources being equal, the larger the sample, the less control the researcher
has of the application of the treatment across units or sites.

On the other hand, larger samples may make a study more externally valid by
achieving more realistic implementation. For example, some participants will adhere to
their allocated treatment, such as therapy or “treatment pathway” as prescribed by the
treatment provider, while others will take part only partially. Similarly, police may visit
some crime hot spots as assigned by the experimental protocol—e.g., 15-min visits,
three times a day—but other hot spots will receive a lesser dosage.

In both these examples, the overall treatment effect may lead to statistically signif-
icant differences between the study arms, but the effect size may be attenuated as
compared to more homogenous delivery or uptake of dosage. This was the case in
several experiments testing the application of technological innovations in policing (see
Ariel 2017).

How can the risks of spillover be minimized at the point of experimental design?
The most salient direct way to do this is by selection of the unit of random assignment
on the basis of how best to minimize spillover—even if the result is a smaller sample
size than might result from choosing a unit with high risk of spillover. While a science
writer for the New York Times (Ripley 2017) may conclude that a large sample size
should be given more weight than independence of units of analysis, that conclusion
directly contradicts a century of scholarship in statistics.

Based on the foregoing discussion, we identified two main choices of units for
researchers wishing to conduct controlled trials on BWCs: individual officers or
temporal units. We discuss each unit of analysis in the context of spillover effects.

Body-worn camera experiments with individual officers randomized

At the outset, we claim that individual-based experiments are the least appropriate
design to study the effect of BWCs, because of the treatment interference threats. The
problems of spillover effects—both intergroup and intragroup interference—are the
most concerning, to the point that experiments with these designs may provide
misleading evidence on the efficacy of cameras.

We take Yokum et al.’s (2017) experiment as a case in point: as a person-based
randomized controlled field trial with a design in which the benefits, issues, and
concerns about spillover effects can be discussed more thoroughly (herein, “the DC
experiment”). Yokum et al. (2017) reported the findings from an RCT involving 2224
Metropolitan Police Department officers in Washington, DC. The experiment com-
pared officers randomly assigned to wear BWCs to officers in the control condition
who did not wear BWCs. The primary outcomes were documented uses of force and
civilian complaints and judicial outcomes. The study found small average treatment
effects on all measured outcomes, none of which was statistically significant. The
authors conclude: “we should recalibrate our expectations of BWCs’ ability to induce
large-scale behavioral changes in policing, particularly in contexts similar to Washing-
ton, DC” (p. 4).

What captured our attention—aside from the strong generalization made based on
this single study—was the detail that “our comparison groups were constructed from an
individual level officer randomization scheme, which avoids several problems of
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inference present in other methodologies used to date” (p. 22). In our view, assigning
individuals rather than clusters or groups creates the greatest problems for inference
because of the strong spillovers built into the study design. Choosing individuals as
units of analysis risks challenges to independence by group dynamics, ecology of patrol
(double rather than single-officer cars or foot patrols), and the attendance of major
incidents by multiple officers. Thus, BWC experiments in which the unit of
randomization/analysis is the individual officer are by definition characterized by
strong spillover effects.5 In Ariel et al.’s (2016) medical analogy, these circumstances
are akin to having both experimental and control patients “take the pill.” When
everybody is exposed to the treatment, the experimental design is compromised, and
by implication, it would not be possible to detect differences between groups.

SUTVA violations in the DC experiment

In the DC experiment, 1035 officers were assigned to the control group and 1189 officers
to the treatment group, in which treatment officers were instructed to use cameras in
police–public encounters. Two estimators of the average treatment effects were used: (A)
difference-in-means with inverse probability weights to account for differential probabil-
ities of assignment by block; and (B) regression of outcome on treatment assignment with
controls for pre-treatment characteristics and inverse probability weights (p. 9). In theory,
the overall design was powerful. In practice, however, the choice of officers as the unit of
analysis in BWC experiments faces the greatest threat of spillover effects, to a point that
field studies comparing any police practice assigned only to some and not others whowork
in the same communities are doomed to failure (Clarke and Weisburd 1994, p. 179).6

The issue is not statistical, but practical: there is no method for separating between
treatment and control conditions.While officers in some police departments work alone in
most citizen encounters, the largest departments have long deployed patrols in two-officer
cars. The individual officer therefore cannot be the unit of analysis when the basic unit of
patrol is delivered by two officers. Otherwise, there could be a scenario in which one of the
officers was randomly assigned into treatment conditions (BWCs) while his/her partner
was randomly assigned into control conditions (no-BWCs). When this patrol unit attends
a call for service or conducts a stop and frisk, it is as if both officers are in the treatment
conditions because a camera is present. Randomizing patrolling units would ameliorate
this issue a little, but this merely relocates the problem because other units may attend.

Even if officers in Washington, DC, usually patrol in single-officer cars, the
likelihood of interference between treatment and control conditions remains extremely
high in the incidents that lead to use of force or complaints. Police culture, practice,
safety, and situational factors require the attendance of more than one officer at the

5 The use of automatic vehicle locators, CAD logs, or BWCs tracking data to indicate which officers respond
to a call for service could provide a measure of contamination. This would enable researchers to identify which
officers responded to a call and the assignment of those officers to treatment or control. While the practicality
of such an analysis is an issue of time, a review of video of a subset of treatment and control officer arriving on
scene together can determine which group dynamic plays out: is the officer with the camera less likely to turn
on the camera on scene with a control officer, or vice-versa? At the same time, this approach may indicate ex
post facto the degree of contamination, rather than reduce its likelihood ex ante.
6 For example, Yokum et al (2017: 20, fn. 38) report that in 70% of calls for service control officers attended
with a treatment officer present, meaning that only 30% of incidents did not have contamination problems.
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encounter. Therefore, in both patrol models (single- or two-officer cars), operational
needs within emergency response units often require ad hoc, triple crewing, or even
larger teams, particularly when responding to complicated incidents. This suggests that
officers in the control group are likely to have been contaminated by responding to calls
with members of the treatment group. Because the treatment is hypothesized to affect
interactions with members of the public, control officers would have altered their
behaviors in response to the presence of their colleagues’ BWCs (again assuming the
cameras are effective). At the very least, suspects and victims might behave differently
when BWCs are present, even if only some officers are wearing them.

Formally, this means that participants who function together in groups usually yield
scores that are correlated (Peckham et al. 1969). When there is a mishmash between the
experimental group and the control group, the probability of accepting the null
hypothesis of no-treatment effects when indeed there are treatment effects, that is, of
making a type II error, increases dramatically as the relationship among the individuals
between the group increases (Barcikowski 1981: 269).

Partial interference in the DC experiment

Furthermore, in person-based, police BWC experiments on use of force, crossover can
lead to treatment heterogeneity in both experimental arms. Control officers are some-
times exposed to the intervention when treatment officers are attending the same job,
and at other times, they are not. Over time, with multiple interactions between the
public and control officers that are sometimes facing crossover and sometimes are not,
there is no longer a control condition, only less intensive doses of treatment. A similar
concern arises solely within the treatment group because treatment officers affect the
dosage level of the intervention on each other (i.e., some officers attend many incidents
with multiple officers wearing cameras, whereas others might only attend some such
incidents).

Suppose that during the experimental period, police officers equipped with
BWCs attended 100 domestic violence calls for service. Now assume that the
treatment effect of the body cameras is real and that each incident is attended by
two or more officers. If the experiment is specified so that the primary officer
(i.e., the first officer attending) defines whether the case is experimental or
control, then by definition, variations in the treatment arm will be expected.
When the primary officer is a treatment officer (X) and the second attending
officer is a control officer (Z), then the case is designated as experimental (X),
but overall the treatment effect is (X + z); when the second attending officer is a
treatment officer, then the treatment effect on the primary officer is X + x; and
when a third officer is attending the scene, the exerted treatment effect on the
primary officer is X + x + x or X + x + y, depending on the allocation of the third
officer—and so on. Thus, multiple officers lead to a convoluted treatment
heterogeneity that becomes difficult to describe (e.g., the interaction could be
multiplicative rather than additive). Long causal chains with multiple responders,
similar to a network of interconnected nodes, exert effect on each other. When
the partial interference creates such a degree of statistical noise that the treatment
efficacy cannot be quantified, it creates issues for assessing the magnitude of the
treatment effect.
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Selection bias and chance in rare events

One related issue is the Pareto curve concentration of rare events in certain situations or
with certain officers. The number of contacts per 10,000 encounters that lead to
complaints against the officer, for example, or that result in the use of force, is
remarkably small (see Terrill and McCluskey 2002). These infrequencies mean that
in experiments in most departments, the majority of complaint-conducive or force-
response contacts can fall into one of the treatment arms by purposeful selection bias—
or because of chance in how the random allocation has worked. Because officers may
be able to anticipate problematic calls (e.g., to specific locations, during specific hours
of the day, or when dealing with particular types of known offenders), a subset of
officers may simply avoid contact in such high-risk situations. Ariel et al. (2017)
construe this type of camera-induced inaction as a form of “de-policing.” (However,
Headley et al. 2017 find no supportive evidence for abstaining from community
contacts in the Hallandale Beach Police Department in Florida.)

Analytical considerations for individuals as units of random assignment

A growing body of literature attempts to deal directly with the analysis of SUTVA-
violating trials. However, these solutions are partial and often deal with groups or
clusters as the units of analysis, rather than individual participants. One reason using the
individual officer as the unit of analysis is problematic is that it ignores group dynamics
and organizational factors that are very difficult to control for in any statistical model.
Underlying forces and cultural codes of behavior can characterize entire forces or shifts,
and most of these factors are not recorded and therefore cannot be included in the
statistical model. These may include the character of the sergeant managing the shift,
the degree of officers’ cynicism, comradery, and codes of silence. A host of institutional
undercurrents that are recognized in the literature (Sherman 1980), but cannot be
factored into a statistical protocol without detailed information about the officers
themselves, may affect the “independence” of individuals from factors affecting the
deployment of officers with cameras. Furthermore, adding statistical controls may
exacerbate problems if they are uncorrelated with outcomes or open back-door path-
ways that corrupt treatment allocation (Morgan and Winship 2007).

Body-worn camera experiments with temporal units randomized

As an alternative to the individual-based RCT on BWCs, experimentalists can choose
to randomize temporal units, as with the original Rialto experiment (Ariel et al. 2015)
and as designated in its first experimental protocol (Ariel and Farrar 2012) and
replicated more recently by Headley et al. (2017). In all these tests, officers were
exposed to both treatment and control conditions—this is similar to a crossover trial
with more than one switch between conditions, for each officer. It is a repeated
measurement design, such that each experimental unit (e.g., an officer) receives
different treatments during the different time periods, that is, the officers “crossover”
from one treatment condition to another condition, during the course of the trial.

A major consideration in favor of a crossover design is that it could yield a more
efficient comparison of treatments than a parallel design. For example, fewer units are
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required to attain the same level of statistical power or precision. In practice, this means
that every officer is serving as their own matched control, which leads to a fundamental
benefit: a crossover design is strongly balanced with respect to the carryover effects,
when each treatment precedes every other treatment, including itself, the same number
of times.

By making police shifts (e.g., a 08:00–17:00 shift) the unit of analysis, the sample
size available can be increased significantly, allowing much smaller effect sizes to be
detected but with relatively few front-line officers. When there are more shifts or other
temporal units (e.g., days of the week) than police officers, especially in midsize
departments, substitutes ought to be considered to satisfy the sample size problem
(unless a Bayesian approach is possible; see Lenth 2001). One thousand shifts is
sufficient to detect small effects (d = 0.178) with an alpha of 0.05, power of 80% for
a two-tailed statistical test (with no covariates and thus no variance explained by
covariates), but those 1000 shifts could be generated by as few as 60 officers, as in
Rialto. In contrast, with a study of approximately 128 officers and no covariates to
increase the statistical power of the test, a study is unlikely to detect effects below d =
0.499, and the practice in some studies had been to relax some of these statistical
assumptions of the power test (e.g., Jennings et al. 2015, p. 482).

Randomly assigning shifts as the unit of analysis is not a perfect solution, given the
potential spillover effect (Ariel et al. 2015). The same officers are randomly assigned to
use the cameras and also randomly assigned not to use the cameras. However, it
represents a least worst option (what is sometimes called the maximin rule; see
Rawls 2009, p. 72). The issue with contamination when using shifts is that the same
officers experience both treatment and control shifts, so there is the likelihood that
behavioral modifications due to treatment conditions can be carried over into control
conditions. If BWCs affect behavior, then a learning mechanism may be at play in
which officers adapt their overall behavior (and possibly attitudes), and this broader
change affects control conditions as well (Ariel 2016a, b; Ariel et al. 2015, p. 528).
However, we believe the story is more nuanced than to discount this unit of
randomization.

SUTVA in the context of shift-based experiments

Ariel et al. (2015, p. 623) were the first to note that the fact that officers participated on
multiple occasions in both treatment and control conditions creates “interference,” as it
does in many other crossover designs in which each unit serves sequentially as
treatment and control (Brown Jr 1980). However, as the authors note, the unit of
analysis is the shift, not the officer. The set of conditions encountered in each shift
cannot be repeated because time moves in only one direction. The manipulation was
whether the shift involves all police with cameras or no police with cameras.7 Out-
comes (use of force, complaints, etc.) are essentially driven by how officers act and

7 In fact, the intervention should be said to consist of both the camera and an activation notification, such as a
verbal warning, a visual cue, or any sort of announcement that notifies the suspect that s/he is being
videotaped. The verbal warning is also in place to initiate the cognitive process of public social-awareness
within the officer using the body-worn camera. Police departments should be mindful of this aspect of the
intervention because most suspects, witnesses, and victims are not in a position to identify the body-worn
camera among the wide range of gadgets modern police officers wear on a daily basis.
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how citizens perceive those actions during each shift. Likewise, because the whole shift
was randomized and officers experienced multiple shifts with and without cameras, we
know that on average, all else was equal, including which officer was involved.

Despite the potential SUTVAviolation in any crossover design, it is still the case that
when a treatment is present the individuals are in a different context from when it is
absent—regardless of their prior experience in both conditions. Officers in a shift-based
experiment, while serving during control shifts, do not wear BWCs. Officers are
certainly aware that their actions and conduct are under surveillance in both treatment
and control shifts. However, awareness of potential surveillance is not equal in credible
deterrent threat. In control shifts, detection of rule breaking (by either citizen or officer)
is less likely because the cameras are not present. In the treatment condition, every
recorded interaction can be viewed and audited. This may lead to an officer’s reprimand
or a citizen’s complaint being challenged. An unrecorded interaction does not neces-
sarily lead to similar costs, since a recorded incident of excessive use of force can very
likely lead to criminal prosecution of the officer. An unrecorded incident of excessive
use of force, in contrast, can more easily be left to subjective interpretations. In
deterrence theory terms, the perceived likelihood of apprehension is more substantially
elevated in treatment conditions than control conditions. While under both experimen-
tal arms, the behavior may have been modified as a result of the spillover, the extent of
the behavioral modification under control conditions cannot be assumed to be the same
as that which has taken place under treatment conditions—otherwise we would not
observe significant differences between treatment and control conditions across multi-
ple outcomes using this research design (e.g., Ariel et al. 2015; Ariel et al. 2016a; Ariel
et al. 2016b).8

To summarize, a shift-based design can create, in theory, both negative and positive
spillover effects. The negative effects would be to contaminate the control group with
treatment. The positive effect would be to reinforce the treated officers with the effects
of treatment on each other’s behaviors.

Being able to define units, treatments, and outcomes in this way means, we can be
more specific about when SUTVA violations might be occurring. More importantly,
spillover effects often result from experiments, which indeed may be the intention
(Angelucci and Maro 2016). The spillover means that officers in control conditions
were affected by their counterpart treatment conditions and altered their behavior
enough, regardless of treatment condition.

Therefore, spillovers that take place within the experimental arm are not necessarily
undesirable. Glennerster and Takavarasha (2013: 348) described the role of positive
spillovers in experiments: when there are positive spillovers, those in the treatment
group benefit from the fact that they are “surrounded by those who take up the program
and the benefits they received are assumed […] to be experienced by those who take up
the program.” Braga et al. (2013) and Braga and Weisburd (2014, pp. 583–586) show
how positive spillover effects contributed to meaningful reductions in gang violence. A
systematic review of positive spillover effects in medical impact evaluations suggested

8 In experimental sites in which the cameras had no effect, Ariel et al. (2016b) have found strong evidence of
noncompliance, which they described as implementation errors because the cameras were not used as
intended.
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that such effects are not only desirable, but also carry cost-effective externalities for
public health programs (Benjamin-Chung et al. 2015).

Individual vs. temporal units: statistical considerations

Let us return to the notion of “analyze as you randomize” (see Senn 2004; Demir et al.
2018 ; Ariel et al. 2018; Maskaly et al. 2017). Analyzing at the officer-level following
shift-level randomization (i.e., ignoring the fact that officers are clustered by shift)
would undermine the experimental design, becoming the exercise in self-deception
against which Cornfield (1976) warns. Analyzing officers after randomizing shifts may
also require the scholar to measure different variables at the outset as baseline covar-
iates and, plausibly, to control for them, including interactions. With all this in mind, we
discuss the analytical considerations of inferring causation between the shift—and the
shift only—on the outcomes of interest.

The critical issue in terms of spillover effects is that a shift-based design explicitly
creates risks to type II error rather than type I error. In practice, using the shift as the
random assignment unit, with the potential of cross-unit contamination, means that it
becomes more difficult to reject the null hypothesis of differences between treatment
and control conditions. Because both arms of the trial are exposed to some level of the
manipulation (at least as it is applied to the officers), it becomes more challenging to
detect statistically significant differences. Hence, if anything, a statistically significant
difference between the experimental and control arms under these conditions implies
that the true treatment effect is more pronounced. Put another way, the exposure of
officers to both treatment and control conditions is likely to affect the estimation of
treatment effects asymmetrically. Officers in control shifts are likely to change their
behavior because of exposure to cameras during their own treatment shifts.

The “shift effect spillover hypothesis” is that during control shifts, officers would
change their behavior to be more like that during treatment shifts. The spillover would
therefore act to shrink the gap between treatment and control conditions bymaking control
shifts more like treatment shifts. If true, this means that the estimated effect sizes for high
compliance experiments would represent lower-bound estimates of effect sizes—or
underestimation of the treatment effect. In other words, this so-called flaw makes the
job of this test in showing a significant outcome harder, not easier, resulting in a more
conservative test rather than a less stringent type I error rate.9 As more robustly concluded
by De La and Rubenson (2010, p. 195), in such circumstances, “the intervention’s indirect
negative effect on non-recipients would produce a diluted effect of the program,” but if the
findings are nevertheless in favor of the hypothesized direction, the issue is not of
reliability, but of magnitude. In other words, in a shift-based RCT, there is a threat of
spillover comparable to any crossover design, but it is not as large a threat as giving
patients in the control group the active pills rather than placebos.

Moreover, the degree of contamination with shift randomization is more limited than
when using officers as the unit of randomization/analysis. An implicit assumption of
using officers as the unit of analysis in a simple statistical model is that the effect of the

9 A statistical type I error indicates that the null hypothesis is rejected when it ought not to be not (false
positive), while type II error implies that the null hypothesis is not rejected when it ought to be rejected (false
negative).
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suspect variation and the effect of officer-suspect interaction are negligible (Whit-
ing-O’Keefe et al. 1984). Nevertheless, the error rates are not and should not be
assumed to be distributed equally between units or across study groups. From a
theoretical perspective that would then affect the computation of the predictors,
BWCs may have at least as much of an effect on citizens as they do on officers,
particularly if citizens are verbally warned that cameras are being used (Ariel et al.
2016c). Because the officer here is not the unit of randomization, the analytical
procedure ought to be centered on the unit of randomization and generalized to the
universe of police shifts, not officers. This argument obviously does not apply if
officers are the unit of randomization.

Conclusions and recommendations

Research designs that fail to account for spillovers produce biased estimates of
treatment effects, and studies that produce biased treatment effects can lead to
misconstrued policy recommendations. This issue is present in all experiments, regard-
less of sample size. Having a large study that suffers from spillover is less powerful
than a small study that adequately handles spillover effects. Consequently, choice of
units in experimental criminology is critical. Unlike observational studies, the trial
cannot go back and change the unit once it has been assigned. Deviation from these
basic rules means the trial is no longer an RCT, but rather a controlled quasi-
experimental design.

Contamination is not only plausible when the units are directly exposed to the
manipulation, but also indirectly or vicariously. If the treatment-providers—police,
probation officers, judges, or therapists—are aware of which participant they are
treating, they may behave differently, set different expectations, or lead to self-
fulfilling prophecies that may indivertibly bleed from one study arm to the next. For
example, when police officers in the Minneapolis Domestic Violence Experiment were
able to accurately predict the next random assignment sequence, they treated the case
differently (Gartin 1995). This can happen in other research designs, depending on
officer preferences about the study outcomes (e.g., disparities in arrival time, the
application of procedural justice, expectations from the party with which he or she is
engaged). Patients interacting with one another in the waiting room before entering
singly into a clinical trial can contaminate each other; police officers participating in an
experiment on hot spots policing can purposely patrol control sites even though they
were instructed otherwise (as they did in the first systematic patrol experiment; see
Kelling et al. 1974), and prisoners randomly assigned to a particular rehabilitation
program can engage with control prisoners, all in a way in which the treatment spills
over to other individuals. The effect can also take place within subject, when the
participant affects him- or herself over time. It can also occur within the treatment
group only, when some participants are exposed to different levels of the treatment, or
when they affect each other given varying attitudes, expectations, or degrees of
implementation success. Hence, researchers should expect some degree of spillover
when conducting real-world tests.

However, experimenters should equally try to minimize these contaminations as
much as possible, both between and within the study groups (partial interference). We
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recommend that future scholars avoid using officer-level randomization because it
creates spillover effects that lead to design failures unless the scholars are confident
that officers are not interacting with one another, and not just overall, but during
encounters that are force-conducive or prone to generate complaints. Because officers
in most large departments patrol in pairs or larger formations (not least due to officers’
safety), by definition, the unit of analysis is not the individual officer, but the patrolling
unit. SUTVA violations cannot be characterized at all in these individual-based exper-
iments. Ultimately, it is no surprise that a study such as the DC experiment failed to
reject the null hypothesis: its design was not suitable to the question it was trying to
answer.

As Morgan and Winship point out, for many applications, SUTVA is a restrictive
assumption (2007, pp. 37–39). Therefore, studies ultimately leading to statistically
significant differences between no-camera and camera conditions in the test can be
interpreted as producing favorable outcomes. Yet when the study produces non-
significant results, the outcomes are more challenging to interpret. Are the findings a
result of a true no-effect, or was the design incapable of producing reliable estimates?
Contrary to our global experience with BWCs, the findings are not mixed; they are, as
far as we can tell, consistent with the hypothesized civilizing effect of BWCs on police–
public contacts. Thus, the DC study is the exception rather than the norm, which leads
us to conclude that methodological challenges and in particular the contaminated
spillover effects of using a person-based randomization sequence reduced the ability
of the experiment to detect true effects.

Possible design solutions for future experiments at risk of interference

More broadly, we note that there are recent and helpful solutions to the interference
concern. One solution to the partial interference scenario is to take advantage of the
treatment propagation by assigning less than half of the pool to treatment from the
perspective of statistical efficiency (Bowers et al. 2018). This seems logical because
when treatment spreads rapidly across a network, then “comparisons of outcomes
between treated and control units will become very small or even vanish as the control
units to which the treatment spread will act just like treated units” (p. 197).10

Network analysis techniques also provide a useful solution to handling treatment
propagation in clusters, and these are becoming more common in observational data
(Lyons 2011; Shalizi and Thomas 2011) and randomized experimental designs (Aral
and Walker 2011; Aronow and Samii 2013; Bapna and Umyarov 2015; Bond et al.
2012; Eckles et al. 2017; Ichino and Schündeln 2012; Ostrovsky and Schwarz 2011;
Rosenbaum 2007; Toulis and Kao 2013). In fact, treatment propagation is now
considered in research as both a target of inference and as a nuisance. Network analysis
can show graphical scenarios where the potential outcomes of a unit are a function of
the treatment assigned to a unit and of the treatment assigned to other units that are
related to a unit through the network (Basse and Airoldi 2015a, b). This interest had led

10 As Bowers et al. (2018) explain, this process entails the following procedure: “A node could be treated
directly by an experimenter, isolated from treatment (i.e., several hops away from any treated nodes) or
exposed to the treatment at one degree of separation by virtue of the network relationship—without control by
the experimenter.” For a more elaborate discussion, see Aronow and Samii (2017), Bowers et al. (2013), and
Toulis and Kao (2013).
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to recent methodological work on statistical inferences about peer effects or total
average effects, when the topology of the network can be explained (Aronow and
Samii 2017; Bowers et al. 2013; Eckles et al. 2017; Toulis and Kao 2013).

In terms of random assignment, statisticians offer a partial although convincing
solution to the interference issue: model-assisted restricted randomization strategies that
take into account these interference effects (see Yates 1948, but more recently see Ariel
and Farrington 2010). The premise of these techniques is that some assignments are
considered problematic (e.g., when interference happens or when covariates are poten-
tially unbalanced between the treatment arms) and can be excluded. In networks, the
challenge is to identify which features must be balanced, which makes it challenging to
know how to restrict the randomization. Basse and Airoldi (2017) and Basse and Feller
(2017) suggest a novice approach called “two-stage experiments” to identify subsets of
units that can indeed be construed as independent (free of spillover), which is a subset
of constrained randomization techniques. This approach utilizes a subset of units that
might be assumed or known to be independent of one another and allocates treatment
conditions to these units. The statistical literature should be consulted (Basse and
Airoldi 2017; Basse and Feller 2017; and others).

Finally, there is recent work on dyadic relationships that should be considered in
future experiments when interdependence is unavoidable. This so-called “actor-partner
interdependence model” (APIM; Kashy and Kenny 2000) can be used to analyze
dyadic data. It integrates a conceptual view of interdependence with the relevant
statistical techniques for measuring and testing it (Cook and Kenny 2005). This
approach enables experimentalists to simultaneously examine the effect of the treat-
ment effect on the actor and then on the partner; interestingly, this “partner effect”
illustrates the interdependent nature of relationships. APIM can be used for dyads only
or for groups, but the latter can become mathematically complex. For further reading on
this approach, see Ledermann and Kenny (2015), Cook and Kenny (2005), and Garcia
et al. (2015).

A final word about the link between interference and compliance
with the experimental protocol

Throughout this note, we suggested that the commitment (or lack thereof) to using
BWCs appropriately is vital to understanding whether spillover occurs. Compliance
with the protocol is therefore a key feature. Incidents that involve officers with
(treatment) and without (control) BWCs result in contamination to the control group,
assuming prima facie that treatment officers indeed turn their camera on. Following the
release of Yokum et al.’s (2017) study, the Washington DC Office of Police Complaints
(OPC) found that officers failed to comply with department guidelines for BWC use in
34% of cases the OPC investigated. To be sure, these are just situations that the OPC
investigated and not an overall assessment of the cameras. Similarly, in Phoenix, AZ,
evaluation of BWCs implementation found that 1 month after deployment, 42.2% of all
incidents that should have been recorded with a BWC were not, and compliance
declined over time, to 13.2% (Katz et al. 2015). Thus, if treatment officers are not
turning their cameras on, this reduces not only the intervention effect size, but also the
concern for spillover. We believe this concern is exacerbated with person-based
experiments.
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A second issue with officers not turning their camera on and spillover effects is
group dynamics, which could facilitate a change in behavior of non-compliant officers
through partial interference effect. However, this again assumes that officers are turning
their cameras on. If compliance to the intervention is not occurring, then group
dynamics may lead to negative behavior (on adverse group dynamics, see Xia et al.
2009) Hedberg et al. (2017) support this contention: their evaluation of BWCs showed
that compliance worsened due to a lack of oversight and thus there was no deterrent
effect against noncompliance, which may explain their results.

Summary

We conclude by reiterating that shift randomization allows researchers to maximize
sample sizes, be in a better position to characterize SUTVA violations (see Sampson
2010) and minimize problems arising from spillover effects. After all, the experience
with the most shift-based trials on BWCs has led to significant results, and those that
did not produce discernible effects were characterized by poor implementation (Ariel
et al. 2016). One must also consider alternative designs. Practitioners and policy-
makers should be encouraged by the consistency of most of the results from the range
of studies that appear to support the implementation of BWCs. A series of properly
designed cluster-randomized trials will assist in providing an overall conclusion about
the utility of the cameras for policing. Finally, we encourage researchers, practitioners,
and policy-makers to look beyond the results from single studies, regardless of size, and
think about the whole evidence puzzle.
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