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Abstract 

Many intrinsically disordered proteins (IDPs) participate in coupled folding and binding reactions 

and form alpha helical structures in their bound complexes. Alanine, glycine, or proline scanning 

mutagenesis approaches are often used to dissect the contributions of intrinsic helicities to coupled 

folding and binding. These experiments can yield confounding results because the mutagenesis 

strategy changes the amino acid compositions of IDPs.  Therefore, an important next step in 

mutagenesis-based approaches to mechanistic studies of coupled folding and binding is the design 

of sequences that satisfy three major constraints. These are (i) achieving a target intrinsic alpha 

helicity profile; (ii) fixing the positions of residues corresponding to the binding interface; and (iii) 

maintaining the native amino acid composition. Here, we report the development of a Genetic 

Algorithm for Design of Intrinsic secondary Structure (GADIS) for designing sequences that satisfy 

the specified constraints.  We describe the algorithm and present results to demonstrate the 

applicability of GADIS by designing sequence variants of the intrinsically disordered PUMA 

system that undergoes coupled folding and binding to Mcl-1. Our sequence designs span a range of 

intrinsic helicity profiles. The predicted variations in sequence-encoded mean helicities are tested 

against experimental measurements.  

Introduction 

Many macromolecular complexes involve proteins or regions that are intrinsically disordered in 

their unbound forms (Babu et al., 2012, van der Lee et al., 2014, Wright and Dyson, 2015, Wright 

and Dyson, 1999, Wright and Dyson, 2009). Intrinsically disordered proteins / regions (IDPs / 

IDRs) are distinct from autonomously folded domains. The amino acid sequences of IDPs encode 

an intrinsic preference for conformational heterogeneity, which means that they do not fold into 

specific three-dimensional structures as autonomous units (Dunker et al., 2002). Many IDPs are 

involved in molecular recognition (Mohan et al., 2006) and one mode of recognition involves 

coupled folding and binding (Dyson and Wright, 2002, Gianni et al., 2016, Wright and Dyson, 

2009). Here we focus on a specific archetype, namely binary complexes where IDPs fold when they 

are bound to pre-folded protein partners.  

A majority of IDPs that undergo coupled folding and binding tend to adopt -helical structures in 

their bound complexes. Interestingly, many of these IDPs have quantifiable intrinsic helicities in 

their unbound forms (Das et al., 2012, Dyson and Wright, 2005, Mohan, Oldfield, Radivojac, Vacic, 

Cortese, Dunker and Uversky, 2006, Peng et al., 2014, Vacic et al., 2007). Recently, Borcherds et al. 

(Borcherds et al., 2014) showed that point mutations could be engineered into the intrinsically 

disordered N-terminal domain of the tumor suppressor p53 to enhance its intrinsic helicity. This 

proline-to-alanine substitution leads to an increase in the affinity of p53 for Mdm2. Of course, a 

particular value for the dissociation constant (KD) can accommodate a range of mechanisms for 

coupled folding and binding (Kiefhaber et al., 2012). This feature is highlighted in kinetics 

experiments that have measured the rates of association of the intrinsically disordered BH3-PUMA 

(referred to hereafter as PUMA) peptide to the pre-folded Mcl-1 (Rogers et al., 2014, Rogers et al., 

2013, Rogers et al., 2014) and other systems (Dogan et al., 2015). Systematic proline and alanine 

scanning of PUMA was used to assess the contributions of helicity in unbound PUMA on the 

mechanisms of coupled folding and binding (Rogers, Oleinikovas, Shammas, Wong, De Sancho, 

Baker and Clarke, 2014, Rogers, Wong and Clarke, 2014). Proline and alanine scanning do not 

significantly alter the association rates. However, the rates of dissociation (koff) of PUMA from 

Mcl-1 show significant changes upon proline- or alanine-scanning mutations to the PUMA 

sequence.  
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An intriguing hypothesis is that the amino acid composition of an IDP is the main determinant of kon 

whereas the degree of intrinsic helicity regulates koff thus leading to kinetic control of cellular 

programs such as apoptosis. To test this hypothesis, one needs a systematic titration of the effects of 

intrinsic helicity on the mechanisms of coupled folding and binding. There is no easy way to 

modulate intrinsic helicities for an IDP that adopts helical conformations in its bound state. 

Mutagenesis experiments inevitably convolve changes to amino acid composition and intrinsic 

helicities, as is the case with standard, proline-, glycine- or alanine-scanning approaches. This 

makes it difficult it to separate the contributions of intrinsic helicities from the overall effects of 

changes to the amino acid composition. In this regard, it is noteworthy that the amino acid 

compositions and residues that define macromolecular interfaces are highly conserved in IDPs even 

though their amino acid sequences vary considerably (Brown et al., 2011, Moesa et al., 2012). Our 

goal is to develop an approach that allows us to parse contributions from amino acid composition 

and sequence-encoded intrinsic helicities in order to uncover their distinct and synergistic 

contributions to thermodynamic and kinetic stabilities of complexes that form via coupled folding 

and binding. Here, we present a method that we refer to as GADIS for Genetic Algorithm for the 

Design of Intrinsic secondary Structures. This approach combines a genetic algorithm and efficient 

molecular simulations to design IDP sequences that have specified helicity profiles in their unbound 

forms.  

In the implementation of the GADIS algorithm that is presented here, we take a position-specific 

helicity profile and two additional sets of constraints as inputs. The constraints are as follows: We 

fix the amino acid composition thus eliminating the need for traditional proline or alanine scanning 

methods that change the amino acid composition. We also fix the positions of residues that define 

the interface of the IDP with its binding partner. The goal is to design a set of sequences that 

reproduces the target helicity profile for the given amino acid composition. We have prototyped 

GADIS by using it to generate sequence variants of the 34-residue IDR within PUMA that binds to 

Mcl-1. We show that GADIS is successful and efficient at generating distinct sequence variants that 

satisfy specific design criteria for helicity profiles. We report results from far ultraviolet circular 

dichroism (UV-CD) measurements for ten of the designed sequence variants, with different target 

helicity profiles and mean helicities. Quantitative comparisons show that computationally derived 

mean helicities are in agreement with those derived from experiment.  

Results 

We illustrate the design objectives and the functionality of GADIS using PUMA. The wild type 

version of PUMA adopts a continuous alpha helix in the context of its complex with Mcl-1 (Figure 

1). In its unbound state, PUMA adopts a heterogeneous ensemble of partially helical conformations 

(Figure 2). This translates to a residue-specific helicity profile (Figure 2) that quantifies the 

ensemble-averaged percent probability of finding each residue as part of a regular alpha helical 

segment of at least six consecutive residues.  

The GADIS algorithm: The flowchart in Figure 3 illustrates the steps involved in GADIS. The 

algorithm involves two initialization steps I1 and I2. In step I1 we specify the inputs, which include 

the amino acid composition, the positions and identities of immutable residues, and the target 

helicity profile. In step I2, we start with the wild type sequence and generate 100 distinct seed 

sequences. For the first iteration, the algorithm segues directly into step 3 of the production run. 

Here, for each seed sequence, we perform preliminary atomistic Metropolis Monte Carlo 

simulations based on the ABSINTH implicit solvation model and forcefield paradigm (see Methods 

section). Each simulation involves 310
7
 steps that follow 10

7
 initial steps of equilibration. The 
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simulations yield conformational ensembles for each seed sequence. In step 4, the simulated 

ensembles are used to calculate sequence-specific values of the objective function shown in 

equation (1). This quantifies the distance between the profile achieved by the conformational 

ensemble of each sequence and the target helicity profile. The objective function is defined as 

follows: 
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Here, k is the objective function for the k
th

 sequence, N is the number of residues in each sequence, 
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s,k  is the percent probability of finding residue i in a helical segment of at least six residues within 

the simulated ensemble, and
  
p

h,i

t ,k is the target value for this percent probability. The parameters wi 

define the contribution of each position to the target helicity profile. These can either be uniform or 

non-uniform. The latter choice is useful if a specific target helicity profile has degeneracy. This 

refers to a similar k value being achieved by a range of distinct helicity profiles, including those 

that deviate from the intended target. The choices for wi are made following initial testing, which 

allows us to assess the ease of generating sequences that match the target helicity profile. The 

assessments in step 4 are used in step 5 to prune the number of seed / parent sequences. This 

pruning is achieved by selecting ten of the 100 original sequences with the lowest values of k. For 

the subset of selected sequences, we perform, in step 6, an additional round of ABSINTH-based 

Monte Carlo simulations, whereby ten independent simulations, each of length 4  10
7
 steps are 

performed for each sequence. These simulations provide robust statistics that are used for 

evaluating the probability that a seed sequence can be used as a parent for generating offspring 

sequences in the next generation.  Specifically, the conformational statistics are used to calculate a 

new round of objective function values, and the seed sequences are evaluated for their potential to 

become parents for the next generation of sequences in step 7. If at least ten distinct sequences have 

been generated that match the target helicity profile and the best set of sequences have not improved 

over the last two generations, then the design process is terminated. If these criteria have not been 

met, then new offspring sequences are to be generated and the design continues whereby we return 

to step 1 and iterate steps 1 – 7 until the termination criterion has been satisfied. In our tests with 

PUMA, the GADIS procedure typically yields the desired number of sequence variants within eight 

generations and this is true irrespective of the target helicity profile.  

The details of selecting parent sequences, step 1, and generating offspring sequences, step 2, are as 

follows: In step 1, the probability Pk that an offspring sequence will be derived from parent 

sequence k is given by:  
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Here, np represents the current number of parent sequences including any that seeded the previous 

generations. The choice for c that is currently used for designing variants of PUMA is shown in 

equation (3):  
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This value of c works well in terms of affording an efficient balance between sequence diversity 

and achievement of the target profile in the choice of parent sequences. The new set of parent 

sequences and parents from the preceding generations are used to generate 100 new offspring 

sequences in step 2. From a parent sequence, offspring sequences are generated by swaps between 

pairs of residues at mutable positions (Figure 4). Additional sliding moves alter the current positions 

of residues (Figure 4). The swaps and slides are guided by positive and negative selection heuristics. 

The negative selection heuristics refer to biases against the accumulation of acidic / basic residues at 

C-terminal / N-terminal ends of helical segments. Additional criteria refer to biases against the 

inclusion of glycine or proline residues within internal helical segments of a sequence unless this is 

required by the input constraints. The positive selection heuristics are based on rules regarding helix 

initiation and capping. Residues that are known to be preferred at N- or C-termini of helices are 

preferentially chosen to be at these positions providing these choices are permitted by the fixed 

amino acid composition (Aurora and Rose, 1998).  

Deployment and analysis of the performance of GADIS: We prototyped GADIS by generating 

sequence variants of PUMA. The helicity profile for the wild type sequence is shown in Figure 2. 

We proposed five distinct target profiles for new variants of PUMA. These targets are shown in 

Figure 5. In Target 1 the goal was to design sequences whose N- and C-terminal halves fluctuate 

independently into and out of helical conformations, with a clear break in the middle of the 

sequence. This target was referred to as the stable broken helix (SBH) profile. In Target 2 the goal 

was to design sequences where a stable central helix spans the central portion of the peptide from 

positions 10-23. This target was referred to as the stable central helix (SCH) profile. In Targets 3 

and 4, the goal was to design sequences that have helical N- or C-terminal halves and coil-like C- 

or N-terminal halves, respectively. These targets were referred to as NTH and CTH profiles, 

respectively. Finally, for Target 5, the goal was to achieve sequences with uniformly low 

probabilities of being part of regular helical segments. This target was referred to as the uniformly 

unstable helix (UUH).  

Figures 6 and 7 summarize the results of applying GADIS to generate at least ten distinct sequence 

variants for each of the five target helicity profiles. In these figures, the results are summarized as 

checkerboard plots that quantify the percent probabilities that each residue in a designed sequence is 

part of a regular alpha helical segment that is at least six residues long. The sequences that match a 

specific target profile are also shown adjacent to the checkerboard plots. Targets such as the SCH 

profile will be more challenging because this profile calls for persistent helicity across the central 

portion of the sequence with coil-like dangling ends. From a computational standpoint, the 

constraints of fixed amino acid composition and seven immutable positions present one set of 

challenges for the efficient generation of parent / offspring sequences that match the target helicity 

profile. An additional challenge comes from the degeneracy of incorrect helicity profiles that 

reproduce low k values for the SCH profile. This latter challenge is remedied by using non-

uniform weights wi to prevent sequences encoding the SBH profile from generating low k values 

when the SCH profile is the intended target. In contrast, the UUH target is easily achieved by 

almost any sequence that is chosen at random. Figure 8 shows how the GADIS algorithm improves 

from one generation to the next by increasing the probability of finding sequence variants of PUMA 
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that lower the value of k for the SBH profile. Similar results are obtained for each of the other four 

profiles.   

We performed UV-CD measurements on ten different sequence variants, two from each of the five 

target classes. We also measured the CD spectrum of wild type PUMA. Figure 9 shows the CD 

spectra for all eleven sequences. We compared the calculated mean helical contents for wild type 

PUMA and each of the ten designed variants to the measured helical contents. For sequence k the 

mean helical content 
  
f

h,k

calc is calculated using the residue-specific probabilities that are extracted 

from the simulated ensembles: 
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The values obtained using equation (4) were compared to mean helical contents inferred from 

analysis of the measured CD spectra, which was calculated using the empirical equation developed 

by Chen et al. (Chen et al., 1974): 
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Here, 222 is the mean residue ellipticity at 222 nm and N=34 is the number of amino acids in the 

sequence. The denominator is the expected mean residue ellipticity at 222 nm, calculated for an 

infinitely long helix and corrected to account for the finite size of the peptide. Other empirical 

expressions have also been developed that use either 222 (Chen and Yang, 1971) or 208 (Greenfield 

and Fasman, 1969), which is the mean residue ellipticity at 208 nm. These expressions yield similar 

estimates for the inferred values, and identical trends, for mean helicities given our CD data.  

Figure 10 shows a comparison between the values of 
  
f

h,k

calc and 
  
f

h,k

exp for wild type PUMA and all ten 

designed variants derived from the application of GADIS.  The two sets of values are positively 

correlated, although 
  
f

h,k

calc ≠ 
  
f

h,k

exp . This could derive from the discrepant approaches for estimating 

helicities, the parameterization of 
  
f

h,k

exp in equation (5), or true deviations in the ensembles sampled 

computationally versus in solution. Overall, we conclude that the GADIS designs do indeed enable 

a systematic titration of helicity profiles and mean helicities while maintaining the overall amino 

acid composition and fixing the positions of several immutable residues.  

Why use ABSINTH-based simulations? In step 3 and step 6 of the GADIS algorithm we use 

ABSINTH-based simulations to generate atomistic descriptions of conformational ensembles to 

calculate sequence-specific helicity profiles. This is the most computationally expensive step of the 

GADIS algorithm. For a typical sequence variant of PUMA, it takes roughly 48 hours to complete a 

simulation on a quad core Nehalem processor. This can become a major bottleneck given the need 

to return to steps 3 and 6 multiple times for hundreds of sequences. We overcome this problem 

through our access to a high performance computational cluster. This still requires at least 720 

hours of continuous computations, and can become prohibitive without access to requisite resources.  

The computational bottleneck raises the issue of finding inexpensive ways to estimate of sequence-

encoded helicities. We used the ABSINTH-based approach based on previous work that uncovered 
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limitations of web-based predictors of helicity such as AGADIR (Lacroix et al., 1998). Although 

AGADIR is routinely used to estimate helicities of various peptides and proteins, it does not appear 

to capture the sequence-encoded intrinsic helicities of IDPs / IDRs (Das, Crick and Pappu, 2012). 

This point is reinforced in Figure 11, which shows the poor correlation between helicities predicted 

using AGADIR and the values from simulations or the values of from UV-CD measurements for 

PUMA and the ten different sequence variants. Therefore, pending the availability of a suitable 

machine learning approach that can be deployed across a large dataset of sequences, we are 

constrained to using ABSINTH-based simulations at steps 3 and 6 of the GADIS algorithm. The 

efficiency of ABSINTH-based simulations enables the throughput in terms of the number of 

simulations and the realization of the design objectives. This would not have been feasible with the 

use of explicit representations of solvent molecules or an inefficient implicit solvation models. 

Conclusions 

We have succeeded in developing and deploying a systematic titration of intrinsic helicity profiles 

while satisfying the two constraints that we imposed on our design strategy. Deploying these 

designs in mechanistic experiments should enable detailed investigations of the impact of changes 

to intrinsic helicity, given a fixed amino acid composition, on the mechanisms of coupled folding 

and binding of IDPs that adopt helical conformations in their bound complexes.  Experiments to 

investigate the effects of GADIS-based designs of PUMA on the binding to Mcl-1 are currently 

underway. Insights from these experiments should pave the way for an iterative procedure of 

assessing the effects of fewer or larger number of constraints on the designs. These designs that 

achieve target helicity profiles, when coupled to binding data, will help us uncover the sequence and 

structural determinants of specificity in coupled folding and binding.  

Currently, GADIS can be deployed to any design problem that fits the PUMA archetype, and there 

are several such problems in the coupled folding and binding field. Interestingly, there are also 

several problems in spontaneous unimolecular folding that are similar in spirit to the coupled 

folding and binding problem. The folding of linear repeat proteins is one such example (Aksel and 

Barrick, 2009). Here, free energy of folding is governed by the interplay between the intrinsic 

instability of a repeat versus the favorable interfacial free energy between repeats (Aksel et al., 

2011). GADIS, in its current form, can be deployed to redesign helical units in repeat protein to 

preserve the interfacial residues and amino acid compositions. This would enable a modulation of 

the balance between the intrinsic versus interfacial free energies and allow one to assess the impact 

of redesigns on overall stability and the cooperativity of folding. GADIS can also be generalized to 

work with fewer constraints on amino acid compositions or tightening the constraints in terms of 

specifying additional immutable residues that might contribute indirectly to stabilizing the 

interfaces between complexes. These generalizations of GADIS should be tailored to specific set of 

experiments that one has in mind since the algorithm has been developed to guide systematic 

sequence titrations that test specific hypotheses about intrinsic and coupling free energies.        

Methods  

All atom simulations: The simulations were performed using version 2.0 of the CAMPARI 

molecular modeling suite (http://camapri.sourceforge.net). This package provides full support for 

the ABSINTH implicit solvation model and forcefield paradigm (Vitalis and Pappu, 2009). In 

ABSINTH, the polypeptide chain and solution ions are modeled in atomistic detail. The solvent is 

modeled as a continuum that responds to conformational fluctuations through changes to atom-

specific solvation states that modulate the reference free energies of solvation and solvent-mediated 

http://camapri.sourceforge.net/
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electrostatic interactions. All parameters for the forcefield were from the abs_3.2_opls.prm 

parameter file. Each simulation was initialized using a randomly generated self-avoiding 

conformation and distinct random seed. We set the simulation temperature to be 310 K and 

performed Metropolis Monte Carlo simulations using standard move sets that were previously 

deployed for simulations of other IDRs with intrinsic helicities (Das, Crick and Pappu, 2012). 

Design constraints and GADIS software: For PUMA, we use a numbering scheme that goes from 

1 – 34. The overall amino acid composition is held fixed in the GADIS designs. All sequences were 

N-methylamidated at the N-terminus and acetylated at the C-terminus. Seven hydrophobic residues 

viz., W6, I10, L14, I17, A18, L21, and Y25 define the interfacial contacts between the folded 

PUMA sequence and Mcl-1. Accordingly, these seven are set as being immutable in the GADIS 

designs. This implies that their positions are held fixed and the identities are not changed when the 

swap / slide moves are deployed to generated offspring sequences. The implementation of heuristics 

that guide the GADIS-based design of offspring sequences is shown in the form of pseudo-code and 

is included as Figure S1 of the supplementary material. The evaluation of objective functions, the 

selection of parent sequences, and the generation of offspring sequences were implemented in 

MATLAB. The code was designed to interface with outputs from CAMPARI-based simulations.  

UV-CD experiments: For the experiments, we purchased peptides with capped termini in pure 

form from Watsonbio Sciences. Mass spectrometry analysis from the vendor combined with amino 

acid analysis confirmed the identities of the peptides.  All the peptides were reconstituted using 50 

mM Sodium Phosphate pH 7.0, 0.05% (v/v) Tween 20.  To remove residual salts, peptides were 

exchanged into 50 mM Sodium Phosphate pH 7.0, 0.05% (v/v) Tween 20 using HiTrap Desalting 

columns (GE Healthcare). The peptide concentrations for CD experiments were estimated using the 

absorbance measurements and use of Beer-Lambert law with an extinction coefficient of 7113 M
-1

 

cm
-1

 at 280 nm. Final peptide stock concentrations were determined from the mean of two amino 

acid analysis runs. The final concentrations for UV-CD measurements were small and in the range 

of 2.5-10 µM. Care was taken to ensure that the results of our measurements are not confounded by 

peptide oligomerization. 

For the CD measurements, each peptide was prepared and scanned in a single day. Peptides were 

diluted individually from the stock by weight. Two samples were prepared for each concentration. 

At least three different concentrations were scanned and compared to check for concentration 

dependence. The two samples from the highest concentration of peptide that did not show 

concentration dependence were averaged to give the final mean residue ellipticity. CD scans were 

performed at 25 °C using an Applied Photophysics Chirascan and a 2 mm path length cuvette. 

Settings were 1 nm bandwidth and 15 s adaptive averaging. To rule out changes in signal as a 

function of time, separate measurements were performed following one-hour time intervals between 

the scans for each sample at the same concentration. The measured CD signal was converted to 

Mean Residue Ellipticity (MRE) by dividing through by the concentration (M), the cuvette path 

length (cm) and the total number of amino acid residues.  For comparisons to computational results, 

the peptide MRE was reported as the mean of the highest concentration samples that did not display 

concentration dependence (3.5 μM for wild type, 5 μM for SBH2, and 10 μM for the remaining 

peptides). 

List of Figures 

Figure 1: Illustration of coupled folding and binding. In this illustration, an intrinsically 

disordered – partially helical – PUMA sequence is shown to bind to Mcl-1 and form a continuous 
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helix in the context of the bound complex. PUMA is shown as a ribbon diagram to emphasize its 

helicity in the bound complex. The residues are colored as follows: Hydrophobic residues are in 

gray, polar residues are in green, negatively charged residues are in red, and positively charged 

residues are in blue. Mcl-1 is shown in a surface representation to emphasize the electrostatic 

potential. Regions of high positive potential are in blue, regions of high negative potential are in red, 

and regions with near zero electrostatic potential are in white. The electrostatic surface was 

computed using the Adaptive Poisson Boltzmann solver (Baker et al., 2001).    

Figure 2: The unbound PUMA adopts a heterogeneous conformational ensemble. The figure 

summarizes results from all atom ABSINTH-based simulations of PUMA. The sequence prefers a 

heterogeneous ensemble of conformations. These include conformations with independent N- and 

C-terminal helical halves, coil-like N- or C-terminal halves that are populated with helical C- or N-

terminal halves, and fully coil-like conformations. The heterogeneity is quantified in terms of the 

percent probabilities associated with distinct conformational types. These populations are used to 

quantify a residue-specific helicity profile that quantifies the percent probability of finding a residue 

as part of a regular alpha helical segment that is at least six residues long. Note that in the 

simulations the central helix conformation is not accessed by the wild type sequence of PUMA.  

Figure 3: Flowchart of the GADIS algorithm. The text provides a detailed description of each of 

the steps in the algorithm.  

Figure 4: Illustration of the shuffles and sliding moves along sequences that are used to 

generate new offspring sequences from a parent. The top row illustrates swaps between two 

positions and the bottom row illustrates a combination of swaps and sliding. The latter to refers to 

changes to the positions of residues by sliding them over either to N- or C-terminal positions. Note 

that in the swap and slide move that the longer arrows signifies a residue being moved over an 

immutable residue. 

Figure 5: Five target helicity profiles for the design of PUMA variants. The acronyms and the 

details regarding each target profile are discussed in the text.  

Figure 6: Sequence variants of PUMA that were generated using GADIS for the SBH and 

SCH target profiles. The checkerboard plots quantify the residue-specific helical propensities. 

These are quantified in terms of the percent probability that a specific residue is part of a regular 

helical segment that is at least six residues long. On the left, the first ten rows pertain to sequence 

variants that correspond to the SBH profile and the bottom ten rows correspond to the SCH profile. 

The sequences corresponding to each row of residue-specific helical propensities are shown on the 

right. These positions of the immutable residues are highlighted to emphasize the constraints. The 

wild type PUMA sequence is also shown as reference. Additionally, sequences shown in bold face 

were used in UV-CD measurements.  

Figure 7: Sequence variants of PUMA that were generated using GADIS for the NTH, CTH, 

and UUH target profiles. The checkerboard plots quantify the residue-specific helical propensities. 

These are quantified in terms of the percent probability that a specific residue is part of a regular 

helical segment that is at least six residues long. On the left, the first ten rows pertain to sequence 

variants that correspond to the NTH profile, the middle ten rows correspond to the CTH profile, and 

the last ten rows correspond to the UUH profile. The sequences corresponding to each row of 

residue-specific helical propensities are shown on the right. These positions of the immutable 

residues are highlighted to emphasize the constraints. Additionally, sequences shown in bold face 

were used in UV-CD measurements. The wild type PUMA sequence is also shown as reference. 
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Figure 8: Quantifying the convergence of the GADIS algorithm. This plot shows the probability 

of realizing sequences with lower objective function values as the generation number increases. For 

a given curve, the ordinate quantifies the fraction of sequences generated by GADIS that have 

achieved a sequence with a score that is less than or equal to a particular value along the abscissa. 

As the generation number increases (see legend), the curves are shifted to the left indicating a 

systematic improvement in realizing sequences that lower the objective function value.   

Figure 9: UV-CD spectra obtained for the wild type PUMA and ten sequence variants derived 

from the GADIS designs. The spectra show that GADIS helps achieve a systematic titration of 

intrinsic helicities through sequence design using a fixed amino acid composition and a specified set 

of immutable residues.    

Figure 10: Comparisons between measured and calculated mean helical contents. The plot on 

the left shows the comparisons as a bar plot, where the black bars denote mean helical contents 

derived from CD spectra and the white bars denote the corresponding values derived from 

simulated ensembles for each sequence. The panel on the right plots the experimentally derived 

values on the ordinate versus the computationally derived values on the abscissa. The Pearson 

product moment correlation coefficient is r = 0.75 and this quantifies the linear correlation between 

the mean helical contents derived from measurements versus simulations. The p-value is 0.007 and 

this quantifies the probability of realizing the obtained r-value purely by chance. In the plot on the 

right, if the computed helicities were identical to the measured helicities, then the points would have 

fallen on the dashed line. The vertical error bars are the differences between the helicity values 

inferred from the two sets of experiments. The horizontal error bars represent the standard error 

about the mean helicity that is calculated across at least ten independent simulations for each 

sequence variant. 

Figure 11: Comparisons between mean helical contents obtained using AGADIR and those 

derived from CD measurements (a) and simulations (b), (c). In all three panels, if the AGADIR 

values were identical to the values along the abscissae, then the points would fall on the dashed 

lines shown in each of the three panels. AGADIR predictions were performed using default settings 

for the ionic strength and a temperature of 25˚C. This yields uniformly low helicity values for all 

eleven sequences. It also fails to capture the variation of intrinsic helicities with sequence. Similar 

trends, albeit lower helicity values are obtained by setting a salt concentration of 108 mM and 

temperature of 298.15 K. For the plot in panel (a), r = –0.07 and p = 0.85 and for the plot in panel 

(b), r = 0.23 and p = 0.49. In panel (a), the horizontal error bars are the differences between the 

helicity values inferred from the two sets of experiments. In panel (b), the horizontal error bars 

represent the standard error about the mean helicity that is calculated across at least ten independent 

simulations for each sequence variant. Panel (c) shows a comparison of mean helicities derived 

from AGADIR versus those derived from the simulated ensembles for all fifty-one sequences 

shown in Figures 6 and 7. With five times more data than in panels (a) and (c), the data in panel (c) 

establish a consistent lack of correlation (r  = 0.1 and p = 0.48) between AGADIR and ABSINTH-

based mean helicities. These results are consistent with previous observations made on a different 

set of IDPs that show favorable comparisons between simulation results and experimental data and 

poor correlations when using AGADIR-based predictions (Das, Crick and Pappu, 2012).  
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