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Abstract

Consistent nonparametric methods for testing the null hypothesis of Lorenz domi-

nance are proposed. The methods are based on a class of statistical functionals defined

over the difference between the Lorenz curves for two samples of welfare related vari-

ables. Two specific test statistics belonging to the general class are presented and their

asymptotic properties derived. As the limiting distributions of the test statistics are non-

standard, we propose and justify bootstrap methods of inference. We provide methods

appropriate for case where the two samples are independent as well as the case where

the two samples represent different measures of welfare for one set of individuals. The

small sample performance of the two tests is examined and compared in the context of a

Monte Carlo study and an empirical analysis of income and consumption inequality.
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1. INTRODUCTION

A fundamental tool for the analysis of economic inequality is the Lorenz curve which

graphs the cumulative proportion of total income, or other measure of individual welfare,

by cumulative proportion of the population after ordering from poorest to richest. The

related concept of Lorenz dominance provides a partial ordering of income distributions

based on minimal normative criteria. Distribution A weakly Lorenz dominates distrib-

ution B if the Lorenz curve for A is nowhere below that for B. As shown by Atkinson

(1970), Lorenz dominance translates into simple facts concerning the degree of egalitar-

ianism in the respective income distributions. Lorenz dominance is equivalent to the

ranking of income distributions based on the class of scale-free inequality indices that

respect the ‘principle of transfers’ - whereby a progressive transfer is associated with

a decrease in inequality - while avoiding the imposition of stronger additional norma-

tive criteria embodied in a specific scalar index of inequality. An empirical method for

directly inferring Lorenz dominance is therefore very desirable.

The work of Beach and Davidson (1983) represented a key development in the use of

Lorenz curves for statistical inference in economics. They derived the sampling properties

of a subset of ordinates from the empirical Lorenz curve and presented a test for the null

hypothesis that two independent Lorenz curves are equal. Note that this was a test of

Lorenz equality, rather than dominance, at a fixed set of population proportions. Bishop,

Formby and Smith (1991a, 1991b) proposed a test of Lorenz dominance based on multiple

pair-wise comparisons of empirical Lorenz ordinates. Davies, Green and Paarsch (1998),

Dardanoni and Forcina (1999) and Davidson and Duclos (2000) presented tests for Lorenz

dominance based on a predetermined grid of points. The null hypothesis of dominance

across those fixed points imply a series of inequality restrictions which can be tested using

the methods of Wolak (1989). Although these tests use information on the covariances

among the set of estimated Lorenz ordinates, making themmore powerful than the Bishop

et al. (1991a, 1992b) tests, these methods are also potentially inconsistent. By limiting

attention to a small fixed set of grid points, the tests do not take account of the full set

2



of restrictions implied by Lorenz dominance.

The aim of the current article is to develop consistent tests for Lorenz dominance.

Our approach to testing is based on a class of statistical functionals defined over the

difference between two Lorenz curves. A test of Lorenz dominance may be considered

as a scalar measure of the extent to which one Lorenz curve (hereafter LC) is everywhere

above the other. Two test statistics based on specific functionals from the general class

are examined in detail. The first test statistic is based on the largest difference between

the two LCs - a supremum or Kolmogorov-Smirnov (KS) type test, while the second is a

Cramer von-Mises (CVM) type test based on the integral of the difference between the

curves over the range of ordinates for which one lies above the other. This second test

statistic was first presented in Bhattacharya (2007) in the context of analysing inequality

using stratified and clustered survey data. Both measures will be zero when one curve

weakly dominates another, and both will be strictly positive when this is not the case.

The tests are nonparametric and based on normalized estimates of quantities involving

the empirical LCs. The empirical LC is a fully nonparametric,
√
-consistent estimator

of the true underlying LC. The empirical LC does not share the disadvantages associated

with other nonparametric estimators such as for density and regression models. Our

estimation problem is analogous to the estimation of a cumulative distribution function

for which nonparametric estimation via the empirical distribution (or smoothed empirical

distribution) function is known to be
√
-consistent and asymptotically normal with

Brownian Bridge limit processes. Representing the empirical LC as a smooth functional

of the empirical distribution function permits the application of the functional delta

method to obtain the limit processes.

The second feature of our tests is that they are consistent in that they detect any

violation of the null hypothesis of weak Lorenz dominance. This is achieved by comparing

the empirical LCs at all quantiles. The tests presented in this article utilize all the sample

information and provide a consistent test of Lorenz dominance. Our tests are analogous

to tests of stochastic dominance (SD) proposed in McFadden (1989) and elaborated and

extended by Barrett and Donald (2003). SD relations are based on a comparisons of CDFs
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(or partial integrals of CDFs) and provide partial orderings in terms of welfare levels or

poverty. In contrast, Lorenz dominance is based on a comparisons of (mean independent)

LCs which provides a partial ordering in terms of relative inequality, as articulated in

Atkinson (1970; 1987) and Deaton (1997: 157-169). Further, as the empirical LC is

given by the partial integral of the empirical quantile function normalised by the mean,

LD testing must address the issue of small denominators in studying convergence, which

is an issue that does not arise in SD testing. The main difficulty with our tests of

Lorenz dominance is that the limiting distributions of the test statistics are nonstandard

and generally depend on the underlying LCs. We propose and justify the use of the

bootstrap for conducting inference. The application of the bootstrap in approximating

the asymptotic distribution of a test statistic has been used for similar problems in

Andrews (1997), Barrett and Donald (2003) and Linton, Maasoumi and Whang (2005).

Our main results are obtained for two possible sampling schemes for estimating the LCs.

The first is that we have two independent samples of comparable variables, for differing

numbers of individuals. The second is that we have one sample of individuals and two

measures of welfare (e.g.: before and after tax income or in panel contexts), which we

refer to as “matched pair” sampling. The difference between the two sampling schemes

is that in the latter case the estimated LCs will be correlated, whereas in the former

case they will not. This has important implications for how we use the bootstrap in each

case. One could also justify inference using the bootstrap for more elaborate sampling

schemes, such as those considered in Bhattacharya (2005).

The remainder of the article is organized as follows. In Section 2 we state our testing

problem, review key results on the properties of empirical LCs, propose two test statistics

and provide a characterization of the limiting distributions of the test statistics under

the null hypothesis in terms of well known stochastic processes. In Section 3 the non-

parametric bootstrap approach to conducting inference is presented and theoretically

justified. Section 4 provides a brief Monte Carlo study that examines how well the

asymptotic arguments work in small samples. In Section 5 we implement the tests by

comparing the LCs for the distribution of income and consumption in Australia from
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1984 to 2009/10. In Section 6 concluding comments are presented.

2. ASYMPTOTIC PROPERTIES OF LORENZ DOMINANCE TEST

STATISTICS

2.1 Preliminaries

We are interested in comparing the LCs associated with the distributions of income

(or some other measure of welfare) for variables 1 and 2. These could either be corre-

sponding variables from two different populations for which we have independent random

samples or else these could be two measures of welfare for a specific individual from a sin-

gle population. We let 1 and 2 denote the respective marginal cumulative distribution

functions (CDFs). We make the following assumptions regarding these CDFs.

Assumption 1 Assume that the population described by  : [0∞) → [0 1] (for  =

1 2) has finite first two moments and is continuously differentiable with associated

probability density function given by () =  0
() such that () is strictly positive

everywhere on [0∞) and for some  ∈ (0 1) the following tail condition is satisfied,

lim
→∞

{1−  ()}1+
 ()

= 0 = lim
→0

{ ()}
 ()

(1)

The existence of two moments is sufficient for us to define the LCs (at ordinate value

 ∈ [0 1]) for the respective populations by,

() =

R ()

0
()R∞

0
()

=

R 
0
()



where () = −1 () are the respective quantile functions and  is the mean of the dis-

tribution. The tail condition on the distributions will allow us to derive weak convergence

results for the empirical LC as shown in the next subsection.

2.2 Hypothesis Formulation

The hypotheses that we are interested in testing are:

1
0 : 2() ≤ 1() for all  ∈ [0 1]

1
1 : 2()  1() for some  ∈ [0 1]
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The null hypothesis is that the LC for population 1 is everywhere at least as large as

that for the population 2. This will be referred to as weak Lorenz Dominance of 1

over 2. This formulation of the hypotheses is consistent with much of the literature

on testing stochastic dominance (McFadden 1989). Note that the null hypothesis also

includes the case where the LCs coincide. As has been shown in Lambert (1993), this

can only occur if 1() = 2() for some non-negative value of . That is, multiplying

all incomes in a population by the same constant does not affect the LC associated with

the distribution. The alternative hypothesis is true whenever the LC for 2 is above that

for 1 at some point. Note that we can reverse the roles of 1 and 2 and test similar

hypotheses. This would allow one to determine whether a LC dominated another in a

stronger sense. In particular, if one considered the hypotheses

2
0 : 1() ≤ 2() for all  ∈ [0 1]

2
1 : 1()  2() for some  ∈ [0 1]

then the hypotheses1
0 and

2
1 together imply the strong dominance of 1 over 2 so that

in principle one could use the tests to determine whether or not there is strong Lorenz

dominance. In addition, the hypotheses 1
0 and 2

0 together imply that the LCs are

identical. The Bonferroni inequality provides a bound for the p-value for the union of the

two LD tests. Alternatively, a direct test of the null of LC equality, 

0 : 2() = 1()

for all  ∈ [0 1], can be constructed based on the standard KS test applied to LCs rather
than CDFs.

We consider the approach to testing based on a functional of the difference between

the two LCs which gives a scalar result that indicates which of the hypotheses is correct.

In order to justify a bootstrap approach to inference we impose additional regularity

conditions on the functional. For this purpose we define () = 2()− 1() and note

that under our assumptions  is a continuous function on [0 1]. Thus we can write,

 ∈ [0 1]. Also let kk denote the sup norm on [0 1]We develop our theory of testing
and inference for a general functional F : [0 1]→  which we can normalize such that

F(0) = 0 and F satisfies the following properties:
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Property 1: For any ∗ 0 ∈ [0 1]:

(i) If 0() ≤ 0 for all  ∈ [0 1] then F(∗) ≤ F(∗ − 0)

(ii) If ∗()  0 for some  ∈ (0 1) then F(∗)  0

(iii) |F(∗)−F(0)| ≤ k∗ − 0k 

(iv) any scalar constant   0 F(∗) = F(∗)

(v) F is convex

Properties 1(i) (ii) and the normalization are sufficient to show that the functional

can be used to distinguish between the null and alternative hypothesis based on the scalar

value of the functional. The latter properties are continuity conditions that allow one

to derive weak convergence properties for the test statistics based on the functional and

also allow easy justification of the bootstrap method. The condition 1(v) is a convexity

condition that will allow us to show that the distribution of the test statistic is absolutely

continuous. This condition is not the only one that will guarantee that this result holds

but is satisfied for the two functionals considered in this article (see Davydov, Lifshits

and Smorodina (1998) for methods and assumptions for establishing absolute continuity

of distributions of functionals of random processes). Our first result shows that Property

1(i) and (ii) allow one to distinguish between the null and alternative based on the

functional.

Lemma 1: If F satisfies Property 1(i) and (ii) then 1
0 (

1
1) is equivalent to F() ≤ 0

(F()  0).

The two specific functionals considered in this article are

S() = sup
∈[01]

(())

I() =

Z 1

0

()1(()  0)
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where 1() represents the indicator function which is equal to 1 when  is true (and

0 otherwise). The next Lemma establishes that these functionals satisfy all parts of

Property 1. Therefore these two functional are capable of distinguishing between the

two hypotheses plus they satisfy the regularity conditions for weak convergence and

justification of the bootstrap approach to inference considered in subsequent sections.

Lemma 2: Each of the functionals S and I satisfy Property 1.

2.3 Properties of the Empirical Lorenz Curve and Test Statistics

Our aim is to make inferences regarding Lorenz dominance based on samples drawn

under two possible sampling situations. The first is classical independent random sam-

pling from two populations.

Assumption 2 (IS): Assume that:

(i) {
 }=1 is a random sample from  and the sample for  = 1 is independent from

the sample for  = 2

(ii) the sampling scheme is such that as 1 →∞

lim
1→∞

12

1 + 2
→∞

The first part is the standard independent random samples assumption that would be ap-

propriate in situations where we have two separate random samples from non-overlapping

populations such as countries or regions and would also generally be a plausible assump-

tion if the two samples are random samples at two different points in time for the same

population. Note we allow for differing sample sizes. The requirement in (ii) is that, as

far as the asymptotic analysis is concerned, the number of observations in each sample is

not fixed as the other grows. We do allow for the possibility that one sample size grows

at a faster rate than the other. This condition is key for the consistency properties of

the test under the random sampling assumption. For this case we define the following,

lim
1→∞

1

1 + 2
→  ∈ [0 1]
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and  can take on one of the endpoints when one sample size grows faster than the other.

Note that the random sampling assumption could be relaxed in ways that are discussed

in Bhattacharya (2005).

We also consider an alternate sampling scheme whereby1 and2 represent different

random variables for the same individual, referred to as the matched pairs case. We have

in mind that  could represent measures of the same welfare variable at different points

in time, such as with panel data, or where they represent different measures of welfare

for an individual at a single point in time, such as income and expenditure. In the

former case one is then considering LD based on panel data while in the latter case one

is interested in relative inequality between two notions of welfare. For these types of

situations we use the following assumption, where MP is shorthand for matched pairs.

Assumption 2 (MP): Assume that {(1
 

2
 )}=1 is a random sample from a joint

distribution  (1 2) whose marginals are given by 1 and 2

In this case there is only one sample size  so in what follows, except where indicated,

the notation  refers to this common  for this sampling assumption. Also, unlike the

independent random sampling case, while it makes sense to assume that (1
 

2
 ) is

independent of (1
 

2
 ) (for  6= ) it is implausible to assume that 1

 is independent

of 2
 . As we see below this will imply that the estimated LC’s for the two variable

will be dependent and this will need to be taken into account in the inference procedure.

Provided the pair (1
  

2
 ) are iid a simple adjustment of the bootstrap can be performed

so that valid inference is possible even without knowing the nature of the dependence

between the two variables.

The empirical distributions are given by

̂() =
1



X
=1

1(

 ≤ )

and the quantile functions as

̂() = inf{ : ̂() ≥ }
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Then the empirical LC at ordinate value  can be defined in terms of the quantile

function by

̂() =

R 
0
̂()

̂

where ̂ = ̄

 are the sample means. Since the quantile process is a step function (right

continuous) then the empirical LC is a piecewise linear function starting at the origin

and reaching the value 1 when  = 1. For a given sample {
 }=1 denote the unique

values by 1  2      ∗ (with ∗ ≤ ), the sample mean by ̂, and denote the

proportion of observations in the sample that take on each of these values as ̂ then the

empirical LC is obtained by connecting the pointsÃ
X

=1

̂

X
=1

̂

̂

!
:  = 1  

with straight lines. Thus the empirical LC is easily computed and, like the population

LC, is continuous and convex.

To set notation, for an arbitrary distribution function  define B◦ as the Brownian

Bridge process composed of  As is well known, appropriately standardized empirical

distribution functions (considered as elements of the space of cadlag functions [ ] on

[ ]) satisfy the following weak convergence results:

√
(̂ − )⇒ B


◦ 

Note that in the case of Assumption 2(IS) it follows that since the two samples are

independent then B1 ◦ 1 is also independent of B2 ◦ 2. In the case of Assumption
2(MP) we have that,

√


µ
̂1 − 1

̂2 − 2

¶
⇒
µ B1 ◦ 1
B2 ◦ 2

¶
where the limit is a bivariate correlated Brownian Bridge with covariance function (at

the point (1 2)) given by,µ
1(1)(1− 1(1))  (1 2)− 1(1)2(2)

 (1 2)− 1(1)2(2) 2(2)(1− 2(2))

¶
(2)

Such a result follows from marginal weak convergence using arguments in van der Vaart

and Wellner (1996, Sections 1.1 and 1.4). Since in this case 1
 and 

2
 are from the same

unit of observation, it is unreasonable to assume that the off diagonals are zero.
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Our first result provides a characterization of the limiting properties of the empirical

LCs. Since the LC is a scaled version of the integral of the quantile function the stan-

dardized empirical LCs can be considered as members of the function space [0 1] since

they are piecewise linear and continuous. Define the Gaussian stochastic process, G on
[0 1] to be such that for  ∈ [0 1]

G() = −
Z 

0

B()
(())



and finally the process L to be such that for  ∈ [0 1],

L() =
G()

− ()


G(1)

Under Assumption 2(IS) these L1 and L2 will be independent since B1 and B2 are in-
dependent. On the other hand, under Assumption 2(MP) since the Brownian Bridge

processes B1 and B2 are correlated then the Lorenz processes L1 and L2will also be cor-
related. The following result concerning the asymptotic behavior of the empirical Lorenz

processes is is stated for completeness and will be the basis for inference methods based

on the functionals satisfying Property 1.

Lemma 3: Given Assumption 1 and either 2(IS) or 2(MP),

(i) for each 

sup |̂()− ()| → 0

and in the space [0 1],
√
(̂ − )⇒ L

(ii) letting ̂ = ̂2 − ̂1 under 2(IS) with  = 12(1 + 2) we have,p
(̂− )⇒ L̄ =

√
L2 −

√
1− L1

and under 2(MP) we have  = ,p
(̂− )⇒ L̄ = L2 − L1

Results such as in (i) for the single Lorenz process date back to Goldie (1977) under

slightly different conditions. The weak convergence result in (i) can be derived using
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functional delta methods described in van der Vaart and Wellner (1996). This requires

showing that the LC is a Hadamard differentiable function of the CDF for which the tail

condition in Assumption 1 is sufficient (using a result shown in Bhattacharya (2007)).

Beach and Davidson (1983) also presented results for a vector of LC ordinates and im-

portantly showed how to do inference, by providing estimates of the variance covariance,

matrix without imposing distributional assumptions. Here we consider inference on the

entire LC.

The second result follows immediately from the first part and assumptions concerning

the sample sizes that are explicit in Assumption 2(IS)(ii) or implicit in Assumption

2(MP). This result is stated formally so as to define the process L̄ which appears in the
limiting distributions of the test statistics considered in the next section. Note that this

differs in terms of its properties depending on whether we are using Assumption 2(IS),

in which case  appears and L1and L2 are independent, or Assumption 2(MP) in which
case L1and L2 are correlated. Our inference methods are designed to deal with these
differences in behavior.

This result allows one to obtain the properties of the test statistic for general func-

tional F in a straightforward fashion. As in Lemma 3 we allow the normalizing factor

for each sampling Assumptions 2(IS) and 2(MP),
√
, to differ as stated in Lemma 3.

Lemma 4: Under Assumptions 1 and 2(IS) or 2(MP) and assuming that F satisfies

Property 1 then,

(i) Under 1
0  F(̂) ≤ F(̂− )⇒ F(L̄) where L̄ is as given in Lemma 3 and for

  12 the 1− quantile of the distribution of F(L̄) is strictly positive, finite and
unique,

(ii) Under 1
1 F(̂) →∞

This result shows that the test statistic can be used to test between the null and al-

ternative in much the same way as one would test a one sided hypothesis on a single

parameter. The test statistic is dominated under the null hypothesis by a statistic that
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is asymptotically distributed as F(L̄). The inequality in (i) is an equality when the LCs
are identical with  = 0. One rejects the null for large values of the test statistic F(̂)
and one would require a critical value with the property that  (F(L̄)  |1

0) =  so

that the test will have significance level equal to  The result in (i) guarantees that the

critical value is finite so that the divergence of the test statistic under the alternative

guarantees that the test will be consistent. An alternative and equivalent way to test

the hypotheses is using  (say), the distribution of F(L̄) One would reject the null if
the p-value ̂(F) = 1 − (F(̂)) is less than  In this particular situation because

the distribution  is both nonstandard and population dependent (i.e. it depends on

both 1 and 2 as well as the covariance between the associated Brownian Bridges under

Assumption 2(MP)) we require a data based bootstrap approach to inference.

3. BOOTSTRAP BASED INFERENCE

In order to conduct the tests in such a way that they have known asymptotic signifi-

cance levels we propose using the bootstrap to estimate asymptotic p-values. In the case

of Assumption 2(IS) we treat the original samples independently and for this purpose let

X  = {
 }=1 for  = 1 2 be the two original samples. In this case one can bootstrap by

independently drawing (with replacement) samples of size  from each of X 1 and X 2.

Denote these samples by 
∗
1  ∗


for  = 1 2 In this case one will have bootstrap

estimates of empirical distributions given by,

̂ ∗ () =
1



X
=1

1(
∗
 ≤ )

where 1∗
 is randomly drawn from ̂1 and 2∗

 is randomly drawn from ̂2. Under

Assumption 2(MP) ̂ ∗1 and ̂ ∗2 are obtained by sampling from the  matched pairs

{(1∗
 2∗

 )}=1with replacement from the observed sample X= {(1
  

2
 )}=1. That is,

we randomly select observational units (with replacement) so that (1∗
 2∗

 ) is the set

of both measures for the ith randomly chosen unit. This adjustment will allow one to

capture the dependence across the two dependent Lorenz processes.

13



For each bootstrap sample define

̂∗() = inf{ : ̂ ∗ () ≥ }

̂∗() =

R 
0
̂∗()

̂∗

where ̂∗ is the mean of the bootstrap samples (either independent samples or matched

pairs). Then we define ̂∗() = ̂∗2()− ̂∗1(). In order to obtain a valid approximation

to the distribution of the test statistic under the null hypothesis we need to subtract ̂()

so that the object F(̂∗() − ̂()) will have the same limiting distribution as F(L̄).
Using this, our bootstrap p-values can be computed by finding (under Assumption 2(IS)),

̂(F) =  (F(̂∗()− ̂())  F(̂())|X 1X 2)

or (under Assumption 2(MP)),

̂(F) =  (F(̂∗()− ̂())  F(̂())|X )

Equivalently, one can find the probability that the random variable F(̂∗()−̂()) lies
above the test statistic conditional on the sample(s). This p-value can be approximated

by Monte Carlo simulation as

̂(F) ' 1



X
=1

1(F(̂∗()− ̂())  F(̂()))

where ̂∗() is the th resampled difference of LCs. The test is then based on the decision

rule,

“reject 1
0 if ̂(F)  ” (3)

Proposition 1: Under Assumptions 1 and 2 and given that F satisfies Property 1 then
the test based on the decision rule (3) has the following properties,

lim (reject 1
0) ≤  if 1

0 is true

lim (reject 1
0) = 1 if 1

0 is false
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An immediate implication of this result is that the bootstrap approach will work for the

test statistics based on the functionals S and I:

̂ =
p
S(̂)

̂ =
p
I(̂)

For completeness, we also present the KS test of LC equality: 

0 : 2() = 1()

for all  ∈ [0 1] against 
1 : 2() 6= 1() for some  ∈ [0 1]. A test based on

the statistical functionalM() = sup∈[01] (|()|) with associated test statistic ̂ =
√
S(|̂|) is readily constructed. The asymptotic distribution of this statistic under

the null can be approximated using an analogous bootstrap procedure with the p-value

given by ̂(̂) ' 1


P

=1 1(̂
∗
  ̂) where ̂∗

 =
√
S(|(̂∗() − ̂()|) It is

straightforward to show the validity of this approximation.

4. MONTE CARLO RESULTS

4.1 Independent Sampling

In this section we consider a small scale Monte Carlo experiment to gauge the extent to

which the preceding asymptotic properties hold in small samples. The initial experiments

examine the properties of the tests under independent random sampling. In the first

set of experiments, our specifications for the distributions are in the log-normal family

because they are easy to simulate and they have been used in empirical work on income

distributions. We generate two sets of samples from two possibly different distributions.

In the first two cases we generate 1
 and

2
 as independent log-normal random variables

using the equations,

1
 = exp(11 + 1) (4)

2
 = exp(22 + 2)

where the 1 and 2 are independent (0 1) In Case 1, 1 = 2 = 085 and 1 = 2 =

06 With this choice of parameters the two populations have the same distribution with
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means equal to 28 and standard deviations equal to 18 — the ratio of the mean to the

standard deviation of 155 is similar to that found in actual income data. In Case 1 the

LCs for the two populations are identical and our interest is in the size properties of the

testing procedure.

For Case 2 1 = 085 and 1 = 06 while 2 = 085 and 2 = 055. In this case

the LC for 2 dominates the LC for 1 — indeed the LC for 2 lies above that for 1

everywhere except at the endpoints of the interval [0 1]. In this case we should expect

to to reject the hypotheses 1
0 and 


0 but not 2

0 . Note that in this case we expect

that the test will reject 2
0 less often than the nominal size of the test because of the

inequality in Proposition 1.

In Case 3, we generate 1 as before but now generate 2 as a mixture of log-normal

random variables. In particular,

2
 = 1( ≥ 02) exp(22 + 2) + 1(  02) exp(32 + 3)

where  is a uniform [0 1] random variable, 2 and 3 are independent standard normal

random variables and where 2 = 06 and 2 = 02 while 3 = 18 and 3 = 03. In this

case we have crossing LCs. Neither LC dominates the other, nor are the LCs equal, and

we expect 1
0  

2
0 and 


0 to be rejected.

In a second set of experiments, we simulate distributions based on the Singh-Maddala

(SM) specification. This family of distributions has been popular in empirical and ex-

perimental work and, unlike the log-normal, the SM distribution is “heavy-tailed”. The

CDF of the SM distribution is given by  () = 1 − 1
[1+]

where  and  are shape

parameters. In designing these experiments we exploit a theoretical result of Wilfling

and Kramer (1993): for two SM distributions, denoted (1 1) and (2 2) re-

spectively, with 1 ≤ 2 (2 2) will Lorenz dominate (1 1) iff 11 ≤ 22

We generate 1
 and 2

 as SM random variables using the equations for the inverse

SM CDF:

1
 = ((1− 1)

−11 − 1)11 (5)

2
 = ((1− 2)

−12 − 1)12
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where the 1 and 2 are independent uniform [0 1] random variables.

In Case 4, we set 1 = 2 = 16 and 1 = 2 = 2265 These parameter values were

obtained by fitting the SM distribution to the United States individual-equivalent gross

income distribution data from the 1998 March Current Population Survey. Like Case 1,

the LCs for the two distributions are equal and we consider the size properties of the

tests (but, here, simulating from a heavy-tailed distribution). In Case 5, we generate

1
 as in Case 4 but set 2 = 17 and 2 = 1 For this case the 

2 distribution Lorenz

dominates that for 1though by only a relatively small amount. We should expect to

reject the hypotheses 1
0 and 


0 but not the hypothesis 

2
0  In Case 6, 

1
 is generated

as before, while 2 = 18 and 2 = 1 The distribution for 
2 Lorenz dominates that for

1 by a greater amount than in Case 5 and consequently we expect a stronger rejection

of 1
0 and 


0 (and less rejection of 2

0) in Case 6. For Case 7, the final experiment, 
1


is generated as before and 2 = 38 and 2 = 047 This specification leads to a single

crossing of the LCs, violating 1
0 over the bottom three quintiles of the distributions,

and therefore we expect rejection of 1
0  

2
0 and 


0 

In performing the test of Lorenz Dominance we use the decision rule,

“reject 

0 if ̂  ”

where ̂ is the simulated p-value for the test statistic ̂ . For all of the experiments

we used sample sizes of  =  = 500. The number of bootstrap replications was set

to 500 to approximate the p-value in each Monte Carlo iteration, and 1000 iterations

were performed for each experiment. The results for the Monte Carlo simulations are

reported in Table 1. The table reports the proportion of times that the respective null

hypothesis was rejected for three different nominal significance levels .
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Table 1. Monte Carlo Rejection Rates: Independent Sampling

 1
0 2

0  

0

Nominal Size Nominal Size Nominal Size

0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

Log-normal distributions

Case 1  0.102 0.049 0.013 0.081 0.039 0.012  0.100 0.051 0.008

 0.108 0.052 0.011 0.084 0.037 0.014

Case 2  0.609 0.450 0.204 0.003 0.000 0.000  0.960 0.907 0.723

 0.709 0.573 0.293 0.000 0.000 0.000

Case 3  0.923 0.700 0.178 0.994 0.988 0.944  0.997 0.995 0.900

 0.801 0.501 0.095 0.620 0.401 0.114

Singh-Maddala distributions

Case 4  0.114 0.059 0.017 0.107 0.054 0.009  0.110 0.048 0.005

 0.111 0.057 0.017 0.106 0.044 0.009

Case 5  0.329 0.197 0.069 0.032 0.009 0.001  0.213 0.124 0.035

 0.414 0.284 0.112 0.011 0.006 0.002

Case 6  0.645 0.491 0.230 0.004 0.001 0.000  0.499 0.367 0.165

 0.765 0.651 0.385 0.001 0.000 0.000

Case 7  0.166 0.081 0.020 0.717 0.549 0.244  0.652 0.477 0.153

 0.257 0.163 0.062 0.214 0.112 0.030

A number of features of the tests are of note. The first series of experiments were

based on the log-normal distribution, and in the first case the size properties of the tests

were examined Each of the ,  and  test procedures led to the rejection of

the true null hypotheses at rates similar to the nominal size. There was a slight under

rejection for 2
0 ; however the under rejection was not severe, and the actual size of the

tests were close to their nominal size. In terms of power, the test procedures appear to

be quite similar where there is strong dominance. In Case 2 the tests detect the fact that

the LC for 2 dominates that for 1. The hypotheses 1
0 and 


0 are rejected with high

probability. Note that the hypothesis 2
0 is rarely rejected in this case — this feature of

the test is related to the one sided composite nature of the null hypothesis and is similar

to the behavior of tests of one sided restrictions on parameters. In Case 3, neither LC is

dominant and the tests reject each null considered with very high probability, although

the rejection is stronger for the  test compared to  

The second series of experiments were based on the SM distribution. Case 4 provides

a further comparison of the size properties of the tests. Again, the actual and nominal
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size of the tests were very similar. Although there was a slight over rejection of 1
0 ,

the discrepancy between actual and nominal size was minor. It is useful to note that

the sample sizes considered in the experiments were relatively small compared to many

empirical applications and the fact that the actual sizes of the tests in these experiments

are close to the nominal size is encouraging. In terms of power, the tests are able to

detect the violation of 1
0 and 


0 in Case 5, with the strong rejection of these nulls

and, conversely, the rejection of true null of 2
0 is well below the nominal size. In Case

6, where the Lorenz dominance of 2 over 1 is stronger, the rejection rates for 1
0

and 

0 are greater, and the rejection of the true null 2

0 is further below the nominal

size. In Case 7, with crossing LCs, the   and  tests detect the violation of

the null hypotheses. The null 1
0 is violated by a small amount over the bottom three

quintiles, which the  is relatively better at detecting than . Conversely, the null

2
0 is sharply violated over the top quintiles which the  test is relatively superior at

detecting. Even so, both tests detect the violation of the false null sufficiently well to

reject at rates well in excess of the nominal size.

4.2 Matched Pair Sampling

The Monte Carlo experiments were repeated with the simulated samples drawn from

dependent distributions to reflect matched pair sampling. Each case was repeated with

identical specifications for the marginal distributions and pre-determined correlation.

The method proposed by Cario and Nelson (1997) for generating correlated random

samples was adopted, which involved generating bivariate standard normal random vari-

ables (1 ̃2) with correlation ̃ using the algorithm ̃2 = ̃1 + (1− ̃)22 where

(12) are independent, as in the initial series of experiments. For the log-normal

simulations the variates (1 ̃2) are demeaned and transformed as in (4), and for the

SM simulations the variates are demeaned, converted to uniform variates by applying

the normal CDF then transformed to SM variates using the quantile function in (5). A

numerical search over values of ̃ was performed to obtain the desired correlation  of the

simulated log-normal and SM variates. The Monte Carlo experiments were performed for
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values of the correlation coefficient  = {03 07 09} These values are comparable to the
correlation between family income and food expenditure, family income and non-durable

expenditures, and pre-tax and post-tax income, respectively.

Results of the Monte Carlo simulation for the cases with  = 07 are reported in

Table 2. Rejection rates for the simulations involving different values of correlation

coefficients were very similar to those in Table 2 and hence are not reported. As is evident

from Table 2, the tests under matched pair sampling continue to exhibit very good size

characteristics. In terms of power performance, the tests tend to reject more strongly

the false null hypotheses in Cases 2-3 and 5-7 under dependent sampling. Overall, series

of small scale Monte Carlo experiments indicate that each of the test procedures, under

both independent and matched-pair sampling, exhibits good size and power properties.

Further, when the sample size for the Monte Carlo experiments is increased slightly, the

asymptotic properties are clearly reflected in enhanced size and power characteristics.

Table 2. Monte Carlo Rejection Rates: Matched Pair Sampling (=0.7)

 1
0 2

0  

0

Nominal Size Nominal Size Nominal Size

0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

Log-normal distributions

Case 1  0.088 0.047 0.013 0.097 0.054 0.014  0.102 0.052 0.007

 0.090 0.052 0.014 0.104 0.064 0.013

Case 2  0.697 0.555 0.259 0.002 0.001 0.000  0.588 0.432 0.201

 0.832 0.735 0.468 0.001 0.001 0.001

Case 3  0.956 0.765 0.193 0.995 0.985 0.939  1.000 0.995 0.910

 0.871 0.593 0.128 0.662 0.429 0.131

Singh-Maddala distributions

Case 4  0.096 0.042 0.007 0.116 0.060 0.015  0.109 0.052 0.009

 0.100 0.047 0.010 0.123 0.069 0.019

Case 5  0.425 0.270 0.092 0.021 0.005 0.000  0.333 0.210 0.069

 0.608 0.464 0.203 0.007 0.003 0.000

Case 6  0.861 0.748 0.438 0.003 0.000 0.000  0.773 0.643 0.366

 0.966 0.923 0.752 0.000 0.000 0.000

Case 7  0.249 0.137 0.039 0.865 0.722 0.363  0.829 0.663 0.306

 0.371 0.240 0.088 0.297 0.137 0.042
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5. EMPIRICAL EXAMPLE

The methods for testing Lorenz dominance relations are illustrated with an analysis of

the distribution of income and consumption in Australia. The data are from the Australia

Bureau of Statistics Household Expenditure Survey (HES) conducted in 1984, 1988/89,

1993/94, 1998/99, 2003/04 and 2009/10 (hereafter referenced by the first year of the

survey period). The income measure is gross annual family income. The consumption

measure is expenditure on non-durables, consisting of food, alcohol and tobacco, fuel,

clothing, personal care, medical care, transport, recreation, utilities and current housing

services. Current housing services for renters is equal to rent paid while for home-owners

it is imputed from a regression of rent payments on a series of indicator variables for

number of bedrooms and location of residence by survey year for the subsample of renters.

The sample is restricted to families where the household reference person is between 25

and 60 years of age.

Family income and consumption were divided by the adult equivalent scale (AES)

equal to the square-root of family size. To minimise reporting errors only multiple-

family households are excluded. The HES is a stratified random sample and for each

observation there is an associated weight representing the inverse probability of selection

into the survey. The observational weights were multiplied by the number of family

members in order to make the sample representative of individuals; the adjusted weights

were used throughout the analysis.

Summary statistics are reported in Table 3. Nominal prices are inflated to 2010

real values using the CPI. The summary statistics show that the mean budget share

of the non-durable commodity bundle was 68 percent in 1984. Over the sample period

non-durable consumption grew at an average annual rate of 2.36 percent while income

grew at an average annual rate of 2.53 percent. Point estimates for the Gini coefficient

suggest a substantial increase in income inequality, and a minor change in consumption

inequality, over the 25 year period.
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Table 3: HES 1984-2009 Summary Statistics

Year Sample Size Income Consumption

Mean Std. Dev. Gini Mean Std. Dev. Gini

1984 2895 254.90 157.54 0.322 173.09 84.06 0.251

1988 4654 263.26 180.79 0.323 173.02 84.04 0.247

1993 5396 265.49 197.15 0.346 186.50 94.08 0.247

1998 4645 296.11 198.85 0.342 201.40 96.89 0.248

2003 4583 325.97 227.25 0.330 215.14 104.75 0.249

2009 5009 408.75 364.59 0.361 251.42 131.73 0.260

The first comparisons examine changes in the distribution of individual equivalent

income over time. Table 4 presents the p-values for the test statistics of the null hypoth-

esis that distribution 1 weakly Lorenz dominated distribution 2, against the alternative

that the null is false. To calculate the p-values, 2000 bootstrap repetitions were used to

simulate the distribution of the test statistics. The first two rows of the table are for the

test with distribution 1 corresponding to 1984 income and distribution 2 corresponding

to 1988 income. The results show that neither null of dominance, 84
0 or 88

0 , can be

rejected at the 5% level of significance. The p-value for the null of LC equality of 0.159,

which is similar to the bound based on the Bonferroni inequality for  of 0.146, does

not lead to rejection at conventional levels of significance. The tests indicate that the

two income distributions were ‘equally unequal.’ The following two rows show the null

hypothesis that the 1988 income distribution Lorenz dominated the 1993 distribution

cannot be rejected, while the converse null, that the 1993 distribution dominated 1988,

can be rejected at the 5% level of significance. Strong Lorenz dominance of the 1988

income distribution over the 1993 distribution can be inferred at conventional levels of

significance. Comparison of the 1993 and 1998 income distributions shows that the two

LCs are equal, while the 2003 distribution is found to strongly Lorenz dominate both the

1998 and 2009 distributions at the 10% level of significance. Across the full observation

period, the 1984 income distribution strongly Lorenz dominates the 2009 income distrib-

ution. The increase in income inequality over the 1984-2009 period was concentrated in

the 1988-93 and 2003-09 subperiods, where the former coincided with the severe recession

of 1990/1991 while the latter includes the global finance crisis which began in 2007.

Consumers with access to credit facilities may smooth transitory fluctuates in current
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income. It is therefore of interest to examine changes in consumption inequality over

time. In comparing across surveys, relative inequality in the distribution of consumption

shows much greater stability. The consumption LCs between adjacent surveys in the

1984-2003 period were found to coincide. The 2003 consumption distribution weakly

Lorenz dominated the 2009 distribution, although the null of LC equality is not rejected

at conventional levels of significance (the Bonferroni bound on the p-value from the

sequential application of  is 0.126). The income and consumption LCs for the 2003

and 2009 samples are plotted in Figures 1 and 2, respectively, showing the greater increase

in income inequality between the two survey years. The findings suggest that the increases

in income inequality coinciding with the 1990/1991 recession and the onset of the global

financial crisis in 2007 had a transitory component which households were largely able

to smooth.

The lower panels of Table 4 present several additional comparisons. The standard life-

cycle model of consumption implies that the distribution of non-durable consumption will

be more equal than the distribution of current income at a point in time. This hypothesis

was tested with the bootstrap procedure adapted for matched pair sampling to replicate

the dependence in the data. The comparison of the empirical income and consumption

distributions for each survey year strongly supports this hypothesis. Further, comparing

income and consumption at different points in time, the consumption distribution in

2009 strongly Lorenz dominated the distribution of income in 1984 (the most equal

income distribution). Less surprising, the 1984 consumption distribution strongly Lorenz

dominated the 2009 income distribution.

Overall, the Lorenz dominance tests show a rise in income inequality in Australia

between 1984 and 2009, though consumption inequality remained stable. The empiri-

cal results suggest that households were generally insured against shocks to the income

process over the observation period. The test results show that the distribution of con-

sumption was more equal than the distribution of income at each point in time, and over

the study period. In terms of the performance of the two tests of Lorenz dominance,

both gave essentially the same result which suggests that either may be used in practice.
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Table 4. P-Values for Lorenz Dominance Tests
1 2 Test 1

0 2
0 


0

Y1984 Y1988  0.611 0.079 0.159

 0.486 0.640

Y1988 Y1993  0.942 0.002 0.001

 0.913 0.001

Y1993 Y1998  0.129 0.699 0.266

 0.221 0.601

Y1998 Y2003  0.030 0.181 0.066

 0.030 0.542

Y2003 Y2009  0.976 0.011 0.016

 0.972 0.001

Y1984 Y2009  0.846 0.000 0.000

 0.857 0.000

C1984 C1988  0.188 0.550 0.385

 0.233 0.630

C1988 C1993  0.451 0.306 0.619

 0.442 0.405

C1993 C1998  0.216 0.515 0.443

 0.498 0.399

C1998 C2003  0.431 0.415 0.807

 0.463 0.368

C2003 C2009  0.886 0.063 0.127

 0.907 0.050

C1984 C2009  0.965 0.193 0.358

 0.969 0.093

C1984 Y1984  0.974 0.000 0.000

 0.974 0.000

C1988 Y1988  0.991 0.000 0.000

 0.991 0.000

C1993 Y1993  0.974 0.000 0.000

 0.974 0.000

C1998 Y1998  0.995 0.000 0.000

 0.995 0.000

C2003 Y2003  0.949 0.000 0.000

 0.974 0.000

C2009 Y2009  0.989 0.000 0.000

 0.989 0.000

Y1984 C2009  0.000 0.686 0.000

 0.000 0.824

C1984 Y2009  0.991 0.000 0.000

 0.991 0.000
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6. CONCLUSION

In this article we proposed two methods for testing for Lorenz dominance, along with

a test of LC equality, based on samples from two, potentially dependent, populations.

The tests presented are fully non—parametric and consistent being based on global com-

parisons of the empirical LCs. Although the proposed test statistics have non-standard

and case specific limiting distributions we were able to show that asymptotically valid

inferences could be drawn using the bootstrap. Each of the tests were shown to have a

good performance in quite small samples and were illustrated in the context of an em-

pirical example comparing income and consumption LCs for Australia over the period

1984-2009/10.

APPENDIX: PROOFS OF RESULTS

Proof of Lemma 1: Suppose that 1
0 holds then  ≤ 0,

F() ≤ F(− ) = F(0) = 0

On the other hand F() ≤ 0 implies that  ≤ 0 by Property 1(ii). Clearly under 1
1 we

have F()  0 by Property 1(ii). The converse follows easily since if F()  0 then it

cannot be the case that 1
0 is true since if it were true, i.e. ≤ 0 then using Property

1(i),

0  F() ≤ F(− ) = F(0) = 0

which is false. Consequently 1
1 must be true. Q.E.D.

Proof of Lemma 2: For Property 1(i) we have that,

∗() ≤ ∗()− 0() ∀

so that S is easily seen to satisfy the property while I does by properties of the integral
and since, ∗()  0 =⇒ ∗()− 0()  0 so that,

∗()1(∗()  0) ≤ (∗()− 0()) 1 (∗()− 0()  0)
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For Property 1(ii) we have that if there is a  such that ∗()  0 then,

S(∗) ≥ ∗()  0

while continuity of ∗ implies that there is a neighborhood of  on which ∗(0)    0

for all 0 such that |0 − |   so that,

I(∗) ≥
Z +

−
∗(0)1(∗(0)  0)



Z +

−
 = 2  0

For Property 1(iii) for S we have,

S(∗) ≤ S(0 + ∗ − 0) ≤ S(0) + S(∗ − 0)

so,

S(∗)− S(0) ≤ S(∗ − 0) ≤ k∗ − 0k

reversing 0 and ∗ we have,

S(0)− S(∗) ≤ k∗ − 0k

so,

− k∗ − 0k ≤ S(∗)− S(0)

and Property 1(iii) follows. For I we have,we have that,

|∗()1 (∗()  0) − 0()1 (0()  0)| ≤ |∗()− 0()|

which is obvious when ∗()  0 and 0()  0 and also when both are negative. When,

∗()  0 and 0() ≤ 0 we have,

|∗()1 (∗()  0) − 0()1 (0()  0)| = |∗()|
≤ |∗()− 0()|

and similarly for the other case. Hence,

|I (∗)− I(0)| ≤
Z 1

0

|∗()− 0()|  ≤ k∗ − 0k
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Property 1(iv) is obvious for S and follows for I by linearity of the integral operator and
the fact that,

∗()  0⇐⇒ ∗()  0

For Property 1(v) let 0 and ∗ be continuous functions and let  ∈ (0 1). Then for S
the result follows by properties of supremum since,

S(0 + (1− )∗) ≤ S(0) + S((1− )∗)

= S(0) + (1− )S(∗)

For the functional I we have that,

I(0 + (1− )∗) =
Z 1

0

0()1(0() + (1− )∗()  0)

+

Z 1

0

(1− )0()1(0() + (1− )∗()  0)

≤ 

Z 1

0

0()1(0()  0) +
Z 1

0

(1− )0()1((1− )∗()  0)

= I(0) + (1− )I(∗)

using the following facts,

0()1(0() + (1− )∗()  0) ≤ 0()1(0()  0)

(1− )0()1(0() + (1− )∗()  0) ≤ (1− )0()1((1− )∗()  0)

To see that these hold consider the first expression. There are two possible ways in which

0() + (1 − )∗()  0 holds. First it could be that 0()  0 in which case the

expression on the left is equal to the expression on the right. Second, it could be that

0()  0 in which case the left hand side is negative while the right hand side is

positive. Thus the inequality holds, and the same argument can be applied to the second

expression. Q.E.D.

Proof of Lemma 4: (i) Under the null hypothesis () = 2()− 1() ≤ 0 for all
 ∈ (0 1) By Property 1(i) and (iv) we then have that,

F(̂) ≤ F(̂− ) = F((̂− ))

=⇒ F(L̄)
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with the weak convergence following from Lemma 3 (ii) and the continuous mapping

theorem which applies by Property 1(iii). Note that the 1− quantile is positive by the

fact that, F(L̄) ≤ 0 is equivalent to sup L̄() ≤ 0 using Property 1(ii) and,

 (sup L̄() ≤ 0)  12

using the fact that L̄ is a separable mean zero Gaussian process. The quantile is finite
for any 12    0 using Borell’s inequality (stated as Proposition A.2.1 of van der

Vaart and Wellner, 1996). Finally, uniqueness of the quantile follows from the fact that

F is convex using Proposition 11.1 of Davydov, Lifshits and Smorodina (1998) (0∞).
For (ii) by Lemma 3(i) and using Property 1(i) and (iii),

F(̂) → F()  0

so that F(̂) →∞. Q.E.D.
Proof of Proposition 1: The LC is a Hadamard differentiable functional of the

empirical distribution function following the results in Bhattacharya (2005). We must

establish that the bootstrap applied to the empirical distributions yields processes with

covariance properties corresponding to those for the empirical distributions of 1 and 2

under Assumptions 2(IS) or 2(MP). In the case of Assumption 2(IS) bootstrap empirical

processes are respectively (see van der Vaart and Wellner (1996, 3.6),

G1(1) =
1√
1

1X
=1

(1{∗
1 ≤ 1}− ̂1(1)) =

1√
1

1X
=1

(1 − 1)1{1 ≤ 1}

G2(2) =
1√
2

2X
=1

(1{∗
2 ≤ 2}− ̂1(2)) =

1√
2

2X
=1

(2 − 1)1{2 ≤ 1}

where 1 and 2 are multinomial random variables (with parameters 1, 2 and prob-

abilities 11 and 12 respectively) independent of the sample and also independent of

each other. It is easy to verify that, conditional on the sample these are independent

mean zero processes with covariance kernels given by,

(G(0)G(0)|X) = ̂(0)− ̂(0)̂(1) (6)
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for 0 ≤ 1 and that this converges to the covariance kernel of the limiting process

corresponding to the empirical process based on the empirical distribution.

On the other hand under Assumption 2(MP) we have bootstrap empirical processes,

G1(1) =
1√


X
=1

( − 1)1{1 ≤ 1}

G2(2) =
1√


X
=1

( − 1)1{2 ≤ 1}

using the same multinomial variable  (with parameter  and probabilities 1). In

this case the covariance kernel of each process has the same form as (6) but the processes

are correlated since,

(G1(1)G2(2)|X ) = ̂ (1 2)− ̂1(1)̂2(2)

Thus the bootstrap processes, in the limit, have a correlation structure corresponding to

(2).

The result then follows using the delta method for the bootstrap (van der Vaart and

Wellner (1996) 3.9.11) and the continuous mapping theorem. In particular note that the

decision rule is equivalent to the rule that F(̂)  ̂() where,

̂() = inf{ :  (F(̂∗()− ̂())  |X ) ≤ )

where we condition on the sample(s) in computing the probability. The Hadamard dif-

ferentiability of the LC and Property 1(iii) and (iv) of the map F we have that,

F(̂∗()− ̂()) =⇒ F(L̄)

in probability given X so that

̂()
→ () = inf{ :  (F(L̄)  ) ≤ )}

where the latter is strictly positive, finite and unique given Lemma 4. The result then

follows using Lemma 4. Q.E.D.
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