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ABSTRACT

BACKGROUND: In 2009, the National Institute of Mental Health launched the Research Domain Criteria, an attempt
to move beyond diagnostic categories and ground psychiatry within neurobiological constructs that combine
different levels of measures (e.g., brain imaging and behavior). Statistical methods that can integrate such multimodal
data, however, are often vulnerable to overfitting, poor generalization, and difficulties in interpreting the results.
METHODS: We propose an innovative machine learning framework combining multiple holdouts and a stability
criterion with regularized multivariate techniques, such as sparse partial least squares and kernel canonical corre-
lation analysis, for identifying hidden dimensions of cross-modality relationships. To illustrate the approach, we
investigated structural brain—behavior associations in an extensively phenotyped developmental sample of 345
participants (312 healthy and 33 with clinical depression). The brain data consisted of whole-brain voxel-based
gray matter volumes, and the behavioral data included item-level self-report questionnaires and 1Q and
demographic measures.

RESULTS: Both sparse partial least squares and kernel canonical correlation analysis captured two hidden di-
mensions of brain—-behavior relationships: one related to age and drinking and the other one related to depression.
The applied machine learning framework indicates that these results are stable and generalize well to new data.
Indeed, the identified brain—-behavior associations are in agreement with previous findings in the literature
concerning age, alcohol use, and depression-related changes in brain volume.

CONCLUSIONS: Multivariate techniques (such as sparse partial least squares and kernel canonical correlation
analysis) embedded in our novel framework are promising tools to link behavior and/or symptoms to neurobiology
and thus have great potential to contribute to a biologically grounded definition of psychiatric disorders.
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Psychiatric diagnoses [e.g., DSM-5 (1), ICD-10 (2)] lack neuro-
biological validity (3-5). To address this, the National Institute of
Mental Health launched Research Domain Criteria (RDoC) (6) in
2009, a research framework that “integrates many levels of in-
formation (from genomics and circuits to behavior) in order to
explore basic dimensions of functioning that span the full range
of human behaviour from normal to abnormal” (https://www.
nimh.nih.gov/research-priorities/rdoc/index.shtml). RDoC rep-
resents a paradigm shift in psychiatry and highlights the need to
include measures of genes, brain, and behavior to understand
psychopathology (4,6). RDoC is structured as a matrix with 4
dimensions: 1) domains of functioning (e.g., negative—positive
valence systems) that are further divided into constructs (e.g.,
attention, perception), 2) units of analysis (e.g., genes, circuits,
behavior), 3) developmental aspects, and 4) environmental
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aspects. Analyzing data containing multiple such modalities,
however, poses statistical challenges. Here, we propose a novel
framework that is robust to some typical problems arising from
high-dimensional neurobiological data such as overfitting, poor
generalization, and interpretability of the results.

Factor analysis and related methods (e.g., principal
component analysis [PCA]) have long traditions in statistics and
psychology (7,8). These techniques decompose a single set of
measures (e.g., self-report questionnaires) into a parsimonious,
latent dimensional representation of the data. Applications of
these approaches include general intelligence [g factor (8)], the
five-factor personality model (9), and many others (10-13).
However, factor analysis cannot integrate different sets of
measures/modalities  (e.g., investigate  brain—-behavior
relationships).
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A principled way to find latent dimensions of one modality (or
data type) that is related to another modality (or data type) is to
use partial least squares (PLS) (14) or the closely related ca-
nonical correlation analysis (CCA) (15). PLS was introduced to
neuroimaging by Mclntosh et al. (16), and it has been widely
used (17-22). Unfortunately, the high dimensionality of neuro-
imaging data makes PLS and CCA models prone to overfitting;
moreover, the interpretation of the identified latent dimensions is
usually difficult. Regularized versions of PLS and CCA algo-
rithms address these issues (23-25); two popular choices are
lasso (26) and elastic net (27) regularization, which constrain the
optimization problem to select the most relevant variables.

Sparse CCA and sparse PLS (SPLS) were originally pro-
posed in genetics (23,28-30) and have since been used in
cognition (31-34), working memory (35,36), dementia (37-41),
psychopathology in adolescents (42), psychotic disorders
(43-46), and pharmacological interventions (47). However,
most of these studies used approaches for selecting the reg-
ularization parameter (model selection) and inferring statistical
significance of the identified relationships (model evaluation)
that do not account for the generalizability and stability of the
results.

Here, we propose an innovative framework combining sta-
bility and generalizability as optimization criteria in a multiple
holdout framework (48) that is applicable to both regularized
PLS and CCA approaches. Crucially, it increases the
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reproducibility and generalizability of these models by 1)
applying stability/reproducibility for model selection and 2)
using out-of-sample correlations of the data for model evalu-
ation. To demonstrate this novel framework, we investigated
associations between whole-brain voxel-based gray matter
volumes and item-level measures of self-report questionnaires,
IQ, and demographics in a sample of healthy adolescents and
young adults (n = 312) and adolescents and young adults with
depression (n = 33). We report the results from using SPLS in
the main text, and for comparison we include results with
another regularized approach, kernel CCA (KCCA), in the
Supplement.

METHODS AND MATERIALS

PLS/CCA and Other Latent Variable Models

Figure 1 illustrates how PLS/CCA models can be used to
identify latent dimensions of brain—behavior relationships. PLS/
CCA maximizes the association (covariation for PLS and cor-
relation for CCA) between linear combinations of brain and
behavioral variables. The model’s inputs are brain and
behavioral variables for multiple subjects (e.g., voxel-level gray
matter volumes and item-level questionnaires). Its outputs, for
each brain—-behavior relationship, are brain and behavioral
weights, brain and behavioral scores, and a value denoting the
strength of the correlation/covariation.
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Figure 1. Overview of the partial least squares/canonical correlation analysis (PLS/CCA) models. PLS/CCA models search for weight vectors that maximize
the covariance (PLS) or correlation (CCA) between linear combinations of the brain and behavioral variables. Importantly, the sparsity constraints of sparse PLS
set some of the brain and behavioral weights to zero. The linear combination (i.e., weighted sum) of brain and behavioral variables (columns of X and Y) with the
respective weights (elements of u and v) results in brain and behavioral scores (Xu and Yv) for each individual subject. The brain and behavioral scores can be
combined to create a brain-behavior latent space showing how the brain—behavior relationship (i.e., association) is expressed across the whole sample.
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The brain and behavioral weights have the same dimen-
sionality as their respective data and quantify each brain and
behavioral variable’s contribution to the identified brain-
behavior relationship or association. Once the weights are
found, then brain and behavioral scores can be computed for
each subject as a linear combination (i.e., weighted sum) of their
brain and behavioral variables, respectively. The brain and
behavioral scores can then be combined to create a latent space
of brain-behavior relationships across the sample. Furthermore,
each brain-behavior relationship can be removed from the data
(by a process called deflation) and new relationships sought.

Next, we present a brief overview of PLS/CCA and some other
latent variable models to contextualize our modeling approaches.
Essentially, all these models search for weight vectors or directions,
such that the projection of the dataset(s) (e.g., the brain and/or
behavior) onto the obtained weight vector(s) has maximal variance
(PCA), correlation (CCA), or covariance (PLS) (49-51). Note that
PCA is limited to finding latent dimensions in one dataset (e.g.,
behavior). Although its principal components can be used in a
multiple regression (referred to as principal component regression),
such as to predict brain variables, the directions of high variance
identified by PCA might be uncorrelated with the brain variables,
while a relatively low variance component might be a useful pre-
dictor. Therefore, CCA and PLS can be seen as extensions of
principal component regression to find latent dimensions relating
two sets of data to each other (50,52).

In the regularized versions of CCA/PLS, additional con-
straints (governed by regularization parameters) are added
to the optimization problem to control the complexity of the
CCA/PLS model and reduce overfitting. A regularized version
of CCA was proposed by Hardoon et al. (53), in which
two regularization parameters control a smooth transition be-
tween maximizing correlation (i.e., a CCA-like least-regularized
solution) and maximizing covariance (i.e., a PLS-like most-
regularized solution). Our KCCA implementation is an exten-
sion of this regularized CCA, where the kernel formulation
makes the algorithm computationally more efficient (50).

A regularized sparse version of CCA was proposed by Witten
et al. (30), which applies elastic net regularization to the weight
vectors. Interestingly, because the variance matrices are
assumed to be identity matrices in this optimization, their
formulation becomes equivalent to our SPLS implementation.
Elastic net regularization combines the L1 and L2 constraints of
the lasso and ridge methods, respectively. The L1 constraint
shrinks some weights and sets others to zero, leading to auto-
matic variable selection (26); however, it has 3 main limitations: 1)
selecting at most as many variables as the number of examples/
samples in the data, 2) selecting only a few from correlated
groups of variables, and 3) leading to worse prediction than ridge
regression when the variables are highly correlated (27). The L2
constraint shrinks the weights but does not set them to zero,
enabling correlated variables to have similar weights. Combining
both the L1 and L2 constraints, elastic net regularization can
simultaneously enforce sparse solutions and select correlated
variables while enabling optimal prediction performance (27). For
further details of PLS/CCA models, see the Supplement.

Model Selection and Statistical Evaluation

To motivate our proposed framework, we briefly review two
landmark SPLS applications and their methods of model
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selection (i.e., regularization parameter choice) and statistical
inference.

In one of the most popular SPLS applications, Witten et al.
(30) proposed 2 approaches: 1) fixing the regularization pa-
rameters of the data a priori and performing permutation
testing for model evaluation and 2) using the same permutation
test for both selecting the regularization parameters and
evaluating the model. In the permutation test, the SPLS model
is fitted to the original datasets and to the permuted datasets
(i.e., after randomly shuffling one of the datasets); p values are
calculated by comparing the SPLS model correlations from the
original and the permuted (null) data. When this framework is
also used for selecting the regularization parameters, the same
procedure is repeated for each combination of regularization
parameters (there is one regularization parameter for each
dataset, e.g., brain and behavior), and the combination of
values leading to the smallest p value is selected. Many other
studies followed similar approaches either fixing the regulari-
zation parameters (23,32,38,41,54) or choosing them based on
permutation tests (55,56). This framework might be preferable
when the sample size is small; however, because it does not
test whether the identified association generalizes to unseen or
holdout data, this approach might overfit the data.

Monteiro et al. (48) proposed a multiple holdout framework to
optimize the regularization parameters and test the generalizability
of the optimized SPLS models (Figure 2). This framework fits the
SPLS model on an optimization set (e.g., 80% of the data) and
assesses the identified multivariate associations on a holdout set
(e.g., 20% of the data). The regularization parameters are selected
by further splitting the optimization set into training and validation
sets and choosing the combination of parameters with better
generalization performance (measured by the out-of-sample cor-
relation) on the validation set. To further test the robustness of the
SPLS model, the entire procedure is repeated 10 times. This
framework goes beyond many other SPLS approaches, which
split the data once (or use cross-validation) to select the regulari-
zation parameters but do not evaluate the model generalizability
on an independent test or holdout set (28,33,42,57). Although this
framework provides a good test of model generalizability, it does
not account for stability of the models across the different data

splits while selecting the regularization parameters.
Our proposed framework is similar to that of Monteiro et al.

(48), but it performs regularization parameter selection using
stability and generalizability as a joint optimization criterion,
extending the work of Baldassarre et al. (58) to regularized
PLS/CCA models (Supplemental Figure S1). We measure
generalizability as the average out-of-sample correlation on
the validation and holdout sets for selecting regularization
parameter and model evaluation, respectively. Stability is
measured by the average similarity of weights (corrected
overlap for SPLS and absolute correlation for KCCA) across
splits, that is, how often the models (trained on different sub-
sets of the data) select similar brain and behavioral variables
(see Supplement). This joint criterion for parameter selection
should enable the identification of brain—behavior associations
that are stable and can generalize well to new data.

Data

A total of 345 participants from the NeuroScience in Psychiatry
Network (NSPN) project (59) were included in this study (312
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Figure 2. Multiple holdout framework. The original data are randomly split to an optimization set (80% of the data) and a holdout set (20% of the data). The
optimization set is used to fit the regularized partial least squares/canonical correlation analysis model and optimize the regularization parameters in 50 further
training and validation splits. The best regularization parameter is used to fit the regularized partial least squares/canonical correlation analysis model on the
whole optimization set, and the resulting model is evaluated on the holdout set using permutation testing. Finally, the entire procedure is repeated 10 times.

healthy participants, mean age = 19.14 *= 2.93 years, 156
female; 33 participants with depression, mean age = 16.50 =
1.23 years, 23 female). See the Supplement for the details of
data acquisition and processing.

All participants completed an abbreviated 1Q test and
extensive self-report questionnaires assessing well-being,
affective symptoms, anxiety, impulsivity and compulsivity,
self-esteem, self-harm, antisocial and callous-unemotional
characteristics, psychosis spectrum symptoms, substance
use, relations with peers and family, and experience of trauma.
We added 3 demographic variables (age, sex, and socioeco-
nomic status index) to the items of these questionnaires,
resulting in a total of 364 variables, which we call behavioral
data for simplicity. Including these demographic variables
explicitly in the SPLS model permits investigation of whether
these variables interact with brain-behavior relationships.
Structural imaging scans were acquired on identical 3T
Siemens Magnetom Tim Trio systems (Siemens, Erlangen,
Germany) across 3 sites. Only scans at the baseline study visit
were included in the current analysis. Structural scans (~19
minutes) were acquired using a quantitative multiparameter
mapping protocol (60). Structural magnetic resonance imaging
data preprocessing was performed using SPM12 (https://
www.fil.ion.ucl.ac.uk/spm), including segmentation, normali-
zation, downsampling, and smoothing (see Supplement). We
then applied a mask selecting voxels with =10% probability of
containing gray matter to all participants, resulting in a total of
219,079 voxels (brain data). Two confounds were removed
(i.e., regressed out) from both datasets: total intracranial vol-
ume and data collection site (17,61).

RESULTS

SPLS identified 2 significant latent dimensions of brain-
behavior associations in our sample. Because the proposed
framework fits the model to different splits of the data, here we
present the results for the split that presented the best com-
bination of generalizability (measured by the out-of-sample
correlation on the holdout set) and stability (measured by the
similarity of weights across the optimization sets). Results for
the other data splits are in Supplemental Tables S1-S3 and
Supplemental Figures S2 and S3.

The first brain-behavior relationship (p = .001) captured an
association between age and drinking habits and a widespread
set of frontoparietotemporal cortical regions, including the
medial wall (middle and posterior cingulate and medial orbital
cortices), inferior parietal cortex, orbitofrontal cortex, dorso-
lateral prefrontal cortex, right inferior frontal gyrus, and middle
temporal gyri (Figure 3). The brain weights are further sum-
marized using an anatomical atlas in Supplemental Table S4.
As expected, the SPLS weights were sparse, selecting 2% of
the behavioral variables (1.73 *= 0.48% SEM across data
splits) and 22% of the brain variables (36.75 = 4.62% SEM
across data splits).

The second brain—-behavior relationship (o = .014) captured
an association between behavioral items related to depression,
self-harm, and gray matter volume in a small set of regions,
including the hippocampus, parahippocampal gyrus, insula,
amygdala, pallidum, and putamen (Figure 3). The behavioral
variables related to depression included items such as “feeling
worthless,” “hated myself,” and “feeling depressed,” and the
behavioral items related to self-harm included thinking about
“killing myself” and “thought about dying.” The brain weights
are further summarized using an anatomical atlas in
Supplemental Table S4. Again, SPLS resulted in rather sparse
weights, selecting 2% of the behavioral variables (3.35 =
1.13% SEM across data splits) and 5% of the brain variables
(11.85 = 3.15% SEM across data splits).

Scatterplots of the brain and behavioral scores allow us to
examine how the brain—-behavior relationship is expressed
across the whole sample (Figure 4). The first multivariate
associative effect clearly maps to age, while the second
multivariate effect captured a brain—behavior association that
varied from healthy to depressed, with subjects with depres-
sion presenting higher brain and behavioral scores.

For comparison, we performed 2 additional analyses. First,
we added age to the confounds in the SPLS analysis to dis-
count any sampling bias given that the subjects with
depression were younger. Here, we identified 1 significant
brain—-behavior relationship that was very similar to the second
depression-related associative effect of the main analysis (p =
.047) (Supplemental Figures S4 and S5 and Supplemental
Tables S5 and S6). Second, we used KCCA to demonstrate
the framework with an alternative regularized approach. Here,
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Figure 3. Brain and behavioral weights of the two significant associative brain—behavior relationships identified by sparse partial least squares. The brain
voxels are color coded by weight, normalized for visualization purposes, and displayed on Montreal Neurological Institute 152 template separately for
subcortical (including hippocampus) and cortical regions. The behavioral variables are ordered by weight and color coded with red for positive weights. (A)
Brain and behavioral weights of the first brain—behavior relationship. (B) Brain and behavioral weights of the second brain—-behavior relationship. L, left; R, right.

we identified 2 significant brain—-behavior relationships that
were very similar to those identified by SPLS (first associative
effect: p = .001 [Supplemental Figures S6A and S7 and
Supplemental Tables S7 and S8]; second associative effect:
p =.006 [Supplemental Figures S6B and S8 and Supplemental
Tables S7 and S8]). For a detailed description of these results,
see the Supplemental Results.
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DISCUSSION

We presented a novel framework combining stability and
generalizability as optimization criteria for regularized multi-
variate methods, such as SPLS and KCCA, which decreases
their risk of detecting spurious associations, particularly in
high-dimensional data. Furthermore, we demonstrated that
this framework can identify brain—behavior relationships that
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Figure 4. Two significant brain-behavior latent spaces identified by sparse partial least squares. (A) Scatterplot of the brain and behavioral scores of the first
brain-behavior relationship with subjects color coded by age. (B) Scatterplot of the brain and behavioral scores of the second brain-behavior relationship with
subjects color coded by clinical diagnosis.
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capture developmental variation as well as variations from
normal to abnormal functioning.

Our proposed framework coheres with the overarching in-
tentions of RDoC (62,63). First, SPLS and KCCA link different
levels of measures in a principled integrated analysis: here, the
key levels are circuits and physiology (in brain imaging) and
behavior and self-report. Indeed, RDoC views circuits as the key
level anchoring and integrating the rest; however, without robust
multivariate techniques, it is challenging to relate circuits to
behavior in large-scale human datasets. Second, the latent di-
mensions identified by SPLS and KCCA may be fundamental
axes of neurobiological variation spanning healthy to abnormal
functioning. Application of this framework to sufficiently large
clinical samples therefore might yield domains of mental (dys)
function that are driven by data rather than chosen by experts
(as in RDoC itself). Third, the SPLS and KCCA models output
brain and behavioral scores for each individual subject in the
identified latent dimensions; this is a crucial step toward using
RDoC (or similar approaches) for clinical diagnosis.

The model selection and statistical inference in our frame-
work differs from those of other SPLS approaches in the liter-
ature. (Note also that these methods are not limited to SPLS but
are also relevant for any regularized PLS/CCA models, including
KCCA.) For model selection, some suggest fixing the regulari-
zation parameters a priori (23,30,32,38,41,54) or choosing the
regularization parameters based on the performance of the
SPLS model (e.g., maximizing the correlation or the associated
p value of the obtained model) (36,45,46,56). Our framework is
similar to other data-driven approaches that split the data into
training and validation sets and use the validation set to eval-
uate the SPLS model and select the optimal regularization pa-
rameters (28,43,57). For model evaluation, most studies use
permutation testing to evaluate the SPLS model based on all
available data (30,32,45,55,56); however, this approach does
not assess the model’s generalization to new data. To perform
statistical inference on how the SPLS model generalizes to
unseen data, independent test data (or holdout set) are needed
to evaluate it (e.g., Figure 2) [as used, for example, in (23,39)]. If
a validation set is used to select the optimal regularization
parameter, 3 divisions of data are required: training, validation
and test/holdout data (31,43,48).

There are 2 main approaches in the literature to address the
stability and reliability of SPLS results. The first approach is
based on stability selection, which involves subsampling the
(training) data and fitting SPLS with given regularization pa-
rameters. After many repetitions of this procedure, the variables
selected in all SPLS models (64) or in a proportion of the SPLS
models (65) are kept as the relevant variables to describe the
association. This procedure can be applied to selecting vari-
ables (43,66) and to guiding model selection (40,67); however, it
is computationally expensive and depends on additional pa-
rameters (e.g., number of repetitions, subsample sizes) that
might need to be further optimized (68). The second approach is
useful only for model evaluation and involves resampling the
(overall) data (e.g., via bootstrapping) to provide confidence
intervals for the SPLS model. Thus, this procedure is a com-
plement to permutation testing; permutation testing indicates
whether the identified SPLS model is different from a model
obtained by chance, while bootstrapping assesses the reliability
of the SPLS model (69,70).
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Next, we discuss the 2 significant brain-behavior relation-
ships identified in our dataset. The first associative effect in the
main SPLS results captured a relationship between age (with
the highest weight) and alcohol use and gray matter volume in
the cingulate and association (frontoparietotemporal) cortices.
The supplementary analysis with SPLS did not find a similar
effect after regressing out age from the data, whereas the
KCCA analysis included age and a mixture of other factors
relating to anxiety, interpersonal difficulties, and externalizing
(for details, see Supplemental Results). These results demon-
strate that including demographic variables such as age in the
SPLS/KCCA model enables identifying variables that covary/
interact with demographic variables. Furthermore, the inter-
active deflation procedure can be seen as an alternative
strategy to remove effects (e.g., age) from the data. The fron-
toparietotemporal areas show the biggest loss of gray matter
during adolescence (71-73); accordingly, 2 recent studies us-
ing the same community sample showed that myelination is a
key factor in cortical shrinkage in these regions (74,75). These
areas also relate to alcohol use; landmark studies have shown
that their structural attributes (especially in frontal cortex) can
predict drinking behavior later in adolescence (76,77).

The second associative effect captured a relationship between
depression-related items and mainly limbic regions. The main
SPLS results included mainly items related to suicidality in this
effect. The supplementary analyses with SPLS and KCCA
selected additional items, including key depression symptoms
(e.g., low mood, anhedonia, loss of energy and concentration) and
core depressive beliefs (e.g., worthlessness, hopelessness, guilt,
low self-esteem). Interestingly, some classic biological symptoms
of depression (e.g., sleep, appetite, psychomotor disturbances) do
not feature in the selected items, which are concentrated in the
cognitive and behavioral aspects of depression. The brain regions
with highest weights (in KCCA) or selected variables (in SPLS)
were similar in all three analyses comprising amygdala, hippo-
campus, and parahippocampal gyrus, putamen, vermis, and
insula. Despite having only 33 subjects with depression in this
sample, there is a remarkable degree of overlap between these
areas and those associated with depression in much larger
studies. A large meta-analysis of voxel-based morphometry
studies (n = 4101 major depressive disorder [MDD] subjects) (78)
also found gray matter differences in depression in insula, inferior
frontal gyrus, hippocampal areas, caudate, and fusiform gyrus
(and in vermis in bipolar disorder), all of which feature in this latent
dimension. Whether volumes of other subcortical regions such as
amygdala and putamen contribute to depression risk is more
controversial; large univariate analyses have not found significant
associations with depression (79,80).

Although the specificity of these findings for depression
is unclear—similar hippocampal and subcortical volume asso-
ciations are seen in posttraumatic stress disorder (81) and
attention-deficit/hyperactivity disorder (82), respectively—even
cross-disorder findings may be useful for predicting outcome
and, in particular, treatment response. For example, in relatively
small samples, insula volume has been shown to predict relapse
in MDD (83), and a combination of amygdala, hippocampus,
insula, and vermis (and 3 cortical areas) can predict treatment
response to computerized cognitive behavioral therapy for MDD.

The identified latent dimensions also relate to existing RDoC
domains, namely positive valence systems (i.e., reward
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anticipation and satiation that is excessive in the first [alcohol
use] but impaired in the second [e.g., anhedonia]) and social
processing (in KCCA only), in the attribution of negative and
critical mental states to others. Another important element of
the RDoC framework is the interaction of its domains with
neurodevelopmental trajectories and environmental risk fac-
tors. Although our subjects were adolescents and young
adults, our brain structure results were consilient with the adult
depression literature (reviewed above). This is important
because although some studies in children find hippocampal
volume associations with both depression (84) and anxiety
(85), a meta-analysis in adults with MDD concluded that hip-
pocampal volume associations were absent at first episode
(79). Indeed, our previous study of functional imaging data in
this dataset revealed 2 latent dimensions of depression that
had opposite relationships with age, one of which related to
trauma (sexual abuse) (86).

This study has some limitations. The sample size is modest,
especially for participants with depression (n = 33). This, com-
bined with the likely heterogeneity of the disorder, makes the
results for the depression-related modes somewhat unstable;
that is, although the selected behavioral variables are similar,
some of the out-of-sample correlations are close to zero. Vali-
dation of our SPLS/KCCA models in a larger dataset of healthy
adolescents and young adults and adolescents and young adults
with depression would further strengthen the generalizability of
our findings. Furthermore, the inclusion of a broader selection of
clinical disorders would reveal the specificity of these findings for
depression rather than for psychological distress in general.

Finally, we suggest some key areas for future work. First, future
studies should investigate other regularization strategies for CCA
and PLS; for example, applying group sparsity can capture group
structures in the data that might exist owing to either pre-
processing (e.g., smoothing) or a biological mechanism (43).
Second, nonlinear approaches [e.g., KCCA with nonlinear kernel
(50)] could explore more complex relationships between brain
and behavioral data. Third, regularized CCA and PLS approaches
can be used to find associations across more than 2 types of data
(56,87), which may enable a more complete description of latent
neurobiological (and other) factors. Fourth, the obtained latent
space could be embedded in a predictive model to enable pre-
dictions of future outcomes such as treatment response. Finally,
further research should investigate how these latent dimensions
relate to the currently used diagnostic categories.

In conclusion, we have shown that regularized multivariate
methods, such as SPLS and KCCA, embedded in our novel
framework yield stable results that generalize to holdout data.
The identified multivariate brain-behavior relationships are in
agreement with many established findings in the literature
concerning age, alcohol use, and depression-related changes in
brain volume. In particular, it is very encouraging that our
depression-related results agree with a wider literature despite
having only a small number of subjects with MDD. The
depression-related dimension also contained largely cognitive
and behavioral aspects of depression rather than its biological
features. Altogether, we propose that SPLS/KCCA combined
with our innovative framework provides a principled way to
investigate basic dimensions of brain-behavior relationships
and has great potential to contribute to a biologically grounded
definition of psychiatric disorders.
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