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Abstract
This study characterized peripheral blood mononuclear cells (PBMC) in terms of their

potential in cartilage repair and investigated their ability to improve the healing in a pre-clini-

cal large animal model. Human PBMCs were isolated with gradient centrifugation and

adherent PBMC’s were evaluated for their ability to differentiate into adipogenic, chondro-

genic and osteogenic lineages and also for their expression of musculoskeletal genes. The

phenotype of the PBMCs was evaluated using Stro-1, CD34, CD44, CD45, CD90, CD106,

CD105, CD146 and CD166 cell surface markers. Osteochondral defects were created in

the medial femoral condyle (MFC) of 24 Welsh mountain sheep and evaluated at a six

month time point. Four cell treatment groups were evaluated in combination with collagen-

GAG-scaffold: (1) MSC alone; (2) MSCs and PBMCs at a ratio of 20:1; (3) MSCs and

PBMC at a ratio of 2:1 and (4) PBMCs alone. Samples from the surgical site were evaluated

for mechanical properties, ICRS score and histological repair. Fresh PBMC samples were

90% positive for hematopoietic cell surface markers and negative for the MSC antibody

panel (<1%, p = 0.006). However, the adherent PBMC population expressed mesenchymal

stem cell markers in hypoxic culture and lacked CD34/45 positive cells (<0.2%). This finding

demonstrated that the adherent cells had acquired an MSC-like phenotype and transformed

in hypoxia from their original hematopoietic lineage. Four key genes in muskuloskeletal

biology were significantly upregulated in adherent PBMCs by hypoxia: BMP2 4.2-fold (p =

0.0007), BMP6 10.7-fold (p = 0.0004), GDF5 2.0-fold (p = 0.002) and COL1 5.0-fold (p =

0.046). The monolayer multilineage analysis confirmed the trilineage mesenchymal poten-

tial of the adherent PBMCs. PBMC cell therapy was equally good as bone marrow MSC

therapy for defects in the ovine large animal model. Our results show that PBMCs support

cartilage healing and oxygen tension of the environment was found to have a key effect on

the derivation of a novel adherent cell population with an MSC-like phenotype. This study

presents a novel and easily attainable point-of-care cell therapy with PBMCs to treat osteo-

chondral defects in the knee avoiding any cell manipulations outside the surgical room.
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Introduction
Articular cartilage has a very limited capacity to repair. Defects greater than 3 mm are known
to heal poorly with the formation of inferior fibrous cartilage [1, 2] and many attempts have
been made to find the ideal treatment for large cartilage lesions. One of the major problems in
cartilage healing is that lack of functional stem/progenitor cells in the tissue. In the absence of
these endogenous stem cells, an alternative source of repair cells needs to be mobilised to heal
cartilage lesions.

It is well known that a primitive cell population derived from circulating peripheral blood
mononuclear cells (PBMC) can participate in the normal tissue renewal of various organs [3–
7]. Unlike the majority of tissues, cartilage healing does not involve any direct mononuclear
cell involvement as it is avascular, a consequence of which is that the tissue is hypoxic [8].
Osteochondral defect site is also relatively hypoxic at least until new blood vessels have devel-
oped into the repair tissue.

Cell populations present within PBMCs include CD14+ monocytes which originate from
hematopoietic stem cells in the bone marrow and consist of 5 to 10% of circulating white blood
cells in humans. They are committed cells derived from hematopoietic stem cells and a popula-
tion of phagocyte precursors in transit from the bone marrow to their ultimate sites of activity
in the tissues [9]. Monocytes are known to differentiate into several distinct phagocytes, includ-
ing macrophages, dendritic cells (DS), osteoclasts, Kupffer cells, and microglia [9–12]. Current
findings however, suggest that mononuclear cells have the potential to differentiate into cell
types other than phagocytes, including bone, cartilage, fat, and skeletal and cardiac muscles [4,
6], making them potential candidate repair cells for cartilage.

Little is known about the effect of low oxygen tension on PBMCs. Peripheral blood
monocytes are known to migrate and accumulate in hypoxic areas of inflammatory and
tumour lesions [13]. MSCs derived from peripheral blood have been evaluated looking at the
effect of hypoxia and serum deprivation in rabbit model [14] where the proliferation and
apoptosis of peripheral blood MSCs was reported similar to bone marrow derived MSCs.
Autologous mononuclear cells derived from bone marrow have also been tested in a rabbit
model to heal full-thickness articular cartilage defects [15] [16] and their use has been com-
pared to peripheral blood-derived mononuclear cells in rat [17], rabbit [18], sheep [19] and
goat [20].

In the clinics peripheral blood mononuclear cell therapy has been used after arthroscopic
subchondral drilling followed by postoperative intra-articular injections of autologous PBMCs
in combination with hyaluronic acid (HA) in a clinical case study of 5 patients [21] and in a
randomized controlled trial of 180 patients [22]. Another case series of 5 patients with early
OA knee disease reported the use of intra-articular autologous PBSC injections in combination
with growth factor addition/preservation (GFAP) and HA [23]. In addition, good clinical
results have been reported with the use of PBMCs in the repair of large full-thickness cartilage
defect combined with patellofemoral realignment in an autologous periosteum flap transplan-
tation [24].

Various strategies can be employed to deliver cells to osteochondral defects in vivo, includ-
ing being applied under membranes [25] and on scaffolds [26]. Work in our group has shown
that a collagen/glycosaminoglycan biphasic scaffold can be used to support healing in an ovine
osteochondral defect model in vivo [27]. This scaffold has been shown to support healing utiliz-
ing bone marrow derived cell therapy [28], and provides a model system in which to test the
effects of PBMC on cartilage repair in vivo.

The aims of this paper were to characterize the effects of hypoxia on PBMC and to evaluate
whether PBMC could be used for cartilage repair.
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Materials and Methods

Mononuclear Cell Preparation
Peripheral blood mononuclear cells were prepared using fresh whole blood from 12 young
(32.9 ± 9.3) healthy volunteers (4 female and 8 male donors) with full ethical consent in writ-
ing. The study was approved by the National Research Ethics Service Committee East of
England Cambridge Central 06/Q0108/213. Blood was collected in Monovette EDTA tubes
(Sarstedt) and a PBMCs prepared by density gradient centrifugation using Lymphoprep (Axis
Shield) according to the manufacturer’s instructions. Mononuclear cells were either used fresh
in the experiments at this stage or left to adhere and grow on a cell culture plastic. In some in
vitro experiments PBMCs were also prepared from whole blood (NC13, 500 ml) and buffy coat
(NC07, 60 ml) obtained from NHS Blood and Transplant Service, Cambridge.

Cell culture
Standard cell culture conditions comprised a humidified atmosphere containing 5% CO2 in air
(~20% O2). In order to mimic oxygen tension of hypoxic tissues, an environment comprising
90% nitrogen, 5% oxygen, 5% CO2 was achieved using a hypoxia controller unit (Proox model
C21, BioSpherix, NY, USA) situated in a cell culture incubator. Unless otherwise stated, the
cultures were under normal atmospheric oxygen tension (~20%) and grown in monolayers in
Dulbecco’s Modified Essential Medium (DMEM) containing 10% foetal calf serum unless oth-
erwise stated.

A biphasic collagen-glycosaminoglycan (GAG) scaffold (ChondroMimetic, Tigenix) was
used for 3D cell culture studies and in the in vivo osteochondral repair model. ChondroMi-
metic comprised an unmineralised top layer mimicking articular cartilage while the base layer
was mineralised using calcium phosphate (brushite) [29–31]. The material was cross-linked to
enhance its mechanical strength and aimed to provide a similar microenvironment to cartilage.
ChondroMimetic was soaked in culture medium for at least 12 h at 37°C before being seeded
with the cells. In the in vitro experiments a total of 2.0 x 10⁵ cells were seeded per scaffold.

Cell Phenotyping
Flow cytometry was used to characterise PBMCs for CD34, CD45, CD90 and CD105 cell sur-
face markers using IM1839U, A07414, IM1870 and A07782 (Beckman Coulter) together with
MSC antibody panel SC017 from R&D Systems (Stro-1, CD44, CD90, CD106, CD105, CD146
and CD166) according to the manufacturer’s instructions. Cells were analysed using a Beck-
man Coulter Cytomics FC500 flow cytometer instrument and the data was assessed with
Kaluza Analysis Software. Positivity for each antibody was defined as the level of fluorescence
>99% of the isotype-matched control.

Antibody-conjugated paramagnetic microbeads were used for a cell selection; CD14
Microbeads (130 050 200), CD105 Microbeads (130 051 200) and Monocyte isolation kit II
(130 091 183) fromMiltenyi Biotec and VersaLyse red blood cell lysing solution (A09777,
Beckman Coulter) according to the manufacturer’s instructions. A heterogeneous mixture of
peripheral blood mononucleated cells 2.0 x 10⁶/ml in PBS was discriminated using a FACSAria
III (BD Biosciences, US) analyser according to light scatter signals FSC and SSC into mono-
cytes, lymphocytes and granulocytes. Cell populations were analysed after normoxic and hyp-
oxic culture conditions.
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Gene Expression
Total RNA was extracted using TRIzol reagent (15596–026, Ambion) according to the manu-
facturer’s instructions. The mRNA pellet was air-dried and resuspended in 35 μl DNAse/
RNAse-free water, subsequently, concentration and quality were checked by OD 260/280 mea-
surement with NanoDrop Spectrophotometer and 1.2% agarose gel electrophoresis using
FlashGel System (57067, Lonza, US) and RNA Cassettes (57027, Lonza, US).

Complementary DNA synthesis was performed with SuperScript VILO kit (11754–050,
Invitrogen) according to the manufacturer’s instructions. Real time quantitative PCR was pre-
pared using QuantiFast SYBR Green PCR detection kit (204054, Qiagen) and quantified with a
Stratagene Mx3000P real-time cycler using QuantiTect Primer Assays (Hs HIF1A 1 SG, Hs
SOX9 1 SG, Hs BMP2 1 SG, Hs BMP6 1 SG, Hs GDF5 1 SG and Hs COL1A2 1 SG all from
Qiagen).

Multilineage Analysis
Adherent PBMCs were cultured as a monolayer with 1.5 x 10⁵ cells per well on a 12-well plate
for 21 days in both normoxia and hypoxia. After confluency, the cells were treated with three
differentiation media in triplicates for osteogenic, adipogenic and chondrogenic differentiation
with basic medium used as a negative control. At the end of the experiment the cells were fixed,
stained and analysed under a light microscopy.

For osteogenic differentiation [32–34] the medium consisted of 50 μg/mL L-ascorbic acid
2-phosphate (A8960-5G, Sigma), 10 mM β-glycerol phosphate (G9422-10G, Sigma), and 10
nM dexamethasone (50-02-2, Sigma). The medium was changed every 3–4 days for 21 days. At
the end of the experiment the osteogenic cultures were fixed in 70% ethanol on ice and then
stained with 2.0% alizarin red solution.

To promote chondrogenic differentiation StemPro Chondrogenesis Supplement (A10064-
10, Invitrogen) was added to the basal medium and the medium was changed every 3–4 days
for 21 days [35]. Chondrogenic cultures were fixed with acetone/methanol (1:1) and stained
with 0.5% alcian blue (pH 0.75).

For adipogenic differentiation the StemPro Adipogenesis Supplement (A10065-01 Invitro-
gen) was added to the StemPro basal medium and changed every 3–4 days over a period of 21
days. The adipogenic cultures were fixed in 4% paraformaldehyde and then incubated with
60% isopropanol. Subsequently, the cultures were stained with fresh oil red O solution (three
parts 0.3% in isopropanol with two parts water).

Pre-clinical large animal model
All surgery was done in accordance with the regulations laid out in the Animals (Scientific Pro-
cedures) Act 1986 following UK Home Office and University of Cambridge Ethics Committee
approval. A total of 24 skeletally mature female Welsh Mountain sheep (3–5 year old) were
used. Each treatment group contained six sheep (n = 6). Four cell treatment groups were evalu-
ated in combination with ChondroMimetic scaffold: (1) MSC alone; (2) MSCs and PBMCs at a
ratio of 20:1; (3) MSCs and PBMC at a ratio of 2:1 and (4) PBMCs alone. ChondroMimetic
scaffold (size 6.5 x 8.0 mm) was soaked in culture medium for 48 h at 37°C and a total of
1x10e6 ovine bone marrow derived MSCs (Mesoblast Ltd) were seeded 24 h prior to the sur-
gery. Autologous PBMCs were isolated at the day of the operation and added to the scaffold
during the surgery. The surgical technique was as described previously [27]. In a previous pilot
study published by our research group [36] empty defect control and scaffold-alone controls
were examined in a similar ovine osteochondral injury model together with a ChondroMimetic
biphasic scaffold treatment. As no significant improvement was observed with the scaffold
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alone and MSC alone treatments compared to the empty defect, it was decided not to repeat
these controls in this study in order to reduce the number of animals used. Briefly, full thick-
ness osteochondral defects 6.0 mm diameter, 8 mm deep were created in the medial femoral
condyle (MFC) via a medial parapatellar approach. General anaesthesia was induced with an
injection of thiopentone (3 mg/kg) into the external jugular vein. Maintenance was achieved
via inhalational anaesthetic of a mixture of isofluorane, nitrous oxide and oxygen. Perioperative
analgesia was provided by pre-operative intramuscular Carprofen (1.5 mg/ml) and antibiotic
prophylaxis was also given via intramuscular procaine penicillin (10 mg/ml). Postoperatively,
animals were allowed to fully weight bear. Animals were humanely sacrificed at 26 weeks post-
operatively using a lethal dose of sodium pentobarbital.

Gross Morphology
At post-mortem, joints were blindly scored using the International Cartilage Repair Society
(ICRS) score [37] to assess the integration of the scaffold into the joint [38].

Mechanical Testing
Stiffness measurements were taken from the centre of the osteochondral defect and at a dis-
tance of 1 mm from the original edge of the created osteochondral defect at the 12-, 3-, 6-, and
9-o’clock positions and 1 mm from the edge in the perilesional cartilage, using a handheld digi-
tal durometer (Shore S1, M scale, Instron, Norwood, MA). A number between 0 and 100 was
given with a built-in calibrated error of five. These measurements were then repeated in the
contralateral limb in the same anatomic sites. The stiffness of the reparative tissue was then
expressed as a percentage of stiffness relative to the control cartilage of the contralateral limb.

Histology
The tissue specimens were harvested, snap-frozen in liquid nitrogen and then stored in -80°C.
Tissue was embedded in OCT Cryoembedding Compound (SDLAMB/OCT, Fisher) and sec-
tions of 10 μm thickness were made through the central portion of the defect. Sections were
stained with Safranin O/Fast Green, anti-human collagen type I and type II mouse monoclonal
antibody (08631701 and 08631711, MP BIOMEDICALS) and blindly scored using a modified
O’Driscoll score as a guide [39–43].

Data Analysis
All samples were collected as four replicates and the data is presented as the mean ± standard
deviation (SD) unless otherwise stated. The results of quantitative RT-PCR were analysed by
the ΔΔCt method using online software (Qiagen). All other results were analysed using IBM
SPSS statistics version 22; this showed non-homogeneity of variance using Levene’s test and
groups were therefore examined using the Kruskal-Wallis test for significant differences, the
Shapiro-Wilk test for normal distribution, which showed data sets were normally distributed,
and finally by Games-Howell post-hoc testing. The significance level was set at 0.05.

Results

Cell phenotyping
The fresh PBMC samples were 90% positive for the hematopoietic cell surface markers CD34/
45 (combined) and negative for the MSC antibody panel (<1.0%, p = 0.006) (Fig 1A). After 2
weeks of hypoxic culture adherent peripheral blood mononucleated cell population had a
fibroblast-like morphology (Fig 1C) and 94% expressed mesenchymal stem cell markers;
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Stro-1, CD90, CD106, CD105, CD146, CD166 and CD44) (p<0.0001) compared to 41% in
normoxia where cells were more rounded. At the same time as the PBMCs had become adher-
ent and changed their phenotype to MSC positive there was a concomitant decrease in hemato-
poietic phenotype markers CD34/45 (<0.2%, p = 0.0008). These findings demonstrated that
the adherent cells had acquired an MSC-like phenotype and transformed from their original
hematopoietic lineage.

The mononuclear cells from whole peripheral blood were analyzed with magnetic labeling,
fluorescence assisted cell sorting and cell sorting. After 2 weeks in low oxygen (5%) in vitro cul-
ture, PBMCs produced a cell population with a fibroblast-like morphology (Fig 1C). Under
normoxic culture conditions, an adherent cell population attached to the cell culture plastic
(Fig 1B) eventually transforming into macrophages.

Fig 1. Peripheral bloodmononuclear cell characterization. (A) Fluorescent labelling of fresh PBMC in
suspension and adherent PBMC in both normoxia and hypoxia comparing hematopoietic and mesenchymal
cell surface markers (n = 4). Representative images of PBMCs after 12 days growing in (B) normoxia and (C)
hypoxia (scale bar 50 μm).

doi:10.1371/journal.pone.0133937.g001
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Whole blood samples separated with magnetically labeled microbeads into monocytes,
CD14 and CD105 positive cells or by cell sorting separating into lymphocytes 73.7%, mono-
cytes 1.9% and granulocytes 0.9% did not produce adherent fibroblast-like cell populations
after 30 days in normoxic or hypoxic cultures but transformed into macrophage-like adherent
cells. It was concluded that individual cell populations did not yield the adherent fibroblast-like
cell type as seen in the heterogeneous whole PBMC culture in hypoxia.

Cartilage microenvironment and gene expression
The fold regulation of HIF1α, SOX9, BMP2, BMP6, GDF5 and COL1 in both normoxia and
hypoxia was normalized to B2M housekeeping gene which was found stable under reduced
oxygen tension. Of these six genes, four were significantly upregulated in PBMCs by the
reduced oxygen tension at 24 h; BMP2 4.2-fold (p = 0.0007), BMP6 10.7-fold (p = 0.0004),
GDF5 2.0-fold (p = 0.002) and COL1 5.0-fold (p = 0.046) Fig 2A. HIF1α is a master regulator
when cells are adopting to lowered oxygen tension, however, since HIF1α is mainly regulated
post-translationally, therefore the gene expression cannot be used as a marker for hypoxic envi-
ronment [44].

Multilineage analysis
By day 10 all hypoxic cell cultures had reached confluency with those cultured in normal oxy-
gen tension remaining subconfluent and eventually differentiating into macrophage-like cells.
Adherent mononucleated cells in hypoxia treated with the osteogenic differentiation medium
underwent a change in their morphology from spindle-shaped to cuboidal and formed calcium
deposits in culture (Fig 3A). Following the adipogenic differentiation treatment, lipid vacuoles
stained positive with oil red O (Fig 3B). Chondrogenic differentiation induced a change in the
PBMCmorphology, with alcian blue staining confirming aggregated areas positive for glycos-
aminoglycans (Fig 3C).

Large animal model
Surgical Observations at Implantation. The operations were uneventful and all animals

recovered from surgery without incident. The incisions closed successfully and there were no
incidences of infection. All animals demonstrated normal weight gain and maintenance indica-
tive of normal weight-bearing. None of the 24 animals had to be excluded from the study.

Gross Morphological Findings. Most samples had good macroscopic surface repair with
good integration with only a minimal chronic inflammatory response. Macroscopic repair was
not fully matured at 26 weeks, although all samples demonstrated substantial amounts of defect
closure and a large proportion had produced smooth hyaline-like articular cartilage at the
defect site (Fig 4A). In some cases there were visual indications of the scaffold location based
on variations in opacity and non-uniform surface features associated with incomplete fusion of
the cartilage layer. No significant functional differences were found between operated sites
compared to contralateral controls.

The ICRS macroscopic score assessing the integration of the cell-scaffold construct into the
defect site presented no significant differences between the MSC and PBMC treatment groups
(Fig 4B). Every cell therapy treatment group presented early normal cartilage repair and aver-
aged scores between 8 and 9 (Fig 5A).

Histological Findings. More than 50% of the total defect area had healed during the 26
weeks in all test groups (Fig 5D) as quantified by the Safranin O/Fast Green staining (Fig 4B
and 4C) whilst the remaining area showed healing still in progress. In most cases the surface
had healed with hyaline neocartilage tissue (Fig 4D) with occasional remnants of the scaffold
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only observed deep in the defect area. The majority of the treatment groups presented excellent
restoration of the subchondral bone plate. Tissue morphology in the PBMCs 2:1 and PBMC
only treatment groups demonstrated early normal hyaline cartilage with nearly complete thick-
ness (Fig 4B). There was no significant difference in the healing between MSC and PBMC only
cell treatment groups even though PBMC therapy had slightly higher histological repair scores
than MSC treatment (Fig 5). Analysis using the modified O’Driscoll score (Fig 5C) demon-
strated that the greatest repair activity within the original defect area including matrix deposi-
tion, hyaline cartilage thickness and bonding to adjacent tissue was observed with the PBMC
treated defects. The addition of PBMCs increased neocartilage formation in every treatment
group as compared to the MSC alone treatment (Fig 5E). The increase in the neocartilage for-
mation was greatest (62.5±7.9%) in the PBMC alone treatment as compared to the MSC alone
as quantified from the total defect area (Fig 5E). Most healing was detected consistently in the
treatment groups where PBMCs were added as measured with ICRS score, O’Driscoll score,
total healing and neocartilage formation.

Discussion
In this paper we have demonstrated, for the first time, that hypoxia drives the differentiation of
PBMC into MSCs and that these PBMC-derived MSCs are functional and capable of inducing
cartilage repair in vivo.

Culturing PBMCs in monolayer resulted in an adherent cell population that was 40% posi-
tive for markers of an MSC phenotype. Hypoxia had a profound effect on these PBMC cul-
tures increasing the proportion of cells expressing MSC markers in the population to 94%
(p<0.0001). This transformation was concomitant with a loss of markers for the hematopoi-
etic cell origin (CD34/45, p = 0.0008). Interestingly, hypoxia preconditioning has been
reported to have a supporting effect on bone marrow MSC cell therapy applications in the
liver [45, 46] and cartilage [47].

Fig 2. Gene expression analysis. The mRNA expression of PBMCs in both normoxic and hypoxic culture
(24h). BMP2 (p = 0.0007), BMP6 (p = 0.0004), GDF5 (p = 0.002) and COL1 (p = 0.046) normalized to B2M
housekeeping gene. Level of statistical significance; * p<0.05, ** p<0.001 and *** p<0.0001 with biological
n = 4 and technical n = 3.

doi:10.1371/journal.pone.0133937.g002
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Based on our study, the key to the biological mechanism triggering the adherent mononu-
clear cell selection is reduced oxygen tension of the target tissue. These observations might
explain some of the complex roles of mononucleated cells. PBMCs circulate in the peripheral
blood in high oxygen tension expressing hematopoietic markers and have the potential to
migrate into the target tissue (reduced oxygen tension) and to transform into macrophages,

Fig 3. Tripotential lineage differentiation.Morphological analysis of the adherent PBMCs (A-F) and Mesoblast MSCs (G-L) in both normoxic and hypoxic
culture at day 21 under phase contrast light microscopy. Representative images of osteogenic differentiation (Alizarin-red; A, D, G and J), adipogenic
differentiation (Oil-red-O; B, E, H and K) and chondrogenic differentiation (Alcian blue; C, F, I and L). Scale bar 200 μm.

doi:10.1371/journal.pone.0133937.g003
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Fig 4. Analysis of the defect repair. (A) Representative images of an average sample of each treatment
group showing the macroscopic surface repair in femoral condyles. (B) Osteochondral healing of each
treatment group stained with Safranin O/Fast Green. The scale bar represents the radius of the initial defect
(6.0 mm). Some of the findings include: neocartilage formation on the surface of the defect (red/black vertical
arrow) and remnants of the biomaterial (black horizontal arrow). (C) Safranin O/Fast Green stained high
magnification (20x) images of the articular cartilage healing in the surface and in the subchondral bone where
remnants of the biomaterial can be found. (D) Collagen type II staining and (E) Collagen type I staining at the
repair site and within the remnants of the collagen biomaterial.

doi:10.1371/journal.pone.0133937.g004
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denritic cells, or fibrocytes [3, 48–50]. Together with chemical signaling molecules oxygen ten-
sion may be one of the indicators stimulating mononuclear transformation.

From our findings, it is possible that mononuclear cells in peripheral blood are not solely
phagocyte precursors but multipotent precursors or a group of monopotent precursors for sev-
eral distinct lineages, including non-hematopoietic cells, which can differentiate independently

Fig 5. Quantification of the repair tissue. (A) The ICRS score assessing the integration of the cell-scaffold construct into the medial femoral condyles. (B)
Mechanical stiffness and (C) histological evaluation based on the modified O'Driscoll scoring system. (D) Summary of the healing with repair tissue in the
defect when 100% is the total defect area. (E) Summary of the neocartilage formation in the articular cartilage surface when 100% is the total defect area.
There was no significant difference between the test groups for these measurements.

doi:10.1371/journal.pone.0133937.g005
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into their corresponding mature tissues. Evidence that these adherent PBMCs are multipotent,
rather than being a mixture of committed progenitor cells each with a restricted potential,
includes their characteristic morphology, the presence of typical protein markers, and their dif-
ferentiation into mesenchymal lineages. This hypothesis was also supported by a wound heal-
ing model in murine using peripheral blood stem cells together with TGF-β and FGF growth
factors [51].

Since peripheral blood mononucleated cells are a heterogeneous mixture of cells, we used
cell sorting to produce individual cell populations in an attempt to isolate a cell type that was
the parent population to the adherent PBMC. Isolation of CD14 and CD105 cell populations
or sorting the PBMC sample into lymphocyte, monocyte and granulocyte populations both
failed to produce an adherent fibroblast-like cell population. This suggests that in a heteroge-
neous mixture of cells [52], cell-cell contact [53], and cell signaling [54] may be required for
the adherent cell type to mature and transform [55] as demonstrated in stem cell co-culture
models [56]. This experiment rules out the possibility that the origin of the adherent cells is
due to a specific type of cell that is present in low numbers in the original blood.

To test the potential of the PBMC-derived MSCs for cartilage repair, chondrogenic gene
expression in both normoxia and hypoxia was measured in vitro. Four key genes in musculo-
skeletal repair were significantly upregulated in PBMCs by the reduced oxygen tension; BMP2,
BMP6, GDF5 and COL1. The monolayer multilineage analysis confirmed the tripotential
mesenchymal potential of the adherent PBMCs to differentiate into chondrogenic, osteogenic
and adipogenic lineages similar to the report by Kuwana et al. (2003) [4]. This data clearly
demonstrates the potential for PBMCs to generate cells that would express genes and proteins
beneficial in musculoskeletal repair when placed in a hypoxic environment as found in an
osteochondral defect.

Several clinical investigators from various parts of the world have reported on the safety and
therapeutic effect of both autologous and allogeneic MSC transplantation in patients with oste-
oarthritis in the knee [57]. Because MSCs are generally hypoimmunogenic and possess immu-
nosuppressive activity, therefore, the use of MSCs for allogeneic therapy does not require HLA
matching [58]. As ‘proof of concept’ that PBMC-derived MSCs are functionally capable of
inducing cartilage repair, we compared of bone marrow MSCs and peripheral blood PBMCs,
delivered on a previously characterized biphasic scaffold [29–31] in a large animal osteochon-
dral defect model [36]. In this model the MSCs and PBMCs showed similar healing capacities,
with no adverse inflammatory reaction at the implantation site.

Our results together with previous reports demonstrate that peripheral blood derived
mononuclear cells have similar properties in cartilage healing as compared to autologous
mononuclear cells derived from bone marrow in rat [17], rabbit ([18], sheep [19] and goat
[20]. To date, few publications have described the use of PBMCs to treat cartilage lesions with
good clinical results. These published repair strategies include postoperative intra-articular
injections of autologous PBMCs in combination with hyaluronic acid (HA) [21, 22], intra-
articular autologous PBSC injections in combination with growth factor addition/preservation
(GFAP) and HA [23] and PBMCs with an autologous periosteum flap transplantation [24].

Conclusion
Our study has provided evidence that PBMC can be a source of cells to stimulate the healing in
osteochondral lesions. The advantages of PBMC therapy includes the fact that in contrast to
other sources of multipotent cells, the isolation of peripheral blood is minimally invasive and
does not require general anaesthesia. Blood is the most convenient source from which to obtain
PBMCs from patients, which can be frozen and stored for later use, can be obtained regardless
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of patient age, are easily derived in large quantities and when used as an autograft produces no
rejection removing the need for immunosuppressive therapy and so can be used without ethi-
cal constraints [59]. PBMC-based cell therapies would avoid the need of a time-consuming and
expensive manipulation of cells in laboratory cultures providing a simplified point of care solu-
tion to the operating surgeon. Thus, potential clinical applications of peripheral blood-derived
stem cells are of great interest. Our findings, taken together with previous work, indicate that
circulating mononuclear cells are more diverse than previously thought, making cell transplan-
tation therapies using circulating mononucleated cells a potential approach for future tissue
regeneration.
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