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Abstract 

The finite strain, uniaxial tensile response of two-dimensional (2D) elastoplastic lattices 

is investigated using finite element simulations and analytical models, taking into full account 

the macroscopic stiffening due to cell wall alignment.  Four morphologies of 2D lattice are 

considered: triangular, Kagome, hexagonal, and diamond.  The cell walls are treated as 

Timoshenko beams made from an elastoplastic solid with a strain hardening characteristic that 

resembles Ramberg-Osgood at low strains and exponential hardening at large strains.  This 

description captures the response of metallic lattices at small strain and selected polymeric 

lattices at large strain.  The use of beam theory is validated by additional continuum element 

simulations.  The dependence of macroscopic ductility and tensile strength of each lattice is 

determined as a function of relative density, cell wall rupture strain and cell wall strain-

hardening.  Two failure criteria are invoked: (i) maximum value of local tensile strain 

anywhere in the lattice attains a pre-defined failure strain, or (ii) maximum value of average 

tensile strain across any section of the lattice attains the failure strain.  The sensitivity of 

macroscopic ductility and ultimate tensile strength to geometric imperfection is explored by 

considering: (i) random topologies in which the joints are randomly perturbed in position, and 

(ii) a finite crack formed by an array of broken cell walls.  The notion of a transition flaw size 

for the lattices is validated by means of a notch sensitivity analysis, and the significance of 

crack-tip blunting by cell wall alignment is highlighted for the hexagonal honeycomb. 
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1. Introduction 

The existing literature on polymeric and metallic foams and lattices is focused on their 

in-plane macroscopic compressive and shear response (Papka and Kyriakides, 1994; Grediac, 

1993; Wang and McDowell, 2004; Gibson and Ashby, 1997; Côté et al; 2006).  Triangular 
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and Kagome lattices have high in-plane stiffness and strength compared to hexagonal and 

diamond lattices for a wide range of loading conditions as they are stretching-dominated rather 

than bending-dominated (Wang and McDowell, 2004; Fleck and Qiu, 2007; Romijn and Fleck, 

2007; Hutchinson and Fleck, 2006).  Existing analytical models assume small strains and give 

useful formulae for the macroscopic modulus and yield strength of these lattices as a function 

of relative density and topology, but they neither inform the large strain response, nor the 

ductility and ultimate tensile strength (UTS).  For example, it remains to quantify the switch 

in macroscopic response of an elastomeric hexagonal lattice from a compliant, bending-

dominated mode to a stiff, stretching-dominated mode as the cell walls align with the tensile 

axis under increasing macroscopic strain.  

The current study addresses the finite strain in-plane tensile response of four 

elastoplastic 2D lattices as made by additive manufacture: triangular, Kagome, hexagonal and 

diamond, as shown in Fig. 1(a)-(d), respectively.  The choice of these four lattices is motivated 

by the broad range in their mechanical behaviours: the hexagonal lattice is a compliant, 

bending-dominated structure whereas the triangular and Kagome lattices are stiff, stretching-

dominated structures.  Since the triangular, Kagome, and hexagonal lattices possess 120o 

rotational symmetry, they are isotropic in their in-plane linear response, but display anisotropy 

in their non-linear behaviour.  In contrast, the diamond lattice is strongly anisotropic in both 

its linear elastic and non-linear elastic responses: it is a compliant, bending-dominated structure 

when sheared along the direction of the cell walls, but is a stiff, stretching structure under direct 

straining in the cell wall-direction.  The dependence of macroscopic ductility and ultimate 

tensile strength upon relative density, cell wall failure strain and strain-hardening exponent are 

determined. Each lattice has cell walls of length 0  and thickness 0t , such that the relative 

density   is given by  

0

0

t
A        (1) 

with the values of the coefficient A  listed in Table 1, see for example Gibson and Ashby 

(1997) and Fleck and Qiu (2007). 

It is widely appreciated that as-manufactured lattices contain defects such as cell wall 

waviness, non-uniform wall thickness, displaced nodes, and thickened nodes (akin to Plateau 

borders for the case of foams) as discussed in several studies, see for example Zhu et al (2001), 

Yang and Huang (2005), Symons and Fleck (2008) and Fleck and Qiu (2007).  The thrust of 

the present paper is to explore the sensitivity of ductility and UTS to topology, and to include 
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finite deformations in the analysis.  Imperfections are limited to randomly displaced nodes and 

missing cell walls, as prior studies on the yield of lattices suggest that these are amongst the 

most potent of imperfections in knocking down the strength, see for example Ronan et al. 

(2016) for the case of the imperfect hexagonal honeycomb.  

1.1. Review of the effective properties of perfect lattices 

The macroscopic in-plane Young’s modulus and tensile strength of an elastic-brittle 

lattice, and the plastic collapse strength of an elastic-perfectly plastic lattice can be estimated 

from simple beam theory.  Here, we summarise the relevant scaling laws for the effective 

properties of the lattices of Fig. 1, as taken from the literature.  

 

Elastic modulus 

Consider an elastic-brittle lattice made from a solid of cell wall modulus SE .  The 

macroscopic Young’s modulus E  in the 2x  direction of each lattice of Fig. 1 scales with   

according to 

b
SE B E       (2)  

The values of the constants ( , )B b  are listed in Table 1, as taken from Gibson and Ashby 

(1997), Deshpande et al (2001), and Fleck and Qiu (2007). 

 

Fracture strength of elastic-brittle lattice 

A brittle lattice fails at a macroscopic nominal fracture strength fs  when the maximum 

local tensile stress within any cell wall in the lattice attains the tensile strength of the solid f

.  The diamond lattice of Fig. 1 has pronounced anisotropy in tensile strength (Romijn and 

Fleck, 2007), whereas the degree of anisotropy is small for the triangular, hexagonal, and 

Kagome lattices.  For definiteness, we shall limit attention to the tensile fracture strength fs  

in the 2x  direction of each lattice; it scales with f  and   according to  

f 1 f
cs C          (3)  

where the values of 1C  and c , as listed in Table 1, have been taken from Gibson and Ashby 

(1997) and Fleck and Qiu (2007). 
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Plastic collapse strength of an elastic-perfectly plastic lattice 

The macroscopic plastic collapse strength Ys  of a bending-dominated lattice (such as 

the hexagonal and diamond lattices) is defined by the macroscopic stress corresponding to 

plastic collapse by rotation of the cell walls about fully plastic hinges of moment 

2
YS 0 / 4PM bt , where  YS  is the yield strength of the elastic, perfectly plastic solid and 

b  is the out-of-plane width of the cell wall.  For such 2D lattices, the macroscopic yield 

strength scales with 2 , see Gibson and Ashby (1997).  In contrast, the macroscopic yield 

of the stretching-dominated triangular and Kagome lattices requires cell wall stretching, and 

Ys  scales as   (Wang and McDowell, 2004).  None of the lattices of Fig. 1 has an isotropic 

yield strength.  For example, a 30o rotation of the triangular and Kagome lattices leads to a 

50% change in the value of Ys , independent of   (Deshpande et al; 2001 and Hutchinson et 

al; 2003).  In broad terms, the plastic collapse strength in the 2x  direction of each lattice 

scales with YS  and   according to  

Y 2 YS
cs C        (4) 

where 2( , )C c  are listed in Table 1, and are taken from Gibson and Ashby (1997), Côté et al 

(2006), and Wang and McDowell (2004).  

 

1.2. Topological imperfections 

In practice, lattice materials contain defects such as randomly misplaced joints, missing 

cell walls, cell walls of variable thickness (such as Plateau borders in foams) or of wavy profile, 

and spatial variations in relative density.  The effect of such imperfections on the mechanical 

properties of lattices was quantified by Fleck and co-workers ( Fleck and Qiu, 2007, Romijn 

and Fleck, 2007, Quintana Alonso and Fleck, 2010, and Symons and Fleck, 2008) for the 

elastic-brittle case.  They found that the Kagome and diamond lattices experience severe 

knockdown in both strength and in-plane modulus due to randomly misplaced joints, whereas 

the triangular and hexagonal lattices are nearly imperfection-insensitive.  The imperfection-

insensitivity of the hexagonal lattice extends to the elastoplastic tensile response: Chen et al. 

(1999, 2001) found that the uniaxial tensile strength is unaffected by the presence of rigid 

inclusions and holes, consistent with experimental observations on aluminium alloy foams 
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(Olurin et al; 2000).   

Recently, the role of imperfections of ‘horse-shoe’ geometry on the tensile response of 

triangular, Kagome and hexagonal lattices has been explored by Ma et al. (2016).  The cell walls 

are treated as linear elastic, but large macroscopic deformations and large cell wall rotations are 

included.  They exploited the fact that cell wall waviness significantly reduces the axial stiffness 

of cell walls for the triangular and Kagome lattices: although these lattices are stretching-

dominated on the length-scale of the cell wall due to their high nodal connectivity, the waviness 

of cell walls increases their compliance to membrane-type loading.  Thus, the macroscopic lattice 

is much more compliant than the perfect triangular lattice.  In contrast, the hexagonal lattice is 

bending-dominated at the cell wall level (due to its low nodal connectivity), and the presence of 

additional cell wall waviness has a much more modest effect.  These concepts of structural 

hierarchy are reviewed in Fleck et al. (2010).  The present paper has a somewhat different focus 

than that of Ma et al. (2016).  Our aim here is to explore the sensitivity of ultimate tensile strength 

(UTS) and ductility to lattice topology for straight cell walls made from a non-linear solid, and to 

include the role of imperfections in the form of misplaced nodes and of missing cell walls. 

In addition to the macroscopic mechanical properties of stiffness and strength, the 

transition flaw size is an important material property.  In broad terms, it is the flaw size at 

which fracture switches from strength-control to toughness-control.  For an elastoplastic solid, 

we define Tya  as the semi-length of an internal flaw such that the remote stress associated 

with the attainment of the fracture toughness ICK  equals the macroscopic yield strength Ys  

of the lattice in the absence of a crack, giving 
2 2

Ty IC Y/a K s  (Sih et al., 1965).  

Alternatively, for the case of an elastic-brittle lattice, we define the transition flaw size Tfa  as 

the semi-length of an internal flaw such that the remote stress associated with the attainment 

of the fracture toughness ICK  equals the macroscopic fracture strength fs  of the lattice in 

the absence of a crack, 
2 2

Tf IC f/a K s  .  The magnitude of Tfa  in relation to the cell size 

0  is sensitive to the choice of lattice, as revealed by Fleck and Qiu (2007) for the elastic-

brittle case.  They found that Tf 0a   for the hexagonal and triangular lattices, while 

Tf 00.056 /a   for the Kagome lattice.  In a parallel study, Quintana Alonso and Fleck 

(2007) found that 
2

Tf 00.55 /a   for the diamond lattice.  Thus, the hexagonal and 

triangular lattices are flaw sensitive, while the Kagome and diamond lattices are much more 
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flaw tolerant, particularly at low values of relative density.  The predicted dependence of Tfa  

upon   for the diamond lattice was verified by fracture tests on edge-cracked cordierite 

lattices (see Quintana-Alonso et al; 2010). The current study addresses the degree to which 

these conclusions extend to ductile lattices at finite strain.  We shall obtain explicit expressions 

for Tya  for the four lattices, and assess the relevance of this parameter to the transition from 

strength-control to toughness-control. 

 

1.3. Scope of study 

The macroscopic uniaxial stress versus strain response is obtained for each of the four 

lattices of Fig. 1.  We assume a constitutive law for the cell wall material that is power law in 

nature at low strains, in order to model metallic lattices.  Such lattices fail when the necking 

strain is attained in the cell wall, or by microvoid coalescence at precipitates which have 

segregated to grain boundaries during solidification (Mangipudi and Onck (2012)).  We 

extend our treatment to a new class of engineering copolymers, thermoplastic polyolefin 

(TPO)1, that display a power law response at low strains and exponential hardening at high 

strains, see for example Poon et al. (2007) and Katbab et al. (2000).  Such copolymers find 

widespread application as cellular solids in lightweight transport applications.  The tensile 

failure strain of these copolymers is dictated by molecular disentanglement rather than by 

necking.   

In our unified treatment we adopt a constitutive law that is power law hardening at low 

strains and exponential hardening at large strains.  We treat the tensile failure strain as an 

additional material parameter.  For metals, we can assume that the failure strain equals the 

(Considére) necking strain,  but this is not enforced in the analysis.  The uniaxial true stress 

t  versus true strain t  response is taken to be 

S

pt
t

E


         (5)  

where SE  is the initial Young’s modulus, and the plastic strain 
p  depends upon t  

according to 

                                                 
1 Also known as olefinic thermoplastic elastomers, these copolymers comprise a thermoplastic such as 

polypropylene, an ethylene-based elastomer, and a small fraction of a filler such as carbon fibre or fibre glass, 

thus having physical properties spanning the range between plastics and elastomers. The elastomeric character 

of these copolymers stems from physical rather than chemical cross linking (Tse and Jiang, 2013). 
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 
1

0S 0S

1 exp
p n

pt 


 

 
  
 
 

    (6)  

Here, n  is a strain hardening exponent, 0S  is a representative ‘yield’ strength, 0S  is a 

representative yield strain and S 0S 0S/E   .  We emphasize that this material description is 

designed to capture the initial non-linear yield-type response of a metallic alloy or an 

engineering polymer at small strain and the ensuing exponential hardening response at large 

strain as typified by polyolefin elastomers.  Typical stress-strain curves of the form as defined 

in Eq. (5) and Eq. (6) are plotted in Fig. 2 for selected values of n . 

The predicted macroscopic ductility and UTS of the elastoplastic lattices are based on 

the maximum value of either : 

(i) the local tensile strain (LTS) at any point in the lattice, M , or  

(ii) the average tensile strain (ATS) across any cell wall of the lattice, A  . 

Analytical expressions for the dependence of macroscopic nominal stress and cell-wall strain 

( M  and A ) upon the macroscopic nominal strain are derived from a unit cell analysis; see 

Appendix A.  Throughout this study, the accuracy of the analytical models for the perfect 

lattices is assessed via finite element (FE) simulations.  Additionally, the FE study is used to 

explore the sensitivity of ductility and UTS to imperfections of the form of: (i) randomly 

misplaced joints, and (ii) a finite crack as defined by a row of missing cell walls.  The 

transition crack length Tya  is predicted for the ductile lattice from a knowledge of its 

macroscopic yield strength and fracture toughness.  And finally, the accuracy of the concept 

of a transition flaw size is evaluated from FE predictions of strength versus crack length for the 

triangular and hexagonal lattices.  

 

2. Finite element method for uniaxial tensile response of perfect lattices 

The macroscopic tensile response in the 2x -direction of each lattice of Fig. 1 is 

obtained from corresponding periodic unit cell calculations.  All calculations have been 

performed using the finite element (FE) package ABAQUS Standard (version 6.14).  We 

emphasise that the flow theory of plasticity is assumed for a cell wall response given by Eq.(6).  

Each cell wall (or strut) of the unit cell is represented by up to 150 Timoshenko beam elements 

(of type B21 in ABAQUS notation); these two-noded linear elements account for both bar 
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stretching and bending.  The Timoshenko beam elements are also geometrically nonlinear so 

that the strains and rotations can be arbitrarily large.  Periodic boundary conditions are 

imposed such that the macroscopic nominal strain ije  is specified 2  via the following 

constraints: 

1 11 1,u e x    2 22 2 ,u e x    and 0     (7) 

where iu  and   are the displacement and rotation jumps, respectively, between 

corresponding points on the opposite sides of the unit cell, while jx  is the displacement 

vector connecting these points.  All calculations presented here are for an imposed tensile 

strain 22e e   in the 2x -direction of the unit cell, with the macroscopic nominal stress 

22s s   i.e., the work conjugate to e  being the outcome of the solution.  Natural boundary 

conditions were imposed in the 1x -direction such that the nominal stress 11s  (i.e., the work 

conjugate to 11e ) vanishes.  FE simulations are performed in both small strain and finite 

strain, for comparison purposes.  The small strain assumption does not capture the stretching 

that develops with finite rotation of the struts, but serves to verify the accuracy of the analytical 

models in the small strain regime.  

 The accuracy of the non-linear Timoshenko beam elements has been checked by 

performing selected FE simulations using both Timoshenko beam elements and 2D continuum 

elements in plane strain.  Specifically, each strut in the continuum formulation was idealised 

by CPE4 quadrilateral elements, with typically 10 elements in the thickness direction and 100 

elements along the length.  Numerical experimentation confirmed that the Timoshenko beam 

elements are adequate for prediction of both ductility and UTS, but the comparison is not given 

explicitly here for the sake of brevity.  

 

3. Results 

Full finite element solutions are reported for the elastoplastic response of the four 

lattices as defined in Fig. 1.  Analytical expressions are derived in Appendix A for the small 

strain and finite strain elastoplastic responses, including the effect of large geometry changes.  

                                                 
2 We have set the nominal strain 12 0e   so that 1x  and 2x  remain principal strain axes throughout the 

history of imposed loading.  Thereby, the finite strain deformation of the Lagrangian nominal strain reduces to 

Eq. (7). 
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Selected FE results 3  are reported for the choice of 0.1  , yield strain of the solid 

0S 0.001  , and strain hardening exponent 10n  .  We consider each topology in turn. 

 

3.1. Triangular lattice 

A representative plot of the macroscopic nominal stress s  versus macroscopic 

nominal strain e  for a triangular lattice is shown in Fig. 3, with sketches of the deformation 

modes included.  The overall response of the lattice is characterized by three distinct regimes, 

regimes I through III, as indicated in Fig. 3.  There is satisfactory agreement between the 

predictions of the analytical descriptions of Appendix A.1 and the FE predictions, as follows.  

Regime I is the initial linear elastic response, regime II is the plastic collapse response 

and regime III is the post-lock-up response wherein all struts of the lattice have aligned with 

the loading direction 2x .  Consider each regime in turn.  Note that in the early stage of 

regime II, the s  versus e  response is power-law and of slope 1/ n  (on a log-log scale).  

Consequently, the transition point Ye e   between regimes I and II is identified in Fig. 3 by 

the intersection of straight line fits to regime I (slope of unity) and regime II (of slope 1/ n ).  

The transition point from regime II to regime III is the macroscopic lock-up strain L 1e e    

according to the analytical model of Appendix A.1.   

 

Regime I : Direct insight into the elastic response of the lattice is obtained by considering the 

pin-jointed parent truss-lattice.  The vertical struts (labelled C in Fig. 1(a)) undergo affine 

deformation whereas the inclined struts (labelled A and B in Fig. 1(a)) rotate without stretch.  

Consequently, 1/ 3B   and 1b   in Eq. (2).  Negligible macroscopic additional stiffness is 

generated by elastic bending of struts A and B when the pin-jointed truss is replaced by the 

rigid-jointed frame.  

 

Regime II : The FE and analytical models reveal that the vertical strut C undergoes plastic 

stretch while the inclined struts A and B remain elastic for 0.02e  and undergo plastic 

bending for 0.02e  .  An adequate representation of the response in regime II is achieved 

                                                 
3 Additional simulations have been performed for several values of 𝑛 in the range of 3 to 20 and several values 

of 𝜌 in the range of 0.025 to 0.1 but these are omitted here for the sake of brevity. 
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by again considering the pin-jointed version.  The nominal stress s  versus nominal strain 

e  is given by Eq. (A.6) upon making the transformations from true stress and strains to 

nominal values.  Note that the macroscopic yield strain Ye  of the lattice equals that of the 

solid 0S . 

 

Regime III : The FE and analytical models show that the struts A and B align with the struts 

of type C at 1e   and begin to carry significant axial load. We identify the macroscopic lock-

up strain of the lattice, as L 1e e   .  For Le e  , all the bars in a pin-jointed triangular 

truss are stretched axially and they contribute to the macroscopic stress s .  The s  versus 

e  response in regime III is adequately given by Eq. (A.10) where L 1e  .  Strut C in a pin-

jointed triangular truss stretches by 
(C)

ln(1 )A e    whereas struts A and B stretch by 

(A) (B)
Lln(1 0.5( ))A A e e      .  The modes of deformation of the struts within the 

triangular lattice during regimes I through III are summarized in Table 2.  

3.2. Kagome lattice 

A pin-jointed truss analysis suffices for an analytical model of the Kagome lattice since 

it is a stretching-dominated structure, see Appendix A.2.  Fig. 4(a) shows the FE and analytical 

predictions for the macroscopic nominal stress s  versus e  response of a typical Kagome 

lattice, with 0.1  , 0S 0.001   and 10n  .  Under remote tensile loading in the 2x  

direction of the lattice, the inclined struts A and B carry tension whereas the horizontal strut C 

is under compression.  The FE and analytical models reveal that, at a critical load, strut C 

buckles.  The post-buckling response of the lattice involves large rotation (i.e., scissoring) of 

struts A and B at almost constant macroscopic tensile stress.  At a sufficiently large value of 

e , struts A and B align with the loading axis and come into contact; the post-lock up response 

follows, and this involves an increasing axial load on struts A and B, with the fully buckled 

strut C playing a negligible role.  The regimes of macroscopic response of Kagome lattice are 

summarised below, with the analytic models of Appendix A.2 included in Fig. 4(a).  In broad 

terms, excellent agreement is noted between the FE and analytical approaches.  

 

Regime I: The uniaxial response of the lattice is characterized by the effective Young’s 
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modulus of the lattice, as given in Eq. (2) with 1/ 3B   and 1b  , as reported by Hyun and 

Torquato (2002).  The FE and analytical predictions of the average strain A  in each strut is 

plotted in Fig. 4(b) as a function of the macroscopic nominal strain e ; recall that the response 

of struts A and B is identical due to symmetry.  The FE predictions in Fig. 4 are in good 

agreement with the analytical predictions despite the fact that the analytical model considers 

the lattice as a pin-jointed truss whereas the FE simulations are performed for a rigid-jointed 

frame.  Regime I ends when struts A and B yield at Y 0S1.5e e    . 

 

Regime II: The FE simulations predict that at Ye e   struts A and B stretch plastically. Strut 

C shortens elastically and then plastically, until it buckles at a critical value of stress crs , as 

indicated by X in Fig. 4(a).  This marks the end of regime IIa and the start of regime IIb.  Until 

the onset of this instability, the macroscopic nominal stress versus strain response of the lattice 

is adequately predicted by the response of a pin-jointed Kagome lattice, as given by Eq. (A.22).  

The average axial strain A  across the section of struts A and B in regime IIa is given by Eq. 

(A.21), and this expression is in excellent agreement with the FE prediction, see Fig. 4(b).  The 

small difference between M  and A  in the FE prediction is attributed to slight bending of 

struts A and B, but this has little effect on the macroscopic response.  

At a critical nominal stress crs  strut C buckles and regime IIb (the post-buckling 

regime) ensues.  FE simulations confirm that crs  at the onset of buckling is adequately given 

by the Engesser-Shanley formula (Engesser, 1889), such that Eq. (A.25) is satisfied.  The 

Kagome lattice collapses transversely in a concertina-like manner4  at an almost constant 

macroscopic tensile stress s  involving buckling of struts of type C and bending of struts A 

and B.  Eventually, struts A and B align with the loading direction 2x  at a nominal lock-up 

strain L 0.42e   and regime III begins.  We proceed to use a Maxwell-type construction to 

obtain the constant tensile collapse stress s  in regime IIb, from the instant of buckling to the 

instant of lock-up.  

 

                                                 
4 The FE post-buckling response of the Kagome lattice is obtained by allowing for inertia stabilization in an 

explicit dynamic FE analysis. A small loading rate was employed to ensure only a small dynamic contribution 

and thus the FE response can be considered to be approximately quasi-static. 
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Maxwell construction of steady –state broadening of crush band 

We idealise the strut C by a simply-supported bar of thickness 0t , length 0 , and width 

b  under a compressive axial load F  and constrained against end transverse displacement, as 

shown in Fig. 5(a).  The bar shortens by u  at each end due to F .  FE simulations of the load 

versus shortening response are shown in Figs. 5(b)-(c), assuming the material description given 

by Eq. (6) with 5,10n   and 20, and stockiness 0 0/ 0.05,0.1t    and 0.15 .  After the axial 

load F  attains the Engesser-Shanley buckling load, it drops with increasing shortening until 

contact of the two ends of the beam-column occurs: this contact condition defines the locked-

up state 0 L 0 0 0( / / 0.5 / )u u t   .  The average collapse load F  is defined by  

L

1
L 1

1
( )

u

u

F F u du
u u


     (8) 

where 1u  is such that 1 L( ) ( )F u F u F  .  A scaling law for F  can be obtained by 

assuming that the collapse mode is adequately represented by the rotation of an effective plastic 

hinge at its mid-length.  The bar is subdivided into two cantilever beams, each of length 0 / 2

, and subjected to a transverse end force P .  The work increment PdW  in each of the sub-

beams is given by P ( )dW P d   where   is the transverse end deflection under the load 

P .  Now make use of the formula (A.36) for the transverse end deflection   of a built-in 

beam of length 0 / 2  under a transverse end load P .  The work increment PdW  can be 

rephrased in terms of an effective moment 0 / 2M P  and hinge rotation 02 /  , such 

that   M d P d  .  The work done in the bar equals that associated with the rotation of 

hinges in each of the sub-beams by / 2  such that L 1 0 / 2u u  .  Consequently, we 

obtain  

 

1
/2

0S 0
P 0 01/

00 0S

2 ( ) ( )

n

n

n

t
W M d Q n bt




 




 
    

 
  (9) 

where the constant of proportionality Q  scales only with n .  Also,  

 P L 1 02W F u u F       (10) 

and so we obtain  

 

1

0S 0
01/

00S

( )

n

n

n

t
F Q n bt







 
  

 
   (11) 
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We obtain an accurate expression for ( )Q n  via the FE simulations by making use of Eq. (8) 

rather than the approximate beam collapse calculation above, as our intent is only to determine 

the desired scaling relation via the approximate calculation.  Numerical evaluation of the 

integral in Eq. (8) gives the constant of proportionality ( )Q n ; its magnitude is plotted in Fig. 

5(d) for selected values of n  between 5 and 20. 

Now, the average macroscopic stress s  associated with the end-to-end shortening of struts 

C of the Kagome lattice from 1u u  to Lu u  is calculated via a simple work calculation 

for the unit cell of Fig. 1(b).  As the struts C shorten, the inclined struts A and B scissor and 

the lattice extends by an axial nominal strain e , such that  

0 L 18 ( )s e V F u u       (12) 

Here, 
2

0 04 3V b  is the volume of the unit cell and the factor of 8 on the RHS of Eq. (12) 

arises because the unit cell contains four horizontal struts, each of width b  and length 0  and 

each of which shortens by L 12( )u u .  The magnitude of e  from Fig. 4(a) is the increment 

in nominal strain over regime IIb.  Alternatively, the value 0.155e   can be estimated by 

the nominal macroscopic strain that brings the inclined struts A and B of a pin-jointed truss 

into contact, upon shortening the horizontal strut C to zero length.  The work statement Eq. 

(12) gives  

 

2 1

0S1/
0S

( )
n

n
n

R n
s  





       (13)  

upon using 0 03 /t   and upon defining 1/2( ) 1.24 ( ) / 3 nR n Q n .  The values of the 

constant ( )R n  are plotted in Fig. 5(d) for selected values of n  between 5 and 20.  Fig. 4(a) 

shows adequate agreement between the formula Eq. (13) and the FE prediction. 

We note in passing that plastic collapse in regime II can alternatively occur by rupture 

of strut A (or B) when the average tensile strain in this strut attains a critical value prior to the 

onset of buckling of strut C.  Assume that rupture occurs when the average tensile strain 

achieves the value 
(A)

1/ n  , thereby identifying it with the Considére necking strain for a 

power-law hardening solid.  The macroscopic nominal strain for the onset of rupture re  then 

follows from Eq. (A.21) as 
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The macroscopic strain cre  associated with the activation of the dominant mode of 

plastic instability (rupture of struts A or B versus buckling of strut C) is plotted in Fig. 6(a) as 

a function of n  for selected values of 0 0/t  in the range of 0.025 to 0.2.  The switch 

between modes is identified by equating Eq. (A.26) and Eq. (14) to give  

/2

3

2n



      (15) 

Selected contours of cre  are plotted as a function of ( , )n  in Fig. 6(b), with the boundary, 

Eq. (15), included in the map. 

 

Regime III: The FE and analytical models suggest that at L 0.42e e   , the inclined struts 

of type A and B stretch almost uniformly under the applied strain as given by Eq. (A.28) and 

the nominal stress-strain response in regime III is adequately given by Eq. (A.29).  The modes 

of deformation within different struts of a Kagome lattice during regimes I through III are 

summarized in Table 2.  

 

3.3 Equivalence of the Kagome and triangular lattices 

The above analysis in Section 3.2 suggests that the Kagome lattice undergoes transverse 

buckling under remote tension, in contrast to the triangular lattice which does not. In fact, both 

lattices are anisotropic in their plastic response and we shall now explain that the transverse 

tensile response of the Kagome lattice (along 1x -direction) of Fig. 1(b) is almost identical to 

the longitudinal tensile response of the triangular lattice (along 2x -direction), as defined in 

Fig. 1(a). Likewise, the transverse tensile response of the triangular lattice (loaded along 1x -

direction) is very close to that of the Kagome lattice loaded along the 2x -direction.  

 

Transverse tension of the Kagome lattice: The struts of type C undergo uniaxial tension when 

the Kagome lattice is subjected to transverse tension along the 1x -direction.  Negligible axial 

loads exist in the inclined struts of type A and B.  Consequently, the analytical model for the 

triangular lattice, as given by equations (A.3), (A.6), and (A.10), are valid for transverse tension 

of the Kagome lattice.  
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Transverse tension of the triangular lattice: Transverse tension of the triangular lattice induces 

tension in the inclined struts A and B and compression in the vertical strut C of Fig. 1(a). The 

analytical models for regimes I, IIa and III (but not IIb) are identical to those already developed 

for tensile loading of the Kagome lattice along the 2x -direction, see equations (A.16), (A.22), 

and (A.29).  The critical macroscopic stress crs  at the onset of buckling in strut C, and the 

average tensile stress s  in the transverse direction during the buckling of strut C in regime 

IIb can again be determined by the Engesser-Shanley estimate, and by a Maxwell-type 

construction, respectively.  Recall that the Engesser-Shanley buckling load in Eq. (A.23) and 

the average buckling load F  in Eq. (11) are expressed in terms of 0 0/t  for a single strut.  

Consequently, for the triangular lattice, the analytical form for crs  in Eq. (A.25) and s  in 

Eq. (13) is modified to5  

1
22
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    (16)  

and  

 

2 1

0S1/
0S

( )
n

n
n

T n
s  





      (17)  

with 0 02 3 /t  , 1/( ) 0.62 ( ) / (2 3) nT n Q n  and ( )Q n  already given in Fig. 5(d). 

3.3. Hexagonal lattice 

The macroscopic nominal stress s  versus nominal strain e  response of an 

elastoplastic hexagonal lattice is plotted in Fig. 7(a), for the choice of 0.1  , 0S 0.001   

and 10n  .  Fig. 1(c) identifies the 3 types of struts present in the unit cell of a hexagonal 

lattice: inclined struts A and B oriented at 
o60  to the loading axis 2x  and vertical strut C 

aligned with the loading axis.  The various regimes of tensile response of hexagonal lattice are 

now discussed in turn. 

 

                                                 
5 Note that the magnitude of the parameter 𝐴 in Eq. (1) differs for the triangular and Kagome lattices, and the 

unit cell of the triangular lattice in the work expression Eq. (12) consists of 1 strut of length ℓ0 giving 𝑉0 =

√3𝑏ℓ0
2/2, see Fig. 1(a).    
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Regime I: The linear elastic response of the lattice is characterized by an effective Young’s 

modulus, as given by Eq. (2), with 3 / 2B   and 3b  , see Gibson and Ashby (1997).  In 

regime I, struts A and B bend elastically, with a point of inflection at mid-length. Strut C is 

aligned with the loading axis and it stretches elastically.  The analytical model for the 

hexagonal lattice (in Appendix A.3) employs simple beam theory6 for struts A and B.  It 

predicts that the maximum local tensile strain M  in each strut occurs at the joint, and its 

magnitude is given by Eq. (A.35).  The FE prediction for M  in struts A and B is shown in 

Fig. 7(b): it is in excellent agreement with the analytical prediction of Eq. (A.35).  

 

Regime II: The macroscopic strain e  is almost entirely due to plastic bending of struts A 

and B with the vertical strut C stretching elastically, see Fig. 7(b).  The small strain analytical 

predictions as given by Eq. (A.38) for the nominal response and Eq. (A.39) for the maximum 

cell wall strain M  in struts A and B, are adequate in the initial stage of regime II up to 

0.1e  .  Thereafter, finite deflection effects stiffen the lattice. It is noted that the value of 

M  as obtained from beam theory (Eq. A.39) suggests that M  becomes unbounded as

n  ; a continuum analysis indicates that M  is finite for the elastic, ideally plastic solid, 

as discussed by Calladine and English (1984).  With increasing macroscopic strain, struts A 

and B rotate to align with the tensile direction 2x  and geometric-hardening of the lattice 

ensues, see Fig. 7(a). All struts within the lattice are aligned with the loading axis at a 

macroscopic lock-up strain L 0.33e  . 

 

Regime III: The analytical model of Appendix A.3 suggests that the increment in macroscopic 

strain post lock-up ( L 0.33e e   ) is due to uniform plastic stretch of strut C with negligible 

axial strain accumulation in struts A and B.  This is due to the fact that each strut C is tied to 

a pair of struts A and B, and so it carries twice the axial load.  The FE simulation supports the 

analytical prediction Eq. (A.40) that the axial strain in strut C is uniform and consequently 

good agreement between the FE and analytical models is achieved for both the macroscopic 

                                                 
6  Consider a cantilever beam subjected to a concentrated load at the tip. The tip deflection obtained via 

Timoshenko beam theory is higher than that obtained with simple beam theory by a factor 1 + 0.6(𝑡0/ℓ0)2 

(Timoshenko & Gere 1961). For 𝜌 = 0.1, the aspect ratio of strut B is 𝑡0/ℓ0 ≈ 1/6 and the two theories almost 

coincide. 
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stress s  and the axial strain across the section A  as a function of e , see Figs. 7(a) and 

(b).  There remains one subtlety.  The FE simulations reveal a local strain concentration near 

the joints for struts A and B.  This is indicated in Fig. 7(b) by the feature that A  for struts A 

and B exceeds that for strut C in regime III.  The local strain concentration arises from a 

combination of finite geometry changes at the joint and the high assumed value for n .  A 

summary of the various modes of deformation within the struts of a hexagonal lattice during 

regimes I through III is provided in Table 2.  

3.4. Diamond lattice 

The struts of a diamond lattice bend in a similar fashion to struts A and B of the hexagonal 

lattice when the lattice is subjected to uniaxial tension along the 2x -direction.  Consequently, 

the overall s  versus e  response of the diamond lattice is qualitatively similar to that of 

the hexagonal lattice, see Fig. 8.  The initial response of the diamond lattice is by elastic 

bending of the struts, followed by plastic bending until all the struts of the lattice align with the 

loading axis at a macroscopic nominal lock-up strain L 0.41e  .  The post lock-up response 

of the lattice involves plastic stretching of the aligned struts.  The three regimes of behaviour 

of the diamond lattice are now summarised.  

 

Regime I involves elastic bending of each strut.  The analytical model for strut A of the 

hexagonal lattice suffices to capture the response of each strut of the diamond lattice, upon 

suitably re-expressing the included angle   of the struts, and the relative density   in terms 

of 0t  and 0  for the diamond lattice, as discussed in Appendix A.3.  The effective Young’s 

modulus of the lattice is given by Eq. (2), with 1/ 4B   and 3b  , see for example Romijn 

and Fleck (2007).  The linear elastic response from the FE simulation is in excellent agreement 

with the analytical expression, see Fig. 8.  Likewise, the FE prediction for the maximum value 

M  of the local tensile strain in each strut is accurately predicted by simple beam theory, as 

given by Eq. (A.35) (not shown here). 

 

Regime II: Each strut of the lattice bends plastically; the lattice stiffens due to a reduction in 

the moment arm on each strut as a consequence of the alignment of the struts with the loading 

direction.  For 0.1e  , we find from FE simulations that A M   so that the macroscopic 
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s  versus e  response is adequately represented by the inextensional beam theory 

prediction Eq. (A.38).  The analytical model under-predicts the s  versus e  response for 

0.1e   when the role of finite rotations becomes significant, as seen from Fig. 8.  The struts 

align with the loading axis at a macroscopic lock-up strain L 0.41e e   . 

 

Regime III: Post lock-up, the struts stretch almost uniformly, with bending adjacent to the 

joints.  The analytical model for this regime is presented in Appendix A.3, and the 

macroscopic nominal stress versus strain response is given by Eq. (A.45).  Again, there is good 

agreement between the analytical and FE predictions. 

 

4. The macroscopic ductility and ultimate tensile strength (UTS) of each lattice 

We proceed to assess the ductility and tensile strength of each lattice, and define failure by a 

local strain criterion.  Recall that, for the beam elements adopted here, the distribution of 

strain is linear across the thickness with an average tensile value A  and a maximum tensile 

value M  on the outermost fibre.  Two criteria are employed, the local tensile strain (LTS) 

criterion and the average tensile strain (ATS) criterion, as follows.  

LTS criterion:  the maximum value M  of the local tensile strain anywhere in the 

lattice attains the failure strain f .  Ceramics and brittle metallic alloys such as high strength 

aluminium alloys develop cracks (for example by shear localisation) when a maximum tensile 

strain is achieved, and the LTS criterion is appropriate, see for example Onck et al. (2004); 

Mangipudi and Onck (2011); and Mangipudi and Onck (2012). 

ATS criterion:  the maximum value A  of the average tensile strain across any section 

of the lattice attains the failure strain f .  de Kruijf et al. (2009) have adopted this viewpoint 

in the context of beams made from highly ductile solids under combined bending and 

stretching.  

In the following subsections, comparisons are made for the macroscopic ductility and 

tensile strength of elastoplastic lattices with 0.1  , 0S 0.001   and 10n  .  The various 

lattice topologies listed in Fig. 1 are now compared in terms of their uniaxial tensile response, 

ductility, and ultimate tensile strength to determine the best choice of topology for structural 

load bearing applications.  By way of introduction, Fig. 9(a) compares the nominal stress 
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versus nominal strain response of the four lattices: they are strikingly different in response and 

so log-log scales are required to display all 4 curves. 

 

4.1. Ductility 

The lattice ductility fe  is defined as the remote value of strain at which M  or A  

within a critical cell wall attains the failure strain f .  Figures 9(b) and 9(c) show the 

predicted ductility for each lattice for the LTS ( fM  ) and ATS ( fA  ) criteria, 

respectively.   

Predicted ductility according to the LTS criterion 

The relative ranking of lattice in terms of macroscopic ductility fe  is sensitive to the assumed 

value of f .  For example, for the choice f 0.1%M    we note from Fig. 9(a) that

f 0.1%e  , 0.15%, 0.22%, and 0.67% for the triangular, Kagome, hexagonal, and diamond 

lattices, respectively.  In contrast, for f 10%  , we find that f 5.5%e  , 6.7%, 10%, and 

16.5% for the hexagonal, Kagome, triangular, and diamond, respectively. The analytical 

predictions, as taken from Appendix A for the macroscopic ductility of the four lattices, are of 

the form7  

f f
de D        (18) 

where ( )D D n , and d  is a constant independent of n .  These predictions are based on the 

assumption that failure precedes lock-up.  The values of ( , )D d  for each lattice are 

summarised in Table 3.  The analytical predictions of Eq. (18) are included in Fig. 9(b) as 

dashed lines and exhibit excellent agreement with the FE predictions. 

 

Predicted ductility according to the ATS criterion 

The ductility of triangular and Kagome lattices is insensitive to the choice of ATS versus LTS 

criteria as the cell walls predominantly stretch, compare Fig. 9(b) and 9(c).  In contrast, the 

                                                 
7 These are given by Eq. (A.3) for the triangular lattice upon assuming f 1e , Eq. (A.21) for the Kagome 

lattice, and Eq. (A.39) for hexagonal and diamond lattices. 
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ductility of the bending-dominated hexagonal and diamond lattices is sensitive to the choice of 

local (LTS) or cell thickness-average (ATS) failure strain since M A   in regime II prior 

to lock-up, and M A   in regime III.  Also, for the hexagonal and diamond lattices, the 

analytical models of Appendix A reveal that the level of average tensile strain across the cell 

wall A  is small in the plastic collapse regime II, typically below 1% in accordance with Eq. 

(A.39).  However, after lock-up A  increases in proportion to e , as demanded by Eq. 

(A.40) for the hexagonal lattice and Eq. (A.43) for the diamond lattice.  Consequently, for a 

wide range of cell wall failure strain f  in the range 0.1% to 10%, the ATS criterion suggests 

that the macroscopic ductility is close to the lock-up strain (on the order of 30%-40%).  We 

shall show that this feature disappears in the presence of large imperfections such as randomly 

displaced cell walls. 

 

4.2. Ultimate tensile strength (UTS) 

The ultimate tensile strength (UTS) of each lattice fs  is defined as the value of 

nominal stress s  at which a critical cell wall anywhere in the lattice attains the cell wall 

failure strain f .  A comparison of the UTS of the four lattices is given in Fig. 9(d) for 0.1 

, 0S 0.001   and 10n  , for both the LTS ( fM  ) and ATS ( fA  ) criteria. The 

following deductions are drawn from Fig. 9(d): 

(i)  Regardless of the choice of failure criterion, the Kagome lattice has the highest value of 

UTS, followed by the triangular lattice.  The diamond lattice is the next strongest provided 

f  is less than 0.4, otherwise the hexagonal lattice is the next strongest. 

(ii)  The UTS, fs , of the triangular and Kagome lattices is insensitive to the choice of the 

failure criterion. (The curves for the ATS and LTS criteria overlap each other for the triangular 

lattice in Fig. 9(d).) Failure occurs in regime I for f 0.1%  , in regime II for f0.1% 60%   

and in regime III for f 60%  . The slope of the log-log plot of fs  versus f  in regime II is 

close to 1/ 0.1n  , as predicted by the analytical formulae8 of Appendix A, and restated here 

                                                 
8 These are obtained by combining Eq. (A.3) and Eq. (A.6) for the triangular lattice, Eq. (A.21) and Eq. (A.22) 

for Kagome lattice, and Eq. (A.38) and Eq. (A.39) for hexagonal and diamond lattices. 
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where the values of ( , )C c  are listed in Table 3.  This analytical prediction is not displayed in 

Fig. 9(d), however the quantitative agreement is within 5% for both lattices, provided failure 

is within regime II. In regime III, the UTS of the triangular and Kagome lattices scales as 
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upon making use of Eq. (A.8) and Eq. (A.10) for the triangular lattice and Eq. (A.28) and Eq. 

(A.29) for the Kagome lattice. The constant M equals 1/ 3  for the triangular lattice and 

equals   1/ 3  for the Kagome lattice. 

(iii)  In contrast, the value of fs  for the hexagonal and diamond lattices is extremely sensitive 

to the choice of the failure criterion.  First assume that the ATS criterion holds.  Then, as 

discussed above in the context of macroscopic ductility of these lattices, failure occurs soon 

after lock-up (regime III) for a wide range of values of cell wall failure strain f .  In regime 

III, the ultimate tensile strength of the hexagonal and diamond lattices, according to the ATS 

criterion, are adequately given by the analytical predictions of Appendix A.3, upon combining 

Eqs. (A.40) and (A.42), and Eqs. (A.43) and (A.45) to give Eq. (A.20), where 1/ 2M   for the 

hexagonal lattice and 1/ 2M   for the diamond lattice.  Second, consider the LTS 

criterion.  Then, failure occurs predominantly in regime II, and the analytical prediction Eq. 

(19) again applies, with suitable values for ( , )C c  included in Table 3.  Again, the accuracy 

is adequate for our purposes (to within 5%), although the comparison is not shown explicitly 

in the figure. 

 

5. Effect of imperfections on lattice ductility 

Consider again the perfect 2D lattice topologies as shown in Fig. 1.  Random lattices 

are generated by displacing each node within the perfect lattice to a new random location9 (of 

                                                 
9
The random movement of joints increases the average length of each strut, and in turn the relative density 𝜌. 

Romijn & Fleck (2007) show from a simple geometric construction that the correction factor for 𝜌 is between 

1.0025 for 𝑅/ℓ0 = 0.1 and 1.0625 for 𝑅/ℓ0 = 0.5. 
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equal probability) to any spot on a circular disc of radius R .  Examples of imperfect 

topologies with 0/ 0.5R   are shown in Fig. 10 in their initial unstressed configuration.  A 

series of up to 10 structural realisations has been generated for each lattice, upon making the 

choice 0.05  , 0S 0.001   and 10n  .  We define the lattice ductility fe  as the value of 

macroscopic nominal strain e  at which M  or A  attain the cell wall failure strain f .  

The ductility of each lattice of Fig. 10 is determined from a representative volume element of 

10 x 10 cells subjected to uniaxial tensile loading along the global 2x -direction.  Following 

the definitions of LTS and ATS criteria in Section 4, we shall assume that the LTS criterion is 

satisfied at relatively small value of failure strain f  such that f 0.02M    in the 

examples that follow; the choice of failure strain f  for the ATS criterion is taken as 

f 0.1A    consistent with Considére cell-wall necking at 10n  .   

Consider first the LTS criterion.  The mean value of fe  of the imperfect lattice over 

the 10 realisations is plotted in Fig. 11(a) for selected values of 0/R  between 0 and 0.5, and 

failure in accordance with the LTS criterion.  For all lattice topologies, the random movement 

of nodes leads to a significant knockdown in ductility:  the triangular, diamond and hexagonal 

lattice drop in ductility by a factor of about 4, while the ductility of the Kagome lattice drops 

by an order of magnitude with increasing 0/R .  The difference in response for the Kagome 

lattice is consistent with the previous observation that the modulus, tensile strength and fracture 

toughness of the elastic-brittle Kagome lattice is the most sensitive to imperfection, recall 

Romijn and Fleck (2007) .   

Second, consider the ATS criterion, see Fig. 11(b).  All lattices fail when the struts are 

deforming in a stretching-mode.  This is subsequent to a bending phase of deformation for the 

hexagonal and diamond lattices, thus they exhibit the highest ductility regardless of the level 

of imperfection.  The hexagonal lattice drops in ductility by a factor of about 2, whereas the 

diamond lattice displays a drop by a factor of about 8 when 0/R  is increased from 0 to 0.5.  

Insight into the difference in response is obtained by plotting in Fig. 12 the deformed mesh for 

these 2 lattices at peak macroscopic stress, for the choice 0/ 0.5R  .  Each plot includes 

contours of the average axial stress A  across the cell wall of these 2 lattices, after suitable 
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normalisation by 0S .  Force chains10 develop in the hexagonal lattice, such that only a small 

fraction of the struts carry the macroscopic tensile stress, see Fig. 12(a).  In contrast, the 

diamond lattice in Fig. 12(b) does not develop force chains, rather it exhibits random strain 

concentrations due to the imperfections; the Kagome and triangular lattice also behave in this 

manner, with similar knockdowns in ductility with increasing imperfection. 

 

6. Effect of a finite crack upon tensile strength 

Recall the Dugdale analysis for yield versus fracture of an infinite panel made from an 

elastic-ideally plastic solid of yield strength Ys  and fracture toughness ICK .  The panel 

contains a finite crack of length 2a ; then, the panel yields at Ys s   for a short crack and 

fractures at ICK K  for a long crack, see for example Anderson (1995).  Now introduce a 

transition flaw size 
2 2

Ty IC Y/a K s  to mark the transition from macroscopic yield to fracture, 

and define the gross failure stress of the panel by fs .  Then, the Dugdale analysis suggests 

that the dependence of f Y/s s
 upon T/a a  is given by (Anderson 1995) 
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   (21) 

Equation (21) is commonly used as the basis of elastoplastic fracture mechanics, and is 

encapsulated in design codes such as R6 (2001).  In the current study, we proceed to explore 

the extent to which Eq. (21) holds for the case of elastoplastic lattices. 

Recall from Fleck and Qiu (2007) and Quintana Alonso and Fleck (2007) that the 

transition between strength-controlled fracture and toughness-controlled fractures occurs at a 

small transition crack length Tf 0a   for the triangular and hexagonal elastic-brittle lattices. 

In contrast, the transition crack length is large for the elastic-brittle Kagome lattice, 

Tf 0 /a  , and is very large for the diamond lattice, 
2

Tf 0 /a  .  Now, we know from 

Tankasala et al. (2015) that the fracture toughness ICK  of an elastoplastic lattice much 

exceeds that of the elastic-brittle lattice.  Consequently, much larger FE meshes are needed to 

explore the transition behaviour of the elastoplastic lattice than the elastic-brittle lattice, and 

                                                 
10

 The formation of force chains is a well-known phenomenon in granular media. The force network inside a 

granular packing is heterogeneous, with certain chains carrying most of the load (Hidalgo et al., 2004). 
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we restrict our attention to a centre-cracked panel (CCP) made from triangular and hexagonal 

elastoplastic lattices.  

The CCP contains a macroscopic crack of length 2a  in the form of a row of broken 

cell walls in a perfect lattice of size 2  x 2W H , see Fig. 13(a).  The assumed crack 

morphologies for the triangular and hexagonal lattices are depicted in Fig. 13(b) and Fig. 13(c) 

respectively.  We consider the case /H W = 1.2 and two extreme values / 0.05a W   and 

0.5 .  The choice / 0.05a W   depicts a crack in a large panel but has the shortcoming that 

very large FE meshes are needed, particularly at large 0/a .  In contrast, the choice 

/ 0.5a W   requires relatively small finite element meshes but has the limitation that the panel 

contains only a few cells across its width at small 0/a .   

The CCP is subjected to remote tensile stress s  in the 2x -direction of the lattice and 

we write fs s   at failure.  The sensitivity of f Y/s s
 to crack length 0/a  for the 

triangular lattice is given in Fig. 14(a) and (c), for the LTS and ATS criteria, respectively.  

Likewise, the sensitivity of f Y/s s
 to crack length 0/a  for the hexagonal lattice is given in 

Fig. 14(b) and (d), for the LTS and ATS criteria, respectively.  As before, the cell wall strain 

to failure f  is taken as f 0.02   for the LTS criterion and f 0.1   for the ATS criterion.  

For both lattices and for both failure criteria, we assume the representative values 0.05  , 

 and .  The analytical Dugdale solution Eq. (21) is included in dashed lines 

in Fig. 14 for comparison11. 

It is instructive to include the value of the transition flaw size 
2 2

Ty IC Y/a K s  on the 

abscissa of each plot of Fig. 14, upon taking the value of Ys  from Eq. (4) and Table 1, and 

ICK  (for both the ATS and LTS criteria) from Tankasala et al. (2015).  The reason for adding 

the value of Ty 0/a  to each graph of Fig. 14 is to assess whether the transition from strength 

to toughness control occurs at Tya a .  The transition crack length Ty 0/a  for the LTS 

criterion is 

1

Ty f

0 0S

n

n
h

a
H








 
  

 
 

   (22) 

                                                 
11The Dugdale expression Eq. (21) is modified in Fig. 14 to include the effect of finite geometry via the 

geometric calibration factor ( / , / )Y a W H W , as given in Liu (1996).  

0S 0.001  10n 
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with the values of the constants ( )H n  and h  given in Table 4 for both lattices for selected 

values of n .  (Values of ( , )H h for Kagome and diamond lattices have also been included in 

Table 4 for completeness).  For the ATS criterion, the dependence of ICK  upon 

 f 0S 0S 0, , , , ,n     has the same functional form for the ATS and LTS criteria for the 

triangular lattice, and consequently Ty 0/a  is still given by Eq. (22).  In contrast, the 

predicted fracture toughness of the hexagonal lattice is significantly greater for the ATS 

criterion than for the LTS criterion, as discussed by Tankasala et al. (2015), and Ty 0/a  is 

now given by 

2

Ty f

0 0S

250
na 



 
  

 
 

    (23) 

It is clear from the 4 plots of Fig. 14 that the strength of the cracked lattice does undergo a 

transition from strength-control to fracture-control at a crack length equal to Tya  for both 

lattices and for both criteria ATS and LTS. 

 The previous study by Tankasala et al. (2015) found that the magnitude of Tya  in Eq. 

(22) and Eq. (23) is comparable to the plastic zone size Pr  at the tip of a semi-infinite crack at 

the onset of failure.  Also recall that the usual criterion for the validity of Linear Elastic 

Fracture Mechanics (LEFM) is that the crack length satisfies  
2

IC Y P2.5 / 8a K s r   for a 

fully dense solid in plane stress12, see for example, Anderson (1995).  Thus, a useful measure 

for the validity of LEFM for a lattice material can be taken to be Ty8a a , and this criterion 

has been added to the abscissa of each plot in Fig. 14.  Upon taking the 4 graphs together in 

Fig. 14 it is clear that the lattice fails in accordance with LEFM when the crack length criterion 

Ty8a a  is met.  In this regime, fs  scales with 
1/2a  as expected for the long crack case. 

 

6.1. Sensitivity of strength to crack length for triangular lattice 

Fig. 14(a) shows the notch sensitivity of the triangular lattice for / 0.05a W   and 

0/a  in the range of 1 to 10, for the case of the LTS criterion.  (Prohibitively large FE meshes 

                                                 
12Although the plastic zone size directly ahead of the crack tip in plane strain is about a third that of the zone size 

in plane stress, the extent of the plastic zone from the crack tip, off-line of the crack is comparable for plane stress 

and plane strain. 
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are needed for longer crack lengths.)  The notch strength slightly exceeds the yield strength of 

a perfectly-plastic triangular lattice due to the low value of strain-hardening considered here 

( 10)n  .  The transition crack length is Ty 0/ 18a   (for the choice f 0.02  ) via Eq. 

(22), implying that LEFM is valid for Ty 08 144a a  .  It was impractical to perform finite 

element simulations in the LEFM regime for / 0.05a W   due to the prohibitively large mesh 

size.  Instead, the notch response in the LEFM regime was explored by performing FE 

calculations on the crack geometry / 0.5a W  ; these are included in Fig. 14(a).  We find 

from in Fig. 14(a) that the notch tensile strength of the triangular lattice asymptotes to the 

LEFM prediction for Ty8a a .  Similar observations are made for the ATS criterion as shown 

in Fig. 14(c).  The transition flaw size is then Ty 0/ 106a   (for f 0.1  ), and the FE 

predictions indicate that the notch response is adequately given by the LEFM estimate for 

Ty 08 848a a  .  

 

6.2. Sensitivity of strength to crack length for the hexagonal lattice 

The notch sensitivity of the hexagonal lattice is plotted in Fig. 14(b) according to LTS 

criterion. The transition flaw size is Ty 0/ 9a   such that, for Tya a , fracture is strength-

controlled, whereas for Ty 08 72a a   LEFM conditions prevail.  Again, the notch strength 

in the strength-controlled regime is slightly higher than the yield strength of a perfectly plastic 

hexagonal lattice as a result of minor strain hardening in the cell wall material.  Consider now 

the ATS criterion.  The transition flaw size for f 0.1   is Ty 0/ 454a   according to Eq. 

(23).  We note from Fig. 14(d) that the notch strength fs  for 0/ 70a   is up to an order 

of magnitude higher than the yield strength Ys  of the perfectly plastic hexagonal lattice as a 

result of geometric hardening of the lattice: cells wall align with the loading axis.  

 

6.3 The elastic-brittle case 

The notch sensitivity curves for the elastic-brittle triangular and hexagonal lattices are 

plotted in Fig. 15(a) and (b).  Failure occurs when the local maximum tensile stress M  

attains the failure strength f  of the solid: this is a LTS-type of criterion but based upon stress 

and not strain.  The strength of the pre-cracked lattice is plotted as f f( ) / (0)s a s 
 versus 
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0/a , and the transition flaw size is defined as 21
Tf IC f( / ( 0))a K s a


  .  Again, the 

minimum crack length for which LEFM applies is taken to be Tf8a .  The Dugdale prediction 

Eq. (21) now becomes 

2 2
f

Tf f

ln sec
82 ( 0)

sa Y

a s a

 



  
  

    

   (24) 

where the Dugdale expression has been modified by to include the effect of finite geometry on 

the K-calibration via the geometric calibration factor ( / , / )Y a W H W , as given in Liu (1996).  

The analytical prediction (24) has been added to the 2 plots of Fig. 15, and is accurate over the 

full range of 0/a  for the triangular lattice, see Fig. 15(a), and in the LEFM regime Tf8a a  

for the hexagonal lattice.  Equation (24) is slightly non-conservative, however, for crack 

lengths shorter than Tf8a  in the hexagonal lattice, see Fig. 15(b). 

 

7. Concluding remarks 

The uniaxial tensile response of 2D elastoplastic lattices has been analysed for 4 

morphologies: triangular, Kagome, hexagonal, and diamond lattices.  We have demonstrated 

that the tensile of each lattice is characterized by 3 regimes of behaviour: (i) initial linear elastic 

regime, (ii) plastic collapse regime as a result of cell wall bending or stretching, and (iii) post-

lock up stretching-dominated regime due to the rotation of the inclined struts towards the 

macroscopic loading direction.  The analytical models adequately capture the lattice response 

in all 3 regimes.  Additionally, when the Kagome or triangular lattice is so-orientated with 

regard to the macroscopic loading direction that it has transverse struts, a plastic buckling 

mechanism is activated.  Buckling of these transverse struts leads to the formation of crush 

bands aligned with the macroscopic direction of loading.  The macroscopic tensile stress is 

almost constant in the phase of crush band broadening; this has been captured by a simple 

Maxwell-like construction for the post-buckling collapse response of a single transverse strut.  

Our study reveals that the macroscopic ductility and ultimate tensile strength of perfect 

2D elastoplastic lattices depends on the relative density, the extent of strain-hardening in the 

strut material, cell wall failure strain and the choice of the failure criterion.  We find that the 

stretching-dominated triangular and Kagome lattices each have comparable tensile strengths 

for the LTS and ATS criteria.  In contrast, the macroscopic strength of the bending-dominated 

hexagonal and diamond lattices drop significantly when the ATS criterion is replaced by the 
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LTS criterion. 

The role of imperfections in the form of randomly misplaced joints on the macroscopic 

ductility of the lattice has been assessed for the 4 elastoplastic lattices.  For the LTS failure 

criterion, we find that that the ductility of the Kagome lattice drops by an order of magnitude 

with increasing degree of randomness, consistent with the previously observed sensitivity of 

elastic-brittle Kagome lattice to the random movement of nodes, recall Romijn and Fleck 

(2007).  For the ATS failure criterion, the hexagonal lattice has the highest ductility regardless 

of the level of imperfection.  

Finally, the notion of a transition flaw size has been analysed for the elastoplastic 

triangular and hexagonal lattices;  their elastic-brittle counterparts are extremely flaw 

sensitive, with the transition crack length on the order of the cell size.  The transition flaw size 

is sensitive to the assumed failure strain: the transition flaw size increases dramatically with 

increasing failure strain, as made explicit by Eqs. (22) and (23).  We find that the LEFM 

prediction for notch tensile strength is adequate when the crack length exceeds 8 times the 

transition crack length. Additionally, it is found that strain hardening in the strut material and 

the alignment of struts with the macroscopic loading direction increase the tensile strength of 

the hexagonal lattice in the notch-insensitive regime by up to an order of magnitude above the 

yield strength of the ideally plastic lattice. 
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APPENDIX A: Analytical models for the tensile response of each lattice 

Analytical models are derived herein for each of the four lattices of Fig. 1. The response 

of each lattice is subdivided into three regimes as follows. When subjected to an increasing 

macroscopic strain, the lattice responds elastically, regime I, followed by plastic collapse, 

regime II. At sufficiently large macroscopic strain the cell walls align with the loading 

direction, termed ‘lock-up’. Post lock-up, the cell walls stretch under uniform tension, termed 

regime III. In order to obtain analytical expressions for the macroscopic response, we shall 

assume small strains and deformations in regime I (elastic) and in regime II (plastic collapse). 

This assumption is fully justified for regime I, and holds in the initial stage of regime II up to 

a macroscopic nominal tensile strain of the lattice on the order of 0.15.  The finite element 

analysis reveals that regime II persists to much larger values of macroscopic nominal strain, as 

shown in Figs. 3,4,7 and 8.  Regime II ends at the onset of lock-up at finite deformation of 

each lattice. Thereafter, all lattices behave in a stretching manner, and simple analytical 

formulae can be established for the post lock-up regime III.  

In regime I, the macroscopic response of nominal stress 𝑠∞ versus nominal strain 𝑒∞ 

is determined analytically by assuming that the cell wall true stress 𝜎 versus true strain 𝜀 

response is linear and is given by 𝜎 = 𝐸S𝜀, where the cell wall Young’s modulus is 𝐸S =

𝜎0S/𝜀0S in terms of the yield strength 𝜎0S and yield strain 𝜀0S. The macroscopic response in 

regimes II and III is estimated by neglecting the linear elastic contribution to Eq. (6), such that, 

the true stress 𝜎 versus true strain 𝜀 in the cell wall satisfies  

 
𝜎

𝜎0𝑆
= exp (𝜀) (

𝜀

𝜀0𝑆
)

1
𝑛

 
(A.1) 

 

where 𝜎0S is the yield strength, 𝜀0S is the yield strain and 𝑛 is the strain hardening exponent 

of the solid.  The analytical models developed below are plotted in figures 3,4,7 and 8 for the 

triangular, Kagome, hexagonal, and diamond lattice, respectively. For any given topology, the 

inclined struts A and B (as labelled in Fig. 1) deform in the same manner. We proceed to derive 

the analytical models for each lattice, in turn.  

A.1. Triangular lattice 

The triangular lattice has a sufficiently high nodal connectivity of six that its 

macroscopic response is stretching-dominated and is adequately represented by a pin-jointed 

truss, see for example Deshpande et al. (2001). Write 𝑠∞ and 𝑒∞ as the macroscopic nominal 

stress and strain, respectively, and 𝜎(C) and 𝜀(C) as the true measures of stress and strain, 
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respectively, in the struts of type C;  these struts are aligned with the loading direction 𝑥2 as 

indicated in Fig. 1(a). The off-axis struts (A and B) carry no load. Then, in regimes I and II, 

equilibrium dictates:  

 𝜎(C) =
√3

2

ℓ0

𝑡(𝐶)
𝑠∞ 

(A.2) 

 

and the kinematics of the unit cell gives  

 𝜀(C) = ln
ℓ(C)

ℓ0
= ln(1 + 𝑒∞) (A.3) 

Here, the subscript 0 denotes the value in the reference (undeformed) configuration. Upon 

recalling that 𝜌 = 2√3𝑡0/ℓ0  and assuming 𝑡ℓ = 𝑡0ℓ0  by incompressibility, we have from 

Eq. (A.2) and Eq. (A.3),  

 𝜎(C) =
3

𝜌
(1 + 𝑒∞)𝑠∞ (A.4) 

and the macroscopic response in regime I (𝑒∞ ≪ 1) is  

 𝑠∞ =
𝜌

3
𝐸S𝑒∞ (A.5) 

In similar fashion, the macroscopic response in regime II, upon making use of Eq. (A.1), is  

 𝑠∞

𝜎0𝑆
=

𝜌

3
[
ln(1 + 𝑒∞)

𝜀0𝑆
]

1
𝑛

 (A.6) 

Regime II ends at the point of geometric lock-up of the lattice, such that the inclined 

struts A and B have rotated by 60o to align with the vertical strut C and begin to carry axial 

load. Upon assuming negligible cell wall extension and negligible axial force in the inclined 

struts A and B within regimes I and II, the nominal lock-up strain 𝑒L of the lattice is given by 

𝑒L = 1 by straightforward geometry. Regime III (𝑒∞ > 𝑒L) ensues, and all struts in the pin-

jointed parent truss undergo stretching.  Within regime III, the true axial strain within the struts 

reads  

 𝜀(C) = ln
ℓ(C)

ℓ0
= ln(1 + 𝑒∞) (A.7) 

for strut C, and  

 𝜀(A) = 𝜀(B) = ln
ℓ(𝐴)

ℓ0
= ln(1 +

1

2
(𝑒∞ − 𝑒L)) (A.8) 

for struts A and B. Force equilibrium gives  

 𝑠∞ √3ℓ0

2
= 𝜎(C)𝑡(C) + 𝜎(A)𝑡(A) (A.9) 
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so that, upon combining relations (A.1) and (A.7) to (A.9), the macroscopic response in regime 

III reads 

 𝑠∞

𝜎0𝑆
=

𝜌

3
[

1

𝜀0S
ln(1 + 𝑒∞)]

1
𝑛

+
𝜌

3
[

1

𝜀0S
ln(1 +

1

2
(𝑒∞ − 𝑒L))]

1
𝑛
 (A.10) 

A.2. Kagome lattice 

The Kagome lattice is also a stiff, stretching-dominated structure. Under uniaxial tensile 

loading of the pin-jointed unit cell in the 𝑥2 direction, the inclined struts A and B are in tension 

whereas the horizontal strut C is in compression. Consider first the initial, small deformation 

response of regime I and the initial stage of regime IIa.  Then, equilibrium gives the true axial 

stresses 𝜎(A), 𝜎(B) and 𝜎(C) in struts A, B and C, respectively, in terms of the nominal stress 

𝑠∞ as  

 𝜎(A) = 𝜎(B) =
2

√3

ℓ0

𝑡(A)
𝑠∞ (A.11) 

and  

 𝜎(C) = −
1

√3

ℓ0

𝑡(C)
𝑠∞ (A.12) 

Compatibility of the unit cell gives the cell wall (true) strain in terms of the deformed lengths 

of struts A (and B) and C, ℓ(A) and ℓ(C), respectively, and the initial length ℓ0 such that 

 exp(2𝜀(A)) =
1

4
exp(2𝜀(C)) +

3

4
(1 + 𝑒∞)2 (A.13) 

where  

 𝜀(A) = ln
ℓ(A)

ℓ0
 and 𝜀(C) = ln

ℓ(C)

ℓ0
 (A.14) 

Since the strains (𝜀(A), 𝜀(C), 𝑒∞) are small we can simplify Eq. (A.13) to 

 𝑒∞ =
4

3
𝜀(A) −

1

3
𝜀(C) (A.15) 

Consequently, the macroscopic response in regime I follows from equations (A.11), (A.12), 

(A.14) and (A.15) as  

 𝑠∞ =
𝜌

3
𝐸S𝑒∞ (A.16) 

with the axial strains in the struts given by  

 𝜀(A) = 𝜀(B) = −2𝜀(C) =
2

3
𝑒∞ (A.17) 

Likewise, the initial response in regime IIa follows by making use of Eq. (A.1) in preference 
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to the relation 𝜎 = 𝐸S𝜀, as follows. Combine Eq. (A.11), Eq. (A.12) and Eq. (A.14) to obtain 

the true axial stress in struts A and B as 

 𝜎(A) = 𝜎(B) =
2

𝜌
(exp 𝜀(A))𝑠∞ (A.18) 

and in strut C as 

 𝜎(C) = −
1

𝜌
(exp 𝜀(C))𝑠∞ (A.19) 

The relation between the true axial stress in struts B and C follows by substitution of Eq. (A.18) 

and Eq.(A.19) into Eq. (A.1), to give 

 𝜀(B) = −2𝑛𝜀(C) (A.20) 

Now substitute Eq. (A.20) into Eq. (A.15) to obtain the axial strain in each strut as  

 𝜀(A) = 𝜀(B) = −2𝑛𝜀(C) = 3
2𝑛

1 + 2𝑛+2 
𝑒∞ (A.21) 

The macroscopic nominal stress in the initial stage of regime IIa follows immediately from Eq. 

(A.11) to give  

 𝑠∞

𝜎0𝑆
=

𝜌

2
[3 (

2𝑛

1 + 2𝑛+2
)

𝑒∞

𝜀0𝑆
]

1
𝑛

 (A.22) 

 

Plastic buckling response in regime II 

At a critical nominal stress 𝑠cr
∞, strut C buckles: regime IIa ends and regime IIb (the post-

buckling regime) ensues. The buckling load, 𝑃cr
(C)

 for a strut C of thickness 𝑡0, length ℓ0, and 

width 𝑏 is given by the Engesser-Shanley formula:  

 𝑃cr
(C)

=
𝑘2𝜋2𝐸𝑆𝑇𝐼

ℓ0
2  

(A.23) 

 

where the end constraint factor k depends on the degree of constraint to rotation at joints, 𝐸ST 

is the tangent modulus of the solid, and 𝐼 = 𝑏𝑡0
3/12 is the second moment of inertia of the 

cell wall cross-section.  FE simulations performed on an infinite Kagome lattice are discussed 

in the main body of the paper (see for example Fig. 4) and suggest that 𝑘 = 2 is an adequate 

approximate for the capturing the buckling load at the start of regime IIb. Upon making use of 

Eq. (A.1), the buckling criterion (A.23) gives the critical strain in strut C, 𝜀cr
(C)

 at the onset of 

buckling as  

 𝜀cr
(C)

= −
𝜋2

9𝑛
𝜌

2
 (A.24) 

The corresponding macroscopic nominal stress, 𝑠cr
∞  and nominal strain, 𝑒cr

∞  follow by 
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application of Eq. (A.21) and Eq. (A.22) into Eq. (A.24) as 

 𝑠cr
∞ = 𝜎0S [

𝜋2

9𝑛𝜀0𝑆
]

1
𝑛

𝜌
𝑛+2

𝑛  (A.25) 

and  

 𝑒cr
∞ = 𝜋2

(1 + 2𝑛+2)

27𝑛
𝜌

2
 (A.26)  

respectively. 

The post-buckling response of the Kagome lattice is detailed in the main body of the 

paper, and a Maxwell construction is used to determine the constant applied macroscopic 

tensile stress until the point of lock-up.  In this post-buckling regime, the struts A and B bend 

and unload axially, while the horizontal strut C progressively shortens by buckling.  Assume 

that struts A and B rotate as rigid bodies without extension.  The lattice locks-up at a 

macroscopic nominal lock-up strain 𝑒L , such that struts A and B align with the loading 

direction.  The nominal macroscopic lock-up strain 𝑒L reads 

 𝑒L =
2

√3
(1 + 𝜀cr

(A)
) − 1 (A.27) 

where 𝜀cr
(A)

 is the critical axial strain in strut A (and B) at the onset of buckling obtained from 

combining Eq. (A.21) and Eq. (A.24). 

Post lock-up, struts A and B undergo affine deformation such that  

 𝜀(A) = 𝜀(B) ≈ ln(1 + 𝜀cr
(A)

+
√3

2
(𝑒∞ − 𝑒L)) (A.28) 

and the macroscopic nominal stress in regime III reads 

 𝑠∞

𝜎0S
=

𝜌

√3
[

1

𝜀0S
ln(1 + 𝜀cr

(A)
+

√3

2
(𝑒∞ − 𝑒L))]

1
𝑛

 (A.29) 

A.3. Hexagonal lattice and diamond lattice 

The hexagonal lattice is bending-dominated in uniaxial tension.  In contrast, the 

diamond lattice is strongly anisotropic:  it is stretching-dominated when loaded along the strut 

directions, but is otherwise bending-dominated.  For tensile loading along the 𝑥2-direction of 

Figs. 1(c)-(d), both lattices deform in essentially the same manner: the predominant mode of 

deformation in regimes I and II is bending of the inclined struts A and B.  These struts behave 

as built-in beams of length ℓ0/2 and width 𝑏 subjected to a transverse tip load 𝑃 at free end, 

see for example Gibson and Ashby (1997).  Consequently, the macroscopic response of the 
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lattice can be estimated from the end deflection of a single half-strut A (or B).  Simple beam 

theory gives the tip deflection 𝛿 for linear-elastic regime I as (Timoshenko and Gere 1961), 

 𝛿 =
𝑃

2𝑏𝐸𝑆
(

ℓ0

𝑡0
)

3

 (A.30) 

and the maximum strain 𝜀(A) (which occurs at the built-in end of the beam) is 

 𝜀(A) =
3𝑃ℓ0

𝐸𝑆𝑏𝑡0
2 (A.31) 

Now, by the method of sections, the macroscopic nominal stress 𝑠∞ for each lattice topology 

is related to 𝑃 by  

 𝑠∞ =
𝑃

ℓ0𝑏 𝑐𝑜𝑠2 𝛼
 (A.32) 

where 𝛼 is the inclination of strut A with the 𝑥1 axis: 𝛼 = 𝜋/6 for the regular hexagonal 

lattice, and 𝛼 = 𝜋/4 for the diamond lattice. Similarly, the nominal strain 𝑒∞ is related to the 

mid-span defection 𝛿 of strut A as  

 𝑒∞ =
2𝛿 𝑐𝑜𝑠 𝛼

ℓ0(𝑐0 + 𝑠𝑖𝑛 𝛼)
 (A.33) 

where the geometric parameter 𝑐0 = 1 for the hexagonal lattice and 𝑐0 = 0 for the diamond 

lattice.  

Combining relations (A.30) through (A.33) gives the macroscopic response in regime 

I as  

 𝑠∞ = 𝑐1𝜌
3

𝐸S𝑒∞ (A.34) 

where 𝑐1 = 3/2  and 𝜌 = 2𝑡0/√3ℓ0  for the hexagonal lattice and 𝑐1 = 1/4  and 𝜌 =

2𝑡0/ℓ0  for the diamond lattice. The maximum bending strain in struts A and B, upon 

combining equations (A.30), (A.31), and (A.33) reads 

𝜀(A) = 𝜀(B) = 𝑑1𝜌𝑒∞    (A.35) 

where 𝑑1 = 9/2 for the hexagonal lattice and 𝑑1 = 3/2 for the diamond lattice.  

 

In the initial part of regime II where the cell wall bending strain 𝜀(A) is small and comparable 

to the macroscopic strain 𝑒∞, it is adequate to treat the cell wall response as a Ramberg-Osgood 

power-law relation i.e., omitting the exp (𝜀)  term of Eq. (A.1). The corresponding  

corresponding relations for Eq. (A.30) and Eq. (A.31) in regime II then become 

 
𝛿

𝜀0𝑆𝑡0
= (

2𝑛 + 1

𝑛
)

𝑛 1

2(𝑛 + 2)
(

𝑃

𝜎0𝑆𝑏𝑡0
)

𝑛

(
ℓ0

𝑡0
)

𝑛+2

 (A.36) 

and  
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𝜀(A)

𝜀0S
= (

2𝑛 + 1

𝑛
)

𝑛

(
𝑃

𝜎0𝑆𝑏𝑡0
)

𝑛

(
ℓ0

𝑡0
)

𝑛

 (A.37) 

Now upon making use of Eq. (A.36), Eqs. (A.32) and (A.33) give the macroscopic response in 

regime II as  

 𝑠∞

𝜎0𝑆
= 𝑐2

𝑛

2𝑛 + 1
𝜌

2𝑛+1
𝑛 [

𝑛 + 2

2

𝑒∞

𝜀0𝑆
]

1
𝑛

 (A.38) 

where 𝑐2 = 31/𝑛 for the hexagonal lattice and 𝑐2 = 1/2 for the diamond lattice. Likewise, 

the maximum bending strain in struts A and B is obtained by dividing Eq. (A.37) by Eq. (A.36), 

and then making use of Eq. (A.33) to give 

𝜀(A) = 𝜀(B) = 𝑑2(𝑛 + 2)𝜌𝑒∞   (A.39) 

where 𝑑2 = 3/2 for the hexagonal lattice and 𝑑2 = 1/2 for the diamond lattice. 

At large values of 𝑒∞, strut B rotates to align with the loading axis 𝑥2; this marks the 

beginning of regime III. The hexagonal lattice locks-up at a nominal lock-up strain 𝑒L = 1/3 

and the diamond lattice locks up at 𝑒L = √2 − 1. In regime III (𝑒∞ > 𝑒L ), all cell walls 

undergo stretching. Write (𝜎(A), 𝜀(A)) and (𝜎(C), 𝜀(C)) as the true axial stress and strain in 

strut A (and B) and strut C, respectively. Note that struts A and B of the hexagonal lattice carry 

only half the tensile load as carried by strut C. Consequently, the axial strain in struts A and B 

is negligible, and strut C stretches according to  

 𝜀(C) = ln
ℓ(C)

ℓ0
= ln (1 +

3

2
(𝑒∞ − 𝑒L)) (A.40) 

The corresponding true stress in the strut is given by  

 𝜎(C) =
2

𝜌
(1 +

3

2
(𝑒∞ − 𝑒L)) 𝑠∞ (A.41) 

Now substitute relations (A.40) and (A.41) into Eq. (A.1) to give the nominal stress versus 

strain response of the hexagonal lattice in regime III as  

 𝑠∞

𝜎0S
= 0.5𝜌 [

1

𝜀0S
ln (1 +

3

2
(𝑒∞ − 𝑒L))]

1
𝑛

 (A.42) 

The struts A and B of the diamond lattice stretch by  

 𝜀(A) = 𝜀(B) = ln
ℓ(A)

ℓ0
= ln (1 +

1

√2
(𝑒∞ − 𝑒L)) (A.43) 

Joint equilibrium in the locked-up state of the unit cell gives 

 𝜎(A) =
√2

𝜌
(1 +

1

√2
(𝑒∞ − 𝑒L)) 𝑠∞ (A.44) 

Now substitute relations (A.43) and (A.44) into Eq. (A.1) to obtain the macroscopic response 
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of the diamond lattice in regime III as  

 
𝑠∞

𝜎0S
=

𝜌

√2
[

1

𝜀0S
ln (1 +

1

√2
(𝑒∞ − 𝑒L))]

1
𝑛

 (A.45) 
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Table 1. Coefficients for relative density  , elastic modulus E , ultimate tensile strength 

fs  (for elastic-brittle case), and plastic collapse strength Ys  (for perfectly plastic case). 

Lattice A   B  b  
1C  2C  

c  

Triangular 2 3   1/ 3  1 1/ 3  1/ 3  1 

Kagome 3  1/ 3  1 1/ 2  1/ 2  1 

Hexagonal 2 / 3  3 / 2  3  1/ 3  1/ 2  2  

Diamond 2  1/ 4  3  1/ 6  1/ 4  2  

 

 

Table 2. Primary mode of deformation within each strut of the elastoplastic lattice, for uniaxial 

tension (in the 2x -direction). 

 

Lattice Strut 
                    Regime 

    I  IIa  IIb III 

Triangular 

A, B Elastic bending 

Elastic bending 

and then plastic 

bending      - 

Plastic 

stretching 

C Elastic stretching 
Plastic 

stretching 

Plastic 

stretching 

Kagome 

A, B Elastic stretching 
Plastic 

stretching 

Rotation 

without stretch 

Plastic 

stretching 

C Elastic shortening 

Elastic 

shortening then 

plastic 

shortening 

Plastic 

buckling 

Plastic 

buckling 

Hexagonal 

A, B Elastic bending Plastic bending 

     - 

Plastic 

stretching 

C Elastic stretching 
Elastic 

stretching 

Plastic 

stretching 

 



43 

 

Table 3. Coefficients for lattice ductility fe  and ultimate tensile strength fs  in regime II. 

 

Lattice D   d  C  c  

Triangular 1 0  1/ 3  1 

Kagome 
21 2 1

3 2

n

n

 
 0  1/ 2  1 

Hexagonal 
2

3( 2)n 
  1  

2 1

n

n 
 2  

Diamond 
2

2n 
 1  

2(2 1)

n

n
 2  

 

Table 4. Coefficients for transition flaw size Ty 0/a  of the elastoplastic lattice according to 

LTS criterion. 

 

Lattice 
         H       

h  
3n   10n   n    

Triangular 0.76 0.67 0.59 0 

Kagome 0.056 0.05 0.02 -1 

Hexagonal 0.74 0.34 0.073 0 

Diamond 0.22 0.18 0.1 -2 
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Fig. 1. Lattice topologies and the corresponding unit cells employed for the FE analyses, for 

(a) triangular lattice; (b) Kagome lattice; (c) hexagonal lattice; and (d) diamond lattice. 

 

 

Fig. 2. Uniaxial true stress versus true strain response of the cell wall material as given by Eq. 

(6) for selected values of strain hardening exponent n  . 
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Fig. 3. Macroscopic nominal stress versus strain response of triangular lattice under uniaxial 

tension, for the case 0.1  , 0S 0.001   and 10n  . 

 

 

 

Fig. 4. Uniaxial tensile response of the Kagome lattice. (a) nominal stress versus nominal 

strain; and (b) cell wall true strain versus macroscopic nominal strain, for the case 0.1  , 

0S 0.001   and 10n  . 
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Fig. 5. Full response of a single strut subjected to axial compressive load. (a) end conditions 

on the strut; and load versus shortening response for selected values of (b) 0 0/t  and (c) n ; 

(d) coefficient of the Maxwell estimate for the average load in single strut (Q) and for the 

constant tensile stress in regime IIb of the Kagome lattice (R). 
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Fig. 6. Modes of plastic instability in regime II of the Kagome lattice.  (a) macroscopic strain 

at the onset of rupture (in strut A or B) and buckling (of strut C); and (b) a map showing the 

contours of macroscopic strain at the onset of instability with axes (1/ , )n  . 

 

 

 

 

Fig. 7. Uniaxial tensile response of the hexagonal lattice: (a) nominal stress versus nominal 

strain; and (b) cell wall true strain versus macroscopic nominal strain, for the case 0.1  , 

0S 0.001   and 10n  . 
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Fig. 8. Macroscopic nominal stress versus strain response of the diamond lattice under uniaxial 

tension, for the case 0.1  , 0S 0.001   and 10n  . 
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Fig. 9. A summary of the tensile response of the four lattices.  (a) nominal stress versus 

nominal strain response; macroscopic ductility versus cell wall failure strain according to (b) 

LTS criterion and (c) ATS criterion; and (d) ultimate tensile strength versus cell wall failure 

strain according to LTS and ATS criteria, for the case 0.1  , 0S 0.001   and 10n  . 
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Fig. 10. Random lattice topologies with 0/ 0.5R  .  

 

 

 

 

Fig. 11. A comparison of the macroscopic ductility of the four random lattices as a function of 

the degree of imperfection 0/R , according to (a) LTS criterion and (b) ATS criterion. The 

error bars in each case correspond to the standard error for a sample of 10 realisations. 
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Fig 12. A comparison of the deformed meshes (and contours of axial stress) at the instant when 

the ATS criterion is met in (a) random hexagonal lattice, and (b) random diamond lattice.  For 

both lattices, 0/ 0.5R  . 
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Fig. 13. Centre-cracked plate made from an elastoplastic lattice subjected to uniaxial tension. 

(a) Geometry and loading; crack morphologies for (b) triangular lattice; and (c) hexagonal 

lattice.  The observed failure site in both the lattices is indicated by x in parts (b) and (c). 
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Fig. 14. Notch tensile strength of the elastoplastic lattices as a function of crack length for the 

choice 0.05   and 10n  .  (a) triangular lattice with LTS criterion; (b) hexagonal lattice 

with LTS criterion; (c) triangular lattice with ATS criterion; and (d) hexagonal lattice with 

ATS criterion. The Dugdale prediction Eq. (21) is shown by dashed lines.  
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Fig. 15. Notch sensitivity of elastic-brittle lattices: (a) triangular lattice; and (b) hexagonal 

lattice. The Dugdale prediction, Eq. (24), is shown by dashed lines. 

 

  


