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N E U R O S C I E N C E

Atypical genomic cortical patterning in autism 
with poor early language outcome
Michael V. Lombardo1,2*, Lisa Eyler3,4, Tiziano Pramparo5, Vahid H. Gazestani5, Donald J. Hagler Jr.6,7, 
Chi-Hua Chen3, Anders M. Dale6,7,8, Jakob Seidlitz9,10, Richard A. I. Bethlehem2,11, 
Natasha Bertelsen1,12, Cynthia Carter Barnes5, Linda Lopez5, Kathleen Campbell5,13,  
Nathan E. Lewis14,15,16, Karen Pierce5, Eric Courchesne5

Cortical regionalization develops via genomic patterning along anterior-posterior (A-P) and dorsal-ventral (D-V) 
gradients. Here, we find that normative A-P and D-V genomic patterning of cortical surface area (SA) and thick-
ness (CT), present in typically developing and autistic toddlers with good early language outcome, is absent in 
autistic toddlers with poor early language outcome. Autistic toddlers with poor early language outcome are in-
stead specifically characterized by a secondary and independent genomic patterning effect on CT. Genes involved 
in these effects can be traced back to midgestational A-P and D-V gene expression gradients and different prenatal 
cell types (e.g., progenitor cells and excitatory neurons), are functionally important for vocal learning and human-specific 
evolution, and are prominent in prenatal coexpression networks enriched for high-penetrance autism risk genes. 
Autism with poor early language outcome may be explained by atypical genomic cortical patterning starting in 
prenatal development, which may detrimentally affect later regional functional specialization and circuit formation.

INTRODUCTION
It is widely accepted that autism spectrum disorder (ASD) is etio-
logically and clinically highly heterogeneous (1). This heterogeneity 
is theorized to manifest as a complex multiscale cascade from a 
diverse genetic architecture that converges onto a common set of 
downstream hierarchical mechanisms linked to the domains of early 
social-communication and restricted repetitive behaviors (2). Within 
the context of precision medicine (3), the major priorities for the 
field are to best understand how this complex multiscale cascade 
takes place for individuals with differing clinical outcomes and to 
isolate what could the common set of downstream mechanisms be 
for these individuals (1, 2, 4).

Regarding different clinical outcomes in ASD, perhaps the most 
understudied yet most important distinction is between those with 
relatively intact and good language levels and those who are mini-
mally verbal or have very poor early language outcome (5). ASD 
individuals with poor language represent a sizeable proportion of 
the early diagnosed population and are the most in need of inter-
vention to facilitate better outcomes (5). However, because language 

level is a key ingredient in helping to facilitate better outcomes, 
available early interventions may be least effective for these types of 
individuals (6). A better understanding of the underlying biology 
behind this good versus poor language distinction may be key to 
developing new individualized interventions that may be more 
effective at facilitating better outcomes. Thus, a key question looms 
about whether good versus poor language in ASD represents a bio-
logically distinct subtype with different multiscale biological cascades 
from genomics, up to neural phenotypes, and through to behavior. 
If good versus poor language signals a biologically distinct subtype, 
what is the common downstream explanation for how diverse ge-
netic mechanisms lead to altered brain and behavioral phenotypic 
development?

At the nexus of this puzzle, our prior functional magnetic reso-
nance imaging (fMRI) work showed that the neural systems respon-
sible for language respond differently between good (i.e., ASD Good) 
and poor (i.e., ASD Poor) early language outcome subtypes (7). 
Linked to this functional abnormality are different large-scale patterns 
of activity in blood leukocyte gene coexpression modules (8). This 
work suggests that early cortical functional specialization for 
language is lacking in the ASD Poor subtype and that large-scale 
functional genomic signal may explain this type of pathology. This 
large-scale functional genomic signal can be characterized as an 
omnigenic (9) array of genes that are typically broadly expressed 
across many organs and tissues, including the brain, and are highly 
active during prenatal periods of development (8). This prenatal 
enrichment is key because a large proportion of broadly expressed 
ASD risk genes remarkably show peak expression during early pre-
natal periods when processes such as cell proliferation, differentia-
tion, neurogenesis, and migration are highly prominent (10, 11). If 
these genes affect proliferation, differentiation, neurogenesis, and 
migration, it follows then that macroscale structural features of the 
developing cerebral cortex that are predicated on these processes, 
such as surface area (SA) and cortical thickness (CT) (12–15), may 
also be substantially altered in ASD Poor versus Good language out-
come subtypes.
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The prenatal actions of broadly expressed genes may also be 
important for telling us about some emergent consequences of such 
perturbations on how the cortex is genomically patterned and thus 
regionally and functionally differentiated. It is well established that 
during prenatal periods, the cortex is patterned by gene expression 
gradients that follow anterior-posterior (A-P) and dorsal-ventral 
(D-V) axes (12, 15–17). This prenatal genomic patterning is the 
beginning of cortical arealization processes that allow different 
cortical regions to develop their own cellular, functional, and circuit 
identities (12, 16) and thus aid in later regional functional special-
ization. In the adult brain, this genomic gradient patterning is still 
evident and correlates with large-scale gradient patterning of struc-
tural and functional features (13, 14, 18–20). Cortical arealization or 
patterning may also be atypical in ASD. Functional connectome 
gradient organization is altered in ASD (21). Case control compar-
isons of gene expression in postmortem cortical tissue have found 
dysregulation of cortical patterning genes and attenuation of gene 
expression differences in frontal versus temporal cortex (22–24). WNT 
signaling is also known to affect cortical patterning (12, 25), and WNT 
signaling abnormalities are also identified in ASD (23, 24, 26, 27), 
particularly within broadly expressed ASD risk genes (11). There-
fore, if broadly expressed genes prenatally affect proliferation, dif-
ferentiation, neurogenesis, and migration processes differently in 
the ASD Good versus Poor subtypes, could this explain the lack of 
functional specialization seen in prior work [e.g., (7, 8)]?

Here, we investigated these questions by examining how early 
variability in morphometric measures of the cerebral cortex such as 
CT and SA is patterned by large-scale variability in gene expression 
measured in blood leukocytes. We find that CT and SA associations 
with large-scale gene expression patterns are different in ASD Poor 
versus Good early language outcome subtypes. This difference can 
be described as the absence of normative genomic patterning of CT 
and SA in the ASD Poor subtype along A-P and D-V gradients and 
the establishment of a second unique type of patterning of CT specific 
to the ASD Poor subtype. These A-P and D-V genomic patterning 
effects on CT and SA comprise many of the same genes involved in 
actual prenatal A-P and D-V gene expression gradients and prenatal 
cell types predicted to be involved in SA and CT (12, 15, 28). Con-
sequently, these atypical genomic cortical patterning effects have 
important functional consequences, with enrichments in genes 
important for vocal learning, human evolution, and known ASD-
associated genomic mechanisms.

RESULTS
Enlargements of cortical volume and SA in the ASD Poor 
language subtype
In this study, we examined a cohort of n = 123 toddlers (mean age 
in months = 27.82, SD = 9.32) with and without ASD [ASD, n = 76; 
TD (typically developing), n = 47] with both a T1-weighted structural 
MRI scan and a blood sample that was used to examine gene expres-
sion in blood leukocyte cells (see Materials and Methods for sample 
description and table S1 for characterization of the sample). The n = 76 
ASD toddlers were split into ASD Poor (n = 38) and ASD Good (n = 38) 
early language outcome subtypes using 1 standard deviation cutoffs 
on Mullen expressive and receptive language (EL and RL) T-scores 
as in previous studies (see Materials and Methods) (7, 8).

One of the most robust findings on early structural brain devel-
opment in ASD is the on-average effect of early brain overgrowth in 

the first years of life (4). Thus, we started by examining whether there 
are subtype differences on global measures such as total cortical 
volume (CV), SA, and mean CT. Statistical models controlling for 
age and sex identified a group effect for total CV and total SA but no 
effect of group for mean CT (table S2). The group effects for CV and 
SA were explained by enlargements in ASD Poor versus TD (Fig. 1). 
Upon examining regional-level SA or CT effects while adjusting for 
global differences, we find no evidence of SA or CT group differences 
for any region within the GCLUST parcellation (table S3). These 
results generally indicate that ASD Poor explains the on-average ef-
fect of early brain overgrowth in ASD. These effects are restricted to 
CV and SA and are not apparent in regional measures after global 
differences are accounted.

Normative associations between gene expression and  
SA or CT are preserved in TD and ASD Good but are absent 
in ASD Poor language subtypes
To identify large-scale associations between gene expression and 
regional SA or CT, we used weighted gene coexpression network 
analysis (WGCNA) to reduce expression data of 14,426 genes highly 
expressed in blood leukocytes to 21 coexpression modules (table S4). 
Coexpression modules were summarized by the module eigengene 
and were input into a partial least squares (PLS) analysis to test for 
large-scale multivariate associations with SA or CT phenotypes from 
the GCLUST parcellation, which is sensitive to genomic effects on 
SA and CT A-P and D-V gradients (13, 14). This analysis allowed us 
to identify statistically significant multivariate relationships between 
gene coexpression modules and SA or CT and then allowed for ex-
amination of how the relationship manifests across brain regions 
and coexpression modules and also how these relationships mani-
fest in each group (see Materials and Methods for more details).

For SA, PLS identified one statistically significant latent variable 
(LV) pair (SA LV1: d = 3.99, P = 0.0001, split-half Pucorr = 0.01, and 
Pvcorr = 0.06), which explains 36% of the covariance between SA and 
gene expression. A highly similar result was obtained with a PLS on 
vertex-wise data (fig. S1). However, a PLS model using vertex-wise 
data explained far less percentage of covariance (17%) than the 
GCLUST-parcellated PLS model (fig. S2). This indicates that the PLS 
model on GCLUST-parcellated features is more sensitive for high-
lighting associations between gene expression and SA. To decompose 
how this multivariate relationship manifests across coexpression 
modules and groups, in Fig. 2A, we show which coexpression mod-
ules have “non-zero” relationships in each group. These “non-zero 
modules” are the coexpression modules of highest importance, as 
they have 95% confidence intervals (CIs) estimated by bootstrapping 
that do not include a correlation of 0 and are thus indicative of stable 
coexpression modules highly contributing to the SA LV1 relationship. 
In contrast, coexpression modules that we dub as “zero modules” 
are those whereby the 95% CIs include a correlation of 0 and thus 
do not reliably contribute to the overall SA LV1 relationship.

Non-zero modules for SA LV1 account for a good majority of all 
genes analyzed (68%) and were highly enriched for broadly expressed 
genes [enrichment odds ratio (OR) = 3.48, P = 1.90 × 10−71; table 
S5]. These two observations are compatible with predictions from 
the omnigenic theory of complex traits, in which variance in com-
plex traits such as ASD is exerted en masse by a large majority of 
genes that affect the primary tissue of relevance and by genes that 
are broadly expressed across many organs and tissues, but which 
also have impact on the brain (9). These effects are also in line with 
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similar results observed for large-scale gene expression associations 
with functional imaging phenotypes in ASD early language outcome 
subtypes (8).

Figure 2A also shows that non-zero modules are highly similar 
for ASD Good and TD groups, whereas hardly any non-zero 
modules are present for ASD Poor. This similarity between ASD 
Good and TD can be quantified as a significant positive correlation 
in the PLS correlation values for these groups (r = 0.55, P = 0.008) 
(Fig. 2C). This result indicates that the SA LV1 relationship mani-
fests similarly in TD and ASD Good groups. In contrast, there is a 
lack of correlation between ASD Poor and the other groups (ASD 
Poor–ASD Good: r  =  0.27, P  =  0.23; ASD Poor–TD: r  =  −0.41, 
P = 0.06) (Fig. 2C). Therefore, SA LV1 can be described as a large-
scale SA–gene expression relationship that likely reflects a norma-
tive phenomenon present in TD and that is also preserved in the 
ASD Good subtype. However, this normative SA–gene expression 
relationship is absent in the ASD Poor subtype.

PLS analysis applied to GCLUST CT data isolated two statistical-
ly significant LV pairs (CT LV1: d = 4.30, P = 0.0001, split-half 
Pucorr = 0.04, and Pvcorr = 0.01; CT LV2: d = 3.09, P = 0.0001, split-half 
Pucorr = 0.02, and Pvcorr = 0.05), explaining 37 and 19% of the cova-
riance between CT and gene expression, respectively. PLS analysis 
on vertex-wise data produced similar results (fig. S1), but again, it 
was not as good as the PLS on GCLUST-parcellated features, as in-
dicated by less percentage of covariance explained (CT LV1 = 17%; 
CT LV2 = 11%) (fig. S2). Similar to SA LV1, non-zero modules for 
CT LV1 comprise a large majority of all genes examined (65%), are 
enriched for broadly expressed genes (OR = 2.96, P = 4.43 × 10−43; 
table S5), and thus are compatible with predictions about omnigenic 
effects exerted by broadly expressed genes. The relationships are 
also highly similar for ASD Good and TD, but not ASD Poor 
(Fig. 2, D and F), which indicates that CT LV1 mostly pertains to a 
normative relationship preserved across TD and ASD Good, but 
which is absent in ASD Poor.

Atypical association between gene expression and CT, 
specific to ASD Poor language subtype
In contrast to CT LV1, the non-zero modules for CT LV2 are almost 
exclusively relevant for the ASD Poor subtype, comprise about 48% 
of all genes examined, do not show specific enrichment for broadly 
expressed genes (table S5), and do not show strong correlations be-
tween groups (Fig. 3, A and B). These results indicate that CT LV2 
captures a relationship that is specific to ASD Poor. Furthermore, 
because PLS LVs are orthogonal to each other, CT LV2 is an inde-
pendent relationship capturing effects that appear primarily in the 

ASD Poor subtype. While CT LV2’s non-zero modules appear to be 
somewhat overlapping to CT LV1, the way these modules can affect 
CT is sometimes opposite to the directionality shown for CT LV1. 
For example, superior parietal cortex in CT LV1 has negative brain 
bootstrap ratio (BSR) values (Fig. 2E), while in CT LV2, the BSR 
values are strong and positive (Fig. 3C). This reversal in BSR values 
indicates different directionality of the gene expression–CT relation-
ship. In other brain regions such as the language-sensitive left hemi-
sphere perisylvian, middle temporal, and inferior parietal cortices, 
CT LV1 shows BSRs that are close to 0 in CT LV1 (Fig. 2E), indicating 
little to no importance of these regions for LV1. However, the BSRs 
in CT LV2 for these regions are very strong (either blue- or red- 
colored BSRs in Fig. 3C), indicating that these regions are of 
strong importance for the CT LV2 relationship. These observa-
tions further indicate how CT LV2 captures a specific and indepen-
dent type of genomic association with CT that is present primarily 
in ASD Poor.

A-P and D-V gradient patterning of SA and CT are atypical 
in the ASD Poor language subtype
We next investigated how large-scale genomic variability patterns 
SA and CT cortical phenotypes. The patterning of PLS BSR values 
(Fig. 4A) can be used to answer this question. Brain BSRs can be 
interpreted as pseudo Z-statistics computed for each brain region 
and indicate not only the importance of each brain region for the LV in 
question but also the directionality through which gene expression is 
associated with SA and CT. It is visually evident from Fig. 4A that 
BSR patterning is not uniform across cortical regions and varies 
considerably along A-P and D-V axes. With a two-cluster solution 
previously identified by Chen and colleagues (13, 14) to be the 
genetically parcellated A-P and D-V axes of SA and CT (Fig. 4B), we 
confirm that BSRs highly differ along these A-P and D-V clusters 
(Fig. 4D). This indicates that the relationship between gene expres-
sion and SA or CT at one pole of the A-P or D-V axes is different 
relative to the other pole.

Perhaps even more notable than these differences between binary 
A-P and D-V partitions is that BSRs also covary along continuous 
A-P and D-V genetic similarity gradients. After ordering regions by 
genetic similarity gradients found by Chen and colleagues (13, 14) 
(Fig. 4C), we find that BSRs are highly correlated with the ordering 
along this axis of genetic similarity between regions (Fig. 4E). This 
indicates that large-scale blood leukocyte gene coexpression rela-
tionships with SA and CT reveal how the cortex is genomically pat-
terned to promote the development of cortical regionalization and 
areal identity (12). Because SA LV1 and CT LV1 are normative 
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effects primarily relevant for TD and ASD Good, but not ASD Poor, 
these results indicate that normative genomic patterning of the cor-
tex does not occur in the ASD Poor subtype. Conversely, CT in 
the ASD Poor subtype may be patterned in a different way given that 
CT LV2 was primarily relevant to this subtype and given that 
the BSR patterning is reversed for CT LV2 compared to CT LV1 
(Fig. 3). Given the evidence of focal laminar patches throughout the 
cortex in ASD (29), it will be important for future work to investi-
gate further how these phenomena may be relevant to atypical CT 
patterning, particularly in the ASD Poor subtype.

The use of the GCLUST parcellation does not appear to bias the 
emergence of these A-P, D-V, or genetic similarity gradients. In a 
vertex-wise PLS, we find that the patterning of brain BSRs follow 
the same types of gradients for SA LV1, CT LV1, and CT LV2 (fig. 
S3). Unlike the genomic patterning effects, we also found that pat-
terning of the group differences in effect size for CT and SA does 
not follow similar A-P and D-V gradients (fig. S4). This result sug-
gests that these cortical patterning effects are not simply effects that 
can be seen as on-average group differences in SA or CT, or biases 
due to the parcellation scheme, and point more toward the specific 
importance of how the underlying genomic mechanisms act to pat-
tern SA and CT across the cortex.

Genes involved in gradient patterning of SA and  
CT follow similar gradients of gene expression during 
prenatal development
Because cortical regionalization begins in early prenatal periods from 
A-P and D-V gradient patterning of gene expression (12, 15, 17), we 
next assessed whether genes from SA and CT non-zero modules 
encompass many of the same genes that play important prenatal roles 
in the genomic gradient patterning of the cortex. Using the prenatal RNA 
sequencing (RNA-seq) data from the Development PsychENCODE 
dataset, we used sparse principal components analysis (PCA) (30) 
to identify A-P (PC1) and D-V (PC2) gene expression gradients and 
the most important genes contributing to those gradients from 
12 regions of prenatal cortical tissue sampled from 12 to 24 weeks 
after conception (e.g., midgestation) (Fig. 5, A to C). SA LV1 and 
CT LV1 non-zero modules are highly enriched for genes that com-
prise the prenatal A-P and D-V gradients (Fig. 5D). Enrichments 
were also seen for CT LV2, but unlike SA LV1 and CT LV1, the 
enrichments were apparent for both zero and non-zero modules 
(Fig. 5D). These results suggest that the genes responsible for the 
normative SA LV1 and CT LV1 relationships are also genes in prenatal 
periods that act to initialize the regionalization and patterning 
of cortex along A-P and D-V axes. Because SA LV1 and CT LV1 
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Fig. 2. Normative associations between gene expression and SA or CT are absent in ASD Poor. (A) PLS correlations for each gene coexpression module (rows) and 
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relationships are largely absent in the ASD Poor subtype, this result 
suggests that the atypical genomic patterning of SA and CT in this sub-
type could stem from perturbations in earlier prenatal development.

Genes expressed in prenatal progenitor cell types explain 
SA associations, while genes expressed in later 
differentiated excitatory neurons explain CT associations
The evidence that SA and CT non-zero modules are enriched for 
genes that are important for midgestational A-P and D-V expres-
sion gradients leaves open the question of what prenatal cell types 
might explain such effects. The radial unit hypothesis (15) suggests 
that symmetric cell division in progenitor cell types (e.g., radial glia) 
in the ventricular zone leads to a substantial proliferation of radial 
units that then each become their own cortical columns and thus 
leads to substantial expansion of SA. Variation in this proliferative 
process in different parts of the ventricular zone protomap regu-
lates regional differences in SA (12, 15). Therefore, progenitor cells 
are the primary cell types expected to explain SA effects. Programmed 
cell death could also be another mechanism regulating SA (12) and 
could implicate microglia involvement in SA. In contrast, CT is 
likely regulated by asymmetric cell division leading to more neurons 
within particular cortical columns (15) and intermediate progenitor 
(IP) cell types (12). CT is also heavily influenced by dendritic arbor-
ization (28). While arborization changes over development due to a 
variety of factors such as experience-dependent pruning, CT and the 
trajectory it follows over development are also known to be heavily 
influenced by genetic factors even in middle-aged adults, suggesting 
that individual differences in CT have a genetic and neurodevelop-
mental origin (31). These ideas would support the prediction that 
relatively later differentiated cell types (compared to progenitor cells), 
such as excitatory neurons, could explain CT effects.

Given that cell type markers from midgestational periods 
are available (32), we next asked whether specific prenatal cell 

type markers are enriched for genes from SA and CT non-zero 
modules. In notable agreement with the prediction that progenitor 
cells explain SA effects (12, 15), we find that SA LV1 non-zero 
modules show enrichments for all progenitor cell types—ventricular 
and outer radial glia (vRG and oRG), cycling progenitors in S and 
G2M phases of cell cycle (PgS and PgG2M), and IPs. Several 
non-neuronal cells also show SA LV1 enrichments, including oligo-
dendrocyte precursors (OPCs), endothelial cells (End), and micro
glia (Mic) (Fig. 5E and table S6). In contrast to these cell type 
enrichments, there is little evidence of enrichment of genes specific 
to later differentiated excitatory [maturing excitatory (ExM), 
migrating excitatory (ExN), maturing excitatory upper enriched 
(ExM-U), excitatory deep layer 1 (ExDp1), and excitatory deep 
layer 2 (ExDp2)] and inhibitory [interneuron caudal ganglion 
eminence (InCGE) and interneuron medial ganglion eminence 
(InMGE)] neurons.

For CT LV1 and LV2, we identify enrichments for vRG and IP 
progenitor cell types that are compatible with the hypothesized ef-
fects of IP cells on CT (12). However, CT LV1 and LV2 primarily 
show a different cell type enrichment profile from SA LV1, through 
the marked presence of enrichments with several types of excitatory 
neurons (Fig. 5, F and G, and table S6). This result indicates a notable 
contrast between the SA LV1 enrichment profile of primarily pro-
genitor cell types and is compatible with the radial unit and protomap 
hypotheses (15), differential SA and CT GWAS (genome wide associa-
tion studies) enrichments (33), and other viewpoints regarding contribu-
tors to CT (28). These results also highlight the effects of non-neuronal 
cell types such as microglia cells. Microglia enrichments are present 
and particularly strong for SA LV1 and CT LV1 non-zero modules. 
This effect may have implications for programmed cell death and 
pruning explanations (34) and may be relevant to ideas behind ASD-
relevant broadly expressed genes and their particularly strong effects 
on non-neuronal cell types such as microglia (11).
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Non-zero modules are enriched for genes involved 
in vocal learning
The results so far suggest that SA and CT non-zero modules are 
highly prenatally relevant for establishing cortical patterning and 
regionalization and implicate several cell types that may be of 
mechanistic importance to different ASD early language outcome 
subtypes. However, are the SA and CT non-zero modules also func-
tionally relevant for processes that are essential for language devel-
opment? Our prior work showed that PLS non-zero modules 
associated with speech-related fMRI response (8) were highly 
enriched for differentially expressed (DE) genes in Area X from a 
songbird model of vocal learning (35). To test whether similar 
enrichments held up for SA and CT non-zero modules, we ran 
enrichment tests with vocal learning DE genes from Hilliard and 
colleagues (35). We find similar types of enrichments between DE 
songbird vocal learning genes and PLS non-zero modules in SA 
LV1 (OR = 2.02, P = 1.05 × 10−4) and CT LV1 (OR = 1.90, P = 9.61 × 
10−4) but not zero modules (P > 0.08) (Fig. 6, A to C, and table S6). 
For CT LV2, enrichments were present at false discovery rate (FDR) 
q < 0.05 (but not FDR q < 0.01) for both non-zero (OR = 1.62, 
P = 0.006) and zero modules (OR = 1.61, P = 0.017). These effects 
suggest that many genes responsible for vocal learning in songbirds 
are conserved and highly represented specifically within SA and CT 
non-zero modules that are relevant for groups with relatively intact 
language (e.g., TD and ASD Good).

Genes within SA non-zero modules are specifically enriched 
in human-specific genes
Language is a uniquely human ability, and there is some evidence 
that genes implicated in human-specific evolution are also relevant 
for autism (36, 37). In prior work, we found that PLS non-zero 
modules associated with speech-related fMRI response (8) were en-
riched for DE genes in the cortex of humans versus nonhuman 
primates (i.e., “human-specific” genes). Given that cortical SA is a 
phenotype that is markedly expanded in human evolution, and much 
more so than CT, we investigated the hypothesis of whether SA 
non-zero modules would be specifically enriched for human-specific 
genes. Using three lists of human DE genes in prenatal, early post-
natal, and adulthood periods (36), we find that SA LV1 non-zero 
modules are specifically enriched for prenatal and adulthood human- 
specific genes (prenatal OR  =  1.86, P =  1.93 × 10−3; adulthood 
OR = 1.97, P = 1.02 × 10−5) (Fig. 6D and table S6). In contrast, no 
such enrichments are found with genes relevant to CT LV1 or LV2 
(Fig. 6, E and F). In addition to DE genes, we also examined genes 
that are targets of human-accelerated regions (HARs) or human-
gained (HGE) or human-lossed enhancer (HLE) regions (37). However, 
no enrichments for SA or CT were identified for HAR, HGE, and 
HLE genes (Fig. 6, D to F). These results expand on the notion that 
human-specific genes are of relevance to ASD by showing that the 
normative genomic mechanisms associated with SA are also genes 
of importance for human-specific evolution. Given that the SA LV1 
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relationship is absent in ASD Poor, this suggests that the loss of 
these normative associations may allow for early SA expansion and 
possibly early brain overgrowth for ASD Poor.

Non-zero modules are enriched for ASD-associated genes 
that affect prenatal development
Next, we asked whether SA and CT non-zero modules were rele-
vant for known autism-associated genomic mechanisms. SA LV1 
and CT LV1 non-zero or zero modules are not enriched for rare de 
novo protein-truncating variants (dnPTVs) (38) or other genes that 
are annotated as autism-associated in SFARI Gene (39). However, 
CT LV2 non-zero modules were enriched for SFARI ASD genes 
(table S6). Thus, at the level of ASD risk gene mutations, CT LV2 
was the only feature showing enrichments with non-zero modules. 
This could be compatible with the nature of CT LV2 being mostly 
specific to the ASD Poor subtype.

At the level of genes with evidence of ASD-dysregulated expres-
sion from postmortem cortical tissue, we find that both CT LV1 and 
LV2 non-zero modules were enriched for ASD up-regulated genes 
(40). In contrast, genes from cortically down-regulated coexpression 
modules (23) were highly enriched with genes from SA LV1 non-zero 
modules (table S6). This result shows an interesting contrast between 
CT and genes that show up-regulated expression versus SA and genes 
that show down-regulated expression in ASD.

Non-zero modules from SA LV1, CT LV1, and CT LV2 are also 
enriched for coexpression modules that are highly transcriptionally 
active during prenatal periods and that contain many high-penetrance 
ASD-related mutations (Fig. 7, A to C, and table S6). This is com-
patible with the idea that broadly expressed genes can interact and 
affect key ASD risk genes, particularly in prenatal periods (10, 11). 
Downstream targets of highly penetrant genes such as FMR1 and 

CHD8 were also enriched in non-zero modules from SA LV1, CT 
LV1, and CT LV2. However, not all of these enrichments are specific 
to autism-associated genes. Genes differentially expressed in schizo-
phrenia (40) were also significantly enriched in non-zero modules 
across SA LV1, CT LV1, and CT LV2.

Last, we examined enrichments with cell type–specific DE genes 
in autism (41). Here, we found that only SA LV1 non-zero modules 
are enriched for DE genes in microglia cells (Fig. 7D). No other com-
parisons for DE cell types were statistically significant. See Fig. 7 
and table S6 for a summary of autism-associated enrichments. The 
fact that non-zero modules are devoid of enrichments in most DE 
genes from specific cell types is compatible with the notion that these 
genes are of primary relevance for early prenatal periods and will 
not be a highly discoverable DE signal in postmortem ASD tissue.

To aid future work examining specific genes of interest, we fo-
cused on identifying high-confidence ASD risk genes (annotated as 
the “high-confidence” category 1 list in SFARI Gene) that are also 
SA-relevant and prenatally relevant progenitor and A-P patterning 
genes (i.e., the intersection of SFARI ASD, SA non-zero modules, 
PC1 A-P genes, prenatal progenitor cell types, and ASD prenatal 
coexpression modules). SON and BAZ2B were identified, and these 
genes play roles in splicing, cell cycle, transcriptional regulation, 
and chromatin remodeling. For CT LV1 genes, we next searched for 
high-confidence ASD risk genes that were also prenatally relevant 
excitatory and D-V patterning genes (i.e., the intersection of SFARI 
ASD, CT LV1 non-zero modules, PC2 D-V genes, prenatal excit-
atory cell types, and ASD prenatal coexpression modules). Here, we 
find ASD high-confidence genes of ATRX, AUTS2, and BCL11A. In 
a similar search within CT LV2 non-zero modules of prenatal rele-
vance to excitatory neurons and D-V patterning, we identified ATRX, 
AUTS2, BCL11A, CACNA1E, and MEIS2 as high-confidence ASD 
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Fig. 5. Enrichment between PLS non-zero modules and genes involved in prenatal A-P and D-V expression gradients and prenatal cell types. (A) Cortical brain 
areas sampled from 12 to 24 weeks after conception from the Development PsychENCODE RNA-seq dataset from Li and colleagues (17). Adjustment-for-confounds PCA 
(30) was used to isolate (B) A-P (PC1) and (C) D-V (PC2) expression gradients. (D) −log10 P values for enrichment tests of non-zero and zero modules for SA LV1, CT LV1, and 
CT LV2 for genes isolated from PC1 and PC2. (E to G) Enrichments in prenatal cell types for SA LV1 (E), CT LV1 (F), and CT LV2 (G). Asterisks mark enrichments at FDR q < 0.01. 
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risk genes. A common theme of all these CT-relevant genes is their 
role in chromatin modification and remodeling (with the exception 
of CACNA1E) and their links to syndromes causing intellectual dis-
ability. In addition, with the exceptions of BCL11A and CACNA1E, 
all SA- and CT-relevant high-confidence genes listed here fall into 
the broadly expressed gene list, highlighting the importance of these 
high-impact genes in ASD biology (10).

DISCUSSION
These findings represent a substantial enhancement to the mecha-
nistic and clinical precision of our understanding of the prenatal 
brain basis behind different types of ASD. The evidence here solid-
ifies the idea that the ASD Poor subtype is biologically distinct (7, 8) 
by revealing how large-scale functional prenatal genomic signal is 
differentially associated with structural cortical phenotypes such as 
CT and SA.

Going beyond the idea of whether these subtypes are biologically 
distinct, we also need an explanation for how diverse genetic mech-
anisms affecting ASD individuals may converge onto a common 
atypical downstream biological process and to understand when 
this process manifests as different during development. The current 
work gives the first insights into how to answer this question for the 
critical ASD Poor subtype. The prenatal genomic patterning of the 
cerebral cortex is the key explanation behind how diverse genetic 
mechanisms affect brain development for the ASD Poor subtype. 
Normative genomic patterning gradients emerge in the first and 
second trimesters of prenatal development along A-P and D-V axes 
and allow cortical areas to develop distinct cellular, functional, and 

circuit-level identities (12, 15–17). Prenatal cortical arealization 
processes are critical for circuit formation, maturation of distinct 
types of neurophysiological response, and the development of 
regional- and network-level functional specialization that occurs with 
postnatal experience (12). These processes are explained by genetic 
variation and manifest after birth as patterned effects in CT and SA 
phenotypes measured with structural MRI data (13, 14). This nor-
mative prenatal genomic cortical patterning effect is absent in the 
ASD Poor subtype. In addition to the lack of normative genomic 
cortical patterning of SA and CT, CT in ASD Poor is patterned in a 
unique manner (e.g., CT LV2) and potentially indicative of a sepa-
rate route through which genomic pathology affects CT and pene-
trates up through to the poor language clinical phenotype.

There are some caveats and limitations that are necessary to ad-
dress to interpret the present findings. First, the sample size of this 
study is moderate to above average for what is typical in most 
toddlerhood brain imaging and gene expression studies (42, 43), and 
this is the first to relate MRI phenotypes such as SA and CT in toddler-
hood to large-scale gene expression activity. Thus, future work rep-
licating these findings with larger samples is needed. Within the 
context of gene expression studies of brain tissue, sample sizes are 
typically much smaller than the current work and deal with RNA 
quality that is much lower than what is typical in studies using blood 
samples. In addition, postmortem brain tissue studies typically have 
much larger age ranges spanning toddlerhood to adulthood, sug-
gesting that there is much larger age-related heterogeneity in studies 
of brain tissue compared to blood. Thus, a relative strength of the 
current work compared to postmortem brain tissue studies is the 
restricted age range to the early toddler years, which helps enhance 
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sensitivity for very early developmental effects. Combining these 
two caveats with the rare ability to make stratifications, the current 
study is ahead of the norms typical for the context of gene expres-
sion studies in patients with ASD. Second, it is notable that we did 
not compare ASD Poor to a non-ASD comparison group with 
language and/or developmental delay (LD/DD). In prior work, we 
have shown how the developmental clinical trajectories for a non-
ASD LD/DD group are in fact different from the ASD Poor group, 
suggesting that ASD Poor is developmentally and behaviorally dis-
tinguished from LD/DD (7). We also showed in prior work that 
speech-related fMRI response in ASD Poor was distinctly different 
from a non-ASD LD/DD comparison group (7), which again sup-
ports the idea that ASD Poor is not simply just a reflection of LD or 
DD. In the current study, we did not have enough concurrent blood 
samples and MRI data from enough LD/DD participants for a suffi-
cient comparison group. Future work should attempt to collect these 
data as a further comparison to ASD Poor to better understand 
whether the atypical genomic cortical patterning effects are indeed 
specific to ASD Poor. Third, it is important to clarify that while there 
is some utility in using blood gene expression to relate to neuro-
developmental mechanisms in autism, there are limitations in how 
far it can go in highlighting mechanisms that can only be identified 
in brain tissue. For example, brain-specific genes cannot be ade-
quately assessed in blood, and thus, the findings here do not repre-
sent the contributions of such important genomic mechanisms and 
how they might affect neural phenotypes such as cortical pattern-
ing. Furthermore, using blood will not be able to capture tissue-specific 
effects regarding different isoforms, splicing, and/or epigenetic mech-
anisms. Despite these limitations, complex traits are theorized to be 
largely underpinned by omnigenic effects and include genes that 
are broadly expressed across several tissues other than the tissue of 
relevance (9). Applied to autism, it is known that the genomic land-
scape of autism includes many genes that are broadly expressed 

across many tissues and have strong regulatory impact (10). Given 
the inaccessibility of brain tissue in living patients, blood may be a 
key in vivo window into how some of these types of broadly expressed 
and regulatory genomic mechanisms affect complex cortical pheno-
types in an omnigenic fashion (8).

In conclusion, in the face of large heterogeneity in the ASD popu-
lation, the current work indicates that individuals with poor versus 
good early language outcome are explained by distinct genomic 
mechanisms that cascade to shape cortical phenotypes and later 
clinical outcomes. A common downstream impact of the diverse 
genomic mechanisms found in this work is the emergent effect of 
atypical genomic patterning of the cerebral cortex in the ASD Poor 
subtype. This atypical genomic cortical patterning effect points to 
early prenatal periods and the importance of an omnigenic signal 
driven by broadly expressed genes. The functional consequences of 
atypical genomic patterning of the cortex may be the curtailed de-
velopment of molecular cortical arealization processes that prohibit 
canonical circuit formation and later regional functional specializa-
tion that is likely necessary for facilitating better outcomes in these 
individuals.

MATERIALS AND METHODS
Participants
This study was approved by the Institutional Review Board at the 
University of California, San Diego. Parents provided written informed 
consent according to the Declaration of Helsinki and were paid for 
their participation. Identical to the approach used in our earlier studies 
(7, 8, 26), toddlers were recruited through two mechanisms: community 
referrals (e.g., website) or a general population–based screening 
method called Get SET Early (44) that allowed for the prospective 
study of ASD beginning at 12 months based on a toddler’s failure 
of the CSBS-DP (Communication and Symbolic Behavior Scales 

Non-zero modules Zero modules

0 10 20 30 40 0 10 20 30 40
log10(P value)

1.0

1.5

2.0

2.5

OR

Non-zero modules Zero modules

0 10 20 30 40 0 10 20 30 40
log10(P value)

1.2

1.6

2.0

OR

Non-zero modules Zero modules

0 10 20 30 40 0 10 20 30 40
log10(P value)

1.0

1.5

2.0

2.5

OR

Non-zero modules Zero modules

0 1 2 3 0 1 2 3
log10(P value)

1

2

3

OR

Non-zero modules Zero modules

0 1 2 3 0 1 2 3
log10(P value)

1

2

3

OR

Non-zero modules Zero modules

0 1 2 3 0 1 2 3
log10(P value)

1.0

1.5

2.0

2.5

3.0

OR

Autism-associated SA LV1 Autism-associated CT LV1 Autism-associated CT LV2

ASD DE Excitatory

ASD DE Inhibitory

ASD DE Microglia

ASD DE Oligodendrocyte

ASD DE Astrocyte

ASD DE Endothelial

ASD DE Excitatory

ASD DE Inhibitory

ASD DE Microglia

ASD DE Oligodendrocyte

ASD DE Astrocyte

ASD DE Endothelial

ASD DE Excitatory

ASD DE Inhibitory

ASD DE Microglia

ASD DE Oligodendrocyte

ASD DE Astrocyte

ASD DE Endothelial

*

ASD prenatal CoExpMod

 ASD down-reg
ASD up-reg

ASD Down-reg CoExpMod

CHD8 targets 1
CHD8 targets 2

SCZ DE
BD DE

ASD Up-reg CoExpMod

ASD dnPTVs
SFARI ASD

FMRP targets 1
FMRP targets 2

*
*

*
*
*
*
*
*

*

*
ASD prenatal CoExpMod

ASD down-reg
ASD up-reg

ASD Down-reg CoExpMod

CHD8 targets 1
CHD8 targets 2

SCZ DE
BD DE

ASD Up-reg CoExpMod

ASD dnPTVs
SFARI ASD

FMRP targets 1
FMRP targets 2

*

*

*

*
*
*
*
*

*

ASD prenatal CoExpMod

 ASD down-reg
ASD up-reg

ASD Down-reg CoExpMod

CHD8 targets 1
CHD8 targets 2

SCZ DE
BD DE

ASD Up-reg CoExpMod

ASD dnPTVs
SFARI ASD

FMRP targets 1
FMRP targets 2

*

*

*

*
*
*
*

*

*

*

*

Autism cell types SA LV1 Autism cell types CT LV1 Autism cell types CT LV2

A B C

D E F
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Developmental Profile) Infant-Toddler Checklist (45, 46). All toddlers 
were tracked from an intake assessment around 12 months and fol-
lowed roughly every 12 months until 3 to 4 years of age. All toddlers, 
including normal control participants, participated in a series of tests 
collected longitudinally across all visits, including the Autism Diag-
nostic Observation Schedule (Module T, 1, or 2) (47), the Mullen 
Scales of Early Learning (48), and the Vineland Adaptive Behavior 
Scales (49). All testing occurred at the University of California, San 
Diego Autism Center of Excellence.

Stratification of ASD Poor versus ASD Good was made on the 
basis of Mullen EL and RL T scores. An ASD toddler was classified 
as ASD Poor if both Mullen EL and RL T scores at the final outcome 
assessment was below 1 SD of the T score norm of 50 (i.e., T < 40). 
ASD Good labels were made if the toddler had either Mullen EL or 
RL T scores within 1 SD or above the normative T score of 50 (i.e., 
T ≥ 40). A total of n = 123 toddlers had T1 structural MRI and gene 
expression data available. From these 123 toddlers, n = 76 ASD 
individuals were examined and were split into the two language out-
come subtypes—ASD Poor, n = 38 (32 males and 6 females; mean 
age at MRI scan = 29.01 months, SD at MRI scan = 7.22, range = 12 
to 50 months); ASD Good, n = 38 (28 males and 10 females; mean 
age at MRI scan = 29.02 months, SD at MRI scan = 9.55, range = 14 
to 46 months); and TD, n = 47 (25 males and 22 females; mean age 
at MRI scan = 25.91 months, SD at MRI scan = 10.44, range = 13 to 
46 months). ASD subtypes and TD did not statistically differ in age 
at the time of scanning [F(2,120) = 1.62, P = 0.20]. For more demo-
graphic and phenotypic information, please see table S1.

Blood sample collection, leukocyte capture, RNA extraction, 
quality control, and sample preparation
Four to six milliliters of blood were collected into EDTA-coated 
tubes from toddlers on visits when they had no fever, cold, flu, 
infections or other illnesses, or use of medications for illnesses 
72 hours before blood draw. Blood samples were passed over a 
LeukoLOCK filter (Ambion, Austin, TX, USA) to capture and sta-
bilize leukocytes and immediately placed in a −20°C freezer. Given 
the role of the immune system in autism (50) as well as interactions 
between the brain and the immune system (51), immune cells in 
blood such as leukocytes were specifically examined. This choice also 
allows for constraint on the cell types for which RNA might arise 
from in blood because whole blood is a bulk sample and RNA could 
potentially come from many different cell types (e.g., leukocytes and 
platelets). Total RNA was extracted following standard procedures 
and the manufacturer’s instructions (Ambion, Austin, TX, USA). 
LeukoLOCK disks (Ambion, catalog no. 1933) were freed from RNAlater, 
and TRI Reagent (Ambion, catalog no. 9738) was used to flush out 
the captured lymphocyte and lyse the cells. RNA was subsequently 
precipitated with ethanol and purified though washing and cartridge-
based steps. The quality of mRNA samples was quantified by the 
RNA integrity number (RIN), values of 7.0 or greater were considered 
acceptable (52), and all processed RNA samples passed RIN quality 
control. Quantification of RNA was performed using NanoDrop 
(Thermo Fisher Scientific, Wilmington, DE, USA). Samples were 
prepped in 96-well plates at the concentration of 25 ng/l.

Gene expression and data processing
RNA was assayed at Scripps Genomic Medicine (La Jolla, CA, USA) 
for labeling, hybridization, and scanning with the Illumina BeadChips 
pipeline (Illumina, San Diego, CA, USA) per the manufacturer’s 

instruction. All arrays were scanned with the Illumina BeadArray 
Reader and read into Illumina GenomeStudio software (version 
1.1.1). Raw data were exported from Illumina GenomeStudio, and 
data preprocessing was performed using the lumi package (53) for 
R (www.R-project.org) and Bioconductor (www.bioconductor.org) (54). 
Raw and normalized data are part of larger sets deposited in the Gene 
Expression Omnibus (GEO) database (GSE42133; GSE111175).

A larger primary dataset of blood leukocyte gene expression was 
available from 383 samples from 314 toddlers with the age range of 
1 to 4 years old. The samples were assayed using the Illumina 
microarray platform on three batches. The datasets were combined 
by matching the Illumina Probe ID and probe nucleotide sequences. 
The final set included a total of 20,194 gene probes. Quality control 
analysis was performed to identify and remove 23 outlier samples 
from the dataset. Samples were marked as outlier if they showed low 
signal intensity (average signal 2 SD lower than the overall mean), 
deviant pairwise correlations, deviant cumulative distributions, de-
viant multidimensional scaling plots, or poor hierarchical clustering, 
as described elsewhere (55). The high-quality dataset included 360 
samples from 299 toddlers. High reproducibility was observed across 
technical replicates (mean Spearman correlation of 0.97 and median 
of 0.98). Thus, we randomly removed one of each of two technical 
replicates from the primary dataset. From the participants in the 
larger primary dataset, n = 123 also had MRI data, and thus, a total 
of n = 105 from the Illumina HT12 platform along with n = 18 from 
the Illumina WG6 platform were used in this study. Batch was not 
asymmetrically distributed across one subgroup more than another, 
as chi-square analyses on the contingency table between subgroup 
and batch show no effect [2(4) = 0.84, P = 0.93]. ASD subtypes and 
TD toddlers also did not statistically differ in age at the time of blood 
sampling [F(2,120) = 1.27, P = 0.28]. The 20,194 probes were then 
collapsed to 14,426 genes based on picking the probe with maximal 
mean expression across samples. Data were quantile-normalized 
and then adjusted for batch effects, sex, and RIN. These batch-, sex-, 
and RIN-adjusted data were used in all further downstream analy-
ses. We also checked for differences in proportion estimates of dif-
ferent leukocyte cell types (i.e., neutrophils, B cells, T cells, natural 
killer cells, and monocytes) using the CellCODE deconvolution 
method (56) but found no evidence of differences across groups for 
any cell type (see table S7).

Weighted gene coexpression network analysis
We reduced the number of features in the gene expression dataset 
from 14,426 genes down to 21 modules of tightly coexpressed genes. 
This data reduction step was achieved using WGCNA, implemented 
within the WGCNA library in R (57). Correlation matrices estimated 
with the robust correlation measure of biweight midcorrelation were 
computed and then converted into adjacency matrices that retain 
the sign of the correlation. These adjacency matrices were then raised 
to a soft power of 16 (fig. S5). This soft power was chosen by finding 
the first soft power where a measure of R2 scale-free topology model 
fit saturates. The soft power–thresholded adjacency matrix was then 
converted into a topological overlap matrix (TOM) and then a TOM 
dissimilarity matrix (e.g., 1-TOM). The TOM dissimilarity matrix 
was then input into agglomerative hierarchical clustering using the 
average linkage method. Gene modules were defined from the re-
sulting clustering tree, and branches were cut using a hybrid dynamic 
tree cutting algorithm (deepSplit parameter = 4) (fig. S5). Modules 
were merged at a cut height of 0.2, and the minimum module size 

http://www.R-project.org
http://www.bioconductor.org
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was set to 100. Only genes with a module membership of r > 0.2 
were retained within modules. For each gene module, a summary 
measure called the module eigengene was computed as the first PC 
of the scaled (standardized) module expression profiles. We also 
computed module membership for each gene and module. Module 
membership indicates the correlation between each gene and the 
module eigengene (see table S4). Genes that could not be clustered 
into any specific module are left within the M0 module, and this 
module was not considered in any further analyses. Further WGCNA 
analyses were run separately within each group to check for pres-
ervation of detected modules across groups at a soft power thresh-
old of 16. These analyses all indicated high levels of preservation 
(Zsummary > 10) (58) for all detected modules for each pairwise 
group comparison (fig. S6).

MRI data acquisition and analyses
Imaging data were collected on a 1.5-T General Electric MRI scan-
ner during natural sleep at night; no sedation was used. Structural 
MRI data were collected with a T1-weighted IR-FSPGR (inversion 
recovery fast-spoiled prepared gradient recalled) sagittal protocol 
[TE (echo time) = 2.8 ms, TR (repetition time) = 6.5 ms, flip 
angle = 12°, bandwidth = 31.25 kHz, field of view = 24 cm, and slice 
thickness = 1.2 mm]. Cortical surface reconstruction was performed 
using FreeSurfer v5.3 (http://surfer.nmr.mgh.harvard.edu/) (59–61), 
which uses routinely acquired T1-weighted MRI volumes (62), in-
cludes tools for estimation of brain morphometry measures such as 
CT and SA (63, 64), and enables interparticipant alignment via non-
linear, surface-based registration to an average brain, driven by cortical 
folding patterns (65). FreeSurfer has been validated for use in children 
(66) and used successfully in large pediatric studies (67, 68). Total 
CV, SA, and mean CT were computed on the basis of the Desikan-
Killiany parcellation. Regional SA and CT values were computed from 
a 12-region parcellation reported by Chen and colleagues (13, 14) 
based on genetic similarity in monozygotic twins. This parcellation 
scheme, known as GCLUST, is highly relevant for our purposes here 
because the parcellations are based on genetic patterning and has also 
been effectively used in developmental samples (31). Thus, GCLUST 
should help increase statistical power while also minimizing multi-
ple comparisons. The GCLUST parcellation is also important as it 
can be used to leverage information about genetic similarity gradients 
(e.g., rank ordering of regions by fuzzy clustering) in further analyses. 
The two-cluster A-P or D-V partitions found by Chen and colleagues 
(13, 14) are also relevant in further analyses for A-P and D-V gradient 
questions. For all 12 regions of the SA and CT GCLUST parcella-
tion, global effects were controlled for by dividing SA values by the 
mean SA, and for CT, we subtracted the mean CT from each region, 
as was done in prior papers using this parcellation scheme (13, 14).

MRI–gene expression association analysis
To assess multivariate MRI–gene expression relationships, we used 
PLS analysis (69). PLS is widely used in the neuroimaging literature, 
particularly when explaining multivariate neural responses in terms 
of multivariate behavioral patterns of variation or a design matrix. 
Given that the current dataset is massively multivariate both in terms 
of MRI and gene expression datasets, we used PLS to elucidate how 
variation in SA or CT covaries with gene expression as measured by 
module eigengene values of coexpression modules. PLS allows for 
identifying these relationships by finding latent MRI–gene expres-
sion variable pairs (LV) that maximally explain covariation in the 

dataset and that are uncorrelated with other MRI–gene expression 
LV pairs. The strength of such covariation is denoted by the singular 
value (d) for each brain–gene expression LV, and hypothesis tests 
are made via using permutation tests on the singular values. Further-
more, identifying brain regions that most strongly contribute to 
each LV pair is achieved via bootstrapping, whereby a BSR is creat-
ed for each region, and represents the reliability of that region for 
contributing strongly to the LV pattern identified. The brain BSR is 
roughly equivalent to a Z-statistic and can be used to threshold data 
to find voxels that reliably contribute to an LV pair.

The PLS analyses reported here were implemented within the plsgui 
MATLAB toolbox (www.rotman-baycrest.on.ca/pls/). Here, we ran 
two separate PLS analyses, one on SA and another on CT. Neuro-
imaging data entered into the PLS analyses come from the 12-region 
GCLUST parcellations for SA and CT. Because the TD group dif-
fered in the proportion and males versus females compared to the 
ASD groups, we used a linear model to remove the effect of sex from 
the SA and CT data. These SA and CT data with the sex effect re-
moved were input into the PLS analysis. For gene expression data, 
we input module eigengene values for all 21 coexpression modules. 
For statistical inference on identified MRI–gene expression LV pairs, 
a permutation test was run with 10,000 permutations. To identify 
reliably contributing regions for MRI–gene expression LVs and to 
compute 95% CIs on MRI–gene expression correlations, bootstrap-
ping was used with 10,000 resamples. Gene coexpression modules 
whereby 95% CIs do not encompass 0 are denoted as non-zero as-
sociation modules. All other modules where 95% CIs include 0 are 
denoted as “zero” modules. In addition, we ran 10,000 split-half 
resamples whereby the correlation between brain and gene expres-
sion saliences (Ucorr and Dcorr) was computed between the 2 split-
halves. These correlations between split-half saliences were then 
compared to the null distribution from 10,000 permutations to 
compute P values (Pucorr and Pdcorr), which statistically test the reli-
ability of salience patterns in split-half resamples (70).

From the PLS results, we tested whether groups show similar 
correlation patterns across modules. To test this question, we com-
puted Pearson correlations on the PLS correlation values for all 
pairwise group comparisons. Groups with similar PLS correlations 
will show statistically significant correlations. We also used the BSRs 
from the PLS analysis to identify whether BSRs covary along the 
genetic similarity gradients and A-P and D-V partitions found by 
Chen and colleagues (13, 14). Pearson correlations were used 
to identify correlations with genetic similarity gradients, while 
independent-sample t tests were used to compare A-P and D-V 
partitions.

All PLS analyses were computed on vertex-wise data and GCLUST-
parcellated data. This analysis used the same parameters (10,000 
permutations and 10,000 bootstrap resamples) as the GCLUST 
analysis and was computed on the sex and mean SA- or CT-adjusted 
vertex-wise data. A-P and D-V distinctions were assessed on vertex-
wise brain BSR data with violin boxplots (fig. S3) separated by A-P 
or D-V partitions. Genetic similarity gradient organization was as-
sessed by first computing the median BSR for each GCLUST parcel 
and then computing the correlation between median BSR and the 
genetic similarity gradient rank ordering from GCLUST. Similarity 
in gene coexpression module PLS correlations between GCLUST 
and this vertex-wise analysis was also computed as Pearson correla-
tions from the PLS correlation values for each module and group. 
Last, to assess which model (GCLUST or vertex-wise) was a better 

http://surfer.nmr.mgh.harvard.edu/
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model, we assessed which model had the highest percentage covariance 
explained. Comparison between GCLUST and vertex-wise PLS 
results can be seen in figs. S1 to S3.

Gene set enrichment analyses
We analyze enrichment between genes from PLS non-zero and zero 
modules and a host of other gene lists defined by a variety of criteria 
(see below for details). For these gene set enrichment analyses, we used 
a custom R code written by M.V.L. (https://github.com/mvlombardo/
utils/blob/master/genelistOverlap.R) that computes hypergeometric 
P values and enrichment ORs. The background pool for these 
enrichment tests was always set to 14,426. After all enrichment tests 
were computed, results are interpreted only if the enrichment was 
statistically significant after FDR correction for multiple compari-
sons at a threshold of FDR q < 0.01.

Prenatal gene expression gradients and cell types
To assess gradients in prenatal gene expression, we used RNA-seq data 
from the Development PsychENCODE dataset (http://development.
psychencode.org) (17). The data used were already preprocessed as 
described by Li and colleagues (17) (e.g., normalized and batch 
effects removed) and summarized to RPKM (reads per kilobase 
million). Sample data from all 12 available cortical regions from 12 
to 22 weeks after conception were used to capture the midgestational 
window of interest. Before running the analysis, we removed low-
expressing genes with log2(RPKM) below 2. The primary analysis to 
identify expression gradients was an adjustment-for-confounds PCA 
(AC-PCA) (30), which allowed for adjustment due to repeat measure-
ments from the same donor across sampled brain regions. Rank 
ordering of regions by A-P and D-V axes was used to statistically 
confirm that PC1 and PC2 components follow A-P and D-V gradients. 
Subsets of the most important genes for the top two PCs were iden-
tified with a sparse AC-PCA analysis, whereby the sparsity parameter, 
c2, was selected on the basis of a grid search with 10-fold cross valida-
tion. These PC1 and PC2 gene sets were used in enrichment tests 
with PLS non-zero or zero modules.

We also examined enrichments between PLS non-zero and zero 
modules and prenatal cell types identified from single-cell RNA-seq 
on midgestational prenatal brain tissue (32). These cell types included 
several classes of progenitor cells (vRG, oRG, PgS, PgG2M, and IPs), 
excitatory neurons (ExN, ExM, ExM-U, ExDp1, and ExDp2), in-
hibitory neurons (InCGE and InMGE), and other non-neuronal 
cell types (OPCs, Per, End, and Mic).

Tissue-specific enrichments
To better understand how genes expressed in blood leukocytes 
could be brain relevant, we annotated gene coexpression modules 
based on enrichments in genes known from expression across mul-
tiple tissues to be either broadly expressed or brain specific. Both of 
these categories contain genes that are expressed in cortical tissue 
but differ in the pattern of expression across other non-neuronal 
tissues. To define these lists, we downloaded transcript per million 
(TPM) normalized gene expression from 10,259 samples across 26 
tissues from the GTEx dataset (www.gtexportal.org) (71). In addition 
to brain and nerve tissue, the dataset included transcriptome data 
from 24 non-neuronal tissues, including the following: adipose, adrenal 
gland, blood vessel, breast, blood, skin, colon, esophagus, heart, liver, 
lung, salivary gland, muscle, ovary, pancreas, pituitary, prostate, 
small intestine, spleen, stomach, testis, thyroid, uterus, and vagina. 

We next defined a gene expressed in a tissue if it met two criteria. 
First, the gene TPM expression level was ≥3 in at least half of the 
samples from the tissue. Second, the median expression of the gene 
was equal or larger than its 25th percentile expression in GTEx 
cortex samples. The second criterion was included to account for 
the differences in the base expression level of the genes and their 
dosage-dependent translation and function. Broadly expressed genes 
were defined as genes that were expressed in ≥50% of non-neuronal 
tissues (i.e., tissues other than brain and nerve). The broadly ex-
pressed and brain-specific genes included genes that were expressed 
in the adult cortex based on the GTEx dataset.

Vocal learning enrichments
To test for enrichment between PLS non-zero modules and gene 
sets of functional relevance for language processes, we examined 
genes that are differentially expressed in a songbird vocal learning 
model. Songbirds are often used as animal models relevant for the 
vocal learning component of language (72). We investigated en-
richments with DE genes taken from a microarray dataset of Area X of 
songbirds (35). To identify DE genes between singing and nonsinging 
birds, we reanalyzed this dataset (GEO accession ID: GSE34819) 
using limma (73), and DE genes were identified if they passed 
Storey FDR q < 0.05 (74). These DE genes were also used for enrichment 
tests in our prior work examining gene expression relationships 
with language-relevant functional neural phenotypes measured 
with fMRI (8).

Human-specific enrichments
Given the uniquely human nature of language, we also tested 
hypotheses regarding enrichments with genes that are transcrip-
tionally different in the cortical tissue between humans and other 
nonhuman primates across prenatal, early postnatal, and adult 
periods (36). In addition, we also examined enrichments with genes 
linked to HARs, HGEs in prenatal and adult tissue, and HLEs (37).

Autism-associated enrichments
Ample evidence suggests that prenatal periods are critical for ASD 
(4, 10). To test enrichment with prenatal ASD-associated coexpres-
sion modules, we used coexpression modules from a study that 
analyzed the Allen Institute BrainSpan dataset (75). Parikshak and 
colleagues (76) analyzed only cortical regions from BrainSpan and 
identified M2 and M3 as prenatally active and enriched for rare protein-
truncating variants with high penetrance for ASD. We also tested 
enrichments with gene lists known to be associated with ASD, either 
from genetic evidence or evidence from cortical transcriptomic 
dysregulation. In particular, we examined a list of 102 rare dnPTVs 
associated with ASD (38); genes listed as ASD-associated in SFARI 
Gene (https://gene.sfari.org) in categories S, 1, 2, and 3 (downloaded 
on 16 July 2020) (39); and DE genes and cortical coexpression modules 
measured from ASD postmortem frontal and temporal cortex tissue 
(23, 40). To contrast ASD DE genes to genes that are DE in other 
psychiatric diagnoses that are genetically correlated with autism, we 
also used DE genes in schizophrenia and bipolar disorder from the 
same study that identified ASD DE genes (40). To go beyond DE 
genes identified in bulk tissue samples, we also examined ASD DE 
genes identified in specific cell types, particularly excitatory (ASD DE 
Excitatory) and inhibitory (ASD DE Inhibitory) neurons, microglia 
(ASD DE Microglia), astrocytes (ASD DE Astrocyte), oligodendrocytes 
(ASD DE Oligodendrocyte), and endothelial (ASD DE Endothelial) 

https://github.com/mvlombardo/utils/blob/master/genelistOverlap.R
https://github.com/mvlombardo/utils/blob/master/genelistOverlap.R
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cells (41). Last, we also tested for enrichments with known down-
stream targets of highly penetrant mutations known to be associated 
with ASD—FMRP and CHD8. For each, we had lists of down-
stream targets for two independent studies (77–80), where the overlap 
for FMRP targets was 3.71 and 27.61% for CHD8 targets.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abh1663

View/request a protocol for this paper from Bio-protocol.
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