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ABSTRACT 
 

Uncertainties associated with estimates of model parameters are inevitable when simulating and modeling 

chemical processes and significantly affect safety, consistency, and decision making. Quantifying those 

uncertainties is essential for emulating the actual system behaviors because they can change the management 

recommendations that are drawn from the model. The use of conventional approaches for uncertainty 

quantification (e.g., Monte-Carlo and standard polynomial chaos methods) is computationally expensive for 

complex systems with a large/moderate number of uncertainties. This paper develops a two-stage approach 

to quantify the uncertainty of complex chemical processes with a moderate/large number of uncertainties 

(greater than 5). The first stage applies a multiplicative dimensional reduction method to approximate the 

variance-based global sensitivity measures (Sobol's method), and to simplify the model for the uncertainty 

quantification stage. The second stage uses the generalized polynomial chaos approach to quantify 

uncertainty of the simplified model from the first stage. A rigorous simulation illustrates the proposed 

approach using an interface between MATLAB and HYSYS for three complex chemical processes. The 

proposed method was compared with conventional approaches, such as the Quasi Monte-Carlo sampling-

based method and standard polynomial chaos-based method. The results revealed the clear advantage of the 

proposed approach in terms of the computational efforts. 

 
Keywords: Uncertainty quantification; Process uncertainty; Sensitivity analysis; Multiplicative dimensional 

reduction method, Polynomial chaos. 



 

 

1. Introduction 

Uncertainties associated with process variables are inevitable when modeling and designing chemical 

processes and can significantly affect safety, consistency, and decision making. Conventional process design 

based on a nominal case without considering uncertainties can have negative influences on the design 

accuracy. The problems of process design under uncertainties has attracted considerable attention recently 

especially regarding safety, reliability, and economic decisions1. At the design level, the uncertainties, which 

depend on several input parameters, are classified into two common types, including the epistemic and 

stochastic uncertainties2. Regarding the definition of input variables, propagation via the process of all these 

input uncertainties onto the process output of interest is one of the main tasks of uncertainty analysis3.  

Probabilistic approaches, such as Monte-Carlo (MC) and Quasi Monte-Carlo (QMC) methods, provide a 

common framework for the uncertainty quantification (UQ) and uncertainty propagation (UP) in the model 

input to its output4-7. MC/QMC methods generate an ensemble of random realizations from its uncertainty 

distribution to evaluate the model for each element of a sample set and estimate the relevant statistical 

properties, such as the mean, standard deviation, and quantile of output8. Furthermore, it can examine the 

different parameter values one by one and combinations using a more comprehensive approach, performing 

a global sensitivity analysis9. Sensitivity analysis (SA) of a process model aims to characterize how the 

process model outputs respond to the variation in inputs with an emphasis on finding the input parameters to 

which the outputs are the most sensitive 10,11. Note that it is suitable for factor interactions and a non-linear 

relationships between factors and the output12 because it is interested in the entire field of potential alterations 

of the input parameters. 

 Despite the simplicity in their implementation, however, the mean convergence was estimated to be in 

the order of (1/ )O M , where M is the number of samples, which makes MC -based approaches 

computationally expensive and they are only used as a last resort. To tackle practical and time-consuming 

problems, Celse et al.13 constructed an accurate, efficient-to-evaluate surrogate model that can be used in 

place of expensive simulations. Currently, there is growing demand for computationally efficient surrogate 



 

 

models14 that can ensure an acceptable degree of accuracy15. Similarly, quantifying the dependence on the 

uncertain parameters using a surrogate model for generalized polynomial chaos (gPC) expansion achieved 

faster convergence rate in various areas, such as modeling, control, robust optimal design, and fault detection 

problems8. The gPC method, which was first proposed by Wiener 16, is a spectral expansion of a random 

process based on the orthonormal polynomials in terms of the random variables. Nagy and Braatz 17 

considered a polynomial chaos expansion for UQ and the robust design of a batch crystallization process. 

They reported that the gPC approach can reduce the computational cost for a system with a relatively small 

number of design inputs and uncertain parameters compared to MC/QMC methods. Shen and Braatz 18 

developed a new polynomial chaos based algorithm on the design of batch and continuous-flow chemical 

reactors with probability uncertainties. Duong and Lee 19,20 examined a PID controller design using the gPC 

method. Du et al. 21 demonstrated a fault detection solution by combining the gPC with a maximum likelihood 

framework. Recently, Duong et al.8 studied the problem of UQ /SA of chemical processes using the standard 

gPC method for systems with a small number of random inputs. Xiu and Karniadakis 22 proposed utilizing 

the Askey scheme for gPC expansion with non-standard distributions.  

When smoothness in the output is approximated, the gPC expansion for engineering purposes with a 

uniform and Gaussian distribution exhibited rapid convergence; in some cases, even exponential convergence 

can be obtained 23. A current limitation of the standard full gPC approach, where the coefficients are estimated 

using the tensor cubature, is that the number of model evaluations grows exponentially and may not be 

applicable to systems with a moderate/large number of uncertainties. In this paper, to overcome this 

computational limitation in the conventional approaches, a two-stage approach was proposed using the 

multiplicative dimensional reduction method (M-DRM) 24 and the standard gPC method 8. In the proposed 

approach, the M-DRM was first used to detect important inputs by approximating a complicated function of 

random variables as a derivation of the univariate functions. The standard gPC method was then applied for 

UQ by considering the important inputs only detected in the SA step. The proposed two-stage approach was 

then illustrated on complex chemical processes, such as the propylene glycol production process and a lean 



 

 

dry gas processing process. A rigorous simulation was performed by the interface between MATLABTM and 

Aspen HYSYSTM. The main target was to reduce the computational efforts (simulation time) for UQ 

significantly over conventional approaches, such as MC/QMC/standard gPC methods, when dealing with 

moderate/large number of uncertainties. The aim was to explain the efficient and practical framework and 

the typical steps involved SA and UQ.  

 

2. Variance based-sensitivity analysis 

Sensitivity analysis (SA) examines how the variability of the model output is affected by the uncertainty 

of various inputs. The methods for SA can be divided into two categories: local SA and global SA. The local 

approach uses one-factor-at-a-time experiments with gradients to study the local variability of the model, 

whereas global SA deals with the global variations in the output due to the given entire range of uncertainties 

on the inputs. This study focused on the global SA using Sobol’s indices, which are also known as a variance 

based method, to determine the variables most responsible for the uncertainty in the model output.  

Probability is a natural framework for modeling an uncertain input by assuming that the input is a N-

dimensional random vector of mutually intendent components, 1 2( , ,..., )Nx x x=ξ , with probability density 

functions of ( ) :i i i Rr x +G ® ; 

A steady-state process, which is described conceptually in Fig. 1, was summarized in the form of nonlinear 

equations: 

( )y h= ξ  (1) 

where y  denotes a process output (quantity of interest).  

The output mean and variance are defined as  
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Global sensitivity analysis is based on a decomposition of the computational model in Eq. (1) as follows 

25,26: 
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where 0 yy µ= . 

The terms in Eq. (4) can be obtained recursively as follows:  
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where ( ) []yé ùë ûE ξ  is the conditional expectation of ( )y ξ  when the corresponding inputs are set. The 

components defined in (5) can be proven to be orthogonal with each other.  

By taking advantage of the independent of the summands in Eq. (4), the output variance can be decomposed 

as: 
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In Eq. (7), the outer variance is taken over the corresponding inputs. 

The first order Sobol’s sensitivity index (function) quantifies the amount of the output variance that can be 

apportioned to the sole input variable, ix :   

i
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= .    (8)                                                                                                                                                    



 

 

Similarly, higher order sensitivity functions describe what part of the total variance is due to the joint effect 

of inputs, 
1

{ ,..., }
si ix x , as 
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The Sobol’s total effect functions quantify the total impact of the factor, ix , including all of its interactions 

with the other inputs: 
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In other words, if Ti is close to zero, the ith input, ix , can be neglected. 

The Monte Carlo method can be used to estimate the Sobol indices as follows 4. 

• Generate a Q N´A  matrix (Q is the sample size) from a given density function of inputs. 
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• Generate a Q N´B  matrix (independent fromA ) from a given density function of inputs. 
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• Form matrices iC  from all columns of B  except the ith column, which is taken fromA . 

• Obtain vectors of the model output, ( ) , ( ) , ( )
i iy M y M y M= = =A B CA B C , by computing the 

output of model (1) for all input values in (sample matrices) , , iA B C  . 

• First order indices are estimated as follows: 
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The total order indices is estimated as follows: 
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For a model with N inputs, the total computational cost is Q(N+2). 

 

3. Sensitivity analysis using multiplicative dimensional reduction method  

This section briefly describes the multiplicative dimensional reduction method (M-DRM) for the global 

sensitivity analysis from Zhang and Pandey 24. The M-DRM method will be used to simplify the model for 

UQ with the polynomial chaos method. 

 
3.1 Brief about M-DRM 

Consider an overall response function, ( )y h= ξ . Using the logarithmic transformation, one can obtain 

( ) log[ ( )] log{ [ ( )]}abs y abs hj = =ξ ξ . (15) 

Following the univariate conventional dimensional reduction method (C-DRM) in the literature27, an 

approximation of ( )j ξ can be written as 
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where the functions are referred to those in the original space as follows: 
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where 1 2( , ,..., )Nc c c=c  is a cut point. 

To invert the transformation, the original function can be written as 
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Substituting for the expressions from Eq. (17) into Eq. (18) leads to a multiplicative approximate of the 

response function: 
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This approximate model of the original input-output relation is known as the univariate M-DRM. 

3.2 Variance based sensitivity analysis by the M-DRM  

 Denote the mean and mean square of the k the dimensional function as 
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The mean and mean square of the output can be approximated as 
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Under the M-DRM approximation, an ith conditional expectation function, iD , can be evaluated as 
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The conditional second moment can be derived as 
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Therefore, the primary variance can be approximated as 

( ) 2 2var ( ) ( / 1)i i y i iD y x µ q r= é ù = -ë ûE ξ                                                  (24) 

The first order index can be approximated as 
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To evaluate the total sensitivity index, Ti, it is essential to calculate the following conditional variance: 

2 2
~ ~ ~var( ( ) | ) (( ( ) | ) ) (( ( ) | ))i i iy y y= -ξ ξ E ξ ξ E ξ ξ   (26) 

Owing to the M-DRM, the expectations in the right hand side of Eq. (26) can be approximated as 
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The conditional variance is obtained as 
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The expectation of the conditional variance is obtained as 
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Finally, the total sensitivity index of ix  can be approximated as 
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Furthermore, the Gaussian quadrature with q nodes is moderately efficient for calculating the one-

dimensional integrals in an integration of the univariate functions as follows: 

( )
1 1 1

1

( ) 2
1 1 1

1

( ,..., , , ,..., )

[ ( ,..., , , ,..., )]

q
l

k kl k k k N
l
q

l
k kl k k k N

l

w h c c c c

w h c c c c

r x

q x

- +
=

- +
=

ì
»ïï

í
ï »ïî

å

å
 (32) 



 

 

Regarding the standard of the M-DRM approximation, only Nq  total number of functional evaluations are 

required for complete sensitivity analysis. Note that only a small number of nodes q (5-10) is normally used 

in Gaussian quadrature. On the other hand, the MC method indices requires ( 2)N Q+  to estimate the 

sensitivity, where Q is a large number of samples (e.g., 10000). 

 

4. Uncertainty quantification with polynomial chaos 

Assume that n<N important inputs are detected from SA in the previous step. The following polynomial 

chaos based method8 can be used for UQ. The unimportant inputs are fixed to their nominal value. Therefore, 

the response function is expanded into a series of n variate Pth order polynomials: 
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where mf  is the coefficient of gPC expansion that satisfies 

[ ( )] ( ) ( ) ( )i i if f y f y dr
G

= F = FòE ξ ξ ξ .                                  (34) 

In Eq. (34), these coefficients of the gPC expansion can be calculated numerically through a discrete 

projection according to the procedure reported by Xiu 28: 

•  Choose a n-dimensional integration rule with 1 ... nq q´ ´ cubature nodes/weights  
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where 
...1 [ ]

q qn´ ´
× refers to the cubature numerical integration. 

• Using the numerical integration rule in Eq. (35), the gPC coefficients can be approximated as: 
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where jf is approximated numerically by jf and ( ) ( )jf Fξ ξ plays a role of ( )g ξ  in Eq. (35). The number 

of nodes (simulation) in the cubature rule rises exponentially. On the other hand, because only the 

important inputs (3-5 inputs) are considered, the number of simulations is still acceptable. An n-variate Pth 

order gPC approximation of the response function can be constructed in the form, 

1
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P
N j j

j
f f
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The truncated gPC expansion (37) contains all information about the statistical properties of the random 

output. Owing to the orthonormality of the gPC polynomials, the mean and variance of output may be 

calculated directly from the gPC coefficients. 

The mean value is the first expansion coefficient: 
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The variance of the output ( )y ξ  can calculated as the sum of the square of the remaining coefficients: 
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The output density function can be obtained by sampling the cheap-to-evaluate truncated gPC model in 

Eq. (37). 

 

5. Case study 

 
In this study, the UQ for two complex chemical processes was estimated based on the two-stage gPC-based 

approach. The emphasis is to explain the efficient, practical framework, and the principal steps involved SA 

and UQ, while further analysis can lead to a better understanding of those process models. 

5.1. Example 1: propylene glycol production process with six uniform uncertainties 
 

Propylene glycol (PG) has been used widely in industries, such as a food grade coolant in food industry29, 

solvent in cosmetics30, and de-icing fluid in aviation31. Referring to the conceptual model from HYSYSTM, 



 

 

Fig. 2 presents a flow diagram of a PG production process. In this process, propylene oxide (PO) is combined 

with water to produce PG in a continuously-stirred-tank reactor (CSTR). Owing to the exothermic reaction, 

a coolant stream circulates within the reactor jacket to remove any extra heat. The outlet stream is then 

introduced to a distillation column, in which PG is essentially recovered from the bottom stream with a purity 

of 99.5 wt. %. The distillation column operating at atmospheric pressure has 10 stages with a full reflux 

condenser and reboiler. 

Adapted from a practical point of view, the variations in temperature, feed flowrate, pressure, and other 

properties should be considered. In this study, the flowrates of PO and water, the temperature and pressure 

of the mixed stream, the temperature of the reactor effluent, and the reflux ratio of the column were assumed 

to be independently uncertain and distributed uniformly in intervals of. Other parameters, such as the reactor 

vessel volume, column pressure, and number of theoretical stages were assumed to be deterministic. 

According to the M-DRM, a set of 60 Gaussian quadrature nodes ,which was generated using the 

MATLABTM codes from the orthogonal polynomial toolbox 32, was passed to HYSYSTM, where the PG 

process in Fig. 2 was modeled rigorously. The reboiler duty as outputs from HYSYSTM were collected and 

used for SA in Eq. (31). The Sobol’s sensitivity indices, which can be used to identify the inputs of the model 

and have the largest influence on the prediction, were derived for the UQ and SA. Table 2 lists the sensitivity 

indices obtained from the M-DRM. As a result, the two random variables, i.e., the flowrate of water and the 

reflux ratio, were detected as being important while the heat duty was most sensitive to the flowrate of the 

feed water. Other random variables, including the PO feed flow rate, the temperature and pressure of the 

mixed stream, and the outlet temperature of the reactor effluent become non-influential factors that can be 

omitted in UQ. In particular, owing to the effective detection of the non-influential input of the M-DRM, one 

can simplify the model, and a 10th order with two variates gPC, which requires only 10x10 simulations, was 

constructed for the UQ of the process. Because precise estimates of the process output cannot be accessible, 

the results of the proposed method were compared with those of the QMC method with a sufficiently large 

number of simulations. For an accurate estimation of the probability, the number of samples for the QMC 



 

 

method was selected from Chernoff bound in Tempo et al.33. Fig. 3 compares the density functions obtained 

using the proposed and QMC methods with two influential random inputs (water flow rate and reflux ratio) 

and that by the QMC method with all six random inputs (using the 10000 simulations from Halton sequence). 

Table 1 lists the statistical properties of the reboiler duty of the distillation column (Q) achieved from the 

proposed and QMC methods. Table 1 also lists the computational cost required for the two methods. The 

computational time for the proposed method includes the computational time for solving the number of 

functional evaluations and performing simulations from SA and UQ. The QMC/MC methods require a large 

number of simulations to estimate the expected values, variances, and density accurately; hence, they are 

computationally expensive.   

5.2. Example 2: a lean dry gas processing plant with six uniform uncertainties 
 

Fig. 4 shows a process schematic diagram of a lean dry gas production plant 34. Two natural gas streams 

containing N2, CO2, and C1 - n-C4 hydrocarbons were mixed together and then processed in a refrigerated 

cycle to eliminate the heavier components. Ensuring the safe transport and processing of natural gas is crucial 

because hydrocarbon liquid dropout in gas transmission lines normally leads to a number of problems, 

including increased pressure drops, reduced pipeline capacity, and equipment problems, such as compressor 

damage 1,35,36. In this case study, a mixed feed stream from two different sources is introduced into an inlet 

separator to remove the free hydrocarbon liquids. The overhead outlet gas from the separator is then entered 

into a low-temperature separator through two heat exchangers (gas/gas heat exchanger and chiller), in which 

the required cooling is accomplished. In the low-temperature separator, heavy hydrocarbons are removed so 

that the eventual sales gas meets the required properties, such as the heating values and dew point. The lean 

dry gas from the separator is fed to the gas/gas heat exchanger and then sent to the consumers through a 

pipeline network. The liquid streams coming from both separators are mixed and introduced to the 

depropanizer column to recover the propane and remaining heavy components.  

This case study focuses mostly on determining the effects of the decision factors according to the 

operability limits for each of the uncertain variables. An interface under the code developed in MATLAB® 



 

 

was used to make a random generation of the process inputs and quantify the uncertainty performance of the 

process inputs. First, Sobol’s indices via SA were derived to detect the influential factors on the output 

variations. In this case study, the sale gas heating value was controlled under uncertainties while the flow 

rates (F1 and F2), temperature (Tn), pressure (Pn) of two feed natural gas streams, outlet temperature of the 

cold gas (Tc), and reflux ratio of the column (R) were assumed to be uncertain independently by the uniform 

distribution in the range, such as F1 ∈ [1.90; 2.32 kg/s], F2 ∈ [1.25; 1.52 kg/s], Tn ∈ [14.0; 17.1 °C], Pn 

∈ [37.2; 45.5 bars], Tc ∈ [-16.8; -13.8 °C], and R ∈ [0.9; 1.1]. The QMC method was also examined to 

determine the impact of these uncertainties on the process. Table 1 lists the statistical properties obtained 

from the proposed (M-DRM+gPC) and QMC methods for the heating value of the lean gas. In addition, 

Table 2 provides the Sobol’s indices obtained by the M-DRM approximation. This indicates that the pressure 

of the feed natural gas and the outlet temperature of the cold gas are two influential factors for uncertainty 

propagation, while the other parameters can be fixed as their nominal values. At the second stage, the standard 

gPC approach can be used for UQ with only two random inputs. Fig. 5 compares the performance for the 

density functions of the lean gas heating value with two decision random inputs (the pressure of the feed 

natural gas and the output temperature of the cold gas) using two methods: the red line denotes the standard 

gPC method (with 100 samples) and the blue one is the QMC method (with 10000 samples). The results from 

the gPC and QMC methods using the two random inputs showed good agreement with that of the QMC 

method using all six random parameters with 10000 simulations (a green line). The proposed M-DRM 

approach detected the influential parameter inputs correctly through the derived SA indices.  

 

Remark Owing to the exponential increase in simulation efforts, the standard gPC method was not 

considered in Examples 1 and 2 for cases with six random inputs, and only the M-DRM and QMC methods 

for UQ were considered. In addition, the QMC method was not used for the SA of the two chemical processes 



 

 

because of the large computational effort required for SA using the QMC method (This will be approximately 

eight times higher than the effort for UQ). 

 

5. Conclusions 

The purposes of UQ and SA in process design and modeling are important for testing model robustness 

against uncertainties, obtaining a better understanding of the effects of inputs on the output, determining the 

key inputs that mainly influence the uncertainty of model output, and achieving a model simplification. In 

this study, to overcome the computational limitation in the UQ and SA of complex chemical processes, a two 

stage gPC approach was presented based on M-DRM and gPC for UQ and SA. In the proposed method, the 

SA indices were first estimated by the M-DRM in a computationally efficient manner and the gPC method 

was then applied to the UQ based on the simplified model from the M-DRM. HYSYSTM was used to obtain 

a rigorous simulation result. The M-DRM approximated the complex uncertain problem successfully in the 

form of the product of univariate functions using a small number of sampling points. Through the M-DRM 

approximation, the Sobol’s sensitivity indices for detecting non-influential inputs could be obtained with 

little computational burden. The proposed two-stage approach is superior to the popular QMC/gPC 

approaches, primarily in terms of the computational efforts when a large number of random inputs are 

considered. The proposed approach was applied to the UQ and SA of the propylene glycol production process 

and the lean dry gas processing plant. The results showed precise agreement with those of the conventional 

QMC method, of which the computational cost is in the order of 104 model evaluations, and not compatible 

with the UQ and SA of most chemical processes with a moderate/large number of uncertainties. 
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Table 1. Simulation parameters and computational time profiles for obtaining the statistical characteristics using the MDRM-gPC/QMC methods 
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Table 2. Sobol’s sensitivity indices from the surrogated model by M-DRM for Examples 1 and 2. 
 

Sobol’s Sensitivity Indices (Si, Ti) 

Example 1 

S1 S2 S3 S4 S5 S6 T1 T2 

0.0104 0.8532 6.92e-08 1.52e-11 0.0097 0.1260  0.0104 0.8539 

T3 T4 T5 T6     

9.96e-08 1.53e-11 0.0097 0.1266     

 
 
Example 2 

S1 S2 S3 S4 S5 S6                            T1 T2 

4.58e-04 4.57e-04 0.0038 0.5526 0.4427 7.46e-12 4.58e-04 4.57e-04 

T3 T4 T5 T6     

0.0038 0.5526 0.4427 7.46e-12     

 
 

 
Method 

Example 1 Example 2 

No. of 
simulations 

Runtime 
(sec.) 

Mean µ(Q)  No. of 
simulations 

Runtime 
(sec.) 

Mean 
µ(BTU/SCF) 

QMC 10000 19738.6 5729.4  10000 19693.8 1091.1 

Proposed  
(M-DRM+gPC) 

160 230.5 5729.2  160 228.3 1090.9 



 

 

 
 
 
 
 
 
 
 

 
 


