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Abstract 

Development of a Software Package for the Quantitative Analysis of 

Proteomic Mass Spectrometry Datasets Labelled with Nitrogen-15 

Philip David Charles 

28th September 2018 

Elemental metabolic labelling using 15N stable isotopes is a technique used in peptide-

centric proteomics that allows samples to be mixed before preparation and analysis 

(minimising technical variance) without introducing sample ambiguity to the results. 

Labelling with 15N induces a mass shift in labelled peptides that, when analysed by mass 

spectrometry (MS), allows the signal associated with differently labelled samples to be 

differentiated. 

When compared to similar labelling techniques such as Stable Isotope Labelling by Amino 

acids in Cell culture (SILAC), 15N poses unique challenges for analysis because the level 

of label incorporation affects not only the relative intensity of signals in MS analysis, but 

also how that signal is distributed. A computational signal extraction algorithm is not 

easily generalised to all peptides, especially if there are differences in the level of 

incorporation. Analysis of 15N data has been neglected by the general pace of software 

development in proteomic MS. Furthermore, the current 15N analysis options have 

relatively complex installation procedures and are limited to a command-line interface. 

I describe the development of a cross-platform 15N quantification software package 

(HeavyMetL) which runs inside a web browser, requiring no installation procedure and 

providing a graphical interface for both the analysis of data and visual interrogation of 

results (in addition to a more typical text-format table output). The optimisation (using 

experimental data) of a core part of the algorithm to determine the level of 15N 

incorporation is described in detail. Finally, the performance of HeavyMetL is 

benchmarked against published 15N labelled data from Arabidopsis seedlings quantified by 

a previously published algorithm, showing that HeavyMetL produces quantification of 

equivalent or better quality.
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Chapter 1: Introduction 

1.1 Proteomic Mass Spectrometry 

1.1.1 Background 

The last three decades have seen the rise of the ‘-omics’; large scale multivariate analysis 

of biological systems. From the birth of genomics in 1977 with the sequencing of 

bacteriophage ΦX174 (1) the field of systems biology has expanded from DNA through 

mRNA, proteins and metabolites to new levels of complexity. Proteomics is the study of 

the proteome (2); the overall state of an organism’s temporal protein makeup. 

Biological systems are dynamic and involve interactions between and within complexity 

levels (genome, transcriptome, proteome, metabolome and so on) (3). The state of the 

transcriptome cannot be predicted based purely on the genome, and the state of the 

proteome is governed not just by the current state of the transcriptome. 

The biological state of the proteome is, at any point in time, encoded not just in relative 

protein abundance (a dynamic consequence of both protein production and degradation 

rates (4)), but also in their potential for activity, which depends on their current post-

translational modification state ; their folded structures (5); their localisation relative to 

cellular spatial organisation (6) and the local availability of interaction partner molecules 

(7) and substrates. This last point introduces a recursive problem for metabolite substrates, 

since prediction of the metabolome is itself dependent on the proteome, albeit not 

exclusively, depending not only on (local) protein activity but also local reactant 

availability (8, 9). 

While lagging behind the meteoric rise of genomics as a tool for scientific understanding, 

the more nuanced view of proteomics has demonstrated that a ‘genome-centric view’ of 

biological pathways reveals only a part of the subtle network of interactions that govern 

the processes of life. The complexity revealed has, as in many avenues of scientific 

research, resulted in increasingly specialised analyses that focus on tissues or even sub-

cellular levels of organisation rather than the relative heterogeneity of whole organisms. 
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Small-scale proteomic analysis using classical targeted approaches such as western 

blotting (10), and even larger experiments based on two-hybrid models (11) have been 

employed for several decades, but the area of systems biology that might be thought of as 

modern proteomics has coalesced around two approaches that have exploited 

technological developments in Mass Spectrometry (MS) - the analysis of intact proteins 

(‘top-down’ proteomics), and the analysis of peptides (‘bottom-up’ proteomics) discussed 

in Section 1.1.2.2 below. 

1.1.2 Mass Spectrometry as a Proteomic Analysis Tool 

1.1.2.1 Analytical Constraints 

As a measurement of physical phenomena, mass spectrometry is subject to three principles 

which apply broadly across most observational techniques. 

I. More abundant entities are easier to detect, and to measure accurately, having higher 

signal-to-noise. 

II. It is easier to analyse samples of lower complexity. Both the number of entities and 

the range of entity abundances contribute to complexity. 

III. Difficulties stemming from points I and II require additional effort to address. For 

this reason, there is always a trade-off between sensitivity, robustness and time for 

analyses with any given instrument. 

As a simple example of such principles, consider an observer counting pixels in a small 

image (Figure 1-I-A). There are 950 black pixels, 20 dark grey, 20 light grey, and 10 

white. It is easy for the observer to conclude, just at a first glance, that there are a lot of 

black pixels. The observer can easily conclude that of the 1000 pixels, almost all are 

black; a quick estimate that all 1000 pixels are black will have relatively high accuracy. 

Counting the white and grey pixels is more difficult, as an over-count or under-count by 

one will cause a significant relative change in the count (Principle I). The 20 dark grey 

pixels may be easily mistaken for black (especially on a low resolution computer screen), 

so separating the pixels by colour before counting will make the counting of the non-black 

pixels much easier (Figure 1-I-B). In contrast, if the 1000 pixels were scattered at random 

through a large image of 10,000 pixels in another shade of dark grey, accurate evaluation 
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of the (previously simple) black pixel abundance would itself become challenging 

(Principle II) (Figure 1-I-C,D). If observation time is limited to a few seconds, then the 

observer can conclude quickly if a specific colour of pixel is present or not, but will not 

necessarily be able to evaluate the actual proportion of pixel colours, except to say that 

there are many more black (small image) or dark grey (large image) pixels. If, however, 

the observer is given more time to analyse the image, it is reasonable to assume they will 

be able to giver a better evaluation of relative pixel proportions (Principle III). To extend 

the analogy, an observer with better eyesight or faster tallying method may be able to 

make a more accurate assessment of the image in the same time frame, or alternatively 

they could apply the same standard of assessment as the original observer to multiple 

images in the same time frame. In the context of a mass spectrometry based proteomic 

experiment, this might correspond to using an instrument with a more sensitive detector or 

a faster scan speed. 
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Figure 1-I. Principles of Observation. A & B: These images each contain 1000 pixels in 

the ratio 950:20:20:10 for black:medium grey:light grey:white respectively. Estimation of 

the number of black pixels is relatively straightforward as they are the majority of the 

data, even an estimate that all 1000 pixels are black will be relatively accurate. 

Assessment of the other colours cannot be performed as easily with a similar level of 

relative error, but the task can be rendered easier if the pixels are sorted by colour first 

(B). C & D: These images contain the same 1000 pixels as A and B, and an additional 

9,000 dark grey pixels. Now, even counting the black pixels becomes challenging (C), and 

while the image may again be sorted to separate the colours (D), an at-a-glance estimate 

of anything but the number of the dominant dark grey pixels is more difficult. 

Samples analysed in proteomics are typically a protein mixture obtained from a cell or 

tissue preparation (12), although analyses of exogenous proteins and peptides in fluids 

(e.g. urine (13), blood (14, 15)) or extracellular matrices (e.g. plaques (16), biofilms (17)) 

are also widespread. A simple preparative protocol might, for example, involve lysis of 

tissue sample cells in a buffered detergent, followed by precipitation of the protein content 

and re-suspension of the pellet in a low pH buffer. Biochemical techniques for the general 

extraction of the protein mixture are not a focus of this thesis, but the same considerations 

apply as to the elements discussed below – minimisation of sample loss to keep the 

A B

C

D
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absolute and relative amount of protein high (Principle I), minimisation of sample 

complexity, such that the proteome or proteome components of interest are not swamped 

by other biomolecules (Principle II), and minimisation of technical variance so that 

accuracy of measurement is as high as possible within a feasible number of replicates 

(Principle III). 

Even with optimised preparation of the protein mixture, proteomic samples are generally 

relatively complex, so ‘modern’ proteomic mass spectrometry routinely involves some 

strategy to reduce sample complexity before mass spectral analysis, to maximise the 

resolution and depth of obtained spectra. Descriptions of exemplary experimental designs 

can be found as early as 1993 when Henzel and colleagues described a strategy of 

separation of proteins by two dimensional electrophoresis, tryptic digestion and MS 

analysis of excised spots, and identification of proteins by comparison against in silico 

digestion of a database of possible candidates (18). 

1.1.2.2 Methodologies 

There are two broad methodological approaches to the analysis of proteins by MS, which 

distinguish between the MS analysis of intact proteins, or alternatively the MS of 

constituent peptides (predominantly generated by protease digestion). Respectively, these 

are commonly referred to as ‘top-down’ (19) and ‘bottom-up’ (20). Initially, this 

distinction in analytical method referred to the point of separation, so the methodology of 

Henzel et al. would be considered to be top-down as the separation step (by 2D 

electrophoresis) is performed on intact proteins. The definition has shifted over time to 

refer to ‘the composition of the sample at the point of introduction to the MS’ (21). Since 

in Henzel et al. the samples are digested before MS analysis, the analyte is a mixture of 

peptides, so their methodology would now be considered bottom-up. 

Preserving protein compositional integrity in top-down proteomics facilitates 

discrimination between isoforms and modification states and is often preferred when such 

distinctions are key to understanding results. However, the heterogeneous proteomic 

composition of many biological samples presents many challenges for intact analysis. The 

diverse array of physiochemical characteristics can frustrate attempts to find an acceptable 

set of analytical conditions, or to achieve sufficient separation such that the acquired mass 

spectra can be de-convoluted and interpreted. 
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Conversion of the protein mixture to a population of derived peptides effectively imposes 

soft limits on the length of the polypeptide chains present in the sample, which narrows 

the distribution of the physiochemical characteristics in the population. In effect, 

population physiochemical complexity is reduced at the expense of population sequence 

complexity, as each protein is converted into a mixture of peptides. Peptides with a 

particular amino acid sequence may be generated by digestion of several different protein 

species, resulting in a loss of information that can frustrate the inference of protein-level 

results based on the peptide data. This so-called Protein Inference Problem (22) is 

discussed further in Section 1.1.2.10.2. Nevertheless, the reduction in molecular weight 

and physiochemical complexity broadens the range of applicable sample separation 

techniques (in particular, the use of liquid chromatography) and allows MS to be 

optimised for a ‘general case’ peptide sample scenario. 

Both top-down and bottom-up strategies have been employed in various incarnations for 

studies of the proteome; however, the bottom-up approach is the sole methodology 

applicable to all the experiments described in this thesis. Further discussion of proteomic 

mass spectrometry and the associated workflow will be confined to this area. 

1.1.2.3 Sample Preparation 

As discussed in the pixel analogy, better results are obtained when analyte complexity is 

as low as possible. Techniques to separate intact proteins (i.e. prior to digestion), while 

playing an important role in top-down proteomics, have been somewhat overshadowed in 

bottom-up analyses due to the ascendancy of in-line liquid chromatography peptide 

separations. Nevertheless, such techniques continue to play an important role in bottom-up 

strategies, as they allow discrimination between protein isoforms that would otherwise be 

impossible to distinguish post-digestion due to very high sequence overlap resulting in 

many, if not all detectable peptide products being shared. Separation by polyacrylamide 

gel chromatography is generally employed on intact proteins, since they have a much 

greater spread of masses than a peptide mixture. By the same token, the relatively narrow 

distribution of peptide lengths which makes them so amenable to liquid chromatographic 

separation (see below) places high requirements on gel chromatography in terms of mass 

resolution and reproducibility. 
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Protein (and peptide) separation techniques may also be employed on relatively simple 

samples for ‘clean up’ purposes in order to make them more amenable to MS analysis. 

Many contaminants do not have a significant interaction with common separation 

mechanics, remaining in the loading buffer or eluting before the first protein/peptide 

fraction is collected. This section will discuss key bottom-up workflow steps in preparing 

a sample for MS analysis starting from a point of a relatively pure protein mixture, as the 

preceding steps relating to cell lysis/extracellular protein collection and depletion of non-

protein biological components are specific to experimental design and biological context. 

1.1.2.3.1 Protein Separation 

Protein separation by mass using Polyacrylamide Gel Electrophoresis (PAGE) is a 

venerable (23) and adaptable technique employed widely in proteomics (24). In the most 

widely used incarnation, protein samples are prepared for PAGE separation by boiling in 

Sodium Dodecyl Sulphate (SDS). The combination of the anionic surfactant SDS and the 

disruption due to heat results in general denaturation of the protein mixture; this popular 

pairing of techniques is referred to as SDS-PAGE. Denatured proteins are loaded onto a 

polyacrylamide gel and a constant electric field is applied across the gel, causing proteins 

to migrate through the gel towards the anode. In their denatured state, lower mass proteins 

travel more rapidly through the gel matrix, thus the population becomes spread over the 

length of the gel according to mass. In cases where the use of SDS results in poorly 

resolved bands (for example, glycoprotein samples), alternative denaturing reagents such 

as the cationic surfactant hexadecyl-trimethyl-ammonium bromide (cetrimonium bromide, 

CTAB) may be used instead. After separation, proteins may be visualised generally on the 

gel by Coomassie or Silver Stain, or specifically by techniques that use antibody detection 

(such as western blotting). Sections of a gel lane may also be excised, and the proteins 

then extracted for further investigation. For analysis by MS, the proteins may be digested 

in-gel to peptides, which are able to diffuse out of the gel matrix. 

In principle, the ability to visualise the mass distribution of proteins prior to MS analysis 

yields information regarding the relative abundance of different protein 

isoform/modification states which is frequently intractable to ‘bottom-up’ analysis. 

However, a single dimension of separation by mass alone provides insufficient resolution 

for analysis of all components in a protein mixture, even for relatively low complexity 

examples. For this reason, the pre‑eminent approach to proteomics in the late 1990s/early 
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2000s involved two dimensions of separation wherein proteins were first separated by 

isoelectric point (pI) on an immobilized pH gradient gel (termed isoelectric focussing, 

IEF) and then subsequently by mass on an SDS-PAGE gel, termed two-dimensional gel 

analysis (2DGE). This approach has retained some popularity, particularly for isoform and 

modification state visualisation, but for general proteomic analysis has been found to have 

a number of disadvantageous qualities (25). In particular, the technique yields very poor 

coverage of membrane proteins, which frequently resist solubilisation in IEF-compatible 

zwitterionic detergents such as 3-[N,N-dimethyl(3-

myristoylaminopropyl)ammonio]propanesulfonate (amidosulfobetaine-14, ASB-14) or 3-

[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) due to 

hydrophobic transmembrane domains. Furthermore, the resolution in both 2DGE 

dimensions is insufficient to separate proteoforms with similar pI and mass, thus a single 

2DGE spot may contain more than one protein, frustrating quantitative comparisons. The 

reproducibility of separation is further degraded by even small inconsistencies in gel 

casting, an effect which increases with gel size (larger gels are otherwise desirable for 

better resolution). There are also experimental practicality limits on the size of the gel 

apparatus and the feasibility of performing a large cohort study. These factors have driven 

2DGE to be largely supplanted by liquid chromatography peptide separation (Section 

1.1.2.4) as the predominant proteomic separation approach. 

1.1.2.3.2 Digestion 

Peptides must contain enough information to be distinctive whilst being short enough to 

limit their physiochemical characteristics to an acceptable range. In general, modern 

bottom-up proteomic MS analysis techniques are optimised for peptides containing 

between 6 and 20 residues (26). The most widely used method of generating peptides from 

parent proteins is by digestion by proteolytic enzymes. The enzyme trypsin is frequently 

employed as it has a well characterised, highly specific cleavage pattern (C-terminal to 

lysine or arginine residues not followed by a proline) that tends to generate a large number 

of peptides favourable to MS analysis. The distribution of arginine and lysine in the 

proteome sequence of most organisms is typically such that peptides of desirable length 

are generated from most proteins, whilst ensuring every peptide has at least one proton 

accepting group at each peptide terminus (favouring a minimum charge state of 2+ after 

positive ionisation). Trypsin is generally utilised in a commercially available modified 
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form whereby reductive methylation of lysine residues reduces the autolytic properties of 

the protease. 

While trypsin is overwhelmingly popular due to agreeable cleavage properties, efficient 

kinetics (close to 100% digestion may be achieved within an hour or less (27)), and 

amenability to a broad range of buffer conditions, other proteases may also be used in 

conjunction with or instead of trypsin, particularly when the distribution of lysine and 

arginine in the proteins of interest lead to a suboptimal distribution of peptide lengths (and 

thus achievable coverage). Historically, this would typically be an avenue explored if 

initial tests with trypsin indicated poor coverage of proteins of interest. However, very 

recent advances in the ability to predict the amenability to MS identification of particular 

peptide sequences may ultimately lead to more frequent selection of trypsin alternatives 

(28). The extent to which a proteome is covered by observable peptides resulting from 

tryptic digestion varies substantially from species to species. In humans, the average 

tryptic peptide length is 14 amino acids (29), but in yeast, the average length is only 8.4, 

with 56% of tryptic peptides generated having a length of 6 amino acids or less (30), 

yielding a high proportion of non-observable peptides. Common alternative proteases 

include LysC, LysN, AspN, GluC and chymotrypsin. The properties of popular proteases 

are listed in Table 1-I. Proteases with varying degrees of non-specificity (i.e. a propensity 

to cleave at random or loosely defined residue motifs) including elastase and pepsin may 

also be used; these present an additional challenge for data interpretation as the partially 

random cleavage means the range of possibly generated peptides is much larger and the 

resulting peptide mixture less comparable between experiments. Increasing interest has 

also been paid to the analysis of peptides generated by in vivo protein cleavage, 

particularly in the context of immunology, for example, the endogenous peptides 

displayed on major histocompatibility complexes (class I and II) (31, 32). 
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Table 1-I. Site-specific Proteases Popular in Proteomics. Adapted from Giansanti, P. et 

al., 2016 (33). 

1.1.2.4 Peptide Separation 

While proteolytic digestion of a typical proteome is effective for reducing the range of 

physiochemical properties by limiting maximum polypeptide length, this still results in a 

highly complex sample. For example, tryptic digestion of the human proteome 

(approximately 20000 genes) results in millions of peptides with abundances ranging 

across seven orders of magnitude (34), and thousands of these peptides share very similar 

m/z ratios. Consequently, it is widespread practice to include one or more stages of peptide 

separation before MS analysis in order to reduce complexity (as per Principle 2 in the 

pixel analogy) and increase the resolving power of the analysis. Improved resolving power 

decreases the number of peptide species competing for ionisation at the same time and 

thus reduces the possibility of failing to observe low abundance (or poorly competitive) 

ion species whose signal would otherwise be suppressed below detection limit (35). 

The most widely used separation technique in bottom-up proteomics is Liquid 

Chromatography (LC). Peptides are soluble in a wide range of solvents and LC separation 

may be combined in-line with Electrospray Ionisation (see below) to feed eluting peptides 

directly into the mass spectrometer. 

LC separates a sample between a column-immobilised matrix (the stationary phase), and a 

solvent passed through the column (the mobile phase). Analytes exhibit a range of 

Protease Type Specificity
ArgC Cysteine Protease C-terminal to R (high efficiency)

C-terminal to K (lower efficiency)

AspN Metalloprotease N-terminal to D (high efficiency)
N-terminal to E, in presence of detergent (low efficiency)

Chymotrypsin Serine Protease C-terminal to FLMWY (varying efficency, many missed cleavages)
GluC Serine Protease C-terminal to E

C-terminal to D (at pH 8)

LysargiNase Metalloprotease N-terminal to KR
LysC Serine Protease C-terminal to K
LysN Metalloprotease N-terminal to K
Pepsin Aspartic Protease C-terminal to FWY

pH-dependent broader specificity 

Trypsin Serine Protease C-terminal to K when not followed by P (lower efficiency)
C-terminal to R when not followed by P higher efficiency)
In addition, negatively charged residues e.g. DE & phospho-ST adjacent or 
proximal to cleavage site reduce efficiency.

WaLP and MaLP Serine Protease C-terminal to aliphatic residues
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affinities for the stationary phase relative to the mobile phase and thus can be eluted over 

time during which the composition of the mobile phase can be changed (the ‘gradient’). In 

proteomics, the column is usually prepared by ‘packing’ with the stationary phase in the 

form of silica beads that have the desired surface chemistry. LC is a powerful tool for 

proteomic separation as it can be highly optimised for the separation of a particular 

mixture. As well as stationary phase chemistry, separation resolution is also affected by 

flow rate, column diameter and length, stationary phase bead size and the design of the 

solvent gradient. Two LC techniques are widely used in proteomics: Reversed-Phase and 

Strong Cation Exchange, both of which are straightforwardly compatible with 

Electrospray Ionisation, either directly in-line (Reversed-Phase) or with minimal further 

processing (Strong Cation Exchange). 

1.1.2.4.1 Reversed-Phase Chromatography 

Reversed-Phase (RP) chromatography separates analytes by their hydrophobicity. Peptides 

generally contain a high proportion of hydrophobic or uncharged amino acids and thus are 

particularly suited to this form of separation. Analytes are partitioned between a 

hydrophobic stationary phase and a polar hydrophilic mobile phase. The mixture is loaded 

onto the stationary phase under low-organic solvent conditions and analytes selectively 

return to the mobile phase as the organic component of the mobile phase is increased 

(either as a continuous gradient or in a series of steps). The order of elution relates to the 

strength of the hydrophobic interactions of each peptide with the stationary phase. The 

stationary phase typically consists of a C18 resin, i.e. silica beads derivatised to present 

alkane chains of 18 carbons. The mobile phase is usually based on a mixture of water and 

acetonitrile (as the organic component). One drawback of silica-based matrices is the 

interaction of residual silanol groups with the positive charges of peptides. This effect can 

be minimized by lowering the pH below 4, as silanol groups then become protonated. The 

column surface can also be treated to ‘end-cap’ the polar surface silanol groups with a 

non-polar trimethylsilyl group. 

The use of a low pH aqueous/acetonitrile mobile phase is ideal for electrospray ionisation 

(see below), so low pH RP-LC is a very popular technique for in-line separation 

immediately prior to introduction into the mass spectrometer. It has become increasingly 

popular to precede this with an initial high-pH RP-LC separation step for greater 

resolution (see Section 1.1.2.4.3) 
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Advances in LC technology have enabled the development of systems which operate at 

high pressures, allowing smaller bead sizes in the column (increasing the relative surface 

area for hydrophobic interactions) and lower flow rates (improving MS ionisation 

efficiency and reducing the amount of sample required for sensitive analysis). High-

Pressure/High-Performance and, more recently, Ultra-High-Performance LC systems have 

been rapidly adopted in proteomics. 

1.1.2.4.2 Strong Cation Exchange Chromatography 

Strong Cation eXchange (SCX) chromatography separates molecules by the number of 

positively charged residues they contain. Just as free amino acids are zwitterionic, so are 

peptides, thus they have predominantly net positive charge when the pH is lower than the 

pKa values of both the N-terminal amino group conjugate acid (such that it is protonated) 

and the C-terminal carboxylic acid group (such that it is neutral). This threshold is 

determined by the lower of the two pKa values which is that of the carboxylic acid, 

approximately 3.1 (36). At this threshold, arginine, lysine and histidine will also carry a 

second positive charge due to protonation of their guanidino (pKa 12.5), lysyl (pKa 10), 

and imadazole (pKa 6) side chains respectively (36). Under typical SCX buffer conditions 

(pH 2.5 to 3), tryptic peptides (containing one arginine or lysine) will (on average) carry a 

net charge of +2, further increased by one for each histidine residue or missed cleavage 

(additional arginine or lysine). The peptides are loaded onto a stationary phase consisting 

of exposed negatively charged groups, which interact with the positively charged peptides. 

Peptides may then be eluted by increasing the concentration of salt ions in the mobile 

phase such that the peptides are outcompeted for electrostatic interaction with the 

stationary phase. 

Relative to RP methodology, SCX does not offer as fine a control over the elution process. 

The quantised nature of charge means a large number of peptides tend to elute closely 

together, particularly groups of doubly and triply charged peptides that contain zero or one 

histidine or missed cleavage. An additional problem is that samples must be desalted after 

separation, which can be a relatively high variance step. This prevents salt ions from 

competing for charge as the sample is introduced into the mass spectrometer, causing ion 

suppression. 
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1.1.2.4.3 Multidimensional Separation 

Resolution in chromatographic separation may be improved by increasing the number of 

fractions into which the sample is divided. Many peptides have properties that are 

sufficiently similar that they co-elute under particular LC conditions, imposing a practical 

limit to peptide separation. One solution to this problem is to further separate each sample 

fraction using an orthogonal fractionation method, producing a series of fractions-of-

fractions with reduced complexity. Separation efficiency is measured in peak capacity, 

defined as the number of peaks which may be separated without overlap, assuming peaks 

to extend four standard deviations from the apex (37). The maximum achievable 

separation efficiency will be the product of the peak capacity of each separation step. This 

can enable a much higher resolution of peptides to be achieved if separation steps are 

sufficiently orthogonal, either by separating differently according to the same 

physiochemical properties, or by separating on different physiochemical properties. 

Assuming that the final stage of separation is in-line low pH RP chromatography, then 

options for prior dimensions include alternative aqueous/organic partitioning-based 

methods (such as high pH RP or Hydrophilic Interaction Chromatography(38)), or charge 

based methods such as SCX. 

Two-dimensional chromatographic separation of peptides has for many years been 

restricted to SCX followed by low pH RP. SCX-low pH RP is not ideal as the 

orthogonality of SCX to RP (and thus the peak capacity) can be limited when there is a 

relatively small range of peptide charges (which is the case when employing tryptic 

digestion). Recently, the use of high pH RP instead of SCX as a first dimension of 

separation has been gaining traction as a strategy. At high pH, the set of amino acids 

contributing to RP chromatographic behaviour is different to the set contributing at low 

pH. At low pH, positively charged residues are surrounded by counterions from the buffer 

which strongly affect peptide retention. Due to the different protonation and deprotonation 

pKa values for the various side chains, a large change in pH substantially alters the charge 

distribution within the peptide, which in turn affects ion pairing and thus retention (39), 

resulting in different separation profiles. Studies of separation at pH 10 have shown high 

pH RP to be orthogonal in terms of separation to the more usual low pH approach (39, 

40), with high-pH RP–low pH RP approaches demonstrating a greater peak capacity than 

SCX-low pH RP. Two dimensional RP is now frequently employed in modern studies 
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where high protein coverage is desirable and the additional MS time required to analyse 

the separate fractions can be justified (41). 

1.1.2.5 Mass Spectrometer Architecture 

Mass spectrometry evaluates the ionic composition of a gas phase analyte, reporting the 

mass-to-charge (m/z) ratios of constituents, and their relative intensity. Only charged 

species can be observed. The primary functions of MS analysis are therefore (i) 

conversion of the analyte to gas phase, with the molecules of interest within the mixture 

carrying charge, (ii) manipulation of the population of ionised species to maximise 

sensitivity of the detection method, and (iii) detection of each ion species. The 

components of a mass spectrometer fulfilling these functions are described respectively as 

(i) Ion Sources, (ii) Mass Analysers and (iii) Detectors. Mass analysis and detection may 

be combined within the same device and are discussed together here. Technological 

developments in instruments and the associated prior (sample preparation) and posterior 

(data analysis) workflows have largely been driven by the principles of observation 

described at the start of this chapter. 

1.1.2.5.1 Ion Sources 

To be analysed by the mass spectrometer, the analyte must be both charged and in the gas 

phase so that it can be easily manipulated by electromagnetic fields inside the instrument. 

The optimum method of ionisation depends on the starting phase of the analyte and the 

stability of the target molecules. An early technique developed for ionisation was brute 

force electron bombardment of samples already in the gas phase (Electron Ionisation - EI). 

EI is an example of a ‘hard’ ionisation technique, in that it imparts a large amount of 

energy to the ionised molecules, frequently resulting in the fragmentation of the molecule 

to a series of smaller ions. In relatively low complexity samples (such as small molecules) 

this may be desirable, as fragmentation can yield additional information about the 

molecular structure. However, for complex samples such as peptide mixtures, the resulting 

mixture of fragments cannot be readily deciphered, or even analysed in a robust fashion. 

For the analysis of peptides, it is desirable that the analytes survive ionisation intact. In 

proteomics, there are two popular so-called ‘soft ionisation’ techniques that can achieve 

this result: Electrospray Ionisation (ESI) and Matrix Assisted Laser Desorption (MALDI). 
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1.1.2.5.1.1 Electrospray Ionisation 

In Electrospray Ionisation (ESI) a strong electric field (typically 2-3 kV in modern 

nanolitre flow range LC) is applied under atmospheric pressure to a liquid passing through 

a capillary tube with low flow rate. Charge accumulates at the liquid surface located at the 

end of the capillary (the ‘emitter’). The liquid at the tip of the emitter forms a Taylor cone 

(42) and a jet of liquid is ejected from the centre. This jet rapidly disintegrates into small 

droplets, which are dispersed radially by Coulomb repulsion, and the droplet plume is 

sampled into the first vacuum stage of the mass spectrometer, where the droplets 

evaporate leaving charged analyte ions (Figure 1-II). Evaporation may be assisted by use 

of an inert nebulising gas such as nitrogen. 

 

Figure 1-II. Electrospray Ionisation of Peptides from Nano-Flow HPLC Column. Adapted 

from Steen, H., and Mann, M., 2004 (43). 

ESI was originally described by Fenn et al. (44) for the analysis of intact proteins, as the 

charge states achieved allow high mass analytes (such as proteins) to be brought within an 

m/z range amenable to MS analysis. ESI has remained a popular technique in proteomics 

as the analyte mixture is charged in a liquid state. Because of this, ESI can be performed 
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in-line with LC, allowing protein and peptide mixtures to be separated (to reduce mixture 

complexity) and then charged and introduced into the MS in a single unified workflow. 

ESI in-line with an LC system is the most popular and widely used method of sample 

introduction in proteomic mass spectrometry. Ionisation efficiency is improved by 

reducing the initial size of the droplets formed, yielding greater sensitivity for a smaller 

amount of sample. This also reduces competition and suppression effects where the total 

available charge is insufficient to ionise all eluting species and due to preferential 

ionisation of the most kinetically amenable species, may result in low abundance less 

amenable species being masked. The drive towards smaller droplet sizes and lower flow 

rate lead to the development of micro- and nano-electrospray (45) techniques. Modern 

nano-ESI is usually operated at flow rate of 50 to 500 nL/min and the use of a nebulising 

gas to maximise droplet evaporation is no longer necessary. 

The exact mechanism by which solvated ions are transferred to gas phase is not 

completely understood, and there are two competing theories that explain it. Under the 

vacuum conditions, solvent evaporates from the droplets until they reach their Rayleigh 

limit (46). At the point of instability, the droplet deforms and undergoes Coulomb fission, 

emitting charged jets of liquid. According to the Ion Evaporation Model (IEM), the 

surface area of the droplet eventually becomes small enough to support field desorption of 

ions from the droplet surface (47). According to the Charge Residue Model (CRM), 

fission of the droplets continues until they contain an average of only one analyte 

molecule, at which point evaporation of the remaining solvent molecules leaves the 

analyte molecule in the gas phase with the remaining charge carried by the droplet (48). 

When investigations of the mechanism have examined large macromolecules like proteins, 

the results have generally supported CRM (49) (50), whilst investigations examining small 

inorganic and organic ions have indicated support for the IEM (51). Although the pre-

eminence of a single model has been asserted for both theories (52, 53), there is now some 

consensus that the process is a combination of multiple mechanisms, with low molecular 

weight analytes following the IEM, while the CRM dominates for larger species (54, 55). 

A third proposition, the Chain Ejection Model (CEM), has been suggested to apply when 

changes in species conformation result in the exposure of nonpolar, hydrophobic moieties 

previously buried within a folded structure, for example in protein unfolding. While the 

folded protein would follow the CRM, unfolding forces the now non-polar version to 
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migrate to the surface of the droplet, where it is ejected stepwise in a manner more similar 

to IEM (55). 

1.1.2.5.1.2 Matrix Assisted Laser Desorption/Ionization 

In Matrix Assisted Laser Desorption/Ionization (MALDI), a matrix containing the analyte 

mixture is bombarded with laser pulses. The energy is absorbed by the matrix causing the 

top layer to be ablated as a microplasma plume of matrix and analyte molecules which is 

sampled into the mass spectrometer. The laser pulses thus result in both vaporization and 

ionization of the sample. While laser desorption from a variety of surfaces is possible, the 

mass spectral data that can be obtained depend on the specific physiochemical proprieties 

of the analyte, particularly photoabsorption and volatility. The key advance for widespread 

adoption of this technique was to present the analyte inside a matrix which had excellent 

photoabsoption and proton-donation properties to increase the efficiency of energy 

absorption from the laser and encourage ionisation. This approach was pioneered 

primarily by Karas and Hillenkamp in early 1985 (56, 57). 

The analyte is prepared in a mixture of water and organic solvent to encourage both 

hydrophobic and hydrophilic molecules to dissolve, then mixed with a suitable matrix 

molecule solution. For biomolecules such as peptides, this is usually 3,5-dimethoxy-4-

hydroxycinnamic (sinapinic) acid (SA), α-cyano-4-hydroxycinnamic acid (CCA) or 2,5-

dihydroxybenzoic (gentisic) acid (DHB). The choice of matrix determines the amount of 

internal energy transferred to the analyte during desorption and ionisation. SA is a ‘softer’ 

matrix than CCA and DHB as less energy is transferred resulting in reduced ion 

fragmentation during laser ablation (termed post-source decay) and is generally the matrix 

of choice for intact protein analysis. CCA and DHB are more commonly used for analysis 

of peptides where fragmentation due to post-source decay may be more easily 

deconvoluted to gain further sequence information. DHB is particularly used for the 

preparation of glycopeptides (58, 59). The analyte-matrix molecule mixture is precipitated 

onto the target surface so that the analytes are presented within the crystallised matrix 

molecules. The target is then bombarded with nanosecond laser pulses, typically in the 

ultraviolet frequency range. The precise mechanisms of the microplasma plume generation 

and analyte ionisation are not fully understood. It is known that irradiation by the laser 

imparts localised excitation of the matrix molecules, resulting in rapid heating and 

sublimation of the matrix crystals, ablation of a portion of the crystal surface and 
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expansion of the matrix into the gas phase. This plume contains intact analyte along with 

protonated, deprotonated and neutral matrix molecules. Within the plume, protons are 

transferred to the analyte molecules, resulting in a quasi-molecular charged analyte which 

is sampled into the mass spectrometer (Figure 1-III). 

 

Figure 1-III. MALDI Ionisation of Peptides from a Photoabsorbant Matrix. Adapted from 

de Hoffmann, E., and Stroobant, V., 2007 (60). 

MALDI is more resilient to higher concentrations of detergents and salts than electrospray 

with the added benefit that, after precipitation onto the matrix, the sample is preserved in 

the crystal structure of the matrix and can be re-probed for future analyses. The sampling 

of ions into the instrument is more efficient than ESI. However, MALDI is less suited for 

some experiments. The nature of the matrix deposition means that the analyte is not 

homogenously deposited throughout the matrix, so the total amount of analyte sampled 

may vary between probings (laser discharges). The presence of matrix ions in the sampled 

plume can also mask low molecular weight signals due to noise and ion suppression, and 

the fact that ESI generates multiply charged ions increases the total range of biomolecules 

that can be sampled. 

1.1.2.5.2 Mass Analysers 

Once gas-phase ions have been produced, it is necessary to separate them according to 

their masses so that the mass values (and relative abundance) can be determined. Mass 
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analysers measure the m/z of ions. Several types of mass analysers have been developed 

based on a number of principles, although in general they involve the manipulation and 

separation of ions by a combination of electromagnetic fields (generated either by electric 

induction or by actual magnets). The primary differences between the various types of 

mass analyser are the methods by which these fields are used to achieve separation, each 

with advantages and limitations. These methods typically fall into two broad categories. 

‘Scanning’ analysers separate ions of different m/z values successively over time by 

limiting transmission of ions to a restricted window which ‘scans’ over time through the 

m/z range of detection. ‘Simultaneous’ analysers allow co-transmission of ions of any m/z, 

which are then resolved according to differential behaviour (e.g. flight time or angular 

frequency) within the analyser. Analysers may also be grouped on the basis of other 

properties, for example analysis of a continuous ion beam versus a discrete ion packet, or 

by the typical kinetic energy of the ions during the analysis (Table 1-II). 

 

Table 1-II. Summary of Mass Analysers Typically used in Proteomics. Adapted from de 

Hoffmann, E., and Stroobant, V., 2007 (60). 

Simultaneous analysers that trap the ions being detected can manipulate the trapped ions 

to induce a current differential which carries information about the m/z values of the 

trapped ion population in the waveform. Detection of ions transiting or ejected from 

scanning analysers, and in simultaneous analysers where the ions are not trapped (e.g. 

Time-of-Flight devices), is generally performed by Electron Multiplier Tubes/Plates 

(EMTs). Ions colliding with the plate induce an electric current, proportional to the 

number of ions striking the plate. The signal is amplified by secondary emission, in that 

ions striking the detector surface release further electrons towards detector surface deeper 

into the tube. This causes a cascade effect which propagates through the tube, resulting in 

a detectable electric current. By ‘scanning’ a population of ions separated by m/z over time 

into an EMT, the signal observed over time yields the intensity across the corresponding 

m/z range. It is possible to saturate EMTs with abundant ions, as they have a small 

recovery period after transduction of a signal, the result of which is under-sampling of the 

Mass Analyser Short Form Principle of Separation
Quadrupole Q / Quad Trajectory stability
Linear Ion Trap (Linear Trapping Quadrupole) LTQ Resonance frequency and trajectory stability
Time-of-Flight ToF Velocity
Fourier Transform Ion Cyclotron Resonance FT-ICR Resonance frequency
Fourier Transform Orbitrap Orbitrap Resonance frequency
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ion current and thus underreporting of the true ion intensity. Multiple small EMTs around 

10 microns in diameter may be combined in an array to form multichannel plates (61) 

offering greater sensitivity and a higher saturation threshold. 

Mass analysers may be compared on the basis of five primary characteristics: mass range, 

scan speed, sensitivity, mass accuracy and resolution. Mass range is the range of m/z 

values over which the MS can record ion intensity as a spectrum, and scan speed is the 

time taken to produce a spectrum over a given mass range (assumed to be the full range of 

the instrument unless otherwise stated). Sensitivity is generally given in terms of the 

transmission ratio between the number of ions entering the mass analyser and the number 

reaching the detector; a higher transmission ratio results in more ions reaching the detector 

which facilitates detection of lower abundance species. Mass accuracy indicates the 

difference that is observed between the theoretical m/z values of ion species and the m/z 

values measured in the mass analyser. It is usually expressed in parts per million (ppm). 

Finally, resolution (in mass spectrometry terms) is the ability of a mass analyser to yield 

distinct signals for two ions with a small m/z difference. The technical definition of 

resolution, according to the International Union of Pure and Applied Chemistry (62), is the 

ratio of the mass of a mass spectral peak to the resolving power (or ‘peak separation’) at 

that mass. The resolving power may be defined in terms of either the minimum 

distinguishable mass difference between two peaks, or the width of a peak at that mass. In 

the former case (‘valley definition’), the minimum distinguishable mass difference is the 

mass difference at which the signal intensity between two peaks of equal height is no more 

than 10% of the maximum height of either peak. In the latter case (‘peak width 

definition'), the peak width is taken as the width at a specified fraction of the maximum 

intensity, either 50%, 5% or 0.5%.  In the case of the width at 50%, this value is typically 

referred to as the ‘Full-Width at Half Maximum’ (FWHM) (Figure 1-IV). 
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Figure 1-IV. The Full-Width at Half Maximum Property of a Spectral Peak. 

1.1.2.5.2.1 Quadrupoles 

A quadrupole mass analyser consists of four electrode rods arranged in an equidistant 

diamond configuration around a central channel (Figure 1-V). Each rod is electrically 

connected to its counterpart on the opposite side of the channel, creating two pairs at 90° 

to each other. The rods may be cylindrical or have a hyperbolic cross-section (compare 

Figure 1-V-A and Figure 1-VI-B); the latter design yields a more optimal distribution of 

electric field but is harder to fabricate. Ions are streamed through the device via the central 

channel. Ions whose trajectory intersects the edge of the channel will discharge on the rods 

or the surrounding surfaces and will not pass through the quadrupole. 

An alternating current (AC) in the radiofrequency range is applied across each electrode 

pair, with the potentials of each pair exactly out-of-phase with the other (in this case, 

inverted). A constant direct current (DC) is also applied between the two electrode pairs. 

Because both AC and DC voltages are applied orthogonal to the channel axis, the ion 

velocities along the channel axis are unaffected. Ions are attracted to the electrode pair 

with opposite charge and repelled from the electrode pair with the same charge. The 

oscillation of the AC component deflects the ions alternately in the two dimensions 

orthogonal to the direction of travel, such that they describe a helical path through the 

quadrupole, with a radius which stabilises over the course of the path towards a constant 

value r (Figure 1-V-B). In a typical quadrupole analyser, the AC component may vary 

from 500 to 2000 V while the DC component may vary from 0 to 3000 V. 
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Ions are affected by electric fields in proportion to their m/z ratio. This property is 

exploited to differentially affect their path though the quadrupole, by varying the AC 

frequency and holding AC and DC voltages constant, or by varying AC and DC voltages 

(while preserving the relative ratio) fixed for a constant AC frequency. The trajectory of 

low m/z ions is affected substantially by the AC component of the field, while as m/z 

increases (relative to the AC and DC voltages), the destabilising effect of the DC 

component dominates. 

 

Figure 1-V. Schematic of Ion Motion along a Quadrupole Mass Analyser. A: A 

Quadrupole consists of four electrodes, paired in left-right (x) and top-bottom (y) 

dimensions through which ions travel orthogonally to both electrode pairings (z). B: An 

electrical current comprising an AC component and a DC component is applied across 

the electrodes. The AC component inversions (shown in blue/red) cause ions to adopt a 

corkscrew motion. C: Ion trajectory through the analyser is only stable for a narrow 

range of m/z; the boundaries of this range change as a function of the AC and DC 

voltages (or the AC frequency). Ion motion traces adapted from Steel, C., and Henchman, 

M., 1998 (63). 
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The cross-sectional radius of the helical path is dependent on ion m/z, with lower mass 

ions describing a larger radius, closer to the radius of the channel itself. Ions with very low 

m/z cannot stabilise at a path where r is less than the radius of the channel (the stability 

threshold is lower than the physical channel radius, as the strength of the field increases 

with proximity to the electrode). For these ions, their trajectory will move ever closer to 

the electrodes and eventually intersect the edge of the channel (row (i), Figure 1-V-C). 

This applies a lower bound on the m/z of ions able to traverse the quadrupole. 

For higher m/z ions, the AC component has a stabilising effect of ‘nudging’ their 

trajectory into a path with r less than the radius of the channel (row (ii), Figure 1-V-C). As 

m/z increases further, this effect is reduced and the ion trajectories become dominated by 

the constant DC component, deviating from the central channel and eventually intersecting 

the edge (row (i), Figure 1-V-C). This applies an upper bound on the m/z of ions able to 

traverse the quadrupole. 

By altering the parameters (AC/DC voltages or AC frequency) of the composite field the 

quadrupole may be ‘tuned’ to act as a filter for ions in a particular range of m/z. The width 

of this range may be varied by changing the parameters, but is also constrained by the 

fabrication tolerances of the quadrupole, including the symmetry of field potentials, the 

range of voltages and AC frequencies that can be applied, and the range of initial 

velocities and angular momenta of ions entering the channel. 

Varying the parameters over time to ‘scan’ the region of stable traversal through an m/z 

range allows a beam of ions to be effectively separated by m/z in a time dependent 

manner. When coupled to a method of detecting the abundance of the filtered ion sub-

population exiting the quadrupole this can be used to generate a mass spectrum. 

Quadrupoles may also act as a simple ‘ion guide’ by setting the voltage of the DC 

component to zero; in this mode, all ions with m/z high enough to be stabilised by the AC 

component will be transmitted. Other ‘multipole’ devices with three or four pairs of 

electrode rods (hexapoles and octupoles) are often used in this role. The additional electric 

fields provide a shallower gradient of field strength across the central channel (with a 

much steeper gradient close to the electrodes). This allows wider mass ranges of ions to be 

efficiently contained (and thus transmitted with reduced loss of signal). The trade-off for 
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this is that selected transmission of a narrow mass range of ions (i.e. filtering) is much less 

efficient, so these devices are generally only used as ion guides (60). 

1.1.2.5.2.2 Ion Traps 

An ion trap is a device that uses a combination of electric and magnetic fields to contain a 

population of ions. Electric field-based ion traps are historically classified into two types: 

the 3D ion trap or the 2D ion trap (Figure 1-VI). The first ion traps used as mass analysers 

were 3D quadrupole ion traps or ‘Paul traps’ (64), made up of a circular electrode, with 

two ellipsoid caps on the top and the bottom to create a 3D quadrupolar field. A 

conceptually simpler design which was developed later is the 2D ion trap, which may be 

thought of as a quadrupole mass analyser with the ends capped by lenses that reflect ions 

forwards and backwards within the quadrupole, such that they are contained radially by 

the quadrupolar field (by the mechanism described above), and axially by electric fields 

generated from end caps. Modern terminology generally refers to this design as the Linear 

Ion Trap (LIT) or Linear Trapping Quadrupole (LTQ). The linear ion trap design lends 

itself to a larger trapping volume than the Paul trap, which reduces undesirable 

interactions/collisions between trapped particles. Introduction (injection) of ions into the 

trap and ejection of ions from a linear trap is via slots in one pair of quadrupoles. The 

presence of the slots causes a perturbation of the RF field which reduces containment 

precision compared to a quadrupole of the same length. This can be somewhat mitigated 

by slightly stretching the quadrupole, increasing the distance between the cut rods. 

 

Figure 1-VI. Ion Trap Layouts. A: Three-dimensional (Ring) Ion Trap. B: Two-

dimensional (Linear) Ion Trap with hyperbolic electrodes (modern designs are typically 

segmented to optimise the distribution of the radiofrequency field). 
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In quadrupole instruments, the potentials are adjusted so that a constant flow of ions is 

serially filtered to allow only ions with a selected m/z to pass through. In ion traps, a 

discrete population of ions with various masses is initially contained together within the 

trap. A spectrum is generated by expelling ions according to their m/z. In both cases the 

intensity recorded from the transiting (quadrupole) or expelled (ion trap) ions is correlated 

with the filter or expulsion settings to generate the spectrum. 

1.1.2.5.2.3 Orbitraps 

The Orbitrap (Figure 1-VII) is an alternative design of ion trap mass analyser proposed by 

Makarov (65), albeit based on a much older design for ion containment by Kingdon (66). 

The Orbitrap design consists of a central spindle with opposite charge to the ion 

population, inside a larger shell at ground potential with a split halfway along the long axis 

of the device (Figure 1-VII). Neither magnetic nor radiofrequency fields are applied, 

instead a static quadrupole field is applied in combination with a logarithmic field. Ions 

are first ‘cooled’ to low kinetic energy before injections, so that the spread of the 

distribution of individual ion energies is narrow and they can be injected into the Orbitrap 

as a tight packet. Once injected, ions oscillate in spirals around the central spindle. The 

frequency of axial oscillation is proportional to the square root of the m/z ratio (60) and is 

independent of their kinetic energy (radial oscillation and rotation are not independent). 

The population of oscillating ions induce a differential current between the two halves of 

the outer shell, which when amplified yields an ‘image current’ (composite waveform) 

that may be de-convoluted by Fourier transform into a spectrum of frequencies and thence 

scaled to yield a m/z-intensity spectrum. The Orbitrap offers ‘high’ performance in terms 

of resolution (>1 million FWHM) and mass accuracy (<2 ppm with internal calibrants) 

and has garnered substantial popularity in the field since its introduction. 
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Figure 1-VII. Orbitrap Layout. Ions are ‘cooled’ to low kinetic energy in the C-trap, then 

injected as a single packet into the Orbitrap. There, contained by the quadrupolar and 

logarithmic fields, ions oscillate back-and-forth along the central spindle in a spiral 

motion. The frequency of the axial component of this motion is proportional to the square 

root of their m/z; the induced current waveform generated between halves of the outer 

shell is a composite of the frequencies generated by ions of different m/z and may be de-

convoluted to a spectrum by Fourier transform. Injection of ions as a single initial packet 

minimises the time over which the current waveform must be observed in order to de-

convolute with precision, maximising achievable resolution. 

1.1.2.5.2.4 Ion Cyclotron Resonance Devices 

The ion cyclotron (or ‘Penning trap’) is an ion trap where the ions are contained axially in 

a quadrupolar field but radially by a homogenous and static magnetic field (60, 67). Ions 

travel in a circular trajectory within the magnetic field. Under resonant excitation, by an 

electromagnetic wave of specific frequency, ions of particular m/z are excited, and their 

kinetic energy is increased, which results in an increase in velocity and thus a larger 

diameter of circular motion. The ‘image current’ that is induced by the ions circulating in 

the analyser wall perpendicular to the trajectory of the ions can be measured by the 

difference in induced current between two opposing detection plates and converted to a 

spectrum by Fourier transform in a similar manner to the Orbitrap. 
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Fourier-Transform Ion Cyclotron Resonance (FT-ICR) resolution depends on the strength 

of the magnetic field and the quality of the cell. For low mass ions, the maximal 

achievable resolution is higher than current-generation Orbitraps. However, while the 

resolution of FT-ICR is inversely proportional to m/z, the resolution of the Orbitrap is 

inversely proportional to the square root of m/z. Orbitraps are therefore able to offer high 

resolution across a wider mass range. 

1.1.2.5.2.5 Time-of-Flight Mass Analysers 

The Time-of Flight (ToF) mass analyser is essentially a long vacuum drift tube along 

which a packet of ions is fired (Figure 1-VIII). The packet is collected at the start of the 

tube and kinetic energy is imparted by an electric field of known strength. Each ion 

acquires the same kinetic energy and is propelled down the tube with velocity inversely 

proportional to the square root of their m/z (60). In combination with a detector at the far 

end of the tube to record the ion signal over time following the initial dispatch of the ion 

packet, the time taken for an ion to traverse a drift tube of a given length can thus be 

converted to m/z. The longer the tube, the further the ions of different m/z will be 

separated over their journey, increasing the resolution. 

ToF performance can be substantially improved by the addition of an ion reflecting device 

(‘reflectron’) at the far end of the tube, which helps correct for starting differences in 

kinetic energy between ions of the same species. More energetic ions will penetrate further 

into the reflectron, which slightly increases their journey length and helps to normalise 

their flight time against less energetic particles of the same m/z which are reflected at a 

shallower depth. Additionally, by reflecting the flight path back in a V-shape to the 

starting end of the tube, the total journey length is doubled, which reduces the amount of 

physical space the ToF analyser must occupy in order to reach a certain level of resolution 

(additional reflectrons may also be used to further increase path length) (68). 
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ToF analysers offer superior resolution and mass accuracy to the quadrupole scanning 

technique. Ion-scanning based methods generally have a small speed advantage when 

generating spectra for small m/z ranges but are slower than ToF devices in generating a 

full-range spectrum. ToF-based mass spectrometers were essentially unchallenged for 

high-resolution work in proteomics until the advent of Orbitrap based designs which are 

able to offer greater resolution and mass range (and, due to the absence of the drift tube. a 

smaller physical footprint). 

 

Figure 1-VIII. Time-of-Flight Drift Tube. Ions are collected at the start of the drift tube 

and ‘pulsed in’ as a packet by an electric field. They travel down the tube with velocity 

inversely proportional to the square root of m/z. The ion path may be reflected back and 

forth several times by reflectrons to maximise path length and thus the separation of ions 

by m/z, improving resolution. Ions arriving at the end of the tube are detected by a 

microchannel plate; the change in signal over time since the ion packet was pulsed in 

yields the m/z spectrum.  
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1.1.2.6 Fragmentation 

Determining peptide mass alone is insufficient to derive complete peptide or protein 

sequence information. Notwithstanding knowledge of the exact mass of a species, it is 

impossible to differentiate residue sequence variants or other configurations resulting in 

molecular isomers. Various combinations of residues may result in the same net elemental 

contribution to the peptide total; cysteine + valine and alanine + methionine both 

contribute C8H14N2O2S1 to the total elemental composition of a peptide, so two peptides 

which differ only in having one or other cysteine + valine / alanine + methionine pair will 

be indistinguishable by mass. Many other combinations of amino acids produce elemental 

contributions which are so close in mass as to be effectively indistinguishable within 

feasible reasonable mass precision tolerances. In addition, complicating factors such as 

mutations and post-translational modifications exponentially inflate the number of 

potential matches to an observed mass value. Using the LC Retention Time (RT) of the 

species to estimate hydrophobicity of the species, and limiting the search space by 

assuming a set of possible peptides (based on prior knowledge of the sample), one can 

reduce the number of possible peptide matches. However, even in cases when the list is 

much smaller than a typical biological sample (for instance, a digest of a purified protein, 

or a mixture of synthetic peptides) it may not always be possible to differentiate between 

peptides from the list on the basis of mass alone. 

1.1.2.6.1 MS/MS Analysis 

One method to generate such information is to deliberately induce ion fragmentation. The 

fragments generated will depend on the fragmented peptide sequence, its modifications 

and charge state (a Peptide-Modification-Charge entity; PMC) and thus the pattern of 

fragment ions observed may be used (in conjunction with the precursor ion m/z) to deduce 

or infer sequence information. Fragmentation in proteomics is usually performed as part of 

a multistage mass analysis pathway whereby fragment ion spectra (or whole or selected 

parts of the mass range) are collected interspersed with spectra of the non-fragmented ion 

population. The most ubiquitous example of such a strategy is to identify, isolate and then 

fragment a single ion mass from the eluting population (referred to as the ‘precursor’). In 

practice, ‘isolation’ of a mass means imposing a narrow m/z filter centred on the desired 

value – the shape and minimum width of this window are dependent on the mass analyser 

used for selection. Any other masses sufficiently close to the target mass to fall within the 
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selection window will also be co-selected, so an assumption that the selection window 

isolates a single ion species will not always be correct. The isolated ions are fragmented, 

and a mass spectrum of the resulting fragments is collected. This process thus involves the 

collection of two spectra, first the non-fragmented eluting population (denoted as ‘MS1’), 

followed by the fragments from a single selected ion species from that population 

(denoted as ‘MS2’). This two-stage method is generally referred to as ‘MS/MS’ analysis 

(or ‘Tandem MS’ analysis). The archetypical bottom-up proteomic instrument setup 

involving a liquid chromatography system connected in-line with an MS configured for 

two-stage analysis is frequently summarised as ‘LC-MS/MS’. 

For certain tasks, particularly the identification of post-translational modifications and in 

cases where complete fragmentation of the precursor ion is desirable, ions produced after 

fragmentation may themselves be isolated and subjected to further fragmentation 

(‘MS/MS/MS’ analysis, producing an MS3 spectrum). This approach is particularly useful 

when a single round of fragmentation is not expected to yield sufficient information about 

the analyte to make a firm identification (for example, if one round of fragmentation 

merely results in the loss of simple neutral molecules such as water or phosphate), or if the 

MS2 spectrum is too complicated (for example, if the analyte can fragment by multiple 

pathways). This process of selection and fragmentation may be repeated for multiple 

additional rounds, referred to as multistage mass spectrometry (denoted by MSn). 

Interpretation of peptide ion MS2 data in the context of proteomics is discussed further in 

Section 1.1.2.10, below. 

1.1.2.6.2 Collision-Induced Dissociation 

The most commonly employed technique for fragmentation is Collision-Induced 

Dissociation (CID). Analyte ions are accelerated into collisions with atoms of a neutral gas 

(e.g. nitrogen). Depending on the instrument configuration, ions may be accelerated by 

electric potential (e.g. in a quadrupole), or by resonant excitation (e.g. in an ion trap) (69). 

The kinetic energy of the impact is transferred to internal vibrations within the analyte, 

which lead to fragmentation of the peptide molecule along the backbone. In CID, this 

fragmentation predominantly occurs at peptide amide bonds; for each possible cleavage 

site, the two fragments that may be produced are sub-sequences of the original amino acid 

sequence from the N and C terminals to the point of cleavage. Under the nomenclature of 

fragment ions (Figure 1-IX) originally proposed by Roepstorff and Fohlman (70), the most 
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frequently observed species in CID are b- and y-ions (corresponding to the fragments 

containing the original N-terminal and C-terminal respectively). Each cleavage event will 

typically produce only one charged (and therefore observable fragment). 

 

Figure 1-IX. Notation of Peptide Fragmentation using the Roepstorff-Fohlman Scheme. 

In CID cleavage of tryptic peptides, y-ion fragments are typically observed at a higher 

intensity, being more stable due to the presence of the guaranteed basic residue (arginine 

or lysine) and are thus more easily defined in the fragment spectrum (71). However, the 

relative intensities of individual fragment ions are difficult to predict. The current 

framework of understanding is the mobile proton theory (72), which assumes that for 

protonated peptides formed by soft ionization methods such as ESI, the positive charges 

(ionising protons) are initially localized to the most basic sites, i.e. the N-terminus and the 

side chains of basic residues (arginine, lysine or histidine), and further that most 

fragmentation of protonated peptides is charge-directed, i.e. requires the involvement of a 

proton at the cleavage site. Given these assumptions, the theory postulates that when the 

peptide ion becomes energised during fragmentation (e.g. by collision in CID), the 

ionising protons are ‘mobilised’ and move from the basic sites to other locations in the 

peptide that would not normally be energetically favourable. Some possible relocations 

may provide a mechanistic route to cleavage of the (normally non-labile) backbone that 

yields a charged backbone fragment as the final product after decomposition. The 

locations where the mobilised proton is likely to move to, the possible cleavage 

mechanisms these enable and the likelihood of producing a charged background fragment, 

as well as the energy required to initially mobilise the ionising protons, are all 

characteristics specific to a particular PMC. The fragmentation pattern of a particular 
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PMC is thus the synthesis of many competing mechanistic effects (72). Furthermore, the 

dominance of particular mechanisms may change with fragmentation conditions (the 

kinetic energy of the analyte ions, neutral gas composition and pressure), as well as 

instrument-specific factors such as the method by which the ion population is subjected to 

fragmentation and the duration of the process (especially with regard to the potential for 

an ion to undergo multiple fragmentation events), as well as the mass range of the 

spectrum that is acquired from the final fragment population (73). Deterministic prediction 

of the relative intensities of the ion signals resulting from fragmentation of a particular 

sequence is thus extremely complex, but the same PMC analysed under similar conditions 

will generally give the same result. Within the context of the mobile proton theory it is, 

however, possible to form generalisations (for example, particularly abundant y-ions tend 

to be observed N-terminal to proline residues), and the problem is particularly well suited 

to the application of machine-learning prediction tools (74-77). 

1.1.2.6.3 Alternative Dissociation Methods 

The most popular alternative to CID involves addition of electrons to analyte to generate 

analyte-radical ions that fragment. The initial approach, Electron Capture Dissociation 

(78) required an FT-ICR instrument, but was later refined to a more generally applicable 

technique, Electron Transfer Dissociation (ETD) (79). ETD has some limits in peptide 

fragmentation, as it does not work well for 2+ charged species (80), but at higher charge 

states (z >2) it is very efficient, so is most commonly used for protein fragmentation or 

fragmentation of peptides carrying additional charges due to post-translational 

modifications. ETD results in a complementary fragmentation pattern to CID (c- and z-

ions rather than y- and b-; Figure 1-IX); the results may also be combined for higher 

confidence identification.  
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1.1.2.7 Hybrid Instrument Designs 

Most modern mass spectrometers are hybrid designs, wherein multiple mass analysers are 

coupled together to leverage their various advantages and thus allow parallelised analysis 

strategies, particularly those involving fragmentation. Ion fragmentation is usually 

performed in a quadrupole or linear ion trap-type analyser, while the analysis of non-

fragmented analytes is optimally performed in a mass analyser with higher resolution. 

1.1.2.7.1 Triple Quadrupole 

The simplest design in regular use in proteomics, the ‘Triple-Quadrupole’ design (Figure 

1-X) involves three multipole mass analysers, generally referred to as Q1,  q2 and Q3 for 

purposes of describing their configuration, followed by an EMT detector. Q1 and Q3 are 

generally quadrupole devices whereas q2 may also be a hexapole or octupole analyser, 

especially when primarily used as a collision cell for fragmentation. The instrument 

configuration is often abbreviated as ‘QqQ’ to denote the different role of q2. The QqQ 

operates on a beam of ions from the source at all times. To collect an unfragmented 

spectrum (MS1 mode), the mass range is scanned through in Q1, and q2 and Q3 operate as 

ion guides to transmit selected ions through to the detector. To collect a fragmented 

spectrum from a selected precursor (MS2 mode), Q1 is used to select the precursor ion of 

interest, which is then fragmented in q2 and the fragment ion masses scanned through Q3 

to generate the fragment ion spectrum. 

 

Figure 1-X. Triple Quadrupole Schematic. In MS2 mode, ions are selected in Q1 (fixed 

filter), fragmented in q2 and scanned out to the detector (scanning filter) in Q3. 
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1.1.2.7.2 Quadrupole-ToF 

Before the advent of the Orbitrap, ToF mass analysers were the pre-eminent option for 

collecting high resolution mass spectra. Most commonly, a ToF analyser replaces what 

would be Q3 in a Triple Quad configuration, typically performing the role of spectrum 

collection in both MS1 and MS2 modes. The preceding quadrupoles are used for precursor 

selection and fragmentation in MS2 mode. A modern example of a quadrupole-ToF hybrid 

system is the ‘TripleTOF’ line of instruments produced by ABSciex (Figure 1-XI). 

 

Figure 1-XI. ABSciex TripleTOF 5600 Quadrupole-ToF Schematic. Based on ABSciex 

product literature. 

1.1.2.7.3 Orbitrap Hybrids 

Hybrid instruments which combine quadrupole and linear ion trap mass analysers with an 

Orbitrap are popular in proteomics research. The coupling of an Orbitrap to a linear ion 

trap was the first reported configuration for a commercially available Orbitrap instrument 

(81). In this configuration, a linear ion trap was placed in series with the Orbitrap, 

connected by an ion guide quadrupole. This allowed the speed and sensitivity of the ion 

trap for ion selection and fragmentation (and spectrum collection for MS2 spectra) to be 

combined with the resolution and mass accuracy of the Orbitrap for collection of MS1 

spectra. Various advances in Orbitrap and LTQ speed sensitivity have led to a line of 

successive instruments following this design with increased resolving power and 

sensitivity. To date, these are (in release order) the original LTQ-Orbitrap Classic and the 
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LTQ-Orbitrap XL (Figure 1-XII), the LTQ-Orbitrap Velos (with an improved dual-

pressure ion trap and collision cell) and most recently the LTQ-Orbitrap Elite, LTQ 

Orbitrap Fusion and LTQ-Orbitrap Fusion Lumos, with second-generation high field 

Orbitrap analysers and a new signal processing method, which together approximately 

quadruple the resolving power. 

Advances in the scan speed of Orbitraps have led to a second design in which the Orbitrap 

and an associated collision cell effectively replaces q2/Q3 in a triple quad setup, in which 

the Orbitrap is used to collect both MS1 spectra (with Q1 transmitting all ions directly to 

the Orbitrap) and MS2 spectra (with Q1 selecting a precursor, passing it to the collision 

cell for fragmentation which then passes to the Orbitrap for spectra collection). This 

instrument line consists of (in release order) the Q-Exactive (Figure 1-XIII), the Q-

Exactive Plus (with an improved, segmented quadrupole), the Q-Exactive HF (with the 

second-generation Orbitrap and signal processing advances described above) and most 

recently the Q-Exactive HF-X (with improved ion optics). 

The two instrument schematics shown on the next page are the instruments used to collect 

the datasets discussed in Chapters 3 and 4, respectively.  
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Figure 1-XII. Thermo Fisher LTQ-Orbitrap XL Schematic. Adapted from Thermo Fisher 

product literature. 

 

Figure 1-XIII. Thermo Fisher Q-Exactive Schematic. Adapted from Thermo Fisher 

product literature.  
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1.1.2.8 Data-Dependent Acquisition 

The most common experimental paradigm in bottom-up proteomics is Data-Dependent 

Acquisition (DDA). Peptides are eluted from an on-line RP-LC system into a mass 

spectrometer which repeatedly samples the eluting peptides to collect full-range MS1 

spectra. In real time, the most recent MS1 spectrum is analysed to identify potential 

peptide signals of sufficient intensity to warrant further analysis, excluding background 

noise signals and likely non-peptide contaminant species. If species of potential interest 

are identified, they are ranked in order of descending interest and the top candidate on the 

list is analysed further. Ions of this m/z value are selectively isolated, fragmented and an 

MS2 spectrum is then collected. Additional candidates may then be selected in turn, 

moving down the list, until a predefined limit (typically 5-50) is reached, at which point 

the instrument returns to MS1 mode, collecting a new spectrum from which new 

candidates may be selected for MS2. Selected candidates are generally excluded from 

subsequent rounds of selection for a period of time in order to prevent repeated selection 

of the highest abundance species. This concept is referred to as Data-Dependent Analysis, 

since the m/z values selected for fragmentation and MS2 spectrum collection are dependent 

on the ion intensities observed in MS1 (Figure 1-XIV). 

In most MS instruments, operation in MS1 and MS2 modes is mutually exclusive due 

either to configuration (e.g. in a Triple-Quad, the first quadrupole may either scan through 

m/z values to produce an MS1 scan or select a single m/z for fragmentation) or control 

logic (firmware) limitations. Recently, a degree of parallelisation has been implemented in 

some instruments, such as the later models of the LTQ-Orbitrap series, which allow 

simultaneous use of the ion trap detector for MS2 scans whilst high resolution MS1 scans 

are acquired in the Orbitrap, with a potential for more involved schedules to minimise the 

idle time of both detectors (41). 
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Figure 1-XIV.  Data-Dependent Acquisition Process Flow. 

As depicted in Figure 1-XIV, the resulting data from a typical DDA experiment will be a 

series of MS1 spectra showing the intensities of ions eluting from the LC gradient over a 

time course. Interspersed among these scans will be the MS2 scans that have been acquired 

based on the preceding MS1 spectra, each of which show the result of fragmentation of a 

selected precursor ion. The number of MS2 events in between each MS1 spectrum may lie 

anywhere between zero and the predefined limit, as the maximum selectable number of 

candidates that are both intense enough and not currently excluded from consideration 

may not be found in every MS1 scan. The times between the collection points of sequential 

MS1 scans are thus irregular, although certain examples of newer instruments such as the 

LTQ-Orbitrap Fusion Lumos do have the ability to enforce MS1 spectra collection at fixed 

intervals. The elution profiles of m/z ions are thus sampled in a non-uniform manner, 

which has ramifications for quantification approaches using MS1 data (as discussed in 

detail under Section 1.1.2.11.1). Furthermore, there is no guarantee that a particular PMC 

(Peptide-Modification-Charge entity; see Section 1.1.2.6.1) will be selected for MS. If, 

following each MS1 scan during the elution period of a particular PMC, the PMC signal is 
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never ranked high enough in the list of potential candidates to be selected (generally 

because the signal or signal-to-noise value at the time of each MS1 is low) then no MS2 

will be collected for that particular PMC during that MS run. On mass spectrometers with 

a slow overall cycle time this can result in variable visibility of PMCs with very short, 

sharp elution peaks (even if their intensity, if measured at peak apex, would be high) if 

they elute between MS1 scans. With modern instruments, this consideration is relatively 

minor due to the speed of acquisition although it is relevant when designing a method with 

a large number of allowed MS2 events between each MS1. More common is the problem 

of low abundance (but still detectable) PMCs, or higher abundance PMCs with poor 

chromatographic resolution, resulting in broad elution peaks where the signal is spread 

over a relatively long period of elution time (e.g. several minutes) where even though the 

integral of the signal may be high, the maximum intensity is not. In both cases, in a series 

of MS analyses of similar samples (or even technical repeats of the same sample), all 

detectable PMCs may not be found in every analysis. This stochastic sampling of the 

detectable PMC space, with a bias against low abundance PMCs, poses challenges for 

statistical analysis as inconsistent visibility leads to missing values. Various methods have 

been developed to allow identifications to be inferred between runs of similar samples for 

PMCs which are visible in MS1 but not necessarily identified in a particular sample run. 

Typically, this is done by matching MS1 retention-time dependent peak clusters across 

runs, either on an individual feature basis, or more often for all features. Such strategies 

are particularly important for Label-Free Quantification (see Section 1.1.2.11.3), a 

prominent example being the Match-Between-Runs feature in MaxQuant (82). 

1.1.2.9 Data-Independent Acquisition 

While DDA is the typical paradigm for bottom-up proteomic mass spectrometry, several 

Data-Independent Acquisition (DIA) approaches have recently been described. Rather 

than selecting a single m/z value for fragmentation, a conceptually similar non-dependent 

approach is to perform fragmentation on either the full mass range, termed MSE (83), or 

on a series of consecutive intervals (e.g. 25 Da windows) across the full m/z range. This 

latter concept is commonly referred to as SWATH (Sequential Window Acquisition of all 

THeoretical spectra) (84) or SWATH-like, although such strategies pre-date this term 

(85). These approaches rely on computational algorithms to de-convolute the resulting 

data based on matching elution profiles of fragment ion spectra with ions in the MS1 scan. 



Chapter 1: Introduction 40 

A more targeted approach that may be used if the peptides of interest are known in 

advance is to predefine the monitoring of both a required precursor and a particular 

fragment from that precursor, rather than collecting the whole MS2 spectrum. Since certain 

combinations of a selected MS1 precursor and an observed MS2 fragment ‘daughter’ 

(known as a ‘transition’) ion are unique to a particular analyte, this method, known in 

various incarnations as Selected Reaction Monitoring (SRM) or Multiple Reaction 

Monitoring (MRM), can allow for rapid targeted identification and quantification of pre-

selected peptides (86). SRM is particularly suited to Triple-Quadrupole design mass 

spectrometers as it maximises a strength (the three consequent quadrupoles can be used 

for selection of a precursor, fragmentation, and selection of a fragment ion) while avoiding 

a weakness (quadrupole mass analyser-based detection is slower to collect a spectrum 

across an m/z range). In Orbitrap hybrid designs, the Orbitrap mass analyser cannot be set 

to detect only a single MS2 fragment as it measures all fragments simultaneously. A 

complementary technique to SRM on such machines involves selecting a particular MS1 

precursor (pre-defined rather than based on a preceding spectrum), fragmenting the 

precursor but then analysing all fragments simultaneously. This technique is termed 

Parallel Reaction Monitoring (PRM) (87).  

1.1.2.10 Interpretation of MS2 Spectra in Proteomics  

MS2 spectra collected in proteomics may be the result of fragmenting a single precursor 

mass (with the caveat that multiple masses may be co-selected, see 1.1.2.6.1), which 

applies to both DDA-style experiments and DIA experiments with a fixed isolation mass 

lists (e.g. PRM). In the case of DIA experiments that isolate larger mass window ranges 

(as opposed to a single target mass) interpretation of the fragmentation spectra is 

considerably more complex. Discussion in this section will be limited to the former case 

(single precursor isolation) as being most relevant to this work. 

In the case of bottom-up proteomics, where the precursors are peptides, a ‘perfect’ MS2 

spectrum would be one in which all possible fragment ions from at least one side of the 

fragmentation location are observed (a complete ‘ion series’, see Figure 1-IX). This would 

be sufficient to identify the amino acid sequence of any non-post-translationally modified 

precursor, and to presume with high confidence the sequence of any precursor with typical 

post-translational modifications. The assignment of peptide sequence, modification state 
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and charge to an MS2 spectrum is referred to as a Peptide-Spectrum Match (PSM), 

although technically ‘PMC-Spectrum Match’ would be a more accurate definition of the 

acronym. 

Fragment spectra may be interpreted by manual assignation of the fragment ions. In the 

case of peptides, one can assume that each fragment peak observed will be from the 

proportion of the total precursor species population undergoing fragmentation at a 

particular point on the backbone or side chains. The likely fragmentation locations may be 

predicted from the method of fragmentation. CID, for example, is expected to result 

primarily in cleavages at amide bonds in the amino acid chain. For most experiments, the 

number of spectra collected render manual assignation ion-by-ion to be impractical, and 

computational strategies are employed for bulk analysis of acquired spectra. 

1.1.2.10.1 Automated Peptide Identification 

It is possible to predict some or all of the amino acid sequence based solely on the 

observed data in the same manner as manual sequence assignation, commonly referred to 

as ‘de novo’ sequencing. However, it can be challenging to distinguish the two 

complementary ion series (e.g. b- and y-ions) from each other, and from background noise 

or contaminating co-selected species due to non-specificity in the precursor selection 

window. Alternatively, a putative identity may be produced by comparing the observed 

spectrum to either theoretically generated fragmentation patterns, or a spectral library 

generated from previous analyses.  

Theoretical fragmentation patterns are generated by applying the expected fragmentation 

behaviour to peptides generated by in silico digestion of a proteome reference (generally 

derived from genomic data) according to the known cleavage specificity of the protease 

used. In order to reduce the complexity of the problem and thus the number of 

comparisons to be made, a number of constraints are typically employed. The m/z of the 

precursor ion selected prior to fragmentation is used to limit the number of theoretical 

peptides considered to only those with a corresponding mass. Possible modifications are 

pre-specified as either fixed (assumed to be present on all corresponding possible sites) or 

variable (theoretical peptides will be considered with and without the modification on each 

possible site); the number of variable modifications is generally limited to avoid 

exponential increases in the number of theoretical peptides considered. Error tolerances 
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for precursor and fragment ion mass are generally set to account for the expected 

resolution and mass accuracy of the mass analyser used for spectrum collection. 

Commonly used commercial and open-source search tools implementing this approach 

include Mascot (88), SEQUEST/Crux (89, 90), X!Tandem (91), OMSSA (92) and 

Andromeda (93). A generalised workflow for such tools is illustrated in Figure 1-XV. 

 

Figure 1-XV.  Peptide Identification by MS2 Spectrum Database Searching. Adapted from 

Nesvizhskii et al., 2007 (94). 

In silico fragmentation patterns are generally compared on the basis of expected m/z value 

only, rather than taking intensities into account. Prediction of relative fragment ion 

abundance is considerably more challenging than just predicting the m/z values of the ions 

generated. As an alternative to theoretical peptides, one may use a library of high 

confidence PSMs from previous analyses to identify new PSMs in the current experiment 

by similarity. This has the advantage of allowing fragment ion relative abundances to be 

included in the matching process, which improves selectivity and can reduce false 

positives. This approach is most useful in contexts where there is a large amount of 

existing data available. Error tolerances for precursor and fragment ion mass are used, as 

above, to limit the search space for each spectrum to be matched so that only plausible 

contenders are scored. Examples of open-source spectral library search tools include X! 

Hunter (95), SpectraST (96) and BiblioSpec (97). 
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In both approaches, the observed spectrum is compared to fragment ion patterns of eligible 

theoretical/library peptides and the correspondence in each case is scored. Scoring models 

differ between search algorithms, and there is a wide variety of approaches. The general 

aim is two-fold, to identify the closest theoretical match (and thus assign an identity) and 

to somehow represent how close a match this was, for comparison with other 

identifications. Comparative methods always seek to return the ‘best’ match via theoretical 

spectra, spectra library or de novo analysis, even in the case of MS2 spectra for which 

there is no ‘correct’ answer (for example, the spectrum was overwhelmed by noise, or a 

non-peptide precursor was selected, or the peptide selected does not appear in the 

proteome sequence database or spectral library). Repeat analyses cannot be guaranteed to 

produce identical MS2 spectra due to, among other factors, LC variability and stochastic 

selection of potential peptide precursors (see Data-Dependent Acquisition, Section 

1.1.2.8) and variance in sample processing. It is therefore necessary to consider each PSM 

in the context of all PSMs produced within each analysis, to determine an appropriate 

score threshold in order to control the rate of incorrect PSM assignments (usually referred 

to, slightly misleadingly, as the False Discovery Rate (FDR) of the search). 

FDR methodologies rely on assessment of the comparison score distributions among all 

PSMs in an analysis (Figure 1-XVI). It is possible to differentiate the distribution of the 

scores of genuine PSMs from those of incorrect PSMs as the ‘correct’ median score may 

be assumed to be higher than incorrect PSMs (otherwise, the comparison metric would 

have no selective power at all). For proteome database searching (the most widely used 

identification method), two approaches to FDR control have predominated (94). The first 

approach is to model the correct and incorrect PSMs as a mixture of two distributions 

(Figure 1-XVI-A). This ‘mixture model’ approach works best when there are a very large 

number of PSMs within the analysis, so that the distribution function is well characterised. 

The alternative ‘target-decoy’ approach, which is reasonably robust even at a relatively 

low number of PSMs, is to include an approximately equal number of ‘decoy’ sequences 

within the proteome to be searched. Such sequences should be equivalent in amino acid 

relative composition and peptide length to the proteome sequences; the easiest way to 

achieve this is simply to reverse the sequences of the proteome. Spectra producing 

incorrect matches (i.e. that match effectively at random) may be assumed to match in 

approximately equal numbers (and with equal scoring distribution) to both proteome and 

decoy sequences. The number and scoring distribution of PSMs matching decoy 
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sequences is thus an estimate of half the underlying incorrect PSM distribution (Figure 

1-XVI-B). 

 

Figure 1-XVI. Statistical Assessment of PSM Scores. The red and blue distributions 

represent incorrectly and correctly assigned PSMs respectively. On the left side of the 

figure, these indicate the true distributions in both sets of PSMs while on the right side, the 

predicted distributions derived by the two approaches (that may be then used to infer FDR 

values). A: Mixture model approach on large set of PSMs. B: Target-decoy approach on 

smaller set of PSMs. The orange bars indicate the distribution of PSMs assigned to a 

decoy database sequence.  

If the genome or proteome of the organism being studied is poorly characterised, then the 

proteome database or spectral libraries available may be unacceptably incomplete. 

Furthermore, if the analysed peptide mixture contains a large number of PMCs with novel 

sequence, point mutations or unusual or highly complex post-translational modifications, 

these will be outside the space typically considered by a database search under standard 

parameters. In such cases it may be necessary to fall back on purely de novo analysis tools 

such as PepNovo (98). More recently, so-called ‘second generation’ search engines such 

as Peaks (99) and Byonic (100) combine de novo and database searches. In these engines, 

the identification of common PMCs by database search is supplemented with the 

identification of mutations and unusual modifications by the more flexible de novo 

approach. 

PSM Score

Fr
eq

ue
nc

y

Incorrect PSMs

PSM Score

Fr
eq

ue
nc

y

Correct PSMs PSM Score
Fr

eq
ue

nc
y

Observed Scores

Scoring 
Significance 
Model

PSM Score

Fr
eq

ue
nc

y

Model Fitting

PSM Score

Fr
eq

ue
nc

y

A

Estimated
Significance

PSM Score

Fr
eq

ue
nc

y

Assess Decoy Hit DistributionB

PSM Score

Fr
eq

ue
nc

y

Observed Scores

PSM Score

Fr
eq

ue
nc

y

Predicted Incorrect 

Predicted Correct 

Decoy Hits

Predicted Incorrect 

Predicted Correct 



Chapter 1: Introduction 45 

1.1.2.10.2 Protein Inference 

Bottom-up proteomics produces information regarding the identities (sequence and 

modification state) of peptides in a sample. This information may be collated to infer the 

identity of the protein compositions prior to digestion, but the direct connection between 

peptides and proteins is broken by the digestion of all proteins simultaneously. As 

discussed in the comparison with top-down proteomic methodology, it is usually 

impossible to derive the exclusive set of parent proteins from peptide-level results, as 

many proteins (particularly isoforms and splice variants) share considerable sequence 

homology and may therefore produce the same peptide upon digestion. This issue in 

bottom-up proteomics has been recognised in the field since inception (22, 101); even 

before the widespread adoption of LC-MS it was recognised that unresolved proteoform 

‘spots’ in 2DGE would not be differentiable by mass spectrometry of a peptide digest 

from the excised spot. The historical ‘rule of two’ solution, in which proteins with less 

than two uniquely assignable peptides were discounted has largely been supplanted by 

protein grouping solutions either built into search engines (e.g. Mascot, Andromeda) or 

stand-alone tools for re-analysis of identified PSM lists (e.g. ProteinProphet (102)). 

Protein grouping approaches attempt to find a minimal number of ‘groups’ containing one 

or more parent proteins which would explain the set of observed PSMs. Such approaches 

resolve problems where overwhelming evidence has been observed for a group of two or 

more proteoforms, but all relevant detected peptides map to more than one proteoform and 

thus none are strictly ‘unique’. Under the two-peptide rule, no evidence for any of the 

proteoforms is admissible; it is more representative of the observed data to say that the 

group of proteoforms was observed but cannot be further separated. 

Whilst protein grouping resolves many protein inference problems with regard to 

identification, basing protein quantification on peptide identifications has the additional 

challenge that it is unknown how much of the observed peptide intensity is potentially 

contributed by each potential parent protein in a protein group. Either quantification must 

be qualified as applying to the protein group as a whole, or it must be restricted to unique 

peptides, or assigned proportionately to group members based on a statistical model of the 

likelihood that they were actually observed. 
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1.1.2.11 Quantification Techniques 

In bottom-up proteomics, quantification of proteins is achieved by measuring ion current 

derived from surrogate peptides or their derived fragments. Comparisons of abundance 

may be made directly between MS runs, or between species with comparable ionisation 

kinetics such as the same peptide differentially labelled so as to have a resolvable mass 

shift. If the concentration on one side of the comparison is known, the concentration and 

thus absolute abundance of the other side may be deduced; i.e. quantification is absolute. 

This is generally only the case with internal standards that have been pre-quantified, either 

by amino acid analysis or by quantitative nuclear magnetic resonance (103-105), and 

requires the identity of the peptides to be quantified by MS to be known in advance. In 

most cases, quantification is relative and can only be expressed as fold-changes between 

samples. 

Labelling strategies are designed to allow separation of samples by mass in either MS1 or 

MS2 spectra, although there are examples of experimental designs in which a combination 

of MS1 and MS2 labelling strategies is used to address specific biological problems (106). 

This allows the simultaneous analysis of multiple samples, or of one sample and a shared 

standard against which samples acquired over a series of runs may be normalised (thus 

allowing sample quantification across multiple runs). Such an internal standard is 

generally constructed so as to be comparable against the most extreme samples. One way 

to achieve this is to generate a ‘pooled’ standard from equal aliquots of all samples. 

Protein and peptide mass labels may be introduced metabolically, i.e. by providing them to 

the organism or cell/tissue culture over a period of time in nutrient sources, such that they 

are taken up and incorporated naturally into biological components. Alternatively, labels 

may be introduced after protein extraction by means of a chemical reaction. 

Metabolic labelling allows samples to be combined and processed together as early as 

possible in the MS analysis workflow and facilitates analysis of metabolic processes 

governing the incorporation or depletion of a label over time. Metabolic labelling 

strategies include Stable Isotope Labelling by Amino acids in Cell culture (SILAC) and 

Elemental Metabolic Labelling (EML) such as 15N. 
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Chemical labelling strategies have fewer limitations in terms of biological impediments to 

labelling chemistry and may be applied in cases where metabolic labelling is not possible, 

for example tissue biopsies. Chemical labelling strategies are, however, exposed to more 

technical variability. 

Variation in labelling efficiency correlates with the technical variation introduced by all 

intermediate sample extraction and processing steps prior to labelling and combination of 

samples (107). Metabolic labelling allows combination after the fewest steps (Figure 

1-XVII). Since there are many potential targets for chemical labelling in the polypeptide 

chain, a large number of chemical labelling strategies have been reported (108). Many 

such strategies are limited in practicality due to incomplete or nonspecific labelling, which 

complicates interpretations. Chemical labelling strategies that have been widely employed 

include enzyme-catalysed 16O to 18O exchange, Isotope-Coded Affinity Tagging (ICAT), 

Dimethyl labelling, and Isobaric Tagging (Isobaric Tags for Relative and Absolute 

Quantification; iTRAQ™, and Tandem Mass Tags; TMT™); these are discussed in more 

detail in Section 1.1.2.11.1.3. 

 

Figure 1-XVII. Summary of Strategies for the Comparison of Proteomic Samples. Red 

and blue blocks indicate differentially labelled samples. Yellow blocks indicate a 

differentially labelled reference standard. Black bars with three question marks (‘???’) 
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indicate steps where technical variance may be introduced due to unaccounted differences 

in processing or measurement. Adapted from Bantscheff et al., 2012 (109). 

1.1.2.11.1 MS1-Based-Quantification 

Separation of samples by a mass shift at the peptide level allows multiple samples to be 

quantified simultaneously from MS1 spectra. Ideally the method for inducing this mass 

shift should not also affect the behaviour of the labelled peptides on LC gradients, so that 

differently labelled peptides still co-elute and are measured in the same context. A simple 

way to induce mass shifts without (substantially) changing LC characteristics is to use 

stable isotopes, such that differentially labelled peptides retain the same elemental 

composition but with some number of atoms having differential isotopic enrichment and 

thus overall different masses. Within the Born-Oppenheimer approximation, the increased 

mass of isotope labels will lead to a reduction in nuclear vibrational wave function 

amplitude and thus reduce the average volume and polarizability of bonds involving the 

labelled atom, potentially reducing the hydrophobicity of the molecule, depending on the 

intramolecular location of the label (110). The retention time effects of replacing 14N with 

15N and 12C with 13C are usually small enough to disregard, but the effect of hydrogen-

deuterium labelling, i.e. replacing 1H with 2H, is more substantial. Nevertheless, 

hydrogen-deuterium replacement still has applications, especially where the number of 

deuterium replacements is small (e.g. Dimethyl labelling - see Section 1.1.2.11.1.3). 

For each peptide, quantification is achieved by comparison of the differently labelled 

versions of that peptide within each of the MS1 scans across the joint elution window. 

Note that herein and henceforth I will use ‘signal’ to refer to the intensity corresponding to 

(or at least presumed to correspond to) a specific differently labelled version of a PMC in 

the MS. When multiple PMCs correspond to the same peptide, there are various methods 

for inferring a peptide-level value from PMC quantification results. For a peptide with a 

single PMC instance, it is generally assumed that the signal intensity is a proxy for peptide 

abundance, although the gradient of the linear correlation between the two is not 

consistent between PMCs, or between the same PMC measured in different sample 

contexts. 

Intensity signal-to-noise can be maximised by comparing the elution peak apex intensities, 

or the integral of intensities over RT. Whilst there is no guarantee that the apex of the 
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elution peak will be measured due to MS1 sampling intervals, modern instruments sample 

with sufficient rapidity that uncertainty in peak shape is minimal. For label-to-label 

comparisons within a single MS run, peak uncertainty will in any case be equivalent 

between labels so long as labelling does not introduce a substantial chromatographic shift. 

1.1.2.11.1.1 Stable Isotope Labelling of Amino Acids in Cell culture 

Stable Isotope Labelling of Amino Acids In Cell culture (SILAC) labelling (111) is 

achieved by metabolically introducing isotopically labelled amino acids with a fixed mass 

shift to proteins. When labelling by particular amino acids is paired with use of an 

appropriately specific protease (e.g. trypsin with arginine/lysine labelling) to guarantee at 

least one labelled amino acid per peptide, the resulting labelled peptides will have fixed 

mass shift that is a multiple (allowing for missed cleavage) of the labelled amino acid 

shift. This allows for straightforward quantification as the labelled signal in the MS will 

always be shifted by a predictable mass from the unlabelled signal. Widely used 

arginine/lysine labelling labels induce mass shifts of +6 Da (13C6 arginine and 13C6 lysine) 

or +10/+8 (13C6, 15N4 arginine and 13C6, 15N2 lysine). The property of quantitative interest 

is the ratio between the unlabelled and labelled signal intensities, which is a function of 

both the ratio between the unlabelled and labelled samples, and the incorporation level of 

the SILAC label in the samples (Figure 1-XVIII-A). 

SILAC has proved an extremely popular technique in the field for a number of reasons. 

The relatively simple nature of the quantitative data analysis and robust support for the 

technique by polished, relatively easy to operate quantification platforms such as 

MaxQuant (82), Mascot Distiller (112) (Matrix Science) and Proteome Discoverer 

(Thermo Fisher) have facilitated use of the technique without requiring heavy 

bioinformatic support. A high level of label incorporation is achievable. Indeed complete 

labelling of model organisms such as Drosophila melanogaster (113) and Mus musculus 

(114) has been described, and Geiger et al demonstrated the labelling of multiple human 

cell lines that could be combined to effectively approximate a generalised human tumour 

proteome for the purposes of an internal standard for quantification (115). 

Not all organisms are amenable to SILAC-style in vivo labelling, however. Ideally, 

organisms must be auxotrophic for the labelled amino acids (116). It is also recommended 

that they be unable to convert the labelled amino acids into other amino acids (causing 
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unintended secondary labelling), although there are strategies that can somewhat mitigate 

this second issue by experimental design (117-120) or bioinformatic post-processing (121-

123). While labelling in green algae has been successful (124), the ability of higher plants 

to easily convert between amino acids (particularly arginine to proline) makes SILAC 

labelling difficult (125), although successes have been reported in plant cell culture (126) 

and even seedlings (127). 

1.1.2.11.1.2 Elemental Metabolic Labelling 

An alternative approach, rather than labelling specific amino acids, is to label all atoms of 

a particular element. This is frequently referred to as metabolic labelling, although I refer 

here specifically to Elemental Metabolic Labelling (EML) to distinguish this strategy from 

SILAC-style (amino-acid centric) labelling techniques, as both introduce the label by 

metabolism. Isotopes of 18O, 2H, 13C and 15N have all been used for such studies (128-

132). The mass shift thus induced is proportional to the number of atoms of the labelled 

element, although the labelled signal will appear as a distribution of different masses in 

the mass spectrum if the incorporation level of the labelled element is less than 100%. 

Since EML leads to stable isotope labelling of both the proteome, metabolome and all 

other biological components, it has extensive history (133-137) and considerable ongoing 

interest (138-141) in proteomics and metabolomics as well as applicability to questions 

involving nucleic acids (142). There are two properties of quantitative interest, the ratio 

between the unlabelled and labelled signal intensities, and (when labelling is not 

performed to completion) the incorporation level of the labelled element observed in each 

labelled signal; unlike SILAC these may be measured independently (Figure 1-XVIII-B). 

The automated quantification of EML data is more complicated than that of SILAC. 

Whereas incomplete labelling in SILAC affects only the ratio between the intensity of the 

labelled and unlabelled signal, in EML, the proportion of incorporation also affects both 

the masses of the major isotopologues of the labelled signal, and their relative proportions. 

Realities of experimental design with regard to controlling all metabolic intake of a 

particular element, and the financial limitations on maximum reagent isotopic purity mean 

it is usually impractical to achieve complete incorporation of an elemental label (143). 

Procedures for quantitative EML data analysis are discussed below in further detail. 
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1.1.2.11.1.3 Chemical Labelling 

An early example of chemical labelling in order to introduce a mass shift in labelled 

peptides is the enzyme-catalysed exchange of two 16O for two 18O (supplied via H2
18O) 

during digestion. First described in 1981 (144), this technique was used for MS-based 

quantification of peptides as early as 1983 (145) and applied in various ways for 

quantitative proteomic studies from 2000 onwards (128, 146, 147). An alternative 

approach by Münchbach et al. (148), also published in 2000, proposed labelling peptide 

N-termini using H4 and 2H4 (four hydrogen versus four deuterium, with a mass shift of 

approximately +4 Da) versions of nicotinoyloxy succinimide esters. In this example, 

primary amines on lysine side chains were blocked via succinylation to ensure only N-

terminal amino groups were labelled. 

The first methodology used broadly in the field was Isotope-Coded Affinity Tagging 

(ICAT) (149). ICAT involves labelling peptides with reagent consisting of a cysteine-

directed reactive group, an isotopically coded linker (originally using 2H but more 

commonly now using 13C), and a biotin group for labelled species recovery. The labelled 

signal is separated from unlabelled signal in MS1 according to the total isotopic mass delta 

of the linker component, which thus allows simultaneous analysis of multiple samples. 

Samples are labelled at the protein level, allowing pooling prior to digestion and thus 

avoiding the introduction of sample bias at subsequent steps. Whilst considered a 

prototypical example of chemical labelling, ICAT is limited to cysteine-containing 

peptides by design. In recent years it has been mostly supplanted by strategies which 

target primary amine groups on lysine side chains and amino termini, and thus present at 

least one labelling site in all peptides with unblocked N-termini. A popular example of 

such a technique is Dimethyl labelling, which labels the primary amines of peptides with 

2H and 13C isotopically-labelled formaldehyde and cyanoborohydride (150). This approach 

has the advantages of low reagent costs and few experimental limitations, although 

analysis must be robust to potential RT shifts introduced by 2H isotope labels and, unlike 

ICAT, samples must be labelled post-digestion. For all chemical labelling strategies, the 

property of quantitative interest is the ratio between the unlabelled and labelled signal 

intensities (Figure 1-XVIII-C). Incorporation level in the labelled sample may generally be 

assumed to be close to 100%, unless the labelling chemistry is disrupted. 
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Figure 1-XVIII. Summary of MS1 Labelling Approaches. 

1.1.2.11.2 MS2-Based-Quantification by Chemical Labelling 

In MS2-based labelling, samples have the same mass prior to fragmentation, so that they 

may be selected as a single precursor mass. This is achieved by labelling with a two-

component reagent where the isotopic mass differences of individual ‘reporters’ (labels) 

are offset by corresponding balance groups. This strategy is employed by two related 

labelling systems - Isobaric Tags for Relative and Absolute Quantification (iTRAQ) (151) 

and Tandem Mass Tags (TMT) (152). 

In both approaches, an isobaric tag is attached to peptide primary amines via N-

succinimide ester chemistry. The tag (consisting of reporter and balance components) 

contributes an equal mass shift to the labelled signal regardless of label (this has the 

advantage of not increasing the complexity of the MS1 spectrum). All labels are co-

selected, and during fragmentation both the reporter and balance are cleaved from the 

peptide. The reporter group retains a charge and is observed in the MS2 spectrum. 

Separated from their balance groups, reporter ions corresponding to each label now have 

different masses and thus may be quantified individually yielding the relative proportion 

of each label in the selected peptide precursor (Figure 1-XIX). The reporter ions are 

designed to have masses in a low-mass area of the spectrum with minimal potentially 
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similar-mass ions derived from the peptide backbone fragmentation that might hinder 

quantification. By directly linking peptide identification with relative quantification across 

labels, a quantitative reading for each label is guaranteed for all identified peptides, even if 

the abundance of the peptide in some samples would otherwise be too low to allow 

consistent identification (i.e. sufficient intensity both to trigger selection of the precursor 

for MS2, and for the resulting fragment ion spectrum to yield a highly scored PSM) of that 

peptide in those samples. An issue arises with the co-selection of peptides that are below 

the background detection limit, whose fragment ions remain spread across the mass range 

at background levels, but whose reporter ions, being all of the same mass as the reporter 

ions of the selected peptide, contribute to quantitative error. This has led to refinements in 

isobaric tagging analysis whereby the unfragmented precursor from the MS2 scan is 

subject to a second round of fragmentation to yield a MS3 spectrum with the majority of 

co-selected background excluded (153, 154). Isobaric tagging approaches are available in 

2- to 11-plex formats, allowing for a wide range of experimental designs. However, as 

there is an upper limit on the number of ions that may be simultaneously selected and 

fragmented from a single precursor mass, high-multiplex formats risk spreading the 

available signal too ‘thinly’ resulting in higher variance of individual label measurements. 

 

Figure 1-XIX.  Isobaric Tagging. Example of isobaric-tag labelling using the iTRAQ 4-

plex labelling scheme. Adapted from Ross, P. L. et al., 2004 (151).  
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1.1.2.11.3 Label-Free Quantification 

The primary purpose of MS1 and MS2-based labelling is to allow all comparisons of peak 

intensity to be performed within a single run, comparing between runs only via an internal 

standard included as one of the labels. Historically, direct comparison of a peptide signal 

between runs without a labelled internal standard was frustrated by chromatographic 

variation, and label-free approaches were limited to semi-quantitative approaches such as 

spectral counting. 

Spectral counting is based on the observation that, in a typical DDA experiment, the less 

abundant the parent protein, the fewer peptides are expected to be detected, therefore the 

ratio of PSMs corresponding to a protein between two runs is an approximate indicator of 

relative abundance. This base metric may be refined by normalising for protein length to 

give the Normalised Spectral Abundance Factor (NSAF) value (155) and theoretical 

predictions of detectable peptide numbers to give the Exponentially Modified Protein 

Abundance Index (emPAI) value (156). A more recent refinement is to account for 

fragment intensity in the ‘counted’ spectra to give the Normalised Spectral Index 

Quantitation (SINQ) value (157). Nevertheless, these metrics are hamstrung by incomplete 

modelling of the relationship between protein abundance and spectral counts, and are 

generally only reliable for fold changes greater than an order of magnitude (158). 

More recent advances in peak-picking and retention-time alignment have enabled robust 

direct comparison of ion signals integrated from MS1 spectra in the same manner as MS1 

label-based quantification, generally referred to as Label-Free Quantification (LFQ). 

Software packages offering this functionality include Progenesis QIP (Nonlinear 

Dynamics), Census (121) and MaxQuant (82). 

The great advantage of LFQ strategies is the absence of a need for any labelling, which 

applies no constraints on sample compatibility and reduces per-sample preparation costs. 

Each sample must be analysed separately by MS, however, increasing the required MS 

instrument time, and chromatographic variation must be minimised, which requires 

samples to be processed in a single batch, and a robust front-end chromatography system 

with minimal run-to-run variation, especially for large sample cohorts where tens (or even 

hundreds) of samples are to be run sequentially. 
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1.2 MS1-Based-Quantification of 15N EML 

This thesis will concentrate on the quantitative analysis of MS1 data from EML 

experiments in which the labelling is achieved by increasing the 15N:14N ratio in labelled 

samples. Labelling with 15N is widely used in turnover studies (particularly in plants, 

where factors such as arginine-proline conversion would complicate SILAC approaches), 

and 15N salts are comparatively inexpensive and easily sourced (141). Labelling with 15N 

has also been used for proteomic studies in algae (159, 160) and yeast (85, 161-164), and, 

by employing near-completely labelled algae or yeast as food sources, higher eukaryote 

model organisms such as C. elegans, D. melanogaster (138), M. musculus (165) and A. 

thaliana (107, 141). 

1.2.1 The Analytical Challenge 

A typical DDA experiment generates what may be thought of as a three-dimensional 

dataset, with each signal in each MS1 spectrum corresponding to a point in the dimensions 

of RT (from in-line low pH RP-HPLC), mass-to-charge ratio and intensity (Figure 1-XX). 

 

Figure 1-XX. The Three Dimensions of Data Recorded in a DDA Experiment. Analyte 

signals recorded are defined in terms of A: m/z, B: Intensity and C: the RT of the MS1 

scan. D: Together, they form a three-dimensional data space.  
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Our ability to accurately characterise this dataset is limited by the capabilities of the 

instrument setup. The m/z axis is limited by the mass resolution and accuracy of the mass 

spectrometer, and the intensity axis by the minimum and maximum recordable signal of 

the detector, as well as detector-specific effects such as ion saturation and intensity-

dependent (heteroscedastic) variance. Comparing run-to-run, chromatographic differences 

will result in RT shifts and variance in the elution peak width of the same species. This 

dimension is also sampled at discrete intervals rather than as a continuum, and these 

intervals are not guaranteed to be consistent. 

Each PMC yields a separate signal in this data-space, eluting from the LC column over a 

particular RT window and consisting of distributions of ion species (each consisting of 

multiple m/z-intensity signals – see below) corresponding to the unlabelled and labelled 

forms of the PMC. The goal in EML quantification is twofold; to identify the 15N 

incorporation level in the labelled form of the PMC, and to quantify the total signal for 

both unlabelled and labelled forms so that peptide- level (and protein-level) labelled to 

unlabelled ratios can be calculated. 

1.2.1.1 Peptide Isotopologue Patterns 

Due to the existence of elemental isotopes, the signal produced by a PMC (in each 

labelling state) is further split into several discrete peaks with increasing m/z. At a 

superficial level (fine detail being obscured by limits of instrument resolution), this 

appears as a series of peaks in a mass spectrum with m/z differences at a consistent 

fraction of 1 that tail off (in terms of relative signal proportion) until they are no longer 

observable. These peaks correspond to the different isotopologues (peptides with the same 

elemental composition but different isotopic composition) found in the PMC population, 

with the fractional difference between each peak corresponding to the charge state of the 

PMC (since the x-axis in a MS is mass-to-charge rather than just mass). The first peak 

corresponds to the isotopologue where all atoms in the peptide are the lowest mass isotope 

of their element, and thus has a m/z value of the monoisotopic molecular mass (M) divided 

by peptide charge (zp). This peak may be referred to as the monoisotopologue. The next 

peak corresponds to the isotopologue where one atom (anywhere in the molecule) has an 

additional neutron, thus the total mass is greater than the monoisotopic mass by the 

approximate mass of one neutron, i.e. a mass increase of approximately +1 (due to binding 
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energy mass loss, the mass differences between isotopes of different elements are not 

exactly 1). This peak thus has an m/z value of (M+1)/zp. The next peak corresponds to the 

isotopologue where two atoms (anywhere in the molecule) have additional neutrons, thus 

a mass increase of +2 and an m/z value of (M+2)/zp and so on (Figure 1-XXI). 

 

Figure 1-XXI. Peptide Isotopologue Distribution. Peaks are observed at m/z values 

corresponding to the monoisotopic molecular mass (M) with zero, 1, 2… additional 

neutrons. The charge state (zp) of the PMC may be deduced from the m/z distance between 

peaks; a distance of 1/2 means a charge of 2, a distance of 1/3 means a charge of 3. 

The total signal for a PMC is distributed between the isotopologues according to the 

underlying probability distribution that a given molecule in the population of the PMC 

will have 0, 1, 2 and so on extra neutrons. The natural relative isotopic abundances for the 

five elements (C, H, N, O, S) comprising the standard 20 amino acids (i.e. disregarding Se 

in selenocysteine) are all disproportionately found in the lowest mass form (see Table 

1-III), so for short peptides the monoisotopologue peak is reliably the largest proportion of 

the total signal intensity for the PMC. As peptide length increases, the total number of 

atoms in the molecule increases along with the probability that at least one atom 

somewhere in a given molecule will not be a monoisotope. Thus, for longer peptides the 

second or third isotopologue peak may be the most probable scenario and will therefore be 

observed with the highest relative abundance. Peptides in the observed mass range in 

proteomics (typically 0 to 2 kDa), are generally not long enough that more than 6-7 

isotopologues of the unlabelled signal are observed even if the peptide is very abundant. 
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Table 1-III. Elemental Isotopes in Standard Proteinogenic Amino Acids. The precise 

values listed are those used in Fan et al., 2016 (166). 

Since the mass shifts engendered by each isotope are not identical, then (for example) the 

m/z of a PMC with a single 15N or 2H isotope is not precisely the same as the m/z of a 

PMC with a single 13C isotope. The isotopologue peaks are not a single signal from ions of 

identical m/z but rather a composite signal of all ions with m/z values produced by 

combinations of isotopes that yield a certain net number of additional neutrons. The 

instrument resolution required to reliably separate these signals is considerably higher than 

typical operating parameters for proteomic analysis, and so for practical purposes these 

may be considered as a single peak. In an unlabelled signal, the probability distribution is 

overwhelmingly dominated by the effect of carbon due to a proportionately high 

percentage of the atomic composition and large relative abundance of the 13C isotope.  

It is relevant to consider, however, that the observed centroid m/z values of isotopologue 

peaks (particular those corresponding to a net neutron increase of more than 2) are 

comprised of contributions from many isotopic composition permutations. As well as 

engendering a difference in intensity, the centroid m/z of the +5 neutron isotopologue peak 

of an unlabelled signal will not be exactly the same as the centroid m/z of the +5 neutron 

peak of a 15N labelled signal. The m/z values of the components of the peak do not change, 

but the relative probability of the component corresponding to five 15N will be increased 

Element Isotope	Mass Relative	Abundance	(%)
Carbon	(C) 12.0000000 98.930

13.0033554 1.070
Hydrogen	(H) 1.0078246 99.985

2.0141021 0.015
Nitrogen	(N) 14.0030732 99.632

15.0001088 0.368
Oxygen	(O) 15.9949141 99.757

16.9991322 0.038
17.9991616 0.205

Sulphur	(S) 31.9720700 95.020
32.9720700 0.750
33.9678660 4.210
35.9670800 0.020
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against the previously dominant component corresponding to five 13C, and so a weighted 

centroid of all component m/z values will be different. 

1.2.1.1.1 Prediction of Peptide Isotopologue Patterns 

In SILAC and (ICAT/Dimethyl labelling), the isotopologues of both the unlabelled and 

labelled signals occur at predictable m/z and with effectively equivalent distributions. The 

addition of a few atoms in the SILAC label is not enough to substantially change the 

expected isotopologue proportions. The labelled distribution is always shifted in mass by a 

fixed amount multiplied by the number of labelled amino acids. It is not necessary to 

predict the expected isotopologue distribution of either unlabelled or labelled signal 

(although this can be used for noise assessment and quality control) since labelled signal 

intensity may be calculated by whatever method was used for the unlabelled signal 

intensity, with an appropriate mass-shift to account for the label. Furthermore, a label 

incorporation level of less than 100% merely alters the expected ratio of unlabelled to 

labelled signal intensity, as a single molecule may either have a label (and thus contribute 

to the labelled signal intensity) or not (and thus contribute to the unlabelled signal 

intensity). 

In EML only the isotopologue distribution of the unlabelled signal is predictable without 

knowledge of the label incorporation level. Labelling effectively increases the relative 

abundance of a particular non-monoisotope relative to the monoisotope (so, for example, 

labelling with 15N increases the 15N isotope abundance versus the 14N isotope abundance). 

This has the effect of increasing the mass of the labelled peptide and, for incorporation 

levels less than 100%, also changing the isotopologue distribution of the corresponding 

signal, as a single peptide molecule can have a variable number of heavier isotope atoms. 

The incorporation level (and thus relative abundance) of the labelled peptide must be 

determined by identifying the incorporation level at which optimum fitting of the observed 

spectrum of the labelled signal is achieved (Figure 1-XXII). 
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Figure 1-XXII.  Effect of Labelling on Peptide Isotopologues in 15N EML vs. SILAC. A & 

B: The mass shift induced by SILAC is proportional to the number of labelled amino acids 

whereas the shift induced by 15N EML is dependent on the number of labelled nitrogens. 

C: If labelling occurs prior to digestion (as in SILAC but not in ICAT/Dimethyl labelling) 

then any missed cleavages will mean the resultant peptide will have multiple SILAC-

labelled amino acids and thus the mass will be increased by a multiple of the base shift  – 

here, the dotted lines for SILAC indicate where the distribution would be located without 

this shift. D: The labelling methods are particularly distinguished in cases of incomplete 

labelling – here, the dotted lines for 15N indicate where the unlabelled (left) and fully 

labelled (right) distributions would be located. In 15N EML the distribution shape of the 

whole sample is altered, whereas in SILAC the signal is split into fully labelled and 

unlabelled populations. Unlabelled peptides from a SILAC labelled sample with 

incomplete incorporation produce a signal indistinguishable from peptides that have not 

been labelled at all. 

Isotopologue distributions may be predicted in silico from the chemical composition of the 

peptide. Distribution calculation algorithms described by Kubinyi (167) and Rockwood et 

al. (168-171) have been widely used for this purpose. Development of these algorithms 

has largely been with an eye towards the more complicated case of intact protein masses 
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and these algorithms are optimised for speed. Distribution calculations for peptides are 

thus extremely fast on modern computers, allowing rapid computation of many 

possibilities. Peptide distributions may be found step-wise by repeated convolution of the 

isotopic probability distribution of each element (C, H, N, O, S) with itself to find the 

isotopic probability distributions for a molecule consisting only of a number of atoms of 

that element equal to that in the peptide composition (Figure 1-XXIII), then convoluting 

those elemental molecule probability distributions together to find the distribution for the 

complete molecule. 

 

Figure 1-XXIII. Stepwise Prediction of an Isotopologue Distribution. For simplicity, the 

molecule is assumed to consist only of three carbon atoms. 

The approach described by Kubinyi is an efficient shortcut to this process. Rather than 

convoluting each ‘running total’ elemental distribution with the atomic distribution n-1 

times (where n is the number of atoms of that element), this approach represents n as a 

binary number. The atomic distribution is convoluted with itself, then the resulting 

distribution with itself and so on, until it represents the distribution corresponding to the 

highest power of two in the addends of the binary representation of n. Finally, each 

distribution corresponding to an addend of the binary representation of n together is 

convoluted. 
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For example, to find the distribution for C50 the stepwise approach is to convolute C1 and 

C1 giving C2, then convolute C2 with C1 giving C3 etc. This involves 49 convolution 

operations to get to C50. Alternatively, by the Kubinyi method, the binary addends of 50 

are 32, 16 and 2; once these three stages are calculated, one can then can convolute C32 

with C16 (giving C48) then the result with C2 to get C50. This optimisation already 

reduces the number of operations required to 32 (to get to C32) + 2 = 34. But optimisation 

can be taken further since the binary addends, as powers of two, can be reached quickly by 

convoluting C1 with itself to get C2, then C2 with itself to get C4 and so on. The largest 

addend required is C32 i.e. 25, which requires only 5 operations in total counting the initial 

convolution of C1 with C1 to get C2, producing C16 along the way. Calculation of C50 

thus involves a total of only 5 (to get C2, C16 and C32) + 2 (to combine the addends at the 

end) = 7 convolution operations, many fewer than the step-wise method (Figure 1-XXIV). 

 

Figure 1-XXIV. Comparison of Isotopologue Distribution Prediction Algorithms. A: The 

step-by-step method for prediction of an n multi-atom isotopologue distribution (in this 

case, C50) involves iterative convolution of a single atom with the result of the previous 

operation n times. B: The Kubinyi method reduces the number of convolutions required by 

calculating only the binary addends of n. (i) These may be found quickly by convoluting of 

each result with itself (thus finding the distributions representing powers-of-two). (ii) 

Once the highest binary addend required has been found, the distribution representing n 

can be calculated with a minimal number of further operations. 

SILAC/ICAT/Dimethyl labelled distributions may be found by applying the mass shift of 

the label to the isotopologues of the unlabelled distribution. For EML labelling, due to the 

change in isotope proportions, the isotopologue distribution should ideally be fully re-

calculated. An alternative ‘short-cut’ method for EML distributions used by some existing 

approaches is to derive the expected masses of the labelled isotopologues by adding 
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incremental multiples of the heavier isotope mass delta (e.g. for 15N-14N this is 

~0.9970348932) to the molecular weight of the monoisotopic isotopologue. The advantage 

of this approach is that it saves computation time by avoiding re-generation of the 

distribution from scratch for each increment of incorporation in the label incorporation 

range to be tested. This method, however, is vulnerable to cumulative error as it does not 

account for the changing relative contribution to each isotopologue centroid m/z by the 

EML isotope (see above). For example, in 15N EML, the proportionally weighted centroid 

mass of each isotopologue decreases as the contribution from 15N rises, because the shift 

due to 15N (�0.997 Da heavier than 14N) is less than that due to 13C (�1.003 Da heavier 

than 12C). At high incorporation, therefore, the ‘short-cut’ method is relatively accurate, 

but at low incorporation, when the isotopologue centroid is dominated by the 13C mass 

difference, the effect is to substantially underestimate the centroid m/z. While this 

inaccuracy appears to have little effect when viewed at a scale across the full mass range 

of the possible distributions (Figure 1-XXV-A), applying error windows appropriate for 

modern instruments to individual isotopologues is more revealing. The short-cut method 

results in substantial accumulated errors compared to the weighted isotopologue centroids 

from fully calculated theoretical distributions. Taking the peptide VVISAPSK as an 

example, this effect results in m/z errors of > 10 ppm (Figure 1-XXV-B). Mass accuracy in 

an MS1 scan on an Orbitrap instrument (~60-120k resolution) is typically below 5 ppm, so 

errors of more than 10 ppm are quite substantial. 

Since the labelled isotopologue distributions must be predicted, this also means any 

quantification is reliant on first identifying the PMCs present (in order for the prediction to 

be accurate). Identification of EML-labelled peptides presents additional difficulties as 

current peptide identification search engines generally do not adequately handle EML 

peptides of unknown incorporation (172). By allowing a range of incorporations, pre-

filtering of the search space by precursor masses would become much less selective, 

substantially increasing the number of potentially matching possible sequences and thus 

greatly increasing the complexity of the search. In contrast, SILAC/ICAT/Dimethyl 

labelling, by introducing a known mass shift, can be handled as a routine post-translational 

modification. The identification problem is commonly addressed by using reference 

analyses of fully unlabelled but compositionally identical samples run under the same 

chromatographic conditions, so that any peptides identified can be matched against the 

mixed-labelling dataset by RT.



 

 

Figure 1-XXV. Mass Errors Associated with the ‘Short-Cut’ Method. The ‘short-cut method’ estimates the labelled distribution by applying 

fixed mass shifts to the unlabelled distribution. A: At the isotopologue-window scale, the isotopologues of example peptide VVISAPSK appear to 

be calculated correctly. B: Closer examination reveals that at low incorporation, the higher-neutron number isotopologue centroid m/z values 

are underestimated by more than 10 ppm. Each box shows a ‘zoomed-in’ snapshot of an isotopologue mass from A on the same axes (showing 

m/z in a limited window, y-axis showing increasing 15N incorporation). Boxes left-to-right top-to-bottom correspond to isotopologues in 

increasing mass order. Vertical thresholds indicate 5 and 10 ppm error windows either side of the centroid m/z.
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1.2.2 Analysis Methodologies 

The MSQuant framework first referenced in publications in 2003 (173, 174) was capable 

of quantifying 15N labelled signal given a fixed, pre-specified level of 15N incorporation. 

However, the framework was geared towards SILAC labelling and 15N support was 

somewhat awkward, requiring additional scripts to pre-patch search result input before 

quantification. In 2006, Andreev et al. (175) described a dedicated 15N quantification 

algorithm, again assuming a fixed level of incorporation. Although the algorithm 

theoretically supports any level of 15N incorporation, the authors only demonstrated 

performance in the case of complete labelling, where the analytical challenge is reduced 

since there is no need to account for differences in isotopologue distribution shape. 

Subsequently, Palmblad et al. (132) described a similar analytical pipeline for 

quantification of fully incorporated 15N labelling using Bruker instrument software 

(DataAnalysis and CompassXport) in combination with peak extraction tools in the Trans-

Proteomic Pipeline (176). Both methods demonstrated good performance on high 

incorporation biological samples, in the process indicating a degree of robustness to small 

deviations from ‘idealised’ complete labelling, which in reality is generally impractical to 

achieve (159). Another similar algorithm (Peakardt) was robustly validated by orthogonal 

quantification via 2DGE using the Difference-In-Gel Electrophoresis approach with 

fluorescent CyDyes (177). 

Two later software tools support 15N quantification (with pre-specified incorporation 

levels) as part of a broader MS1 quantification offering. Census (121, 178) is a free tool 

with ongoing support (179) in which peak extraction tolerances are highly customisable, 

allowing optimisation for both low and high resolution data. Mascot Distiller (Matrix 

Science) is a commercial quantification solution which integrates closely with the Mascot 

Server search engine from the same vendor. A complete pipeline for automated analysis 

using Mascot Distiller (Matrix Science) was described by Bindschedler et al. (112). 

Further optimisations to a Mascot Distiller-based approach via optimisation of 

chromatographic alignment and cross-run matching (by artificial insertion of PSM MS2 

spectra into aligned runs at matching RTs) were described by Russell and Lilley (107). 

The approaches described above require the 15N incorporation level to be pre-specified 

and assume the level to be the same for all peptide/proteins. This narrows the range of 
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feasible experimental designs (requiring incorporation to reach a stable level) and 

precludes use of 15N for pulse-chase experiments (particularly useful in the analysis of 

protein turnover), where the level of incorporation not only varies from peptide-to-peptide 

but is the metric of experimental interest (as opposed to the labelled/unlabelled ratio, 

indeed the sample may not even contain unlabelled peptide). Accounting for variable 

incorporation introduces considerable challenge, in particular controlling the potential for 

incorrect estimation of peptide incorporation (due to noise, or co-eluting species within the 

mass error window of integrated peaks) leading to mis-quantification. 

There have been two paradigms described for incorporation-agnostic quantification of 15N 

data, which may be classified as to whether or not 15N incorporation in the labelled signal 

is estimated in the course of determining the unlabelled to labelled ratio. In many 

experimental designs the relative amount of unlabelled to labelled (but unknown 

incorporation) peptide is of more interest than the incorporation level itself. In this ‘ratio-

only’ approach, 15N quantification is analogous to SILAC quantification and provides an 

alternative in vivo methodology when SILAC labelling is complicated by other factors. It 

is not necessary to determine an exact incorporation level to quantify the unlabelled to 

labelled ratio as the total intensities of the unlabelled and labelled signals across all their 

isotopologues can simply be compared. A downside to not estimating 15N incorporation is 

that co-eluting interference by species of coincident mass with certain isotopologues can 

only be detected by the effect on the calculated ratio, rather than during calculation of the 

respective unlabelled and labelled signal intensities (where it may be corrected). 

An early published example of this approach is the work by Zhang et al. (180) whose 

ProTurnyzer tool refines the broad approach described above to optimise for cases of very 

low incorporation where the unlabelled/labelled mass coincidence is substantial. 

Subsequently Lyon et al. (181) described a further refinement to the ‘ratio-only’ approach. 

Their Protover tool processes samples in order of expected decreasing 15N label 

incorporation level, for example by processing a time course of MS sample analyses in 

order of expected decreasing incorporation (so, for example, a time course of 

incorporation on labelled media would be analysed in reverse). For suitable experimental 

designs this allows the extraction of label masses at each time point to be refined based on 

the masses observed in previously processed data files (as the maximum isotopologue 
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mass found for a peptide in each file may be taken as an upper bound of the possible 

isotopologue masses for that peptide in subsequent files). 

The alternative paradigm for 15N quantification may be summarised as the ‘theoretical-

distribution-matching’ approach in which labelled distributions are characterised by 

comparing the intensity ratios of the isotopologues of each 15N labelled signal to a range 

of theoretical distributions using a scoring system, in order to find the best fit. Knowledge 

of the incorporation level may then be applied to optimise calculation of the unlabelled to 

labelled ratio by estimating the total area of the labelled signal based on the most intense 

isotopologues only (increasing the effective signal to noise). 

Over the course of two papers (131, 182), Snijders et al. described a manual 

implementation of this paradigm, in which ion intensities for the unlabelled and labelled 

distributions of each peptide were extracted using the peak integration capabilities in the 

instrument vendor software Analyst Qs (Applied Biosystems). For the labelled 

distribution, incorporation was then manually characterised by comparison to theoretical 

distributions generated using IsoPro (https://sites.google.com/site/isoproms/home) to 

generate theoretical spectra. 

Contemporaneously, MacCoss et al. (183) described an automated incorporation 

determination approach to theoretical distribution fitting, although this lacked the ability to 

track across the RT dimension to find the peak apex or integral, or match by RT between 

runs. 

The work by MacCoss et al. was later adapted by Huttlin et al. (184) into a quantification 

workflow which combines ion chromatogram extraction with automated incorporation 

determination to produce an incorporation-agnostic automated approach. In the Huttlin et 

al. paper, the approach was benchmarked at both near-complete labelling, and also at very 

low (<10%) partial incorporation. The MacCoss and Huttlin studies use Pearson 

correlation as their isotopologue distribution matching metric. 

A similar workflow was described by Price et al. (165), detailed methodology for which 

was later elaborated by Guan et al. (185). These methods use a non-negative least squares 

algorithm for distribution matching. These analytical workflows involved a series of 

scripts rather than a single integrated software tool, which may limit their uptake by the 

wider community. Later iterations of the ‘two-feature’ approach have presented 15N 
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quantification tools that are a single program or script, which make further refinements to 

the theoretical-distribution approach. Protein TurnStILE (160) allows the list of peptides 

for quantification to be generated separately from the quantification runs, so that peptide 

identifications can be obtained in separate dedicated runs using only unlabelled sample for 

optimum peptide-spectrum matching. The isotopologue distribution matching metric used 

by Protein TurnStILE is least-squares rather than Pearson correlation. 

The recent work by Fan et al. (166) describes a hybrid approach, ProteinTurnover. After 

ion extraction, an amalgam of the unlabelled and labelled distributions represented by a 

composite of two beta-binomial distributions is fitted to the data using maximum 

likelihood estimation. Theoretical 15N incorporation distributions are not matched directly 

to the data, but the composite distribution includes a shape parameter representing 15N 

incorporation in the labelled signal, so the parameters of best fit do include an estimate of 

incorporation level. This particular tool will be discussed in more detail in Chapter 4 in the 

context of a comparison with the work of this thesis. 

1.2.3 HeavyMetL 

Despite steady development of quantification approaches, no tool described thus far for 

EML (or specifically 15N) quantification has seen substantial adoption by the proteomics 

community for this purpose (although there are some widely used tools such as Mascot 

Distiller which support rudimentary 15N quantification among other features). This may be 

attributable to two factors. Firstly, usability; published approaches are typically scripts run 

in an environment such as R or Python, which are intimidating and inaccessible to many 

researchers. A hallmark of most tools widely used by the field is that they have at least a 

rudimentary graphical user interface (for local programs e.g. MaxQuant (82)) or a web 

interface for remotely hosted services such as UniProt (186) or Panther (187); this is not 

the case for existing options. Secondly, the tool must be sensitive and accurate for general 

use (not just for very high-quality data). For the tool to be useful on a large scale, it must 

produce robust results for a majority of PMCs identified. For reference data, results must 

be consistent with expected values, and for experimental data must compare favourably to 

results obtained by alternative quantification algorithms. Critically, it must not require 

extensive manual inspection of spectra to corroborate findings and must have acceptable 

performance in cases of lower than average signal-to-noise. While heretofore published 
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solutions provide broadly accurate results, the incidence of substandard quantification is 

difficult to gauge as publications typically present little benchmarking and either include 

no comparisons to earlier work or report only cherry-picked example peptides. This may 

also relate back to the first factor, in that even bioinformaticians working in the same field 

are not confident in setting up and configuring other published programs in a way that will 

allow fair benchmarking! 

The aims of this work were four-fold. Firstly, to develop and present a tool with an 

accessible interface front-end to a sound quantitative algorithm.  Secondly, to show that 

the design choices made in the algorithm structure and calculations support a claim of 

robust and accurate quantification, and to explore the limitations of the algorithm as data 

quality decreases. Thirdly, to show that the results produced compare favourably to 

existing modern approaches. Lastly, to argue that the tool, supported by this analysis, is 

justifiably an improvement on existing work, and a practical addition to analysis resources 

in the field of proteomics. 

In the chapters below, I present, a software tool, HeavyMetL for analysis of 15N MS data 

that addresses the issues above, namely usability/accessibility, accuracy of quantification 

and robust handling of suboptimal quality data without extensive manual supervision. I 

have compared the performance of several isotopologue distribution matching metrics in 

the context of this tool to assess spectral matching performance over a range of 

incorporation levels, and to vindicate the selected metric as the keystone of my 

algorithmic approach. Finally, I have benchmarked my tool by comparison against a 

recently published hybrid quantification algorithm (ProteinTurnover) that has used a 

degree of orthogonality in its approach (166), and have concluded with an argument for its 

utility. 
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Chapter 2: HeavyMetL: A Program to 
Analyse 15N-Labelled Proteomic MS Data 

2.1 Introduction 

This chapter describes the design and implementation of a software package for 

determination of relative abundance and label incorporation in 15N-labelled samples 

analysed by LC-MS/MS. The package, HeavyMetL, is written in JavaScript and runs on 

the latest versions of popular freely available web browsers (Mozilla Firefox and Google 

Chrome), enabling graphical analysis of 15N data without the necessity for command-line 

interaction. The quantification algorithm is an evolution of several approaches that have 

been previously described for 15N, with refinements to improve signal-to-noise and to 

handle sample-to-sample chromatographic differences, implemented in a multi-threaded 

system. Chapters 3 and 4 expand upon the work detailed herein, the former describing 

analysis of various possibilities for the spectral matching scoring system used in 

HeavyMetL, and the latter analysing a benchmark comparison of this software to a pre-

existing analysis tool. 

2.2 Proteomic Software Design Considerations 

Researchers working with proteomics data are drawn from a wide array of backgrounds 

and cannot be expected to be experts in either proteomic mass spectrometry or 

bioinformatics. A recurrent issue in all ‘big data’ -omics fields is a disconnect between the 

expectations of the bioinformaticians and computer scientists who build new tools for 

analysis and the experience of biological researchers who ultimately form the bulk of the 

software user base after release.  
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A recent report (188) on the experiences of end users of MS software highlighted this 

disconnect succinctly: 

“Interviewees commonly complained about the lack of user-friendly software. 

Parameter setting and manual interaction is a significant time consumption for 

mass spectrometry scientists. Twenty-seven interviewees specifically mentioned 

how manual intervention required a significant amount of their time, with 

percentages ranging 10−50%. Users also spend a significant amount of time in 

learning how to use software. User complaints about software included hard to 

learn interfaces, inefficient interfaces, and broken features.” 

‘Manual intervention’, in this case, refers to manually selecting parameters on a ‘dataset-

by-dataset’ basis (or even on individual elements within a dataset) because the default 

parameters (whether global defaults or automatically selected based on dataset 

characteristics) do not yield acceptable algorithmic decision making (with regard to peak 

selection, spectral matching etc.) for most elements within the dataset. 

Furthermore, the report goes on to observe that while developers (interviewees who spent 

a significant portion of their time coding) consider the majority (92%) of the remaining 

unsolved problems in computational MS analysis to be minor issues, among non-

developers the reverse was true; they considered the majority (86%) of the remaining 

unsolved problems to be major issues. While subjective, this report could be interpreted to 

suggest that although many problems have been addressed by theoretical algorithm 

development, the rate of translation of these solutions into broadly accessible ‘complete 

products’ (or at least, software that is seen by non-developers as complete products!) is 

low. 

Prior to the implementation of HeavyMetL as a software package, extensive consideration 

was given to the characteristics of the user base, and a number of design decisions were 

made with these characteristics in mind. My target user is a researcher looking to analyse 

data from a proteomic experiment. I assumed that the researcher would have sufficient 

involvement in the experiment to be familiar with the experimental design, sample 

processing and MS run configuration, but would not necessarily be the proteomic mass 

spectrometrist who performed the MS part of the analysis. They could also be a primary 

researcher who had entrusted the MS work to a colleague or service facility, or they could 
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be a bioinformatician, either working with the primary researcher or re-analysing a public 

dataset. The target user could therefore possess a range of skill levels with regard to the 

relevant steps in a proteomic experiment (Table 2-I), although for practicality a lower 

bound had to be assumed for most skills, including basic familiarity with proteomic 

techniques (digestion of sample to peptides, identification of peptides by MS2 and 

database or spectral library searches, and inference of protein parents) and mass 

spectrometry concepts (spectra of mass-to-charge ratios vs. intensities, and total/extracted 

ion chromatograms). From personal experience it also seemed reasonable to assume the 

user would have some prior experience with other graphical user interface (GUI)-based 

identification and quantification software (such as Mascot and MaxQuant) and spreadsheet 

programs such as Microsoft Excel, but may not be comfortable working on the command 

line (navigating the file system, performing file operations, installing/running command-

line based programs, installing dependencies via package managers or compiling code) or 

with dedicated statistical environments, whether command-line based (such as R) or GUI-

based (such as PRISM).



 

 

Table 2-I. Anticipated Minimum Proficiencies for End-User Demographics.  

Assumed proficiency is ranked as Acquaintance < Familiarity < Proficiency < Expertise.

Biologist / Biochemist Proteomic Mass Spectrometrist Bioinformatician
Sample Preparation

Biological Background Expertise Familiarity Acquaintance
Experimental Design Expertise Expertise Expertise

In-vivo labelling Proficiency Expertise Familiarity
Proteomic Sample Preparation

Protein Extraction Familiarity Expertise Familiarity
Sample Cleaning Familiarity Expertise Familiarity

Digestion Familiarity Expertise Familiarity
Bottom-up Proteomic MS Analysis

LC Separation Familiarity Expertise Familiarity
Data-Dependent MS Analysis Acquaintance Expertise Familiarity

Data Processing
Peptide-spectrum matching Acquaintance Expertise Proficiency

MS data types (peaklist, rawfile etc) and formats (mgf, mzML etc) Acquaintance Proficiency Proficiency
DDA data concepts (retention times, ion chromatograms, spectra etc) Familiarity Expertise Familiarity

Popular GUI quantitation software Acquaintance Expertise Proficiency
Command-line navigation Acquaintance Acquaintance Expertise

Statistical Analysis
Basic statistical concepts Familiarity Familiarity Expertise

MS Data-specific statistical concepts Acquaintance Proficiency Proficiency
Spreadsheet software Proficiency Proficiency Expertise

Dedicated statistical environments e.g R, MATLAB Acquaintance Acquaintance Expertise

Researcher Demographic
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In order for the software to be an attractive solution for an average such researcher, I 

considered the following themes to constrain design decisions for the software. 

1. System Requirements. The software must be usable on an average contemporary 

personal computer (broadly, purchased within the last 5 years, with major system 

updates having been applied and with sufficient hard disk space to hold the data to 

be analysed locally). Ideally, system requirements such as operating system and 

prerequisite libraries are to be minimised so that initial setup is as straightforward 

as possible. Experience has shown that the average non-bioinformatician user does 

not have limitless patience to play around installing software, particularly if it 

requires interaction via the command line. 

2. User interaction. Further to the above, general operation of the program must also 

be accessible to users. The number of parameters that must be manually 

configured should be minimised, but advanced options should be available to 

expert users to allow for optimisation. The program should have a graphical user 

interface to avoid command-line interaction. The results should be output in a 

simple text table format to maximise compatibility with statistical analysis and 

spreadsheet software. Furthermore, the results should also be displayed graphically 

(and at a quality suitable for publication) to allow easy evaluation of quantitative 

performance and assess the effect of configuration changes. Graphical views of 

spectra are offered in many existing MS quantification packages such as 

Progenesis, Proteome Discoverer, Skyline (189), Spectronaut and Mascot 

Distiller. MaxQuant originally lacked any such display, and the later introduction 

of this feature was (in my personal experience) well received in the field. 

3. Speed. It is acceptable, taking contemporary quantification software such as 

MaxQuant, Progenesis or Proteome Discoverer as examples, for a large analysis 

involving several raw data files to take several hours on a desktop computer. It is 

considered typical that quantification analyses may need to be run overnight, even 

for modestly-sized experiments (for example up to 5000 confident peptide IDs, 6 

raw data files). However, a single run should be analysable well within a working 

day (ideally no more than 1-2 hours). Quantification for a single PMC in a single 

run should therefore take no more than a few seconds to compute, given an 

expectation of thousands or even millions of quantifications to be performed when 
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accounting for a large dataset with many runs. ‘Lag’ or unresponsiveness of the 

interface should be avoided (a problem even in commercial software, particularly 

in Proteome Discoverer and Progenesis when navigating results) and 

quantification progress for time-consuming tasks should be updated frequently to 

avoid giving the impression that the interface has ‘frozen’.  

4. Memory usage. Analysis of MS data involves data file sizes ranging from a few 

hundred megabytes up to several gigabytes. A contemporary midrange personal 

computer may be assumed to have between 8 and 64 gigabytes of memory. 

Analysis will require the reading of large amounts of data from each file. It is more 

efficient to store this data in memory where possible but loading whole raw data 

files into memory will quickly use up all available space, resulting in the system 

swapping memory with disk storage (a very slow operation). Loading data only as 

required reduces memory load but introduces a throughput bottleneck of disk-

reading speed, therefore disk operations must be arranged such that reading from 

disk is performed before the data are required for quantification. A technique used 

by MaxQuant (among others) is pre-indexing of raw data files before 

quantification starts so that disk reads during quantification are limited to the exact 

place within the file where each spectrum is stored. 

5. Quantification quality. Robustness of quantification is critical. If manual analysis 

of the data consistently out-performs a quantification algorithm it will be seen as 

not reliable. This requirement sets a deceptively high bar, as experienced 

researchers are very good at evaluating spectral quality ‘by eye’ and setting 

integration limits so as to maximise signal-to-noise. The quality of manual 

quantification produced by an experienced researcher will typically be very high. 

The theoretical advantages of computational approaches (aside from the feasibility 

of analysing many PMCs) are granular quality evaluation (rather than pass/fail), 

allowing information from poor quality quantification to be used with minimal 

bias, and consistent quality independent of researcher expertise. In order for the 

output of such approaches to be useful, however, they must compare robustly to 

experienced manual quantification. 
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2.2.1 Language and Distribution 

Open source bioinformatics projects are usually implemented in one of several ways. They 

may be made available as a downloadable program which is compiled against a target 

operating system (OS) (e.g. Skyline). The major advantage of directly compiled code is 

speed, particularly in the case of extensive numerical calculations (which does apply to 

quantification tasks). As discussed above regarding memory usage, however, a second 

bottleneck is the speed at which data may be read into memory from raw data files stored 

on disk (since the size of such files precludes keeping the entire file set in memory in the 

case of many analyses). Even with appropriate indexing of raw data files to minimise the 

data read, and scheduling of disk reads to ensure no wasted disk-read time, disk read time 

still applies an effective minimum bound on quantification, thus the speed advantage of 

compiled code is limited. The disadvantage to compiled programs is that they induce 

additional testing workload on development as some bugs may be platform-specific 

(assuming that versions of the program are compiled for more than one OS). 

Alternatively, the program may be written in an interpreted language (e.g. Perl, Python), 

or compiled to virtual machine bytecode (e.g. Java), both of which result in a platform-

agnostic distribution. This approach is quite popular for proteomics tools, as it is 

somewhat easier to resolve bug issues, and the loss of speed vs. compiled code is, in most 

cases, minimal. Some operating system-related issues are quite common, often relating to 

differences in the interpretation of file paths and text file line endings, or use of non-OS 

agnostic code libraries, but these common pitfalls may be avoided. A trickier issue lies in 

installation. While an OS-agnostic distributed program may be run on any system with 

correct setup, it is common for non-bioinformaticians to run into problems during 

installation such as incorrect execution environment version (especially in the case of 

Java, where version updates are frequent and may not be backwards compatible without 

adjusting default security policies), mis-configured system variables or failure to install 

dependencies not bundled with the program download (for example, in scripting languages 

such as Perl, Python and R, users are often expected to be familiar with installation of 

modules from centralised repositories). Such foibles are minor annoyances for 

experienced computer users but are very off-putting for users expecting things to ‘just 

work’. Existing 
15

N quantification tools as described in Section 1.2.2 have a poor track 

record in this regard. The four most recently published approaches implemented as 
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distributable software (ProTurnyzer (180), Protein TurnStILE (160), Protover (181) and 

ProteinTurnover (166) are all command-line based approaches which run via an 

interpreting runtime (ProTurnyzer and Protover in Python, Protein TurnStILE in Perl and 

ProteinTurnover in R), a compatible version of which (not necessarily the latest!) must be 

installed and configured correctly to be callable from a command line console. Indeed, a 

prototype design of the HeavyMetL core quantification algorithm was initially written and 

tested in Perl. Ultimately, users reporting issues and deployment inconveniencies I 

experienced myself led me to discard this strategy before the final implementation. 

Thirdly, projects may be hosted on a remote server and accessed via a web interface. This 

approach is arguably the most operating system-agnostic; great efforts have been made to 

standardise behaviour of websites in browsers across operating systems. 

Usually, this approach places the onus of computation on the hosting server rather than on 

the local machine. The actual program may be written in a compiled or interpreted form, 

or even some combination thereof. This is invisible to the user and does not increase setup 

complexity, so may be engineered for optimal speed or maintenance. For quantification, 

this may on first glance seem ideal, as the servers are likely to be far more powerful than a 

personal computer. However, the server must be maintained (requiring a larger on-going 

commitment to the tool) and may become overloaded if usage is greatly increased. 

Furthermore, in the case of quantification, a large amount of data must be sent to the 

server, which, unless the server is on a local network, is time consuming and risks time-

out of the connection. This is likely to offset any speed benefits of computation server-side 

unless the quantification to be performed is extremely complex. Transferring data for 

remote processing also raises issues of privacy; many researchers are understandably 

reluctant to send large amounts of data to third parties for analysis. In some cases (e.g. 

medical data containing identifiable patient information) submitting data to a third party 

for processing presents ethical and legal difficulties. 

Another possibility, which is the route I have taken for HeavyMetL, is to provide a web-

based tool in which the processing is performed locally within the browser. This takes full 

advantage of the highly standardised behaviour of popular multiple operating system-

compatible browsers, particularly Mozilla Firefox and Google Chrome, and a ready-made 

GUI platform via the HTML document object model, while avoiding the need for server 

maintenance or long data transfer times. This option has only recently become feasible as 
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a possibility following large improvements in JavaScript speed in-browser (particularly 

driven by competition between Mozilla’s SpiderMonkey JavaScript engine and Google’s 

V8 JavaScript engine) and the adoption of several key JavaScript standard features 

including local file access and multi-threaded execution. Running in a browser still has 

limitations; the maximum usable memory is limited, and raw computation speed will 

never reach the limits of compiled, platform-optimised code. These limitations may be 

mitigated somewhat by careful program design. Memory footprint is to be minimised in 

any case - see Design Constraint 4, Section 2.2, and computation time is only one 

bottleneck on the overall analysis speed; disk access rates will also constrain the analysis 

of large files and, at a higher level, the ease with which the user can supply the necessary 

input data and evaluate results also contributes to the total time for the analysis. 

2.2.2 Program Requirements 

2.2.2.1 Input 

Extensive pre-processing of raw data is both time consuming and compares unfavourably 

to similar modern quantification platforms such as MaxQuant that are able to read raw 

data directly. The program must therefore be able to accept a set of raw data files with 

minimal pre-processing. Data files produced by MS instruments from different vendors 

are each in different, proprietary binary formats. While most vendors supply code libraries 

that allow third-party programs to read these formats, they are almost universally 

Windows-only, and thus would require the quantification software to also be limited to 

Windows if it is to directly read these proprietary formats. Conveniently, a conversion tool 

(msconvert from the ProteoWizard suite (190)) which reads the vast majority of MS data 

formats is available, and widely used within proteomics. This may be used to convert raw 

data files into open standards for raw MS data that are widely used in proteomics, namely 

the mzML format (191) and the older mzXML format (192). For maximum compatibility, 

it makes sense to target these open standards as raw data files from almost all instruments 

can be rapidly and easily converted to this format either directly from the acquisition 

software or with msconvert. Raw data in mzmL/mzXML format takes the form of the 

three-dimensional data space described in the Introduction (see Figure 1-XX. ), 

specifically, a series of spectra (m/z vs. intensity) stored in order of acquisition, and thus 

corresponding to an LC retention time. The information regarding each consecutive scan 
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is stored as a list of scan parameters (the ‘scan header’) followed by a record of the 

‘spectrum data’ in terms of m/z values and intensity pairs, in a space minimising structure 

(and possibly further compressed, depending on file format). Various items of additional 

metadata, such as instrument hardware and configuration information, are also stored at 

the start of the file, and at the end there may be (depending on the conversion process) a 

byte-indexed record of every scan entry. 

To accompany the raw data, information regarding the PMCs to be quantified is required. 

Peptide-spectrum matching and identification of PMCs for quantification is a significant 

computational challenge that is outside the scope of this work, and (at least for non-
15

N 

labelled peptides) a wide array of software solutions exist. It is assumed for the purposes 

herein that such analysis will be performed separately. Unfortunately, there is no standard 

peptide identification output format that is consistently supported across search engines; 

the closest example would be mzIdentML (193), but as an XML-based format this is not 

readily produced from the output of search engines that do not export it directly. It is 

therefore necessary that for inputting PMCs the program should accept a simple text-table 

file which can be generated from the tabular output of any search engine output requiring 

only minimal rearrangement of the data. Direct support for the outputs of popular search 

engines is something to consider as a secondary goal, but this would impose a large 

burden in terms of potential input bugs and would also add an ongoing requirement to 

maintain compatibility for these formats over time. 

Finally, the analysis of generalised 
15

N data from various experimental designs, with a 

wide variety of sample preparation approaches and analysis setups will entail some pre-

configuration of analytical parameters, at least if the algorithm is to yield optimal results. 

While it will be possible to estimate (or extract from raw data file metadata) many 

characteristics of the data during processing, it will likely speed processing and reduce 

anomalous results if certain parameters can be constrained beforehand. Examples of such 

constraints would include the expected range of 
15

N incorporations and the expected range 

of RT shifts for a PMC between runs. Other parameters must be set by the user, such as 

the definition of any expected post-translational modifications on the peptides. For 

simplicity, the default settings should be expected to produce reasonable quantification for 

common arrangements of experiment, sample preparation and analysis. 
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2.2.2.2 Output 

Given the input data, the program should calculate quantification information for each 

PMC. For 
15

N data this information consists of the incorporation level of the 
15

N labelled 

signal and the relative abundance of the labelled and unlabelled signals. Various further 

statistics for each quantitative result will also be of interest, including the RTs of the 

labelled and unlabelled peaks and a level of uncertainty for the quantification. The 

program should also calculate quantitative information at the protein level since this will 

be the most relevant output for many researchers. The requirement for both text-table and 

graphical type outputs are necessary for easy user interaction (see Design Constraint 2, 

Section 2.2). 

2.3 Program Implementation 

2.3.1 Overview 

HeavyMetL is a quantification tool for the analysis of 
15

N-labelled samples by mass 

spectrometry. Given a set of raw MS data files and a list of PMCs, spectra are extracted 

from raw data files and fitted to a range of potential 
15

N incorporations to generate values 

for both abundance ratio and incorporation level of peptides and proteins. User interaction 

is via a graphical interface that lists the files and peptides/proteins specified, allowing 

users to 'browse' the results of quantification graphically at both the peptide and protein 

levels, alter quantification settings from within the program and view the results of such 

changes. Once satisfied, the user can export both the peptide and protein level results to a 

text-table format for further analysis in a spreadsheet program (e.g. Microsoft Excel) or 

statistical analysis suites such as Perseus, R or MATLAB.  

Details of access to the program code and a web address for a live implementation of 

HeavyMetL are given in Appendix I. 

2.4 Program Operation 

HeavyMetL takes three types of input data and produces output in the form of text tables 

and graphics. A program schema is shown in Figure 2-I. The first type of input data 
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required is raw data, in one of the open standard formats (mzML or mzXML) as described 

above in Section 2.2.2.1. Secondly, a list of peptides to be quantified is supplied (in tab- or 

comma-separated format), listing each identified instance of PMC individually, as they 

represent different m/z and RT locations in specific raw data files. The columns required 

in this list are given in Table 2-II. These data are commonly available in standard exports 

from popular programs. For example, the “evidence.txt” result file in MaxQuant, the tab-

delimited export of the Peptide table in Proteome Discoverer, the spectrum report from the 

Scaffold data aggregation tool (http://www.proteomesoftware.com/products/scaffold/), and 

the mzTab export from supporting programs (including Mascot) all contain the necessary 

data without the need to splice together multiple search engine exported output files. 

Thirdly, various quantification configuration parameters may be set by the user, although 

the default settings are selected to give reliable quantification in most circumstances. An 

overview of these parameters is given in Table 2-III. 

After peptides have been quantified, results may be exported at the peptide or protein 

level. Protein level quantification is inferred from constituent peptides (according to 

protein grouping information supplied in the list of PMCs), with a filter applied to exclude 

a percentile of peptides with the worst labelled signal Similarity Scores in each run 

(default 5%). The labelled/unlabelled ratio and labelled signal incorporation are calculated 

separately as the corresponding median quantification result across all the remaining 

quantified peptides for the protein in that run. The columns included in the output are also 

listed in Table 2-II
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Figure 2-I. HeavyMetL Program Schema / Processing Workflow. Yellow and green boxes 

are input provided by and output provided to the user respectively. The grey box is the 

starting raw data file. The purple boxes indicate pre-processing performed prior to 

HeavyMetL analysis; the orange box indicates intermediate data typically generated 

during pre-processing. The blue boxes indicate user interaction with HeavyMetL via the 

GUI, while the white boxes indicate processing performed by HeavyMetL without user 

interaction.



 

 

Table 2-II. HeavyMetL Inputs and Outputs. 

Type Parameter Table Column Name Notes
Raw Data .mzML  - 
Raw Data .mzXML  - 
PMC List Protein Group  PROTEIN Used to group peptides for protein-level quantitation.
PMC List Protein Description  PROTEIN_DESCRIPTION For data pass-through and display only.
PMC List Protein ID Score/Likelihood  PROTEIN_SCORE For data pass-through and display only.
PMC List Peptide Sequence  PEPTIDE_SEQUENCE Given without preceeding/trailing cleavage site indicator or neighbouring residues.  Case is ignored.
PMC List Peptide ID Score/Likelihood  PEPTIDE_SCORE For data pass-through and display only.

PMC List
Peptide contributes to protein 

quantitation?  CONTRIBUTES_TO_PROTEIN
Whether peptide should be considered for when calulating protein-level quantitiation data (this will 
generally be true).  Accepts synonyms of yes/no and true/false and ignores case.

PMC List File Name where PMC was 
detected

 FILE_NAME For files where there a particular PMC was not detected, the RT is estimated using the mean RT from all 
files where it was detected.

PMC List Scan Number of PMC detection  SCAN_NUMBER

PMC List Retention Time of PMC detection  RETENTION_TIME

PMC List Modifications  MODIFICATIONS Scaffold -style modification format
i.e. [ResidueLetterCode][Position]: ModificationName

PMC List Charge State  CHARGE All values are assumed to be positive charge (sign is ignored).
Peptide Table Protein  PROTEIN
Peptide Table Peptide  PEPTIDE_SEQUENCE
Peptide Table Is Unique?  CONTRIBUTES_TO_PROTEIN
Peptide Table Charge  CHARGE
Peptide Table Modifications  MODIFICATIONS
Peptide Table Unlabelled Match Score [file]_SCORE_UNLABELLED
Peptide Table Unlabelled Intensity [file]_INTENSITY_UNLABELLED
Peptide Table Labelled Match Score [file]_SCORE_LABELLED
Peptide Table Labelled Intensity [file]_INTENSITY_LABELLED
Peptide Table Labelled Incorporation % [file]_INCORP_LABELLED
Protein Table Protein Accession  PROTEIN
Protein Table Protein Description  PROTEIN_DESCRIPTION
Protein Table Unlabelled/Labelled Ratio [file]_RATIO
Protein Table Label Incorporation % [file]_INCORP

Either may be supplied. Retention time is used by preference if both are present.No assumption is made 
regarding if the Scan/RT referrs to the MS1 event in which the precursor was observed or the MS2 event 
which gave rise to the PSM - both are calculated by reference to the corresponding raw file.

Repeated for each raw data input.

OU
TP

UT

Repeated for each raw data input.

IN
PU

T

Pass-through from input PMC list.

Pass-through from input PMC list.

Any combination accepted.



 

 

Table 2-III. User Configurable Processing and Display Parameters. 

Parameter Description Default Value

Fixed Modifications
List of fixed modifications (comma or semicolon-separated). Format is 

"Modification Name (Residue Single Letter)"
Carbamidomethyl (C)

m/z  Error Tolerance (ppm)
Window in m/z  units (Thompsons) around theoretical m/z  values from which 

intensity is to be retrieved.
10

Retention Time Window (min)
Retention time window about observed/estimated peptide identification time in 

which to retrieve spectra.
0.5 (i.e. 30 s)

Maximum Peak Apex Shift (min)
Maximum retention time shift to allow when searching for labelled signal apex 

relative to unlabelled signal apex (if one was found).
0.2 (i.e. 12 s)

Do Not Quantify Unlabelled Signal
Do not quantify unlabelled signal, or correct for unlabelled signal presence when 

quantifying labelled peptides.
FALSE

Minimum Label Incorporation % Minimum incorporation percentage tested when quantifying labelled signal. 10

Maximum Label Incorporation % Maximum incorporation percentage tested when quantifying labelled signal. 95

Peptide Match Score Threshold
Do not use peptides with Similarity Score below this value for protein-level 

quantitation.
0.85

Show XICs on Log10 Scale
Show extracted ion chromatogram (XIC) y- axis on log scale to accentuate 

chromatographic variation at peak boundaries. Affects displayed graphics only.
FALSE

Y -Axis Precision Number of decimal places to show.  Affects displayed graphics only. 2
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2.4.1 Interface 

HeavyMetL presents an empty table to the user on launch, with a series of buttons along a 

top menu bar, all of which are initially greyed out except “Raw Data” (Figure 2-II-A). 

Clicking on this button presents a standard file selection dialog (Figure 2-II-B) allowing 

the user to select the raw data to be processed. Submitting this dialog begins a process of 

raw data file pre-indexing (see Section 2.4.2) to optimise later data read rates. Indexing 

progress is shown for each file (Figure 2-II-C). During and after the pre-indexing process, 

the user may click on the “Identifications” button to select a list of PMCs for analysis via 

another file selection dialog. After pre-indexing, HeavyMetL iterates through the list of 

PMCs, where necessary predicting a suitable retention time for extraction if there is no 

direct MS2 evidence in that file (also see Section 2.4.2). Having predicted any missing 

retention times, a table of the proteins represented by the PMC list input is presented by 

the HeavyMetL interface (Figure 2-II-D). The “Settings” and both quantification 

processing buttons are now available. The “Settings” button presents users with a screen 

that allows various configuration parameters to be changed (see Table 2-III). The two 

quantification processing buttons, “Process All” and Process Selected” allow users to 

choose to analyse all defined PMCs at once, or alternatively select a specific PMC or 

protein and perform quantification only on the selected PMCs for a faster result. This 

latter option also graphically reports additional metadata regarding the quantification 

(relative ratio, the chromatographic profile of the extracted signal and final integrated 

spectra for the unlabelled and labelled signals) to allow the user to browse through and 

assess quantification performance visually (see Section 0). In either case, although most 

relevant for the Process All option, initiating quantification processing displays a 

processing overlay with a progress bar and (for advanced users) the current distribution of 

CPU effort between data extraction via the file worker threads and quantification via the 

quantification worker threads (Figure 2-II-E). Larger sized screenshots may be found in 

Appendix II.



 

 

Figure 2-II. User Interface Screenshots. A: Initially presented blank table. B: Raw file selection dialog. C: Raw file pre-indexing progress. D: 

Ready to start quantification. E: Quantification in progress. For expanded versions of these screenshots see Appendix II.
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2.4.2 Loading Data and Pre-Processing 

Raw spectral data files are pre-indexed before quantification begins to improve spectrum 

retrieval speed during the quantification process. HeavyMetL loads the scan header data 

(see Section 2.2.2.1) into memory along with a byte reference to the within-file location of 

the spectral data so that information such as scan number, MS level (e.g. MS1) and RT are 

quickly accessible, while the much larger spectral data structure is only loaded if 

necessary. If there is no byte index at the end of the raw data file, one is constructed by 

mapping all scan headers within the file – while this delays indexing, it is necessary for 

efficient navigation of the file during quantification. HeavyMetL further cross-references 

MS1 headers as a linked list, such that each header records the index of the previous and 

next headers (raw data file indices, while consecutive, are not guaranteed to be continuous 

if, for example, intervening MS2 data were removed during conversion of the raw data file 

to an open format). This allows processing to quickly iterate through consecutive spectra 

within a RT window without having to advance scan number by scan number, checking to 

see if each is present, or having to unnecessarily load non-relevant MS2 (or MS level) 

data. 

After file indexing is complete, the list of PMCs is loaded from the user-supplied text 

table. This file is cross-referenced to the selected raw data files while loading to calculate 

a RT for each PMC in each file based on what on information (MS1 or MS2 Scan number 

or RT) is provided in the PMC list. HeavyMetL will attempt to quantify PMCs across all 

input raw data files; allowing for chromatographic RT shift within a window (default 30 

s); it is assumed that files will have comparable gradient conditions and chromatographic 

performance (necessary both for PMC matching between raw data files and to minimise 

differences in performance of the quantification algorithm). This assumption is not 

unreasonable; it is generally considered good practice to analyse runs from the same 

dataset sequentially and chromatographic differences in the hands of experienced 

operators are minimal. Even in the case of technical issues mid-sequence (e.g. replacement 

of part of the LC system between runs), if the chromatographic run parameters are 

unchanged then a shift of more than 5 minutes would be very unusual. 

If the samples are pre-fractionated, corresponding fractions across samples can be 

analysed together but analysis of multiple fractions across multiple samples is currently 
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unsupported, as there is no method for defining which runs correspond to each pre-fraction 

(and thus limiting RT-matching to within a fraction group). If the PMC list is based on 

identification runs separate from the main quantitative dataset, these raw data files must 

also be included in the input. 

For raw data files in which the PMC does not have a directly corresponding MS2 spectrum 

(and thus MS1 RT), the RT must be predicted. RT prediction has a wide range of possible 

approaches (Table 2-IV) but most quantification software uses some variant of cross-run 

matching with various levels of sophistication. In the case of HeavyMetL, a simple cross-

run matching approach is implemented using the average of RTs from raw data files in the 

analysis where RT data is known. 

 

Table 2-IV. Options for Matching PMCs Between MS Runs. 

2.4.3 Definition of Analysis Parameters 

Before processing, the user may also define parameters relevant to the quantification via 

the Settings dialog: any fixed modifications (by default, carbamidomethylation of 

cysteine), the windows for mass error (default 10 ppm) and RT (default 30 s), the 

maximum unlabelled/labelled apex RT difference (default 12 s), and the expected range of 

the label incorporation percentage (default 10%-95% 15N). HeavyMetL does not consider 

96%+ incorporation by default (although the user can change this if they anticipate a very 

high level of incorporation) in order to avoid confusion with unlabelled co-eluting 

Method Required prior knowledge Accuracy

In-run MS2 data None Exact

Cross-run comparison
(same LC setup)

MS2 data collected from previous 
runs of sample

Good (variance depends on 
sample and LC reproducibility)

Computational based on existing 
data / Machine Learning

Requires comparable dataset as a 
starting point

Good-Fair

Published data
(differences in LC setup)

Published data Moderate-Poor

De novo  prediction
Published RT constants, for 

example Meek, 1980
Poor
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peptides in the expected mass range of the fully labelled target peptide. The default 

settings are expected to give good performance in most scenarios, assuming relatively 

modern instrumentation (2005 onwards). 

2.4.4 Quantification Processing 

HeavyMetL breaks down the processing of each PMC in the supplied list (and 

corresponding RTs) into two stages. Firstly, a mini-dataset for the PMC in each raw data 

file is assembled, comprising a set of theoretical distributions across the range of potential 
15N incorporations, and a minimal set of MS1 data extracted from the raw data. Secondly, 

each mini-dataset is analysed to quantify the labelled and unlabelled 15N isotopologue 

envelopes. For the labelled distribution, the process of quantification also involves 

identification of the 15N incorporation whose corresponding distribution gives the best 

match to the data. This allows processing capability to be divided between the retrieval of 

spectra from the raw data files (which involves a lot of disk activity), and the calculation 

of quantification results (which is processor intensive). 

HeavyMetL is multi-threaded, in that multiple sequences of operations are executed 

simultaneously, to make optimal use of modern computer processor capabilities. Threads 

are implemented via the WebWorker HTML standard 

(https://html.spec.whatwg.org/multipage/workers.html), which is effectively a JavaScript 

in-browser implementation of multi-threading. Processing is split between a ‘main thread’ 

and two groups of processing threads, firstly a set of ‘file workers’, each assigned to 

handle disk access for a particular raw data file, and the second a pool of ‘quantification 

workers’ which handle the calculations to quantify individual PMCs within a set of 

spectra. 

The main thread is responsible for displaying the user interface, co-ordinating access to 

raw data files via file workers, loading the list of PMCs to be analysed and coordinating 

the exchange of data between the file workers and the quantification workers. After 

processing, the main thread also handles generation of graphics for display of results and 

synthesis of peptide/protein export tables. 

To begin processing, the main thread constructs a list of the PMCs to be analysed in each 

file. PMCs are sorted in order of ascending RT. Theoretical distributions are generated for 
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each PMC for both the unlabelled and possible labelled incorporation levels using the 

algorithm described by Kubinyi (see Figure 1-XXIV) (167). The input peptide sequence is 

parsed to gather information about the frequency of each amino acid, then the total 

number of carbon, hydrogen, nitrogen, oxygen and sulphur atoms are calculated. For each 

PMC, a set of ‘extractions’ is generated, where one extraction defines the theoretical m/z 

values (and associated expected proportionate intensities) for a particular 15N 

incorporation level (including the unlabelled case) and thus, in combination with the m/z 

Error Tolerance parameter, defines m/z windows from which signal intensity should be 

‘extracted’ from the observed spectral data. To save memory, the extraction data are only 

retained as long as is necessary to process the associated PMC in every file for which it is 

to be quantified. Each extraction has a corresponding uses counter which is initially set to 

the number of files in which the PMC is to be quantified and decrements by one every 

time the extraction is applied for a new file; when zero, the extraction data are deleted. 

The theoretical distribution code was tested for bugs by comparison with IDCalc, an 

existing implementation of the Kubinyi approach 

(http://proteome.gs.washington.edu/software/IDCalc/). 

A ‘quantification task’ dataset is created for each PMC to be quantified in each file. A 

quantification task comprises all the elements required to perform quantification on a 

single PMC in a single file. The main thread fills in the starting information which 

comprises the full PMC-to-be-quantified definition - the protein, peptide, charge, 

modifications, file name, closest RT, and RT extraction window (first and last scan 

number). While some of this information (such as protein name) is not necessary for 

quantification itself or is implied by the handling file worker (e.g. the raw data file name), 

it is required later to combine the results of individually processed tasks into peptide- and 

protein-level quantification across files. 

The set of tasks is then passed to the file workers which, for each PMC, pair this data with 

the set of extractions generated by the main thread, and then retrieve and add the spectral 

data (Figure 2-III). For each quantification task, the set of MS1 spectra falling within the 

RT window around the RT of the PMC must be retrieved, which involves both reading the 

data from the raw data file and then decoding the data into a set of m/z-intensity pairs. The 

complete spectra are cropped to a relevant mass range according to the extractions. By 

delegating access to each file to a separate thread, HeavyMetL ensures that disk access 
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(data can only be loaded from one disk location at a time) is not wasted while spectra are 

being decoded from the raw data. To avoid performing many time consuming short reads 

of the raw data file to extract individual spectra, the RT windows of multiple 

consecutively queued PMCs are combined to form a single large RT window 

corresponding to a large continuous block of raw data (since the PMCs are sorted by 

retention time), which can be loaded from disk in a single read and then accessed in 

memory as each PMC is processed in turn. 

These optimisations help to prevent file access becoming a bottleneck for quantification 

by minimising the time that the disk is idle (not loading data from a file). Furthermore, 

uncropped full spectra from previous quantification tasks are not discarded until the 

current quantification task RT window has moved past them (in order to avoid repeating 

the work of decoding the data to m/z-intensity pairs). Since the PMCs are sorted in order 

of ascending RT, once the extraction window has ‘moved on’, spectra outside the window 

can be safely discarded. 

Once the spectral data have been added, the quantification task is ready to be passed to a 

quantification worker for the calculation of a result. Due to the optimisations described 

above, the time taken by the file workers to retrieve all the spectra necessary for each 

quantification task is quite variable. If the file workers were to wait for each task to be 

passed to a free quantification worker before beginning the retrieval process for the 

spectra needed by the next task, a lot of disk access time would be wasted. If the file 

workers retrieve spectra and generate quantification tasks as quickly as possible, however, 

a different problem arises. When a series of tasks can be processed by the file workers 

very quickly (due to substantial RT overlap minimising the retrieval of new MS1 spectra 

from each raw data file), or the tasks currently being processed by the quantification pool 

are particularly time consuming, then a large number of quantification tasks may ‘pile up’ 

waiting for a free worker thread. Storing even the cropped spectra for many tasks can 

cause memory usage to rapidly balloon. 

This problem is resolved by a buffered scheduling system (Figure 2-IV). When a file 

worker completes preparation of a quantification task, if there is a free quantification 

worker, the scheduler in the main thread immediately assigns the task for processing. If all 

quantification workers are busy, the task is held in a first-in-first-out queue (of equal 

length to the quantification worker pool) allowing the file workers to proceed with 
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retrieval of the spectral data for the next PMC. The ‘ballooning memory’ issue is 

mitigated by applying a maximum length to this queue; file workers attempting to add to 

the task queue when it is already full are instead held in a second queue (also first-in-first-

out); the file worker does not proceed with further spectral retrieval until the quantification 

task can be moved to the queue proper.



 

 

Figure 2-III. HeavyMetL Pre-processing and Data Extraction. When quantification is started (rightwards from the double solid border after 

‘HeavyMetL Input’), the ‘Pre-processing’ section is handled by the main thread while ‘MS1 Data Retrieval’ is handled by the file workers.  
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Figure 2-IV. The Buffered Scheduling Queue. A: If there are remaining slots in the task queue, quantification tasks (blue hexagons) can wait for 

a worker in the quantification pool to become free while the file worker that created them is free to continue with further extraction work. B: if 

the task queue is full, both quantification task and file worker must wait for a free slot in the queue before the file worker can proceed with 

further extractions, this allows flexibility while preventing the file worker from filling up memory with prepared quantification tasks.
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The quantification workers, on receiving a task, perform a series of steps for each possible 

theoretical distribution, for each labelling state; first for the unlabelled signal (a single 

theoretical distribution), then for the labelled signal (a range of theoretical distributions). 

In each cropped MS1 spectrum the signal intensity is summed within a mass error window 

(default 10 ppm) around each isotopologue. If this is the labelled signal, it is possible that 

some of the unlabelled signal isotopologues may have m/z values very close to those of the 

theoretical labelled signal isotopologues for low 15N incorporation values. To prevent the 

matching algorithm accidentally matching the isotopologue ‘tail’ of the unlabelled 

distribution, the mass range of the matched unlabelled isotopologues (step 2) is excluded 

from further matching. This avoids a mis-matching of the labelled distribution to parts of 

the unlabelled signal. The search window for the labelled signal is also restricted to a 

smaller retention window around the recognized unlabelled apex (the maximum 

unlabelled/labelled apex RT difference, by default 12 s). 

Next, the extracted spectra are matched to the theoretical distributions. The first approach 

I tried at this point was to use every spectrum in the retention time window, and for each 

spectrum to try matching without one of the isotopologue masses (‘leave-one-out’) on the 

assumption that the other isotopologues were unaffected. This approach generated results 

with a number of problems. The algorithm frequently returned a match that was not part of 

the elution peak of the heavy signal but, instead, was a noise or interference mismatch at 

one or other extreme of the retention time window. Additionally, for lower 15N 

incorporation levels where there are many isotopologues to be monitored, an interfering 

co-incident peptide m/z will be part of an isotopologue distribution that will also interfere 

with many other isotopologues in the matched distribution. The leave-one-out approach 

scales poorly to leave-many-out since at this point one is discarding most of the 

isotopologue distribution and matching to theoretical spectra with only a few data points. 

I found that a better solution was to ignore the lowest theoretical intensity isotopologues, 

ranking highest to lowest intensity and discarding any past a certain percentage (default 

70%) of cumulative total intensity. I then generated a ‘scaled spectrum’ by finding the 

isotopologue with the smallest ratio between observed intensity and predicted proportion, 

and scaled up the theoretical distribution by this ratio. This produces a spectrum with the 

same proportions as the theoretical distribution where at least one isotopologue is the same 

intensity as in the observed spectrum, while the other isotopologues may be more intense 
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but they can never be less intense (following the assumption that co-eluting interfering 

peaks may add to the intensity of some isotopologues but will never subtract; Figure 2-V). 

In essence, this is an estimate of the minimum possible intensity associated with the 

labelling state currently under consideration (assuming the current theoretical distribution 

is the right one) at all points over the retention time window. The total intensities of the 

scaled spectra are used to locate chromatographic intensity maxima within the retention 

time range, but not for actual matching to the theoretical spectra. Instead, having located 

maxima, the corresponding non-scaled spectrum at each local maximum, and one 

neighbouring spectrum on each side are summed (to enhance the signal-to-noise ratio) to 

give a ‘signal-enhanced’ maximum spectrum, and these ‘signal-enhanced’ spectra are 

matched against the current theoretical distribution. This ensures that matching is 

performed using all isotopologues, but only at the points during elution when the signal 

was highest. Under the assumption that the noise specific to single isotopologues will be 

primarily additive (i.e. overlap of co-eluting signals) rather than multiplicative (e.g. 

variable ionisation efficiency), then this strategy aims to minimise such noise by using the 

least affected isotopologue to locate the point at which the true signal is strongest. 

The actual difference between the ‘signal-enhanced’ maximum spectrum and the 

corresponding theoretical distribution is measured by a Similarity Score based on the 

Kullback–Leibler Divergence between the observed and theoretical isotopologue 

distributions (194). The choice of Similarity Score was a key element in the development 

of the HeavyMetL algorithm; the score used was selected from among a number of 

potential candidates based on experimental results; this work is discussed in detail in 

Chapter 3. 

Across all compared theoretical distributions at all local maxima, the highest scoring 

maximum-theoretical distribution pair is taken to be the elution peak apex for the current 

label state. The reported incorporation level and intensity for this unlabelled or labelled 

apex then defines the incorporation level of the matched theoretical distribution, and the 

total intensity of the scaled maximum spectrum (without neighbour summing) respectively 

(Figure 2-VI). The unlabelled and labelled peak apexes are located independently, which 

ensures the only assumption made regarding the degree of co-elution of labelled and 

unlabelled peptides is the parameter defining a maximum allowed difference between the 

two apexes. 



 

 

Figure 2-V. Fitting a Scaled Theoretical Spectrum to Observed Data. The use of a scaled spectrum reduces the effects of co-eluting co-incident 

mass species.
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Figure 2-VI. HeavyMetL Quantification. The ‘Quantification’ section is handled by quantification workers, then the data are passed back to the 

main thread for collation and output. 
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Protein-level results are calculated based on only those PMCs flagged as ‘contributing’ to 

their parent protein in the input file (see Table 2-II). In each file, all the PMCs contributing 

to each protein are collated.  For each protein, the ratio reported is the median ratio of 

contributing PMCs, and likewise the label incorporation level reported is the median label 

incorporation percentage of contributing PMCs. Taking the median values rather than the 

mean avoids skewed quantification in the case of severe mis-quantification of a single 

PMC. 

The total run time for quantification of all PMCs mainly depends on computer hardware 

configuration, dataset size, quantification parameters and processor and memory pressure 

from running processes during analysis (there will also be some differences in 

performance due to the choice of web browser). Since files are processed in parallel, 

analysis time does not grow linearly with the number of raw files, but in general an 

analysis of two conditions in triplicate (six raw data files) on relatively modern hardware 

will generally be completed in about an hour or less. For a ‘real world’ example, see 

Section 4.2.2 below. 

To further examine the relationship between dataset size and analysis time, I analysed an 

increasing number of clones of a single 1.5 GB raw file (the ‘unlabelled’ Ostreococcus 

tauri sample from Chapter 3; see Section 3.4) against a list of 1042 unique, high-

confidence PMCs (for details, again see Section 3.4), and timed how long quantification 

processing took with default settings (this does not include the time taken to pre-index the 

files, typically less than a minute).These runs were conducted on an Apple MacBook Pro 

running macOS 10.14.6; 2.7 GHz Intel Core i7 with 8 logical processors; 16 GB RAM, in 

Firefox v. 69.0.1. The results are shown in Figure 2-VII. The data highlight the 

effectiveness of the measures taken to avoid duplication of effort for multiple files; 

although calculation of many theoretical spectra for a number of PMCs is computationally 

expensive, the additional overhead from processing additional files is minimal. The 

processing time increases linearly with file number, taking approximately 2 extra minutes 

for each additional file.  Despite the MacBook having only 16 GB RAM, 30 raw files (~45 

GB data) were processed without issue. 

This analysis is admittedly somewhat artificial. The single raw file that was ‘cloned’ (to 

ensure differences in processing time were purely due to the number of files analysed) for 

this analysis comes from a genuine dataset. In truly ‘real’ datasets, however, the files will 



Chapter 2: HeavyMetL: A Program to Analyse 15N-Labelled Proteomic MS Data 100 

be more diverse, and file-to-file differences may affect processing time. Such issues are 

not considered by this analysis. For an alternative example of timing on a ‘real’ dataset, 

see Section 4.2.2 below. 

 

Figure 2-VII. Processing Time versus Number of Files. Various numbers of clones of a 

raw EML MS data file (see text for details) were analysed by HeavyMetL (x-axis) and the 

time taken to complete processing was measured (y-axis; times in minutes). The number of 

files at each point is also shown above the point. 

2.4.5 Result Display 

Graphics are drawn dynamically using the canvas HTML element. A third-party 

JavaScript library (fabric.js; http://fabricjs.com/) was used to abstract much of the 

underlying complexity for ease of use. Overview figures are displayed for both single 

PMC level quantification and protein level quantification summary according to which 

row in the protein/PMC table is selected. The PMC level graphic shows (Figure 2-VIII L-

R top row) the relative quantified intensity of the unlabelled and labelled signals and the 

corresponding extracted intensity chromatograms and matched apex spectra (Figure 2-VIII 

bottom row). The protein level graphic shows a scatter plot for the incorporation level and 

unlabelled:labelled ratio across all files in the analysis. The median value taken as the 
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protein-level statistic is shown as a black diamond while the first few letters of the 

sequence of individual PMCs are shown in light grey to illustrate the distribution of results 

(Figure 2-IX). The design of both overview displays is to highlight when quantification 

has produced a good or poor result, assessment of which is not easily reduced to a single 

‘quality value’. 

 

 

 

 

 

 

 

 

 

Figure 2-VIII. Graphical display of Results at the PMC-Level (Next Page). The PMC 

identity (sequence, modification state, charge) is shown above the figures. Top Row: 

Relative label intensity (left, showing each sample as a bar on the x-axis vs. intensity on 

the y-axis) and extracted chromatogram (right, with retention time on the x-axis vs. 

intensity on the y-axis), showing the time of each label peak maximum finally selected by 

HeavyMetL. The red line indicates the time of the MS2 scan that led to PMC identification 

(when applicable). Bottom Row: The peak maximum spectrum used for quantification of 

the unlabelled (left) and labelled (right) signal, showing the m/z value on the x-axis vs. 

intensity on the y-axis. Red lines indicate the distribution of the scaled fitted theoretical 

distribution and where the observed intensity was greater or less than expected. The width 

of the red lines (ignoring the T-piece at the top, which just serves to highlight the end of 

the line) indicate the m/z extraction windows based on the user-configurable ppm error. 

Only isotopologues equal or greater in height than the grey shaded areas are used for 

spectrum scaling and chromatographic maxima detection (see also Figure 2-V).



 

 



 

 

Figure 2-IX. Graphical display of Results at the Protein-Level. Left side: Protein Log2 Ratio (Unlabelled/Labelled) indicated by black 

diamonds. Right side: Label Incorporation Level (%) indicated by black diamonds. In both figures, protein values are taken as the median of all 

contributing peptides - these are shown in light grey to illustrate the spread of the data.
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2.5 Conclusions 

The HeavyMetL quantification approach is similar to the strategy employed by other 

‘theoretical-distribution matching’ approaches, particularly Protein TurnStILE, but is 

substantially different from the ‘ratio-only’ approach (e.g. Protover) or the hybrid strategy 

employed in ProteinTurnover. As described throughout this chapter, in addition to 

interface usability and robust quantification, specific consideration was given to algorithm 

memory usage and speed 

While the choice of a browser platform resolved the question of installation difficulty and 

facilitated implementation of a ‘clean’ interface that is consistent across operating 

systems, this choice also applied limitations in terms of speed and, especially, memory. A 

number of careful optimisations such as the task-scheduling queue system were 

implemented to minimise memory usage, but as the number of raw data files in an analysis 

increases, memory pressure will inevitably grow. The memory optimisations ensure this is 

unlikely to be relevant for the analysis of a modestly sized dataset in the case of an 

average researcher. High-throughput proteomic specialists, however, who frequently 

analyse 200+ raw data files simultaneously, may run into browser-imposed limitations 

(either on memory space or number of concurrent WebWorker threads) when attempting 

to perform similarly scaled experiments in HeavyMetL. These limitations may usually be 

avoided by configuration of browser internal settings (typically accessed via the 

about:config address), but precisely how these limitations may be overridden is subject to 

frequent change in both Mozilla Firefox and Google Chrome. In some cases, it may be 

necessary to break down the analysis in order to limit the number of simultaneously 

analysed files. 

Nonetheless it is important to stress that this issue is not unique to HeavyMetL. Large scale 

analyses in proteomic software packages (and indeed analyses of very large data files in 

general) frequently require some re-configuration of the program to increase memory 

limits. Java-based programs, for example, often require that the memory space assigned to 

the Java runtime at program start (the ‘heap size’) is manually re-configured for large data 

sets. Ultimately, assigning a substantial proportion of system resources to any program 

will impact the performance of other programs and system responsiveness. Most datasets 

will be modestly sized, and it is reasonable that for general use, a quantification package 
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should be expected to ‘play nice’ with other programs. If the user wishes to analyse a very 

large dataset or improve processing speed at a cost to other running processes on the 

computer, a requirement for specific manual assignation of extra resources (e.g. memory, 

CPU time etc.) is a sensible precaution, ensuring that standard operation of the program 

does not degrade system performance. In this regard, HeavyMetL is no different to other 

proteomic analysis platforms. 

It is reasonable to conclude that HeavyMetL is a successful implementation of a solution to 

the issues described in Section 1.2.3 and further formalised as requirements in Section 

2.2.2. Analysis of a typical modestly-sized dataset is acceptably fast on modern 

computers, provides reasonable analysis times, and the in-browser nature of the interface 

makes access and use of the tool straightforward. 
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Chapter 3: A Comparison of Spectral 
Similarity Assessment Methods 

3.1 Introduction 

The HeavyMetL algorithm described in Chapter 2 relies on a measure of spectral similarity 

in order to identify the theoretical distribution that best matches the isotopologue pattern 

observed in the raw data, a process I will henceforth refer to as ‘incorporation assessment’. 

Spectral similarity comparison methods are often formulated in terms of a measure of 

‘distance’ between a target entity and one or more of comparison candidates– the most 

similar comparison is the one with the smallest distance. Alternatively, similarity may be 

formulated in terms of the likelihood that two entities are the same, in which case the goal 

is to find the comparison with the highest likelihood. Examples of both approaches are 

common in regression analysis (fitting a statistical model to a data set); common methods 

include ‘Least Squares’ (minimising the sum of squared differences) and ‘Maximum 

Likelihood’ (maximising a likelihood function). From a numerical optimisation view both 

comparisons are equivalent problems, for example maximum likelihood may be, and often 

is, computed by finding the lowest negative (log-)likelihood. As well as different 

‘optimum’ values in typical formulation, comparison methods may have different ranges 

(e.g. 0 to 1, 0 to infinity etc.). For consistency throughout this chapter I will discuss 

spectral comparison in terms of spectral Similarity Score (SS) with a range of 0 to 1, with 

1 being the optimum value achieved with perfect similarity. The various comparison 

methods discussed will be transformed to a corresponding Similarity Score when 

necessary. 

In the context of the HeavyMetL algorithm, incorporation assessment involves creating a 

series of theoretical isotopologue distributions representing the peptide molecule with a 

range of 15N incorporation percentages (henceforth the theoretical distribution, “T”, set). 

The predicted isotopologue m/z values of each T distribution are used to retrieve 

corresponding intensities from the observed data within an RT window. Specifically, m/z-

intensity data distributions at each local total intensity maximum form the observed 
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distribution, the “O”, set, for that maximum. Each theoretical distribution of T is thus 

compared against multiple corresponding O extractions. 

Spectral comparison may be symmetrical or one-way. To calculate a Similarity Score, one 

may compare the relative intensities of all m/z values observed in either spectrum 

(symmetrical), or just the intersection (symmetrical), or consider one spectrum to define 

the valid m/z values for comparison and ignore non-matching m/z values in the other 

spectrum. For symmetrical comparison, the ordering of the two spectra (T vs. O or O vs. T) 

is irrelevant. In the case of 15N distribution matching, a one-way comparison is more 

appropriate since additional m/z values detected in the observed spectrum should not 

detract from match quality as they may originate from a co-eluting species or background 

noise. Failure to observe intensity at m/z values in the observed spectrum that are 

predicted to be present in the theoretical distribution, however, is an indication of less than 

perfect similarity. Furthermore, in the case of HeavyMetL, the theoretical distribution m/z 

values are the reference used for extraction of the m/z-intensity pair data from the 

observed spectrum, so it is most appropriate that the theoretical spectrum defines which 

m/z values are to be compared using the chosen SS. 

A number of mass spectrometry spectral similarity scoring methods have been defined in 

the literature; most successfully applied previous methods were compared by Toprak et al 

(195), in the context of fragment ion spectral comparisons for quality assessment in PRM 

and SWATH-style DIA analyses. Any spectral similarity measure will have advantages 

and disadvantages in the context of a particular MS application as the sources and 

distribution of interference from background noise, overlapping signals and transformation 

artefacts will differ. While, prima facie, matching an observed fragment ion spectrum to a 

theoretical distribution T or previously acquired spectral library entry is similar to 

matching an observed precursor isotopologue distribution to a predicted isotopologue 

distribution (as herein), in practice there are many differences (Table 3-I). 

Spectral matching of MS2 fragment ion spectra heavily penalises large differences 

between O-T/L pairs, particularly with regard to absence of high intensity peaks or 

unexpectedly high intensity peaks predicted/previously observed at low intensity, as these 

are the best indications of an incorrect match. They are not assessed in the context of 

finding the ’best’ match from a number of very similar comparisons, all of which are 

derived from the ‘correct’ PMC definition but at incremental percentage steps (e.g. 48%, 
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49%, 50% etc.) of 15N around the optimum match. A ‘good’ SS in our case should ideally 

have a clear maximum at the correct 15N incorporation (Figure 3-I) so that minor effects of 

noise do not substantially change the ‘best’ match.



 

 

 

Figure 3-I. Idealised Behaviour of a Similarity Score. For accurate and sensitive assessment of incorporation level the score should be maximal 

when and only when the spectrum is compared to a theoretical spectrum at the correct incorporation level. The smaller the relative increase in 

score when matching correctly, the greater the opportunity for noisy spectra to be mis-assessed, and the greater likelihood that mis-assessed 

incorporations will be further from the correct value (ranges represented by the red boxes).
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Table 3-I. Considerations of Spectral Distance Functions in Proteomic MS Contexts. 
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For HeavyMetL, the SS must value the proportional differences between precursor 

isotopologue ions very highly, in order to be able to determine the subtle changes induced 

by fractional increases in 15N incorporation, and to reject cases where the isotopologue 

distribution is highly contaminated by interference. In practice, the approach will have to 

cope with varying levels of background noise, levels of co-eluting interference, mass 

accuracy, effective mass resolution and intensity measurement precision. It is impractical 

to model these various parameters to create a theoretical dataset with any confidence of 

real-world applicability. While various comparisons between spectral similarity 

calculations have previously been made in other proteomic MS contexts (195, 196), the 

criteria on which they are judged were primarily designed to assess match plausibility, 

rather than picking a ‘best’ match out of a series of theoretical spectra, with a substantial 

proportion of very similar candidates corresponding to 15N incorporation levels close to 

the true value. Using these previous approaches and earlier 15N quantification work as a 

guide, I selected several representative options that seemed likely to be appropriate for the 

HeavyMetL algorithm and compared them via an experimental approach. 

3.2 Spectral Similarity Scores 

Given a set of mass values from a theoretical distribution (assuming a particular 15N 

incorporation level) T, each SS described below compares an observed distribution of 

intensities across those m/z values in O, and the predicted intensities of those m/z values in 

T. These are all one-way comparisons, predicated on the m/z values in T. Ion intensity is 

considered as a fraction of the total intensity (or sometimes, the most intense ion) so as to 

standardise differences in signal strength. Let n be the number of isotopologues with a 

non-negligible fraction of total intensity in T. Let Ti be the fractional intensity of the ith-

isotopologue in T, and Oi the fractional intensity of the ith-isotopologue in O. 

Previous ‘theoretical-distribution-matching’ 15N quantification approaches (see 

Introduction, Section 1.2.2) have relied on various formulations of a ‘Least Squares’ 

approach, which in essence is the minimisation of a spectral distance value based on the 

Euclidean Distance (between the fractional intensities of each Ti <-> Oi ion pairing (see 

Equation 1, below). An obvious modification to this method to emphasise the role of high-

intensity ions is to weight the contribution of each squared difference by the intensity of 

the observed ion (Equation 2). 
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 SS"#$ = 1	 −	)∑ (,- − 	.-)01
-23     (Equation 1) 

 SS4"#$ = 1	 −	)∑ ,-(,- − 	.-)01
-23     (Equation 2) 

The work of Toprak et al. (195) in assessing distance calculations for use when comparing 

fragment ion spectra suggests that angle-based (dot-product type) approaches perform well 

for analysis of MS2 data, particularly a normalised version of the Spectral Contrast Angle 

(197). This is a measure specifically designed to be sensitive to differences in relative ion 

intensity and thus is an attractive option for this work. The formulation given in Toprak et 

al. (Equation 3) is already normalised to the (0,1) range. 

 SS5$6 = 1 −	
0789:; ∑ 	<=>=

?
=@;

A
     (Equation 3) 

The hybrid 15N quantification approach of Fan et al., while not making use of a spectral 

distance calculation directly, suggests a further approach. Their algorithm matches the 

composite of the unlabelled and 15N labelled distributions simultaneously using a 

maximum likelihood approach to locate the optimum composite distribution. This could 

also be re-formulated as minimising the Kullback-Leibler Divergence (194, 198). This 

measure is frequently used in information theory to represent the relative entropy between 

two probability distributions. In this case, it could be thought of as the information lost 

when a particular observed distribution O is used to approximate the theoretical 

distribution T whose m/z values were used to extract the isotopologue intensities in O 

(199). If T was close to the actual incorporation level of the signal, then the resulting O 

should be a good approximation of T with a low amount of information lost. The 

Kullback-Leibler Divergence itself ranges from 0 to infinity, so it is necessary to use a 

logistic transformation to yield a score in the desired (0,1) range (Equation 4). 

 SSBC = 2 − 0
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     (Equation 4) 

Note that in Equation 4, where Oi is zero, the i-th term as a whole is also zero (the limit of 

x log(x) as x approaches zero is zero). Ti can never be zero as T only contains 

isotopologues with non-negligible fractional intensity. 

The candidates considered are representative of three general approaches for assessing 

similarity; scalar distance (SSEUC/SSWEUC), vector angle (SSSCA) and information entropy 
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(SSKL). A fourth category of correlation-based candidates were considered, such as 

Pearson’s correlation coefficient (r) or the alternative nonparametric Spearman’s 

correlation coefficient (rho). They were not considered in this case, based on Toprak et 

al.’s demonstration that measures of correlation performed poorly for spectral 

comparisons in general. 

While transformation of the various comparisons to a consistent range does not guarantee 

that the scaling will be consistent within those ranges (one SS might tend to report values 

in the range 0.9 to 1 unless spectra were wildly different, while another might value the 

same set of spectra in the range 0.1 to 1), transformation ensures that the maximum and 

minimum values are always consistent which makes implementation easier (so, for 

example, the HeavyMetL code does not have to allow for an SS to be a negative value, or 

have infinite magnitude). 

3.3 Comparison of Similarity Scores Using Real-World 

Data 

I wished to compare SS performance to determine which produced the ‘best’ incorporation 

assessment results when HeavyMetL was run using each SS algorithm in turn. Such 

optimisation might be done using theoretically generated data, in this case generating 

theoretical distributions for a range of peptides at different 15N incorporation levels then 

applying a noise function to simulate real-world interference. However, this would be 

biased by any assumptions of the noise function (e.g. maximum relative noise to signal, 

degree of interference across masses, degree of noise uniformity). The characteristics of 

spectral noise are not well defined (195), and this is particularly the case here, where the 

precursor isotopologue distribution to be matched is an isolated m/z range divorced from 

the context of the full MS1 spectrum, given that noise is variable across typical proteomic 

MS m/z ranges of 0-2000 Th. I reasoned that a robust comparison could only be performed 

with real-world acquired data. 

There is a downside to such an approach, when compared to theoretical data, in that in the 

latter case the exact ‘true’ incorporation is known. In a real-world context, even if cells are 

cultured to a target 15N incorporation level, there are a number of challenges. Firstly, 

100% pure 15N salts (for the growth media) are impractically expensive; the purity of 
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typically available salts is in the range of 98-99%. This means the true incorporation level 

of peptides will be slightly lower than the experimental target (even assuming the growth 

media has been mixed to a precise level of 15N incorporation without pipetting error). 

Secondly, peptides in incompletely labelled samples have been shown to display 

considerable variance even when efforts have been made to ensure that labelling time was 

sufficient to ensure a stable label incorporation level (200). It is likely that much of this 

variance is technical in nature (lower intensity peptides experiencing higher signal-to-

noise, higher mass peptides splitting their signal among more isotopologues giving more 

data points for incorporation estimation). The possibility of biological effects such as 

differences in parent protein synthesis rates resulting in different unlabelled/labelled 

elemental incorporation bias cannot be entirely discounted, however. It is therefore 

necessary to use a robust calculation of the calculated peptide incorporation distribution 

centroid as an estimator of the actual 15N incorporation level. All of these challenges apply 

equally to any genuine 15N labelling experiment; however, it is reasonable to assume that a 

SS which performs well under these conditions will (generally) perform well in real 

incorporation studies. 

In collaboration with Dr. Sarah Martin at the University of Edinburgh, an experiment was 

designed to assess the performances of each the four SS measures. Dr Martin performed 

the sample preparation and MS analysis work (see Section 3.4, below). The data 

processing, quantification with HeavyMetL and subsequent analysis of the results are my 

own work. 

Dr. Martin and I designed an experimental Ostreococcus tauri dataset consisting of an 

unlabelled sample and 3 labelled samples with different target levels of 15N labelling at 

40%, 50% and 60% 15N (Figure 3-II), henceforth known as Samples A, B and C 

respectively. O.tauri is a green algae and one of the smallest (in physical size) known 

eukaryotes (201). It is frequently studied as a model organism for metabolic cycles such as 

circadian rhythm. It is relatively easy to culture and label by EML. Furthermore, 

proteomic MS time-courses using 15N labelling have been extensively described (159, 

160, 202). 

The levels of labelling were selected such that the resulting precursor ion distributions 

would be maximally dissimilar to any unlabelled contaminating precursors that might 

originate from sample preparation (such as Human Keratins), providing the best 
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assessment of spectral distance measure performance. As incorporation approaches 

unlabelled (isotopologue distributions at <20% 15N) or fully labelled (isotopologue 

distributions at >80% 15N) the precursor distributions would be very similar to the 

distribution of (unlabelled) contaminant precursors with the same mass, which could be 

selected instead by the matching algorithm (see Figure 1-XXII-D). The apparent 

performance at those incorporation levels could thus be artificially inflated by matches to 

contaminant peptides. A step range of 40, 50, 60% was an acceptable compromise to 

minimise this risk while examining performance over an incorporation range. 

The PSM list for analysis was obtained by contemporaneously analysing an unlabelled 

O. tauri sample with the same sample preparation step and LC gradient conditions, so that 

features could be matched across runs by RT. There were three reasons for this approach. 

Firstly, this avoided differences in PSM identification from different samples, so that the 

same PMC list was analysed in each case. Secondly, incomplete EML labelling of 

peptides substantially increases the complexity of peptide-spectrum matching (even in 

cases where the actual incorporation level is known in advance, which is only possible in 

the case of complete labelling with very high purity 15N sources) and produces fewer 

identification results than searching unlabelled data. Thirdly, the expected usage scenarios 

for HeavyMetL involve either samples containing only labelled peptides (at unknown 

incorporation) with a contemporaneously analysed unlabelled PMC identity reference 

sample as is the case here, or the presence of fully unlabelled peptides in each of the 

samples to be analysed (a typical abundance-comparison design). The latter design would 

likely produce more easily quantified data; the unlabelled signal RT apex is easier to 

locate (there is only a single possible incorporation level to be tested), and the presence of 

an unlabelled signal RT apex in-run may be used to narrow the search window for the 

labelled signal apex. It is necessary, however, for the Similarity Score to perform well in 

both scenarios. I chose to refine my selection of Similarity Score on the more challenging 

experimental scenario to hopefully accentuate any performance differences between the 

candidates. 
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Figure 3-II. Experimental Design for Similarity Score Assessment. The unlabelled sample 

(in blue) was not used directly in the analysis of 15N incorporations but rather to generate 

the list of peptides for quantification (since direct identification of 15N labelled peptides is 

not robust unless the incorporation level is 100%). 
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3.4 Experimental Dataset Methods 

N.B. The Subsections 3.4.1 to 3.4.3 (inclusive) of this methods section are included for 

information but do not represent work undertaken by myself. They were performed by Dr. 

Sarah Martin, a collaborator at the University of Edinburgh. All data analysis subsequent 

to MS acquisition was performed by me, including post-processing (Subsection 3.4.4). 

3.4.1 Cell Culture 

Ostreococcus tauri OTTH059543 were cultured in 0.22 μm filter sterilized artificial sea 

water (Instant Ocean powder) at a salinity of 30 parts per thousand as described in Le 

Bihan et al., 2011 (159). Briefly, cultures were split weekly to 1 part in 50 to ensure 

continuous growth. In preparation for the experiment, cultures were passaged twice 1:50 

into media containing a mix of 14N sodium nitrate and 14N ammonium chloride (both from 

Sigma Aldrich, U.K.) and 15N sodium nitrate (98% pure) and 15N ammonium chloride 

(99% pure) (both from Cambridge Isotope Laboratories) mixed in appropriate ratios to 

give final combinations with 40, 50 and 60% 15N incorporation, and an additional 

unlabelled sample. Samples were cultured under a 12-hour daylight/ 12-hour darkness 

cycle at a constant 20 °C in a vertical environmental test chamber (MLR-350, Sanyo). A 

light intensity of 17.5 μEm2 s−1 was maintained using 724 Ocean Blue, Lee filter. Cells 

were grown for 8 days to an optical density of ~0.1 mm-1 at 600 nm in parallel with FACS 

(Fluorescence-Activated Cell Sorting) analysis (equivalent to approximately ~10 k cells 

per μL, or 700 μg protein per 100 mL). Whole cell lysate was sampled from each culture 

by centrifuging 30 mL culture (3200 g, 10 min) and washing pellets with 1 mL PBS 

before centrifuging again (12000 g, 5 min). Full pellet resuspension and cell lysis was 

achieved by pipetting up and down with 200 μL 2M urea. Samples were stored at 20 °C 

before digestion. 

3.4.2 Sample Preparation 

Samples were reduced with 12.5 μL each of 200 mM dithiothreithol and 1M ammonium 

bicarbonate for 30 min at room temperature. 12.5 μL of 500 mM iodoacetamide and 5 μg 

sequencing grade porcine trypsin (Roche, UK) were added for alkylation and digestion 
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overnight. 10 μL digest were diluted in 20 μL buffer A (97.5% HPLC grade water, 2.5% 

HPLC grade acetonitrile (both Fisher, U.K.), 0.1% formic acid (Suprapure Merck, 

Germany), cleaned on Stagetips, eluted in 10 μL buffer B (90% acetonitrile, 10% water, 

0.1% formic acid, 0.025% trifluoroacetic acid (sequencing grade, Sigma, U.K.)), vacuum-

dried (RC 10-10, Thermo Fisher, U.K.) and stored at -20 °C. 

3.4.3 MS Analysis 

Dried samples were re-suspended in 11 μL buffer A and analysed on a capillary-HPLC-

MS/MS system (1200 binary HPLC, Agilent, U.K., coupled to a hybrid LTQ-Orbitrap XL 

mass spectrometer, controlled by XCalibur v. 2.0.7, Thermo Fisher, U.K.) in 140 min. 

gradients. Capillary Picotip columns (10 cm x 360 μm o.d. x 75 μm i.d.) with a 15 mm tip 

opening and fitted with a borosilicate frit were purchased from New Objective (Presearch, 

UK). Fused-silica tubing was purchased from Composite Metal (UK). The reversed-phase 

bulk material used was 5mm Pursuit C18 obtained from Varian (UK). 

With buffer A as 97.5% water, 2.5% acetonitrile, 0.1% formic acid, and buffer B as 90% 

acetonitrile, 10% water, 0.025% trifluoroacetic acid, 0.1% formic acid, the solvent 

gradient program was as follows: 0% buffer B (0–12 min.), 0–5% buffer B (12–16 min.), 

5–15% buffer B (16–36 min.), 15–35% buffer B (36–80 min.), 35–100% buffer B (80–96 

min.), followed by 100% buffer B for 18 min. and back to 0% buffer B for 6 min. Prior to 

the analysis, a column/pre-column wash and conditioning step was performed consisting 

of a 1 h gradient of 0–100% buffer B over 20 min. followed by an isocratic conditioning 

step at 0% buffer B over 40 min. 

Data-dependent acquisition was performed with one profile-mode MS1 scan at 60 k 

resolution in the Orbitrap followed by five MS2 scans in the LTQ. 

3.4.4 Post-Processing 

The raw data were converted to mzXML format using the msconvert tool in the 

ProteoWizard suite (http://proteowizard.sourceforge.net/). MS2 peak-lists in MGF format 

were also generated from all samples using the same tool. The unlabelled sample peak-list 

was searched using Mascot Server (v. 2.5.1, Matrix Science) with the following 

parameters: fixed modifications = carbamidomethyl (C); variable modifications = 
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oxidation (M), acetyl (N-term); mass tolerance = 10 ppm; fragment mass tolerance = 0.1 

Da; max missed cleavages = 2; search database = Ostreococcus tauri UniProt reference 

proteome (retrieved 24/08/2016). The list of identified peptides was exported from Mascot 

in mzTab format and re-formatted for compatibility with HeavyMetL. Briefly, a new table 

was created based on the “PSM” rows in the mzTab file. The following columns were 

directly copied across (mzTab column names from the “PSH” row given first, HeavyMetL 

input names given second; see Table 2-II for details): “sequence” as 

“PEPTIDE_SEQUENCE”, “accession” as “PROTEIN”; “search_engine_score[1]” as 

“PEPTIDE_SCORE”; “charge” as “CHARGE”. The column “RETENTION_TIME” was 

added based on the mzTab “PSM” column “retention_time” divided by 60, the column 

“MODIFICATIONS” was added based on the mzTab PSM column “modifications” 

reformatted to Scaffold-style definitions, and the column “PROTEIN_DESCRIPTION” 

was added cross-referencing the protein accessions in “PROTEIN” to the “description” 

column in the mzTab “PRT” rows. Finally, the column FILE_NAME was added 

containing the file name of the unlabelled run, and the column 

“CONTRIBUTE_TO_PROTEIN” was added with a value set to TRUE for every row 

(irrelevant for analysis of this dataset as the data were considered at the peptide level 

only). Finally, the list was filtered to include only peptides with PEPTIDE_SCORE 

(Mascot Expect value) less than 0.001 to minimise the effects of mis-quantification due to 

incorrect sequences, yielding 1061 PMC entries, 1042 of which were unique. The list was 

analysed against all four raw data files (including the unlabelled sample for RT matching) 

four times with HeavyMetL, in which the SS was implemented as each of the four 

candidates shown in Equations 5-8 in turn. Default settings were used elsewhere, except 

for the ‘Maximum Peak Apex Shift’ parameter, which was set to the full extraction 

window of 30 s (samples A, B and C contained no unlabelled signals to be matched 

within-runs). This included the ‘Do Not Quantify Unlabelled Signal’ parameter being left 

as ‘false” despite there being no unlabelled signal in samples A, B and C; it is not 

necessary to change this parameter to true unless there is both no unlabelled signal and an 

extremely low level of 15N incorporation (<10%) is expected for the labelled signal. 

Quantifying any apparent unlabelled signal (e.g. from mis-matched co-eluting peptides) 

also prevents such signals being incorrectly matched as a labelled signal. 

Subsequent statistical analysis of results and generation of all figures was performed in R 

(v. 3.5.1). 



Chapter 3: A Comparison of Spectral Similarity Assessment Methods 120 

3.5 Estimation of Average Sample Incorporation Levels 

While the labelled samples A, B and C were grown to fixed target incorporations, the 

‘true’ peptide incorporations were expected to be a distribution around an a priori 

unknown median, rather than a fixed point, due to 15N salt impurity, pipetting variance 

and, potentially, incorporation kinetics (see Section 3.3). Before analysing the data with 

HeavyMetL, I investigated a previously described method for estimating the average 

peptide 15N incorporation level in each sample without using cross-run matching of 

peptide identifications, based on a previously observed relationship between peptide mass 

and peptide Mass Decimal Residual (i.e. the fractional part of the mass value, henceforth 

MDR). This phenomenon was first described by Mann (203) and subsequently expanded 

into the Half Decimal Place Rule (HDPR) (204, 205). Informally, the HDPR observes that 

the first digit of the MDR is near the half of the first digit of mass values between 500 and 

999, near the half of the first two digits of mass values between 1000 and 1999, and near 

the half of the first digit of the mass values between 2000 to 3000, with various papers 

defining ‘mass’ as molar mass, molecular mass or (M+H)+; the relationship is observable 

on any scale and I use molecular mass in Da hereafter. When plotting MDR vs. mass , a 

characteristic series of diagonal bands are observed corresponding to a banded ‘wrapping’ 

of the linear relationship across the (0,1) MDR scale (see Figure 3-III-A for an example).  

HDPR has typically been used for quality control in MALDI-ToF analyses of peptide 

mass fingerprinting (identifying proteins based solely on peptide mass rather than using 

peptide fragmentation) studies (204, 205), although recently the approach has been applied 

to modern LC-MS/MS (206). Of particular interest to me was a 2010 study by Fetzer et al. 

in which the HDPR relationship was used to predict partial 13C incorporation in bacterial 

peptides (207). The Fetzer et al. approach first involves transformation of the banded 

MDR:Mass relationship to a linear Corrected MDR:mass relationship by identifying 

points associated with the ‘wrapped’ bands and correcting their MDR by adding a +1, +2, 

etc. correction factor across the bands. The data are transformed by a scalar rotation such 

that the bands are vertical in the y-axis. Specifically, peptide masses are rescaled as 

 Transformed	Mass = Mass − 1800 ∙ MDR 
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followed by k-means clustering to assign each point to a band. Using unlabelled and 

completely labelled standards, Fetzer et al. demonstrated that as the percentage of 13C 

incorporation increases from ~1% to 100%, the gradient of the Corrected MDR:mass 

relationship also increases. Using unlabelled and fully labelled standard samples for 

calibration, they were able to predict 13C incorporation based on the peptide masses of any 

similar sample. 

I applied a similar approach to two mass datasets. I first developed an analysis workflow 

on using a (partly) theoretical dataset based on 1042 unique, high-confidence (Mascot 

Expect value <0.001) PMCs identified in the unlabelled sample. Using the HeavyMetL 

isotopologue prediction algorithm, I calculated the expected masses of the most intense 

isotopologue for each PMC at natural 15N incorporation (~0.368%) and at 10-100% 15N 

incorporation in step sizes of 10. This resulted in 10 sets of mass values between 500 and 

3500 Da. There was one mass value greater than 3500 Da which would fall into a separate 

cluster, which was ignored to simplify analysis. I replicated the Fetzer analysis on these 

masses (and their corresponding MDRs), with some modifications. To avoid manually 

specifying a rotation scalar (chosen by Fezter et al. by eye) I instead transformed the data 

by Principal Component Analysis, which neatly separates the bands along one principal 

component (usually the first, although in the case of particularly noisy data it may be the 

second principal component) (Figure 3-III-B,C). Fetzer et al. then used k-means clustering 

to separate the rotated clusters. I found this approach to be insufficiently robust, frequently 

incorrectly splitting the clusters and that a more robust approach was to simply estimate a 

cluster separation threshold by density analysis of the principal component. I estimated the 

density along the axis with a cosine model to locate the density maxima, then took the 

half-way point between the maxima as a clustering cut-off (Figure 3-III-D,E,F). MDRs 

from the higher mass cluster were then corrected by adding +1 as in the Fetzer analysis 

(Figure 3-III-G) and I then calculated a gradient by linear fit for each 15N% step (Figure 

3-IV). As in the Fetzer work, I observed a strong linear relationship between 15N 

incorporation and the Corrected MDR:mass gradient, although in the case of 15N this 

correlation is negative while Fetzer et al. observed a positive correlation. On reflection, 

this is to be expected. The mass delta of 12C to 13C is ~1.0033 so increasing the percentage 

of 13C will, on average, raise the MDR. In contrast the mass delta of 14N to 15N is ~0.9970 

so increasing the percentage of 15N will decrease the MDR.  
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Figure 3-III. Transformation of Mass Decimal Residual Values. MDRs were transformed 

to allow linear analysis of their relationship with peptide mass. The data shown are the 

masses selected for MS2 in the unlabelled sample. A: Initial distribution of MDR vs. 

peptide mass for all masses less than 3500. B: Data centred and scaled (to unit variance) 

showing the calculated principal components. C: Data plotted on principal component 

axes. D: Density analysis of points along principal component 1. The red line indicates a 

cut-off point half-way between the two density maxima, partitioning the data by ‘band’ 

(orange and blue). E: Cluster assignment by density cut-off on principal component axes. 

F: Cluster assignment by density cut-off on original axes. G: Corrected MDR vs. mass 

(applying +1 to all MDR in orange cluster). 
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Figure 3-IV. Mass to Corrected MDR Gradients across a Theoretical Dataset. Data 

shown are the masses of the highest intensity predicted isotopologue (at the percentage of 
15N incorporation shown above each panel) for the set of 1042 unique PMCs identified 

from the unlabelled sample. UL=Unlabelled sample, corresponding to a natural 

abundance of 15N (about 0.368%). A linear fit of gradient to incorporation was performed 

(lower right corner) demonstrating a linear relationship between the expected gradient 

and incorporation.  
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I then applied the same analysis to my experimental unlabelled and labelled data. I took 

the list of all precursor masses (i.e. those selected for MS2) reported in mgf peak-list files 

generated from each raw data file for the unlabelled sample and labelled samples A, B and 

C, transforming the mgf PEPMASS value for each spectral entry according to 

corresponding reported CHARGE. I made the assumption here that even in the case of 

partial 15N labelling, the vast majority of species selected for MS2 will still be sample-

derived peptides (as opposed to environmental protein contamination such as skin 

keratins, or non-peptide contaminant ions falsely recognised as peptides), even if the 

fragment ion spectra are not easily identifiable without knowing their incorporation. For 

consistency of analysis with the theoretical data above I also ignored mass values greater 

than 3500 Da. 

 

 

 

 

 

 

Figure 3-V. Corrected MDR to Mass Gradients using MS2 Precursor Masses. (Next Page) 

A: Precursor masses are shown for each sample: UL=Unlabelled sample, 

sA, sB, sC = labelled samples A,B and C. B: The Corrected MDR:mass gradients for 

unlabelled sample and samples A, B and C (labelled as above) are shown as blue dots on 

the same plot shown in the lower right hand corner of Figure 3-IV. While the gradients do 

apparently decrease linearly and (nearly) parallel the gradient predicted with theoretical 

data, the y-axis intercept is clearly different. C: Inferred relationship between UL and 

labelled samples A, B, and C, y-axis scaled for sample C. For example, if I estimate the 

true average 15N incorporation of sample A to be 20% (green vertical line), then as the 

incorporations values for B and C on the x-axis intersect their respective gradient lines at 

the same y-axis value (green horizontal line) this predicts samples B and C to be at ~28% 

and ~35% incorporation respectively (blue dotted lines). 
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The precursor mass data also showed an apparently linear decrease in Corrected 

MDR:mass gradient relative to the expected (i.e. target) incorporation in each sample 

(Figure 3-V-A). The ratios were not in the same range of those attained with the 

theoretical dataset (Figure 3-V-B), but plotting the Corrected MDR:mass gradients vs. 

Incorporation calculated from the theoretical prediction (based on only well-characterised 

PSMs from the unlabelled sample) showed that they appeared to be approximately parallel 

to the same gradient obtained using all precursor masses from the unlabelled sample and 

samples A, B, and C, the intercept of the  Corrected MDR:mass gradient axis intercept 

was clearly different, and it seemed unwise to assume that the gradient would nevertheless 

be the same. 

I felt it would therefore be inaccurate to attempt to directly predict the incorporation of 

labelled samples A, B and C assuming a linear relationship with the same parameters as 

that observed for the theoretical data, but it did not seem unreasonable to assume that the 

relationship was still linear, and therefore the inter-sample ratios of Corrected MDR:mass 

gradients between samples A, B and C should predict the corresponding inter-sample 

ratios of 15N incorporation. 

For example, the HDPR approach predicts ratios of 0.73 and 0.88:1 for A and B relative to 

C, thus in the case of sample C incorporation being 1% 15N, this predicts the 15N 

incorporation levels of samples A and B would be 0.73% and 0.88% respectively. This 

principle can be extended for any value of C (Figure 3-V-C). 

Since the original ‘target’ incorporation values would instead yield a ratio of 0.67:0.83:1 

for A:B:C, the HDPR-predicted pairwise ratios between all three incorporations 

(0.73:0.88:1) are larger than expected. Assuming that the true incorporation levels can be 

lower than or equal to the target, but not higher, then the model has to be constrained by 

sample C<=60 since taking sample A or B as the baseline for the ratio instead results in 

predicts incorporations for sample C that are greater than the target. Under this constraint, 

the HDPR estimation predicts that samples C and B will show a similar incorporation 

percentage point deficit while the percentage point deficit for sample A will be larger. 
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3.6 Similarity Score Evaluation 

I then analysed the list of 1042 unique, high-confidence (Mascot Expect value <0.001) 

PMCs identified from across Samples A, B and C using HeavyMetL. The analysis was 

repeated four times, using each of the candidate SS described above (Equations 5-8) in 

turn. 

The estimated peptide incorporations produced using each analysis are shown in Figure 

3-VI (top four rows). For comparison purposes, I also generated a random guessing 

baseline (SSRAND) consisting of an equal-length population of simulated incorporation 

quantification results. For each result I simulated the effect of the SS maximisation 

approach by generating a random number (between 5 and 20) of dummy chromatographic 

maxima each with a random SS uniformly distributed between 0 and 1, then taking the 

highest score value. This was then paired with a random incorporation estimate uniformly 

distributed between the minimum and maximum assignable incorporation levels (10% to 

95%) (Figure 3-VI, bottom row). 
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Figure 3-VI. Performance of Incorporation Level Estimators. Histograms of reported 

peptide incorporation levels are shown after calculation using four measures of spectral 

similarity (rows 1-4). For comparison purposes, a baseline result generated by random 

guessing (using a uniform distribution) is shown in row 5 (SSRAND). In each case the range 

of possible reported incorporations was 10-95%. Comparisons are shown for three 

different samples of O. tauri (A, B and C; left-to-right across grid columns) grown to 

target incorporation levels of 40%, 50% and 60% respectively. The actual attained 

incorporation levels were estimated by excluding the lowest quartile of reported 

incorporations by frequency (below the blue lines, these lines therefore also indicate the 

spread in terms of ‘full width at 25% maximum’) and taking the mean across all four 

Similarity Scores for each sample, shown as the red line overlaid through each column of 

the grid.  
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From the HDPR estimation I expected the true incorporation level for each sample to be 

several percentage points lower than the target due to impurities in labelled media, so in 

each sample I estimated a true rate as the mean of all measured labelled signal 

incorporations in the upper 75% of incorporations when ranked by relative frequency (to 

exclude the background of randomly distributed mis-quantifications, following a similar 

rationale to the FWHM estimation of peak width, see Figure 1-IV). To estimate the true 

mean, for each sample I took the mean of all four SS means, yielding estimates for 

labelled samples A, B and C of 34.4% 43.7% and 53.7% respectively. These estimates are 

shown for each sample as the red vertical lines in Figure 3-VI. The spread of reported 

incorporations around the estimated true incorporations was not substantially different 

between SS candidates when taking the corresponding standard deviations of the upper 

75% of peptide incorporations (as for the mean above), leaving little to choose between 

the candidates in terms of incorporation accuracy, although SSKL consistently gave the 

tightest spread (Figure 3-VII). 

 

Figure 3-VII. Standard Deviations of Reported 15N Percentage Incorporations. The 

coloured bars show standard deviations for the upper 75% of incorporation results when 

ranked by relative frequency.  
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Assuming the estimates for samples B and C were accurate, the incorporation estimate for 

sample A was several percentage points higher than the relationship between A,B and C 

predicted by the HDPR approach described in Section 3.5 (Figure 3-VIII); but closer to 

what would be expected with a constant deficit across all 3 samples of approximately 6 

percentage points. The simplest interpretation would be that this was indeed the case, in 

which case the HDPR-based estimation for sample A was not particularly robust given the 

sizeable error. 

 

Figure 3-VIII. Comparison of Incorporation Estimates by HeavyMetL and HDPR. The 

black line for each sample (UL=Unlabelled sample, sA, sB, sC = labelled samples A, B 

and C) indicates the relationship inferred by the HDPR approach. The y axis is scaled for 

labelled sample C (although the data could also be plotted scaled to sample A or B), such 

that if sample C takes a particular incorporation value, the x-axis value corresponding to 

that value on the y-axis indicates (for each sample) what the expected incorporation of 

that sample will be (thus the sample C line lies on y=x). The estimates obtained by 

HeavyMetL quantification are shown as vertical red lines, illustrating that assuming the 

sample C incorporation to be 53.7% as measured by HeavyMetL (green line), the HDPR 

approach (blue dotted lines) predicts that the sample B incorporation to be ~44% (in close 

agreement with the HeavyMetL result) but the sample A incorporation to be ~31% rather 

than closer to ~34-35% as predicted by HeavyMetL.  
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3.7 Standardisation of Incorporation Quantification 

Errors 

In order to evaluate the quality of results produced by each SS candidate, it is necessary to 

define a framework for comparison. The outcome of interest is the accuracy of the 

incorporation assessment reported by HeavyMetL when using each SS candidate, 

comparing each quantification result to the ‘true’ sample mean to get an error in 

percentage points. The size of the error is of interest, while the sign (positive/negative) is 

not; a positive error is no better or worse than a negative one. Since the ‘true’ 

incorporation values are not known (see discussion in Sections 3.3 and 3.5 above), the 

approximation I will use is the robust mean based on the upper 75% of the distribution of 

incorporation levels across all four SS (see Figure 3-VI). 

In order to compare errors between samples with different 15N incorporation levels, a 

method of error standardisation is necessary. Consider an incorporation range Xmin to Xmax 

and an incorporation quantification result x for a particular peptide. If x is produced by 

random draw between Xmin to Xmax with equal probability, the population X of x will be 

uniformly distributed. However, the incorporation percentage point error of x compared to 

the true (or estimated true) incorporation T is not necessary uniform because T may not be 

equidistant from both Xmin and Xmax. Furthermore, in other samples where T is different but 

Xmin and Xmax remain the same, the range of possibly quantification results either side of T 

is different. A standardised score allows combination of the results from labelled samples 

A, B, and C to compare SS candidate performance across all samples in aggregate (Figure 

3-IX). This requires that the percentage point errors from comparing the HeavyMetL 

quantification incorporation values to the estimated ‘true’ incorporations are transformed 

to a Standardised Incorporation Quantification Error (SIQE). 
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Figure 3-IX. A Standardised Incorporation Quantification Error. Such a score is required 

to directly compare incorporation percentage point errors between Samples A, B and C. 

Let [ be defined as the absolute (i.e. unsigned) percentage point error between the true 

incorporation and an observed incorporation, i.e. [ =|T – x|. Let a be the smaller of the two 

distances from true incorporation T to the limits of the incorporation range (Equation 5). 

Let b be the difference between a and the larger of the two distances from the true 

incorporation to the limits of the incorporation range (Equation 6). 

\ = min	^(.	 −	_`-1), (_`bc 	− 	.)d   (Equation5) 

e = max^(.	 −	_`-1), (_`bc 	− 	.)d − \   (Equation 6) 

When T is equidistant from Xmin and Xmax, b = 0 and a uniformly distributed population of 

random incorporations X will yield a corresponding distribution of absolute percentage 

point errors g that is uniformly distributed between 0 and a (Figure 3-X-A). When T is 

equal to Xmin or Xmax, a = 0 and a uniformly distributed population of random 

incorporations X will yield a distribution of [ (g) that is uniformly distributed between 0 

and b (Figure 3-X-B). In every other case T will be closer to either Xmin or Xmax, therefore a 

uniformly distributed population of random incorporations X will yield a distribution of 

signed errors uniformly distributed between either -a and a+b, or -(a+b) and a. Because [ 
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is an absolute error, a random x yielding 0 ≤ [ ≤ a is thus twice as likely as a < [ ≤ a+b 

and the distribution of g is therefore not uniform (Figure 3-X-C). 

 

Figure 3-X. Distribution of Errors from a Random Estimator. Let [ be the absolute 

difference between the true incorporation T and an estimate of the incorporation x, i.e. [ 

=|T – x| If a population of random estimates X has uniform distribution, then the 

corresponding distribution of the absolute error g, depends on the position of T within the 

range of possible estimations Xmin to Xmax. Let a be the smallest difference between T and 

Xmin to Xmax. Let b be the difference between a and the largest difference between T and 

Xmin to Xmax (See equations 9 and 10, main text). A & B: If T is equidistant from Xmin and 

Xmax or equal to one or the other, then the range of absolute deviations is also uniform. C: 

In all other cases the range 0 ≤ [ ≤ a is twice as likely as a < [ ≤ a+b.  

P(! ≤ ")

"0 a
0

1
$

P(X ≤ x)

0

1
2$

T
a a

x
Xmin Xmax

When T is equidistant from Xmin and Xmax, b = 0 and " is distributed uniformly between 0 and a

P(X ≤ x)

0

T
a a b

P(! ≤ ")

"0 a+b0 a

1
2$ + '

2
2$ + '

1
2$ + '

x
Xmin Xmax

Otherwise, 0 ≤ " ≤ a is twice as likely as a < " ≤ a+b

P(! ≤ ")

"0 b
0

1
'

P(X ≤ x)

0

1
'

T

b

x
Xmin Xmax

When T is equal to Xmin or Xmax, a = 0 and " is distributed uniformly between 0 and b

A

B

C



Chapter 3: A Comparison of Spectral Similarity Assessment Methods 134 

From Figure 3-X I derive a probability distribution function for g: 

h([) = i

0

0bEj
, 0 ≤ [ ≤ \

3

0bEj
, \ < [ ≤ \ + e

0, otherwise

   (Equation 7) 

To obtain a SIQE I calculate the probability of achieving an error less than or equal in 

magnitude to that observed if one were to randomly select an incorporation estimate. This 

is the cumulative distribution function for g, which for a given error [ is the integral of the 

probability distribution function f([) (Equation 7) from 0 to [: 

SIQE = 	P(Δ	 ≤ 	[) =

⎩
⎪
⎨

⎪
⎧

0, [ < 0
0z

0bEj
, 0 ≤ [ ≤ \

bEz

0bEj
, \ < [ ≤ \ + e

1, [ > 	\ + e

 (Equation 8) 

3.8 Comparison of SIQEs Between Similarity Scores 

To further differentiate the performance of the four SS candidates, I compared the ability 

of the methods to consistently assign a higher score to matches with low-error compared 

to matches with high-error. I combined the data from samples A, B and C, and removed 

zero-scored PMCs, for a total of 3108 score-estimate pairs for each of the four SS 

candidates (and a corresponding dataset of 3108 random score-estimate pairs in SSRAND). 

I first compared SS–SIQE relationships directly (Figure 3-XI-A). Regardless of SIQE, 

most score values were generally close to 1. This is a result of the scoring process 

selecting the ‘best’ (highest) score and is also reflected in the distribution of SSRAND. A 

mathematical explanation for this is given in Appendix III. The relationship between score 

validity and score, while monotonic for all four SS, would not necessarily have the same 

gradient shape. To enable a fair comparison, I transformed each score to a score rank 

(assigning rank 1 as the highest score) (Figure 3-XI-B,C). Comparing SIQE across score 

ranks, all four methods clearly outperformed random guessing, with a greater weighting of 

high scores towards low SIQE. Many apparent differences (such as higher general scores 

for SSWEUC) were removed by rank normalisation, showing that both Euclidean distance 

candidates (SSEUC, SSWEUC) gave almost identical performance to SSSCA and SSKL. 



 

 

A

B

C
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Figure 3-XI. Comparison of Relationship between Similarity Score and SIQE. (Previous 

Page) A: Similarity Score (y-axis) vs. SIQE (x-axis). B: Similarity Score Rank (y-axis) vs. 

SIQE (x-axis). C: The distribution of SIQEs (shown via horizontal boxplots) of SS ordered 

by rank in bins of 25. The ‘boxes’ cover the 25th-75th percentile range (i.e. the 

interquartile range) in each case, and the whiskers extend 1.5 times the interquartile 

range in either direction, bounded by the plot limits. Each column of the figure 

corresponds to results for a particular SS candidate (or the simulated random baseline 

score) as indicated. 

I also examined the data for peptide composition-related differences in SIQE. The 

peptides analysed were drawn from a list of peptide-spectrum matches and therefore their 

characteristics are heavily biased towards features that favour identification by standard 

proteomics MS and are further constrained by the processing prior to MS analysis. For 

example, the peptides were produced by tryptic digest, so the vast majority will end in 

either arginine or lysine. I reasoned that any significant composition-related difference in 

SIQE would affect the relationship between SIQE and peptide length and/or the number of 

nitrogens the peptide contained, regardless of sequence. I did not observe any such 

patterns (Figure 3-XII), which suggested that (as expected) all the Similarity Score 

candidate scores were unaffected by peptide composition. 

Looking at the whole dataset it was difficult to tease out any further differences, but closer 

inspection of the binned data revealed both Euclidean distance methods showed a spike in 

mean SIQE at the highest score, suggesting that in some circumstances SSEUC and SSWEUC 

assign scores very close to maximum to mis-fitted data (Figure 3-XIII). 

Ultimately, I felt that the poor mean SIQE of both Euclidean distance measures at very 

high score rank weighed against their use in HeavyMetL, as applying increasingly 

conservative score thresholds should (ideally) always yield better quality data. Although 

the observed difference in performance was small, I selected the Kullback-Leibler 

Divergence-based score SSKL, as the better-performing of the remaining two SS 

candidates for use in the incorporation assessment part of the HeavyMetL algorithm 



 

 

Figure 3-XII. Comparison of Relationship between Peptide Characteristics and SIQE. A: Peptide length (y-axis) vs. SIQE (x-axis). B: Number 

of nitrogen atoms in the peptide (y-axis) vs SIQE (x-axis). Each column of the figure corresponds to results for a particular SS candidate (or the 

simulated random baseline score) as indicated.
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Figure 3-XIII. SIQE as a Function of Score Rank. The SIQE is shown as the mean SIQE 

value over bins of 100 scores in ascending order. Note in particular the ‘spike’ in mean 

SIQE at very high score rank for the Euclidean based methods. 

3.9 Incorporation Assessment Performance at High 
Spectral Noise 

Having observed how HeavyMetL incorporation assessment (using the selected Similarity 

Score, SSKL) performed on a ‘real-world’ dataset. I was also interested as to how the 

incorporation assessment performance would hold up as the data quality decreased. To 

explore this, I created a dataset of 10000 random peptides by concatenating several 

random protein sequences (generated using the ExPASy random protein sequence 

generator at https://web.expasy.org/randseq/ - the generator has a maximum residue length 

per protein) then applying standard tryptic digestion rules. Using R with the v8 package to 

call HeavyMetL code where appropriate, for each peptide, I assigned a random 

incorporation level between 0 and 100 (restricted to multiples of 2 in order to halve 

processing time) and used the HeavyMetL isotopologue prediction algorithm to generate a 
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theoretical spectrum at the assigned incorporation level (thus yielding approximately 200 

peptides at each incorporation level). From the true theoretical spectrum, I then generated 

‘simulated observations’ with increasing amounts of log-normal noise applied to each 

isotopologue intensity. To generate a ‘simulated observation’ spectrum with a given noise 

level, I modelled the intensity of each isotopologue as a log-normal distribution with log 

mean equal to the log theoretical intensity of that isotopologue and log standard deviation 

equal to the noise level, then drew a replacement ‘noisy’ intensity value from this 

distribution. For example, for a noise level (in log standard deviation units) of 0, each 

isotopologue ‘noisy’ intensity is drawn from a log normal distribution with log mean = log 

theoretical intensity and log standard deviation = 0, i.e. the ‘simulated observation’ 

spectrum for noise level 0 is identical to the theoretical distribution. I generated 101 

‘simulated observation’ spectra for noise levels (in log standard deviation units) from 0 to 

1 in increments of 0.01. 

For each simulated observation I then calculated the best matching theoretical distribution 

(again for incorporation values between 0 and 100 in multiples of 2) and the associated 

SIQE. Note that in this analysis (due to the parameterisation of the log-normal distribution 

in R), ‘log’ means the natural log. A log standard deviation of 1 corresponds to a fold 

change of approximately 2.7, which would be well above what is generally considered to 

be the lower bound of detectable genuine fold changes using EML (208) and therefore 

considerably ‘noisier’ than typical real-world data. 

As Figure 3-XIV shows, the performance of the incorporation assessment decreases as 

spectral noise (in log standard deviation units) increases. The relationship between 

Similarity Score and noise appears to have an inverse nonlinear component, as both the 

median value and the lower limit of spread (1.5 times the interquartile range) decrease 

more rapidly as the log standard deviation increases (Figure 3-XIV-A).  However, the 

relationship between inaccuracy of incorporation assessment (as measured by SIQE) and 

noise is closer to a positive linear one, judging by the 90% density threshold in  Figure 

3-XIV-B (90% of the density for each level of log standard deviation noise is below the 

red line). It is possible to still correctly assign the incorporation level even with a low 

Similarity Score, so long as it is still the highest among all tested incorporation levels, so it 

follows that decreasing Similarity Score does not necessarily mean a proportionate 

increase in SIQE. 
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The results suggest that the optimum Similarity Score threshold for any given dataset 

would ideally be derived empirically. However, this is contrary to the stated goal of setting 

default parameters that are robust in most scenarios. Following the same logic as above, 

since a 1.5-fold change has traditionally been the minimum threshold to observe a genuine 

change (208), estimate of a standard deviation of 1.5 as an upper noise limit in typical data 

seems appropriately conservative; this corresponds to a log standard deviation of 

approximately 0.4  (see purple vertical lines in Figure 3-XIV) which, from the simulated 

dataset, suggests a possible Similarity Score threshold of 0.85 as this would encompass 

nearly all genuine matches (i.e. when there is measurable signal present) and yield 90% of 

incorporation assessments with a SIQE less than 0.1.



 

 

Figure 3-XIV. Incorporation Assessment Performance Versus Simulated Noise. A: Peptide length (y-axis) vs. Noise (in log standard deviation 

units; x-axis), shown as box plots for each simulated log standard deviation value. The ‘boxes’ cover the 25th-75th percentile range (i.e. the 

interquartile range) in each case, and the whiskers extend 1.5 times the interquartile range in either direction, bounded by the plot limits. B: 

SIQE (y-axis) vs Noise (in log standard deviation units; x-axis), plotted as a density estimate (where darker blue = greater density). The red line 

indicates a cut-off underneath which 90% of the density lies. The purple line indicates a (conservative) estimate of the typical upper bound for 

spectral noise in EML data.
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3.10 Conclusions 

HeavyMetL is dependent upon spectral similarity in order to identify the theoretical 

distribution that optimally matches the isotopologue pattern observed in the raw data. I 

thus considered several Similarity Score candidates, described above (Equations 1-4), each 

transformed for consistency into a result between 0 (no similarity) and 1 (perfect 

similarity). All four SS candidates were tested against three different labelled O. tauri 

samples (A, B and C) generated with ‘target’ incorporations of 40, 50 and 60% 15N to see 

which provided the most robust assessment of incorporation. 

To estimate the ‘true’ mean peptide 15N incorporation for each sample A, B and C, I first 

tried a HDPR estimation approach, with mixed success. It was clear that the HDPR 

analysis yielded a linear relationship between the Corrected MDR:mass gradients 

sampled, but my attempt to interpret these relationships in terms of 15N incorporation by 

comparison of the resulting gradients with a set of standard gradients derived from 

predicted masses for various levels of 15N incorporation proved unsuccessful, as the 

theoretical results clearly covered a different range of gradient values. A combination of 

three factors may explain the discrepancy; first, the theoretical mass lists were all inferred 

from a limited subset of the unlabelled precursor masses with an inherent bias for 

identifiability (no co-eluting peptide resulting in a chimeric MS2 spectrum, higher 

intensity precursor); secondly, for the theoretical data this subset of precursors was the 

same across all incorporation levels, whereas for the experimental data the same peptide 

species would not always have been selected; thirdly, the theoretical data assumed that the 

most intense isotopologue of the peptide species would always be the selected mass, 

which may not always be the case in the complete data. 

I was, however, able to infer an expected ratio between the 15N incorporation levels of 

samples A, B and C, which was approximately consistent with the expected ratios between 

the 15N incorporation values for samples B and C, but predicted a lower incorporation for 

sample A relative to B and C. 

I then analysed the data with HeavyMetL using all four SS candidates. All four measures 

outperformed random guessing and, overall, showed very similar performance. Taking the 

mean incorporation across the four SS candidates for each sample yielded estimated 
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sample incorporation levels of 34.4% 43.7% and 53.7% for sample A, B and C 

respectively. This result was much closer to the consistent 15N incorporation percentage 

point drop initially expected, rather than the lower sample A incorporation relative to A 

and B predicted by HDPR, suggesting that the HDPR analysis was not particularly 

accurate. 

Comparing the performance of the four SS candidates, the Kullback-Leibler Divergence 

based score SSKL yielded the lowest standard deviations in 15N incorporation across the 

three samples (when background mis-quantification was removed). After transformation 

of the absolute 15N incorporation error (deviation from the predicted mean) to a SIQE, I 

compared SS candidate SIQEs against SS ranks, and against peptide characteristics which 

might affect incorporation assessment. These comparisons revealed no marked differences 

between any of the Similarity Scores. However, closer examination of mean SIQE showed 

some evidence of inconsistency of performance in SSEUC and SSWEUC at very high score 

ranking, suggesting there may be spectral characteristics that they overvalue. This last 

observation was also consistent with manual evaluation of results, in that the Euclidean 

based methods assigned more ‘obviously’ (i.e. by eye) incorrect incorporation estimates. 

When taken as a whole, there was much less difference in performance between the 

Similarity Scores than I had expected based on ad hoc manual evaluation of the SS while 

testing the algorithm code, demonstrating the danger of bias in a manual evaluation 

approach. On the other hand, making ‘obviously’ incorrect incorporation estimates (even 

if a particular score performs similarly in the aggregate) contributes to a user perception of 

poor quantification, so there could be an argument to admit (effectively anecdotal) manual 

evaluation into the overall consideration. 

A further observation was that, when comparing across SS rankings, the SIQE increased 

with decreasing score as expected but the average SIQE for each of the 4 SS at low score 

was still much lower than the baseline ‘random guessing’ SIQE (compare Figure 3-XI-C 

across columns). The fact that lower ranked scores are still generally associated with an 

SIQE lower than obtained by random matching suggests that the majority of the time in 

this dataset, these may be genuine low-intensity labelled signals with an associated greater 

uncertainty around the incorporation estimate, rather than a complete mismatch, which 

speaks to the robustness of the algorithm using any of the four SS candidates. One 

explanation could be that even if there is only a weak signal with 1 or two isotopologues, 
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if a particular incorporation value is the only one that yields intensity when its m/z 

extraction windows are applied, that will be the best matching distribution even if the SS 

is low. If this were the case, a re-analysis of the sample on an older instrument with poorer 

resolution and mass accuracy, or a different dataset composition with a more complex 

sample might be expected to result in a substantial increase in SIQE at low SS rank. 

Alternatively, in a sample with a wide spread of expected peptide incorporation values, 

even the increase in SIQE observed in this analysis at low score rank might be 

unacceptable. In all of these cases, it would be advisable to apply a conservative SS 

threshold to ensure only good matches are considered further. 

There was very little to differentiate the remaining two scores, but SSKL had consistently 

(if by a very small margin) outperformed SSSCA in terms of a smaller spread of 

incorporation assessments, so I chose the Kullback-Leibler Divergence based Similarity 

Score for further use in HeavyMetL. Finally, I examined the performance of incorporation 

assessment (using the chosen Similarity Score) as data quality decreased, using a 

simulated dataset to which I introduced increasing amounts of log-normal noise.  The 

incorporation assessment showed robust performance even when noise was increased 

substantially beyond what is typically encountered in EML, with more than 90% of results 

having SIQE < 0.1 even when the added noise (in log standard deviation) corresponded to 

an average of 1.5-fold change in intensity. This analysis also suggested that a default 

Similarity Score threshold of 0.85 could be used to separate incorporation assessments 

based on true-but-noisy signal from those based on false signals (such as incorporation 

assessments based on ‘signal’ that is just background noise). 
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Chapter 4: Benchmark of HeavyMetL 

Performance vs. an Orthogonal Approach 

4.1 Introduction 

To assess quantification performance, HeavyMetL was benchmarked against an existing 

public dataset. The recent publication of the ProteinTurnover algorithm (166) describes a 

cohort of Arabidopsis seedling samples with increasing 15N incorporation over a series of 

time points (4, 8, 24, 32, 40, 48 h). The dataset also includes a 0 h time point which 

effectively contains no labelled sample. The authors have evaluated the MS2 spectra 

manually to further filter the list of peptide identifications. These data provide a useful 

public benchmark across a range of 15N incorporation percentages in which the number of 

mis-sequenced peptide-spectrum matches may be assumed to be relatively low. 

In contrast to the dataset used in Chapter 3, this dataset is a ‘SILAC-style’ dual labelling 

containing both unlabelled peptides and labelled peptides at a range of 15N incorporations. 

ProteinTurnover is an ideal candidate for a benchmarking comparison since the 

approaches of HeavyMetL and ProteinTurnover are partially orthogonal, with respect to 

the actual quantification of the unlabelled and labelled peak. HeavyMetL locates the 

unlabelled and labelled peak apexes within the RT window independently. The process of 

fitting a range of labelled distributions simultaneously determines both labelled peak apex 

RT and incorporation percentage for the distribution with the best fit. The 

unlabelled/labelled ratio is then calculated from the ratio intensity at each label apex. In 

contrast, ProteinTurnover does not attempt to define the limits or apex of either label 

elution peak directly, but instead measures the extracted ion chromatogram of a series of 

m/z windows corresponding to the approximate location of possible isotopologues. The 

gradients of the linear correlations between the highest intensity isotopologue and the 

other isotopologues over all observations within an RT window are used to determine a 

combined unlabelled and labelled spectrum. The unlabelled and labelled distributions are 

modelled by fitting a mixture of two beta-binomial distributions using maximum 

likelihood estimation; the ratio of unlabelled to labelled is then derived from the area 
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under the curve of the two fitted distributions, and the labelled incorporation percentage 

from the parameters of the rightmost fitted beta-binomial curve. The use of a beta-

binomial distribution is interesting; essentially the authors propose that since incorporation 

into different amino acids may not proceed at the same rate, for a given peptide there is 

not an equal probability of every nitrogen in the peptide being labelled (this probability 

would also be the overall incorporation level). To account for this, rather than fitting a 

binomial distribution (which would assume equal probability), they fit a beta-binomial 

distribution where the probability for each nitrogen atom being labelled follows a beta 

distribution, which varies between 0 and 1 with mean π equal to the overall incorporation 

level. 

The effect of this adjustment is to slightly broaden the distribution shape from a standard 

binomial distribution. HeavyMetL, by comparison, assumes an equal probability of every 

nitrogen in the peptide being labelled (as per the standard binomial distribution). However, 

since the Kullback-Leibler Divergence based Similarity Score used in HeavyMetL weights 

in favour of high intensity isotopologues which will typically not be substantially affected 

by this broadening, there may be very little practical difference. One effect of the peak 

broadening however is that taking into account more, low intensity isotopologue masses 

during matching may increase susceptibility of the matching to background noise, 

increasing variance when quantifying low intensity spectra. 

Since the extraction of ion intensity data is performed before the determination of label 

incorporation, there are higher practical limits on the mass error tolerance for extraction in 

ProteinTurnover. However, by calculating relative isotopologue proportions from the 

gradients of their correlations across the full RT extraction window rather than just using 

just the spectra closest to the peak apex, ProteinTurnover is potentially more robust in 

scenarios where the apex signal for a label state is heavily contaminated by noise while the 

rest of the elution is unaffected. For the best comparison, therefore, I assessed the 

performance of both algorithms over the time course as a whole, which includes scenarios 

of low signal-to-noise for the labelled signal in the earlier time points (where 15N 

incorporation is low), as well as stronger signal-to-noise in the later time points where 

incorporation is higher. 

Through the graphical user interface, HeavyMetL allows quantification parameters to be 

easily optimised for a particular dataset, as the result of changing settings can be quickly 
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re-calculated for individual proteins and peptides and assessed visually. For the 

comparison to ProteinTurnover, I applied no manual optimisation to this dataset, relying 

on default parameters, to avoid any optimisation bias. In addition, to ensure the best 

comparison, the same isotopic mass and abundance constants used in the ProteinTurnover 

algorithm were used in HeavyMetL (copied directly from the ProteinTurnover source 

code). 

4.2 Benchmark Dataset Materials and Methods 

N.B. This chapter describes a re-analysis of publicly available data. Sample preparation, 

mass spectrometry analysis and processing of the dataset using ProteinTurnover were 

performed by Fan et al. (the authors of the ProteinTurnover paper) and details on these 

steps are included here for information purposes only. The re-analysis of the data using 

HeavyMetL, the comparison of the results to the ProteinTurnover quantification data, and 

the evaluation of the benchmark conclusions are my own work. 

4.2.1 Dataset Details 

The ProteinTurnover paper describes a number of datasets in which they investigate both 

label incorporation and label dilution (166). This analysis used the label incorporation 

time-course dataset, for which both raw data and quantification values obtained by the 

authors are publicly available on MassIVE via the accession number MSV000079223). 

The files relevant to this analysis were: 

1. The MS data in mzXML format (raw/hr_2/4/8/24/32/40/48.mzXML). At the time of 

writing, the 16 h time point file (hr_16.mzXML) hosted on MassIVE was truncated and 

thus excluded from the analysis. 

2. The list of identified peptides in Spectrum report file format (other/soluble-FDR-

Scaffold spectrum report.csv). 

3. ProteinTurnover quantification values (other/ Root-soluble_Turnover-many.rar/ fits-

many_soluble.csv). The labelled signal incorporation percentage and relative abundance 

used in this analysis are derived from the π and alpha columns for each time point in the 
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spreadsheet: labelled signal incorporation percentage = 100 π; relative abundance = 

alpha/(1-alpha). 

4.2.1.1 Dataset Method Summary 

A full description of this dataset is given in the paper of Fan et al. (166). Pertinent details 

on the generation of this dataset are given here for information purposes (and do not 

represent my own work). 

Arabidopsis seedling root tissue samples were homogenized by grinding in an ice-cold 

grinding buffer consisting of 290 mM sucrose, 250 mM Tris-HCl (pH 7.6), 25 mM EDTA, 

5 mM DTT, 1 mM PMSF, 0.5 × protease inhibitor cocktail (Roche, Indianapolis, IN), 

filtered through Miracloth, and the soluble protein fraction separated by centrifugation. 

Soluble proteins were recovered by acetone precipitation, pelleted by centrifugation and 

resuspended at a concentration of 8 μg/μL in 1 M urea/1 mM DTT which was then diluted 

to 1 μg/μL with 1 M urea/1 mM DTT/50 mM ammonium bicarbonate before digestion 

with trypsin (Promega, Madison, WI). The peptides were analysed using a Q-Exactive MS 

(Thermo Fisher Scientific, San Jose CA) with an ACQUITY UPLC BEH C18 column (1.0 

mm × 150 mm, 1.7 μm particle size, Waters, Milford, MA). With buffer A as 99.9% 

water, 0.1% formic acid and buffer B as 99.9% acetonitrile, 0.1% formic acid, the solvent 

gradient program was as follows: 2%–10% buffer B (0–2 min.), 10–40% buffer B (2-62 

min.), 40%–85% buffer B (62-63 min, then maintained for 10 min.). The column was 

equilibrated for 15 min. with 2% B prior to the next run. Data were acquired in DDA 

mode with MS1 scans (range 350−1800 m/z) acquired at 70 k resolution and a target value 

based on predictive automatic gain control of 1×106 with 20 ms of maximum injection 

time. Based on an ion selection threshold of 1×104 counts, the 12 most intense precursor 

ions (z ≥ 2) were isolated (2.0 m/z isolation width) and sequentially fragmented in the 

HCD collision cell with normalized collision energy of 30%. MS2 scans were acquired 

with 35k resolution and a target value of 2×105 with 120 ms of maximum injection time. 

Selected precursor ion m/z values were dynamically excluded from further selection for 15 

s. 
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4.2.2 Analysis of Dataset with HeavyMetL 

Since the sample was not alkylated before digestion, the validity of the few cysteine-

containing hits that were reported was difficult to evaluate. For simplicity, the list of 

identified peptides list was filtered to remove the 16 cysteine-containing entries and any 

peptides identified solely in the 16 h time point for which data were not available. This left 

a total of 1903 PMCs to be analysed across 6 time points - 0, 4, 8, 24, 32, 40 and 48 h. The 

list of peptides was re-formatted for compatibility with HeavyMetL input in accordance 

with the required column headers. Briefly, a new table was created based on the Scaffold 

report (item 2 in the list above). The following columns were directly copied across 

(Scaffold report column names given first, HeavyMetL input names given second; see 

Table 2-II for details): “Peptide sequence” as “PEPTIDE_SEQUENCE”, “Protein 

accession” as “PROTEIN”; “Protein name” as “PROTEIN_DESCRIPTION”; “Peptide 

identification probability” as “PEPTIDE_SCORE”; “Protein identification probability” as 

“PROTEIN_SCORE”; “Variable modifications” as ”MODIFICATIONS”; “Spectrum 

charge” as “CHARGE”; “Exclusive” as “CONTRIBUTE_TO_PROTEIN”. The columns 

“FILE_NAME” and “RETENTION_TIME” were added based on the data extracted from 

the Scaffold report column “Spectrum name”. 

The data were then analysed with HeavyMetL using the default settings (see Table 2-III). 

Analysis of the 1903 PMCs across 6 files (8GB in mzXML format) took 16 minutes for 

complete processing (Apple MacBook Pro running macOS 10.13.6; 2.7 GHz Intel Core i7 

with 8 logical processors; 16 GB RAM; Firefox v. 62.0). 

Subsequent statistical analysis of results and generation of all figures was performed in R 

(v. 3.5.1). 

4.3 Benchmark Results 

4.3.1 Overview 

HeavyMetL reports both the label incorporation level and the apex intensity of the 

unlabelled and labelled peaks for each peptide and associated protein, using the protein 

grouping information provided in the input peptide list. Depending on the experimental 
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design, either label incorporation or relative abundance or both may be used to infer 

protein turnover. I evaluated both measures at both peptide and protein level, comparing to 

the published quantification results from ProteinTurnover as a benchmark, taken from the 

output files published alongside the raw data. 

Quantification results were filtered to a single result per unique peptide sequence to allow 

straightforward comparison against the ProteinTurnover results. In cases with multiple 

PMC instances sharing the same sequence (but different modification/charge states), the 

PMC with the highest mean intensity across all unlabelled and labelled signals was used. 

The final dataset used for comparison thus contained no duplicate peptide sequences, 

consisting of 1284 peptides with at least one successfully quantified time point. Although, 

in Section 3.9, I established that a Similarity Score threshold of 0.85 would likely be an 

effective way to further filter HeavyMetL results to improve dataset quality, I did not have 

a corresponding way to filter the ProteinTurnover dataset. For the fairest comparison, 

therefore, no Similarity Score filter was applied. 

4.3.2 Peptide-Level Quantification Comparison 

Since the data represent a biological system in flux, it cannot be assumed that all proteins 

in a time point sample will necessarily have the same level of incorporation. Assuming a 

similar level of incorporation estimation accuracy, the resulting distributions of labelled 

signal incorporations reported by different quantification algorithms should have similar 

properties. Comparing the peptide incorporation results reported by HeavyMetL to the 

ProteinTurnover benchmark, at timepoints after 8 h, there was good agreement, especially 

using only the top 75th percentile of data by frequency (in both datasets) in order to 

exclude the most obvious mis-quantifications (Pearson’s r = 0.57, 0.68, 0.76, 0.72 for  24 

h, 32 h, 40 h, 48 h respectively; Figure 4-I). In contrast, at 4 h and 8 h the data were not 

well correlated (Pearson’s r = 0.43 and -0.11 for 4 h, 8h respectively), with both datasets 

showing clear evidence of a large amount of mis-quantification based on the wide spread 

of incorporations reported. Since the incorporation level of 15N is expected to rise over 

time, these time points have the lowest 15N incorporation and consequently the weakest 

labelled signal (and highest signal-to-noise); later time points have higher 15N 

incorporation and thus stronger labelled signal and larger signal-to-noise ratio. Agreement 

between programs is therefore correlated with the expected signal-to-noise ratio, which is 



Chapter 4: Benchmark of HeavyMetL Performance vs. an Orthogonal Approach 151 

a logical outcome. Since the SSKL method used by HeavyMetL to assess spectral matching 

is mathematically equivalent to distribution fitting using maximum likelihood estimation 

as performed by ProteinTurnover, then the algorithms may be expected to have similar 

weaknesses when confronted with low intensity or noisy data. 

Nevertheless, there are still significant differences between the two algorithms, so it does 

not necessarily follow that peptides with a poorly assigned incorporation level in one 

method will also have a poorly assigned rate in the other. I therefore compared the 

distribution of incorporation levels and the unlabelled/labelled intensity ratios between the 

two methods (Figure 4-II). The distribution of incorporation (Figure 4-II-A,B) in the 4 h 

and 8 h time points indicate a greater degree of agreement between the two than suggested 

by the individual value comparisons in Figure 4-I, with a similar trend across median 

values despite the much greater spread of data. 

Since an accurate determination of the incorporation is necessary for accurate 

determination of the labelled peak intensity, the unlabelled/labelled ratio quantification 

measures are, to an extent, dependent on the quality of the labelled incorporation level 

result. This is reflected in the distributions of reported unlabelled/labelled ratios across 

time points (Figure 4-II-C,D), which follow the same trend observed in the incorporation 

levels (Figure 4-II-A,B), and the median labelled signal intensity, as an approximation of 

signal-to-noise (Figure 4-II-E). 



 

 

Figure 4-I. Correlation of Labelled Signal Incorporation Values. Dotted lines indicate where perfect correlated data would lie. Pearson’s r 

values given in plot titles. Solid red lines indicate a linear fit to values in the top 75% of data by frequency in both HeavyMetL and 

ProteinTurnover.



Chapter 4: Benchmark of HeavyMetL Performance vs. an Orthogonal Approach 153 

 

Figure 4-II. Comparison of Peptide-Level Quantification Result Distributions. A & B: 

The distributions of labelled signal incorporation reported by HeavyMetL and 

ProteinTurnover respectively. C & D: The distributions of unlabelled/labelled signal 

ratios reported by HeavyMetL and ProteinTurnover respectively. E: Relative median 

intensity of labelled signal (as reported by HeavyMetL) in each time point. 
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Figure 4-III. Comparison of Protein-Level Quantification Result Distributions. A & B: 

The distributions of protein-level labelled signal incorporation reported by HeavyMetL 

and ProteinTurnover respectively. C & D: The distributions of protein-level 

unlabelled/labelled signal ratios reported by HeavyMetL and ProteinTurnover 

respectively.  



Chapter 4: Benchmark of HeavyMetL Performance vs. an Orthogonal Approach 155 

4.3.3 Protein-Level Quantification Comparison 

Finally, the datasets were compared at the protein level. Protein level quantification was 

derived by taking the median peptide-level value for both metrics independently. As well 

as the median being a widely used summary statistic, this allowed the fairest comparison 

to the ProteinTurnover results, since ProteinTurnover reports only the relative proportion 

of unlabelled to labelled signal as the alpha parameter which precludes any intensity-

weighted approaches. As might be expected, the results closely mirrored the peptide-level 

comparison, with some reduction in spread (which is to be expected, as taking the median 

peptide-level values naturally disfavours outlying mis-quantification). While performance 

of both algorithms was very similar, the incorporation values reported by HeavyMetL 

show a more sustained trend towards zero at low time points (Figure 4-III-A,B), which is 

consistent with the only a priori known data point, that 15N Incorporation at 0 h must 

equal natural abundance, �0.37%. This suggests that (at least using a median inference 

method) the values reported by HeavyMetL may, as a whole, be more accurate (although 

clearly subject to similar levels of variance). The tighter spread of unlabelled/labelled 

ratios reported by HeavyMetL in these time points (Figure 4-III-C,D) is consistent with 

this conclusion, as accurate determination of ratio relies on accurate determination of the 

incorporation level. 

4.4 Conclusions 

Notwithstanding the limitations of no manual optimisation, HeavyMetL produced 

comparable results to ProteinTurnover. The lack of correlation between reported labelled 

signal incorporation values with the benchmark results at low signal-to-noise (despite both 

approaches producing similar overall distributions) suggests that there is a proportion of 

these low-intensity peptides whose quantification could be further improved, since they 

are reported with lower error by ProteinTurnover (likewise, there is a similar proportion of 

peptides whose quantification by HeavyMetL has lower error than the corresponding 

ProteinTurnover result). It is interesting that while reported quantification at the low 

signal-to-noise timepoints (4 h and 8 h) had similarly high levels of variance for both 

algorithms, extrapolation to protein level results by the median did favour HeavyMetL, 

although there is clearly room for further optimisation of the algorithm to improve 
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discrimination performance and eliminate unreliable peptide quantification at low signal-

to-noise. It is possible that the combined labelled and unlabelled distribution matched by 

the ProteinTurnover algorithm tends to overvalue the contribution of the unlabelled 

isotopologues (whose incorporation and thus distribution is known a priori) resulting in an 

overestimation of the incorporation and intensity of the labelled signal at very low 

incorporations. The combined distribution matching may allow high intensity, easily 

quantified unlabelled signal to lend authenticity to what is essentially noise mis-identified 

as labelled signal. 
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Chapter 5: Concluding Discussion 

In proteomic MS1-based quantification, there are two methods of introducing a sample 

label in vivo. Labelling in vivo allows the earliest possible mixing of samples in a 

processing pathway and thus minimises the steps where two samples (or a sample and a 

standard) are processed independently and thus subject to differential technical variance). 

Labelling can be applied to specific amino acids (SILAC) or to all atoms of a particular 

element (EML, particularly 15N labelling). SILAC is currently used far more widely; and I 

propose that this is due to two perceived advantages over 15N:  

1. Ease of data processing. Several mature, user-friendly software options exist for 

SILAC quantification, whereas the 15N existing options are limited in capability, 

produce varied quality of quantification (especially for low intensity signals) and 

are not very easy to use by non-bioinformaticians. Computationally, EML 

quantification is more difficult. Since the distribution of isotopologues for the 

unlabelled and labelled SILAC peptides are nearly identical, the same parameters, 

mass-shifted, can be used to calculate a chromatographic maximum intensity or 

integral for both signals However, in EML the total signal in the labelled peptide is 

spread over a different number of isotopologues than in the unlabelled peptide, 

thus complicating quantification (as described in the Introduction) and increasing 

the potential for differential effects due to noise. 

2. A more easily achieved minimum ‘quantifiable’ incorporation level. For 15N, it 

is often suggested that partial labelling results in datasets that are intractable to 

analysis (particularly when there is differential partial labelling between proteins), 

and therefore that 15N is only a viable labelling technique when a label 

incorporation level close to 100% can be achieved. It is technically difficult to 

achieve near 100% labelling given reagent purity, particularly when under further 

experimental constraints such as labelling time. This perception has the effect of 

(apparently) disqualifying 15N labelling from consideration in many experiments. 

As a consequence, 15N is relegated to areas where SILAC has important limitations, most 

prominently in plant proteomics, where partial labelling of other amino acids occurs due to 

conversion pathways. 
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I further propose that a robust, easy to use quantification solution that can handle partial, 

non-uniform 15N incorporation across proteins actually negates not only the first but also 

the second of the SILAC advantages described above. Although it is more challenging to 

quantify computationally, if this challenge can be addressed then complete separation of 

the unlabelled and labelled signal in EML requires only a sufficient incorporation such 

that the two isotopologue distributions do not substantially overlap for the majority of 

peptides. This is the case for most peptides at much less than 100% incorporation. Take as 

an example the set of theoretical peptides nAK, i.e. AK, AAK, AAAK and so on, with 

each increase in n adding one more alanine (and thus one more nitrogen atom). Impose a 

strict separation requirement that less than 1% of the labelled signal overlaps less than 1% 

of the total unlabelled signal. At n=3 (AAAK), 97% 15N incorporation is needed to meet 

the requirement. However, at n=4, only 91% incorporation of 15N is needed, while at n=5 

(a peptide of 6 total residues, typically the smallest reliably observable by bottom-up 

proteomic MS), only 85% 15N incorporation is sufficient. If 15N incorporation need only 

be above 90% to ensure practically no overlap of signal for the majority of peptides, this is 

a substantially more achievable level of incorporation. 

Accordingly, the barrier to wider 15N usage might be argued to be the availability of 

software with robust performance and usability comparable to that of MaxQuant and 

commercial alternatives. Although there are no mature, user friendly software packages 

available that offer the ability to reliably quantify 15N data with inconsistent, partial label 

incorporation, various approaches have been described in the literature (see Section 1.2.2) 

which suggest that, with further refinement, a robust quantification approach is achievable. 

The task then would be to implement this as a software package accessible to non-

bioinformaticians and capable of performing such quantification at a rate that the users of 

quantification packages such as MaxQuant have come to expect. 

At the beginning of Chapter 2, I set out a list of requirements that I considered necessary 

for such a software package and went on to describe HeavyMetL, a browser-based 

quantification tool which provides robust quantification in a user interface that fulfils the 

requirement list. It has a fully graphical user interface, allows in-tool visualisation of the 

matched spectra and chromatograms associated with quantitative results, and on a modern 

personal computer can process moderately sized MS datasets in the ‘minutes to hours’ 

timeframe typical of SILAC quantification tools. Unlike existing 15N solutions, 
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HeavyMetL is easy to set up (by simply visiting a web page in a supported browser), 

works across operating systems, has an accessible user interface that does not require use 

of the command line, and provides graphical output for quantification allowing rapid 

optimisation of quantification parameters such as m/z Error Tolerance. 

While the implementation of HeavyMetL described in this thesis fulfils the usage 

requirements as originally set out, there are a number of technical and design aspects 

which are obvious candidates for future improvement. These fall into three areas: 

1. Improvements and extensions to the quantification algorithm. Most obviously, 

the algorithm could be extended to support other types of EML, since the 

quantification approach is compatible with any elemental isotopic label (in the 

same way that SILAC-style quantification approaches can support Dimethyl 

labelling). Since the consideration of non-simultaneous unlabelled/labelled 

retention times is already supported by HeavyMetL, the only change required 

would be modification of the input to the theoretical distribution prediction 

algorithm to allow isotopic changes to elements other than nitrogen (the actual 

algorithm itself is sufficiently generalised to allow this already), and the associated 

changes to the user interface to allow the type of EML to be specified. A further 

adaptation would be to follow the proposal advanced by Fan et al. in 

ProteinTurnover that incorporation levels may differ between amino acids. Fan et 

al. modelled this process by allowing some variance in the probability of each 

nitrogen atom being labelled via a beta distribution (see Section 4.1), but a more 

representative way to model this (following the hypothesis to its conclusion) would 

be to generate the isotope distribution for each population of amino acids in the 

peptide separately (rather than combining them to a single pool of atoms). A range 

of theoretical distributions corresponding to different incorporations for each 

amino acid could be generated, then cross combined to yield peptide-level 

distributions. This would require generation of a huge number of possible 

distributions – the number of incorporation levels to be tested, raised to the power 

of the number of different amino acids in the peptide! Rather than generating all 

possible combinations, some form of multiple regression would have to be 

implemented. It would also likely be necessary to apply this optimised fitting only 
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to the final ‘best fit’ chromatographic maximum determined by the existing 

method, to avoid very extensive calculations. 

2. Code restructuring to take advantage of new language capabilities. The 

JavaScript language standard is frequently updated, and some of these changes lift 

previous design constraints that necessitated performance concessions. The choice 

of JavaScript + browser as a platform will always limit the maximum 

quantification speed (although in many cases disk access speed will still be the 

bottleneck). Recently, a web standard for a binary instruction format that allows 

near-native execution speeds in browsers (WebAssembly) was announced. Porting 

calculation-heavy aspects of HeavyMetL into WebAssembly would likely allow 

further substantial speed improvements (or alternatively facilitate more nuanced 

quantification as described above without a reduction in performance). 

3. Improvements to management of multiple data files as a single dataset. From a 

proteomics perspective, there are also some areas where the ‘gold standard’ in how 

multiple MS raw data files are managed as a single dataset has substantially 

advanced since HeavyMetL was designed. The approach of matching PMCs 

between MS raw data files via mean sample RT used in HeavyMetL is more 

sophisticated than previous 15N approaches that require the time to be specified 

explicitly for all files. Even so, this is a relatively unsophisticated approach 

compared to the algorithms used in prominent label-free/SILAC quantification 

software such as MaxQuant and Progenesis QIP (see Section 1.1.2.11.3) and these 

are also now being outclassed by cutting-edge approaches such as machine 

learning. The difficulty in the case of 15N is that retention time matching 

algorithms typically work on the assumption that peptides are represented by a 

limited range of isotopologue patterns such as found in LFQ and in SILAC, as 

these techniques do not affect the isotopologue distribution shape, but rather apply 

a constant mass shift. Thus, potential features can be identified by comparison to a 

small range of generalised isotopologue distributions representing peptides of 

increasing mass. In contrast, 15N labelled peptides will not only frequently have a 

substantially different isotopologue distribution to that of a typical ‘unlabelled’ 

peptide, but the distribution will potentially differ from run-to-run with changes in 

15N incorporation. This makes run-to-run feature matching more difficult without 

knowing the incorporation level for each peptide in each run prior to quantification 

(which is what HeavyMetL is attempting to calculate; a chicken-and-egg problem). 
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Using machine learning to identify possible peptides regardless of incorporation 

and align them between runs may be a plausible solution to this, although would 

represent considerable development effort to achieve. Any retention time solution 

should also involve a more comprehensive solution for pre-fractionated 

experimental designs, as these are now the standard experimental approach for 

most proteomic investigations. The current necessity to analyse fraction groups 

individually in HeavyMetL is not up to par with, for example the experimental 

design options in MaxQuant. 

4. Improvements to the user interface. The current interface is functional but there 

are quality-of-life improvements that could be made. Firstly, the input of the PMC 

list could be expanded to accept unmodified exports from major search engines (to 

avoid the currently necessary step of partially re-formatting the various different 

peptide-level identification tables produced by different search engines to the input 

format required by HeavyMetL. Alternatively, the program could allow the 

relevant columns in a text table file to be manually defined by the user (or perhaps 

selected from a list of templates) during import into HeavyMetL (rather than 

explicitly renaming columns according to the HeavyMetL specification shown in 

Table 2-II). This is an approach used by the Spectronaut and SpectroDive DIA 

analysis packages available from Biognosys. Secondly, the user configurable 

settings could be stored as a persistent browser object (a ‘cookie’, or the newer 

‘LocalStorage’ specification) thus ensuring that settings were not lost when the 

browser window was closed. 

In Chapter 3, I explored a specific technical aspect of the HeavyMetL quantification, 

namely the choice of Similarity Score used to compare the observed data with the set 

theoretical distributions I calculated for each PMC. Using an experimental dataset of an 

unlabelled sample of O. tauri and three labelled samples with target incorporations 40%, 

50% and 60% 15N, I first explored an orthogonal technique to estimate a global peptide 

average incorporation for each sample based on the relationship between peptide mass and 

its MDR, known as the half decimal place rule (HDPR). This method yielded an 

approximate estimate of the incorporation ratio between the three labelled samples but the 

results from HeavyMetL followed the expected ratio (given the original target values) 

much more closely. I concluded that the HDPR estimation was likely too sensitive to 

uncontrollable sources of bias (such as the stochastic selection of precursors in DDA) to 
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provide accurate estimation of global incorporation values. Ultimately, the incorporation 

estimations were based on very small differences in the gradient of linear fits between 

mass and MDR, so even small differences due to noise or differential precursor selection 

could have large effects on the estimate. However, it might be possible to improve HDPR 

estimation with further data filters (e.g. precursor intensity). The HDPR method still has 

merit as an unbiased, non-search-result driven estimation of global incorporation in a 

sample, especially if combined with a peak-picking algorithm to identify probable 

peptides in MS1 without the use of MS2 scans to yield identities. Since peptide 

identifications are not required, the samples could be analysed on short gradients with MS1 

scans only, reducing MS analysis cost. A scenario where this might be applicable would 

be estimation of 15N incorporation in cultures being labelled to stability, to monitor 

whether the incorporation level has stabilised; then at that point a full DDA analysis with 

identifications could then be performed and analysed with HeavyMetL (or another 

quantification solution).  

I then compared four candidate Similarity Scores to see how my quantification workflow 

from Chapter 2 performed using each in turn as the spectral comparison score. The 

performances of the four Similarity Scores were very similar, which was not the result I 

had expected. On further consideration, however, this result was the most likely outcome. 

Given that the Similarity Scores are only applied for matching purposes to data that has 

already been extracted using predicted m/z values within a very narrow m/z window, the 

chances of extracting intensity associated with another co-eluting PMC are not high. 

Furthermore, the Similarity Score reported is that of the ‘best’ matching extraction, so for 

‘off-target’ intensity (e.g. background noise or a co-eluting PMC) to be the bulk of the 

reported match spectrum, such a ‘mostly noise’ spectrum would have to yield a higher 

Similarity Score than the actual labelled target. Completely random matches are therefore 

relatively unlikely. The m/z extraction windows are themselves defined by theoretical 

prediction for a particular 15N incorporation, so only incorporation values close to the 

‘true’ incorporation will tend to yield substantial extracted intensity and a potentially 

viable match, regardless of Similarity Score.  

With this in mind, it was important that the data from all three levels of target 

incorporation (samples A, B and C) be compared together, to maximise the sensitivity of 

the analysis and highlight subtle differences across score rank. The conversion of the 
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incorporation percentage point errors to a Standardised Incorporation Quantification Error 

(SIQE) was therefore a useful tool to allow the results from all 3 incorporation levels to be 

directly compared. An experiment with more replicates (or more target incorporations) 

could have improved the robustness of the Similarity Score comparison by increasing the 

number of incorporation-score pair data points. Early builds of the HeavyMetL algorithm 

lacked a number of optimisations for speed, and when the experiment was designed it was 

not clear how many samples it would be practical to analyse, given that the analysis would 

have to be repeated four times with each of the four different candidate scores. A greater 

number of samples, with multiple technical replicates and more target incorporation points 

would in retrospect have been perfectly viable, with the overriding practical limitation 

being sample preparation time and cost of MS analysis rather than the feasibility of data 

analysis. 

An alternative improvement would be a change of the experimental design. In the 

Similarity Score comparison, label incorporation was assumed to have stabilised at each 

target value (less a small amount to account for salt impurity), and thus be distributed 

tightly (and unimodally) around a mean value in each sample. This was not unreasonable, 

given previously observed incorporation behaviour over the same labelling period using 

the same labelling methods (160). Differences in turnover and amino acid composition, 

however, combined with potential kinetic imbalance between 14N and 15N incorporation in 

different amino acids, could potentially result in genuine differences in incorporation 

between peptides. The assumption made here was that this effect would be minor 

compared to the distribution of errors in the 15N incorporation estimation, but this 

assumption is difficult to validate. One experimental approach to explore this might be to 

label until assumed incorporation stability, as above, and then sample across a time course 

where a pulse of an unlabelled, low-frequency amino acid such as tryptophan (Trp) was 

briefly introduced. PMCs containing Trp would then exhibit an increase in the variance of 

15N incorporation as the unlabelled Trp was incorporated, followed by a decrease as the 

unlabelled Trp was diluted out. The changes in Trp-containing peptide 15N incorporation 

variance relative to the variance of incorporation of 15N into peptides that do not contain 

Trp over the course of incorporation and dilution would yield useful information on the 

inherent (non-quantification error) incorporation background variance. 
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At the end of Chapter 3 I concluded that a score based on the Kullback-Leibler 

Divergence (SSKL) was the optimum choice for the isotopologue distribution matching, in 

the context of the HeavyMetL algorithm. It is worth noting there that while SSKL had the 

strongest overall performance, the slightly lower cumulative mean SIQE for the Euclidean 

distance-based scores at lower score ranks (despite their dire performance at high score 

ranks) suggests a possibility for further optimisation of the Similarity Score by combining 

both SSKL and SSEUC. 

Finally, in Chapter 4, I benchmarked the quantification from HeavyMetL (using SSKL for 

spectral comparison) against a recently published 15N quantification method, 

ProteinTurnover, using the same incorporation time-course study in Arabidopsis reported 

in the ProteinTurnover publication. Overall, both methods gave similar results, with good 

agreement and similar distribution of data points in both peptide and protein-level 

comparisons in the later stages of the time course (where incorporation levels were 

higher). In the early stages of the time course (where incorporation levels were low), the 

performance was notably worse for both approaches, although HeavyMetL appeared to 

have an edge. I concluded that HeavyMetL has quantification performance clearly 

equivalent to or better than ProteinTurnover, which is the most recent and sophisticated 

15N quantification approach so far proposed. 

Given the above-par quantification performance, combined with its advantages in terms of 

user accessibility and interaction, it does not seem unreasonable to advance the statement 

that HeavyMetL is a general improvement on the existing 15N quantification solutions in 

the field. While it is not yet as mature as some extensively developed software packages 

such as MaxQuant, a non-bioinformatician could now analyse 15N -labelled data using 

HeavyMetL and expect to generate usable, robust quantitative results, interacting solely 

via a relatively straightforward GUI. They can rely on seeing the same interface and 

having access to the same functionality whether they are on Windows, macOS or Linux, 

and can analyse any raw data that can be converted to (or exported as) mzML or mzXML, 

identifying the PMCs to be quantified by any method of their choice (so long as the result 

can be coerced into a text-table format with the necessary columns defined in Table 2-II). I 

therefore submit that HeavyMetL is not only a viable analysis tool, but that it potentially 

enables the usage of 15N labelling outside of speciality niche areas, in more direct 

competition with SILAC and similar techniques.
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Appendix I: Details of Code Availability 

A live version of the HeavyMetL program is hosted at  

https://pdcharles.github.io/HeavyMetL/HeavyMetL.htm 

 

The source code is released publicly under an MIT license, and is split into two 

repositories. 

HeavyMetL-specific program code can be found at: 

https://github.com/pdcharles/HeavyMetL 

 

A generalised library for interaction with MS data, which defines code for handling 

chromatograms, spectra and scans as JavaScript objects, alongside further object 

definitions for common proteomic MS file formats (including mzML and mzXML), the 

isotopologue distribution prediction algorithm, and miscellaneous program flow, thread 

control and mathematical calculation functions is located separately at: 

https://github.com/pdcharles/MSLIB 

 

The following external code projects are also used in HeavyMetL code: 

Pako (https://github.com/nodeca/pako) is a library for decompression of data compressed 

in ‘zlib’ format, which is a compression technique used in some mzML/mzXML files. 

Fabric.js (http://fabricjs.com/) is an HTML5 Canvas element abstraction library used in 

HeavyMetL to generate PMC and protein-level graphical output.  
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Appendix II: Annotated HeavyMetL 

Screenshots 

The following seven pages consist of sequential full-screen screenshots from the 

HeavyMetL interface over the course of setting up and initiating processing on the 

benchmark dataset presented in Chapter 4. 

Page 187 - Initial view of main screen 

Page 188 - Selection of raw data files 

Page 189 - Loading scan headers from raw data files 

Page 190 - Selection of PMC List in text-table format 

Page 191 - Main screen with dataset loaded and ready for processing 

Page 192 - Settings configuration screen 

Page 193 - Processing underway 

Annotations are shown in blue text. 

Screenshots of the graphical results are already included in Chapter 2; see Figure 2-VIII 

and Figure 2-IX.  
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1. Initial view of main screen 
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2. Selection of raw data files 
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3. Loading scan headers from raw data files 
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4. Selection of PMC List in text-table format 
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5. Main screen with dataset loaded and ready for processing 
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6. Settings configuration screen 
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7. Processing underway 
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Appendix III: Explanation of Score 

Distribution in Random Simulation 

In Chapter 3, to compare the results of analysis with each of the four candidate Similarity 

Scores to a baseline (SSRAND), I simulated a dataset where there was no association 

between Standardised Incorporation Quantification Errors of individual quantification 

results and their corresponding score assigned to that result (see Section 3.6). 

The simulated dataset scores were generated by taking the maximum of a random number 

n (between 5 and 20) of draws from a uniform distribution between 0 and 1. 

Let Xn be the maximum of the set of n uniformly distributed independent variables in the 

range (0,1). Xn may be shown to follow a Beta(n,1) distribution (209) (Figure AIII-I). 

 

Figure AIII-I. Densities of the Beta distribution for Beta(n,1) where n=5...20 

The values of SSRAND will be drawn (approximately) equally from each distribution shown 

in Figure AIII-I, so it is unsurprising that the SSRAND scales in Error! Reference source n

ot found.-A are seen to skew heavily towards the upper end of the score range. 
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Furthermore, the expected value (mean) of SSRAND can also be calculated. The expected 

value for each Xn is: 

 E(#$) = $
$'( 

By the law of total expectation, the expected value for the dataset score is therefore 

 E(SS*+,-) = E(#.)P(n = 5) + 	E(#4)P(n = 6) + ⋯+ E(#78)P(n = 20) 

Since values of n between 5 and 20 are equally likely this is just the mean of E(Xn) for all 

n 

E(SS*+,-) =
∑ $

$'(
78
$<.
20 − 5 =

.
4 +

4
> + ⋯+ 78

7(
15 ≈ 0.91 

A mean value of 0.91 is also consistent with Figure 3-XI-A. 


