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ABSTRACT

A cylindrical rubber fiber subject to a twist will also elongate: a manifestation of Poynting’s effect in large strain elasticity. Here, we
construct an analogous treatment for an active rubber fiber actuated via an axisymmetric pattern of spontaneous distortion. We start by
constructing an exact large-deformation solution to the equations of elasticity for such fiber subject to imposed twist and stretch, which
reveals spontaneous warping and twisting of the fiber cross section absent in passive rubbers. We then compute the corresponding
non-linear elastic energy, which encompasses the Poynting effect but is minimized by a finite spontaneous twist and stretch. In the
second half of the paper, we apply these results to understand the twist-contraction actuation of nematic elastomer fibers fabricated
with director fields that encode helical patterns of contraction on heating. We first consider patterns making a constant angle with
respect to the local cylindrical coordinate system (conical spiral director curves) and verify the predicted spontaneous twist, contraction,
and cross-section deformation via finite elements. Second, we consider realistic director distributions for the experimentally reported
fibers fabricated by cross-linking while simultaneously applying stretch and twist. Counterintuitively, we find that the maximum actua-
tion twist is produced by applying a finite optimal twist during fabrication. Finally, we illustrate that spontaneously twisting fibers will
coil into spring-like shapes on actuation if the ends are prevented from twisting relative to each other. Such a twist–torsion coupling
would allow us to make a tendril-like “soft-spring” actuator with low force and high linear stroke compared to the intrinsic contraction
of the elastomer itself.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0040721

I. INTRODUCTION

John Harrison invented the bimetallic thermostat in 1759.
Ever since, scientists and engineers have been deploying spatial
patterns of spontaneous deformation to induce complex and dra-
matic actuation in solid materials. The thermal strains in metals
and shape memory alloys are limited to a few percent, but, in
recent years, the soft-matter community has demonstrated
several systems in which patterns of geometrically large strains
can be programmed into soft solids. Prominent examples include
patterns of swelling in gels,1–4 patterns of contraction in liquid
crystal elastomers (LCEs),5–8 and patterns of inflation in “baro-
morphs.”9,10 These large and exquisitely programmable shape
changes can appear to bring the matter to life,4,11,12 and this is

no coincidence, as they strongly resemble the patterns of muscu-
lar contraction that drive biological locomotion and the patterns
of growth that underpin biological development.13

This special issue focuses on the programming of such spon-
taneous shape changes in liquid crystal elastomers (LCEs). These
are rubbery networks of rod-like mesogens, which spontaneously
align along a director, n, to form a nematic phase.14 On heating
or illumination, the nematic order can be disrupted [reflecting the
nematic to isotropic transition in conventional liquid crystals,
Fig. 3(a)], and, in LCEs, this transition is accompanied by a dra-
matic and reversible contraction by a factor of λs � 0:5 parallel to
the alignment director n.14,15 LCEs are thus promising artificial
muscles and soft actuators.16,17
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Shape programming in LCEs is typically achieved by fabricating
an elastomer in which the director n is spatially varying, generating
a corresponding pattern of contraction on heating. Director pro-
gramming can be implemented by using surface-anchoring to
pattern the director field in a nematic liquid sheet and then cross-
linking to form an elastomer.5,6 Alternatively, one may use an align-
ing stress field to orient the director during cross-linking. This latter
strategy was used to create the original globally aligned monodomain
LCEs,15 and, much more recently, has been deployed to generate pat-
terns of alignment during extrusion based 3D printing18–20 and
during the direct shape programming of dual-network LCE sheets.8

The significant majority of work on LCE shape programming
has focused on 2D sheets that bend and morph into curved surfa-
ces on heating.6,7,21,22 However, recently, Nocentini et al. demon-
strated an LCE fiber that was twisted and stretched during
cross-linking to imprint a helical director field.23 On heating, the
resulting helical contraction caused the fiber to spontaneously twist
and contract. The design24,25 and mechanics26 of other torsional
artificial muscles has been the focus of much attention recently, as
they offer a miniaturizable version of a conventional rotary engine.
However, these previous torsional muscles are fabricated by twist-
ing multiple component fibers together27–31 (for example, by twist-
ing passive in-extensible fibers around an inflating core28,29) and
their action relies on slip within the resultant fiber bundle. In con-
trast, the LCE torsional muscle is a monolithic cross-linked solid
and must be understood within the framework of misfit elasticity.

In this paper, we seek to construct such an elastic theory to
predict and explain the spontaneous twist/stretch actuation of
Nocentini et al.’s LCE fibers. At first sight, the natural starting
point is Timishenko’s paradigmatic calculation of the curvature of
a bimetallic strip.32 Indeed, analogs of this small-strain analysis are
frequently deployed to model LCE bilayers, and other spontane-
ously bending sheets and strips. Moreover, very recently, several
authors have developed corresponding theories of spontaneous
bend and twist in elastic rods,33–37 and these certainly offer consid-
erable insight into Nocentini et al.’s LCE fibers. However, all such
theories are only valid for small spontaneous strains (or, more pre-
cisely, small incompatibilities of spontaneous strains), leading to
the complete decoupling of stretch, twist, and bend in the resultant
elastic energies and making such theories formally inapplicable to
the large strains generated in LCEs.

In contrast, in the field of rubber elasticity, there is a classic
result, discovered by Poynting38 in 1913, that a rubber fiber that is
twisted substantially will also stretch in response. This large strain
effect cannot be captured by the small-strain approaches but is cap-
tured by a simple and exact large-deformation solution for a twisted
and stretched rubber cylinder.39,40 Here, we derive an analog of this
exact large deformation solution for a rubber cylinder subject to an
axisymmetric pattern of spontaneous distortion. We find that these
spontaneous distortions introduce simple modifications to the
energy so that it is minimized by an overall spontaneous twist and
contraction. We then compute these spontaneous twists and con-
tractions for various LCE fibers with different director fields, high-
lighting how a helical field with both azimuthal and longitudinal
components is required to produce a spontaneous twist. We validate
our results with full 3D finite element simulations. Finally, we esti-
mate the spontaneous twist and stretch expected in fibers created by

applying twist and stretch during cross-linking, as reported by
Nocentini et al.23 Counterintuitively, we find that the maximum
spontaneous twist is achieved by an optimal finite twist during
cross-linking, with both too little and too much twist yielding lower
performance. In conclusion, we discuss how these twisting fibers
could be used to create coiling artificial muscles, with greatly ampli-
fied stroke compared to the intrinsic actuation of the LCE itself.

II. TWIST AND STRETCH OF A RUBBER CYLINDER

We start by recalling the classic large deformation solution for
a twisted and stretched passive rubber cylinder.39,40 More precisely,
we consider a long cylindrical rubber fiber with undeformed radius
R0 and length L � R0, which is subject to an angular twist Δθ
between the two ends and an overall extension by a factor of λ.
Working in cylindrical coordinates, if this deformation maps the
material point initially at R ¼ (R, Θ, Z) to the point r ¼ (r, θ, z),
then the resultant deformation gradient is simply

F ¼ @r
@R

¼
@r
@R

1
R
@r
@Θ

@r
@Z

r @θ
@R

r
R
@θ
@Θ r @θ

@Z
@z
@R

1
R
@z
@Θ

@z
@Z

0
B@

1
CA: (1)

In general, the hyper-elastic energy of a deformed solid may be
written as

E ¼
ð
V
W(F)dV , (2)

where V is the volume in the reference configuration and W is an
energy density that depends on the deformation gradient. For an
incompressible rubber, the simplest (neo-Hookean) energy density
is given by

W(F) ¼ 1
2
μTr F:FT

� �þ p det (F)� 1ð Þ, (3)

where μ is the shear modulus and the second term arises to impose
volume conservation, det (F) ¼ 1, with p being a spatially dependent
Lagrange multiplier describing the pressure field in the material.

Our challenge is to minimize this energy for the fiber subject
to an overall imposed twist τ ¼ Δθ=L and longitudinal stretch λ.
Since we are looking for states of uniform stretch and twist along
the length of the cylinder, the outer surface must have the form

z(R0, Θ, Z) ¼ λZ, θ(R0, Θ, Z) ¼ Θþ τZ: (4)

These forms clarify that τ ¼ dθ
dZ corresponds to the angular twist

per unit reference state length.
Minimizing the elastic energy with respect to variations in r(R)

leads to the traditional bulk equations of mechanical equilibrium

∇ � Σ ¼ 0, (5)

and free boundary condition

Σ � R̂ ¼ 0, (6)
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where the first Piola–Kirchhoff stress tensor is given by

Σ ;
@W
@F

¼ μF þ p det (F)F�T : (7)

Finally, minimizing with respect to variations in p returns the
expected bulk condition of incompressibility

det (F) ¼ 1: (8)

In the case of the twisted stretched fiber, the simplest possible
fields are those with a homogeneous twist and (isochoric) stretch

r(R, Θ, Z) ¼ R=
ffiffiffi
λ

p
,

θ(R, Θ, Z) ¼ Θþ τZ,

z(R, Θ, Z) ¼ λZ,

p(R, Θ, Z) ¼ �1=λ,

(9)

which do indeed solve all the relevant bulk and boundary condi-
tions. The associated deformation gradient is simply

F ¼
λ�1=2 0 0
0 λ�1=2 Rτλ�1=2

0 0 λ

0
@

1
A, (10)

and, upon substituting this back into the elastic energy, we obtain
the total energy of a twisted and stretched fiber as

E
μπLR2

0
¼ 1

2
λ2 þ 2

λ
þ R2

0τ
2

2λ

� �
: (11)

We note that the first two terms in the parenthesis are simply the
familiar uni-axial stretching energy for a neo-Hookean rubber,
while the final term determines the energy cost of twisting the
fiber. The energy is trivially minimized by τ ¼ 0 for all values of λ,
but the minimum stretch is given by

λm ¼ (R0τ)
2 þ 4
4

� �1=3

� 1, (12)

with λm ¼ 1 only when τ ¼ 0, as illustrated in Fig. 1(b). This asym-
metric coupling between the two quantities is a direct manifestation
of the Poynting effect41 in nonlinear elasticity. To clarify its origin, we
note that the deformation gradient can be achieved as a pure twist
followed by a pure stretch, as illustrated in Fig. 1(a). Mathematically,
this corresponds to decomposing the deformation gradient as

F ¼ λ:T , (13)

where

λ ¼ diag(λ�1=2, λ�1=2, λ), T ¼ δ þ Rτ êr êΘ, (14)

and δ is the identity matrix. From the form of T, we see that a
smaller radius implies a smaller deformation for the same twist.
Indeed, the twist energy R0τ2=λ can be written as R2

f τ
2, where

Rf ¼ R0=
ffiffiffi
λ

p
is the final radius of the fiber. These considerations

suggest that twist energy is partially relieved by stretch as this
reduces the radius via Poisson effects. The resultant twist–stretch
coupling is a paradigmatic example of the inherent geometric non-
linearity of large strains.

III. TWIST AND STRETCH INDUCED BY A
SPONTANEOUS DEFORMATION

A. Spontaneous deformation field

In light of what we learned from the simple twisting case, we
now turn our attention to a cylindrical rubber fiber that undergoes a
heterogeneous spontaneous distortion, such that, locally, the energy
minimizing deformation is given by F ¼ G(R, Θ, Z). Since our ulti-
mate motivation is to understand the spontaneous twist and stretch
of nematic LCE fibers, we restrict consideration to G that is axisym-
metric, isochoric, and independent of Z. However, the pattern of
spontaneous distortion is allowed to be incompatible so that the cyl-
inder cannot attain F ¼ G throughout but will instead relax to an
internally stressed state that minimizes the total elastic energy.

If the actual local deformation from the original state prior to
spontaneous distortion is F, then the elastic deformation from the
local relaxed state is simply F � G�1, where the second term reverses
the effect of spontaneous deformation, and the first applies the
actual deformation. The new elastic energy of the fiber, after spon-
taneous distortions, is thus

E ¼
ð
V

1
2
μTr(F � G�1 � G�T � FT)þ p ( det (F)� 1)

� �
dV : (15)

FIG. 1. (a) Schematics of the decomposition of F ¼ T � λ. (b) Poynting effect:
the equilibrium stretch increases as more twist is imposed on the system.
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This “multiplicative decomposition” form42 was first introduced
for elasto-plastic deformations43 and now pervades and unifies the
study of solids with spontaneous deformations, including growing
tissues,44,45 swelling gels,46,47 thermal expansion,34,48 and, as we
shall clarify later, nematic elastomers heated to the isotropic state.
Importantly, the spontaneous deformation only affects the energy
via the combination g ¼ G�1 � G�T (corresponding to the Finger
tensor of G ) which, in our fibers, takes the symmetric and axisym-
metric forms

g ¼
gRR(R) gRΘ(R) gRZ(R)
gRΘ(R) gΘΘ(R) gΘZ(R)
gRZ(R) gΘZ(R) gZZ(R)

0
@

1
A: (16)

The isochoric condition on all rubbers, including LCEs, requires
det (g) ¼ det (G) ¼ 1.

B. Resultant deformation fields

Minimizing (15) with respect to variations in r(R) and p(R)
leads to the same bulk and boundary equations as before [(5), (6),
and (8)], but with the new Piola–Kirchhoff tensor given by

Σ ¼ μF � g þ p det (F)F�T : (17)

To solve for the actual deformation field, we first observe that,
given axisymmetry, Z independence, and incompressibility, the
deformation must take the simple form

r(R, Θ, Z) ¼ R=
ffiffiffi
λ

p
,

θ(R, Θ, Z) ¼ Θþ τ Z þ fθ(R)ð Þ,
z(R, Θ, Z) ¼ λ(Z þ fz(R)),

p(R, Θ, Z) ¼ �fp(R)=λ,

(18)

where fθ , fz , and fp are as-yet unknown functions of R, which
modify the solution from the original one for a passive rubber

cylinder. The fθ term introduces rotation as a function of radius
and allows radii in the reference configuration to become curves in
the final configuration. Similarly, the fz term encodes warping of
each cross section into an identical surface of revolution, while fp
allows the pressure to vary with radius.

At this stage, one could methodically substitute these fields
into the bulk and boundary equations and then solve for fθ , fz ,
and fp. However, one can substantially simplify this process by
noting that the resultant deformation field can now be decom-
posed as

F ¼
1ffiffi
λ

p 0 0
Rf 0θffiffi
λ

p 1ffiffi
λ

p Rτffiffi
λ

p

λf 0z 0 λ

0
BB@

1
CCA ¼ λ � T �Φ, (19)

where λ and T are again pure stretch and twist [Eq. (14)], while

Φ ¼
1 0 0

Rτ f 0θ � f 0z
� �

1 0
f 0z 0 1

0
@

1
A (20)

describes the deformation of the cross section in the absence of
a twist or stretch and is the only part that depends on fθ and fz .
This decomposition is illustrated in Fig. 2.

Furthermore, since only derivatives of the two fields fθ and fz
appear in F, we can substitute this deformation into the energy and
minimize directly with respect to variations in f 0z (R) and f 0θ(R),
leading to the conditions,

@W
@ f 0θ

¼ μTr λ � T �Φ � g � @Φ
T

@ f 0θ
� TT � λT

� �
¼ 0, (21)

@W
@ f 0z

¼ μTr λ � T �Φ � g � @Φ
T

@ f 0z
� TT � λT

� �
¼ 0: (22)

FIG. 2. Schematics of the decomposition of
F ¼ T � λ �Φ.
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Evaluating these yields the simple uncoupled differential equations,

gRΘ þ RτgRRf
0
θ þ RτgRZ ¼ 0, (23)

λ2 gRRf
0
z þ gRZ

� � ¼ 0, (24)

which can be directly integrated to obtain the fields,

fθ ¼ �
ðR
R0

gRZ(u)
gRR(u)

du� τ�1
ðR
R0

1
u

gRΘ(u)
gRR(u)

� �
du,

fz ¼ �
ðR
R0

gRZ(u)
gRR(u)

du:

These solutions then imply the full form of the deformation fields,

r ¼ R=
ffiffiffi
λ

p
,

θ ¼ τ z=λ�
ðR
R0

1
u

gRΘ(u)
gRR(u)

� �
du,

z ¼ λ Z �
ðR
R0

gRZ(u)
gRR(u)

� �
du:

(25)

Finally, if we now substitute these back into the original bulk and
boundary equations [(5) and (6)], we can confirm they are fully
solved (e.g., in mathematica) provided the pressure is taken as

fp(R) ¼ τ

ðR
R0
f 0θ(u) τ uf 0θ(u)gRR(u)þ 2τugRZ(u)þ 2gRΘ(u)

� �
du

� gRR(R)þ
ðR
R0

gΘΘ(u)� gRR(u)ð Þu�1 du

þ
ðR
R0
τ 2gΘZ(u)þ τugZZ(u)ð Þ du: (26)

C. Twist and stretch elastic energy

We now substitute the fields into the elastic energy [Eq. (15)]
to evaluate the energy for a rubber rod with imposed twist τ,
stretch λ, and a pattern of spontaneous deformation g . To do this,
it is convenient to use the decomposition in (19). We then see
immediately that the effects of g in the energy are entirely con-
tained within the symmetric tensor,

~g ¼ Φ � g �ΦT ¼
gRR 0 0

0 gΘΘ � g2RΘ
gRR

gΘZ � gRΘgRZ
gRR

0 gΘZ � gRΘgRZ
gRR

gZZ � g2RZ
gRR

0
BB@

1
CCA, (27)

which captures the residual part of g after allowing the cross sec-
tions to relax via Φ, but in the absence of twist or stretch. By inspec-
tion, we may then multiply out all the terms in the energy to find

E
μπLR2

0
¼ a0

λ
þ a1λ

2 þ b
λ
τ þ c

λ
τ2, (28)

with the coefficients given by

a0 ¼ 1
2

ðR0

0
~gRR þ ~gΘΘ
� �

RdR,

a1 ¼ 1
2

ðR0

0
~gZZRdR,

b ¼
ðR0

0
~gΘZR

2dR,

c ¼ 1
2

ðR0

0
~gZZR

3dR:

(29)

We note that these terms are related to the zeroth, first, and second
moments of aspects of the spontaneous distortion, reminiscent of
those derived via Gamma convergence for linear elastic rods.34

As in the simple case explored in Sec. II, twist and stretch are
coupled via the λ�1 in the twist energy. However, with the addition
of the linear term in τ, when b = 0, the energy is minimized by a
non-zero twist τm and a finite stretch λm given by

τm ¼ � b
2c

, λm ¼ 4a0c� b2

2a1c

� �1=3

: (30)

We can use these and �λ ¼ λ=λm to rewrite energy with the same
structure as in Eq. (11), but now including the source terms,

E
μπLR2

0
¼ λ2m a1

2
�λ
þ �λ

2
� �

þ (c=λ3m)
�λ

(τ � τm)
2

� �
: (31)

This is our main result and captures the emergent twist/stretch
nature of fibers with a spontaneous deformation field.

Thus, our calculation reveals that an axisymmetric spontane-
ous deformation can induce 4 key effects in a fiber:

1. spontaneous length change,
2. spontaneous twist,
3. cross-section warping, via the function fz , so initial disks

become surfaces of revolution, and
4. cross-section twisting via fθ , so initial radii become curves.

These effects stem from different aspects of the spontaneous
deformation and may or may not co-occur in a given case.

In Sec. IV, we concentrate on spontaneous deformation
fields arising from a LCE undergoing nematic–isotropic
transition.

IV. NEMATIC ELASTOMER FIBERS

We want to apply our theoretical machinery to nematic elas-
tomer cylinders, encoded with a spatially variable director pattern
n. On heating through the nematic–isotropic transition schemati-
cally shown in Fig. 3(a), the elastomer will spontaneously contract
by a factor λs along the director and, to preserve volume, elongate
by 1=λs in the two perpendicular directions, corresponding to a
spontaneous deformation G ¼ diag(λ�1=2

s , λ�1=2
s , λs) in a frame

aligned with the director.14 We can thus write g for such
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spontaneous actuation as

g ¼ λ�2
s nnþ λs(δ � nn): (32)

As discussed in the Appendix, the resulting pre-strained
neo-Hookean exactly reproduces the “trace-formula” energy com-
monly encountered in the LCE literature14 for an LCE cross-
linked in the nematic state then heated to the isotropic state. This
form neglects stress induced changes in the degree of nematic
alignment, which is appropriate in the isotropic phase, where an
LCE is simply a classical rubber provided one is not too close to
the transition temperature. Nocentini et al.’s experimental LCE
undergoes its transition in a 10 K window around 373 K and is
heated to 393 K for actuation, allowing this approximation. We
also note that the nematic actuation strains during the transition,
δL=L � 0:3, vastly exceed other thermal effects such as (linear)
thermal expansion which has characteristic size δL=L � 10�5 K�1.

We again limit attention to axisymmetric director patterns. In
cylindrical coordinates, the (unit) director field is then described by
two angles α(R) and β(R) [Fig. 3(b)] so that

n ¼ cos β sinαêR þ sin β sinαêΘ þ cosαêZ : (33)

In what follows, we first consider the case of α and β independent
of R and show that spontaneous twist requires an oblique director
field between azimuthal and longitudinal directions while warping
of the cross sections requires a director that is oblique between
the longitudinal and radial directions. Finally, we consider some
more realistic R dependent director fields for the fibers created by

twisting and stretching during cross-linking23 and show that
spontaneous twisting is maximized by a finite optimum degree of
twisting at genesis.

A. Example: R-independent director field

1. Theoretical predictions

We start by considering director patterns in which the angles
α and β are constants, independent of R. In this case, the integrals
in our solutions can be conducted analytically and yield the dis-
placement fields,

r ¼ R=
ffiffiffi
λ

p
,

θ ¼ Θþ τ Z þ gRZ
gRR

(R0 � R)

� �
� log (R=R0)

gRΘ
gRR

,

z ¼ λ Z þ gRZ
gRR

(R0 � R)

� �
:

From the linear dependence on R in z, we note that flat disk cross
sections turn into cones, while θ(R) shows that radii turn into
spirals, which tend to conical-spirals at the center of the fiber.
Though such singular structures may seem surprising at first glance,
a more careful look reveals that integral curves of the director field n
are also conical spirals making a constant angle β with the radial
direction. Furthermore, in planar LCEs encoded with a constant
angle +1 defects, the integral curves also form planar log spirals (the
planar projection of a conical spiral) and it is well established that
the resultant actuation transforms the sheet into twisted conical sur-
faces in which the radii transform into conical spirals.22,49,50

In the simple case in which β ¼ π=2, the integral curves
become simple helices, as shown in Fig. 3(b), and are helpful to
understand how twist is developed during activation. In the most
simple sketch of the mechanics, heat/illumination drives a contrac-
tion by λs along the integral curve as well as an increase in its radius
by a factor of

ffiffiffiffi
λs

p
. The twisting thus occurs to reduce the length of

the integral curve, with the integral curve playing the same role of a
sub-fiber in twisted fiber bundle torsional muscles.27–31

Given constant α and β, the coefficients in our energy
[Eq. (31)] are

a0 ¼ 1
8
λ�2
s R2

0d2 sin
4 α sin2 2β 1� λ3s

� �

þ 1
8
λ�2
s R2

0 3λ3s þ 1þ cos 2α(λ3s � 1)
� �

,

a1 ¼ 1
4
R2
0λsd 3þ λs � cos 2α þ 2 cos 2β sin2 α

� �
(λ3s � 1)

� �
,

b ¼ 2
3
R3
0d sin 2α sin βλs 1� λ3s

� �
,

c ¼ 1
8
R4
0λsd 3þ λs þ cos 2α þ 2 cos 2β sin2 α

� �
1� λ3s
� �� �

, (34)

where

d ¼ 2 sin2 α cos 2β 1� λ3s
� �þ cos 2α λ3s � 1

� �þ 3λ3s þ 1
� ��1

:

FIG. 3. (a) Schematics of isotropic–nematic transition and the resulting align-
ment along n. (b) Example of a R-independent director field with α ¼ π=4 and
β ¼ π=2, as shown on the top face. In red, we mark a helical integral curve to
highlight the chirality of the director field.
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These can be used together with Eqs. (32) and (30), to obtain
the spontaneous twist,

τm ¼ �8 sin 2α sin β

R0 6 sin2 α cos 2β þ 3 cos 2α � 3 λ3s þ 3
� �

= λ3s � 1
� �� � : (35)

The behavior of the twist as a function of α and β is shown in
Figs. 4(a) and 4(b) for typical values during a nematic–isotropic
(heating) transition (1 . λs . 0:5). Importantly, we see that the
twist vanishes when β ¼ 0 or α ¼ 0, π=2, corresponding to a
purely longitudinal or azimuthal–radial director field where no
shear Θ–Z is present. On the other hand, τm is maximized
when β ¼ π=2 (independent of α and λs), indicating a director
with no radial component. The largest possible twist is then given

by choosing α ¼ 1
2 cos

�1 λ3s�1
λ3sþ1

	 

� π=4þ 3

4(λs � 1)þ O((λs � 1)2),

showing that maximum twist is achieved at an oblique angle
biased towards the azimuthal direction for larger λs, as shown
in Fig. 4(b).

Similarly, the overall spontaneous stretch, λm, is given by
Eq. (30). Although the full expression is too complicated to
reproduce here, in the simple and twist-maximizing case of
β ¼ π=2, it reduces to

λm ¼ 36 cos 2α 1� λ3s
� �

λ3s � cos 4α λ3s � 1
� �2þ37λ6s þ 106λ3s þ 1

36 cos 2α 1� λ3s
� �þ λ3s þ 1

� �2 :

In Fig. 4(c), we can see how this stretch behaves between the two
extremes of a longitudinally aligned (α ¼ 0) director field, yielding
a simple contraction of λm ¼ λs, and of an azimuthal director field
yielding λm ¼ 1

2 1þ λsð Þ=λ3s
� �1=3

.

2. Finite element verification

To test our results, we use the open-source finite element soft-
ware FEBio51–53 to compute the spontaneous deformations of an
LCE fiber encoded with an R-independent director field. We used
FEBio’s standard prestrained neo-Hookean material on cylindrical
fibers with an almost incompressible Poisson ratio of ν ¼ 0:45. The
isochoric prestrain parameter 1=λs was set to vary between values

of 0:5 and 2. After applying the pre-strain, the energy minimizing
deformation was found using a static analysis.

In Fig. 5, we compare the predicted spontaneous twist and
stretch of a fiber encoded with β ¼ π=2 and α ¼ π=4 with finite
element simulations. The theory shows excellent agreement with
the numerical simulations, accurately capturing the nonlinearities
in both twist and stretch.

Fibers with β ¼ π=2 have cross sections that remain flat
during deformation, as coning is driven by the gRZ component of
the spontaneous deformation, which is only present if the director
has an RZ component. Therefore, to confirm our predictions about
cross-section warping, we also computed the deformation of a fiber
with β ¼ π=4 and α ¼ π=4, as shown in Fig. 6(a). Again, compar-
ing our theoretical results with finite element (FE) simulations, we
obtain excellent agreement between the numerical and theoretical
coning [Fig. 6(b)] and winding [Fig. 6(c)] of the cross section. The
logarithmic nature of the spirals implies a theoretically infinite
number of rotations at the center of the cross section, although the
stress, strain, and energy are all finite. The divergent rotation stems
from the line of director discontinuity (disinclination) along the
central axis of the fiber. Accordingly, in a real fiber, the rotation
would be cut off near the axis by a regularization of the director
discontinuity within a defected core,54 and in our finite elements, it
is cut off by the element size near the axis. However, the director
discontinuity line and the associated infinite rotation are an artifact
of patterns of constant α and β, and, as discussed in Sec. IV B, are
not expected in the experimentally generated fibers.

B. Nematic fibers produced by stretching and twisting
during cross-linking

Finally, we consider the twisting LCE fibers reported by
Nocentini et al.23 These fibers were produced by pulling a fila-
ment out of a viscous LC monomer mixture while rotating the
drawing end and simultaneously cross-linking with a UV light.
The director alignment is imprinted through the strains induced
during this drawing process, shown in Fig. 7(a). Given there is
both twisting and stretching during cross-linking, and twisting
strains are larger at larger radii, we expect this fabrication to
produce an R-dependent director field with azimuthal and longi-
tudinal components.

FIG. 4. (a) 2D plot of twist as a function of both angles α and β. The twist is maximized when β ¼ π=2 and α � π=4. (b) and (c) Variation of the twist and stretch as a
function of α for different values of λs.
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In reality, the imprinting of the director field is a complex
visco-elastic process involving sticky polymers being cross-linked into a
rubber. However, here, we take a simple approximation and assume
the deformation is mainly elastic, and the director aligns with the direc-
tion of maximum strain. The elastic approximation is clearly appropri-
ate once there is sufficient cross-linking but is probably also applicable
to the initial visco-elastic drawing as the strain rate is rather high.

To find the imprinted director pattern, we model the fiber
during drawing as an elastic cylinder that is stretched by a factor
of λ0 and twisted by Δθ0 as cross-linking proceeds, resulting in a
fiber of length L and radius R0 and (final state) twist density
τ0 ¼ Δθ0=L. We use (~R, ~Θ, ~Z) as the reference state coordinates
for this problem, so that we may use (R, Θ, Z) for the final state
coordinates, which then become the reference state coordinates in
our spontaneous deformation analysis. The elastic deformation
follows the simple treatment in Sec. II, leading, in our coordinate
system, to the deformation fields

R(~R, ~Θ, ~Z) ¼ ~R=
ffiffiffiffiffi
λ0

p
,

Θ(~R, ~Θ, ~Z) ¼ ~Θþ τ0λ0~Z,

Z(~R, ~Θ, ~Z) ¼ λ0~Z:

(36)

To obtain the direction of maximum strain in the final (post
cross-linking) configuration, we use the left-Cauchy deformation
tensor

b ¼ F � FT ¼
1
λ0

0 0

0 1
λ0
þ λ20R

2τ20 λ20Rτ0

0 λ20Rτ0 λ20

0
B@

1
CA: (37)

The largest eigenvalue of b identifies the largest component of
stretch while its corresponding eigenvector (which is a target state
object) is its direction. Since this is the direction along which the
director will orient, it can be used to express the values of the
angles α and β in the fiber. We trivially obtain that β ¼ π=2, since
the twisting during the manufacturing of the fiber induces no cou-
pling of the R-Z components. For α, one obtains

tanα ¼
�τ20 � 1
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�τ20 þ 1
� �

2 þ 2λ�3
0 �τ20 � 1
� �þ λ�3

0

q
þ λ�3

0

2�τ0
, (38)

FIG. 5. Comparison between theoretical predictions and finite element simula-
tion for twist (a) and stretch (b) as a function of the spontaneous deformation
parameter λs. For these calculations, we used a fiber with aspect ratio R0=L ¼
1=15 represented by 5400 hex-8 elements.

FIG. 6. Comparison between finite element simulations and theoretical data for
the case α ¼ π=4 and β ¼ π=4. (a) An example of a deformed cross section
directly from FE analysis. In red are theoretical lines for the deformed radii while
dots are node positions. (b) Comparison between predicted and theoretical
coning. (c) Comparison between theory and FE on the predicted rotation angle
difference as a function of radius. A fiber with aspect ratio R0=L ¼ 1=5, and
54 000 hex-8 elements was used for this simulation.
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where �τ0 ¼ Rτ0. We note that, when the fiber is drawn from a
drop, λ0 � 1, which simplifies the angle to

α ¼ tan�1 R τ0ð Þ: (39)

This implies that the director points along the Z direction in the center
of the fiber and tilts in the Θ–Z plane as one moves outward. This is a
reflection of the fact that, during formation, Θ–Z shears grow like R as
the filament is drawn and twisted, thus inducing a greater azimuthal
component further from the center as shown in Fig. 7(b).

C. Comparison between twist during cross-linking and
twist during activation

Finally, we can use the form of α and β to obtain g . We then
use Eqs. (29) and (30) to find the twist and stretch capability of a
fiber given the twist imposed at its genesis. The results for values of
λs , 1 are shown in Fig. 8. Remarkably, the output twist does not
monotonically grow as a function of τ0 but reaches a maximum and
decays to zero thereafter. Recall that, in the R-independent field, we
discussed how the twist is maximized when α � π=4. In this case, a
small τ0R0 implies the director is on average mainly longitudinally
aligned (, α .� 0), inducing mostly a contraction by a factor λs.
On the other hand, a large τ0R0 leads to a dominantly azimuthal
director orientation on the cross section (hαi � π=2), inducing

mainly stretch by a factor of 1
2(λ

3
s þ 1)=λ3s

� �1=3
. The optimum twist

output τ is maximized in between the two, when the coupling
between azimuthal and longitudinal components is the greatest.

The fibers produced by Nocentini et al.23 were made from
LCEs capable of a maximum spontaneous contraction of λs � 0:71
during heating. The twist imposed at genesis on the fibers was of
about ten turns with their diameter and length varying between 50
and 300 μm and 1 and 5 cm, respectively. This suggests that their

fibers were fabricated with a (dimensionless) genesis twist of
around 0:16 , R0τ0 , 1:8 and the corresponding experimentally
explored region is shaded in Fig. 8. The authors only reported the
output twist and contraction for one fiber (of unknown length and
radius), when activated in a �0:5 cm long region via light. This
fiber generated an overall contraction � 0:84, suggesting that in the
activated region 0:71 , λm , 0:84. On the other hand, activation
induced a rotation of about Δθ � 460o � 8:2 rad corresponding to
an output twist of 0:04 , R0τ , 0:5. Both these twist and stretch
values fall in the shaded region of Fig. 8, consistent with our theo-
retical results. We highlight how, in general, these experimental
fibers appear to have been generated with too little twist at genesis,
yielding a sub-optimal output twist. This could perhaps be
improved by increasing the number of turns during fabrication.

V. CONCLUSION AND DISCUSSION

In conclusion, we have obtained an exact elastic solution for a
twisted and stretched cylindrical neo-Hookean fiber subject to an
axisymmetric isochoric spontaneous deformation field. The solu-
tion yields a full non-linear elastic energy for such a fiber, which is
minimized by a spontaneous twist and stretch. The energy also
highlights a large-deformation coupling between twist and stretch,
as familiar from the classical Poynting effect. Finally, the elastic
fields also capture the large deformations of the fiber’s cross
section, which is predicted to warp into a surface of revolution and
twist such that radii become curves during activation.

FIG. 7. (a) Schematic of a fiber being drawn and twisted from a drop of LC
monomer while being cured with UV light. (b) An example of the resulting direc-
tor field in a fiber of radius r ¼ 2=τ0. The two integral curves highlight the
change in azimuthal component as a function of the radius.

FIG. 8. Relationship between output twist (a) and stretch (b) as a function of
the twist imposed at genesis. Shaded in gray, the region for known experimental
results.23
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When applied to LCEs, our results show that a helical director
field oblique in the longitudinal–azimuthal plane is required to
induce a twist. The twist output depends on the spontaneous elon-
gation λs and is maximized when no radial director component is
present (β ¼ π=2) as well as when the azimuthal and longitudinal
components are coupled through an angle α � π=4þ 3

4(λs � 1).
It is instructive to compare our theory with recent work on

the spontaneous bending and twisting of rods via incompatible
(aka misfit) spontaneous distortions.33–37 These treatments go
beyond ours in that the spontaneous strain is not assumed to be
axisymmetric, and the rod is allowed to bend so that the centerline
no longer remains straight. However, these treatments do assume
small spontaneous strains and high aspect ratio rods, allowing a
linear elastic treatment similar to the original Kirchhoff model. The
small-strain thin-rod regime limits the theories to stretch free
deformations and leads to simple bend twist energies of the form

E
μπLR2

0
¼ R2

0
3
8
(κ � κm)

2 þ 1
4
(τ � τm)

2

� �
, (40)

where κ and τ are the bend (curvature vector) and the twist of the
rod, while κm and τm are their minimizing values. These minimizing
values were first estimated by linearizing the spontaneous deforma-
tion in a Taylor series about the rod’s central axis.33 More recently,
Gamma convergence34,36,37 and 3D energy minimization35 have
been used to derive rigorous forms, yielding averages and moments
of various terms of the spontaneous deformation over the rod’s cross
section. Our large-deformation axisymmetric treatment reduces to
the twisting portion of these rod-theories in the limit of small spon-
taneous distortions and little imposed stretch. Indeed, if we Taylor
expand our expressions for λm and τm [Eq. (30)] in the limit of
small spontaneous deformations g ¼ δ þ ϵδg(R), we find that

λm ¼ 1þ ϵ
1
R2
0

ðR0

0
δgRR þ δgΘΘð ÞRdR, (41)

τm ¼ �ϵ
4
R4
0

ðR0

0
δgΘZ R

2dR: (42)

If we then also assume the applied twist and stretch are small,
λ� λm � ϵ , τ � ϵ, we may expand our energy [Eq. (31)] to ϵ2

to obtain

E
μπLR2

0
¼ 3

2
λ� λmð Þ2þ1

4
R2
0 τ � τmð Þ2þO(ϵ3): (43)

The twisting portion of this energy agrees with that in Eq. (40),
and the linearized form of τm above agrees with that given by
Kohn and O’Brien.34 Interestingly, although such small-strain
and high aspect ratio assumptions appear necessary to resolve
bending, our treatment demonstrates they can be avoided
entirely when only treating twisting and stretching. The resulting
non-linear formulation generates the highly non-linear form
τm(λs) and λm(λs), as seen in Fig. 5, and is clearly required for
accurate predictions in large strain systems such as LCEs.

Remarkably, even a small strain rod theory can describe large
bend and twist displacements in a suitably long rod. This introduces
fascinating and rich geometric coupling between twist and bend
deformations.26,55–57 For example, if one straightens a wound head-
phone wire, it becomes highly twisted. Similarly, if one twists a fiber
and then bring the ends together, it will spontaneously untwist into a
lower energy spring-like coiled state. In general, torsional bend and
twist can be exchanged in a rod or fiber, without rotating the ends,
provided the total number of turns is conserved. This twist–torsion
coupling is an example of a geometric phase and is key in the
winding of DNA molecules,58–60 and the coiling of plant tendrils.61

Therefore, although our treatment includes no mention of
bend, we can infer from this coupling effect that a spontaneously
twisting LCE fiber will bend into a coiled spring-like configuration
if it activates under boundary conditions that prevent the ends
from twisting relative to each other. Given the large-strain nature of
LCE actuation, a formal treatment of this torsional effect appears to
be a formidable challenge. However, as shown in Fig. 9, we were
easily able to observe it in finite elements simulations of a twisting
LCE fiber actuated under a constant longitudinal force but with the
constraint that the ends may not rotate. This coiling mechanics is
commonly deployed in other twisting artificial muscles to generate
linear actuation.25,26 In contrast, LCEs are intrinsically contractile
actuators, and simple linear contraction can be trivially achieved
with a monodomain strip.15–17 However, the coiling mechanism
would allow an LCE actuator with much higher stroke and lower
stiffness, forming switchable soft-springs that, like plant tendrils,61

could be used to gently anchor and position an object in 3D space.
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FIG. 9. Finite element simulation of a fiber with Young’s modulus E ¼ 1,
Poisson’s ratio ν ¼ 0:45, 4800 elements, an aspect ratio of R0=L ¼ 0:07, and
a R independent director field with α ¼ π=4 and β ¼ π=2. The fiber is fixed at
one end and subject to a tension T ¼ 0:2πμR2

0 while preventing rotation at the
other end. As the value of λs is decreased, the fiber wants to shrink and twist
but cannot do the latter as the ends are not allowed to rotate. The fiber thus
coils to release some of the twist energy, resulting in a greater stroke amplitude
than that of classical linear actuation.
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APPENDIX: MODELING A NEMATIC ELASTOMER AS A
NEO-HOOKEAN WITH SPONTANEOUS DISTORTION

The free energy density of a nematic elastomer14 has its
roots in statistical physics and contains two contributions: an
elastomer energy from the polymer network and a nematic
energy from the rods,

W ¼ Wpol þWrod:

The rod energy depends on the scalar order parameter Q of the
nematic field (i.e., the degree of alignment) but not its direction
(unit vector n). Appropriate forms for Wrod(Q) are provided by
the Landau–De Gennes (phenomenological) or Maier Saupe
(microscopic) theories of liquid nematics.54 Either way, Wrod(Q)
has the characteristic size of kBT per rod, and transitions from
having a minimum at Q ¼ 0 (isotropic) to a finite Q (nematic)
below a critical temperature T*.

The polymer free energy is dominated by conformational
entropy, like in the statistical theory of conventional rubber.
However, in the presence of a nematic field, the polymer random
walks are not isotropic but biased along the director n by an
amount r(Q) determined by the degree of alignment, as encoded in
a step-length tensor ‘/ δ þ (r � 1)nn. The resultant polymer
energy is described by the “trace formula”14,62

Wpol ¼ 1
2
nskBT Tr(‘0 � FT � ‘�1 � F),

where ns is the density of polymer strands, F is the deformation from
the cross-linking state to the final state, ‘0 is the step-length tensor at
cross-linking (which depends on the nematic variables at cross-
linking, Q0 n0), and ‘ is the step-length tensor in the final state
(which depends on the final state nematic variables at Q, n). The full
behavior of the nematic elastomer is now given by minimizing the
sum of both energies over elastic deformations (F), final state order
parameter (Q), and final state director (n). In general, this minimiza-
tion gives a two way coupling between the nematic order and the
LCE deformation. However, the characteristic size of Wrod is kBT per
rod, while the characteristic size of Wpol is kBT per polymer strand.
Since in an elastomer there are typically more than ten rods per
strand, the nematic energy dominates the elastic one during minimi-
zation over Q. Therefore, the degree of nematic alignment is essen-
tially that which minimizes the nematic energy alone and is only
modestly affected by the polymer network. For example, the shift of
the nematic–isotropic transition caused by the presence of the
network is typically only a few Kelvin63 (compared to a transition
temperature of 350 K), and other mechanically induced changes in Q
are similarly small.14,64 Such effects are more pronounced in some
modern LCE compositions, which have more cross-links per rod,65,66

but, for simplicity, we focus on the traditional case here.
We may thus consider the simpler problem of minimizing

the polymer energy, with the magnitude of nematic order, Q,
effectively fixed as a constraint by the rod’s energy. In general,
when we minimize the polymer energy in the nematic state, we
must still do it over final state director n; indeed, the nematic
director can be observed to rotate within an elastomer in

response to stretch.14,67 However, if we further assume (as here)
that the final state is isotropic, Q ¼ 0, then ‘/ δ must also be
isotropic, and there is no final state director to minimize over. In
this case, the elastomer energy is simply

W ¼ 1
2
nskBT Tr(F � ‘0 � FT),

which corresponds to the standard neo-Hookean energy with
spontaneous distortion G ¼ ‘

1=2
0 encoded by the nematic field in

the cross-linking state and shear modulus μ ¼ nskBT .

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.
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