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Abstract

The diagnosis of dementia with Lewy bodies (DLB) versus Alzheimer's disease

(AD) can be difficult especially early in the disease process. However, one inexpen-

sive and non-invasive biomarker which could help is electroencephalography (EEG).

Previous studies have shown that the brain network architecture assessed by EEG is

altered in AD patients compared with age-matched healthy control people (HC).

However, similar studies in Lewy body diseases, that is, DLB and Parkinson's disease

dementia (PDD) are still lacking. In this work, we (a) compared brain network connec-

tivity patterns across conditions, AD, DLB and PDD, in order to infer EEG network

biomarkers that differentiate between these conditions, and (b) tested whether

opting for weighted matrices led to more reliable results by better preserving the

topology of the network. Our results indicate that dementia groups present with

reduced connectivity in the EEG α band, whereas DLB shows weaker posterior–

anterior patterns within the β-band and greater network segregation within the

θ-band compared with AD. Weighted network measures were more consistent

across global thresholding levels, and the network properties reflected reduction in

connectivity strength in the dementia groups. In conclusion, β- and θ-band network

measures may be suitable as biomarkers for discriminating DLB from AD, whereas

the α-band network is similarly affected in DLB and PDD compared with HC. These

variations may reflect the impairment of attentional networks in Parkinsonian dis-

eases such as DLB and PDD.
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1 | INTRODUCTION

Dementia spans a range of cognitive disorders affecting almost 50 mil-

lion people worldwide (American Psychiatric Association, 2013; Geser,

Wenning, Poewe, & McKeith, 2005). The most common type ofJohn-Paul Taylor and Luis R. Peraza equally shared senior authorship.
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dementia in older adults is Alzheimer's disease (AD) dementia, with

50–70% of clinically diagnosed cases (I. McKeith et al., 2007),

followed by dementia with Lewy bodies (DLB) which accounts for

4–8% of the cases (I. McKeith et al., 2007) and Parkinson's disease

dementia (PDD), which develops in ≈80% of people with Parkinson's

disease longitudinally (Hely, Reid, Adena, Halliday, & Morris, 2008).

The main symptom of AD consists of episodic memory loss which

occurs gradually, approximately within a 6-month time frame prior

seeing a clinician (Dubois et al., 2014; Grober & Buschke, 1987). Simi-

larly to AD, cognitive impairment develops at early stages in DLB, thus

misdiagnoses are a common issue (Palmqvist, Hansson, Minthon, &

Londos, 2009). Detecting the early core clinical features of DLB,

which include cognitive fluctuations, visual hallucinations and REM

sleep behaviour disorder (I. G. McKeith et al., 2017), may increase the

accuracy of the clinical diagnosis. Moreover, supportive biological

indexes, also known as biomarkers, may provide additional informa-

tion (I. G. McKeith et al., 2017). As stated in the “1-year rule”

(McKeith et al., 2005), 1 year after the onset of cognitive impairment,

DLB patients also develop parkinsonian symptoms such as

bradykinesia, tremor and rigidity (Gaig & Tolosa, 2009; Hornykiewicz &

Kish, 1987); a symptomatic spectrum similar to PDD. The common

aetiology of DLB and PDD is the progressive accumulation of alpha-

synuclein protein bodies across the brain, known as Lewy bodies. The

overlapping causes and symptoms often lead scientists to consider

these two diseases as a sole group when aiming to assess effective

biomarkers for the diagnosis of dementia (Lippa et al., 2007). How-

ever, due to enhanced cognitive dysfunction preceding the motor

symptoms in DLB pathology, as well as a greater accumulation of

amyloid in DLB (Edison et al., 2008), physiological differences and bio-

markers to differentiate DLB and PDD remain a research question

and might provide further insight on the development of the two sub-

types (Stylianou et al., 2018).

Electroencephalography (EEG) is emerging as a convenient tech-

nique in dementia research. It is advantageous in terms of cost (Lee &

Tan, 2006), the absence of side effects and has superior temporal res-

olution. Previous studies using eyes-closed resting state experimental

protocol concur with the slowing of the α (alpha, 8–14 Hz) activity

towards lower frequencies in DLB and PDD when compared with HC

and AD. This characteristic emerges mostly in the occipital lobe

(Andersson, Hansson, Minthon, Rosen, & Londos, 2008; Bonanni

et al., 2015; Briel et al., 1999; Jackson & Snyder, 2008; Kai, Asai,

Sakuma, Koeda, & Nakashima, 2005; Peraza et al., 2018; Stylianou

et al., 2018). In particular, previous studies focused on the shifting of

the dominant frequency (DF) towards slower frequencies. These stud-

ies showed that the frequency with the most prominent peak in the

power spectrum moves towards a lower range of frequencies in

patients when compared with healthy controls (Bonanni et al., 2008;

Peraza et al., 2018; Stylianou et al., 2018). DLB related changes were

also found by EEG network connectivity studies. For instance, when

comparing AD and healthy participants (HC), parietal–frontal connec-

tivity patterns, which are known to be involved in attentional pro-

cesses (Corbetta & Shulman, 2002), were affected (M. Dauwan et al.,

2018; Lemstra et al., 2014) in DLB participants. In a similar study

based on minimum spanning tree (MST), reduced hubness, that is,

lower node degree and betweeness centrality, within the α frequency

band was reported by van Dellen et al. (2015) when comparing DLB

with AD. The MST is obtained by preserving the minimum number of

strongest edges while connecting all nodes without cycling paths.

Here the authors associated the reduced hubness with a more severe

cognitive impairment in DLB (van Dellen et al., 2015). In a more recent

study, Babiloni and colleagues reported reduced interhemispheric

connectivity patterns in dementia patients (Babiloni et al., 2018), with

weaker connections in AD compared with DLB over posterior and

temporal regions within the α range; this intra-hemispheric connection

showed no differences between DLB and PDD. According to the

authors, this aspect is associated with the fact that the pathology is

similar in both LBDs, that is, DLB and PDD. A recent work in EEG

based on MST reported the α band to be discriminative between HC

and dementia, whereas significant differences in the PLI strength

between AD and DLB were found in the β (beta; 15–30 Hz) band

(Peraza et al., 2018). Hence, the authors suggested that the β network

might potentially be an EEG biomarker of DLB against

AD. Connectivity was measured with phase lag index (PLI; Stam,

Nolte, & Daffertshofer, 2007), a metric that is insensitive to scalp's

volume conduction.

To date, no EEG studies based on proportional thresholding have

been performed in order to assess network property changes related

to dementia conditions including LBDs. A crucial aspect in functional

network studies is how the connectivity threshold is defined in order

to obtain a graph from a connectivity matrix, where the non-relevant

edges are pruned off and the edges or connections whose weights are

above the threshold are preserved. At this point, a researcher may

choose to binarise the matrix, that is, set to 1 all the surviving edges,

or to preserve their corresponding weights. Several previous studies

have dealt with the issue of network thresholding (Garrison,

Scheinost, Finn, Shen, & Constable, 2015; Jalili, 2016; Langer,

Pedroni, & Jancke, 2013; van Wijk, Stam, & Daffertshofer, 2010), pro-

viding rationales for each of the proposed methods. However, the

choice of using weighted or binary matrices to estimate network mea-

sures has mostly been arbitrary to date. In a previous EEG network

study on schizophrenia, it was shown that preserving the weights

while applying network thresholding, produced more prominent dif-

ferences between conditions by the network properties (Rubinov

et al., 2009). Nevertheless, no further quantitative investigation has

been done to date in order to assess whether preserving the EEG con-

nection weights in dementia studies might lead to a more pronounced

differentiation between groups and improve consistency of the results

across network densities.

In this study, we performed an exploratory investigation of differ-

ences between dementia groups in terms of EEG connectivity pat-

terns and strength. We also performed a graph theory analysis based

on proportional thresholding to assess disease related differences

between groups. In addition, we hypothesised that performing graph

analysis based on proportional thresholding while preserving the

weights, produces consistent results by preserving additional topolog-

ical information stored in the weights.
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2 | METHODS

2.1 | Participants

The study sample comprised 18 HC (11 male, 7 female), 32 AD

(22 male, 10 female), 25 DLB (20 male, 5 female) and 21 PDD

(20 male, 1 female) patients. Diagnoses were performed by two expe-

rienced clinicians according to the DLB consensus criteria

(I. G. McKeith et al., 2017; I. G. McKeith et al., 2005), the diagnostic

criteria for PDD (Emre et al., 2007), and the National Institute on

Ageing-Alzheimer's Association criteria for AD (McKhann et al., 2011).

Clinical information was collected with a battery of neuropsychologi-

cal and neuropsychiatric tests, reported in Table 1: Global cognition

assessment through the Mini-mental state examination (MMSE), the

Cambridge cognitive battery tests (CAMCOG), and executive and

visuo-perceptual tests such as trail making test A, animal naming and

FAS verbal fluency. Additionally, the Unified Parkinson's Disease rat-

ing scale part III (UPDRS III), cognitive assessment of fluctuation (CAF)

(Walker et al., 2000) scale, and the neuropsychiatric inventory test

subscale for the severity and frequency of hallucinations (NPI halluci-

nations) were delivered to patients. Patients with a MMSE score < 12

and healthy subjects with MMSE < 26 were excluded from the sam-

ple, which resulted in excluding one PDD patient with MMSE = 8.

Levodopa equivalent daily dose (LEDD) was estimated for patients on

dopaminergic medication (Tomlinson et al., 2010). All participants did

not have other neurological or psychiatric conditions besides demen-

tia in patients and gave written informed consent. This study was

approved by the Northumberland Tyne and Wear NHS Trust and

Newcastle ethics committee.

2.2 | Experimental protocol and EEG recording

Participants were asked to sit in a dimly lit room and keep their eyes

closed for 2.5 min. They were asked to relax while keeping awake, move

as little as possible and avoid focusing on a particular thought. High den-

sity EEG with 128 sintered Ag/AgCl electrodes, 10-5 derivation system

(Figure 1a) (Robert Oostenveld & Praamstra, 2001) was recorded during

the session with an EEGWaveguard cap (ANT Neuro, The Netherlands).

Signals were recorded at 1,024 Hz sampling frequency and electrode

impedance was kept <5 kΩ. At recording, channels were referenced to

Fz and ground channel was attached to the right clavicle.

2.3 | Pre-processing

The EEG recordings were pre-processed off-line using the EEGLAB

toolbox version 14 (Delorme & Makeig, 2004) on MATLAB 9.2 (The

MathWorks Inc., Natick, MA, 2017). Signals were band-pass filtered

with a second-order Butterworth filter within the range 0.5–80 Hz

and a 50-Hz notch filter was applied to remove power line noise.

Time-series were segmented in two-second time intervals or

“epochs”. Noisy or disconnected channels were removed (number of

removed channels: 15 ± 13), as well as epochs showing sporadic arte-

facts such as muscular tension (number of removed epochs: 12 ± 10).

The cleaned time series underwent independent component analysis

(ICA) through the InfoMax algorithm (Bell & Sejnowski, 1995), with

principal component analysis (PCA) dimension reduction to obtain a

number of component equal to half the number of channels preserved

in the previous step. Emerging muscular, eye and noisy components

TABLE 1 Demographic data and clinical scores

HC (N = 18) AD (N = 32) DLB (25) PDD (21) p-value

Age 76.28 ± 5.50 76.63 ± 7.72 76.16 ± 6.24 73.38 ± 5.89 df = 3, p-value = .228a

Male/female 11/7 11/5 20/5 40/2 df = 3, p-value = .055b

MMSE 29.17 ± 0.86 20.16 ± 4.30 22.68 ± 4.32 23.43 ± 3.49 df = 3; p-value < .001a

CAMCOG total 96.67 ± 3.68 66.22 ± 15.87 74.84 ± 12.78 75.86 ± 10.80 df = 3; p-value < .001a

NPI hall 0 0.03 ± 0.18 1.71 ± 1.88 2.19 ± 1.99 p-value = .312c

CAF total 0 0.58 ± 1.39 4.13 ± 4.13 6.63 ± 4.27 p-value = .045c

Animal naming 20.72 ± 5.54 10.66 ± 4.97 10.80 ± 3.88 11.38 ± 4.14 df = 3; p-value < .001a

UPDRS 1.28 ± 1.49 2.77 ± 3.11 16.20 ± 7.52 24.52± 6.71 p-value < .001c

Angle discrimination 19.65 ± 0.86 18.23 ± 3.63 15.71 ± 4.99 17.25 ± 4.02 df = 3, p-value = .004a

FAS verbal fluency 44.89 ± 16.07 26.43 ± 16.23 18.28 ± 10.60 20.86 ± 13.66 df = 3, p-value < .001a

Trail making test A 36.43 ± 10.25 79.16 ± 52.55 109.88 ± 68.84 167.35 ± 107.11 df = 3, p-value < .001a

ACheI (yes/no) 0/18 29/3 22/3 17/3d df = 4, p-value = .537e

LEDD 0 0 176.88 ± 230.44 805.90 ± 392.70 df = 44, p-value < .001c

aKruskal–Wallis four groups.
bχ2 test four groups.
cUnpaired Mann–Whitney U test (DLB vs. PDD).
dOne PDD patient was on Memantine.
eχ2 test three groups (AD, DLB, and PDD).
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from the ICA were detected by visual inspection and rejected (number

of removed components: 39 ± 10). The preserved ICA components

were transformed back to time-series domain, and the previously

removed channels were interpolated by spatial spherical interpolation.

All channels were referenced to spatial average.

2.4 | Weighted phase lag index

The connectivity index chosen in this study is the weighted phase lag

index (WPLI) (Vinck, Oostenveld, van Wingerden, Battaglia, & Pen-

nartz, 2011), which is an improvement of the previous PLI statistic

(Stam, Nolte, et al., 2007). The PLI measures consistency across time

of the instantaneous delay between two signals through Hilbert trans-

formations. PLI is also robust to scalp volume conduction, which is a

common issue in EEG recordings (Peraza, Asghar, Green, & Halliday,

2012). The WPLI is obtained with the following equation:

WPLI =
E I Xf gj jsgn I Xf gð Þf gj j

E I Xf gj jf g ð1Þ

where X is the cross spectrum between any couple of signals, I(X) is its

imaginary part, E is the expected value and sgn is the sign function. In

fact, this corresponds to weighting the PLI values with the imaginary
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F IGURE 1 Methodological workflow. (a) From left to right: distribution of the 128 EEG electrodes in the 10-5 system. Grey electrodes were
deemed noisy, hence were excluded in all network analyses. An example of EEG recording from a healthy participant and a connectivity matrix
computed on one HC subject in the β-band network are reported. Colours span across connectivity (defined as weighted phase lag index, or
WPLI, as reported in detail in section 2) values between 0 and 0.2. Coloured bars on the sides of the connectivity matrix and colour of the
electrodes define scalp regions. Green: frontal region; blue: lateral region; yellow: central region; purple: posterior region. (b) Topography showing
significantly weakened connections in DLB compared with AD within the β-band network; (c) Left: binary and weighted clustering coefficient
values across (β-band) network densities, reported here as an example; right: average weighted node degree and weighted clustering coefficient,
t-tests across groups (Kruskal–Wallis value on top, *p < .05, **test survives multiple comparison correction); (d) Receiver operating characteristic
curve obtained with random forest classifier, testing DLB versus AD discrimination
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part of the cross-spectrum between the two time-series. For the

inference of brain networks, this approach reduces the influence of

the almost zero-lag connections, which may likely be due to noisy vol-

ume conducting sources (Vinck et al., 2011). The WPLI is bounded

between 0 (lack of connectivity) and 1 (full synchronisation). To com-

pute this measure, the time-frequency representation for each EEG

signal was first obtained within θ (theta, 4–7.5 Hz), α (alpha,

8–13.5 Hz) and β (beta, 14–20.5 Hz) frequency ranges (Stylianou

et al., 2018) using Windowed Fourier Transform (3–10 cycles adap-

tive windows width, 0.5 Hz frequency step) implemented in the

Fieldtrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011). WPLI

connectivity matrices were then computed at each frequency band

for all 2-s epochs, and averaged across time. At this step, we obtained

three WPLI matrices representing each frequency band for each of

the participants. An example of an estimated connectivity matrix from

a HC participant in the β band is shown in Figure 1a.

2.5 | Connectivity strength

We investigated for possible bias introduced by the group's functional

connectivity strength to the topology of the network. WPLI values

were averaged across all edges and compared between groups. We

also categorised the edges according to their length (inter-node

Euclidean distance). WPLI values were divided in four equal ranges

(very short: <57 mm; short: 57–114 mm; long: 115–170 mm; very

long: 171–227 mm) and differences between groups were investi-

gated at each range.

2.6 | Proportional thresholding

To perform graph theory analysis, we applied a proportional threshold

to the connectivity matrices which preserves the edges with the

highest connectivity values (weight strength). The thresholding was

performed using the MATLAB function threshold_proportional.m

from the Brain Connectivity Toolbox, BCT (Rubinov & Sporns, 2010).

The matrices were thresholded within a range of percentage values

(PT%) between 3 and 60% in steps of 1%. To be in line with the

underlying structural properties of the network, a range up to 40%

would already be a reasonable choice (Bohr et al., 2013; Kaiser, 2011).

However, some studies also included higher densities (Giessing, Thiel,

Alexander-Bloch, Patel, & Bullmore, 2013) and in consequence, we

chose a range that covered most of the choices in previous investiga-

tions. The choice of a wider range was also aimed to test the depen-

dence of network measures on the network density (section 2.8.2).

To obtain weighted matrices, we set to 0 the values below the

threshold and preserved the weights of the remaining edges. The

binary matrices were obtained by setting to one all edges that sur-

vived the threshold, and to zero those edges below the threshold.

Network measures were computed for each threshold level and aver-

aged across thresholds.

2.7 | Network measures

Local and global network measures were estimated to describe the

topologies of the binary EEG networks. We also computed variants of

the same measures for weighted matrices as described in the litera-

ture, in order to prove that preserving the weight strength after the

thresholding step, results in a more efficient preservation of the topol-

ogy of the network. Before computing the weighted measures, the

matrices were normalised by dividing all the WPLI values by the maxi-

mum connectivity value within each matrix. This step resulted in hav-

ing all values bounded between 0 and 1. This also aimed to remove

group bias that could be introduced by group-dependent functional

connectivity strength (Onnela, Saramäki, Kertész, & Kaski, 2005). All

network measures were computed with functions from the Brain

Connectivity Toolbox (Rubinov & Sporns, 2010) in MATLAB, and

comprised: Node degree (K), that is, average number of edges con-

nected to a node; clustering coefficient (C), that is, average number of

connections between node's neighbours; characteristic path length

(L), that is, average shortest path between any pair of nodes; small-

worldness (σ), that is, the ratio between normalised clustering coeffi-

cient and characteristic path length; modularity (Q), that is, the differ-

ence between within- and between-modules edges. Details on all

measures are reported in Supporting Information.

2.8 | Statistical analysis

2.8.1 | Connectivity strength

Statistical analyses were performed using MATLAB (Mathworks,

Natick, MA; version 9). The Network Based Statistics (NBS) toolbox,

version 1.2 (Zalesky, Fornito, & Bullmore, 2010), was used to estimate

topographical differences of connectivity strength between groups at

each frequency band. The chosen NBS threshold was set at 8 for the

ANOVA test, and 3.8 for the post hoc one-tail t tests, as in our data,

they allowed to clearly appreciate the network topographical patterns

(Zalesky et al., 2010). The family-wise error rate (FWER) was con-

trolled by performing a permutation test (5,000 permutations). Differ-

ences were considered significant at a p-value < .05, with Bonferroni

correction for the post hoc tests (12 comparisons). Networks were

visualised with the BrainNet Viewer (Xia, Wang, & He, 2013). Differ-

ences in average WPLI were assessed for each frequency band with a

Kruskal–Wallis test (p < .05) followed by post hoc two-tailed Mann–

Whitney U tests (p < .05) with Holm–Bonferroni correction (Holm,

1979; six comparisons). For the edge distance analysis, between-

group comparisons were performed at each frequency band for the

four distance ranges. Differences across groups were assessed with

Kruskal–Wallis tests (p < .05, Holm–Bonferroni correction for distance

ranges, four tests) followed by two-tailed Mann–Whitney U post hoc

tests (p < .05, Holm–Bonferroni correction, six comparisons). Finally,

we tested for correlations between the average WPLI and clinical

scores (listed in section 2.1) for each group and frequency band by

MEHRARAM ET AL. 5



performing Spearman rank correlations; relations were considered sig-

nificant at a p-value < .05, uncorrected.

2.8.2 | Dependence of the network topology on
thresholding level

To assess whether preserving the weights reduces the influence of

thresholding on network topology (regardless of the group or frequency

range), we performed Spearman rank correlation tests (p < .05)

between the network measures (local measures were averaged over

the whole scalp) and the 60 thresholding levels for all groups and fre-

quency ranges together. To avoid false-positive correlations due to the

high number of observations (60 density values for each of the three

frequency ranges and four participant groups), we applied a boo-

tstrapping approach with 5,000 permutations to estimate a correlation

distribution. A relation between edge density and network measure

was considered significant if this was within the 0.025% of the empiri-

cal null distribution tails (|ρ| < .025%, i.e. double sided). We also tested

for between-group differences of the network measures at each PT%

by performing a Mack–Skill test (Mack and Skillings, 1980; p < .05) for

each frequency range. If the test resulted significant, a Kruskal–Wallis

tests (p < .05, Holm–Bonferroni correction, 60 tests) was performed

followed by two-tailed Mann–Whitney U post hoc tests (p < .05,

Holm–Bonferroni correction, six comparisons).

We also pursued a model fitting approach to confirm what

emerges from the correlation described in the previous paragraph

(Bradley, Jacob, Hermance, & Mustard, 2007; Fjell et al., 2010). To

test the attenuation of the measure-versus-threshold dependency by

preserving the weights, we fitted a power law model to the network

measure-versus-PT% curves using the Curve Fitting toolbox (version

3.5.5) in MATLAB. We used the power law model because this

resulted in lower fitting errors compared with other models such as

exponential, linear or polynomial, as revealed by the sum of squares

error (SSE). We then computed the first derivative, that is, the net-

work measure dependence on the threshold level. The results

obtained with this procedure are reported in section 3 for the cluster-

ing coefficient from the HC group in the β frequency range.

2.8.3 | Differences between groups in weighted
matrices

The averaged network measures across thresholding levels were used

to investigate differences between groups within each frequency

band. For each measure, a Kruskal–Wallis test (p < .05) was performed

followed by post hoc two-tailed Mann–Whitney U tests (p < .05) with

Holm–Bonferroni correction (six comparisons). Similar to the approach

pursued in Stylianou et al.'s (2018) study, local measures were also

tested regionally for differences within the frontal, temporal, central

and posterior regions as shown in Figure 1a. To assess local differ-

ences between groups for each measure, we first performed a

repeated measures ANOVA with region as the within subject factor

and group as the between subject factor. When any interaction was

found, we ran a Kruskal–Wallis test within each region (p < .05,

Holm–Bonferroni corrected, four tests) followed by post hoc two-

tailed Mann–Whitney U tests (p < .05) with Holm–Bonferroni correc-

tion (six comparisons). Finally, we tested for possible rank correlations

between the weighted network measures and clinical scores for each

group and frequency band with Spearman tests (p < .05, uncorrected).

2.8.4 | Diagnostic accuracy

To test for the potential diagnostic utility of the most significant markers

inferred in this study, we implemented a random forest classifier using

the Scikit-Learn framework in Python (version 0.20.1), and the

Imbalanced-Learn library for Python (version 0.4.3); with cross-validation:

six-fold, ten repetitions. All the network variables, in all frequency bands,

were used to train the classifier, and the mean variable importance rank-

ing was obtained. We then computed the mean accuracy, F1 score, sen-

sitivity, specificity and area under the receiver operating characteristic

(AUROC) curve. Diagnostic accuracy was tested for the diagnostic sce-

narios that resulted with significant differences in our network analysis.

Here, we only reported a six-fold cross-validation, but similar results are

obtainable when using five-fold or seven-fold (Supporting Information).

3 | RESULTS

3.1 | Connectivity strength

The first part of our analysis was aimed to assess whether the patho-

logical condition affects the connectivity strength of the network.

Results from this analysis are shown in Figure 2. The average WPLI

(Figure 2a) resulted weaker in the α band in all dementia groups when

compared with HC, and it was reduced in LBDs compared with HC

and lower in DLB compared with AD in the β-band. The WPLI in the

α-band was significantly weaker in the dementia groups for the long

connections, and for all distance ranges within the β-band network

(Figure 2b). No significant differences in WPLI between groups were

found within the θ band.

In the AD group, the NBS revealed a missing right-occipital net-

work cluster, as well as a reduced posterior–anterior connectivity pat-

tern and a missing frontal cluster (Figure 2d). Topographical

differences in DLB consisted mostly in affected parietal–frontal con-

nectivity. Several pathways were weakened as assessed through NBS

in PDD, including bi-lateral occipital-frontal patterns, right-occipital

cluster and frontal connectivity. The most significant topographical

differences in the β band consisted of low connectivity strength in

LBDs, DLB and PDD, when compared with HC as well as a more

reduced connectivity in DLB versus AD. For the β-band network,

occipital–central patterns were weakened in LBDs vs HC, as well as in

the right-temporal area. Left occipital–frontal connectivity patterns

and left temporal area were weakened in DLB compared with AD

(Figure 2d).

6 MEHRARAM ET AL.



(a)

(c)

(d)

(b)

F IGURE 2 Results from the connectivity strength analysis. (a) Average WPLI for each group and frequency band; values on top indicate the
result of the one-way ANOVA (p < .05); *significant two-tailed Mann–Whitney U test post hoc test (p < .05); **post hoc test survives Holm–
Bonferroni correction (six comparisons). (b) Distance analysis. WPLI values are averaged by edge length ranges; very short: <57 mm; short:
57–114 mm; long: 115–170 mm; very long: 171–227 mm. Different markers were used to indicate significant results from one-way Kruskal–
Wallis (p < .05) and two-tailed Mann–Whitney U test post hoc test (p < .05) as described in the legend on the right side. Red marker: test survives
Holm–Bonferroni correction (Kruskal–Wallis: 4 ranges; post hoc: six comparisons). Error bars represent 95% confidence interval. (c) Outcome of
the Spearman's test correlation. Significant correlation were found only between WPLI and NPI score in DLB at α and β frequency bands.
(d) Results from the two-tailed t-tests (5,000 permutations) with the NBS (Network Based Statistics, ANOVA F-threshold = 8, p < .0042; post hoc
t-threshold = 3.8, p < .0042) respectively in α and β range. No significant differences were found in θ band

MEHRARAM ET AL. 7



When we assessed for correlations with clinical variables, the

average WPLI in DLB correlated negatively with the level of visual

hallucinations (NPI-hall score) within the α and β bands (Figure 2c). No

significant correlations were found with other clinical scores.

3.2 | Proportional thresholding

For the estimation of graph theory network measures, we first applied

a proportional threshold to the WPLI matrices, preserving from 3% to

60% of the strongest connectivity values. We tested whether preserv-

ing the weights reduces the dependency of the clustering coefficient

and the average characteristic path length on the thresholding

level. Preservation of the weights after the thresholding step

resulted in dependence attenuation of the network measures on the

number of edges, as assessed with Spearman rank correlation test

(p = 0, ρCb
= 0:9666, ρCw

= 0:6765, ρLb = −0:9692, ρLw = −0:0665).

The normalised metrics were less influenced by the preservation

of the weights than the not normalised ones (p = 0,

ρCbnorm
= 0:5134, ρCwnorm

= 0:4673, ρLbnorm = −0:7981, ρLwnorm
= 0:1022). The

metric-versus-density trends for the average characteristic path

length and the average clustering coefficient in the β range, as well as

the statistical tests at each thresholding level are shown in Figure 3.

Statistical tests at each network density are performed only if the

Mack–Skill test revealed an effect of PT% on the network measure.

As revealed by the correlation tests, the curves obtained with the

weighted measures show a reduced slope, that is, less dependency on

the threshold axis, PT%. For the clustering coefficient (Figure 3a), sig-

nificant differences between groups were found only in the weighted

case (Kruskal–Wallis: p < .05, t-test: p < .05 with Holm–Bonferroni

correction). Particularly, the weighted clustering coefficient was signif-

icantly reduced in DLB when compared with the AD group at PT%

>15. The normalised clustering coefficient showed similar results for

both the binary and weighted case, with differences between AD and

DLB at PT%>33 in the binary case and PT%>27 in the weighted

measure case. In addition, the characteristic path length dependence

on the network density was strongly reduced in the weighted case

(Figure 3b). Statistical tests in the weight-based measure between

groups were not dependent on the PT%, as revealed by the Mack–

Skill test (p = .2789). In the binary case, the DLB group showed a

(a) (b)

F IGURE 3 Dependence of the clustering coefficient and characteristic path length on the connectivity matrix thresholding level (PT%).

Horizontal axis: PT% (range within 3–60); vertical axis: network measure. Markers on top represent results of one-way Kruskal-Wallis (p < .05)
and two-tailed Mann–Whitney U post hoc tests (p < .05) performed at each PT% as described in the legend on side. Red marker: test survives
Holm–Bonferroni correction (Kruskal–Wallis: 60 tests; post hoc test: six comparisons). Dotted lines of the same colour delineate 95% confidence
interval for each group. (a) From top-left to bottom-right: average clustering coefficient (C), average normalised clustering coefficient (N-C),
average weighted clustering coefficient (W-C), and average normalised weighted clustering coefficient (N-W-C). (b) From top-left to bottom-right:
average characteristic path length (L), normalised average characteristic path length (N-L), weight-based average characteristic path length (W-L),
weight-based normalised average characteristic path length (N-W-L). For other weighted and binary measures, see Supporting Information
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higher W-L compared with AD for PT%<15. The binary normalised

measure revealed differences between AD and DLB as well as

between HC and DLB groups for PT%>28. No differences between

groups were found for the normalised binary L. In line with previous

findings, this shows that the binarisation of the connectivity matrices

may lead to loss of information related to network topology (Rubinov

et al., 2009). Correlation curves for the remaining network measures

are shown in Figure S1.

To obtain a further insight of the association between the weight

preservation and the reduced dependence on the network density, we

modelled the network-versus-threshold curves as first order power law

equations. For this demonstration, we considered the clustering

F IGURE 4 Results from the graph theory analysis on the average weight-based network measures. Vertical axis: network measure. W:
weighted. K: node degree; C: clustering coefficient; L: characteristic path length; σ: small-worldness; Q: modularity. Horizontal axis: frequency
band of interest (θ: 4–7.5 Hz, α: 8–13.5 Hz, β: 14–20.5 Hz). Values on top indicate the result from the one-way Kruskal–Wallis test (p < .05);
*significant two-tailed Mann–Whitney U test post hoc test (p < .05); **post hoc test survives Holm–Bonferroni correction (six comparisons)
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coefficient, C, in the HC group in the β band, but similar results are

obtained in the other scenarios (see Supporting Information). For both

binary and weighted measures of clustering coefficient, we modelled

their edge-density-versus-measure behaviour as Cb = ftg + h and

Cw = mtn + q, with t = thresholding level, and b and w standing for binary

and weighted measures. The model fitting resulted in the following

coefficients (with the 95% confidence interval shown in brackets):

f = 0.8065 [0.7941; 0.8189]; g = 0.6718 [0.6269; 0.7161]; h = 0.072

[0.05228; 0.09172]; m = 0.9912 [0.6306; 1.352]; n = 0.06905 [0.04059;

0.09751]; q = −0.6802 [−1.043; −0.3175]. The goodness of fit is

described by the sum of squares error (SSE): SSEb = 0.003371,

SSEw = 0.0002147.

By computing the first derivative of the fitting equations with

respect to the thresholding level t, we get the dynamic of the curves,

that is, the slope with respect to the thresholding level. A derivative

closer to zero describes a steady behaviour. For the binary and

weighted clustering coefficient we obtained: dCb/dt = fgtg − 1 and

dCw/dt = mntn − 1. We searched the values of t at which the weighted

measures showed lower dependence on PT% compared with the

binary measures. In other words, we searched a t at which

dCw

dCb
< 1; 0 < t≤1: ð2Þ

By computing the ratio in (2) and replacing the corresponding

coefficients, we found that the condition in Equation (2) is true when

0.0322 < t ≤ 1. Hence, for the clustering coefficient in healthy con-

trols the condition expressed in (2) is true for almost all network den-

sity values.

For the remaining of this study, results will be shown for the

weighted matrices only, as we now proved how these lead to more

stable results than the binary ones. However, same statistics for the

binary metrics are reported in Figure S4. Network measures com-

puted using non-thresholded weighted matrices are also reported in

Figures S5 and S6.

3.3 | Network properties

We hypothesised that the architecture of the EEG network at rest is

affected due to the different subtypes of dementia. Results from the

network measure comparisons between groups at each frequency

range are shown in Figure 4. Differences between groups within the θ

band were found only for the small-worldness and modularity indices.

The LBD groups (DLB and PDD) showed an increased network segre-

gation, when compared with the AD group. Furthermore, this network

segregation strongly correlated with cognitive scores (MMSE and

CAF) and the NPI-hall score in the same frequency band in PDD,

although it did not in DLB. Significant differences were found in all

measures (and a trend for the small-worldness index) between LBDs

and HC within the α range. The nodal measures were lower in patient

groups, reflecting the differences in the connectivity strength

reported above. Also network integration was reduced in all dementiaT
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groups, as reflected by the higher characteristic path length and mod-

ularity. The average clustering coefficient and the average characteris-

tic path length respectively in DLB and PDD groups correlated with

the Animal naming test, whereas the node degree and the average

characteristic path length in DLB were associated with the verbal flu-

ency (FAS) test score. The strongest difference was found within the

β network and comprised a greater general alteration of the network

in the DLB group when compared with the AD group for all the

network measures. In this regard, DLB patients showed weaker con-

nectivity and more segregated networks compared with AD ones,

with subtle differences with PDD and HC participants. Values and

plots for correlations with clinical scores are shown in Table 2 and

Figure S7.

We also looked at regional differences in the local measures

(average node degree and average clustering coefficient; Figure 5).

The node degree did not show any local difference between groups in

 HC

 AD

 DLB

 PDD

(a)

(b)

(c)

F IGURE 5 Results from the local graph theory analysis through average local weight-based network measures. Y-axis: local network measure;
x-axis: frequency band of interest (θ: 4–7.5 Hz, α: 8–13.5 Hz, β: 14–20.5 Hz). If any interaction was found in the repeated measures ANOVA
(within subjects: areas; between subjects: group), the result of the one-way Kruskal–Wallis test (p < .05) is indicated on top of each plot. Red
triangle: Kruskal–Wallis test survives Holm–Bonferroni correction (four areas); *significant two-tailed Mann–Whitney U test post hoc test
(p < .05); **post hoc test survives Holm–Bonferroni correction (six comparisons). (a) Frontal area. (b) central area. (c) posterior area. No significant
differences between groups were found in the lateral area and for the node degree in the central area
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the α range, whereas the general alteration in the DLB group com-

pared with AD within the β band was prominently driven by the occip-

ital region (p < .01), although the frontal region also resulted

significant (p < .05). For the node degree, significant differences in the

clustering coefficient between DLB and AD groups were found within

the β band in frontal and posterior areas. The α network was affected

in the frontal, central and posterior areas. For both measures, the lat-

eral areas were not affected by the disease. The local changes of the

node degree and clustering coefficient reflect the connectivity pat-

terns associated with network disruption, see the Connectivity

Strength section.

3.4 | Diagnostic accuracy

For the classification analysis, we investigated two scenarios where

network properties were significantly different between groups for

most network parameters: DLB versus AD and LBDs versus

HC. Results for other scenarios are reported in Supporting Informa-

tion. All weighted network measures were used to perform a

random-forest classification, and to compute the receiver operation

characteristic (ROC) curves shown in Figure 6. For each classifica-

tion, a mean variable importance ranking was obtained. For the first

classification (DLB vs. AD), we found a mean accuracy of 66% (± 13),

mean F1 score of 65% (± 13%), mean positive predictive value (PPV)

of 66% (± 22%), mean negative predictive value (NPV) of 71%

(± 13.04%), an optimal sensitivity and specificity respectively of

47 and 100%, and area under the curve (AUROC) of 78% (± 15%).

The four most important variables as ranked by the classifier were

the WPLI in the β band, the modularity index in the θ band, the node

degree in the β band, and the small-worldness index in the θ band.

For the second scenario, LBDs versus HC, the classifier gave a mean

accuracy and F1 score of 76% (± 12%), a mean PPV of 88% (± 10%),

mean NPV of 59% (± 21%), an optimal sensitivity and specificity

respectively of 59 and 100% and AUROC of 82% (± 14%). The four

most important variables, as ranked by the classifier, were the WPLI

in the β band, the modularity, characteristic path length and cluster-

ing coefficient in the α band.

4 | DISCUSSION

In this study, we hypothesised that the different dementia subtypes

are associated with different alterations in their EEG network archi-

tecture. Connectivity strength resulted weakened in the dementia

groups compared with the HCs in the α band, and this was signifi-

cantly altered in DLB compared with AD in the β band. The difference

in terms of connectivity strength between groups translated into a

bias in the network architecture measurements, which we took into

account. We showed that weighted measures produce consistent

results in a graph theory study, where an altered β-band network in

DLB compared with AD emerged as the most significant result. More-

over, the brain network in DLB and PDD (both LBDs) were more

affected compared with the HCs, and showed a higher segregation

compared with the AD group. The classification between DLB and

AD, performed with the random forest approach, was driven by con-

nectivity strength and node degree in the β band as well as by net-

work segregation in the θ band. For the LBDs, these differentiated

from the HC group by their connectivity strength in the β band and

the graph properties in the α band.

(a) (b)

F IGURE 6 Receiver operating characteristic (ROC) curves obtained by the random forest classifier and computed for each of the defined
scenarios. All (weighted) network measures were used to train the classifier. (a) DLB versus AD, mean accuracy: 66% (± 13), optimal sensitivity
and specificity, respectively, of 47 and 100%; (b) LBD versus HC, mean accuracy: 76% (± 12%), optimal sensitivity and specificity respectively of
59 and 100%
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Patients in our study were on medication. This might have par-

tially restored the EEG activity towards healthier values (Agnoli,

Martucci, Manna, Conti, & Fioravanti, 1983; Balkan et al., 2003). Nev-

ertheless, we found significant alterations across patient groups and

our findings resonated with results from previous studies (Peraza

et al., 2018; Stam et al., 2009).

4.1 | Connectivity strength

The first step in this study was to assess whether participant groups

showed differences in terms of overall functional connectivity

strength driven by the pathological condition, and correct for this

before the estimation of network measures. This was necessary as it

has been previously shown that functional connectivity strength may

introduce a bias in the network measures (van den Heuvel

et al., 2017).

4.1.1 | Average connectivity is reduced in
dementia

Statistical analysis for the average connectivity across groups revealed

that the WPLI within the α frequency band was significantly reduced

in patient groups compared with HCs. Our analysis also showed that

the overall connectivity is weakened in the β band for all groups, but

significantly reduced in LBDs compared with HCs. This also revealed

that the β band could be a potential biomarker to differentiate

between the AD and DLB groups. This latter finding is in line with pre-

vious M/EEG connectivity studies (Dauwan et al., 2016; Engels et al.,

2015; Peraza et al., 2018; Stam et al., 2009), and may be associated

with a more randomised structure of the network in LBDs (Peraza

et al., 2018). Interestingly, the differences between groups within the

α and β band reproduced the scenario found in a previous fMRI study

for the distance analysis, where they found a decreasing trend of con-

nectivity strength in longer connections (Peraza, Taylor, & Kaiser,

2015). In addition, the WPLI values correlated negatively with the

visual hallucination score assessed by NPI-hall in DLB for both α and β

ranges. This latter finding supports a previous study which pursued a

modelling approach to associate visual hallucinations with impairment

of the attentional networks in LBDs (Shine, Halliday, Naismith, &

Lewis, 2011) and it is in line with the role of EEG α and β frequency

activity in attentional mechanisms, and the α band activity in visual

processes (Anderson & Ding, 2011; Bauer, Kennett, & Driver, 2012;

Lopes da Silva, 2013).

4.1.2 | Topographical connectivity patterns are
altered in dementia

The NBS analysis revealed that the differences in connectivity

strength were driven by the disruption of posterior–anterior networks

in AD and DLB when compared with HCs, in agreement with previous

findings (Dauwan et al., 2016; Lemstra et al., 2014). This matches as

well with the outcome from the distance analysis, which revealed that

the most prominent differences are observable in both α and β fre-

quency ranges for the longest edges (Figure 2b). We hypothesise that

the weakening of the posterior–anterior connections is associated

with impairment of the attentional networks, which are known to be

affected in AD and DLB (Corbetta & Shulman, 2002; Cromarty et al.,

2018). We believe that the disruption of the occipital brain network

may play a role in the alteration of the information flow towards the

frontal area in DLB (Bonanni et al., 2008; Briel et al., 1999; Peraza

et al., 2014).

Our results partially contrast with a recent EEG connectivity

study where differences between dementia groups were found in the

α band, and no differences were found in the β band (van Dellen et al.,

2015). This apparent contrast may be due to methodological differ-

ences in the analysis. In particular, the use of PLI as connectivity mea-

sure might omit significant differences between groups in scenarios

when the overall connectivity is low, such as we found in the β band.

4.2 | Weighted measures preserve topological
information

Our results showed that preserving the weights of the connectivity

matrix prevents the loss of topological network information. As

reported previously in a similar research work in schizophrenia

(Rubinov et al., 2009), weighted measures revealed more prominent

differences between patient groups than when compared with binary

ones. Contrary to what has been stated in previous studies (Li et al.,

2009; Ponten, Douw, Bartolomei, Reijneveld, & Stam, 2009; van Wijk

et al., 2010), we found that the outcome of the analysis is influenced

by the weights. However, in Ponten et al. (2009) the authors only con-

sidered the network measures normalised by random surrogates when

comparing binary and weighted matrices. We found that network

normalisation reduces the dependence of the network on the weights

(Figure 3). However, the normalisation may introduce a bias that

accentuates the size effect on the measures (van Wijk et al., 2010).

4.3 | Weighted measures are less dependent on
network density

The dependence of the network measures on the edge density is well

a reported issue (Langer et al., 2013; van Wijk et al., 2010). By show-

ing that the preservation of the weights makes the measures more

consistent across network densities, we provide a rationale for the

use of thresholded weighted matrices rather than binary ones in graph

theory studies. One may consider instead not to threshold the matrix

and work with the entire weighted matrix. In this latter case, the inter-

pretation of the connectivity measures would not be the same. For

instance, the node degree would become an indication of the total

involvement of the node in the network, rather than the number of

connected nodes (Opsahl, Agneessens, & Skvoretz, 2010). Hence, we
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believe that thresholding the network while preserving the weights

would be a reasonable compromise. Another strategy for removing

the dependence on network density is the definition of graphs based

on MST. As mentioned earlier, this approach leads to fully connected

weighted graphs (Stam et al., 2014), resulting in full sized networks. In

fact, Peraza et al. (2018) performed a study using the MST on the

same cohort of participants. However, although the differences in

connectivity strength are comparable with our findings, the MST

approach does not provide local alterations within the network archi-

tecture, which we found significant in patient groups.

Our approach presents with some limitations, as these results

should be considered limited to the context of EEG connectivity anal-

ysis. Further investigations will be required to reproduce our results

with other functional connectivity approaches. Moreover, the choice

of the connectivity measure may have influenced the outcome of this

analysis. WPLI attenuates spurious edges by de-weighting the con-

nections between signals with small phase difference (Vinck et al.,

2011). This leads to a reduced influence of a larger number of weak

edges when these are added to the matrix as the edge density is

increased.

4.4 | The brain functional network is segregated in
dementia

The brain network in the dementia groups was more segregated and

less integrated. The reduced integration is reflected by the increased

characteristic path length, in line with a previous study in EEG (Stam,

Jones, Nolte, Breakspear, & Scheltens, 2007). A longer path length

may be associated with a reduced interaction between cortical areas

(Sporns & Zwi, 2004), however, this contrasts with another investiga-

tion where the path length in the AD group was shorter than the HC

group (de Haan et al., 2009). The strategy pursued by thresholding the

network as well as the choice of the connectivity measure may play a

key role in the interpretation of the obtained results. In de Haan and

colleagues’ work, three arbitrary threshold values were chosen to

compute the network properties, while in our study, a wider range of

thresholding values was considered, which added more information

related to the network architecture. In addition, they opted for a

binarised and normalised definition of this measure. In fact, de Haan

and colleagues claimed that the reduction of the normalised charac-

teristic path length reflects loss of hubness and more randomised net-

work topology in AD, which agreed with previous studies (de Haan,

Mott, van Straaten, Scheltens, & Stam, 2012; Stam, 2014) and with

our results (section 4.5).

The network segregation in the LBD groups emerged particularly

within the θ band for small-worldness and modularity, in line with a

previous study on fMRI performed on the same participant cohort

(Peraza et al., 2015). This phenomenon is associated with the pres-

ence of a larger number of short-range connections altogether with a

weakening of the longest connections in dementia groups, as we

found in the distance analysis (Figure 2b), and which led to a higher

normalised clustering coefficient and to a higher small-worldness. We

also found that network segregation in the θ band strongly correlated

with the clinical scores associated with cognitive abilities (MMSE and

CAF) in PDD. Previous studies attributed to the θ-band activity a role

in memory consolidation processes, modulation of information trans-

fer and integration across different regions (Lopes da Silva, 2013). We

may then speculate that these processes might be affected in PDD,

but not in DLB. Nevertheless, further analysis will be needed in order

to assess why this strong correlations did not emerge in DLB, and to

interpret the correlation between the graph measures and the animal

naming and the FAS tests reported in section 3 (Table 2).

4.5 | Network hubness is reduced in dementia

We also found reduced node degree and clustering coefficient in

LBDs in the α band and for DLB versus AD in the β band. As also

reported in a previous study, this finding may reflect a reduced

hubness of the network due to the pathological condition (Engels

et al., 2015), as we also found via targeted node attack (see

Supporting Information), driven by posterior and frontal regions

(Figure 5), which perfectly resonates with the connectivity disruption

patterns reported in the connectivity strength section above. As men-

tioned, the EEG α and β frequency bands are known to have a major

role in attentional processes (Anderson & Ding, 2011; Bauer et al.,

2012; Lopes da Silva, 2013), which let us speculate that the impair-

ment of the corresponding networks may be associated with the

changes of measured connectivity metrics. However, in the α range,

no local differences were found for the node degree, and the cluster-

ing coefficient was also affected in the central region in DLB.

4.6 | LBDs versus HC groups’ classification shows
high accuracy

The best discrimination using a random forest classifier was obtained

between the LBDs and HC groups (AUROC = 0.82 ± 0.14). The results

obtained with the classifier reflect the outcome of the graph theory

analysis, as the β and α band network measures resulted most discrim-

inative. In particular, the metric that mostly drove the classification

was WPLI in the β band. As mentioned above, this may highlight the

role of the randomisation of the network in LBDs associated with the

pathology (Peraza et al., 2018).

4.7 | Higher segregation and reduced hubness
discriminate DLB from AD

The importance of the WPLI within the β range in discriminating Lewy

body diseases emerges also in the DLB versus AD scenario

(AUROC = 0.78 ± 0.15). Moreover, the higher segregation of the θ

network as well as the lower node degree in the β band network for

the DLB group were also crucial. These results resonate with findings

from the statistical comparisons between groups discussed in the
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previous paragraphs, and suggest that the EEG network measures

within the β and θ band may be potential biomarkers for DLB versus

AD differentiation. The outcome of the classification analysis confirms

that the more randomised network structure in DLB is a prominent

alteration compared with AD. In fact, the increased segregation and

reduced hubness in DLB suggest that this can be described as a more

severe disconnection syndrome compared with AD (de Haan et al.,

2009; Delbeuck, Van der Linden, & Collette, 2003).

4.8 | The optimal working point of the classifier
corresponds to maximum specificity

Surprisingly, the optimal point of the classifier, that is, the point on

the ROC curves at which the difference between true and false posi-

tive values was the highest (Fluss, Faraggi, & Reiser, 2005; Perkins &

Schisterman, 2005), corresponded to the maximum specificity (100%)

and lowest sensitivity (47 and 59%, respectively, for the two scenar-

ios). The choice of the optimal point is a matter of debate among

researchers, and new studies are proposing alternative methods

whose choice might be more clinically relevant (Rota & Antolini, 2014;

Unal, 2017; Zou, Yu, Liu, Carlsson, & Cabrera, 2013). In our study, we

opted for the most common strategy. However, the discrete size of

our sample as well as the imbalanced distribution of subjects among

groups might have affected the outcome of the classification

(Brereton, 2006; Sun, Wong, & Kamel, 2009).

4.9 | The connectivity strength is the most
important discriminatory variable

The higher relevance of the connectivity strength compared with

other network measures in discriminating the forms of neurological

disease was also found in previous studies (Peraza et al., 2018; Xu

et al., 2016). In this sense, our finding provide further evidence to the

fact that it is likely that simpler measures such as connectivity weights

might be accurate enough for diagnostic purposes. This strengthens

the suitability of EEG as a clinical diagnostic tool. Nevertheless, graph

network measures might reveal alterations associated with the sever-

ity of the disease. Future studies involving prodromal and larger

cohorts will be required to explore whether the network changes

reported in this study may also predict the development of the

disease.

5 | CONCLUSION

In this study, we found that the connectivity strength and node

degree as well as the network segregation in the β-band (14–20.5 Hz)

and the θ-band (4–7.5 Hz) differentiated DLB versus

AD. Furthermore, the network measures in the α-band (8–13.5 Hz)

were significantly affected in LBDs compared with HCs. We also dem-

onstrated that performing an EEG graph theory analysis while

preserving the weights from the connectivity matrices after the pro-

portional thresholding step, leads to more consistent results across

network densities. Therefore, we provided a rationale for choosing

this approach rather than working with binary adjacency matrices,

which results in the suppression of information stored in the weights.

We believe that our findings altogether with the advantageous prop-

erties of EEG as a recording system, suggest that EEG has potential to

become a clinical diagnostic tool for dementia.
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