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Abstract

Technological advances have enabled profiling gene expression variability, both at the RNA
and the protein level, with ever increasing throughput. In addition, miniaturisation has
enabled quantifying gene expression from small volumes of the input material and most
recently at the level of single cells. Increasingly these technologies also preserve context
information, such as assaying tissues with high spatial resolution. A second example of
contextual information is multi-omics protocols, for example to assay gene expression and

DNA methylation from the same cells or samples.

Although such contextual gene expression datasets are increasingly available for both popu-
lation and single-cell variation studies, methods for their analysis are not established. In this
thesis, we propose two modelling approaches for the analysis of gene expression variation in

specific biological contexts.

The first contribution of this thesis is a statistical method for analysing single cell expression
data in a spatial context. Our method identifies the sources of gene expression variability
by decomposing it into different components, each attributable to a different source. These
sources include aspects of spatial variation such as cell-cell interactions. In applications to
data across different technologies, we show that cell-cell interactions are indeed a major

determinant of the expression level of specific genes with a relevant link to their function.

The second contribution is a latent variable model for the unsupervised analysis of gene
expression data, while accounting for structured prior knowledge on experimental context.
The proposed method enables the joint analysis of gene expression data and other omics
data profiled in the same samples, and the model can be used to account for the grouping
structure of samples, e.g. samples from individuals with different clinical covariates or from
distinct experimental batches. Our model constitutes a principled framework to compare the

molecular identities of these distinct groups.






Table of contents

List of figures

1 Introduction

2 Theoretical foundations

2.1

2.2

23

Gaussian Processes . . . . . . ... e

2.1.1
2.1.2
2.1.3
2.14
2.15
2.1.6
2.1.7
2.1.8
2.1.9

Linear least squares regression . . . . . . . . . . . .. .. ... ..
Bayesian linear regression . . . . . . . . ... ... ...
Predictive distribution in Bayesian Linear regression . . . . . . . .
Featuremap . . . . . . . . . ... .
The kernel trick . . . . .. .. ... .. o
Gaussian Process formalism . . . . . ... ... ... ... ...,
Kerneldesign . . . . . . . . . . .. ...
Hyperparameters optimisation . . . . . . . .. .. .. ... ....

Variance decomposition . . . . . . ... ... L0

Factor Analysis . . . . . . . . .. .

22.1
222
223
224
225
2.2.6

Graphical notations for probabilistic models . . . . . . . .. .. ..
Dimensionality reduction and latent variable models . . . . . . . .
Principal Component Analysis (PCA) . . . . ... ... ... ...
Probabilistic frameworks for linear dimensionality reduction . . . .
Hierarchical priors to model prior knowledge about the data

Approximate inference: variational methods . . . . . . . ... ...

A note on the connection between Gaussian Processes and Factor Analysis .

2.3.1
232

Model . . . . . . .

Inference . . . . . . . . ...

xXvii

0 00 g O LKt L



xii

Table of contents

3 Modelling cell-cell interactions from spatial gene expression data with spatial

variance component analysis

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Introduction . . . . . ..o
3.1.1 Spatial gene expressiondata . . . . . . ... ... L.
3.1.2 Modelling the spatial context . . . . . . .. .. .. ... ......
3.1.3 SVCA: Spatial Variance Component Analysis . . . . . . ... ...
SVCA: A spatial Gaussian Process model of gene expression variation . . .
3.2.1 Overviewofthemodel . . . . .. ... .. .. ... ... .....
3.2.2 Nomenclature and notation of the SVCA model . . . . . . ... ..
3.2.3 Definition of the covariance terms . . . . . . . .. ... ... ...
3.2.4 Model fitting - optimisation of hyperparameters . . . . . . . . . ..
3.2.5 Variance estimates . . . . . . . ... ...
3.2.6  Significance of the variance components . . . . . . . ... ... ..
3.277 Comparison withrelated models . . . . . . . ... ... ... ...
Validation of SVCA using simulations from the generative model . . . . . .
3.3.1 Simulation procedure . . . . . . .. .. ... oL
3.3.2  Accuracy of cell-cell interaction estimates . . . . . . ... ... ..
3.3.3 Statistical calibration . . . . . ... oL Lo Lo
3.3.4  Statistical power . . . . ... L
Benchmarking of SVCA in comparison to alternative linear regressions

34.1 Simulationsetting . . . . . . . .. ... Lo
34.2 Alternativemodels . . . . . ... ... ... oL
343 Results . . .. ...
Application of SVCA to Imaging Mass Cytometry breast cancer data . . . .
3.5.1 Experimental method and data processing . . . . . ... ... ...
3.5.2 SVCA variance signatures . . . . . . . . . . . ..o
3.5.3 Biological interpretation . . . . . . .. ... ... ...
Application of SVCA to a mouse hippocampus seqFISH data . . . . . . . .
3.6.1 Experimental method and data processing . . . . . ... ... ...
3.6.2 SVCA variance signatures . . . . . . . . . . . .. . ... ... ..
3.6.3 Biological interpretation . . . . . . . .. ... ...
Discussion . . . . . . . ...
3.7.1 Technical limitations . . . . . ... ... ... ... .......
3.7.2 Biological applications . . . . . .. ... ... L.
373 Conclusion . . . ... ...



Table of contents xiii
4 Biofam: a flexible framework for Factor Analysis models in biology 77
4.1 Introduction . . . . . . . . ... e 78
42 Model . . . . 81
4.2.1 Mathematical notation and naming convention . . . . . . . .. .. 81

422 Structured Sparsity . . . . .. ... 82

4.2.3 Element-wise sparsity . . . . . . . .. ... 83

4.2.4 Multiple data likelihoods . . . . . . . ... ... ... ... ... 85

4.2.,5 Handling missing values . . . . ... .. ... ... ... ..... 85

4.2.6 Modular implementation . . . . . ... ... ... ... ... ... 86

43 Inference . . . . . . . . . . .. 87
4.3.1 Posterior factorisation . . . . . .. ... 87

4.3.2 Non-Gaussian likelithoods . . . . . ... ... ... ... .... 88

4.4 Model Validation . . . . . ... ... L 91
4.4.1 Structured Sparsity . . . . . .. ... 91

442 Element-wise Sparsity . . . . . . . .. ... 94

4.4.3 Multiple data modalities . . . . . . ... ... ... L., 99

4.5 Computational cost and scalability . . . . .. ... ... ... .. ..... 100
4.5.1 Standard inference . . . . . ... ... ... L. 100

452 GPUoptimisation . . .. .. ... ... ... ... 101

4.6 Extension: Stochastic variational inference . . . . . . . ... ... ... .. 102
4.6.1 Natural gradientascent . . . . . . . .. .. ... ..o 102

4.6.2 Stochastic Gradientascent . . . . . . . ... ... ... ...... 103

4.6.3 Stochastic VB algorithm . . . . . . ... ... ... ... ... .. 104

4.64 Application . . . . . ... 106

47 DISCUSSION . . . . . ... e e 107
4.7.1 Comparison with other GFA implementations . . . . . . . ... .. 107

4.7.2 Comparison with alternative approaches . . . . . . . ... ... .. 109

4.7.3 Technical limitations and directions for future work . . . . . . . .. 111
Biofam applications 115
5.1 Biofamtools: visualisation and downstream analysis of the biofam results 115
5.2 Application of biofam to multi-omicsdata . . . . . . ... ... ... ... 117
52,1 Imtroduction. . . . . . ... ... ... 117

5.2.2 Datadescription and processing . . . . . . . ... ... ... .. 118

523 Biofamresults . . . ... ... L 119



Xiv Table of contents
5.2.4 Factor interpretation . . . . . . . . .. .. ..o oo 121
5.3 Joint analysis of multiple development stages of the mouse embryo . . . . . 126
5.3.1 Imtroduction. . . . .. ... . ... 126
5.3.2 Data description and processing . . . . . . . ... ... ... 126
533 Biofamresults . . . . ... ... 127
5.3.4 Factor interpretation . . . . . . . . .. ... ..o 128
535 Conclusion . . . . . ... 132
5.4 Future applicationsoutlook . . . . . . . ... ... .. ... .. 133
6 Concluding remarks 135
Appendix A Supplementary materials for SVCA 139
A.1 Methodologicalnotes . . . . . . . . ... .. .. ... ... 139
A.1.1 Gradient derivation for the cell-cell interactionterm . . . . . . . . . 139

A.1.2 Note on the marginalisation property and out of sample predictions
with SVCA . . . . . o 140
A.2 Signature robustness on real data using bootstrapping . . . . . .. .. ... 141
A.3 Comparison between variance components for both real data applications . 142
A.4 Note on the environmental term . . . . . . . ... ... 144
A.5 Variability of the variance signatures . . . . . . . . .. ... ... ... .. 145
A.5.1 Clinical covariates in the IMC application . . . . . . ... ... .. 145

A.5.2 Relationship to gene mean expression and variance for the IMC
application . . . . . . ... 145

A.5.3 Relationship to gene mean expression and variance for the seqFISH
application . . . . . ... 145
A.6 Cell permutation resultsinseqFISH . . . .. ... ... ... ....... 150
A.7 Manual gene annotation for the seqFISH dataset . . . . . . . ... .. ... 152
Appendix B Variational Inference beyond the mean field approximation 157
B.1 Optimisationof g(6) . . . . . . . . . . 158
B.2 Optimisation of the conditional distribution g(6|6;) . . . . . . . .. .. .. 159
Appendix C Variational inference with non-Gaussian likelihoods 161
C.1 Approach from Seeger and Bouchard (2012) . . . . . . . . ... ... ... 161
C.1.1 Poisson likelithood . . . . .. ... .. ... ... ... ..., 163

C.1.2 Bernoulli likelihood . . . . . . . . . . .. ... ... 163



Table of contents XV
C.2 Bernoulli case with the approach from Jaakkola and Jordan (2000) . . . . . 163
Appendix D BIOFAM variational updates 167
D.1 Variational Updates . . . . . . . ... ... ... .. ... ... ... 167
D.1.1 Latentvariables . . . . . . .. . ... ... ... ... ... ... 167

D.1.2 Spike-and-slabweights . . . . . .. .. .. ... .. oL 167

D.1.3 ARDprecision (alpha) . . . . .. ... ... ... ... ... 168

D.1.4 Noise precision (tau) . . . . . . . . . . .. .o 169

D.1.5 Spike-and-slab sparsity parameter (theta) . . . .. ... ... ... 169

D.2 Evidence LowerBound . . . . . ... ... ... ... L. 170
D.2.1 Contribution from the data likelihood (Gaussian case) . . . . . . . 170

D.2.2 Contribution from the KL divergence regulariser . . . .. ... .. 170
Appendix E Supplementary Analysis of the BIOFAM software 173
E.1 Identifiability of the latent structure for sparse and dense factors . . . . . . 173
E.1.1 Simulations with sparse factorsonly . . . . . ... ... ... ... 173

E.1.2 Simulations with dense factorsonly . . . . . ... ... ... ... 174

References

177






List of figures

2.1

2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1

3.2

3.3

34

3.5

3.6
3.7

3.8

Function-space view: Gaussian Processes regarded as a prior distribution

overfunctions . . . . . . ... L 12
Linear covariance function . . . . . . . . ... ... ... 14
Squared Exponential covariance function . . . . . .. ... .. ... ... 15
Sum of covariance functions . . . . . .. ... Lo 16
Product of covariance functions . . . . . ... ... Lo 16
Effect of the choice of hyperparameters on Gaussian Process predictions . . 17
Graphical model of probabilistic Principal Component Analysis (pPCA) . . 23
Graphical model for Bayesian Factor Analysis. . . . . .. ... ... ... 24
Graphical model for Bayesian Factor Analysis with ARD priors . . . . . . 26
Hinton plot of the weight matrix for a Factor Analysis model with ARD priors 26
Graphical model for Group Factor Analysis . . . . . . .. .. ... .... 27
Hinton plot of the weight matrix for Group Factor Analysis . . . . . . . .. 28
SVCA modeloverview . . . . . . ... ... .. ... 41
SVCA model definition . . . . . . . ... ... ... L. 43

Accuracy of SVCA cell-cell interaction variance estimates using simulations

from the generative model . . . . . . . ... ... L L oo 48
Statistical calibration of SVCA cell-cell interaction test using simulations

from the generative model . . . . . . ... ... ... oL, 49
Power analysis of SVCA cell-cell interaction test using simulations from the
generative model . . . . . ... L. 50
Simulation approach for comparing SVCA with alternative regression models 51
Accuracy of the SVCA cell-cell interaction estimates compared to alternative
regressionmodels . . . . ... L L 54
Spurious cell-cell interaction variance estimate as a function of mis-segmentation

effects for SVCA and alternative regressionmodels . . . . . ... ... .. 55



xviii

List of figures

3.9

3.10
3.11

3.12

3.13

3.14
3.15

3.16

3.17

3.18

3.19
3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

Error in estimates of cell-cell interaction effects for SVCA and alternative
regression models across multiple simulation settings . . . . . . ... ... 55
Example of visualisation of an Imaging Mass Cytometry image . . . . . . . 57
Mean Variance relationship for single cell expression levels in the IMC breast
cancerdata . . . . ...l 57
Effect of data processing on single cell expression profiles in the IMC breast
cancerdata . . . . ... 58

Effect of data processing on gene-gene correlations for the IMC breast cancer

data . . .. e 59
Spatial Variance Signatures for the IMC breast cancerdata . . . . . . . .. 59
Out of sample prediction accuracy for the IMC breast cancer data for SVCA
and alternative regressionmodels . . . . . . .. ... ... 60
Spatial variance signatures for the IMC breast cancer data with permuted
cell positions . . . . . . . .. 61
Uncorrelated noise captured by the environmental term for the IMC breast
cancer data with permuted cell positions . . . . . . .. .. ... ... ... 61
Coefficient of variation across images of the SVCA variance components for
the IMC breast cancerdata . . . . . . . .. .. .. .. ... ... .. 62
PCA analysis of spatial variance signatures for the IMC breast cancer data . 63

Correlation between average number of neighbours per cells and average
cell-cell interactions component across proteins for the IMC breast cancer data 63

Mean Variance relationship for single cell expression levels in the seqFISH

data . . ... 66
Effect of data processing on gene-gene correlations for the seqFISH data . . 67
Spatial Variance Signatures for the seqFISH dataset . . . . . . . ... ... 67
Out of sample prediction accuracy for the seqFISH hippocampus data for

SVCA and alternative regressionmodels . . . . . ... ... ... ... .. 68

Spatial variance signatures for the seqFISH hippocampus data with permuted

cell positions . . . . . . . . . 68
Gene families enrichment for SVCA variance components for the seqFISH
hippocampusdata . . . . . . . .. ... 69
Coefficient of variation across images of the SVCA variance components for
the seqFISH hippocampusdata . . . . . . ... .. ... ... ....... 71
PCA analysis of spatial variance signatures for the seqFISH hippocampus data 72



List of figures Xix

4.1
4.2
4.3
4.4

4.5
4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18
4.19

5.1

Overview of the biofammodel . . . . . .. .. .. ... ... ... .... 80
Overview of the downstream analysis of the biofam results . . . . . . . .. 81
Biofam full graphical model representing all optional hierarchical priors . . 86

Comparison of the Seeger and the Jaakkola lower bounds for the Bernoulli
likelihood . . . . . . . .. 91
Simulated sparsity structure for the structured sparsity test . . . . . . . .. 92
Graphical models for the different Factor Analysis models compared for the
structured sparsity test . . . ... L Lo 93
Structured sparsity test: structured sparsity inferred by the different Factor
Analysis models compared . . . . .. ... Lo L 94
Structured sparsity test: correlation between the simulated factors and
weights and values by all models compared . . . .. ... ......... 95
Graphical models for the different Factor Analysis models compared for the
element-wise sparsity test . . . . . . ... ... Lo 96
Element-wise sparsity test: distributions of the weights inferred by the com-
pared models in comparison with the true simulated weights for a simulation
with 3 factors of different sparsity levels . . . . .. ... ... ... ... 96
Element-wise sparsity test: distributions of the weights inferred by the
compared models for a simulation with 30 factors of different sparsity levels 97
Element-wise sparsity test: Correlation between the simulated weights and
factors, with the values inferred by the different models compared for a
simulation with 30 factors of different sparsity . . . . . . . ... ... ... 97
Element-wise sparsity test: Robustness of the weights inferred by the differ-
ent models compared for a simulation with 30 factors of different sparsity . 98
Comparison of biofam results with a Bernoulli and a Gaussian likelihood on
simulated binary data . . . . . . ... ... Lo 100
Comparison of biofam results with a Poisson and a Gaussian likelihood on
simulated countdata . . . . . ... ... Lo 100

Scalability of the biofam software compared to Group Factor Analysis (Lep-

pdahoetal,2017). . . . . . . . ... 101
Biofam performances with GPU optimisation . . . .. .. ... ... ... 101
Biofam performance with stochastic VB inference . . . . . . .. . ... .. 106
Quality of the Approximation provided by stochastic inference . . . . . . . 107

Overview of the biofam results in the application to the CLL data . . . . . . 119



XX List of figures
5.2 Robustness of the biofam results across multiple initialisations in the appli-
cationtothe CLLdata . . . . ... ... ... ... ... ........ 120
5.3 Accuracy of missing values imputation using biofam and alternative software
in the application tothe CLL data . . . . . . ... ... ... .. ..... 120
5.4 Sample representation using Factors 1 and 2 of biofam in the applications to
theCLLdata . . ... ... ... .. ... ... 121
5.5 Characterisation of Factor 1 of biofam in the application to the CLL data . . 122
5.6 Gene set enrichment analysis of the biofam factors in the application to the
CLLdata . . . ... ... e 123
5.7 Characterisation of Factor 5 of biofam in the application to the CLL data . . 124
5.8 Association of biofam factors with survival data in the application to the
CLLdata . . . ... . e 125
5.9 Association of biofam factors and clinical covariates with survival data in
the application to the CLL data. . . . . . . ... ... .. ... ...... 125
5.10 Biofam application to a gastrulation dataset: Overview of the biofam results 128
5.12 Biofam application to a gastrulation dataset: ordination of the cells along
Factor 1 and Factor 3, coloured by lineage. . . . . . . . ... ... ..... 129
5.13 Biofam application to a gastrulation dataset: Ordination of the weights
associated to Factor 1 and Factor 3 and Gene Set Enrichment Analysis for
the biofam weights of factor3 . . . . . . ... ... oo 130
5.14 Biofam application to a gastrulation dataset: interpretation of Factor5 . . . 130
5.15 Biofam application to a gastrulation dataset: ordination of the cells along
Factor 2 and Factor 4, coloured by lineage. . . . . . ... ... ... .... 131
5.16 Biofam application to a gastrulation dataset: Ordination of the weights
associated to Factor 2 and Factor4 . . . . . . ... ... ... .. ..... 132
5.17 Biofam application to a gastrulation dataset: ordination of the cells along
Factor 8 and Factor 9, coloured by lineage. . . . . . . . ... ... ... .. 132
5.18 Biofam application to a gastrulation dataset: Ordination of the weights
associated to Factor 8 and Factor9 . . . . . ... .. ... ... . ..... 133
5.19 Biofam application to a gastrulation dataset . . . . . ... ... ... ... 133
A.1 Analysis of the robustness of spatial variance signatures using bootstrapping
and t-SNE visualisation in the application to the IMC breast cancer data . . 141
A.2 Analysis of the robustness of spatial variance signatures using bootstrapping

and t-SNE visualisation in the application to the seqFISH hippocampus data 142



List of figures xxi

A.3 Comparison of SVCA cell-cell interaction estimate with the three other

model’s components in the application to the IMC breast cancer data . . . . 142
A.4 Comparison of SVCA cell-cell interaction estimate with the three other

model’s components in the application to the seqFISH hippocampus data . . 143
A.5 Effect of the environmental component on spatial variance signatures in the

application to the IMC breast cancerdata . . . . . . ... ... ...... 144
A.6 Principal component analysis of individual SVCA variance components in

the application to the IMC breast cancer data and comparison with clinical

COVATIALES . . .« v v v e i i e e e e e e e e e e 146
A.7 Comparison between cell-cell interaction components and mean expression

levels in the application to the IMC breast cancerdata . . . . . . . ... .. 147
A.8 Comparison between cell-cell interaction components and the standard de-

viation of gene expression levels across cells in the application to the IMC

breastcancerdata . . . . . . ... ... Lo 148
A.9 Comparison between cell-cell interaction components and mean expres-

sion levels/standard deviation of gene expression levels across cells in the

application to the seqFISH hippocampusdata . . . . . ... ... ... .. 149
A.10 Accuracy of out of sample predictions for the SVCA model and simpler

regression models for the seqFISH hippocampus data with permuted cells,

top 20 genes of the non-permuted signatures . . . . . . . . ... ... ... 150
A.11 Comparison between top 20 cell-cell interaction components with and with-

out cell permutations for the application to seqFISH hippocampus data . . . 151
A.12 Accuracy of out of sample predictions for the SVCA model and simpler

regression models for the seqFISH hippocampus data with permuted cells,

top 20 genes of the permuted signatures . . . . . . . ... ... ... ... 151
A.13 Accuracy of out of sample predictions for the SVCA model and simpler

regression models for the seqFISH hippocampus data with and without

permutedcells . . . . . . . . ... 152

E.1 Identifiability analysis. Correlation of the simulated weights with weights
inferred with models with and without spike-and-slab priors on weights and
latent variables. Sparse factors . . . . .. ... ..o 174
E.2 Identifiability analysis. Robustness of weights inference for models with and
without spike-and-slab priors on the weights and latent variables. Sparse
factors . . . . L. 174



xxii List of figures

E.3 Identifiability analysis. Correlation of the simulated weights with weights
inferred with models with and without spike-and-slab priors on the weights
and latent variables. Dense factors . . . . . . ... ... ... 0oL 175
E.4 Identifiability analysis. Robustness of weights inference for models with and

without spike-and-slab priors on the weights and latent variables. Dense factors 176



Chapter 1
Introduction

Analysing patterns of gene-expression variation across and within individuals is key to
understand the molecular basis of phenotypic diversity and diseases. Microarrays were the
first technology to provide genome-wide gene expression profiles, offering insight into gene
expression variation across individuals (Taub et al., 1983; Tarca et al., 2006). Their use for
differential expression analysis in case control studies has identified candidate molecular
determinants of human diseases (Frolov et al., 2003; Ritchie et al., 2015b).

Microarray protocols are targeted approaches and offer a limited detection range, due to
probe saturation as well as high background signal owing to cross-hybridisation. In contrast,
the rise of whole transcriptome sequencing provided higher resolution measurements (Wang
et al., 2009; Kukurba and Montgomery, 2015; Soneson and Delorenzi, 2013; Chu and Corey,
2012). The non-targeted nature of the approach, providing full transcript sequences, also
allowed the additional quantification of single nucleotide mutations (Quinn et al., 2013;
Kang et al., 2016), as well as post-transcriptional modifications such as alternative splicing
events (Marguerat and Béhler, 2010; Nachtergaele and He, 2017).

More recently, miniaturisation of the protocols and the ability to operate with low volumes of
input material has enabled the profiling of gene expression in single-cells (Tang et al., 2009;
Svensson et al., 2018b). The analysis of gene expression variation at this level has tremendous
implications in multiple fields of biology (Macaulay and Voet, 2014; Kolodziejczyk et al.,
2015; Wang and Navin, 2015). Among many other things, it provides a new understanding of
the composition of tissues in terms of cell types (Schelker et al., 2017; Hu et al., 2017; Chen
et al., 2017), provides insights in developmental and differentiation processes (Macaulay
et al., 2016a; Kumar et al., 2017; Griffiths et al., 2018) and enables us to study the dynamics



2 Introduction

of transcription (Rafalska-Metcalf et al., 2010; Skinner et al., 2016).

A myriad of new experimental techniques are being developed to measure gene expression
profiles in an ever-increasing diversity of contexts. Gene expression is increasingly measured
at multiple time points (Androulakis et al., 2007), with spatial resolution (Strell et al., 2018),
in the context of multi-omics studies (Hasin et al., 2017) and also across multiple organs
for the same samples (GTEx Consortium, 2013). Such contextual experiments provide
data with known categorical, hierarchical or continuous dependencies between individual
measurements. In spatial assays or time series for example, expression profiles are related
continuously by their spatial distance or by the time lapse between their measurement. In
multi-omics experiments, measurements fall into categorical data sources. Standard methods
for the analysis of gene expression variation are not designed to account for the new dimen-

sions created by this contextual information.

This PhD thesis is concerned with the development of adapted statistical tools to explicitly
model this contextual gene expression data, focussing on probabilistic generative models.
Generative models are an ideal framework to encode our assumptions about the relationship
between observations, including those due to the experimental context, such as the measure-
ment time or spatial location. The probabilistic formulation provides a rigorous framework
for inference, where objective functions such as the data likelihood have a well-defined
mathematical interpretation, and accounts for uncertainty about the model parameters in a

principled manner.

The key contributions of this thesis are twofold. First, we present Spatial Variance Com-
ponent Analysis (SVCA), a model for the analysis of spatial expression data. Most of the
current single-cell technologies require to first isolate the cells from their native context and
subsequent analysis therefore ignores their spatial arrangement in the tissue of origin (Hu
et al., 2016). This is an important limitation, as tissue function relies on interacting cells
rather than isolated components. Technological advances for single-cell expression profiling
in tissue context (Strell et al., 2018) are now bringing an opportunity to relate single-cell
expression variation to the spatial structure of tissues, and in particular to model cell-cell
interactions. At the same time this creates a need for principled statistical tools to account

for spatial information in the analysis.



SVCA is a statistical model that decomposes gene expression variation in relation to the
cells’ spatial context. Specifically, it is based on an additive Gaussian process to model gene
expression variation as resulting from multiple drivers, some of which dependent on the
spatial context (e.g. cell-cell interactions). The generative modelling approach enables us to
encode flexible hypotheses about the effect of the spatial context on gene expression level,
as well as other sources of variations. SVCA infers the relative importance of the spatial
context as a determinant of gene expression variation, and in particular quantifies the effect

of cell-cell interactions.

The second contribution of this thesis is BIO-Factor Analysis Model (biofam), a dimension-
ality reduction method for the exploratory analysis of gene expression and other biological
layers measured in a multi-omics context (Hasin et al., 2017), or in multiple tissues or
sample types (GTEx Consortium, 2013). Biofam is a latent variable model of the Factor
Analysis family. High dimensional gene expression data is modelled as arising from the
additive effects of a small number of latent factors. These factors are often interpretable as
representing the activity of known biological processes. This approach is motivated by the
observation that gene expression variation is highly structured (low-rank) due to genes acting

in a coordinated manner (Szklarczyk et al., 2017).

In biofam, the generative probabilistic modelling approach enables us to model explicitly
that the drivers of gene expression variation (i.e. the latent factors) may themselves be
context-dependent (e.g. tissue-specific pathways). This is achieved by using hierarchical
Bayesian priors that are structured to reflect prior knowledge about the data context. A
Bayesian inference scheme then discriminates automatically between context-dependent
and context-independent factors. Biofam unifies existing Factor Analysis models within a
coherent inference and software framework, with the addition of new model features. It is
powered by an efficient implementation and inference method and comes with user-friendly

tools for downstream analysis and visualisation of the results.

In Chapter 2, we lay the theoretical foundations of the modelling approaches forming the
core of SVCA and biofam models.

In Chapter 3, we present SVCA. We first introduce the biological context with a short review
of the experimental and computational state of the art in spatial gene expression analysis.
We then describe the SVCA model in detail, highlight its differences with related models,



4 Introduction

and validate it on simulated data. Finally, we present applications of SVCA to two different
biological systems and data from different technologies and discuss the biological relevance
of the results.

In Chapter 4, we present biofam, a modular software that allows to fit existing Factor Analysis
models as well as new extensions of those. We validate our model using simulated data,
highlighting strengths and weaknesses of the method in different simulation settings. We
then demonstrate the efficiency of our inference scheme and introduce an extension using

stochastic inference for future applications of biofam to even larger datasets.

Chapter 5 illustrates two use cases of biofam, first on a multi-omics dataset, second on
data consisting of distinct sample groups corresponding to different biological contexts. We
demonstrate that biofam is a powerful tool for the exploratory analysis of data in a structured
context, capable of providing a comprehensive overview of interpretable drivers of variation
in a single unsupervised analysis. We reproduce multiple results from the literature and show

that biofam can be used to unveil novel molecular drivers of heterogeneity.

Finally, Chapter 6 gives a summary of this thesis and an outlook of future research.



Chapter 2
Theoretical foundations

This chapter introduces the two main classes of Machine Learning models this thesis is
based on: Gaussian Processes and Factor Analysis, which we first introduce independently,
respectively in Section 2.1 and Section 2.2, before addressing a connection between these
models in Section 2.3. The aim is to lay out the conceptual foundations of the specific

modelling approaches developed in later chapters.

2.1 Gaussian Processes

The first part of this chapter introduces Gaussian Processes (GPs), a class of kernel methods
of broad applicability in Machine Learning. I first introduce GPs from the perspective of
linear regression, which can be regarded as a special case of the more general class of
Gaussian Process regression models. This introduction is largely inspired from the Gaussian
Process textbook of Rasmussen and Williams (2006), which may be consulted for further

explanations or references.

2.1.1 Linear least squares regression

Let us consider the task of predicting the value of a one dimensional output variable y from a
D-dimensional input x. In linear regression, we model the output variable as a linear function

f of the input variable x, assuming additive Gaussian noise &€:

D
y:f(x)+8:Zxdwd+8:xTw+8 (2.1)
d=1
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Here, x = {x4}4¢[1.p] is the vector of input variables, w = {wy }4c[1.p] is the vector of the
model parameters, controlling the effect size of each input variable. &€ ~ .4 (0,62) is a
Gaussian observational noise, with residual variance 682, which results in the following

likelihood for every data point: p(y|x,w) = A" (y| ZdD:1 XqWy, Gg)

Given N observed samples, we note Y the vector of length N of their output values and X
the matrix of dimensions N x D of their input features. Fitting a linear regression consists in
determining the value of the vector w which maximises the likelihood of the data given the

independent identically distributed Gaussian noise:

N
P(Y|X,w) =[]P0ilXi;,w) = A (Y|Xw,021) (2.2)

i=1
Writing down the log of this likelihood, we find that maximising the data likelihood is
equivalent to minimising the sum of the squared differences between the true values of the

target variable y and the values predicted by the linear model:

1 N
InP(Y|X,w) o< ~2g2 Z(yi —Xi,;w)2 (2.3)
€ i=1

=
This is the quadratic loss function used in least squares regression. The fitted weight vector
W that maximises the data likelihood can be used to predict the output value y* given the

input x* of a test datapoint.

2.1.2 Bayesian linear regression

As seen before, the solution to the least squares regression problem corresponds to the
maximum likelihood estimate of the regression weights assuming a Gaussian likelihood.
Alternatively, one may consider a Bayesian analysis of the linear regression, where the
weight vector w is modelled as a random variable with a Gaussian prior distribution P(w) ~
A4(0,%,,). The Bayes rule gives rise to the posterior distribution of w given the data and the
prior distribution (Eq. 2.4). The computation is analytically tractable here because a product
of two Gaussian probability density functions (pdfs) is proportional to a Gaussian pdf, and
the denominator can be rewritten as a convolution between two Gaussian pdfs which is also
proportional to a Gaussian pdf (Rasmussen and Williams, 2006, Chap. 2). The resulting
posterior distribution is the following Normal distribution':

I As the posterior distribution is from the same type as the prior, we say that the Gaussian prior distribution
on the weights is conjugate for the Gaussian likelihood.



2.1 Gaussian Processes 7

P(Y|X,w)P(w)
[, P(Y|X,w)P(w)dw

:Jy(w

The hyperparameters oz and X,, are fixed and chosen a priori. The problem of their optimisa-

Pw|Y,X) =

(2.4)

1 .
— (027X +3,") ' XTY,0,2X7X +2;1)

€
tion 1s addressed in Section 2.1.8.

Note: Maximum A Posteriori and Ridge regression

Note that in the special case of an independent prior on the regression weights, P(w) ~
N (0,62I), the Maximum A Posteriori (MAP) solution of the Bayesian linear regression
corresponds to the solution of the linear regression using Ridge regularisation. This can be
shown by taking the log of the Bayes rule for P(W\Y X), which gives the objective function
of Ridge regression, where the penalisation term 5 2 Yo d—1 wfl comes from the Gaussian prior

on w:

N

1 D
2 2
In(P(w|Y,X)) ,-:z Xi.w)" — 202 dz1 wy (2.5)
This highlights the link between standard regularisation methods in linear regression and

Bayesian analysis.

2.1.3 Predictive distribution in Bayesian Linear regression

Given test data points with input matrix X*, the Bayesian treatment of linear regression
gives rise to a predictive distribution for the output vector y* by averaging the distribution
P(y*|X*,w) across all possible values of w given the posterior distribution of Equation 2.4:

P(YIX*,X,Y) = / PO X*,w)P(w]X,Y)dw
w
1 *T 1 T - T
—xT(5x"x+x,') Xy, (2.6)
GS GE

1 —1
O¢

Using matrix inversion lemmas and linear algebra, this predictive distribution may be rewrit-

ten as on Equation 2.7 (Rasmussen and Williams, 2006, Chap. 2), where, the input X and X*
only appear in the inner products X2, X7, X*2, X*T and X*%,, X7 .
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-1
PO X* X, Y) =N <y* Xz, X" (X2, X" +0621) Y,

2.7)
X2, X7 - X*,X (X,X" +621) " XZWX*T)

The importance of this identity will become clear in Section 2.1.5 when we show how this

linear modelling framework can be extended into Gaussian Process regression.

2.1.4 Feature map

A major limitation of linear regression is the restrictive assumption of a linear relationship

between the input and the output variables.

One way to overcome this limitation is to transform the D dimensional input into a set of
features of higher dimension P > D. For example, if the relationship between an input x and
an output y resembles a polynomial function, one can fit a linear regression on the powers
of x: ¢(x) = {1,x',x?,x%,...}. The function ¢ is commonly called a feature map and its

components ¢: {do(x) = x°, ¢ (x) = x, ¢2(x) = x?, ¢3(x) = x*} basis functions.

One can then model non-linear functions of the input using standard Bayesian linear re-
gression on the features defined by the mapping function ¢. The predictive distribution of

Bayesian linear regression in this feature space becomes:

* | vk * * T T 2 -1
POMIXX,Y) = A (6710 (X)Z00 (X)T (0 (0 T0 (X) +621) Y, s

0 (X*) 0 (X*) =0 (X 200 () (6 ()20 ()T +21) 9.(X) 2 (X))

where the features appear in the equations in the same inner products as the input in Equa-
tion 2.7.

2.1.5 The kernel trick

In all quantities that need to be computed to evaluate the marginal likelihood or calculate
the predictive distribution, the dependency to the data can be expressed in terms of the inner
product ¢ (X)X,,¢(X)T. This observation is key, as for some complex transformations ¢, this

inner product will be easier to compute than the explicit features.
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Illustration with a feature space of infinite dimension

In order to illustrate the importance of the observation thereof, let us consider the following
basis functions (Xing, 2015; MacKay, 1998):

@@):eMJQ—@;;»%> 2.9)

We consider a linear regression with J basis functions: y = Z{:l 0i(x)w; + €, and put the
2

following priors on the weights: w; ~ .4(0, %I ). In the predictive distribution, the input

appears in the following inner product ¢ (X)X, ¢ (X)T, with:

o2 J
(9(X)Z,0 (X J:%Z 0; (x) i (x;), Y (k, 1) (2.10)
Let us now define an infinite set of basis functions ¢;, by letting ¢; | —¢; = 1/J taking J — oo,
with the limits cg = —o0 and ¢ = o°. The inner product defined above becomes:
; o2 d
(6(X)Zvo(X)"),, = lim Y 0i(xk) 9i(xr)
’ —e J 5
* (% —c)? (x—¢)
= 7wexp (— e exp| — TE de (2.11)
(o — x1)*
—=\/mlc2exp (— 2

Once simplified, this inner product is easily computable, despite the use of a feature space of
infinite dimension. This is a first example of what we will call the kernel trick (Michael 1. Jor-
dan, 2004), where a simple inner product is computed and used for prediction in Bayesian
linear regression, instead of the explicit features ¢ (x) themselves. In general we will use the

notation (@ (x); ¢ (x’)) for inner products in the feature space.

We will now formally introduce the concept of covariance functions and their link to this
inner product, and show how the kernel trick permits the extension of linear regression to

Gaussian Process regression.

Duality between feature maps and covariance functions

Given a linear model ¥ = ¢ (X)w + €, with Gaussian likelihood P(Y |w) = .4 (Y |Xw, 62I)
and the prior distribution P(w) ~ .47(0,X,,), marginalising over the weights gives rise to the
following marginal likelihood:
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P(Y)= /W P(Y|w)P(w)dw (2.12)

= (0,0(X)Z0 (X)" + 021)
It appears from this marginalisation that the covariance of Y is a function of the input,
parametrised by the inner product ¢(X)Z,,¢(X)” introduced in Equation 2.7. We call this
inner product (¢ (X);¢(X’)) = ¢(X)X,,¢(X")T a covariance function or kernel.

Noting x the definition domain of the input space, any semi-positive definite function
k: x?> — R gives rise to a valid covariance. One can show that for any such k, there ex-
ists a Hilbert space ¢ and a (generally non-unique) feature map ¢ : Y — .7 such that
V(x,x') € %2, k(x,2') = (¢(x); 9 (x')),, (see the Reproducing Kernel Hilbert Space prop-
erty (Carmeli et al., 2005; Gretton, 2017)). The Mercer Theorem (Mercer, 1909; Minh
et al., 2006) enables us to reformulate explicitly any covariance function as an inner product,

thereby exhibiting a feature map ¢.

In practise, this means that the choice of a covariance function k defined in the input space
circumvents the need to define a feature map ¢ and enables us to work implicitly in very rich
and complex feature spaces. Using this duality is often referred to as the kernel trick (Michael

I. Jordan, 2004) and it is at the core of the Gaussian Process framework (Section 2.1.6).

2.1.6 Gaussian Process formalism
Definition

A Gaussian Process is a stochastic process (an infinite collection of random variables),
of which any finite subset has a joint Normal distribution. Each random variable i in
the collection is typically associated to an input x;, and the Gaussian Process is entirely
characterised by the mean function m(x) and the covariance function or kernel k(x,x’) a
semi-positive definite function defined for any pair of inputs x and x’. We will write the

Gaussian Process f as:

f(x) ~ GP(m(x),k(x,x")) (2.13)

For N data points with an input matrix X of dimension N x D, we write m(X) the vector
of the values taken by the mean function, and K (X, X) the covariance matrix of dimension
N x N made of the values of k(x,x) for all pairs of points. We note f = {f(x;) };c[i,v] the
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subset of the Gaussian Process f for these inputs. The random vector f follows the following

Normal distribution:

fro A (m(X),K(X,X)) (2.14)

In this thesis, we will always consider noisy observations: Y = f+ ¢, with € ~ .4/(0, 621).
We will marginalise over the noise-free observations f and directly consider the marginal

distribution:

Y ~ A (m(X),K(X,X)+ 02 (2.15)

In the rest of this thesis, we assume m(x) = 0.

Weight-space view: generalisation of Bayesian linear regression

In Section 2.1.5, we have derived the duality between semi-positive definite covariance
functions and feature maps. Based on this duality, Gaussian Processes can essentially be
regarded as a generalisation of Bayesian linear regression, where the feature space is implicit
and the covariance function becomes the main object of interest. Different choices of the
covariance function model our assumptions about how the similarity between inputs relates
to how similar the output variables are. The predictive distribution can be expressed as a

function of this covariance function like in Bayesian Linear regression:

PO, X,Y) = A (v |K (2, X) (K(XX) +621) Y, o6
K(x* x") — K", X) (K(X,X) +621) " K(X,x)) '

Function-space view

Alternatively, the so-called function space view interprets Gaussian Processes as a distribu-

tion over functions.

In the input space, we model the target variable y as linked to the input x by a function f and
the observational noise: y = f(x) + &, with € ~ .#7(0,062). The aim of a supervised machine
learning task is to infer from the data the form of this unknown function f. Defining a
Gaussian Process can be regarded as defining a prior distribution over regression functions f:
f(x) ~ GP(m(x),K(x,x")), so that the marginal distribution of ¥ over all possible functions
f given this GP prioris Y ~ A (m(X),K(X,X) + 62I).
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Given a training set, the predictive posterior P(y*|x*,X,Y), can be interpreted as the posterior
distribution of f given the observed data: f*(x*|X,Y). In the case of noise-free observations
(62 = 0), this posterior distribution would restrict the space of possible functions f to
functions going through the observed data points, while modelling observational noise

relaxes this constraint (Fig. 2.1).

-2

Fig. 2.1 Function space view of Gaussian Processes. Left: functions f : x — y drawn
from a Gaussian Process prior using a squared-exponential kernel with length scale 2 and
scaling hyperparameter 1 (see Section 2.1.7). Middle: noise-free posterior over functions
after the observation of three data points. Right: posterior over functions when modelling
observational noise with a noise scaling hyperparameter of 0.1.

Example: modelling spatial or temporal context

Given a time series dataset or a spatially resolved dataset such as a biological image, it is
often difficult to know in advance if and how space or time specifically affects the data, or to

encode these assumptions in conventional linear covariates.

The GP framework allows for making flexible assumptions about how the covariance of the
output variables may relate to their relative measurement time or spatial location, by choosing
a smooth and flexible covariance function. A common choice of covariance functiozn for this

purpose is the squared exponential kernel (see Section 2.1.7): cov(y;,y;) = exp T’zf, where

d; j represents the distance between data points in time or space (Rizvi et al., 2017; Hensman
et al., 2015, 2013b; Groot et al., 2011; Roberts et al., 2012; Niu et al., 2016).

2.1.7 Kernel design

In Gaussian Processes, the covariance function (or kernel) is the object of primary interest

and its choice is the cornerstone of the design of a Gaussian Process model. As we have seen,
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it corresponds to the choice of a feature map in the weight space view, while in the function

space view, it defines our prior over the function f we are trying to infer.

The choice of the covariance function encodes our intuition about how correlated a pair
of output variable is as a function of their similarity in the input space. For example, in a
time series application, one might assume that the similarity between two output variables
yi and y; will only depend on how far apart in time they were measured, irrespective of the
specific measurement time. This means that the covariance between y; and y; should only
depend on the difference between the two time points #; and #;: cov(y;,y;) = k(¢; —t;). This
assumption will suggest the use of a type of covariance functions called stationary, which
fulfils this translation invariance requirement. In contrast, other covariance functions will be

more suited to periodic signals.

Extensive lists of usual covariance functions, as well as general recipes for designing and
combining covariance functions can be found in Rasmussen and Williams (2006), Chap. 4,
and Duvenaud (2014). In this thesis, we will only present the two covariance functions of

interest for the model of Chapter 3.

Linear covariance functions

Linear covariance functions derive directly from the marginalisation of the weights in
Bayesian linear regression and are of the form: k(x,x’') = 6?x”x/, where 2 is a scaling
hyperparameter, corresponding to the following independent prior on the Bayesian regression
weights: w ~ .4 (0,621).

The corresponding feature space is the non-transformed input space (or a feature space of
finite dimension with explicit basis functions), and in the function-space view, this corre-

sponds to a prior over all linear functions of the input x (Fig. 2.2).

One example for the use of linear covariance functions in bioinformatics, is to model
population structure based on genotype in linear mixed models for Genome Wide Association
Studies (Casale, 2016; Widmer et al., 2014; Li and Zhu, 2013).
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Fig. 2.2 Linear covariance function: k(x,x’) = o2x”x’. Left panel: values of the covariance

function k(x,x’ = 1). Right panel: Samples from the Gaussian Process (i.e. samples of
the mapping function f between x and y in the function-space view). Solid line: o = 0.5.
Dashed line: 0 =2

Squared Exponential covariance functions

Squared exponential covariance functions are of the form k(x,x') = 62 exp(—d?/21?), where
d is the Euclidean distance between x and X, o is a scaling hyperparameter, and [ a length

scale parameter which controls the smoothness of the Gaussian Process (fig. 2.3).

There are multiple ways to exhibit non-unique feature spaces and maps corresponding to a
squared-exponential covariance function. Section 2.1.5 gives a possible set of basis functions
and the Bochner theorem offers a principled way to exhibit another possible feature space
of infinite dimension using Fourier transforms (Bochner, 1959; Samo and Roberts, 2015;
Oliva et al., 2016). Squared exponential covariance functions are infinitely differentiable and
correspond to very smooth functions in the function space view. This kernel can be used
for the approximation of a wide variety of non-linear functions as shown in Micchelli et al.
(2006) (Fig. 2.3). Another important property of squared exponential covariance functions is

that they are stationary: k(x,x") = k(x —x/).

In bioinformatics, squared-exponential covariance functions have been used to analyse
gene expression patterns in time (Kalaitzis and Lawrence, 2011; Lawrence et al., 2007;
McDowell et al., 2018), sometimes in combination with other covariance functions to detect
periodicity (Durrande et al., 2016), or in GP mixtures to model perturbations or branching
processes (Yang et al., 2016; Lonnberg et al., 2017; Boukouvalas et al., 2018). More recently,
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Fig. 2.3 Squared Exponential covariance function: k(x,x') = o2exp(—(x —x')?/I?). Left
panel: Covariance value as a function of the distance between x and x’. Right panel: samples
from the Gaussian Process (i.e. samples of the mapping function f between x and y in the
function-space view). Solid line: [ = 0.3. Dashed line: [ = 2.

Svensson et al. (2018a) used a squared-exponential kernel to model gene expression patterns

in space.

Combining covariance functions

Two important properties of covariance functions is that sums and products of covariance
functions are covariance functions. We can therefore build more complex covariance func-

tions by combining existing ones.

Interpreted in feature space, the sum of two covariance functions corresponds to the concate-
nation of all the features associated to each covariance function, modelling our assumption
of the additive effect of all features. This can be shown by writing the covariance functions
in terms of inner products in the feature space. In function-space view, the sum of two
covariance functions k4 and kp corresponds to summing the functions with respective priors
GP(0,k4) and GP(0,kg), as illustrated in Figure 2.4 with the sum of a linear and a squared
exponential covariance function. This is because the sum of two independent variables A and
B following multivariate Normal distributions .4 (0,k4) and .4 (0, kg) follows a multivariate

Normal distribution with covariance k4 + kp.

If we assume that the output variable y is affected by two different inputs x4 and xp with
independent additive effects, we can use two covariance functions k4 and kg, and sum their

contributions: cov(y;,y;) = ka((xa)i, (xa);) +ks((x)i,(xp);). This is useful when using
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Fig. 2.4 Sum of a linear covariance function with scaling hyperparameter c = 0.5 and a
squared exponential with scaling hyperparameter o = 1 and length scale /. Left panel: value

of the resulting covariance function k(x,x’ = 1). Right Panel: Samples from the Gaussian
Process. Solid line: [ = 0.3 Dashed line: [ =2

Gaussian Processes to disentangle the contributions from multiple sources of variation (Hoft-
man and Schadt, 2016), as we will do in Chapter 3 (see also Section 2.1.9).

1.0

104

Fig. 2.5 Product of a linear covariance function with scaling hyperparameter ¢ = 0.5 and a
squared exponential with scaling hyperparameter o = 1 and length scale /. Left panel: value

of the resulting covariance function k(x,x’ = 1). Right Panel: Samples from the Gaussian
Process. Solid line: / = 0.3. Dashed line: [ =2

The multiplication of two covariance functions corresponds to the concatenation of the
products of all pairs of features from the two feature spaces, which models interactions

between them. In the function-space view, the product of two covariance functions, illustrated

in Figure 2.5 with the example of the product of a linear and a squared exponential covariance

function, does not have an analogous interpretation as a product of function. It is not
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surprising, as the product of two Normally distributed variables does not in general follow a

Normal distribution.

2.1.8 Hyperparameters optimisation

Flexible covariance functions like the squared exponential kernel constitute a great modelling
tool by enabling us to work in a rich feature space of infinite dimension with only simple
computations in the input space. However, these functions also depend on hyperparameters
such as the scaling hyperparameter and length scales seen before. The choice of these
hyperparameters, as well as the noise hyperparameter o, have pronounced effects on model

predictions (Fig. 2.6), hence principled strategies are needed for their choice or optimisation.

Fig. 2.6 Gaussian Process predictions for different hyperparameters. The data points are gen-
erated from a joint Normal distribution with covariance cov(y;,y;) = exp(—(x; —x;)?/21?) +
0.16; ;. The lines show the mean of the GP predictive distribution with covariance functions
k(xi,x;) = exp(—(xi —xj)?/21%) +0.18; j. Left panel: I = 1 (ground truth), middle panel:
[ = 0.2 (overfitting), right panel: / =4 (under fitting)

Type-1I maximum likelihood using gradient ascent

In the following, we denote 6 the vector of all hyperparameters for a given covariance
function k, as well as the noise hyperparameter o¢. In a full Bayesian treatment, we would
use another level of prior distribution P(6) on the elements of 6 and use the Bayes rule to
compute the posterior distribution:

P(Y|X,6)P(6)

PO, X) = J,P(Y|X,0)P(6)d6 @17

However, a simpler alternative which is widely used in Gaussian Process regression (Pe-
dregosa et al., 2011; GPy, 2012) is to simply maximise the marginal likelihood P(Y|X, 0)
with respect to 6. Note here that P(Y|X, 0) is a marginal likelihood because, in the weight
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space view, the weights of the linear mapping in the feature space have been marginalised over,
while in the function space view, the noise free variables f have been marginalised over (see
Section 2.1.6). We call this optimisation procedure type II maximum likelihood (Rasmussen
and Williams, 2006, Chap. 5). In Bayesian terms, this also corresponds to a Maximum A
Posteriori (MAP) estimate using a uniform prior on 8. MAP estimates with different choices
of priors can also be derived and will only add a regularisation term to the log likelihood (e.g.

a quadratic regularisation for a Normal prior).

An appealing property of Gaussian Processes is that the log marginal likelihood and its

gradient can be computed in closed form (Rasmussen and Williams, 2006, Chap. 5):

1 1
InP(¥[X,0) = —>¥" (K) 'Y — SIn|K| - gann
9K

2.18)
J IR o1 (. K (

using the short notation K = K (X, X) + o?1.

The hyperparameters 6 are then typically optimised using standard gradient ascent techniques
such as lbfgs (Bonnans et al., 20006).

Computational complexity

Evaluating the log marginal likelihood and its gradient (Eq. 2.18) involves computing the
inverse of the covariance matrix K (X,X) + 621 of dimensions N x N. This is the bottleneck

of GP regression and scales typically in N>.

For large datasets (large N), approximate methods have been proposed to make this in-
ference faster. For example, Sparse Gaussian Processes (Hensman et al., 2013a; Snelson
and Ghahramani, 2006; Quifionero-Candela and Rasmussen, 2005) approximate the full
dataset with inducing variables, which consists in a small number M < N of well chosen
pseudo input points which best represent the data. The position of this pseudo input is
typically optimised in a probabilistic manner and the complexity is typically reduced to M>.
Alternatively, random feature methods (Rahimi and Recht, 2008; Oliva et al., 2016) use the
duality between covariance function and feature space, to approximate a Gaussian Process

by a linear regression with a relatively small number of features, which are chosen in a
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probabilistic manner so as to provide the best kernel approximation. These methods typically

scale linearly in the number of data points N.

2.1.9 Variance decomposition

In many biological applications, supervised machine learning is not used for the main purpose
of predictions, but rather in order to find out what input variables are predictive of the output
variable, so as to unveil the drivers of variation of the output variable Y (Hoffman and Schadt,
2016). Gaussian Process regression is well suited for that purpose, and provides a principled

way to assess the variance explained by multiple groups of input features.

Let us consider an additive model: Y ~ .#(0,Y,; 67K;(X;,X;) + 621), where multiple groups
of input variables X; are linked to the output Y via the respective covariance functions GizK,-
We explicitly represented the scaling hyperparameters val. and Gg but each kernel might
have additional hyperparameters such as a length scale for ,a squared exponential covariance
function. These hyperparameters are optimised by maximising the marginal likelihood seen
before for a given training set. Note that the use of a scaling hyperparameter ensures that if a
group of input X; does not explain any variance of Y, the corresponding covariance function

may take a constant value of zero.

The variance explained by each covariance term K; can then be estimated using Gower
factors (Searle, 1982; Kostem and Eskin, 2013), which are defined as follow:

oK) = Zilpff)

where Iy is the identity matrix of dimensions N X N and Jy is a matrix of ones of dimensions

, with P = Iy — Jy (2.19)

N x N. The Gower factor of a covariance term computes the expected variance of a random
variable which is Normally distributed with the considered covariance. In other words, the
Gower factor of each covariance term computes the amount of variance of ¥ across samples
explained by the corresponding group of features X;: for Y ~ .47(0,K),G(K) = E[var(Y)].

2.2 Factor Analysis

The second part of this chapter introduces linear latent variable models for dimensionality
reduction, and more specifically Bayesian Factor Analysis. We show how extending this

modelling approach using hierarchical priors is a natural way to encode prior knowledge
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about data context and we introduce Variational Bayesian inference, an approximate infer-
ence method which is commonly used when the posterior distribution over parameters is

intractable.

In this section and in Chapter 4, probabilistic models are illustrated with Bayesian networks
which express all conditional dependencies between the parameters of the models and the

observed variables.

2.2.1 Graphical notations for probabilistic models

Notations were adapted from Dietz (2010). The different types of model variables are
represented with different types of nodes in the network; nodes repetitions are expressed with
plate notations and the conditional dependency between nodes is expressed with directed

arrows:

Observed variables @

Probabilistic parameters
Deterministic hyperparameters

Repetition of node 6, for n € [[1;N]

N
Conditional dependency between nodes: . @
P(Y,0)=P(Y|0)P(6)
For simplicity, deterministic hyperparameters are only represented on graphical models when,

although not modelled as random variables, they are optimised using Maximum Likelihood,

typically in an Expectation-Maximisation scheme.

A more complete factor graph notation (Loeliger, 2004; Kschischang et al., 2001) would
represent all components of the model including the prior distributions used and any function
that couples the random variables. In this thesis, we prefer to give those informations in

separate equations to avoid cluttering the graphical notations.

2.2.2 Dimensionality reduction and latent variable models

Many biological datasets, such as transcriptomics and proteomics are high dimensional (large

number of features), but their variability is very structured: for example a given biological
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process typically involves multiple interacting genes which vary in a coordinated manner (Ma
and Gao, 2012; Margolin et al., 2006; Markowetz and Spang, 2007; Komili and Silver,
2008; Van Dam et al., 2018; Markowetz, 2010). This redundancy in the data motivates and
permits the use of dimensionality reduction techniques (Van der Maaten et al., 2008) for the

unsupervised analysis of high dimensional biological data.

The aim of dimensionality reduction is to explain a dataset of dimensionality D (number
of features) with a small number K of latent (hidden) variables. We assume that there is a
mapping function ® between the low dimensional space and the high-dimensional space,
which typically depends on some parameters ® (Eq. 2.20). The inference process consists in
learning the values of the latent variables and the values of the mapping function parameters

® which best explain the data.

Y =g (2) (2.20)

Y is the dataset matrix with dimensionality N x D, N is the number of samples and D the

number of features. Z is the latent variable matrix of dimension N x K.

Dimensionality reduction techniques discover the hidden structure of a high dimensional
dataset. In a biological context, latent variables can reflect biological processes or technical
factors (Stegle et al., 2012; Leek and Storey, 2007). The value of a latent variable z,, x
quantifies the strength of the effect of latent variable k£ on sample n, while the mapping

function models how it affects the different data features.

2.2.3 Principal Component Analysis (PCA)

The most widely used dimensionality reduction technique is Principal Component Analy-
sis (Hotelling, 1933; Ringnér, 2008; Pearson, 1901). PCA assumes that there exists a linear
mapping between the latent variables Z (the principal components) and the data Y (Eq. 2.21):
Y =ZW, where W is a weight matrix of dimensions K X D. Each parameter wy 4 of this

linear mapping corresponds to the loading of the principal component k on the feature d.

K
Ynd = Y InjWid (2.21)
k=1

In its minimum error formulation, Principal Component Analysis aims at finding the values of

Z and W which best explain the data in terms of mean squared error between the observations
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and the model predictions (Eq. 2.22). It can be shown that a solution for Z is the eigenvectors
of the data covariance matrix (samples times samples) for the K biggest eigenvalues and
the corresponding weight matrix W is the pseudo-inverse of the projection matrix on these
eigenvectors (Richardson, 2009; Bishop, 2006, Chap. 12). This provides a deterministic

inference method used in PCA, which adds an orthogonality constraint on the latent variables.

2

A 1 N K

Z,W = argmax — Z Ynd — Z Znk X Wid (2.22)
zw N5 < i=1

A linear mapping between the latent space and the data space has the advantage of yielding
results which are in principle interpretable. Inspection of W, . will reveal families of genes
which are jointly affected by principal component k. Providing that the data is already
normalised for technical confounders, these families of genes will hopefully correspond to
gene sets linked to known biological processes, enabling a biological interpretation of the
corresponding latent variable. This inspection step can be further automatised with standard
tools such as Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005).

2.2.4 Probabilistic frameworks for linear dimensionality reduction

As such, PCA does not offer a principled way of modelling prior information about the data
and the data context, and has additional limitations such as the inability to cope with missing
values in the data. To address this, multiple probabilistic models for dimensionality reduction
have been proposed based on the linear mapping of PCA (Cunningham and Ghahramani,
2015), which differ by the specific choice of prior distributions on the model random
parameters. The posterior distribution of the model parameters can be computed using the
Bayes rule (Eq. 2.23), either in closed form or using approximate inference methods.
P(Y[6)P(®)

P(OY) = CP(1]6)P(6)36 (2.23)

In this section we will present a probabilistic formulation of PCA and its extension to Factor
Analysis, which the modelling approach of Chapter 4 builds on. In Section 2.2.5, we will
then explain how this probabilistic framework allows accounting for prior knowledge about

data context using hierarchical priors.
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Probabilistic PCA (pPCA)

First probabilistic formulations of PCA were proposed by Tipping and Bishop (1999)
and Roweis (1998). Like in PCA, a linear mapping between the latent variables and
the data is assumed, and a Gaussian observational noise € is explicitly modelled: y, 4 =
Zszl ZniWkd + Enq. Assuming &, 4 ~ AN (0,7), where 7 is a precision hyperparameter, the
distribution of the data given the model parameters is P(yi 4|Z,W,T) ~ A" (Z,’;l niWkd, 7)2.
Latent variables are modelled as random with the following prior distribution: z,, x ~ .47(0,1)

for all n and k, while the precision 7 and the weights W are deterministic (Fig. 2.7).

e A K
@ Ynd ~ N\ Y ZnpWids T
K k=1

@‘ @ P(zux) ~ A (0,1)
N/
__ D

Fig. 2.7 Left: Graphical model of probabilistic Principal Component Analysis (pPCA).
The only parameters to be modelled as random variables are the latent variables z,, x, but
deterministic hyperparameters wy 4 and 7 are also inferred from the data. Right: specification
of the model likelihood and the parameters prior distributions.

For a given value of the weight and precision hyperparameters, the Normal priors on the
latent variables are conjugate for the Gaussian likelihood (Murphy, 2007). The posterior
distribution of the latent variables can therefore be computed in closed form using the Bayes

rule (see Section 2.1.2).

The weight and precision hyperparameters are optimised using an Expectation-Maximisation
(EM) algorithm (Rubin and Thayer, 1982). In the Expectation step, the posterior distribution
P(Z|Y,W,7) is computed given the current values of the hyperparameters W and 7. Then, the
expected value of the joint log likelihood In(P(Y,Z)) is computed given the posterior distri-
bution of Z: Ep(zjy,w,7) In(P(Y,Z)). In the Maximisation step this quantity is maximised with
respect to the hyperparameters W and 7: W, £ = arg maxy ; Ep(zjyw,7) In(P(Y,Z)). Tipping

ZNote that PCA (Section 2.2.3) provides maximum likelihood estimates for W and Z. This can be verified
by taking the log of the Gaussian likelihood which results in the quadratic loss function of Equation 2.22.
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and Bishop (1999) show that the solution of the maximisation step can also be computed in

closed form.

Whereas PCA and its implementation relying on the eigenvalue decomposition of the data
covariance matrix requires full data matrices, a first advantage of the probabilistic formulation
and its EM resolution is its applicability to datasets with missing observations. In addition,
we will show in the next paragraph and in Section 2.2.5 that the probabilistic framework
forms the basis of a Bayesian treatment of linear dimensionality reduction models and permits

a broad range of principled extensions.

Bayesian Factor Analysis

pPCA assumes an isotropic noise model (hyperparameter 7 shared for all d). Factor Analysis
(FA) (McDowell et al., 2018; Bartholomew, 1985) relaxes this assumption by using a feature
specific precision 7;. Unlike pPCA, this more flexible assumption allows for the analysis of
data with features on different scales. In the full Bayesian treatment of FA, we also model
the weights wy 4 as random variables with isotropic Normal prior distributions as well as the
precision parameters T; with gamma prior distributions (Fig. 2.8). To avoid any ambiguity,

we will call weights the wy 4 parameters and factors the z,, , parameters.

(TN

P(zn) ~ A (0,1)
P(wyq) ~ A (0,1)
N

1 P(tq) ~T(1,1)

~ @@

Fig. 2.8 Left: graphical model for Bayesian Factor Analysis. The precision 7, is defined for
each feature independently and all model parameters are treated as random variables. Right:
specification of the model likelihood and the prior distributions of the parameters.

The choice of conjugate priors makes full Bayesian inference easier, although analytically
intractable in this specific case. Section 2.2.6 will present one way to approximate the
posterior distribution of the model parameters for the Gaussian noise model presented here.

Inference methods for an extension of Factor Analysis with non-Gaussian likelihoods are
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presented in Appendix C.

In the next section, we will show that this full Bayesian model allows for principled extensions

to model prior knowledge about data context in a principled manner, using hierarchical priors.

2.2.5 Hierarchical priors to model prior knowledge about the data

Using explicit probabilistic models and Bayesian inference for dimensionality reduction is
a powerful approach as it provides a principled way to account for prior knowledge about
the data, including the context in which it was collected, or sensible assumptions about its
hidden structure, such as sparsity assumptions. This is done using hierarchical priors on the
model parameters. Prior distributions over the model parameters are themselves parametrised
(eg by their mean and their variance for Normal priors). Building hierarchical priors in a
model consists in modelling those parameters as random variables too, which may be done

in successive layers.

Automatic Relevance Determination

In Factor Analysis, a common assumption about the hidden structure of the data is that only a
small number of factors are relevant to explain the observed variance. This exact dimension-
ality is however unknown, while the number of factors used in the model of Figure 2.8 needs
to be determined a priori. A solution to infer the dimensionality of the latent space from
the data is to initially assume a high number of factors, while making sure that the posterior

distribution prunes irrelevant ones.

This behaviour can be achieved using Automatic Relevance Determination (ARD) (David J.
C. MacKay, 1994; Neal, 1995; Wipf and Nagarajan, 2008), which consists in optimising the
precision of the prior distributions of the model weights, adding a level of hierarchy in the
model parameters. In a Bayesian framework, this is done by modelling this precision as a

random variable with a Gamma prior (Fig. 2.9).

If a factor is irrelevant, the posterior distribution P(0g|Y) will take a high mean, enabling,
in turn, the posterior P(Wy .|Y) to be very peaked at zero (Fig. 2.10). The resulting Factor
Analysis model will as a result learn automatically an appropriate number of factors for a
given dataset. This is another improvement allowed by probabilistic models compared to
less flexible frameworks like PCA.
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K
N Ynd ~ N (Z ZnkWi,d Td)
=1

(=)
()
K
Wid ™~ r/V(O, (Xk)
o ~ T'(ag, bo)

L \ ) P(ka) ~N (0, 1)
.| N
. D)

Fig. 2.9 Left: graphical model for Bayesian Factor Analysis with ARD priors. A factor-
specific gamma prior is used for the precision of the weights. Right: specification of the
model likelihood and the parameter prior distributions. Typical hyperparameters for the prior
distribution of oy, are ag = by = 10~!# (Virtanen et al., 2012).

Fig. 2.10 Hinton plot of the weight matrix for the true weights (left), weights inferred by a
FA model with no ARD (middle), weights inferred by a FA model with ARD priors (right).
Rows represent the features d € [1; D], columns represent the factors k € [1; K], the absolute
value of a weight wy 4 is represented by the size of the corresponding square. For this figure,
synthetic data was generated for 100 samples and 10 features with three generative factors.
FA models with and without ARD were fitted with 5 factors using the bofam package (see
Chapter 4).
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Modelling the data context: Group Factor Analysis

Hierarchical priors might also be used to model contextual knowledge about the data. For
example, we may know that certain groups of features have similar properties. In bioinfor-
matics, an obvious case is when multiple omics types (eg transcriptomics and methylation
data) are measured for the same samples (multi-omics data, Dihazi et al. (2018); Huang et al.
(2017)).

In such a case, some factors may only be relevant for a specific group of features, and mod-
elling these groups specifically may help to uncover this hidden structure. This is addressed
by a class of models called Group Factor Analysis (GFA) (Virtanen et al., 2012). For M
groups of features, a specific ARD prior 0y ,,, Vm € [1;M] is used for every factor (Fig. 2.11),

enabling the deactivation of factors in specific groups only (Fig. 2.12).

Wieg ~ A (0, 0%)
OC,T ~ F(ao,bo)

K
) 4
- ot (B
k=1
L K) P(zu) ~ A (0,1)

(. J

Fig. 2.11 Left: graphical model for Group Factor Analysis (GFA). A factor and group specific
gamma prior is used for the precision of the weights. Right: specification of the model prior
distributions. Typical hyperparameters for the prior distribution of o are ag = by = 10~ 14,
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Fig. 2.12 Hinton plot of the weight matrix for the true weights (left), weights inferred by a
FA model with an ARD per factor (middle), weights inferred by a Group Factor Analysis
model (right). Rows represent the features d € [1; D] (group 1 on top, group 2 at the bottom),
columns represent the factors k € [1; K], the absolute value of a weight wy 4 is represented
by the size of the corresponding square. For this figure, synthetic data was generated for
100 samples and two groups of 10 features with three generative factors relevant to specific

groups. The FA model with ARD and the GFA model were fitted with 5 factors using the
biofam software (see Chapter 4).

2.2.6 Approximate inference: variational methods

A major challenge posed by the use of hierarchical priors is the inference of the posterior
distribution of the model parameters. The resulting complexity of the probabilistic model
renders the exact posterior distribution given by the Bayes rule intractable. It becomes

necessary to use approximate inference methods.

One approach is to use sampling based methods such as Gibbs sampling, which has the
advantage of converging to the exact posterior distributions given infinite computational

resources (Bishop, 2006, Chap. 11). Alternatively, deterministic methods such as variational
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inference (Jordan et al., 1999; Beal and Others, 2003; Wainwright and Jordan, 2008) or
expectation propagation (Minka, 2013) are less precise, but typically converge much faster
and are also widely used in Bayesian modelling (Blei et al., 2016) for larger datasets. In this

thesis, we made the choice of using variational inference, which we introduce here. Textbook
references include Murphy (2012) (Chap. 21) and Bishop (2006) (Chap. 10).

Mean field approximation and Kullback-Leibler divergence

The posterior distribution of a hierarchical Bayesian model parameters may follow a complex
joint distribution. In variational inference, we introduce a simpler distribution ¢(®), which
aims at approximating the true posterior distributions p(®|Y) of the model parameters, and
we minimise the Kullback-Leibler (KL) divergence between this g distribution and the true

posterior distribution (Eq. 2.24).

[ qeymPe@m
KL (¢(®)|IP(@]Y)) =~ [ q(@)In~ c52d0 2.24)

To make inference tractable, we need to restrict the form of this g distribution, although not
necessarily in a parametric manner. The most common restriction used for ¢ is called the
mean field approximation (Parisi, 1988; Tanaka, 1999), in which g is factorised over all or
some model parameters (Eq. 2.25). This family of distributions does not usually contain the
true posterior distribution, in which model parameters would generally covary, but we will
see that this assumption allows for the derivation of an analytical inference scheme with no

further assumption on the g; distributions.

©) =]]ai(6) (2.25)

The KL divergence of equation 2.24 is itself intractable as it requires to compute the in-

tractable true posterior. However, this expression can be transformed as on equation 2.26.

KL(g(@)|[P(011)) =~ [ a(@)m” a0
- P(v,0)
_ / 4(O)In o 0© (2.26)
- P(v,0)
=~ [at@nn= 2R+ P(y)

As P(Y) does not depend on the parameters ®, we deduce that minimising the KL divergence

of equation 2.26 is equivalent to maximising the term of equation 2.27.
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B _P(r,0)
v— /@ (@) In~ 740 (2.27)

We first give an interpretation of .’ and then show how the mean field approximation makes

the maximisation of this term analytically tractable.

Evidence Lower Bound (ELBO)

We have P(Y) = .2 +KL(g(0®)||P(®]Y)), and know that KL divergences are greater than
zero. This means that . defines a lower bound to the evidence P(Y). We will call this term
the Evidence Lower BOund (ELBO).

The ELBO can be decomposed into two contributions shown on Equation 2.28. The first
contribution, coming from the data likelihood under the approximate posterior distribution,
is a measure of the goodness of fit. The second contribution is the opposite of the KL
divergence between the prior and the posterior distribution of the parameters. It acts as
a regularising term which prevents overfitting by accounting for prior assumptions on the

parameter distributions.

Y|®) ()
L= AP 4o
/ a(® (®) (2.28)
=E 1HP(Y|®)— L(q(®)||p(©))
q(8)

Variational Bayes (VB) alogrithm

The aim is now to maximise the ELBO . with respect to every ¢; distribution coming from
the mean-field approximation. This ELBO may be rewritten as on equation 2.29, where the
constant cst does not depend on 6;. Note that Eg, ,; designates an expectation with respect to

the parameters 6;,Vj # i in their ¢ distributions.

- P(Y,®)
.,s,ﬂ_/@q((a)ln .6 @

:/qu [/ [T4(6))InP(Y,©)d6; +cst

de; — / q(6;)Ing(6;)d6; (2 79
]?élj?él

i

=—KL

qi(6;)||exp E (InP(Y,®)) +cst

0)i
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It follows that maximising the ELBO with respect to g;, with all other g; ;j; fixed, is
equivalent to minimise the KL divergence shown on equation 2.29, which is achieved when:

Ingi(6:) = E (InP(Y,©)) +cst (2.30)
J#i

Equation 2.30 consists in a set of one equation per model variable 6;, with dependencies
in the first and second moment of the other distributions g;.; via the expectation E¢,,;- In
practice, this suggests an algorithm where the g; distributions are updated iteratively while
keeping the g, ; distributions fixed, until convergence of the ELBO .#”. When conjugate
priors are used, the g; distributions have the same functional forms as the priors P(6;), and

their parameters can easily be identified from the functional form of Eg,,, (InP(Y,®)).

Extension beyond the fully-factorised approximation

We have seen how to use variational methods to compute an approximation to the pos-
terior distribution of the parameters of a probabilistic model, in the context of a fully
factorised approximation to the posterior. However, we will see in Chapter 4 that there
exists cases where it is necessary to model jointly some parameters in the ¢ distribution:
q(0®) = q(6k]6,)q(0;) I T ¢,y 9(6:) with g(6k|6;) # q(6k). Appendix B describes the deriva-

tion of variational inference for this partially factorised case.

2.3 A note on the connection between Gaussian Processes

and Factor Analysis

In the first section of this chapter, we have seen how Gaussian Processes enable us to infer
complex functions f linking an input x to an output variable y, in the context of supervised
Machine Learning tasks. The high capacity of Gaussian Processes rely on the implicit
transformation of the input data X into a set of high dimensional features using the kernel
trick. A Gaussian Process can also be seen as a prior over the function f. Data observation

allows the computation of a posterior for f.

In the second section, we presented Factor Analysis and some extensions. The aim was to
infer the low dimensional latent representation of a high-dimensional dataset in an unsuper-
vised manner. The algorithm learns a mapping function between factors Z in a latent space

and observed data y. This time, the latent variables Z are unobserved and their distribution is
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also inferred probabilistically from the data.

In Factor Analysis, the mapping function between the latent variables and the observed
data is linear, which has the advantage of being easily interpretable but has little capacity.
GP-LVMs (Lawrence, 2005) bridge the gap between Gaussian Processes and Latent Variable
models by putting a GP prior on the mapping function f between the latent and the observed
space. The posterior f is inferred from the data jointly with the posterior distribution of the

latent variables.

In bioinformatics, such models have been successful for pseudo-time ordering of cells, where
the unobserved time point of a temporal process such as cell differentiation is treated as a
latent variable, and the expression level of specific genes vary smoothly along this pseudo
time space (Campbell and Yau, 2016; Ahmed et al., 2017; Macaulay et al., 2016b).

2.3.1 Model

For a sample i, a noise free observation f; is modelled as being generated from the associated
latent variables z; via a mapping function f: f; = f(z;). f has a GP prior with a covariance
function k which takes as input the latent variables such that cov(f;,f;) = k(z;,z;). Assuming
an independent identically distributed Gaussian noise model, the noisy observations are
yi = f(z;) +¢&, with € ~ A4(0,62).

The log marginal likelihood of the data (integrating over the noise-free variables f, or the

weights in the input space in the weight-space view) is as in Section 2.1.8:
1 -1 1
nP(Y|Z,0) = —3¥" (K(2,2) + 021 g SIn|K(2,2)+0}1| - gln27r (2.31)

2.3.2 Inference

In GP-LVMs, as in other Latent Variable models, the main aim is to infer the posterior
distribution (or point estimates) of the latent variables. In Equation 2.31, they appear in the
inverse of the covariance matrix, parametrised by a possibly non-linear covariance function,

which renders Bayesian inference intractable.
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Maximum likelihood solution

A first inference method in GP-LVMs computes maximum likelihood point estimates of the
latent variables using gradient ascent. Like in Section 2.1.8, the gradient of the log marginal

likelihood with respect to any latent variable z, x can be computed in closed form:

1 K 1 K
InP(Y|Z,0) = EYTK—Ia—K—lY ——tr (K_l o ) (2.32)

aZn,k aZn,k 2 aZn,k

using the short notation K = (K(Z,Z) + 621).

Variational inference solution

Variational methods can also be applied to compute a factorised approximation to the poste-

rior distribution of the latent variables.

As seen in Section 2.2.6, the idea is to approximate the true posterior distribution over the la-
tent variables p(Z|Y) with a simpler distribution ¢(Z), which in the mean-field approximation
is of the fully factorised form ¢(Z) = [1,, x gnk(znx). The inference consists in minimising
the KL divergence between the true posterior and the g approximation, which is equivalent

to maximising the Evidence Lower Bond:

z— / 2)InP(Y|2)dZ — KL (¢(2)||p(2)) (2.33)

In the case of GP-LVMs however, the first term of this lower bond is in general intractable
due to the potentially non-linear dependency in the latent variables, which makes the recipe of
Section 2.2.6 unusable. Methods relying on auxiliary variational variables exist to circumvent
this problem (Damianou et al., 2014; Titsias and Lawrence, 2010) but are beyond the scope
of this thesis.

Optimisation of kernel hyperparameters

Kernel hyperparameters can be optimised as with standard GPs using gradient ascent to

maximise the log marginal likelihood (Section 2.1.8)






Chapter 3

Modelling cell-cell interactions from
spatial gene expression data with spatial

variance component analysis

In this Chapter, we present Spatial Variance Component Analysis (SVCA), a statistical
framework that aims to account for the spatial context of single cell expression data in a
principled manner. SVCA accounts for multiple types of spatial and non-spatial effects on

single cell expression variation, and in particular measures the effect of cell-cell interactions.

This work was co-supervised by Oliver Stegle and Julio Saez-Rodriguez. I developed and
implemented the statistical method under the supervision of Oliver Stegle and I performed
the simulations and the two real data analysis presented in this chapter, under the supervision
of Oliver Stegle and Julio Saez-Rodriguez. Denis Schapiro and Bernd Bodenmiller from the
University of Zurich contributed to the interpretation of the results in the first application
(Imaging Mass Cytometry dataset). The SVCA software is open source and freely accessible
here: http://github.com/damienArnol/svca. The paper is currently in revision and a preprint
can be found on biorxiv: https://www.biorxiv.org/content/early/2018/03/27/265256.

3.1 Introduction

3.1.1 Spatial gene expression data

Experimental advances have enabled assaying RNA and protein abundances of single cells in

spatial contexts, thereby allowing the study of single cell variation in tissues. Already, these
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technologies have delivered new insights into tissue systems and the sources of transcriptional
variation (Bodenmiller, 2016; Battich et al., 2013), with a potential use as biomarkers for
human health (Bodenmiller, 2016).

Different technologies allow for generating spatially resolved expression profiles. Imaging
Mass Cytometry (IMC) (Giesen et al., 2014; Chang et al., 2017) and Multiplexed Ion Beam
Imaging (MIBI) (Angelo et al., 2014) rely on protein labelling with antibodies coupled to
metal isotopes of specific masses followed by high-resolution tissue ablation and ionisa-
tion. IMC currently allows for the profiling of up to 37 targeted proteins with subcellular
resolution. Other methods such as MxIF and CyclF use immunofluorescence for protein
quantification of dozens of markers in single cells (Gerdes et al., 2013; Lin et al., 2015).
Increasingly, there also exist fluorescence-based assays to measure single cell RNA levels in
spatial context (Strell et al., 2018). Mer-FISH and seqFISH use a combinatorial approach of
fluorescence-labeled small RNA probes to identify and localise single RNA molecules (Shah
et al., 2016; Chen et al., 2015; Gerdes et al., 2013; Lin et al., 2015), which allows for a larger
number of readouts (currently between 130 and 250). Even higher-dimensional expression
profiles can be obtained from spatial expression profiling techniques such as Spatial Tran-
scriptomics (Stahl et al., 2016). However, they currently do not offer single cell resolution

and are therefore not sufficient to study cell-to-cell variation.

3.1.2 Modelling the spatial context

The availability of spatially resolved expression profiles from a population of cells provides
new opportunities to disentangle the sources of gene expression variation. Spatial context
can for example be utilised to distinguish intrinsic sources of variation due to differences
in cell types or states (Buettner et al., 2015), e.g. cell cycle stage (Scialdone et al., 2015),
from sources of variation which relate to the spatial structure of the tissue, such as microenvi-
ronmental effects linked to the cell position (Fukumura, 2005), access to glucose or other
metabolites (Meugnier et al., 2007; Lyssiotis and Kimmelman, 2017), or cell-cell interactions.
To perform their function, proximal cells may interact via direct molecular signals (Sieck,
2014), adhesion proteins (Franke, 2009), or other types of physical contacts (Varol et al.,
2015). In addition, certain cell types such as immune cells may migrate to specific locations
in a tissue to perform their function in interaction with local cells (Moreau et al., 2018). In this

thesis, cell-cell interactions is used as a general term to designate any of these phenomena.
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More specific biological interpretations are discussed in Section 3.5.3 and Section 3.6.3.

While intrinsic sources of variation have been extensively studied, the cell-cell interaction
component is arguably less understood and yet one of the most important, as it holds the
promise to understand how genes are expressed in cells that participate in different tissue
level functions. Yet, although experimentally spatial omics profiles can already be generated
with high throughput, the required computational strategies for interpreting the resulting data
are only beginning to emerge. Only a few methods quantify the impact of spatial features on
the variance of individual genes, and even fewer methods specifically measure the effect of

cell-cell interactions.

On the one hand, there exist methods to link the spatial position of cells to their expression
profile. For example, there exist clustering methods that infer groups of cells from the
same spatial location, solely based on their expression profiles (Achim et al., 2015). Other
methods implement statistical tests of differential expression in space, which provide an
overall assessment of the effect of the spatial topology on gene expression (Svensson et al.,
2018a). However, none of these two approaches allow for directly quantifying cell-cell

interactions.

On the other hand there exist methods which study cell-cell interactions, but only qualita-
tively or relying on discretisation steps which limit their interpretability or applicability. For
example, some methods study tissue organisation by looking at the spatial cooccurrence
of discrete cell types in predefined cellular neighbourhoods (Schapiro et al., 2017; Schulz
et al., 2018). These approaches provide qualitative insights into interactions between cell
types but they do not allow for quantifying their impact on individual genes. In contrast,
some regression-based models assess interaction effects on individual gene expression levels,
based on predefined features of cell neighbourhood (Goltsev et al., 2018; Battich et al., 2015).
However the prior engineering of microenvironmental features relies on discretisation steps

which are arbitrary and not always directly interpretable (see Section 3.2.7).

3.1.3 SVCA: Spatial Variance Component Analysis

Here, we present Spatial Variance Component Analysis (SVCA), a computational framework

to model spatial sources of variation of individual genes. SVCA allows for decomposing
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gene expression variation into intrinsic effects, environmental effects and, most importantly,
an explicit cell-cell interaction component. In contrast to previous modelling approaches,
the model uses the spatial coordinates directly and the continuous expression profiles of
individual cells as inputs, thereby avoiding the need to define discrete cell types and microen-

vironmental variables.

We validate our model using simulated data, by showing that SVCA yields more accurate
estimates of cell-cell interactions than alternative methods. We also illustrate the flexibility of

SVCA by showing that it is more robust to confounding factors such as cell mis-segmentation.

We then illustrate SVCA using two real datasets from different technologies and biological
domains: IMC proteomics profiles data from human breast cancer tissue (Schapiro et al.,
2017) and spatial single-cell RNA profiles from the mouse hippocampus generated using
seqFISH (Shah et al., 2017). Across these applications, we find that our model, and in
particular the cell-cell interaction component, explains a major share of expression variability
and facilitates the identification of biologically relevant genes and gene families participating

in cell-cell interactions, such as glutamate receptors or cell junction genes in the brain.

3.2 SVCA: A spatial Gaussian Process model of gene ex-

pression variation

3.2.1 Overview of the model

SVCA builds upon the random effect framework to model variations in gene expression in
terms of additive components from an intrinsic effect of the cell state, U;,,;, an environmental

effect linked to the cell position, U,,,, and an effect due to cell-cell interactions, U._:
Y =Upt +Uepy +Uc—c+ € (31)
where Y is the vector of the expression level of a target gene across all cells of an image and

g ~ A (0,021) is additive Gaussian noise.

These random effects are assumed to follow Normal distributions, defined by specific co-
variances which are functions of the cell spatial positions and expression profiles: Uj,; ~

(0, Kiny ), where Kjp, is a covariance matrix that determines the pairwise similarity between
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cells based on intrinsic features; Uy, ~ A4 (0, K,p,) where K., is a measure of the similarity
between the cell microenvironments, based on their spatial proximity; Uz ~ A4 (0,K._.)
where K._. measures the similarity between cellular neighbourhoods, in order to account for
cell-cell interactions. The marginalisation over the additive effects in Equation 3.1 results in
the following Gaussian Process: Y = A/ (0, Ki; + Koy + Koo + 621). (Fig. 3.1)

For every individual gene, we use Maximum Likelihood to assess the relative importance of
the four additive terms of the covariance in explaining the observed distribution of the gene
across cells. The fitted model can be used to estimate the fraction of variance explained by
each term using Gower factors. This results in a breakdown of the variance of every gene
into spatial and non-spatial components, which gives a compact overview of the effect of the
spatial structure of the tissue on gene expression levels (Fig. 3.1). We call this representation

a spatial variance signature.

In the next sections, we give the exact definition of the covariance terms of the SVCA model

(Fig. 3.2), explain how they are parametrised and how the resulting model is fitted to the data.

3.2.2 Nomenclature and notation of the SVCA model

To describe the SVCA model, we will use the following nomenclature and notation.

Nomenclature

Gene of interest Individual molecule, typically a gene or protein, whose
expression profile the SVCA model is fitted on.

Cell state Intrinsic characteristic of a cell. Here, we consider
the overall expression profile excluding the gene of
interest as a multidimensional and continuous measure
of cell state. Other possibilities include the discrete
classification of cells into cell types.

Cellular neighbourhood matrix Continuous measure of the cellular neighbourhood,
which aggregates, for each cell, the molecular com-
position of the neighbouring cells. This is achieved by
weighting the molecular profiles of all neighbouring

cells by a squared exponential function of the distance.
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Spatial variance signature Concatenation of all variance estimates (intrinsic ef-
fect, environmental effect, cell-cell interaction effect
and residual noise) across every molecule for a given

image.
Mathematical Notation

Number of cells in a given image

N
D Number of molecules (e.g. genes or proteins) in a given image
Y Expression level of the gene of interest in all cells. Dimensions: N x 1
X  Cell state matrix made of the expression profile of all genes excluding the
gene of interest. Dimensions: N x (D —1).
d;;; Euclidean distance between cells i and j
Kiy  Cell-cell covariance for the intrinsic effect. Dimensions: N x N
K._. Cell-cell covariance for the cell-cell interaction effect. Dimensions: N x N

K., Cell-cell covariance for the environmental effect. Dimensions: N x N

3.2.3 Definition of the covariance terms
Intrinsic term

The covariance term Kj,; uses as input the expression profile X of all genes excluding the
gene of interest (dimension N x (D — 1)), which represents a continuous measure of intrinsic
cell states (Fig. 3.2). The covariance function used is linear:

Kine = 02, XXT (3.2)

int

As seen in Section 2.1.7, this covariance term corresponds to a Bayesian linear regression
that models the effect of the cell expression profile on the expression of the gene of interest:
Y, = Zd¢CXi7dﬁé"t , where ¢ denotes the index of the gene of interest, with the following
Normal prior on the effect sizes: B ~ .4(0,062,1).

int

2

This covariance function has a scaling hyperparameter o;

= » which is proportional to the

variance explained by this component.
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@ . Cell-cell covariance due to the intrinsic effect
O . Cell-cell covariance due to environmental effects
@ D Cell-cell covariance due to cell-cell interactions
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Fig. 3.1 Spatial Variance Component Analysis (SVCA). (a) SVCA decomposes the variability
of individual genes into 1) an intrinsic component capturing the effect of the intrinsic cell
type or state (blue), ii) an environmental component capturing the effect of non-specific
local factors dependent on the cell position (green) and iii) a cell-cell interaction component
capturing the effect of the cellular composition of the cell neighbourhood (yellow), thereby
accounting for interactions between neighbouring cells. The strength of a spatial effect on a
given cell depends on its distance to the source, as symbolised by the solid and dotted lines.
(b) SVCA builds on a Gaussian Process framework, defining additive covariance components
to explain the different effects. Details on the definition of the corresponding covariance terms
are given in Section 3.2.3 and Figure 3.2 (c) SVCA spatial variance signature: gene-level
break down of the proportion of variance attributable to the different components.

Environmental term

The second term, K, aims at modelling the positional effect explained by the cell location
in the tissue on the expression profile of the gene of interest. This variance component can
for example model the effect of the local microenvironment (such as oxygen access). These
microenvironmental factors are not measured explicitly, however the cell position can be
used as a proxy, as nearby cells will be exposed to the same environmental factors. We use
the squared exponential covariance defined on the relative spatial position of the cells (see
Section 2.1.7), where d; ; is the distance between the centroids of cells i and j. (Fig. 3.2):

—d?.

(Kenv)w' = GEZHV 21127J (3.3)
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The squared exponential covariance function is widely used for modelling non-linear spatial
and temporal dependencies and is highly flexible. This covariance function has a scaling

hyperparameter 62,,

and a length scale hyperparameter / (see Section 2.1.7).

Defined as such, the environmental covariance may capture any spatially correlated residuals
with no specific biological interpretation. For example in Section 3.4, we will discuss its role
in capturing segmentation errors between proximal cells or cells in physical contact. If there
is no spatial structure, and the length scale tends to zero, the environmental covariance may
also become unidentifiable with noise, as we will discuss in Section 3.5.2. For these reasons,
we will only use the environmental covariance as a normalisation term and we will not be

concerned with its interpretation.

Cell-cell interaction term

The cell-cell interaction covariance term K._. explains the effect of the cellular composition
of the neighbourhood of a given cell on gene expression. This component can in particular
explain interactions between cells. Borrowing ideas from social genetic effect studies (Baud
et al., 2017), we define a covariance function which measures the similarity between cells
based on their cellular neighbourhood, which we compute by aggregating, for each cell, the
molecular composition of all other cells, while down-weighting interactions between cells

which are further apart, using a squared exponential function of the distance: ZX, where
Z;j=exp (—dl% j/212) (Fig. 3.2).

K. .=o0> Zxx'7" (3.4)

This covariance function has a scaling hyperparameter 6, and a length scale hyperparameter
.

Residual noise

The residual noise term is a diagonal matrix with a scaling hyperparameter 682. The as-
sumption is that, for a given gene, the residual noise is independently identically distributed
across cells. For these assumptions to be met, appropriate data normalisation and variance
stabilisation are necessary processing steps. Additionally, the independence assumption may
not hold in the case of imaging batch effects or cell mis-segmentation, which may result
in correlated errors between neighbouring cells. In SVCA, this problem is addressed by

the environmental component, which captures spatially correlated residuals, as we further
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discuss in Section 3.4.3.
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Fig. 3.2 SVCA model definition. SVCA takes as input a single cell expression data as a cell
times gene matrix (1) and a matrix of the cells spatial coordinates (a,b) (2). The expression
profile of individual genes is modelled as Normally distributed, with additive covariance
components that account for intrinsic, environmental and cell-cell interaction effects. The
intrinsic effect covariance is computed as the empirical covariance of the expression profiles
between cells, using all genes except the gene of interest (3). The environmental effect is
modelled using a Squared Exponential covariance defined on the relative distance between
cells. The cell-cell interaction covariance measures the similarity between cell cellular
neighbourhoods that aggregate, for each cell, the molecular composition of the neighbouring
cells (5). This aggregation step can be written as a product between a squared exponential
covariance matrix whose diagonal elements were removed (4) and the expression matrix (3).
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3.2.4 Model fitting - optimisation of hyperparameters
The hyperparameters of SVCA are optimised by maximising the log likelihood of the data
(type-II maximum likelihood (Rasmussen and Williams, 2006, Chap. 5), see Section 2.1.8).

2 2

The scaling hyperparameters {67, 62,,, 062 ., O,

> O } are optimised with gradient ascent using

an Ibfgs optimiser (Bonnans et al., 2006), while the common length scale hyperparameter!
of the environmental and the local terms is optimised with a grid search strategy, to avoid
possible local optima. Specifically, the scaling hyperparameters are refitted for every length
scale of the grid independently, and the set of hyperparameters (scaling and length scale)

providing the best log-marginal likelihood is selected at the end of the training.

SVCA is implemented in the /imix framework (Lippert et al., 2014), a software which is
mostly used for linear mixed models in genetics, but also has more general Gaussian Process
capabilities. The derivation of the gradient of the cell-cell interaction covariance is given in
Appendix A, while the remaining components are based on linear and squared exponential

covariance functions which are standard in any Gaussian Process framework.

3.2.5 Variance estimates

We used Gower factors (see Section 2.1.9) to estimate the variance explained by each term of

the model:

G(Keffect)
Zeff € other effects G<Keff )

(3.5)

Valeffect =

Computing these variance estimates for every gene and effect enables us to compute the
spatial variance signatures schematised in Figure 3.1, which gives a compact representation

of the effect of spatial and non-spatial drivers of variation.

3.2.6 Significance of the variance components

As the individual components have additive contributions, the significance of any term can
be assessed using the Log Likelihood Ratio (LLR) between the SVCA model and a reduced

model omitting the tested covariance term (in fact a log ratio between the marginal likelihoods

!Choosing a common length scale for the environmental and the cell-cell interaction covariance functions
was necessary to reduce the size of the grid-search
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of the two models, see Section 2.1).

Given that the reduced model is nested in the full SVCA model, we rely on Wilks theo-
rem (Wilks, 1938), which states that under the null hypothesis, the LLR statistics should
follow a x? distribution. To calibrate this statistic, we fit the degrees of freedom of the
distribution to an empirical null distribution of LLLRs. To obtain this null distribution for a
given gene, we fit the null model to the data and simulate 100 expression profiles from the
fitted Normal distribution under the null hypothesis. By fitting SVCA and the alternative
model to these 100 data points, we obtain a null distribution of LLRs for the considered
gene on which we fit a y? distribution using an off-the-shelf non-linear optimisation method
(nloptr in R). The significance of a covariance term is then assessed by comparing LLRs to
the empirical xz distribution (Casale et al., 2017; Buzkova et al., 2011).

Unless stated otherwise, we use the Benjamini-Hochberg procedure (Benjamini and Hochberg,

1995) to adjust for multiple testing across genes and images.

3.2.7 Comparison with related models

In comparison to alternative methods, SVCA has a number of unique features. First, it does
not require assigning cells to discrete types, but instead is based on a continuous measure
of cell-cell similarities that are directly estimated from cell expression profiles. The model
also circumvents the need to define discrete neighbourhoods but instead weights interactions
between any pair of cells as a function of their distance. Both advantages are tackling the
problem of cellular classification and neighbourhood definition by providing a continuous
representation of space and cellular identity in a unique modelling framework (Wagner
et al., 2016). Additionally, SVCA includes a non-linear environmental component which
captures non-specific spatial effects, ensuring robustness to confounders in the identification

of cell-cell interactions, as we will show with simulations.

This section provides a more detailed comparison of SVCA to related models which have

been proposed for spatial expression analysis.

Schapiro et al 2017 - HistoCAT

HistoCAT (Schapiro et al., 2017) aims at measuring spatial cooccurrence of different cell

types. Briefly, cells of one or multiple images are classified into discrete cell-types based
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on their expression profile using a clustering algorithm. For every cell, a neighbourhood is
defined as containing all cells within a fixed distance threshold (measured from membrane
to membrane). Using this fixed neighbourhood definition, histoCAT counts the number of
occurrences of a given pair of cell types, in the same neighbourhood. This number is then
compared to a null distribution obtained from permuting the cell positions, which gives a P

value for positive and negative cell types interactions.

HistoCAT therefore provides an understanding of tissue structure in terms of cell types
co-occurrence. While these co-occurrences are probably related to functional interactions
between cells, histoCAT, unlike SVCA does not quantify the effect of these interactions on

the expression profile of individual genes.

Battich et al 2015

Battich et al. (2015) uses a regression approach to measure the effect of the cell microen-
vironment on individual expression levels. Briefly, 183 features are collected, quantifying
intrinsic cell properties and microenvironmental properties. Microenvironmental features
namely account for local cell crowding, number of adjacent neighbours, intercellular space
around the cell, as well as the molecular profile of the neighbours, based on a fixed distance
threshold. The dimensionality of this feature set is then reduced using principal component
analysis (PCA), and single cell expression profiles are modelled with a fixed effect linear
model with the first 20 PCs as covariates. The PCs are then a posteriori linked to the mi-
croenvironmental features of interest. Biological replicates are used to quantify the amount

of variance explained by each covariate using out of sample prediction.

This method therefore quantifies directly the effect of microenvironmental features including
cell-cell interactions. Unlike SVCA however, it relies on a definition of discrete microen-
vironmental features and the definition of fixed parameters such as a distance threshold to
define a cell neighbourhood, which limits the applicability of the method to general spatial
data. In addition, standard linear regressions have other limitations like the inability to

capture spatially correlated measurement errors, as we further discuss in Section 3.4.3.

Goltsev et al 2018

The approach from Goltsev et al. (2018) also relies on the definition of discrete microen-

vironmental variables, used in a fixed effect linear model to predict the expression level of
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individual markers out of sample. In contrast to Battich et al. (2015), microenvironmental
variables are not defined directly based on the molecular profile of neighbouring cells, but
based on the cell-type composition of the neighbourhood. The different neighbourhood
cell-type compositions are clustered into discrete i-niches, used as an input for the linear

model.

This method therefore enables us to quantify directly the effect of cell-cell interactions on
individual molecular profiles of single cells. However, it again relies on a priori definition of

microenvironmental variables, this time based on discrete cell-type assignments.

3.3 Validation of SVCA using simulations from the gener-

ative model

In this section, we consider simulated data to validate SVCA, and the identification of

cell-cell interactions in particular.

3.3.1 Simulation procedure

We used empirical parameters derived from 11 real datasets (see Section 3.5), including
their gene expression profiles and cell positions, as well as ranges of fractions of variance

explained by different components that reflect those observed in real data.

The experimental workflow was as follows:
1) Fitting the SVCA model to a real dataset

ii) Simulating data from a multivariate Normal distribution, with a covariance made of:

the intrinsic covariance from the fitted model
¢ the environmental covariance from the fitted model

¢ the noise covariance from the fitted model

a cell-cell interaction covariance which is a rescaled version of the one fitted to
the data: ¥ = A (0, Kipy + kgim X Ke—c 4 Keny + 621,,), where K represents a fitted

covariance term and kg, is the rescaling term for cell-cell interactions.

1i1) Refitting SVCA to the simulated data
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The rescaling of the cell-cell interaction covariance term provides a ground truth value for
the fraction of variance explained by cell-cell interactions. For a cell-cell interaction effect
explaining a fraction € [0.1;0.9] of variance in the simulated data, it can be shown that the
rescaling factor is:

T’ G(Ieim‘ + Iec—c + kenv + 63111)

kgim = ~ 3.6
‘ 1-7n % G(K.—¢) (36

3.3.2 Accuracy of cell-cell interaction estimates

We simulated expression profiles with a cell-cell interaction component that explains a
variance 1] € [0.1;0.9] in the generated data. 10 repeat experiments were performed for 11
images and 26 proteins, and for every value of 1. Variance estimates were then averaged
across these 110 data points for every protein and every value of 17. We then compared

variance estimates for cell-cell interactions obtained with SVCA to the ground truth values.

We found that SVCA yielded accurate cell-cell interaction estimates, although slightly

conservative, especially for high simulated cell-cell interactions (Fig. 3.3).
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Fig. 3.3 Left: Fraction of variance due to cell-cell interactions estimated by SVCA when
varying the simulated fraction of variance explained by cell-cell interactions. Right: error in
cell-cell interaction estimates as a function of the simulated cell-cell interactions.

3.3.3 Statistical calibration

Then, we simulated expression profiles with no cell-cell interactions (kg;,, = 0) to assess
the calibration of the corresponding Log Likelihood Ratio test. Again, we used 10 repeat
experiments for 11 real images and 26 proteins used for simulations. For varying P value

thresholds, we computed a False Discovery Rate of the statistical test across the resulting
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110 data points for the 26 proteins independently.

Results show that the statistical test for cell-cell interactions significance is conservative
(Fig. 3.4).
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Fig. 3.4 We performed 10 repeat experiments for 11 images and 26 proteins with no cell-cell
interactions and computed P values for the cell-cell interaction test. Left: log P values as a
function of the expected value under the null hypothesis Right: empirical false discovery rate
for the cell-cell interaction test (FDR) as a function of the P value threshold.

3.3.4 Statistical power

Finally, we assessed the detection power of the cell-cell interaction statistical test, when
varying the variance explained by this effect, and when varying the number of cells in the
dataset based on subsampling. We performed 10 repeat experiments for every value of the
simulated cell-cell interactions, for every fraction of cells used and each time considering
the same set of 11 images and 26 proteins used for simulations. True Positive Rates were

computed across the 110 data points for the 26 proteins independently (Fig. 3.5).

We found that SVCA Log Likelihood Ratio test had little power, with, on average, a true
positive rate of 50% and below for cell-cell interactions below 20%. This limitation is

discussed in Section 3.7.1.



Modelling cell-cell interactions from spatial gene expression data with spatial variance
50 component analysis

. 1.00 _1.00-
o o
& a
< 075 E 07s-
9] 5}
= 2 e
8 0.50- 8 0.50-
8 : 8
B 0.25 B 0.25-
5] 5|
@ 0.00 1 2 0.00 -
000 025 0.50 0.75 1.00 0.00 0.25 050 075 1.0¢
Proportion of cells used Simulated cell-cell interactions

Fig. 3.5 Left panel: True positive rate as a function of the variance explained by cell-cell
interactions using all cells of the images. Right panel: True positive rate as a function of
the proportion of cells used in the images (downsampling) for a cell-cell interaction terms
explaining 30% of variance (1 = 0.3).

3.4 Benchmarking of SVCA in comparison to alternative

linear regressions

3.4.1 Simulation setting

In order to compare SVCA to baseline regression models, we considered simulating expres-
sion profiles from a linear model accounting for an intrinsic effect, a cell-cell interaction
effect variable in size and Gaussian noise. In addition, we simulated a confounding effect

due to cell mis-segmentation (Fig. 3.6).

Analogously to the approach from Section 3.3, we used empirical parameters derived from
11 real datasets (see Section 3.5), including their gene expression profiles and cell positions
to generate in silico target genes, using a linear model accounting for an intrinsic effect and a

cell-cell interaction effect variable in size.

The expression profile of an in-silico target gene Y is generated using the true expression

profile across all observed genes X and the following linear model:

Y = V nc—cZXBc—c + V 1— nc—c(Xﬁint +8) (37)

Cell-cell interactions Intrinsic effect

where X is a matrix of dimension N x D which corresponds to the empirical expression
profiles of the real data considered, .. and B;, are effect sizes drawn from standard Normal

distributions and 1._. € [0; 1] corresponds to the variance explained by cell-cell interactions
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Fig. 3.6 Simulation approach for comparing SVCA with alternative regression models.
Left: Expression levels are generated from a linear model including an intrinsic term and a
cell-cell interaction component to which participate only the the first NV, neighbours (here
Ny, = 4). Right: Modelling approach for cell mis-segmentation: expression profiles of two
mis-segmented cells are perturbed by receiving a fraction of each other’s expression profile:
Y= ‘LLY + (1 - “)Yneighbour’ with 1S [0; 1]

in the simulated data. € is a standard Gaussian noise, € ~ .47(0,1)

Z is a function which weights the contribution of the expression profiles of the N,, nearest

neighbours of each cell to the expression level of Y:

1/ df j if the cell j is one of the N,,, nearest neighbours of i
Zj=f(dij) = ’ (3.8)
0 otherwise

d; ; is the distance between cells i and j. Ny, is the number of neighbours considered for cell-
cell interactions. This parameter was also varied across simulations to assess the robustness

of the results to multiple underlying cell-cell interaction structures.

Simulation of cell mis-segmentation

To simulate mis-segmentation, the expression profiles generated from the linear model were
further perturbed by receiving a share of the expression profiles of mis-segmented neighbour-

ing cells.
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For every cell in the image, an arbitrary number of two cells were randomly drawn as mis-
segmented with the focal cell. To model our assumption that the closer the cells, the more
likely they were to be mis-segmented, the probability for a cell j to be mis-segmented with

the focal cell i was taken from the probability vector:

L/dj;
Lj1/dj;

To model mis-segmentation, the expression level ¥; in a given cell i is then transformed

Dij (3.9)

into a weighted average between itself and the average signal from the cells which are

mis-segmented with cell i/, which we call signal spillover:

Yi = 1— nmisYi +\V nmismeanj (Yj)/ (310)

signal spillover

where mean;(Y;) is the mean of the expression profile of ¥ in the cells which are mis-

segmented with the cell i. 1,,;; controls the effect size of the mis-segmentation.

Assuming that all genes are affected in the same way by mis-segmentation, which is reason-
able but does not account for different sub-cellular localisation of genes, the same perturbation

was applied to the expression level matrix X:

Xi,: = 1— rlmiin,: —l—:/ nm,-smean]-(XL;) (3.11)

signal spillover

The size of this mis-segmentation effect was also varied through multiple simulations and

the perturbed profiles X and ¥ were used to fit SVCA and alternative models.

3.4.2 Alternative models

We compared SVCA to four alternative regression models, which included an intrinsic

component and a cell-cell interaction component.

Three of the four models were based on linear regressions with Ridge regularisation. The
intrinsic effect was modelled as a linear combination of the expression profile of all genes
measured in the cell, excluding the gene of interest. Cell-cell interactions were accounted for

in three alternative ways:
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1) Using all the cells in the images and weighting their impact by a function of the
distance f(d; ;) = l/di%j.

i1) Using an average of the expression profiles of the first five neighbouring cells.

ii1) Using a weighted average of the expression profiles of the first five neighbouring cells,

with the same weighting function f(d; ;) =1/ a’l2 fr

The coefficient of the Ridge regularisation was determined using cross-validation using
the RidgeCV function from the scikit-learn package (Pedregosa et al., 2011) with default

parameters.

Additionally, we considered a reduced Gaussian Process model containing all the covariance

terms of SVCA apart from the local effect.

3.4.3 Results
Cell-cell interaction accuracy

The simulation setting described before was used to generate data with cell-cell interaction
effects 1._. ranging from O to 0.25, which reflected the range of values observed on real
data applications (see Section 3.5 and Section 3.6). The mis-segmentation effect was fixed
to Nmis = 0.2 and the number of neighbours used for simulating cell-cell interactions was
Nop =5

The variance estimates obtained by SVCA and the alternative models were compared to the
simulated ground truth (Fig. 3.7), using an in sample coefficient of determination 2 for the

linear regressions. Results showed that SVCA was more accurate than alternative models.

Spurious cell-cell interaction effects from cell mis-segmentation

We also assessed cell-cell interaction variance estimates when simulating data with n._. =0
(no cell-cell interactions), and mis-segmentation effects 1,,;; ranging from 0 to 0.25. We
observed that mis-segmentation yielded the inference of spurious cell-cell interaction effects,
and that SVCA was the most robust model in the presence of this confounder. The comparison
with the reduced Gaussian Process with no local term showed that this term is critical for

capturing the mis-segmentation effect.
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Fig. 3.7 Accuracy of SVCA cell-cell interaction estimates compared to alternative regression
models. Left panel: inferred cell-cell interaction variance estimates as a function of the
simulated cell-cell interactions. Values correspond to proportions of variance explained.
Right panel: error in the variance estimates as a function of the simulated cell-cell interactions.
Values on the x-axis correspond to proportions of variance explained, values on the y-axis
correspond to the absolute error between the simulated proportions and the estimations from
the different models.

Robustness to different simulation settings

Finally, we considered the robustness of the results across multiple cell-cell interaction ranges,
varying the simulated number of neighbours N, involved in cell-cell interaction effects.
We computed the average error in the inferred variance estimates across all simulations for
Ne—c € [0,0.25] and for 7n,,;; = 0.2. Results show that SVCA was the method with the lower

bias (error more centred on zero) for all simulation settings (Fig. 3.9).
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Fig. 3.9 Absolute difference between inferred cell-cell interaction variance estimates and

simulated values as a function of the numbers of neighbours N, used in the simulations.
Values are averaged across the whole range of simulated variance components.



Modelling cell-cell interactions from spatial gene expression data with spatial variance
56 component analysis

3.5 Application of SVCA to Imaging Mass Cytometry breast

cancer data

Here, we present results obtained from applying SVCA to an Imaging Mass Cytometry (IMC)
dataset from human breast cancer (Schapiro et al., 2017). We first give a brief overview of
the experimental method and the processing steps performed to normalise the raw data. Then

we present the results obtained with SVCA and discuss their biological interpretation.

3.5.1 Experimental method and data processing

Imaging Mass Cytometry (IMC) allows sub-cellular resolution measurements of the abun-
dance of up to 37 proteins (Giesen et al., 2014). In a paraffin embedded tissue, targeted
proteins are labelled with specific antibodies coupled with metal isotopes of distinct masses.
The tissue is then laser ablated into a sub-cellular resolution grid of so-called voxels of
dimension 1um x 1um, and subsequently injected into a CyTOF (Kay et al., 2016), which
measures the protein abundances based on the detection of the metal isotopes. This results in
protein counts in each voxel, which are aggregated into single cell expression levels after cell
segmentation, for example using cell profiler (Sommer et al., 2011; Schiiffler et al., 2015;
Carpenter et al., 2006).

Raw data description

We analysed a dataset of 46 breast cancer biopsies from 23 patients (Schapiro et al., 2017) (6
images were removed from the original dataset as they exhibited one or multiple markers
with no variance across pixels, indicating failure in abundance measurements). Clinical data
was available for 38 of these images: (ER status, PR status, Her2 status, Grade). The images
contained between 267 and 1455 cells, with an average of 900 cells and 26 proteins were

targeted. An example of an IMC image, visualised for three proteins, is shown in Figure 3.10

Preprocessing

We first quantified the expression level of every given cell using the median of the signal
across all voxels assigned to it. The single cell counts obtained exhibited over-dispersion

(Fig. 3.11), which motivated using the Anscombe transformation for variance stabilisation
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Fig. 3.10 Example of IMC image for a breast cancer sample. Proteins shown are E-cadherin
in Red, Vimentin in Green and Histone H3 in blue.

of Negative Binomial data (Anscombe, 1948). Specifically, the dispersion parameter ¢ in
the negative binomial mean-variance equation 6> =y + ¢ u” was optimised using gradient
descent and the following log transformation was applied to the data: y = log(x+ 1/2¢).
The resulting expression profiles were then normalised by regressing out the log of the total
signal in the cell to remove possible batch effects resulting in a higher detection rate across

all proteins for some cells.
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Fig. 3.11 Mean Variance relationship of single cell expression levels for the IMC data. Left:
Before data processing. Right: after data processing. Means and variances are computed
across cells, for every image and every protein independently (one dot per protein and image).
A few outlying plots were removed for clearer visualisation of the relationship.

Figure 3.12 shows the impact of the two processing steps on the distribution of the protein

expression levels across cells and images, while Figure 3.13 shows that the data processing
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reduces the correlation between proteins across cells.
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Fig. 3.12 Protein expression profiles across cells and images Top: before processing. Bottom:
after processing.

Before fitting SVCA, the stabilised expression profile of the target gene Y was subsequently
ranked standardised and transformed into Normally distributed data using the probit function,
in order to reduce sensitivity to outliers. Note that this last step was performed for the target

gene Y only, so that the true scale and distribution of the input genes are preserved.

3.5.2 SVCA variance signatures

We computed the SVCA spatial variance signatures for every image independently. Fig-
ure 3.14 shows the average variance components across all 46 images. We also computed
the statistical significance of the cell-cell interaction component, corrected for multiple
testing across proteins and images using the Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995) (Fig. 3.14).
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Fig. 3.13 Matrix of the Pearson correlation between protein expression levels. Left: raw
data. Right: processed data. Correlations between proteins are computed within each image
independently. Shown is the average value across images for each protein pair

27 32
nniﬂﬁlnlﬁﬂﬁﬂﬂmnn“nﬂnn__

el

,O
Oqu 090 R N 4&ka,f79 06'6’8 /1;\6‘} /144 é S/(, 86‘ Qq);q I'V/Sfoj”o ,(_69'9 V/,b Cf},o 0\44 /'stq \/Voa /7(~3,.<,> \ %@b CC@
n
’7

Variance explained

~

s
[JResidual noise @Intrinsic effectlEnvironmental effect[C]Cell—cell interactions

Fig. 3.14 Top panel (grey): number of images with a significant cell-cell interaction compo-
nent for the corresponding proteins (out of 46 images; FDR < 1%). Bottom panel: SVCA
spatial variance signatures averaged across images for the IMC breast cancer dataset. Proteins
are ordered by the magnitude of the cell-cell interaction component.

Out of sample predictions

We performed out of sample predictions of gene expression profiles in test cells sampled at
random (details in Appendix A, Section A.1 .22), to validate the inferred variance estimates,
finding that SVCA yielded more accurate gene expression profile imputations than the alterna-

tive linear regressions discussed in the previous section, as well as reduced Gaussian Process

2Appendix A, Section A.1.2 explains the marginalisation property of Gaussian Processes, and how out of
sample prediction is implemented in the context of SVCA so as to preserve it
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models ignoring cell-cell interactions (Fig. 3.15). The only small difference between SVCA
and a reduced Gaussian Process accounting for a local effect but no cell-cell interactions
may arguably be due to the capacity of the local term to capture non-specific spatial effects,

including cell-cell interactions when they are not modelled explicitly (see Appendix A).
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Fig. 3.15 Prediction accuracy for SVCA and alternative models using 5-fold cross-validation.
The blue and green lines correspond to two reduced Gaussian Processes including respectively
an intrinsic component, and an intrinsic component plus a local component. The two grey
lines correspond to alternative linear regressions (see Section 3.4). The solid lines correspond
to the coefficient of determination between the predicted and the observed values. Shaded
areas correspond to plus and minus one standard deviation across images.

Validation with cell permutations

As a sanity check, we also computed the spatial variance signatures after permuting the cell
positions and found that no cell-cell interactions were inferred when permuting the cells
(Fig. 3.16).

The remaining variance component for the environmental effect can arguably be due to the
capacity of the squared-exponential covariance function to capture uncorrelated noise for
very small length scales. To validate this hypothesis, we plotted the variance estimate for
the environmental effect as a function of the fitted length scale of the covariance function.
We observed that strong environmental effects, in the case of permuted cell positions,
corresponded indeed to very small length scales (Fig. 3.17).
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Fig. 3.16 SVCA signatures for permuted cell positions for the IMC Breast cancer data.
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Fig. 3.17 Variance estimates for the environmental effect as a function of the fitted length
scale, for both permuted and non-permuted cell positions. Shown are the log of the length
scale on the x-axis, and the proportion of variance explained by the environmental effect on
the y-axis. Each point corresponds to one image and one protein.

3.5.3 Biological interpretation

Effect of cell-cell interactions on expression variability

SVCA revealed substantial differences of the overall importance of cell-cell interaction

components across proteins, explaining up to 25% of the total expression variance averaged

across images. Immune cell markers in particular were found among the proteins with the
largest cell-cell interaction component: for CD44, CD20, CD3 and CD68, we detected
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significant cell-cell interaction effects in 34, 31, 32 and 31 out of the 46 images respectively
(FDR<1%, Benjamini-Hochberg adjusted, Fig. 3a). We hypothesise that this effect could
reflect the recruitment of immune cells by specific cellular environments (Moreau et al.,
2018; "Chlon and Markowetz, 2017). CAHIX, a marker of hypoxia, was also found among

the top markers linked to cell-cell interaction effects.

Signatures variability across images

We also observed substantial differences in the estimated spatial variance signatures across
images (Fig. 3.18), motivating the investigation of the relationship between these variations

and clinical covariates, including tumour grade.
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Fig. 3.18 Coefficient of variation (CV) across images of the SVCA variance components,
computed independently for every protein. Boxplots are made using one point per protein.

A projection of the SVCA spatial variance signatures for every image using principal compo-
nent analysis (PCA) identified tumour grade as an important source of variation in spatial
variance components (Fig. 3.19) (P = 3.8 x 1073, using the ClusterSignificance package in
R (Serviss et al., 2017)). Inspection of the PCA loadings identified the cell-cell interaction
component and the environmental component for a subset of proteins (including CD20 and
CD44) as the most informative SVCA features related to tumour grade (Fig. 3.19).

Tumour progression is characterised by disorganisation and irregular cellular architecture
which is associated with increased cell sizes, increased proliferation and thus higher cell
density in comparison to healthy breast tissue (Elston and Ellis, 1991). We investigated how

SVCA signatures were related to these environmental features and discovered a significant



3.5 Application of SVCA to Imaging Mass Cytometry breast cancer data

63

1.0
02 -
ER PRAB_c.c
o | . “[CAHK o0
N N 2o Bot
- e *E ;
= |a S =
oo Au y & g . {lcoes_co)
. A = 0.0 ooy
2 ]
8 “A“ A Grade CL\‘) . 3
T A A ® 1 I .
e 2 -0.1 3.
05 e
. -
10 A -0.
-1.0 -05 0.0 0.5 1.0 -02 -0.1 0.0 01 0.2
PC1 - 19% PC1 loadings

Fig. 3.19 Left: First two principal components for the 38 clinically annotated images,
calculated based on the spatial variance signature, with individual images coloured by tumour
grade. The shape corresponds to the ER status of the sample Right: Loadings of the principal
components, depicting the relevance of individual proteins and types of variance components.

correlation (P = 3 x 1073) between the average number of neighbours per cell and the
average cell-cell interaction components across proteins (using cellProfiler (Carpenter et al.,
2006) to compute the number of neighbours per cell and the /m function from R to compute
significance). This difference in tissue composition could contribute to the separation of
grades observed on the PCA. It is not surprising that cell-cell interactions would be higher in
tissues with higher cell densities, compared to adipose tissue with only sparse cells. However,
this effect was quite small (Fig 3.20), suggesting the existence of other drivers of variation

across spatial variance signatures.
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Fig. 3.20 Average cell-cell interaction component across proteins as function of the average
number of neighbours per cells, as defined by cellProfiler (Carpenter et al., 2006). One point
per IMC image. The line corresponds to the fitted linear regression model using the /m
function in R (P = 3 x 1073), and the shaded areas to 95% confidence intervals.
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Relationship to histoCAT results

We noticed that the images with the strongest separation on the PCA (image names high-
lighted in Fig. 3.19) were already identified in the primary analysis (Schapiro et al., 2017)

for the specificity of their tissue organisation compared to other images.

Schapiro et al. (2017) used the HistoCAT software to assess the significance of the spatial
proximity of pre-annotated cell types, based on cell permutations. This analysis resulted
in a signature of the cellular neighbourhood structure of every tissue, made of repulsion
and attraction scores between each pair of cell types. Schapiro et al. (2017) clustered these
signatures to detect images with similar tissue structures. As a result of this procedure, the
highlighted images were separated in a grade 1 enriched cluster containing the images Ay6x7
and Ay8x8 and a grade 3 enriched cluster containing the images Cy7x8, Cy8x4, Cy8xS5,
Cy8x6, Cy8x7, Cy13x6, Cy13x7 and Cy13x8 (Schapiro et al., 2017, Fig. 3c). This suggests
a relationship between SVCA signatures and signatures obtained with a permutation based
neighbourhood analysis, although SVCA does not rely on cell type classification and arbitrary

neighbourhood definitions.

3.6 Application of SVCA to a mouse hippocampus seqFISH
data

SVCA can in principle be applied to data from any spatially resolved technology, including
optical imaging-based assays. To explore this, we considered a mouse hippocampus RNA
dataset imaged using the seqFISH technique (Shah et al., 2016). We start with a brief
overview of the experimental method and the data processing steps. Then, we present the
spatial variance signatures obtained with SVCA for this dataset, as well as validation steps
using out of sample prediction and cell permutations. The section is concluded with a

discussion on the biological relevance of the results.

3.6.1 Experimental method and data processing

Sequential FISH (seqFISH) is a targeted approach for in-situ RNA quantification, building
upon single molecule Fluorescence In Situ Hybridisation (sm-FISH). In sm-FISH, cells are
fixed and messenger RNAs are typically targeted in-situ by fluorescently labeled complemen-

tary sequences, whose positions are then detected with high resolution imaging (Raj et al.,
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2008; AM et al., 2003).

In order to quantify a high number of transcripts in a single experiment, seqFISH uses a
multiplexing approach that relies on the sequential application of multiple hybridisation and
stripping rounds with fluorescent RNA-probes of multiple colours. A given gene is targeted
by a unique combination of probes, each hybridising on a small portion of the RNA molecule.
For F distinct colours and N hybridisation rounds, this barcoding approach can target up
to FV different transcripts. In contrast, a non-combinatorial approach where each gene is
targeted by only one probe only allows the quantification up to F' x N transcripts. The latter
sequential approach is also used in seqFISH for some of the genes. (Shah et al., 2016; Lubeck
et al., 2014; Shah et al., 2017).

To improve the method performance, seqFISH also borrows from information theory the use
of error correcting barcodes (Shah et al., 2016; Biswas, 2008). Barcodes are chosen with a
sufficient Hamming distance between them to ensure that the mis-detection of one or more of
its element still allows for the non-ambiguous assignment to the right transcript. Increasing
the Hamming distance between barcodes however reduces the number of possible target
transcripts. Finally, seqFISH uses hybridisation chain reaction to amplify the brightness of
every spot (Shah et al., 2016; Strell et al., 2018).

Raw data description

We analysed a dataset of 20 images from the hippocampus of a single mouse, with 249 genes
quantified. A barcoding approach with 5 rounds of hybridisation and error correction was
used for 214 of them. The remaining genes were imaged in 7 rounds of non-barcoding serial
hybridisation. The authors also quantified the efficiency of the experiment which was found
to be 71% (Shah et al., 2016).

Each image contained between 97 and 362 cells (average of 140), pre-segmented by the
authors. The data consisted in a list of every single molecule detected within each cell, and its
precise location, which was aggregated into single cell-counts. The location of the biopsies

within the hippocampus spatial organisation were also provided by the authors.
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Data processing

The single-cell counts were normalised following the same procedure as for the IMC data
in Section 3.5.1, resulting in variance stabilisation of the expression profiles (Fig. 3.21) and
removal of spurious correlations between genes (Fig. 3.22). As in the IMC application,
the stabilised expression profile of the target gene Y was subsequently ranked standardised

and transformed into Normally distributed data using the probit function, before fitting SVCA.

6000 -
2.01
8 3
% C
= 4000+ 2 15
S 154
> >
c c
R o
a ‘» 1.0
& 2000+ g
S S
i 5 0.5 -
D
0 T T T T T T 00-
0 % %) s 0 1% ~9 ~> ~6 ~5 ~
Expression Mean Expression Mean

Fig. 3.21 Mean Variance relationship of single cell expression levels for the seqFISH data.
Left: Before data processing. Right: after data processing. Means and variances are computed
across cells, for every image and every protein independently (one dot per protein and image).

3.6.2 SVCA variance signatures

We computed the SVCA spatial variance signatures for every image independently. Fig-
ure 3.23 shows the average variance components across images. Because of the higher
number of genes measured, we only represent the twenty genes with the highest cell-cell

interaction component (Fig. 3.23).

Out of sample predictions

Again, we used 5-fold cross-validation to validate the variance estimates (Fig. 3.24), con-
firming at the same time that SVCA yields more accurate out of sample predictions than

alternative models.
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Fig. 3.22 Matrix of Pearson correlation between gene expression levels. Left: raw data. Right:
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Fig. 3.23 SVCA Spatial Variance signatures averaged across images for the seqFISH hip-
pocampus dataset. Genes are ordered by the magnitude of the cell-cell interaction component.
Violin plot: variance estimates distribution across images and genes for all 249 genes.

Validation with cell permutations

We performed the same sanity check as in the IMC application, fitting the SVCA model on
cell-permuted data (Fig. 3.25). Cell-cell interactions were greatly reduced by the procedure.
However, unlike in the IMC application, there was a residual spurious cell-cell interaction
effect, which could arguably be due to the smaller number of cells in each image, due to
which, randomisation may not completely eliminate the spatial structure in the data. We

investigated this issue further in Appendix A.6
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Fig. 3.24 Prediction accuracy for SVCA and alternative models using 5-fold cross-validation.
The blue and green lines correspond to two reduced Gaussian Processes including respectively
an intrinsic component only, and both an intrinsic and a local component. The two grey lines
correspond to alternative linear regressions (see Section 3.4). Results are shown for the 20
genes with highest cell-cell interactions. The solid lines correspond to the coefficients of
determination between predicted gene expression and observed values. The shaded areas
correspond to plus and minus one standard deviation across images.
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Fig. 3.25 SVCA signatures for permuted cell positions for the seqFISH hippocampus data
for the genes of Figure 3.23.

3.6.3 Biological interpretation
Identification of relevant gene families involved in cell-cell interactions

Making use of the higher dimensionality of the data, we sought to identify gene families that
participate in cell-cell interactions. First, we manually classified genes in non-overlapping
categories based on prior annotations (see table in Appendix A.7), and considered categories
with more than five genes, including cell cycle, cell junctions, immune system, neurotrans-

mitter transporters and transcription factors. The neurotransmitter transporter category was
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made of six glutamate transporters of the Solute Carrier family. The immune system category
was made of six genes with various functions, all associated to immune response, such as
MFGES involved in phagocytosis or the interferon regulatory factor IRF2. The eight cell
junction genes included ACTA?2 (Actin), Opalin (Yoshikawa et al., 2008) and MOG. The

largest group was the transcription factors group with 166 genes.

We assessed the enrichment of these gene categories for the cell-cell interaction and the
intrinsic components, using a permutation strategy similar to GSEA (Subramanian et al.,
2005; Mootha et al., 2003):

1) Genes were ranked based on the size of the variance component of interest (cell-cell

interaction or intrinsic effect)

i1) A GSEA-like trace was computed for each gene category and the height of this trace

was considered as a test statistic.

ii1) Gene labels were permuted 10,000 times in order to estimate an empirical P value for

the statistic described above.

iv) P values were adjusted for multiple testing using a Benjamini-Hochberg procedure (Ben-
jamini and Hochberg, 1995).

We found that cell junction genes and neurotransmitter transporters were the most enriched
groups for cell-cell interactions (g = 6 x 107 and g = 1 x 10~3, Benjamini-Hochberg ad-
justed) (Fig. 3.26).
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Fig. 3.26 Enrichment of the annotated gene families for cell-cell interaction and intrinsic
effect, using a permutation based strategy. Values correspond to —log g, Benjamini-Hochberg
corrected.
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Some cell junction genes such as GJA1 (connexin) are involved in gap junction intercellular
communication (Cheng et al., 2015) while, for example, the actin skeleton has a known role
in the adaptation of tissue structure and geometry to external stimulus (Carpenter, 2000;
Brakebusch and Fissler, 2003), which may explain the enrichment of this category for
cell-cell interactions. The enrichment of glutamate transporters is also consistent with their
involvement in the transport and (re)uptake of neurotransmitter at the neuronal synapses, a
critical cell-cell interaction in the brain (Masson et al., 1999; Iversen, 2009; Angulo et al.,
2004; Mason, 2017). In addition Slc5a7 (CHT) was found to be preferentially expressed
in specific interneurones which are linked to the spatial organisation of the tissue (Yi et al.,
2015). To a smaller extent, genes related to the immune system were also significantly
enriched for cell-cell interactions (g = 2 X 10~2). Genes such as CTSS (Cathepsin) and
MFGES (Lactadherin), which play a role in phagocytosis in the brain (Fricker et al., 2012;
Neher et al., 2013; Vitner et al., 2010), were amongst the top cell-cell interaction related
genes. Notably however, Cell junction genes and Neurotransmitter transporters were also
enriched amongst genes with a high intrinsic component, suggesting that the expression
level of these genes also relate to intracellular processes (Fig. 3.26). This observation also
raised the question of whether cell-cell interaction and intrinsic components were globally
correlated. In Appendix A, Section A.3, we compared the cell-cell interaction variance
component with the three other model components for both the seqFISH data application
and the IMC application of Section 3.5. We did not observe any strong global dependency

between intrinsic effect and cell-cell interactions.

Five out of the ten genes with the highest cell-cell interaction variance components did
not fall into any of the annotated gene sets and we therefore analysed them individually.
NGEF (Ephexin) is an exchange factor that plays a role in axon guidance (Shamah et al.,
2001; O’Donnell et al., 2009); CAMK?2 is a kinase known to play a role in long-term
potentiation and neurotransmitter release (Wang, 2008; Lisman et al., 2012); LYVE is a
membrane receptor (Banerji et al., 1999) and SNCG (Synuclein Gamma) is involved in
axonal architecture (Surguchov et al., 2001; Vargas et al., 2017). Taken together, this shows
that genes with a high cell-cell interaction component are reported in the literature as being
involved in important cell-cell communications in neurones, or having a function in the

spatial architecture of the tissue.



3.6 Application of SVCA to a mouse hippocampus seqFISH data 71

Signature variability across samples

Similarly to results obtained on the IMC datasets, we observed high variation in the spatial
variance signatures across images, which were sampled from functionally distinct regions of
the hippocampus (Shah et al., 2017) (Fig. 3.27).
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Fig. 3.27 Coefficient of variation across images of the SVCA variance components, computed
independently for every gene (one point per gene).

We used principal component analysis, to see if this variability could be linked to prior
knowledge about the structure of the hippocampus. We used the compartmentations of the
hippocampus into dorsal, ventral and intermediate regions, as well as CA1l, CA3 and DG
regions as provided by Shah et al. (2017) (Fig. 3.28). We found that the first two princi-
pal components of the spatial variance signatures in the dorsal region clustered together,
irrespective of their CA1/CA3 location. Similarly, images from the Dentate Gyrus (DG)
also clustered together, and there was some proximity between signatures from the ventral
region, although with more variation between them. This is consistent with the observation
from Shah et al. (2017) that the ventral and dorsal regions of the CA1 and the CA3 mirror
each other with respect to their cellular compositions, and that ventral regions are more
heterogeneous in their cellular composition. Spatial variance signatures for intermediate

regions, however, did not show much resemblance.
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Fig. 3.28 Left: spatial organisation of the mouse hippocampus with each dot corresponding
to an individual image. Colours and shapes denote regions using the classification as in Shah
et al. (2017). Middle: first two principal components of the spatial variance signatures
for individual images from the DG, the dorsal region and the ventral region. Colour and
shape represent the location of the biopsy in the hippocampus. Right: first two principal
components of the spatial variance signatures for all 20 images.

3.7 Discussion

We presented Spatial Variance Component Analysis (SVCA), a regression-based framework
for the analysis of spatially resolved molecular expression data. Our model uses a Gaussian
Process with specific covariance terms to compute a spatial variance signature for individual
mRNA or protein levels, which decomposes their sources of variation into spatial and non-
spatial components. Most prominently, SVCA provides a quantitative assessment of the
effect of cell-cell interactions on the expression profile of individual molecules. The model
avoids the explicit definition of cell types and neighbourhoods, instead using a continuous

measure of cell state and Euclidean distances between cells.

3.7.1 Technical limitations

Although we have tested the calibration and robustness of SVCA, the model is not free of

limitations.

Noise model

At present, the model does not account for technology-specific noise and instead assumes
Gaussian distributed residuals, requiring suitable data processing. Further development
could consider a generalised random effects model, for example to couple the random effect

component with a negative-binomial likelihood.
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Univariate model

A second limitation of SVCA is that the model is univariate, meaning that individual genes or
proteins are modelled independently from each other. Multivariate extensions could account
for relationships between genes involved in the same pathways, either in an unsupervised
manner or using prior knowledge (Buettner et al., 2017). Such approaches could give a more

comprehensive understanding of how biological processes are affected by tissue structure.

Scalability

As the size of spatial expression datasets increases with the development of higher-throughput
technologies, scalability will also become an important challenge for SVCA. The model is
linear in the number of genes, and massive parallelisation can be obtained with adequate
computational infrastructure. Also, the Gaussian Process approach typically scales cubically
in the number of cells, which can be circumvented by splitting bigger images into multiple
patches analysed independently. Additionally, we could explore using faster inference
methods relying on sparse approximations (Hensman et al., 2013a; Snelson and Ghahramani,
2006; Quinionero-Candela and Rasmussen, 2005) or random feature selection (Rahimi and
Recht, 2008; Oliva et al., 2016).

Significance testing

We have seen in Section 3.3.4 that the SVCA significance testing procedure is quite under-
powered. For the applications presented in this thesis, we believe that the output of interest
was the variance signatures rather than any significance measurement. However, if SVCA
is to be used for the purpose of assessing the significance of the covariance terms, a more

calibrated testing procedure needs to be implemented.

Miscellaneous

In addition to those main points, there are multiple minor issues and open discussion topics for
the SVCA model and software. Among other things, the model could use decoupled length
scales for the cell-cell interaction and the environmental covariance functions. Different
covariance functions could also be designed and compared to the current choices. Finally,
the current software uses command line executions, meaning that user experience could
be improved by the development of a graphical interface and SVCA could be integrated in
existing platforms such as the histoCAT software (Schapiro et al., 2017).
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3.7.2 Biological applications
Broad applicability of SVCA

We have applied SVCA to datasets generated using alternative technologies, probing either
RNA transcripts or proteins, demonstrating the broad applicability of the approach. Across
these applications, we observed that cell-cell interactions can substantially contribute to gene
expression variation, which is consistent with previous reports (Battich et al., 2013; Goltsev
et al., 2018; Kaminska et al., 2015; Nasra Naeim Ayuob and Soad Shaker Ali, 2012) and
supports the concept that studying single cell expression in the native context is important

for understanding their molecular differences.

We noticed a relatively high variability of the SVCA signatures across samples and investi-
gated the possible causes of this variability. We provided evidence that differences in SVCA
signatures could result from differences in the spatial structure of tissues, as well as different
clinical and biological contexts. For the IMC data, we also noticed that this variability

reflected previous findings about different tissue organisations between samples.

Interpretation of the variance signatures remains challenging

We used gene annotation and enrichments to interpret the spatial variance signatures. In
the seqFISH application in particular, we found genes known to be involved in cellular
interactions, such as SLCs, to be predominantly enriched in the corresponding term of our

model.

Further interpretation of these signatures remains however challenging. This could arguably
be due to our limited knowledge of such multi-cellular processes in comparison to intracellular
pathways. In addition, cell-cell interactions may be caused by a diversity of biological
contexts and processes: for example, it is intrinsically challenging to tell apart cell-type
co-occurrences from more specific molecular interactions. As emerging technologies provide
data sets rich in this type of information, and methods such as SVCA are developed to analyse
it, our knowledge and understanding should increase, and thereby the ability to interpret the
signatures of cell-cell interactions. In particular, more hypothesis-driven research, possibly
with simpler biological systems with clear positive and negative controls, can be instrumental

towards this goal.
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3.7.3 Conclusion

There is a growing appreciation of the role of spatial distribution of proteins, RNA transcripts
and other molecules in determining tissues functioning and its deregulation in disease, with
potential value as predictors of clinical outcomes (Bodenmiller, 2016). This is largely driven
by vigorous development of novel technologies that enable us to capture such data (Boden-
miller, 2016; Aichler and Walch, 2015; Lin et al., 2017; Schulz et al., 2018). We believe that
the SVCA framework and extensions thereof could be of broad use to analyse this burgeoning
spatially resolved molecular data to advance our understanding of the pathophysiology of

multiple diseases.






Chapter 4

Biofam: a flexible framework for Factor

Analysis models in biology

In this Chapter, we present biofam, a flexible Factor Analysis framework which can be
applied to gene expression data and other biological layers, while accounting for structured
data context such as the existence of multiple sample groups or the combined analysis of

multiple omics.

The development of biofam was motivated by the prior implementation of the MOFA pack-
age (Argelaguet et al., 2018) a more limited factor analysis model for the integration of
multiple data types (see Section 5.2). Biofam provides a more efficient inference scheme,
additional sparsity-inducing priors allowing the user to address new biological questions and
is based on a more modular implementation enabling the selection of optional model features

in any combination.

This is joint work with Oliver Stegle, Ricard Argelaguet, Danila Bredikin and Yonatan Deloro.
I led the development of the package. I designed the model and software in collaboration with
Ricard Argelaguet. Ricard Argelaguet and I derived all variational updates and implemented
most of the core software, which includes the probabilistic model, the inference routine
and the python user interface. Danila Bredikin and Yonatan Deloro joined the project later
and contributed to the implementation of some core software components and implemented
most of the R package for downstream analysis presented in Section 5.1, based on previous
work from Britta Velten and Ricard Argelaguet. I designed and implemented the stochastic

inference extension, and tested it with the help of Yonatan Deloro, an intern I supervised.
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All analysis presented in this chapter is the result of my own work, except the simulations
from the non-Gaussian data which were performed by Ricard Argelaguet (Fig. 4.14 and 4.15),
In Chapter 5, we illustrate use cases of biofam on real data by others and in collaboration with

me. The software is open source and freely available here: https://github.com/biofam/biofam.

4.1 Introduction

Unsupervised models such as clustering or dimensionality reduction are widely used ap-
proaches for the exploratory first-pass analysis of high-dimensional data. For example,
Principal Component Analysis (Hotelling, 1933) (see Section 2.2) computes a low dimen-
sional representation of the data which can be easily visualised and highlights the main
dependencies between samples, such as subpopulations (Novembre et al., 2008; Pollen et al.,
2014; Islam et al., 2011; Shalek et al., 2014; Tang et al., 2010), technical batch effects (Luo
et al., 2010; Holmes et al., 2011; Yang et al., 2008; Lazar et al., 2013) or continuous relation-
ships (Wang et al., 2013; Haghverdi et al., 2015; Guo et al., 2010).

With recent advances in experimental techniques, gene expression datasets are measured in an
increasing number of different contexts, including multiple tissues (GTEx Consortium, 2013;
Nica et al., 2011), and in combination with other biological layers such as methylation (Hasin
et al., 2017). This gives rise to structured datasets, where samples belong to distinct groups,
and features to distinct views, with sometimes different data modalities. These new datasets
pose additional requirements to perform dimensionality reduction while explicitly accounting

for this contextual information.

We will here build on the probabilistic Factor Analysis framework introduced in Chapter 2.
This formulation allows for the definition of hierarchical priors which reflect prior knowledge
about the data context and structure, or prior assumptions about the distribution of the model
parameters. In addition, Factor Analysis has other advantages such as the ability to handle

datasets with missing values.

Probabilistic methods for linear dimensionality reduction

Multiple variants of Factor Analysis have been developed and applied to the analysis of gene
expression datasets. They differ in the choice of the prior distributions used on the model

parameters, which are tailored to a given context or application. For example, while most
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models typically assume Normally distributed weights and factors (see Section 2.2), Inde-
pendent Component Analysis assumes a non-Normal distribution of the weights (Lawrence

and Bishop, 2000), which induces statistical independence across latent factors.

In addition, Factor Analysis extensions differ in their choice of hierarchical priors. Group
Factor Analysis (Virtanen et al., 2012; Klami et al., 2015) models prior knowledge about
existing groups of features, which allows for the combined analysis of data from multiple
sources. As conventional (Group) Factor Analysis tends to infer dense weight matrices, so
that the latent factors capture a maximum variability in the data (minimising the reconstruc-
tion error), relating these latent factors to known biological processes involving a small subset
of genes is challenging. To address this issue, sparse extensions of Factor Analysis (Zhao
et al., 2016; Khan et al., 2014; Gao et al., 2013) model the assumption that meaningful drivers
of variation affect a limited number of features, resulting in the inference of sparse weight
matrices which are more easily interpretable as biological processes. Bi-clustering models
extend this sparsity assumption to the factors (Hochreiter et al., 2010; Suvitaival et al., 2014;
Bunte et al., 2016; Leppédaho et al., 2017)

While Group Factor Analysis models are useful for the purpose of integrating multiple types
of data sources for matching samples, existing models do not account for group structures on
the sample axis. Thus, they do not offer a principled framework for the unsupervised analysis
of multidimensional data across biological contexts, a problem which remains less studied.
A notable exception is the GFA mixture model of Remes et al. (2015), which however offers

only limited options and does not provide a runnable software (see Section 4.7.1).

In addition, current GFA implementations each have a number of specific limitations. Com-
monly employed inference using Gibbs sampling does not scale to large datasets (Khan
et al., 2014; Bunte et al., 2016; Leppidaho et al., 2017). Other implementations do not
handle missing values (Khan et al., 2014; Zhao et al., 2016; Remes et al., 2015; Klami et al.,
2015; Virtanen et al., 2012). These models rely solely on a Gaussian likelihood, which is
not adapted for the analysis of data with different modalities such as binary mutation or
methylation data. Finally, most of the tools available for dimensionality reduction provide
only sparse functionalities for downstream analysis of the latent factors and weights inferred.
At the end of this Chapter (Section 4.7.1), Table 4.3 gives a summary of the characteristics of
published Group Factor Analysis models.
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Biofam: a unified framework for Factor Analysis in biology
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Fig. 4.1 Biofam enables joint Factor Analysis across multiple omics and multiple sample
groups. Weight matrices are represented in red, and factor matrices have the colour of the
sample groups they correspond to. Latent factors may be relevant to specific omics and
specific sample groups only, as illustrated by the null column in the weight matrices and the
null rows in the factor matrices (white cells). Biofam also supports datasets with missing
values, including samples missing an entire assay, as represented by empty columns in the
data matrix (and likewise, features missing across an entire sample group).

Here, we propose biofam (Bio - Factor Analysis models), a unified Factor Analysis mod-
elling framework which brings together the individual strengths of the multiple separate
GFA models and implementations mentioned before. Biofam is implemented in a modular
manner, so that grouping structures and sparsity-inducing priors can be encoded flexibly on
the feature axis, on the sample axis or on both. Thus, it is able to fit existing FA, GFA, ICA
and bi-clustering models, with or without sparsity-inducing priors.

In addition to unifying existing GFA modelling approaches, biofam offers a number of unique
features. Firstly, it models grouping structures on the sample axis, facilitating the analysis of
new types of gene expression analysis problems such as the combined analysis of datasets
across different biological contexts (Fig. 4.1). Biofam also extends GFA to support Poisson
and Bernoulli data likelihoods, which are particularly suited to the analysis of multi-omics
data where different data sources exhibit different modalities, such as binary data in the case
of somatic mutations. Biofam is implemented using an efficient inference scheme using
variational methods and GPU optimisation, which makes it scalable to large datasets. We also

present ongoing work regarding an extension to stochastic variational inference, which holds
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the promise to make biofam scalable to datasets which do not fit on the computer memory
(see Section 4.6), although this still requires the implementation of additional functionalities.
Finally, biofam provides an R package for results visualisation and downstream analysis
(Fig. 4.2), which will be presented in Chapter 5.
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Fig. 4.2 Biofam downstream analysis packages provides a compact representation of factors
relevance in multiple sample groups and omics. It also provides a visual way to inspect the
weights of the Factor Analysis model and relate them to biological processes using Gene Set
Enrichment Analysis

4.2 Model

Biofam builds upon the modelling principles and techniques introduced in Section 2.2,
thereby extending Factor Analysis using hierarchical Bayesian priors, whose architecture
reflects the data context. After introducing our notation and naming convention, this Section
presents the Bayesian architecture and main characteristics of the biofam model. Unless

stated otherwise, graphical models use the notations of Section 2.2

4.2.1 Mathematical notation and naming convention

In general, we consider structured datasets where multiple sample groups are analysed jointly,
and the features consist of multiple distinct groups or views. These datasets are described

with the following notation:

G Number of sample groups

M Number of feature groups or views
N, Number of samples in group g € [1;G]
Dy

Number of features in view m € [1; M]
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y,'$  Data point for sample n of group g and feature d of view m

Y Full data matrix concatenated over samples, features, groups and views

Note that ny does not designate a tensor, as views have in general different number of
non-matching features, and groups different numbers of non-matching samples. The model
however relies on the assumption that samples are matching across views, and features are

matching across sample groups (Fig. 4.1).

Biofam builds upon Factor Analysis, which assumes that the observed dataset is generated by
a (small) number of latent factors, through a linear function (Section 2.2.4). In this chapter,

the model parameters are described with the following notation:

K Number of latent factors
2k Value of factor k associated to sample n of group g
ka, 4 Weight associated to feature d of view m and factor k
T)' Precision of the Gaussian likelihood for feature d of view m
Z Matrix of all factors concatenated over samples and groups
W Matrix of all weights concatenated over features and views
® Ensemble of all model parameters, including W, Z, {Ty}Vm,Vd and any

additional optional parameters introduced in this Section.

Unless stated otherwise, we assume a Gaussian likelihood model with feature and view
specific precision; using the notation just introduced: nyf ~ N ():le Zi, kaf & TQ”). In the
interest of uncluttered notations, view and group indices m and g are typically dropped when
the dataset consists in only one view or group, or when these grouping structures are not

needed for clarity.

This section introduces optional hierarchical priors which encode prior knowledge about the
data structure and prior assumptions about the latent space. The mathematical notation for

the corresponding parameters are introduced in due time.

4.2.2 Structured Sparsity
Known feature groups

When the data is structured into multiple feature groups, called views, such as multiple

omics, some factors may affect specific views only, resulting in the structured sparsity of the



4.2 Model 83

weight matrix W illustrated in Figure 4.1 and in Figure 2.12 of Section 2.2.5. Borrowing
prior distributions from Group Factor Analysis (Section 2.2.5), biofam models this structured

sparsity assumption with view-specific ARD priors on the weights:

wig ~ A (0, 047)

(4.1)
OC]Z” ~ F(a(),b())

As in Virtanen et al. (2012), we use the hyperparameters ag = by = 10~ 14,

Known sample groups

Similarly, when the data is structured into multiple sample groups reflecting different bio-
logical contexts, some factors may be relevant to a subset of groups only, resulting in the
structured sparsity of the factor matrix Z, illustrated in Figure 4.1. Structured sparsity of
the factors is also modelled with group specific ARD priors, with the same hyperparameters
ag = by =107

g g
2, ~N(0,a

kd ( k) 4.2)
Otlf ~ F(a(),b())

4.2.3 Element-wise sparsity
Weight sparsity

Individual biological processes typically only affect a small fraction of observed features (Gao
et al., 2013). However, commonly used models, including PCA and conventional Factor
Analysis, do not exploit this sparsity assumption and instead assume that the factors are in
general dense. As a result, interpreting the inferred factors in relation to biological processes

can be challenging.

In contrast, we here use a spike-and-slab sparsity-inducing prior (Mitchell and Beauchamp,
1988) on the weights of the Factor Analysis model, corresponding to a zero-inflated Normal
distribution. Specifically, weights are modelled as drawn from a product between a Normally

distributed random variable w and a Bernoulli distributed variable s:
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wkm,d = WZfd X std
Wea ~ (0, 04")
skm7d ~ Ber(6;")
6" ~ B(ao,bo)

The parameter ;" of the Bernoulli variables s;', corresponds to the fraction of features

4.3)

affected by factor k in view m. We model 6;" as a random parameter with a conjugate beta

prior with hyperparameters ag = by = 1, corresponding to a uniform distribution.

Factor sparsity

In biofam, we extend element-wise sparsity to the factor distributions using an analogous
model, and the same hyperparameters. We use the same notations for the Bernoulli variables
s and their beta-distributed parameter 6, but the parameters can be distinguished by the

indices used (m for indices of the views and g for the indices of the sample groups):

g g
kn < Sk.n

WE o~ A(0,08)
s¢, ~ Ber(67)

07 ~ B(ao,bo)

g A
Zk,n_w

4.4)

Rotational invariance and model identifiability

Conventional Factor Analysis is invariant to rotation in the latent space. To demonstrate
this property, let us consider a rotation matrix R of dimension K x K and note W = RW,
the model weights rotated by R, and Z = ZR~! the rotated factors. The model likelihood
is unchanged by this rotation, P(Y|ZW,7) = P(Y|ZR~'RW,1) = P(Y|ZW, ), and isotropic
Normal priors on the weights and factors are also unaffected. For the weights for example,
InP(W) o< ¥y gt , = Te(W'W), and WI'W = WTR™IRW = WTW, using the fact that the
inverse of a rotatidn matrix is its transposed. This property obviously renders conventional

Factor Analysis unidentifiable.

Sparsity assumptions, however, partially address the rotational invariance problem. Inde-
pendent identically distributed spike-and-slab priors on the weights or factors of the model

is not rotationally invariant and will encourage sparser solutions. When the true generative
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factors are dense however, rotational invariance remains to some extent an issue, which
we will discuss in Section 4.4.2. Additionally, the model remains evidently invariant to
factor permutations, which should be remembered when comparing the results given by two

independent fittings of a Factor Analysis model.

4.2.4 Multiple data likelihoods

Standard Factor Analysis typically assumes Normally distributed data. In biofam, we extend
this model to binary and count data, using respectively the Poisson likelihood of Equation 4.5
and the Bernoulli likelihood of Equation 4.6.

Bernoulli Likelihood for binary data

P(vr5|@) = Ber (ij§

(g

- | 4.5)
1 +exp [— (2ny’5 — 1> Y Zn,ka,d}
Poisson likelihood for count data
Yok
p (y%\@) o< A (Zzi kwgd) exp <—7L (Zzﬁ kamd>>
b k 9 ? k I I
(4.6)

with l (ZZH,ka,d> =1In
k

1 +exp (Zziszd) ]
k

In Section 4.3.2 and Appendix C, variational updates for these data likelihoods are defined.

4.2.5 Handling missing values

Nothing in the Factor Analysis formalism requires the completeness of the data matrices,
meaning that these models naturally handle missing values. In a vectorised implementation
however, care needs to be taken, so that we keep track of the indices of non-observed data
in matrix operations, and remove their contribution to the variational updates and Evidence
Lower Bound terms. Biofam encodes the position of the missing values in memory efficient
Boolean masks, which are built based on the presence of invalid values such as NA in the

input matrices, and propagates this information to all update operations.
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4.2.6 Modular implementation
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Fig. 4.3 Full graphical model for biofam with modularity representation. Full nodes corre-
spond to the core Factor Analysis model implemented in biofam. Dotted nodes correspond
to optional parameters which can be used in any combination. Dashed nodes correspond to
the two mutually exclusive noise parameters to choose from for the Gaussian likelihood.

Biofam is implemented in a modular fashion which enables the user to choose any combina-
tion of sparsity-inducing priors that suits their assumptions, enabling data integration across
feature groups (such as multi-omics), sample groups (such as multiple tissues or experimental
conditions) or both in a flexible manner. This modularity also allows for using different
likelihoods for multiple groups of features, which is particularly useful for applications to
multi-omics data. Finally, for the sake of model symmetry, we allow the Gamma distributed

precision 7 to be defined on a per sample basis. This full modular model is shown in Fig-
ure 4.3.

The design of the software allows combining assumptions and functionalities from models

that have been considered individually, such as sparse and non-sparse Group Factor Analysis,
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or an implementation of Independent Component Analysis, using spike-and-slab priors on
the factors. Comparison between different models can therefore be performed with the
same software, aiding the objective comparison of alternative models and assumptions. In
Section 4.4, we make use of this flexibility in order to investigate the effect of different

choices of priors.

4.3 Inference

The ultimate goal of Bayesian inference is to compute the posterior distribution of all param-
eters given the observed data using the Bayes rule (Eq. 2.23, Section 2.2). However, as seen
in Section 2.2, this computation is generally intractable and the inference must be addressed
by approximate methods. Biofam uses variational inference (Section 2.2.6) to approximate

the posterior distribution of the latent parameters.

In this section, we outline the variational inference scheme of biofam.

4.3.1 Posterior factorisation

The mean field approximation is widely used in variational inference to approximate the
posterior distribution of the parameters using a fully factorised distribution ¢(®) = [1;¢i(6;).
Although this assumption is common and most convenient (see Section 2.2.6), it may be

advantageous to retain dependencies for selected subsets of model parameters.

Specifically, in the case of the spike-and-slab prior, the fully factorised mean-field approxi-
mation has limitations because of the strong connection between the Normally distributed
parameter vfz’,? 4 (e.g. for the model weights) and the Bernoulli parameter st 4 For example,
notice that if 57", = 0, W', becomes unconnected to the data. Therefore P(#}",|s = 0) should
be equal to the prior P(W;';) and only P(;’,[s = 1) should be influenced by the data. Titsias
and Lazaro-Gredilla (2011) show that using a joint g distribution for the parameters ka 4 and
si.q such that g(7’ . s7" ;) = g (¢ |7 1) (s}’ ;) yields a more accurate approximation to the
posterior distribution of these parameters than the fully factorised approximation used in
alternative studies (Yoshida and West, 2010).

In biofam, we therefore use the partially factorised approximation of Equation 4.7 when

using spike-and-slab priors on the model weights and factors.
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In Appendix B, we derive an analytical inference scheme for this partial factorisation. The
update rule of Section 2.2.6, Ing;(6;) = Eg,, In(P(Y,®)) + cst remains unchanged for all

parameters of the model except s}’ ; and W} ;, for which it becomes:

IngOW4lsiq) = E InP(Y,0)+cst

®’|s2'fd
4.8
. P(Y,0) 9
IHCI(Skd): E IHA—m + cst
’ &y Isty Q(Wk,d|sk,d)

where @' includes all model parameters except W}, and s}",. The same update rules can be

derived for spike-and-slab priors on the factors.

As biofam uses only conjugate priors, the derivation of the update equations for each term
of the model is straightforward and the approximate posterior distributions g belong to the
same family as the prior distributions. Update rules for all model parameters are provided in

Appendix D.

4.3.2 Non-Gaussian likelihoods

Prior conjugacy does not hold for the non-Gaussian likelihoods of Section 4.2.4, which
renders the derivation of the variational updates more challenging. To address this, we adapt
prior work from Seeger and Bouchard (2012) and Jaakkola and Jordan (2000), who derive
Gaussian lower bounds to the Poisson and Bernoulli likelihoods. This section outlines the
general principle of these approximations and provides the resulting update rules. Detailed

derivations can be found in Appendix C.

General principle

Recall that variational inference can be regarded as an optimisation problem where the
aim is to find the distribution ¢(®) that maximises .Z’ = E (@) In P(Y|®) — KL(q(0)||p(®)),
where .Z < P(Y) is an evidence lower bound. In the case of an independent data likelihood,

InP(Y|®) can be rewritten as a sum over samples and features InP(Y|®) = Y,, ;InP(y, 4|0).
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When the model likelihood is Gaussian, each term In P(y, 4|®) is quadratic in Zszl Zn kWkd-

For non-Gaussian likelihoods, Seeger and Bouchard (2012) and Jaakkola and Jordan (2000)
use Taylor expansions to derive a quadratic lower bound to each log likelihood term such that
InP(y,.4|0) > gn.d(Yn.a, ), with g, 4(yn.4,®) quadratic in Y&, ZnkWi.q- The quadratic prop-
erty allows rewriting this function as a Gaussian log likelihood: g, 4(y, 4,®) = In P(yn,d\(a)
where P(5,4|0) = A (Fn.4l ZkK:1 ZnkWi.d> Tn.a). We can then define a new evidence lower
bound % =Y, s/ InP(§,4/0) —KL(¢(0)||p(®)) such that # < £ < P(Y), which can be
optimised using variational updates for the Gaussian likelihood P, with pseudo-data Vnd-
This pseudo-data is a transformed version of the data which depends on the ¢(®) distribution

and is dynamically updated throughout the optimisation process.

Approach from Seeger and Bouchard (2012)

The second derivative of the Bernoulli and Poisson log likelihoods has a negative lower bound
K, meaning that their second order Taylor expansion provides a quadratic lower bound .%5.
Using this expansion, one can show that the variational updates of the model parameters can

be approximated by those of a Factor Analysis model with the following Normal likelihood:

K
ZW) ~ N (Y z2npWia, —K) (4.9)
k=1

P(ﬁmd

with pseudo data 3, s = &, 4 — f'(&4.4) /K, where

dInP(Yna| X1 2nkWia)
dY K | zuaWia

' (na) = (4.10)

This introduces a new variational parameter &, 4 corresponding to the location of the Taylor
expansion. This parameter is updated using the following rule, which maximises the evidence

lower bound .%:

gn,d =

K
E ZnkWh,d 4.11)
4(®) k;l ]

In each iteration, the variational inference algorithm first updates the new parameters &, 4 to

compute the pseudo data ¥, and uses it to update every model parameter using the update

rules for Gaussian likelihood.
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Approach from Jaakkola and Jordan (2000) for the Bernoulli likelihood

A major drawback of the lower bound provided by Seeger and Bouchard (2012) is that it
provides a Gaussian likelihood approximation which is homoscedastic (its variance —K is the
same for all sample and features). In biofam, we adapt the work from Jaakkola and Jordan
(2000) who introduce the following heteroscedastic Gaussian lower bound to the Bernoulli
likelihood:

K
P(XdlZ,W) ~ N (Y 2niWhd> Tna) (4.12)
k=1

with pseudo data §, s = (2y, 4 — 1)&n.q/tanh(&, 4/2), and precision 7, 4 = tanh(&, 4/2)/(2&,.4)-

The variational parameter &, 4 is updated with the following rule:

2
K

fnz,d: E) (Z Zn,ka,d> (4.13)
k=1

q(®

While the unique variance of the lower bound from Seeger and Bouchard (2012) needs to be
suited for all values of &, the variance of the lower bound from Jaakkola and Jordan (2000) is
adjusted to the location of the Taylor expansion, allowing a more flexible and therefore tighter

approximation to the Bernoulli likelihood for all values of &£, as illustrated in Figure 4.4.
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Fig. 4.4 Comparison of the lower bounds given by the Seeger and the Jaakkola approaches.
The real Bernoulli likelihood as a function of x = ):sz1 ZnkWik,a 18 shown in black. The
approximation to this likelihood for the Jaakkola and the Seeger approach are drawn for
& =1 (full line) and £ = 10 (dashed line) as representative examples. It is apparent that
the variance of the Jaakola lower bound is adjusted to the location of the approximation,
providing a tighter fit.

4.4 Model Validation

In this section, we use simulated data in various settings to validate the different aspects of
the biofam framework. We also investigate the identifiability of Factor Analysis in general.
Unless stated otherwise, downstream analysis of the biofam results consider point estimates

of the inferred variational distributions’.

4.4.1 Structured Sparsity

The structured sparsity-inducing priors introduced in 4.2.2 can be used to encode our prior
knowledge about existing groups of samples and features, for example in the joint analysis
of samples from multiple tissues or cell types, with different feature views corresponding to
multiple omics. Biofam uses group-specific ARD priors on the factors (x,f , and view-specific
ARD priors on the weights, ¢, which enable us to automatically detect to which sample
groups and feature views a given factor is relevant. For example, a factor capturing cell-cycle
state may be driving gene expression variation in liver tissue and irrelevant to samples from

some brain regions.

Note that variational inference is known to underestimate the parameter variances due to its objective
function
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Simulation setting

We simulated data for 800 samples and 1600 features drawn from the following generative

model: th’j = Zszl zi kaf 4t SZ? Zig , using & latent factors.

We defined two groups of 400 samples each (labelled group 0 and group 1), and two views,
each consisting of 800 features, (labelled view 0 and view 1). The weights and factors were
drawn from standard Normal distributions, and subsequently masked to obtain a desired
sparsity pattern. Specifically, chosen weights and factors were set to zero so that factors 1
and 2 were relevant to all samples and all features; factors 3 and 4 were relevant to both
views but only in group 0 and group 1 respectively; factors 5 and 6 were relevant to view 0
and view 1 respectively; factor 7 was relevant to group 0 and view 0 only and Factor 8 was
relevant to group 1 and view 1 only. This structured sparsity pattern is illustrated in Figure 4.5.

8 8
7 7
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6 g 6 g8
3 Q
) 5 £ . 5 &
View 0 - View 1 —
4 = 4 =
< 8
<
3 a 3 S
2 2
1 1
QQ Q\ QQ Q\
NS NS
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Fig. 4.5 Simulated sparsity structure. The binary matrices represent the relevance of every
factor in each view and sample group. Left: factors relevance in view 0. Right: factor
relevance in view 1. In each matrix, rows correspond to factors and columns to sample
groups. A grey cell means that a given factor is relevant for a given sample group in the
considered view.

The S;"f noise terms were drawn from a Normal distribution &€ ~ .4 (0, 672), where 62 was

set so that the factors explained 30% of the total data variance (70% of noise).

Results

To assess the value added by the ARD priors for structured sparsity, we compared four
models of increasing complexity (Fig. 4.6). The first model is a conventional Factor Analysis

model, the second model uses per factor ARD priors on the weights, the third model employs
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feature-group-specific ARD priors (Group factor Analysis) and the fourth model uses both
ARD priors per sample group (on the factors) and ARD priors per feature group (on the
samples). All models were implemented in the biofam framework, exploiting the modularity

of the software implementation (Section 4.2.6).
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Fig. 4.6 Models compared for structured sparsity tests. From left to right: conventional
Factor Analysis model; Factor analysis with ARD priors on the weights; Factor Analysis
with view specific ARD priors on the weights; Factor Analysis with view-specific ARD
priors on the weights and group-specific ARD priors on the factors. The specific priors used
in each model are highlighted from the full graphical model of Figure 4.3.

Each model was fitted setting the number of latent factors to K = 10. We measured the
relevance of the factor in each view and sample group using the coefficient of determination

r? between data predicted using a given factor and the observed data (Fig. 4.7).

All models except for standard Factor Analysis identified the true number of factors, deac-
tivating factors 9 and 10. This illustrates the sparsity-inducing ARD prior as a regulariser
of model complexity, as already demonstrated in Section 2.2.5 (Fig. 2.10). In addition, the
Group Factor Analysis model, which included view-specific ARD priors on the weights, was
able to infer the view specific factor relevance, deactivating factor 5 and 6 respectively in
view 1 and view 0. It was however unable to detect that factors 3 and 4 were specific to
group 0 and group 1 respectively. Finally, the most complex model with both view-specific
and group-specific ARD priors correctly inferred the simulated structured sparsity. These
results demonstrate that models using structured sparsity-inducing priors provide a more

accurate assessment of the relevance of individual factors in specific sample groups and views.
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Ground truth
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Fig. 4.7 Structured Sparsity inference for the models of Figure 4.6. From left to right:
standard Factor Analysis; Factor Analysis with an ARD prior per factor on the weights;
Factor Analysis with view-specific ARD-priors; Factor Analysis with both view-specific
and group-specific ARD priors; ground truth. The first row of matrices correspond to view
0 and the second row to view 1. In each matrix, the first column corresponds to group 0
and the second column to group 1, rows correspond to the inferred factors. The colour scale
corresponds to the fraction of variance explained by a given factor in a given view and group.

We then computed the correlation between the simulated weights and factors and the values
inferred by all four models (Fig. 4.8) and found that models which explicitly accounted for

the data context yielded more accurate results.

4.4.2 Element-wise Sparsity

Biological factors tend to affect a small subset of the features. In Section 4.2.3, we introduced
spike-and-slab priors on the weights to encode this prior belief. In the following, we explore

the effect of these priors on the inferred weight and factor matrices.

Simulation settings

First, to illustrate the effect of the spike-and-slab prior, we used a small number of factors

so as to easily visualise the posterior distribution of the weights. We simulated data for 500
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Fig. 4.8 Top: Pearson correlation between the 8 simulated factors and the 10 inferred factors
for the 4 models compared in Figure 4.7. From left to right: conventional Factor Analysis
model; Factor analysis with ARD priors on the weights; Factor Analysis for feature groups;
Factor Analysis with view-specific ARD priors on the weights and group-specific ARD priors
on the factors. Bottom: Analogous figure for the factor values.

samples and 20,000 features using 3 latent factors and a generative model as in Section 4.4.1:
yzlf = ZkK:1 Zﬁlkwk’" 4 T €. The first factor was simulated to exhibit dense effects (w}", drawn
from a Normal distribution with no added sparsity); for the second factor 40% of the weights

were set to zero and for the third factor, 95% of the weights were set to zero.

Additionally, we considered a second simulation setting, using 30 factors covering the entire
range of sparsity levels: from 0% to 97% of weights set to zero. We simulated data for 800
samples and 1600 features and the factors explained 60% of the total variability.

Spike-and-slab priors enable inference of zero-inflated weight distributions

In both simulation settings, we first fitted a model with no spike-and-slab priors and a model
with spike-and-slab priors on the weights. Both models had an ARD prior per factor on the
weights. (Fig. 4.9).

In the first simulation setting, the two models were fitted with 5 factors. Both of them
recovered the true number of factors and the two remaining factors were completely pruned.
For both models, inferred weights were then compared to the ground truth, as shown in Fig-

ure 4.10. The sparse model inferred more accurate estimates of both sparse and dense weights.
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Fig. 4.9 Models compared for element-wise sparsity tests. Both models had ARD priors on
the weights. In addition, the model on the right had spike-and-slab priors on the weights. The
specific priors used in each model are highlighted from the full graphical model of Figure 4.3.
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Fig. 4.10 Comparison of the absolute values of the weights inferred by the two Factor
Analysis models of Figure 4.9 with the true simulated weights. From left to right factor 1 (0%
sparse); factor 2 (40% sparse); factor 3 (95% sparse). In Yellow, model with spike-and-slab
priors, in grey model without.

In the second simulation setting, we fitted both models with 30 factors and compared the
inferred weight distributions for the five factors with the lowest degree of sparsity and the
five factors with the highest degree of sparsity (Fig. 4.11). The model with spike-and-slab
priors inferred both dense and sparse weight distributions, whereas a model without could
not infer zero-inflated distributions. For the sparse model, we also compared the value of the
inferred sparsity level per factor, 1 —E,(6y) (Where 6 is the hyperparameter of the Bernoulli
variables sy 4), with the simulated sparsity level, and found that they were in accordance
for the 11 sparsest weights. We will see in the next paragraph that denser weights are not
identifiable by the model, which could explain the mismatch between simulated and inferred

sparsity levels.
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Fig. 4.11 Histograms of the weight distributions inferred by the two Factor Analysis models
of Figure 4.9 for a simulation with 30 factors of different sparsity levels. Top: 5 denser
factors. Bottom: 5 sparser factors. Yellow: model with spike-and-slab. Grey: model without
spike-and-slab. The scatter plot shows the comparison across factors between simulated
sparsity levels and the value of 1 —E,(6), where 6y is the hyperparamter of sy 4.

Taken together, these results illustrate the utility of the spike-and-slab prior to infer sparse

weight matrices, which in turn may facilitate the interpretation of the resulting factors.

Spike-and-slab priors improve model identifiability

In the second simulation setting, we compared the simulated weights and factors with the
inferred values using the two models of Figure 4.9, as well as a model which uses all biofam

sparsity-inducing priors, including ARD and spike-and-slab priors on the factors (Fig. 4.12).
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Fig. 4.12 Top row: Pearson correlation of ground truth weights with weights inferred with a
model without spike-and-slab priors (left), with spike-and-slab priors on the weights (middle)
and with spike-and-slab priors both on weights and factors (right). Factors are ordered

by sparsity level: from the densest weights (left) to the sparsest weights (right). Bottom:
Analogous figures for factor values.
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For all models, we found that factors exhibiting sparse effects were inferred more accurately.
These are the factors of main interest for biological applications as they are more likely to
relate to meaningful and interpretable biological processes. We also found that the models
using spike-and-slab priors yielded more accurate results than models with no element-wise

sparstiy priors.

We then investigated the robustness of these results across three trials using different random
initialisations of the latent factors. We found that, for all models, factors exhibiting sparse
effects were more robustly estimated, and that models using spike-and-slab priors yielded

more robust results than models with no element-wise sparsity-inducing priors. (Fig. 4.13).
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Fig. 4.13 Robustness of weights inference for a model without spike-and-slab priors (left),
with spike-and-slab priors on the weights (middle) and with spike-and-slab priors both on
weights and factors (right). Heat maps show the Pearson correlation matrices for all inferred
weights for all three separate runs, so that off-diagonal blocks correspond to correlation plots
between runs. Weight vectors are ordered by sparsity level as in Figure 4.12 From left to
right: 5, 11 and 12 factors were robustly inferred across runs.

Taken together, these results show that sparser latent structures are more easily identifiable
by Factor Analysis models, which is further illustrated in Appendix E, and that the use of
element-wise sparsity-inducing priors further improves this identifiability. Interestingly, the
use of additional spike-and-slab priors on the factors also yielded a marginal increase in

identifiability, despite the fact that the factor matrix was not simulated as sparse.

As discussed in Section 4.2.3, the spike-and-slab priors breaks the rotational invariance
property of Factor Analysis by encouraging the inference of sparser weights or factors. True

sparse latent factors then become identifiable as shown here and in Appendix E. When
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generative weights are truly dense however, sparsity-inducing priors do not solve the rotation

invariance problem.

4.4.3 Multiple data modalities
Simulation setting

In order to validate the non-Gaussian likelihoods implemented in biofam, we simulated
binary and count data for 100 samples and 3,000 features using 10 generative factors. As
before, the factors and weights were drawn from standard Normal distributions. To simulate
binary data from the generative model of Section 4.2.4, we used the rule of Equation 4.14,
while we generated count data by rounding the value of the poisson rate A (Zk Zn,ka,d) of

Section 4.2.4. In both cases, 25 repeat experiments were performed.

0Oif o (Y2 JWkd) < 0.5
Ynd = ( o ) (4.14)
1 otherwise

Results

Biofam, with ARD and spike-and-slab priors on the weights, was fitted on both in silico
datasets using a Gaussian likelihood and a Bernoulli and a Poisson likelihood respectively.
The performance of the alternative models were compared using the evidence lower bound
and the data reconstruction error between the ground truth and values generated from the
fitted biofam model. We also reported the distributions of the reconstructed data using the

biofam model.

Results show that both the Bernoulli likelihood (Fig. 4.14) and the Poisson likelihood
(Fig. 4.15) yielded higher evidence lower bounds and lower reconstruction errors than
the Gaussian likelihood for these in silico datasets. By looking at the distributions of
the reconstructed data, one can also qualitatively appreciate the value of modelling these

likelihoods explicitly.
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Fig. 4.14 Comparison of biofam results with a Bernoulli and a Gaussian likelihood on
simulated binary data. Left: Evidence lower bound compared between the Gaussian and
the Bernoulli likelihood. Middle: Difference in reconstruction errors from the fitted biofam
model. Right: Distribution of the reconstructed data. For the Bernoulli likelihood, we show
the values of Bernoulli parameter o (Y sz, xWk,4) (Section. 4.2.4).
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Fig. 4.15 Comparison of biofam results with a Poisson and a Gaussian likelihood on simulated
count data. Left: Evidence lower bound compared between the Gaussian and the Poisson
likelihood. Middle: Difference in reconstruction errors from the fitted biofam model. Right:
Distribution of the reconstructed data. For the Poisson likelihood, we show the values of the
rate A (Y 2,k Wk.q) (Section. 4.2.4).

4.5 Computational cost and scalability

4.5.1 Standard inference

We compared the biofam performance to the main Group Factor Analysis competitor from
Leppéaho et al. (2017), which uses an inference scheme based on Gibbs sampling. We found
that biofam was faster and scaled linearly in the number of features, the number of samples

and the number of latent factors used in our simulations (Fig 4.16).
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Fig. 4.16 Time required for model training for biofam and GFA (Leppiaho et al., 2017) as a
function of the number of factors K, the number of features D and the number of samples N.
Baseline parameters were K = 10, D = 1,000 and N = 100. Shown are average time across
10 trials, and error bars denote standard deviation.

4.5.2 GPU optimisation

The biofam computational bottleneck involves several operations involving large matrices.
Performance may therefore be further improved by the execution of these operations on GPU
using CUDA-implemented libraries. We use cupy (Okuta et al., 2017), a python library which
provides an implementation of most standard matrix operations on GPU with an API based
on numpy. For most sizes of datasets, GPU computations provided a three-fold performance
increase (Fig. 4.17).
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Fig. 4.17 Effect of GPU optimisation on relative computational time. The baseline dimensions
are 1,000 samples, 5,000 features and 10 factors. GPU operations are run on a NVIDIA®
Quadro® M6000 GM200GL GPU with 3,072 CUDA™ cores. Both the standard and
GPU-optimised optimisations use an Intel® Xeon® CPU E5-2660 v3, 2.60GHz.
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4.6 Extension: Stochastic variational inference

Variational inference is a fast method which typically outperforms sampling-based inference
schemes such as Gibbs sampling (Blei et al., 2016). However, the size of biological datasets
is rapidly increasing, for example in the field of single cell sequencing (Cao et al., 2017;
Rosenberg et al., 2017; Dixit et al., 2016), hence motivating the development of an even more
efficient inference framework to make biofam scalable to these latest datasets. Specifically,
we adapt work from Hoffman et al. (2013) to implement a stochastic version of the variational
inference algorithm using stochastic natural gradient ascent. Section 4.6.1 and 4.6.2 introduce
the theoretical concepts supporting the method, Section 4.6.4 presents the specific algorithm

implemented in biofam and Section 4.6.4 provides preliminary application results.

4.6.1 Natural gradient ascent

Variational inference can be regarded as an optimisation problem where the Evidence Lower
Bound is maximised with respect to the variational distribution ¢(®) of the model parameters,
which provides a tractable approximation to their true posterior distribution. A widely used
approach in optimisation is gradient ascent, which is an iterative method where small steps

are taken in the direction of the gradient until convergence towards a local maximum.

The gradient of a function f with respect to an input vector x, noted V, f, points in the
direction of steepest ascent, i.e. the direction for which the smallest step dx in the input space
results in the highest increase in the value of f(x). In most gradient ascent methods, such as
Ibfgs (Bonnans et al., 2006), the size of the step dx is measured using a Euclidean distance

||dx||, meaning that the gradient is proportional to the solution of Equation 4.15.

IIdlxinri0 [argdljlclaxf(x—kdx)} (4.15)

Let us define A, the parameters of the variational distribution of the model parameters:
q(®) = ¢(®|A). In variational inference, a small step dA in the input space would ideally
ensure that the distributions q(®|A) and g(®|A +dA) are close to each other. However,
the Euclidean distance ||dA || between distribution parameters often poorly measures the
similarity between the corresponding distributions®>. The natural gradient (Amari, 1998;

Asa-aki Sato, 2001; Honkela et al., 2010) addresses this issue by relying on the symmetric

2For example, consider the two Normal distributions .#"(0,1000) and .#"(10,1000). Their Euclidean
distance would be 10 although the high variance makes them indistinguishable. In contrast , the distributions
47(0,0.001) and .#°(0.1,0.001) would show very little overlap, as they are very peaked, but have a Euclidean
distance of 0.1.
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KL divergence (Eq. 4.16) as a measure of the distance between the distributions ¢(®|A4) and
g(®|A +dA).

KL»"(p1, p2) = KL(p1||p2) + KL(p2||p1) (4.16)

Formally, the natural gradient is proportional to the solution of Equation 4.17.

li A+dA 4.17
KLY™((012) (B2 +42)0 {arngaXf( ! )1 D

Hoffman et al. (2013) show that the natural gradient may be computed with a linear transfor-
mation of the Euclidean gradient using a Riemannian metric. The details of this computation
for the Evidence Lower Bound is beyond the scope of this thesis and we will only give the
final result demonstrated in Hoffman et al. (2013). As seen in Section 2.2.6, if the prior on the
parameter © is conjugate for the considered likelihood, then exp |Eg,, (InP(Y, @))] remains
in the same distributional family as P(6;), and therefore also the variational distribution
qi(6;). Assuming in addition that the prior distributions of these parameters are members of
the exponential family, Hoffman et al. (2013) show that the natural gradient of the ELBO

with respect to the parameters A; of ¢;(6;) is:

Vil =4~ (4.18)

where 2; represents the parameters of the exp [Egi _; (InP(Y,0))| distribution.

Natural gradient ascent then consists in optimising all A; iteratively using the rule of Equa-
tion 4.19, until convergence of the evidence lower bound.

1

Note that the update rule of the standard VB algorithm, ¢(6;) = exp Eo,, (InP(Y,0))|,

therefore corresponds to a natural gradient ascent algorithm with a step size p = 1.

4.6.2 Stochastic Gradient ascent

Stochastic gradient ascent (Robbins and Monro, 1951; Bottou, 2011; Spall, 2003) is a
variation of gradient ascent, in which the gradient is approximated by noisy and unbiased

estimates, which are cheaply computed using only a randomly sampled subset of the data. A
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function f is maximised with respect to an input x using the rule of Equation 4.20, which is

applied iteratively until f converges to a local maximum.

XD = 50 4 pOp(0) (1)) (4.20)

p) (x(’ )) is the realisation at iteration ¢t of a random variable B whose expectation is equal
to the gradient of f: E(B(x)) = V,f(x). In stochastic gradient ascent, the step size p*) is
also adjusted at each iteration . When this series satisfies ), p¥) = oo and Zt(p(’))2 < oo, f
is guaranteed to converge to a local maximum (Robbins and Monro, 1951). This result also

applies to natural gradient ascent (Hoffman et al., 2013).

Stochastic gradient ascent is typically useful when the gradient of the objective function can
be written as a sum over all observations: V,f = Zﬁlvzl (Vif)n, where n € [[1;N] designates
the observation index. When the size of the dataset is prohibitively high to compute the full
gradient for inference, a common practice is then to sample uniformly at each iteration a
random subset of the data called a mini-batch mb, and compute the following gradient noisy
estimate: b\")(f) = N /size(mb) Lpemp (VS )n

4.6.3 Stochastic VB algorithm

Biofam implements a stochastic VB algorithm based on stochastic gradient ascent and

adapted from Hoffman et al. (2013). The algorithm is as follows:

i) Initialise the weights w}' , randomly before the first iteration

i1) Sample uniformly a data mini-batch mb of size S. Mini-batches are sampled without

replacement across each epoch’
iii) Update the parameters of z, x Vk and Vn € mb using standard variational methods
iv) Update all other parameters using stochastic natural gradient ascent as on Equation 4.24

v) Iterate steps 2 to 4 until ELBO convergence

Note that the factors are not updated stochastically but instead using standard variational
updates. This is possible because factors are local parameters, meaning that the update of z,, x

depends on observation n only, and does not depend on other factors z,., . In the gradient

3an epoch contains the number of iterations necessary for the algorithm to see the entire dataset. For a

batch-size of 20% of the data, an epoch contains 5 iterations.
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ascent perspective, this means that the gradient of the elbo with respect to the parameters of
q(zy%) can be computed deterministically from the sampled mini-batch, thus not requiring a

resort to a noisy estimate.

Let us now derive the stochastic natural gradient ascent step for biofam. The Evidence Lower

Bound can be decomposed as follows:

P ()
4@ 4(0) (4.21)
= E InP(®)— E Ing(®)+Y E InP(y,0)
q(0) 4q(®) n 4(0)

A noisy estimates of .Z for the selected mini-batch can therefore be written as on Equa-
tion 4.22, where N is the number of observations and S the size of the mini-batch. The factor

N/S ensures that the estimate is unbiased*.
< N
Z°= E InP(®)— E Ing(®)+~ Y E InP(y,:|0) (4.22)
4(0) 9(0) nemb4(®)

The natural gradient of .#° is a noisy unbiased estimate of the natural gradient of .Z.

Similarly to 4.18, it is given by:

V3 L5 =15 = A (4.23)

where ZZ-S represents the parameters of the distribution exp |Eo, , (N/S L cmp InP(yn,:, @))] .
This natural gradient can be easily computed by recycling the standard variational updates
on the data mini-batch and their associated factors z,¢,u, . and the update rules for all other

parameters become:

)Li(H‘l) _ li(f) +p(t) <1iS i(l)) o
— (1 _p<r>) 20 4 p0]s *:29

In their derivation of the ELBO natural gradient, Hoffman et al. (2013) make use of the

—A
+p
fact that all prior distributions are of the exponential family. It is not the case for the spike-

and-slab prior used in biofam for element-wise sparsity. At present, variational inference is

therefore only implemented in biofam for non-sparse factors and weights. A similar inference

*One can prove that .#% is an unbiased estimate of ., meaning that E (£°) = ., by using the fact that
the mini-batches are sampled uniformly
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scheme could easily be extended to sparse parameters, but with no theoretical guarantees of

correctness.

4.6.4 Application
Simulation setting

We tested the stochastic inference algorithm using data simulated from the same generative
model as in Section 4.4.1 and 4.4.2. We simulated 1,000 features for 30,000 and 50,000
samples alternatively, and using 10 and 20 factors alternatively. Weights were simulated as

sparse, with only 15% of non-zero values.

Results

We fitted a Factor Analysis model with ARD priors on the weights and the factors, but no
spike-and-slab prior. Stochastic inference was used with mini-batches made of 20% of the
dataset, and a step size function of the form p(r) = 1/(1+4 v)3/4, where v is a forgetting
rate, which was set to a value of 0.9 in our applications. Figure 4.18 shows the evolution of

biofam evidence lower bound as a function of the training time.

Inference method: Stochastic Standard

_3.6368 ~5.5000;

| -3.6380-
-5.9700
-5.5025:

-3.6372: -3.6400-

59900 55050

—-3.6420-
-3.6376¢

ELBO (x107)

~6.0100 -5.5075
-3.6440-

-3.6380: -5.5100:
0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000

time (s)

Fig. 4.18 Biofam performance with stochastic VB inference in simulated data of different
dimensions. Shown is the Evidence Lower Bound as a function of the time. The number of
simulated features is 1,000 for all simulation settings. The number of samples and factors
is, from left to right: 30,000 samples and 10 factors; 30,000 samples and 20 factors; 50,000
samples and 20 factors; 50,000 samples and 20 factors.

For some tests, the first iterations of stochastic inference provided a fast convergence towards
an approximate result, a illustrated in Figure 4.19 for an example with 30,000 samples and 10

factors, although after a longer time, the non-stochastic inference method converged towards



4.7 Discussion 107

a higher evidence lower bound. In other cases, performances were similar between the two

methods, or worse using stochastic inference.
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Fig. 4.19 Correlation across samples of the inferred factor values with the simulated values,
for 50,000 samples and 10 latent factors. Left: after 2,475s of stochastic training. Middle:
after 2,475s of non-stochastic training. Right: after 11,000s of non-stochastic training. In
the stochastic case. 7 out of the 10 true factors are well recovered, while the non-stochastic
version recovers only 2 of the 10 factors. After 11,000s of training, non-stochastic inference
recovers 8 out of the 10 factors. In each case, shown are results with the highest ELBO
across three random trials.

These mixed results could be due to a poor choice of step function hyperparameters, but
at present we were unable to find any setting providing better performances. Attempts to
implement more sophisticated algorithms for stochastic gradient ascent such as algorithms
using momentum (Ruder, 2016) were also unfruitful. Section 4.7.3 discusses a possible

direction of future work to make this inference scheme more beneficial.

4.7 Discussion

4.7.1 Comparison with other GFA implementations

Other implementations of Group Factor Analysis have been proposed and are related to
the models presented in this Chapter. Table 4.3 compares the main characteristics of these
implementations. The implementation which is the closest to biofam in terms of flexibility of
the model options is the implementation of Leppédaho et al. (2017). However, Leppidaho et al.
(2017) do not model group structure for samples. Additionally biofam variational inference
is more scalable, as demonstrated in Figure 4.16, which is further improved by the GPU
optimisation. Biofam also provides a comprehensive R package for the visualisation and

downstream analysis of the results, which will be briefly presented in Chapter 5.
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The only model which offers a way of accounting for group structure on the sample axis
was the model proposed by Remes et al. (2015). Briefly, the model relies on a mixture of
factors, some of which are shared across all samples while some others are specific to sample
groups. These groups do not need to be defined a priori. Instead, sample assignment to an
arbitrary number of discrete clusters is modelled as a random parameter with a multinomial
prior, and a conjugate Dirichlet prior for the parameters of the bionomial distribution. This is
an appealing property with a slightly different aim from the biofam approach. Unfortunately,

we were unable to find an implementation of the model online.

4.7.2 Comparison with alternative approaches

Alternative approaches have been proposed for the unsupervised analysis of structured

datasets, in particular in the context of multi-omics analysis.

iCluster

iCluster+ (Mo and Shen, 2013; Mo et al., 2013), an extension of iCluster (Shen et al., 2009;
Curtis et al., 2012) is a latent variable model, primarily used to perform clustering in multi-
omics data. The underlying model is similar to the one of probabilistic PCA (Section 2.2.4),
extended to multiple data modalities. Additionally, a lasso regularisation (Tibshirani, 1996)
term is used on the weight matrices of each omic. Unlike the ARD prior, however, this
regularisation technique does not enable selection of the model complexity as it is not factor
specific. Instead, iCluster relies on multiple model fittings with different numbers of latent
factors and post-hoc selection of the best fit/complexity tradeoff, which is computationally
expensive and lacks a probabilistic interpretation. The lack of structured sparsity-inducing
priors also precludes the model from distinguishing sources of variability which are shared
across omics from the ones that are unique to specific omics, as we demonstrate in Argelaguet
et al. (2018).

mixOmics

The mixOmics R package (Rohart et al., 2017) proposes multiple deterministic projec-
tion methods for the combined unsupervised analysis of multi-omics (DIABLO, Singh
et al. (2016)) or multiple sample groups (MINT). Like iCluster, mixOmics rely on Lasso
regularisation methods, whose parameters are fitted using cross validation, which can be
computationally expensive. Although mixOmics offers functions for the analysis of data

with grouping structures on the features or on the samples exclusively, these deterministic
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projections do not rely on generative probabilistic models, and cannot model structured
sparsity like we do with hierarchical priors. Like iCluster, they are tailored mostly for
the purpose of clustering and two dimensional visualisation rather than disentangling and

interpreting sources of variations across and between groups.

Network based methods

Kernel or graph-based methods have been proposed to combine different data types into a
common similarity network between samples (Wang et al., 2014; Lanckriet et al., 2004).
Briefly, these methods measure sample similarities in each data type independently and
aggregate the results into a consensus network. As such, these methods provide a statistical
framework for the integration of multiple datatypes to infer global relationships between
samples. However, they do not pinpoint the molecular determinants of the resulting graph
structure, and they do not aim to disentangle the sources of variability within each data type

or within and between sample groups.

Tensor decomposition

When the same set of features (i.e. gene expression levels) is measured in the same samples
in multiple environments, such as multiple tissues or experimental conditions, the resulting
structured dataset can be represented as a tensor, a generalisation of matrices to higher order
arrays (a matrix being a second order tensor). Latent variable models have been proposed
to decompose the sources of variation in such structured datasets, both using deterministic
methods (Carroll and Chang, 1970; Harshman and Lundy, 1994) and probabilistic meth-
ods (Zhao et al., 2014; Kolda and Bader, 2009; Hoff, 2010). In particular Hore et al. (2016)
apply tensor decomposition for the joint dimensionality reduction of gene expression assayed

in multiple tissues for the same samples.

The advantage of the tensor representation is that it enables the user to encode structured
contextual information of any order. For example, a 4/ order tensor representation could
be used to represent gene expression measured in multiple tissues and at multiple time
points, and such structure would be accounted for when learning the distribution of the latent
variables in tensor decomposition. However, the assumption made of matching samples
and features across the multiple arrays of the tensor (e.g. tissues or time points) is very
restrictive and only met by few datasets such as the Gtex dataset (GTEx Consortium, 2013).

In contrast, the grouping structure of biofam enables us to jointly analyse multiple feature
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sets of different dimensionality, or non-matching samples coming from different tissues or

experimental contexts.

An extension of biofam to handle sample and feature grouping structures in higher order
tensors could however be a direction of future work which would bridge the gap between the

two modelling approaches.

Other Non-probabilistic latent variable models

Although this thesis focusses mostly on probabilistic models for dimensionality reduction,
non-probabilistic methods are also widely used for the purpose of contextual data analysis
such as multi-omics integration (Meng et al., 2016). Examples include Co Inertia Anal-
ysis (Fagan et al., 2007; Doledec and Chessel, 1994) and the MCIA (Meng et al., 2014)
extension tailored to multi-omics or Generalised CCA (Tenenhaus and Tenenhaus, 2011,
2014; Tenenhaus et al., 2014). They often rely on linear generative models, but do not make
use of prior architecture to model the data context and the resulting structured sparsity, using
instead deterministic regularisation methods which require expensive cross-validation for

hyperparameter fitting, and do not offer the modularity of probabilistic models.

4.7.3 Technical limitations and directions for future work
Informative priors

In biofam, we use a Bayesian framework to account for prior knowledge about sample and
feature group structures in a principled manner. This Bayesian framework could be extended
to account for other types of prior knowledge about the data features. For example, we could
encode known pathways with binary informative priors on the model weights as in Buettner
et al. (2017). Alternatively, weights could be modelled with a multivariate Normal prior
distribution where the covariance encodes known continuous relationships between genes
such as regulatory networks (Tiirei et al., 2016; Snel et al., 2000; Szklarczyk et al., 2017).

Such approaches could improve factors interpretability and make the model more identifiable.

Similarly, relatedness between samples could be encoded using a multivariate prior on the
factors. The covariance matrix could encode genetic relatedness (Speed and Balding, 2015)
or other similarity measures between samples using a flexible covariance function. In an
application to spatial expression data for example (see Section 2.1 and Chapter 3), the spatial

relatedness could be encoded with a squared exponential covariance prior on the factors,
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whose length scale could be jointly optimised with the model in an Expectation-Maximisation

scheme.

Views coupling

Another type of prior knowledge that is not accounted for in the current biofam imple-
mentation is the coupling between different views. For example, if two views correspond
respectively to DNA methylation and RNA expression, it would be desirable to encode
explicitly the correspondence between methylation sites and the expressed genes, as the two
biological variables are known to be strongly coupled (Clark et al., 2018). Biofam does
not offer this flexibility, which is a major limitation of the current modelling approach. A
solution to this problem could be based on an informative covariance prior on the model
weight, as explained before, but this would hardly be combinable with the view-specific ARD
priors which is at the core of the biofam approach. More adapted solutions to this pitfall
would therefore likely require a probabilistic model which goes beyond the scope of Factor

Analysis but should definitely be considered as a direction of future work.

Noise models

Although biofam differentiates itself from other Group Factor Analysis software by the greater
diversity of likelihoods it offers, they are not ideal for some data modalities. For example,
the Poisson likelihood does not account for overdispersion, and is therefore unadapted to
the analysis of single cell expression data. Single cell RNA-seq techniques also provide
zero-inflated count data for which specific noise models have been proposed (Pierson and
Yau, 2015; Risso et al., 2018; Perraudeau et al., 2017) which are not implemented in the
current version of biofam. RNA splicing yields binomial distributed data for which biofam
does not offer a specific likelihood (Huang and Sanguinetti, 2017). Future work could include

the implementation of those additional noise models in the variational framework of biofam.

Stochastic inference

In Section 4.6.4, we presented preliminary results from a stochastic extension of biofam vari-
ational inference scheme. These results do not represent a substantial improvement as they
stand, but the implementation of stochastic inference in biofam is still the subject of ongoing
research. A possible extension of the current framework could include the implementation
of lazy 10 functions, so that mini-batches are only loaded in memory when required for an

iteration. Indeed, in stochastic variational inference, a single iteration of the algorithm does
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not require the use of the entire dataset. In principle, this means that stochastic inference
combined with lazy 10 functions would make biofam applicable to datasets which do not fit

in the computer memory.

Additionally, future work will consider the extension of the stochastic inference framework

to sparse factors and weights.

Statistical testing

Finally, future work could also take advantage of the probabilistic interpretation and the
modular implementation of the biofam software to perform hypothesis testing. For example,
one could use the model evidence lower bound to compute a Bayes factor between a model
using an ARD prior per factor and group and a model using an ARD per factor only, and
thereby quantify the statistical significance of the differential relevance of factors between
groups. To be truly insightful however, such tests should be performed on a per factor
basis, so as to measure differential relevance of specific biological processes between groups,
as opposed to a global effect of the grouping structure. This requires improving further
the modularity of the software, and finding an efficient way to perform the test for every
factor without refitting the model entirely each time. Another concern is the validity and
interpretation of a Bayes factor computed using evidence lower bond instead of proper model
likelihoods.






Chapter 5
Biofam applications

This Chapter exemplifies how bioFAM has been applied to different biological systems. The
biological interpretation of the results presented in this Chapter is mainly the work of others.

My individual contributions are detailed at the beginning of each section.

In Section 5.1, we introduce the biofamtools R package, which we use for the visualisation
and downstream analysis of the biofam results. Section 5.2 illustrates the use of biofam for
the joint analysis of data from multiple omics (group structure on the feature axis), while
Section 5.3 showcases the application of biofam for the joint analysis of samples from
multiple biological contexts (group structure on the sample axis). Finally, we give an outlook

on ongoing applications in Section 5.4.

5.1 Biofamtools: visualisation and downstream analysis of

the biofam results

The biofam core software is implemented in python and provides a basic interface which
allows the user to define a specific biofam model, including the definition of known feature
and group structures, specific sparsity-inducing priors (see Fig. 4.3) and data likelihoods.

After training, the first moment of every model parameter is saved in an hdf5 file.

We developed an R package, biofamtools, to visualise and analyse these results. Biofam-
tools is an extension of the MOFAtools package, developed for the analysis of the MOFA
results (Argelaguet et al., 2018). I designed the package with Danila Bredikin and Ricard
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Argelaguet. Danila Bredikin and Ricard Argelaguet did most of the implementation, with
the help of Yonatan Deloro, based on the MOFAtools package, implemented by Ricard
Argelaguet and Britta Velten. I implemented the python IO functions to ensure compatibility

between the core software and the R package.

Biofamtools provides the following main functionalities for the downstream analysis of

biofam results:

* Calculation and visualisation of the fraction of variance explained by each factor in

every sample group and view (see Figure 5.1).

* Visualisation of the samples in factor space, which provides, like in a standard usage of
Principal Component Analysis, a compact overview of some of the main dependencies

between samples (see Figure 5.4).

* Comparison of the weights and factors of different models (see Figure 5.2). This
functionality is particularly convenient to check the robustness of a fitting process

across multiple random starting points.

* Visualisation of the weights distribution and inspection of the top features with largest
weights (see Figure 5.5). The loadings can give insights into the biological process

underlying the heterogeneity captured by a latent factor.

* Feature Set Enrichment Analysis and visualisation of the enrichment results. This
feature enables the automatic biological interpretation of factors in terms of Gene Set

or more generally feature sets for other types of omics (see Section 5.2.4).
* Clustering of samples in discrete groups based on factors values.
* Imputation of missing data (see Section 5.2.3).

* Miscellaneous visualisation tools such as visualisation of data heat-maps ordered by
factors values, giving insights into the effect of a given factor on features profiles;
bees-warm plot visualisation of a given factor coloured by covariate values such as
clinical covariates; correlation between factors, factors sparsity levels, training curve

(elbo as a function of time).

In addition, biofamtools provides functions to run the model directly from R.
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The package is open source and available at https://github.com/bioFAM/biofam/tree/master/
BioFAMtools, where all functions are documented in detail. In this Chapter, most downstream

analysis is based on biofamtools.

5.2 Application of biofam to multi-omics data

In this Section, we illustrate the use of biofam on multi-omics data, with selected results
from Argelaguet et al. (2018). Note that all analysis were performed with the original MOFA
and MOFAtools software (https://github.com/biofam/mofa), before they were extended into
the biofam framework, but could be reproduced identically with this new software version'.

In this section, we will therefore always refer to the biofam and biofamtools names.

The work presented here was supervised by Florian Buettner, Oliver Stegle, Wolfgang Huber
and John C. Marioni. I conceived the model with Oliver Stegle and Florian Buettner and
implemented the software with Ricard Argelaguet and Britta Velten. Ricard Argelaguet and
Britta Velten led the work on the application presented in this section and I helped interpret
the results with all other contributors.

5.2.1 Introduction

Experimental techniques increasingly enable gene expression profiles to be assayed in
combination with multiple other omics, including genome, epigenome, proteome and
metabolome (Hasin et al., 2017), and are applied across an increasing number of biological
domains, including cancer biology (Gerstung et al., 2015; Iorio et al., 2016; Cancer Genome
Atlas Research Network, 2017; Mertins et al., 2016), regulatory genomics (Chen et al.,
2016), microbiology (Kim et al., 2016) or host-pathogen biology (S6derholm et al., 2016).
The most recent technological advances also enable performing multi-omics analyses at
the single-cell level (Colomé-Tatché and Theis, 2018; Guo et al., 2017; Clark et al., 2018;
Angermueller et al., 2016; Macaulay et al., 2015). A common aim of such applications is
to characterise heterogeneity between samples, as manifested in one or several of the data
modalities (Ritchie et al., 2015a).

A basic strategy for the integration of omics data is testing for marginal associations between

different data modalities. A prominent example is molecular quantitative trait locus map-

'MOFA can be regarded as a specific case of biofam
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ping, where large numbers of association tests are performed between individual genetic
variants and gene expression levels (GTEx Consortium, 2013) or epigenetic marks (Chen
et al., 2016). While eminently useful for variant annotation, such association studies are
inherently local and do not provide a coherent global map of the molecular differences
between samples. In Section 4.7.2, we have also seen a number of unsupervised meth-
ods based on network analysis or clustering which have been applied to the analysis of
multi-omics data. Although these methods can be used as rigorous tools for the integration
of multi-omics data, and provide insight into relationships between samples, they do not

reconstruct the underlying factors that drive the observed variation in an interpretable manner.

Group Factor Analysis provides a rigorous probabilistic framework for the reconstruction
of interpretable drivers of variation in multi-omics data set. Here, we illustrate this by an
application of biofam to a Chronic Lymphocytic Leukaemia (CLL) study, which combined
gene expression data (transcriptome) with ex vivo drug response measurements, somatic

mutation status and DNA methylation assays (Dietrich et al., 2018).

5.2.2 Data description and processing

The dataset consisted of RNA expression (RNA-Seq), somatic mutations (combination of
targeted and whole exome sequencing), DNA methylation (Illumina arrays) and ex-vivo drug
response screens (ATPbased CellTiter-Glo assay) (Dietrich et al., 2018). We selected the 200
samples for which at least two omics were measured. Yet, nearly 40% of these samples were
profiled with some but not all omics types, highlighting the importance of a software which
properly handles missing values (Fig. 5.1).

The drug response view included 62 drug response measurements at five concentrations
each, making a total of 310 features. Somatic mutations which were present in at least three
samples were included (69 in total). Low counts from RNA-Seq data were filtered out and the
data was normalised using the estimateSizeFactors and varianceStabilizingTransformation
function of the DESeq2 software (Love et al., 2014). We considered the top 5,000 most
variable mRNAs after exclusion of genes from the Y chromosome. Methylation data were
transformed to M-values (Du et al., 2010), and we extracted the top 1% most variable CpG
sites excluding sex chromosomes, which resulted in 4,248 features.
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More details on the data generation and processing can be found in the primary analysis
paper (Dietrich et al., 2018).

5.2.3 Biofam results

We ran biofam with an ARD prior per view and per factor and spike-and-slab priors on
the weights. Normal priors were used for the latent variables. The somatic mutation view
was modelled with a Bernoulli likelihood, while other views were modelled with Gaussian
likelihoods.

Structured variance overview

We initially fitted biofam with 25 factors and selected factors explaining 2% of variation or
more in at least one view. This resulted in 10 factors which cumulatively explained 41% of
variation in the drug response data, 38% in the mRNA data, 24% in the DNA methylation
data and 24% in the mutation data (Fig. 5.1).

Mutations
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Fig. 5.1 Overview of the biofam results. Left: study overview and data types. Data modalities
are shown in different rows (D = number of features) and samples (N) in columns, with
missing samples shown using grey bars. Middle: proportion of total variance explained (%)
by individual factors for each assay. Right: cumulative proportion of total variance explained.

Robustness

We assessed the robustness of factors and weights using 25 random initialisations of the
latent variables, and comparing biofam results across trials. We found that most factors and

weights were unchanged across trials (Fig. 5.2)
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Fig. 5.2 Robustness of the biofam results across multiple initialisations. Left: absolute value
of the Pearson correlation coefficient between the weights of the mRNA data. Right: absolute
value of the Pearson correlation coefficient between the factors. Rows and Columns are
clustered so that each block in the diagonal captures a weight (resp. latent factor) consistently
learnt across multiple trials.

Missing values imputation

Incomplete data is a common problem in studies that combine multiple high-throughput
assays, we assessed the ability of biofam to impute missing values within assays as well
as when entire data modalities were missing for some of the samples. Non-missing data
points were held out during training For both imputation tasks, biofam yielded more accurate
predictions than other established imputation strategies, including imputation by feature-wise
mean, SoftImpute (Mazumder et al., 2010) and a k-nearest neighbour method (Troyanskaya
et al., 2001) (Fig 5.3).
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Fig. 5.3 Missing values imputation using biofam and alternative methods. Values are Mean
squared error between ground truth and values imputed using the first moment of the weights
and latent variables.
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5.2.4 Factor interpretation
Sample visualisation in the latent space

We first plotted the samples in the two dimensional space made of the two factors explaining
the most variance across all views. This identified four distinct subgroups, separated by their
trisomy 12 status and somatic mutations on the immunoglobulin heavy-chain variable region
gene (IGHV) (Fig. 5.4), two of the most important clinical markers and drivers of molecular
disease heterogeneity in CLL (Zenz et al., 2010; Fabbri and Dalla-Favera, 2016).
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Fig. 5.4 Left: representation of samples using Factors 1 and 2. The colours denote the IGHV
status of the tumours; symbol shape and colour tone indicate chromosome 12 trisomy status.
Right: absolute weights of the top features of Factors 1 and 2 in the somatic mutations view.

This is in accordance with the high proportion of variance explained by Factors 1 and 2 in
the somatic mutation view, which is largely attributable to these two mutations as can be
seen by inspecting the weights of the biofam model (Fig. 5.4).

Characterisation of the IGHYV factor across omics

IGHYV status, the marker associated with Factor 1, is a surrogate of the differentiation state of
the tumour’s cell of origin and the level of activation of the B-cell receptor. While in clinical
practice this axis of variation is generally considered binary (Fabbri and Dalla-Favera, 2016),
our results indicate a more complex substructure (Fig. 5.5). At the current resolution, this

factor was consistent with three subgroup models such as proposed by Oakes et al. (2016)
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and Queiros et al. (2015), although there is suggestive evidence for an underlying continuum.

The variance breakdown of Figure 5.1 connected this factor to multiple molecular layers,
including gene expression profile and drug response, which motivated the inspection of the
associated weights to investigate the molecular determinants of this connection. We found
that factor 1 affected genes previously linked to IGHV status (Plesingerova et al., 2017;
Morabito et al., 2015; Trojani et al., 2011; Maloum et al., 2009; Vasconcelos et al., 2005)
and responses to drugs targeting kinases in or downstream of the B-cell receptor pathway, in
accordance with the reported association of the IGHV status with the level of activation of

the B-cell receptor.
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Fig. 5.5 Characterisation of Factor 1. Left: beeswarm plot with Factor 1 values for each
sample with colours corresponding to three groups found by 3-means clustering with low
factor values (LZ), intermediate factor values (IZ) and high factor values (HZ). Middle:
highest absolute weights in the mRNA view. Plus or minus symbols on the right indicate the
sign of the loading. Genes highlighted in orange were previously described as prognostic
markers in CLL and associated with IGHV status. Right: absolute loadings of the drugs with
the largest weights, annotated by target category.

Biofam therefore unveiled, in a single unsupervised analysis, multiple known associations
between punctual mutations and molecular features, without the need of performing multiple

individual tests as in eQTL analysis, demonstrating its utility for exploratory analysis.

Factors characterisation based on Gene Set Enrichment Analysis

Despite the clinical importance of the first two factors studied before, the other 8 factors

accounted for more than 80% of the explained variance and the manual inspection of the
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weight vectors for every factor and in every view can prove tedious. Gene Set enrichment
analysis (Subramanian et al., 2005), which can be run directly from the biofamtools package,
provides a compact overview of possible biological interpretations of every factor (Fig. 5.6).
Weight inspection can be performed as a second step to refine GSEA results or better under-

stand the link between multiple omics.
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Fig. 5.6 GSEA results for biofam factors interpretation. Shown are numbers of enriched
Reactome gene (Croft et al., 2011; Haw and Stein, 2012) sets per factor based on the gene
expression data (FDR < 1%). The colours denote categories of related pathways.

For example, inspection of the top weights in the gene expression view for Factor 5, enriched
for cellular stress, revealed genes coding for heat-shock proteins (HSP), which are essential
for protein folding and are up-regulated upon stress conditions (Srivastava, 2002; Akerfelt
et al., 2010). In accordance with this, we found that the drugs with the strongest weights on
Factor 5 were associated with response to oxidative stress, such as target reactive oxygen
species (ROS), DNA damage response and apoptosis (Fig. 5.7).

Although genes in HSP pathways are up-regulated in some cancers and have known roles
in tumour cell survival (Trachootham et al., 2009), thus far this gene family has received
little attention in the context of CLL, suggesting that unsupervised exploratory analysis of

multi-omics data may be used to build hypothesis and direct future research.

Factors utility as predictors of clinical outcome

Finally, we explored the utility of the latent factors inferred by biofam as predictors in
models of clinical outcomes. We used a Cox model (Spruance et al., 2004) to measure
the significance of associations between biofam factors and patient survival. We identified

three factors which were significantly associated with time to next treatment (FDR < 1%,
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Fig. 5.7 Left: beeswarm plot of Factor 5. Colours denote the expression of TNF, an inflam-
matory stress marker. Middle: gene set enrichment analysis for the top Reactome pathways
in the mRNA data using a t-test. Right: highest weights in the drug response view coloured
by category.

Fig 5.8). Factor 1, characterised before, related to the B-cell of origin and Factors 7 and 8,
were associated with chemo-immunotherapy treatment prior to sample collection (P < 0.01,
t-test). In particular, inspection of the weights revealed that Factor 7 captured dell7p and
TP53 somatic mutations, as well as differences in methylation patterns of oncogenes such
as Protein Kinase-C (Garg et al., 2014) and Crebb-P (Fluhr et al., 2016) while Factor 8 was
associated with WNT signalling, a causative factor for several human cancers (Komiya and
Habas, 2008).

Using 5-fold cross-validation in a multivariate Cox regression model, we also assessed the
overall performance in predicting the time to next treatment when combining the 10 biofam
factors. Notably, this model yielded higher prediction accuracy than models using individual
molecular features (Fig 5.9). The predictive value of biofam factors was similar to clinical

covariates (such as lymphocyte doubling time) that are used to guide treatment decisions.
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Fig. 5.8 Left panel: association of biofam factors to time to next treatment using a univariate
Cox regression (Spruance et al., 2004) and P values based on the Wald statistic (Bangdiwala,
1989). Error bars denote 95% confidence intervals. Numbers on the right denote p-values
for each predictor. Other panels: Kaplan—Meier plots measuring time to next treatment for
the individual biofam factors. The cut-points on each factor were chosen using maximally
selected rank statistics (Hothorn and Lausen, 2003), and P values were calculated using a
log-rank test on the resulting groups.
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Fig. 5.9 Left: association of biofam factors and clinical covariates with time to next treatment
using a univariate Cox models for 76 samples, for which the clinical information was
available. Error bars denote 95% confidence intervals. Numbers on the right denote P values
for each predictor. Right: prediction accuracy of time to treatment using multivariate Cox
regression trained using the 10 factors derived using biofam as well as the selected clinical
predictors. Shown are average values of Harrell C index from 5-fold cross-validation. Error
bars denote standard error of the mean.
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5.3 Joint analysis of multiple development stages of the

mouse embryo

In a second application, we illustrate how biofam can be used for the joint analysis of
multiple sample groups with an analysis of single cell RNA expression profiles measured in
the mouse embryo at different stages of the gastrulation process. This work is an ongoing
collaboration with Ricard Argelaguet, and builds on unpublished data generated by Hisham
Mohammed and Stephen Clark, from Wolf Reik’s group at the Babraham institute. Ricard
Argelaguet processed the data, ran biofam, and interpreted most of the results. I organised
the figures, wrote the text, and provided additional interpretation of the biofam weights based

on literature research.

5.3.1 Introduction

Gastrulation is a phase in mouse embryonic development during which a single-layered
blastula is reorganised to give rise, at embryonic day 7.5 (E7.5) to the three primordial germ

layers: ectoderm, mesoderm and endoderm.

The onset of gastrulation is determined by the formation of the primitive streak at E6.5, a
structure that emerges from the epiblast and establishes the initial bilateral symmetry of
the body. Subsequently, involution of cells through the primitive streak gives rise to the
mesoderm and endoderm, whereas epiblast cells establish the ectoderm (Solnica-Krezel and
Sepich, 2012; Tam and Loebel, 2007; Tam and Behringer, 1997).

The gene expression dynamics at the different embryonic time points have been well char-
acterised (Ibarra-Soria et al., 2018; Arnold and Robertson, 2009; Scialdone et al., 2016;
Mohammed et al., 2017; Peng and Jing, 2017; Wen et al., 2017; Chan et al., 2018), and it
hence provides an ideal system to showcase the application of biofam to multiple sample

groups

5.3.2 Data description and processing

Here we used an unpublished data set where single-cell Nucleosome Methylation and Tran-
scriptome (scNMT-seq) (Clark et al., 2018) was used to jointly profile chromatin accessibility,

DNA methylation and gene expression from 743 single cells isolated from mouse embryos at
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three developmental stages (ES.5, E6.5 and E7.5).

The aim of the study is to give a proof of concept for the utilisation of the biofam software in
the comparative analysis of samples from different biological contexts. Thus, we only con-
sidered the RNA expression data, for which the gastrulation dynamics are well characterised
in the literature. Yet, the final aim of biofam is to quantify the contributions from all three
molecular layers to cellular diversity during germ layer formation, which is the subject of

ongoing work.

RNA-seq libraries were aligned to the GRCm38 mouse genome build using HiSat2 (v2.1.0) (Kim
et al., 2015) using options —dta —sp 1000,1000 —no-mixed —no-discordant, which yielded a
mean of 611,000 aligned reads per cell. We discarded cells that had less than 100,000 reads
mapped and less than 2,500 genes expressed. Gene expression counts were quantified from
the mapped reads using featureCounts (Liao et al., 2014) with the Ensembl gene annotation
(version 87) (Yates et al., 2016). Only protein-coding genes matching canonical chromosomes
were considered. The read counts were log-transformed and size-factor adjusted (L. Lun

et al., 2016).

Lineages were annotated using Single-Cell Consensus Clustering (Kiselev et al., 2017) to

provide orthogonal cell labels to interpret the biofam results.

5.3.3 Biofam results

We built a biofam model with a Gaussian likelihood, ARD priors per gastrulation stage on
the factors, and spike-and-slab priors on both the weights and the factors. For the purpose of
this demonstration, we fixed the number of factors to 10. Features were centered within each
group to avoid capturing trivial differential expression between stages, and focus instead on

the structured variability within each stage.

Structured variance overview
First, we calculated the proportion of variance explained (%), at each developmental stage,

by each factor individually and by the combination thereof (Fig. 5.10).

We observed factors capturing shared variability across all sample groups (i.e. Factors 1,3,7),

and factors capturing variability unique to E6.5 (Factors 5 and 6) and E7.5 (Factors 2,4,8,9
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and 10). No factor unique to E5.5 was observed. Notably, the total 2, as well as the number
of relevant factors inferred increased steadily across the gastrulation stages. This reflects an
increase in the structured transcriptional variability of the gene expression profiles as cells

transition from a relatively homogeneous blastula (E5.5) to a heterogeneous gastrula (E7.5).
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Fig. 5.10 Top: cumulative proportion of total variance explained for each stage. Bottom:
proportion of total variance explained (%) by individual factors at each measurement stage.
Factors were ordered by the total fraction of variance they captured across the three stages.

Results robustness

We then assessed the robustness of the biofam factors and weights using 5 random initialisa-
tions of the latent variables, and comparing results across trials. We found that all factors and

weights were consistent across trials (Fig. 5.11)

5.3.4 Factor interpretation

Subsequently we characterised each one of the inferred factors by three complementary
approaches: visualisation of the cells in the factor space, coloured by lineage identity;

inspection of the genes with top weights and gene set enrichment analysis on the weights.

Factors capturing shared variability across stages

Factor 1 and 3 captured an important proportion of the gene expression variability shared

across all stages (Fig. 5.10). Ordination of cells in the factor space, shows that these factors
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[ L1l 1]

Fig. 5.11 Robustness of the biofam results across multiple initialisations. Left: absolute value
of the Pearson correlation coefficient between the biofam weights. Right: absolute value of
the Pearson correlation coefficient between the factors. Rows and Columns are clustered
so that each block in the diagonal captures a weight (resp. latent factor) consistently learnt
across multiple trials.

do not capture heterogeneity linked to lineage commitment (Fig. 5.12).
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Fig. 5.12 Ordination of the cells along Factor 1 (left) and Factor 3 (right), coloured by lineage.

To investigate the molecular determinants of these factors, we inspected the corresponding
biofam weights, revealing that Factor 1 shows a dense distribution of weights affecting most
genes (Fig. 5.10). Previous studies have shown that dense factors tend to capture technical
effects, as opposed to sparse factors that capture local gene coordinated variations (Gao et al.,
2013). Accordingly, we find that Factor 1 is related to the cellular detection rate (i.e. number
of expressed genes), a known technical artefact in sScRNA-seq data (Finak et al., 2015).

In contrast, we observed that the weights of Factor 3 were enriched with genes involved
in the cell cycle (Fig. 5.10), which is coherent with the high division rate observed in the
considered stages of development (Solnica-Krezel and Sepich, 2012; Tam and Loebel, 2007;
Tam and Behringer, 1997).
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Fig. 5.13 Top: Ordination of the weights associated to Factor 1 (left) and Factor 3 (middle).
Shown are the names of the genes with top weights in absolute value. Bottom: Gene
ontologies enriched in the top weights associated to Factor 3.

Factors capturing variability unique to E6.5

Next, we considered Factor 5, which was specifically relevant to the E6.5 stage. Ordination
of samples in factor space revealed that this factor captured the segregation of cells from the

epiblast to the primitive streak (PS) state, a process which is known to determine the onset of

gastrulation (Tam and Loebel, 2007) (Fig. 5.14).
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Fig. 5.14 Left: ordination of the cells along Factor 5 coloured by lineage. Right: ordination
of the weights associated to Factor 5. Shown are the names of the genes with top weights in

absolute value
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Consistently with this observation, the genes with the top weights contained well-studied
markers of PS formation, including Fgf8 (Sun et al., 1999), Wnt3 (Yoon et al., 2015) and
Mixll (Ng et al., 2005) (Fig. 5.14).

Factors capturing variability unique to E7.5

As illustrated in Figure 5.10, the majority of factors were relevant to the E7.5 stage. Factor
2 separated the mesoderm cells from the ectoderm cells. Coherently, inspection of the
corresponding weights revealed genes involved in the formation of mesoderm and ectoderm
amongst the most determinant features, yet with opposite signs (Fig 5.16). Prominent ex-
amples are Lefty2 (Dai et al., 2016), Mesp1 (Chan et al., 2013), and DII3 (Takahashi et al.,
2003) for the Mesoderm; and Utf1 (Van den Boom et al., 2007) for the Ectoderm.

Factor 4 captured variation within the mesoderm lineage. While some of the top genes associ-
ated to this Factor were related to the mesoderm formation, other genes such as Mixl1 (Hart
et al., 2002) and Sp5 (Weidinger et al., 2005) were coherently reported as specifically involved
in the Mesoderm patterning, a process during which the mesoderm is further subdivided into

organ domains (Fig 5.15).
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Fig. 5.15 Ordination of the cells along Factor 2 (left) and Factor 4 (right), coloured by lineage.

Analogously, Factor 8 prominently segregated endoderm cells, while Factor 9 captured
patterning within this lineage (Fig. 5.17). Consistently, the genes most affected by these
factors had functions related to the endoderm formation and subsequent patterning including
Cerl (Iwashita et al., 2013), Dkk1 (Ou et al., 2016), Trh (McKnight et al., 2007) (Fig. 5.18)
and APLNR (Deshwar et al., 2016).
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Fig. 5.16 Ordination of the weights associated to Factor 2 (left) and Factor 4 (right). Shown
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Fig. 5.17 Ordination of the cells along Factor 8 (left) and Factor 9 (right), coloured by lineage.

5.3.5 Conclusion

In a single analysis, biofam captured the main molecular determinant of the germ layer
commitment from early E6.5 cells, which can be identified using only two dimensions of the

biofam latent space (Fig. 5.19).

In addition, we illustrated how modelling explicitly the sample grouping structure formed by
the distinct development stages provided a principled framework to compare the biological
determinants of gene expression variation across biological contexts, thereby providing
a unique perspective on the sequential nature of the gastrulation process. Although we
restricted our analysis to the well-characterised RNA expression view, future work will
include the generalisation of this analysis to the three biological layers measured by the

sc-NMT technique (see Section 5.3.2).
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Fig. 5.18 Ordination of the weights associated to Factor 8 (left) and Factor 9 (right). Shown
are the names of the genes with top weights in absolute value
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Fig. 5.19 Representation of the cells in factor space using Factor 2 (mesoderm formation)
and Factor 8 (endoderm formation).

5.4 Future applications outlook

A key interest of the biofam framework is that it provides a novel perspective on the analysis
of molecular differences between distinct sample groups. This is allowed by the explicit
modelling of group structures on the sample axis, combined with an ergonomic visualisation

package to summarise molecular differences between those groups.

To further explore this direction, we are currently analysing a dataset of 768 cells of
the Hematopoietic Stem Cell Compartment in mice, across 2 age groups and 2 mutant
groups (Kirschner et al., 2017). Here, biofam can provide a global map of the molecular
differences between young and old mice, and investigate how those are affected by dif-
ferences in genotype. We are also analysing the Tabula Muris dataset (The Tabula Muris
Consortium et al., 2017) which consists in more than 100,000 cells from 20 mouse organs.
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Here, the scalability of the biofam software is key to integrate so many cells in a single
analysis, thereby comparing the biological determinants of multiple organ functions. Other
applications could consider the application of Factor Analysis to standard case control studies,

or the comparative study of molecular phenotypes between multiple environments.



Chapter 6
Concluding remarks

Recent technological advances in gene expression profiling have resulted in a variety of
contextual gene expression datasets. This thesis aimed at developing statistical approaches to
explicitly account for contextual information when modelling gene expression. The presented
methods build on two distinct fields of Machine Learning research, Gaussian Processes and

Factor Analysis. We gave a theoretical perspective on these approaches in Chapter 2.

In Chapter 3, we presented Spatial Variance Component Analysis (SVCA), a probabilistic
model based on Gaussian Processes for the analysis of spatial gene expression data. Most

prominently, SVCA assesses the effect of cell-cell interactions on gene expression profiles.

Using simulated data, we showed that SVCA yielded more accurate estimates of cell-cell
interactions than alternative regression models and was more robust to different simulation
settings. This was enabled by the flexibility of the Gaussian Process framework which allows
modelling of non-linear positional effects with little prior knowledge about their functional
form. We applied SVCA to a protein expression dataset assayed in human breast cancer
biopsies, and an RNA expression dataset assayed in the mouse hippocampus. In these appli-
cations, we showed that cell-cell interactions are a major driver of gene expression variation
at the single cell level, underlying the importance of developing models of gene expression
variation which account for the spatial relationship between cells. We also discussed the
biological interpretation of the SVCA cell-cell interaction estimates and found that they were
largely in accordance with the function of the genes concerned, even if precise mechanistic

interpretation remains difficult.
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In Chapter 4, we presented biofam, a software for the unsupervised analysis of gene expres-
sion data in the context of multi-omics experiments and for the combined analysis of multiple
sample batches, such as samples from different biological contexts, experimental conditions

or tissues.

Biofam extends the framework of Group Factor Analysis. It combines the strengths of
published implementations of Group Factor Analysis methods, and adds novel extensions to
these models, such as the implementation of non-Gaussian likelihoods and the modelling of a
sample group structure. It is implemented in a modular software which enables the selection
of different types of sparsity-inducing priors in any combination, to best reflect assumptions
about the data and to enable the comparison of different models implemented within the same
framework. We showed that biofam variational inference scheme was performant and we
presented ongoing work on a stochastic extension to this inference scheme. In applications
to simulated data, we validated the impact of sparsity-inducing priors, and investigated their
effect on model identifiability in different simulation settings. This showed that element-wise

sparsity-inducing priors helped identify the true latent structure of the data.

In Chapter 5, we illustrated two use cases of the biofam software, with the help of the

biofamtools R package for the visualisation and downstream analysis of biofam results.

In an application to a multi-omics dataset of chronic lymphocytic leukaemia, we showed
that biofam was able to identify major drivers of variation in a clinically and biologically
heterogeneous disease. Most notably, biofam identified previously known clinical markers
as well as novel putative molecular drivers of heterogeneity, some of which were predictive
of clinical outcome. In a second application we analysed single-cell RNA expression data
assayed across multiple stages of the mouse embryo development. We illustrated how biofam
can be used in the context of definite sample groups to provide a compact map of their
molecular differences. In the gastrulation context, we showed that the biofam approach
provided a coherent way to dissect the major processes involved in germ layer commitment.
Biofam is still an ongoing project with more real data applications in preparation, in the

context of ageing and cross-species comparisons.

Although the SVCA and biofam modelling approaches extend the state of the art in their
respective fields, we have shown in Section 3.7.1 and Section 4.7.3 that both models have

several limitations and still offer a lot of room for improvement and extensions. Most
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importantly, SVCA would benefit from a finer understanding of the biological meaning
of the cell-cell interactions measured, for which we could use hypothesis-driven research
with simpler biological systems showing clear positive and negative controls. For biofam,
a pressing direction of improvement is the extension of the current stochastic inference
framework with lazy 1O functions in order to permit the analysis of datasets which do not fit

on the computer memory.

SVCA and biofam were developed as disconnected models and are tailored for different
types of data contexts. However, future work may try to bring these approaches together in a
unified framework where spatial context is modelled jointly with latent factors of variations.
A first approach could be to encode the spatial relatedness of cells with a squared exponential
covariance prior on the latent variables of the biofam model, whose length scale could be
jointly optimised with the model in an Expectation-Maximisation scheme. Although we
originally implemented such a spatial covariance feature in the biofam package, it was
subsequently dropped for two reasons. First, experiments on simulated data, as well as
spatial transcriptomics (Stahl et al., 2016) and seqFISH (Shah et al., 2017) data, yielded
undistinguishable results from standard biofam. Second, the dependency across samples
introduced in the prior distribution of the latent variables had a cost in terms of computational
complexity, as also demonstrated in Hore (2015). In the case of a univariate prior on the
latent variables, and an approximation to the posterior distribution which is factorised over
samples, updates of a given latent variable are independent across samples (see Appendix D).
This enables a fast vectorised implementation which is no longer possible with a multivariate

prior. Future work should address these problems or explore other alternatives.

Building generative models for bioinformatics requires a thought process which goes in round
trips between three components: the model, the data and the biological question or purpose.
New perspectives on the studied question or data may emerge from this thought process,
which go beyond technical developments alone. For example, Group Factor Analysis did
not bring any technical novelties from the already widely used ARD prior. It did however
provide a new outlook or perspective on the analysis of data from different sources, and, with
it, a principled framework to explore novel questions. Likewise, the models presented in this
thesis combine existing models and methods to approach specific datasets and biological
questions from a new angle. For example, biofam offers a new perspective on the analysis

of global molecular differences between experimental conditions, and provides a principled
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statistical framework to study them. We hope that this work will inspire users to address new

biological questions in this direction.



Appendix A

Supplementary materials for SVCA

A.1 Methodological notes

A.1.1 Gradient derivation for the cell-cell interaction term

As seen in Section 2.1.8, Gaussian Process hyperparameters are optimised by maximising
the following Log marginal likelihood using gradient ascent:

InP(Y|X,0)= Ly (K)™! :

2 2

The gradient with respect to the hyperparameter 6; can be computed in closed form, and

In|K| — ganﬂT (A.1)

depends on the derivative of the kernel matrix dK/d6;

9 g K. o 1 (. K

For an additive kernel, as in SVCA, the derivative dK/d6; is equal to the sum of the deriva-
tives for each kernel term which can be computed independently. Generally speaking, this
property enables a very modular implementation of Gaussian Processes. In SVCA, we
reused the gradient derivations of the squared exponential kernel and the linear kernel, as

implemented in the limix package (Lippert et al., 2014).

For the cell-cell interaction term with scaling hyperparameters o,._. and length scale /, we

implemented the following gradient:
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0 0
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With Z; ; = exp(—d};/21), we find 9Z; /9l = —(d};/I°) exp(—d};/2(*) and:
%KCC =—(d;;/P)x2x0r Z)XX"Z(1)" (A.5)

We implemented the cell-cell interaction covariance term and gradient derivation in the limix
package, although the applications of this thesis used a grid search strategy for the length

scale hyperparameter to avoid local optima.

A.1.2 Note on the marginalisation property and out of sample predic-
tions with SVCA

Out of sample predictions are performed using the predictive distribution for Gaussian

Processes and taking its mean as a point estimate:

PO|X*,X,Y) = . (y*|K(X*,X) (K(X,X) +021) " ¥,

| (A.6)

K(X*,X*)—K(X*,X) (K(X,X)+07I)  K(X,X*))

This requires to compute the covariance between training samples K (X,X) and the cross-
covariance between test samples and training samples K(X*,X). A fundamental property
of Gaussian Processes is that the covariance between two samples i and j is only a function
of their input x; and x;: cov(y;,y;) = k(x;,x;). As a consequence, the covariance between
training samples K (X, X) should not be affected by the observation of new samples with input
x*. This is known as the consistency requirement or marginalisation property of Gaussian

Processes (Rasmussen and Williams, 2006).

In SVCA, the cell-cell interaction term renders fulfilling this requirement challenging, be-
cause the cell-cell interaction covariance term between two cells involves the expression

profile of all cells in the tissue. To address that, we consider that the test set’s expression
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profiles x* are observed during training when computing the cell-cell interaction covariance.
The output value y*, in contrast, is not observed and not used for training. This ensures that
the value of the training set’s covariance K(X,X) is not affected by the observation of a new

sample y*.

When comparing out of sample predictions results with simpler regressions, we make sure
that the comparison is fair by also accounting for the expression profiles of all cells (including

test sets) in the computation of the cell-cell interaction term.

A.2 Signature robustness on real data using bootstrapping

We used a bootstrapping strategy, combined with t-SNE dimensionality reduction (Maaten
and Hinton, 2008) to visualise the robustness of the SVCA variance estimates. For a given
image and a given protein, the model was fitted 4 times on a different randomly drawn
subset of 80% of the cells and we represented the signatures obtained for all bootstraps
and all images in a low dimensional latent space using t-SNE (Fig. A.1 for IMC, Fig. A.2
for seqFISH). Every point corresponds to a SVCA signatures, and signatures for multiple
bootstraps of the same image are linked with a line. The closer the bootstraps in the latent
space the most robust the signatures were. Intrinsic, environmental and cell-cell interaction

components were also analysed independently with the same procedure.

Fig. A.1 Robustness of the IMC variance signatures using bootstrapping and t-SNE visu-
alisation. From left to right: full signatures, intrinsic effect, environmental effect, cell-cell
interactions effect.
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Fig. A.2 Robustness of the seqFISH variance signatures using bootstrapping and t-SNE
visualisation. From left to right: full signatures, intrinsic effect, environmental effect, cell-
cell interactions effect.
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A.3 Comparison between variance components for both

real data applications

Motivated by the similarity of the results obtained in the gene set enrichment analysis of
the intrinsic component and in the gene set enrichment analysis of the cell-cell interaction
component in the application to the seqFISH hippocampus data (Section 3.6.3), we compared
the cell-cell interaction component with the three other model components for both the IMC

application of Section 3.5 (Fig. A.3) and the seqFISH application of Section 3.6 (Fig. A.4).
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Fig. A.3 Comparison of SVCA cell-cell interaction estimate with the three other model’s
components in the application to the IMC breast cancer data. Values are proportion of
variance explained, averaged across images. One data point on each panel corresponds to
one protein.

We did not observe any strong dependency between the variance components, expect a strong
correlation between the environmental and the cell-cell interaction term in the application to
the IMC data, which can arguably be due to the fact that the two components model spatial
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Fig. A.4 Comparison of SVCA cell-cell interaction estimate with the three other model’s
components in the application to the seqFISH hippocampus data. Values are proportion of
variance explained, averaged across images. One data point on each panel corresponds to

one protein.

effects with some non-identifiability between them, as discussed in Section A.4. Cell-cell

interaction effects could be captured by both terms jointly, and the signal split between them.
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A.4 Note on the environmental term

We have seen in section 3.4.3 that the environmental component of SVCA captures spatial
effects with no specificity to cell-cell interactions. This does mean however that if cell-cell
interactions are not explicitly modelled, the environmental component has the capacity to
capture part of it.

To test this hypothesis, we fitted a reduced Gaussian Process with no cell-cell interaction
component to the IMC data, and assessed how the residual variance due to cell-cell inter-
actions was captured by the other components of the model (Fig A.5). We found that the
environmental term absorbed a major share of this residual variance, which may also explain

the small difference in predictive power between this reduced model and the model with
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Fig. A.5 Effect of the environmental term on SVCA variance signature when cell-cell
interactions are not explicitly modelled. Left: comparison of the variance signatures with and
without cell-cell interactions. Right: Visualisation of the capture of non-modelled cell-cell
interactions by other terms
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A.5 Variability of the variance signatures

A.5.1 Clinical covariates in the IMC application

Figure A.6 shows the first two PCs of the full SVCA variance signatures, as well as the
individual variance components considered separately, overlaid with all the breast cancer
clinical covariates available. The strongest separation between grades is for the full signatures,
followed by the environmental and cell-cell interaction terms. Other clinical covariates did

not show a strong relationship with the variance signature terms.

A.5.2 Relationship to gene mean expression and variance for the IMC
application

For every gene, we also compared the cell-cell interaction component, in a given image, with

the mean expression level of the gene across cells (Fig. A.7), as well as its standard deviation

(Fig. A.8). We fond no obvious relationship with the mean, and found that for some genes the

cell-cell interaction terms was stronger in images where they had a relatively low variance.

A.5.3 Relationship to gene mean expression and variance for the seq-
FISH application
For the seqFISH signature, we did the same comparison but pooling all the genes together

because of their higher number. No relationship was observed between cell-cell interactions

and genes’ mean expression or standard deviations (Fig. A.9)
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Fig. A.6 PCAs of individual SVCA variance components in IMC and comparison with
clinical covariates. Variance components analysed are listed no the rows. Covariates are
listed on the columns
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Fig. A.7 Comparison between cell-cell interaction components and mean expression levels
in the application to the IMC breast cancer data



148 Supplementary materials for SVCA

cD20 cp3 CD44 CcD68 CAHIX
064"~ 064 ] 0.61 " o6 ’
0.4+ 0.44 0.44 . 0.4

0.2- 024- .+, ... T o2]

0.0 el o | 0.0 A

0'0-" -' OO- T .I. T T |.
0.1 0.2 0.3 0.4 0.5

e 0.04 =2+ . 5 NETRY .
0.1 0.2030405 0.0 0.1 0.2 0.3 0.4 05 0.102030.4050.6

CC3 Creb Cytokeratin7 Cytokeratin8.18 E.cadherin
0.15 1 — 0517 : .
) 044 - : 0.31 0o
0.10 - . ) <1
031 T 024 -
0.24 F O i il .
P | . <014, .. .
- .. .01 = = 01 e
i 0.0+

000 ++ 4 —— e el 004 AT 00 e e

0102 03 04 05 025 030 0.35 040 0.0 0.3 0.6 09 1.2 03 06 09 12 04 06 08

0.05+ *

ERa EpCAM Erk12 Fibronectin GATA3
044 .~ 0.6 0.6 3 .

044, 039, .77, ot 044: - 04—+ 044"
0.2 : T

024, % B " 021 0.24 e Jo27-

R A

0.0 Jood .tnt . o] god. R N PN
01 02 03 04 05

0.0 e . D
0.6 0.2 0.4 0.6 02 04 06 0.250.50 0.75 1.00 1.25

Her2 HistoneH3 Ki.67 PRAB S6
054 ° ’ 1 064" 0.4 4
g:;l_. 044 . T 0_4_':"- 0.3
024 0.2
0.1 f—=fer vt . : . ; 019" o
004 " * AT Y -] 0.04 e L 0.04 e =i - -1 00 EERTAN

01 02 03 04 05 02 04 06 02 04 06 00 02 04 06 0102030405

Cell-cell interactions

029 & T 024"

SMA Slug Twist Vimentin b.catenin
0.4 . +] 0.5~ 059 =~ .
0.3- A ATamm 041 041, 0.3 .
o L 03] ¢i- 034. . : . 0.4
' T 024, .. 0.2 HH——— R I O T

RO sl —— = . ) . 0.2
0.1 : 014 “‘.'_. } 0.1_-.: e : 0.14 s A
004" N Y O 0.0 e 0.0, '_"CI' LTI 'I ‘| 0.04- - I" .. .Ii ~ -1 004, ".I"a;'-.i_}q...- - .

0.250.50 0.75 1.00 02 04 06 08 01 02 03 04 06 09 12 010203040506

0.4 : 0.61

c.Myc

0.5-"
0.4+
0.3,
0.2
0.1+ [
0.0 LRA siea
0?1 072 OTS 0:4 0:5

Gene Standard deviation

Fig. A.8 Comparison between cell-cell interaction components and the standard deviation of
gene expression levels across cells in the application to the IMC breast cancer data
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Fig. A.9 Comparison between cell-cell interaction components and mean expression levels
(left) and standard deviation of gene expression levels (right) across cells in the application
to the seqFISH hippocampus data
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A.6 Cell permutation results in seqFISH

To validate the spatial variance signatures obtained in the seqFISH application, we investi-

gated further the results obtained with cell permutations (Section 3.6.2).

First, we focussed our analysis on the top 20 genes, ranked based on their cell-cell interaction
estimates obtained with the true cell positions. After permuting the cells, these genes were
found to have some residual cell-cell interaction terms (Fig. 3.25). We checked whether these
residual variance component had any predictive power out of sample, and found that out
of sample predictions were worsened by the use of the spatial covariance terms in SVCA
(Fig. A.10).
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Fig. A.10 Prediction accuracy for SVCA and simpler models using 5-fold cross-validation,
with permuted cells. The blue and green lines correspond to two reduced Gaussian Pro-
cesses including respectively an intrinsic component only, and both an intrinsic and a local
component. The two grey lines correspond to simpler linear regressions (see Section 3.4).
Results shown for the top 20 cell-cell interaction genes, ranked based on the spatial variance
signatures obtained with the true cell positions. The solid lines correspond to the coefficients
of determination between predicted gene expression and observed values. The shaded areas
correspond to plus and minus one standard deviation across images.

This confirms that the spatial variance components measured on the seqFISH data are indeed

dependent on the cell positions.

We then considered the 20 genes showing the highest cell-cell interaction component in the
permuted case. We compared the strength of these cell-cell interactions with the top 20 genes
from the analysis with true cell positions (Fig A.11) and found a two-fold decrease in the

median of these variance components when permuting the cells.
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Fig. A.11 Comparison between top 20 cell-cell interactions with and without cell permuta-
tions

Looking at out of sample prediction for these 20 genes (Fig. A.12), we also confirmed that
the spurious cell-cell interactions detected had no predictive power out of sample, and found

that the 20 genes corresponded to very noisy genes.
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Fig. A.12 Prediction accuracy for SVCA and simpler models using 5-fold cross-validation,
with permuted cells. The blue and green lines correspond to two reduced Gaussian Pro-
cesses including respectively an intrinsic component only, and both an intrinsic and a local
component. The two grey lines correspond to simpler linear regressions (see Section 3.4).
Results shown for the top 20 cell-cell interaction genes, ranked based on the spatial variance
signatures obtained with the permuted cell positions. The solid lines correspond to the
coefficients of determination between predicted gene expression and observed values. The
shaded areas correspond to plus and minus one standard deviation across images.

Finally, Figure A.13 shows the comparison between i) out of sample predictions using true
cells positions for the top 20 genes for cell-cell interactions, ii) out of sample predictions
for the same genes, but using permuted cell positions, iii) out of sample predictions for the
20 genes with the highest cell-cell interaction components based on the signatures obtained
for the permuted positions. This confirms that spatial components’ prediction power indeed

relies on the spatial structure of the tissue.
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Fig. A.13 Out of sample predictions for (left) true cell positions, top 20 genes for cell-cell
interactions; (middle) permuted cell positions, same 20 genes; (right) permuted cell positions,
top 20 genes for cell-cell interactions in the permuted case. The ridge models are always
fitted on the true cell positions and are shown to give a standard benchmark

A.7 Manual gene annotation for the seqFISH dataset



A.7 Manual gene annotation for the seqFISH dataset

153

Gene Category
ACTA2 Cell Junctions
AHR Transcription Factor
ALLDHIL1 Metabolism
ALX1 Transcription Factor
AR Intracellular Signalling
ARID2 Transcription Factor
ARID3A Transcription Factor
ATM Cell Cycle
ATR Cell Cycle
BACH1 Transcription Factor
BACH2 Transcription Factor
BARHLI1 Transcription Factor
BHLHE41 Transcription Factor
BLZF1 transporter
CAMK?2 kinase
CBFA2T3 Transcription Factor
CDC5L Cell Cycle
CDC6 Cell Cycle
CEBPG Transcription Factor
CHAT neurotransmission
CIITA Immune System
CLDNS5 Cell Junctions
CLOCK Transcription Factor
CREB1 Transcription Factor
CTNNBI1 Cell Junctions
CTSS Immune System
DDX3X Transcription Factor
DLX2 Transcription Factor
DMBX1 Transcription Factor
E2F2 Transcription Factor
E2F7 Transcription Factor
EGF Growth Factor
EHF Transcription Factor
ELFI Transcription Factor
ELF2 Transcription Factor
ELF4 Transcription Factor
ELK4 Transcription Factor
EMX2 Transcription Factor
EN1 Development
EN2 Development

EOMES
ESR2
ESRRB
ESRRG
ETS1
ETV3
FBLL1
FOXAl
FOXB1
FOXC1
FOXD3
FOXD4
FOXJ1
FOXNI1
FOXN4
FOXO1
FOX0O4
FOXP3
GABPA
GAD1
GATA4
GATAS
GATA6
GFI1
GJA1
GLI1
GLI2
GLI3
GMEB?2
GRHLI1
HIC1
HLTF
HNF1A
HOXA1
HOXB3
HOXBS8
HOXB9
HOXD12
HOXD13
HTR3A
IGTP
IKZF1
IRF2

Transcription Factor
Intracellular Signalling
Intracellular Signalling
Intracellular Signalling

Transcription Factor

Transcription Factor

na

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

neurotransmission

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Cell Junctions

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor

Transcription Factor
Intracellular Signalling

Immune System

Transcription Factor

Immune System
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IRX4
IRXS5
KLF1
LHX1
LHX3
LHXS
LHX6
LMXIA
LPP
LYVE
MAFK
MAML3
MED14
MFGES
MITF
MNI1
MNAT1
MOG
MTEF2
MXD1
MYB
MYBLI1
MYBL2
MYCN
MYL14
MZF1
NDNF
NEUROD4
NFATC3
NFATC4
NFE2L2
NFE2L3
NFIA
NFIL3
NFKB2
NFKBIZ
NFYA
NGEF
NHLH1
NKX3-1
NOTCH3
NPAS3
NR2El

Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Cell Junctions
Intracellular Signalling
Transcription Factor
Transcription Factor
Intracellular Signalling
Immune System
Transcription Factor
Transcription Factor
Transcription Factor
Cell Junctions
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
na

Transcription Factor
Cell Junctions
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Exchange Factor
Transcription Factor
Transcription Factor
Intracellular Signalling
neurogenesis
Intracellular Signalling

NR2F2
NR3C2
NR4A3
NRS5A1
ONECUT2
OPALIN
PALVB
PAX1
PAX2
PAX3
PAX6
PAX7
PAX9
PAXIP1
PBX3
PDGFRA
PGR
PHOX2B
PIAS3
PIN1
PKNOX1
PKNOX2
PLAGI1
PML
POLR2B
POU3F2
POU4F1
PPARA
PPARGCIB
PRDM1
PTCHI
RBAK
RBPJ
RBPIL
RELB
RELN
REST
RFX2
RFX4
RNF2
RORC
RUNX1
RUNX3

Intracellular Signalling
Intracellular Signalling
Intracellular Signalling
Intracellular Signalling
Transcription Factor
Cell Junctions

na

Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Cell Cycle
Transcription Factor
Intracellular Signalling
Intracellular Signalling
Transcription Factor
Transcription Factor
isomerase
Transcription Factor
Transcription Factor
Transcription Factor
Cell Cycle

Polymerase Catalyser
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Immune System
Intracellular Signalling
Zinc Finger
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Cell Proliferation
Transcription Factor
Transcription Factor
Transcription Factor



A.7 Manual gene annotation for the seqFISH dataset

155

RXRA
RXRB
RYBP
SALLI1
SALL3
SALL4
SATB1
SCML2
SIN3A
SIX4
SLC17A7
SLC17A8
SLC1A2
SLC5A7
SLC6A3
SLC6A8
SMAD3
SMADS5
SMAD9
SMARCA4
SMYD1
SNCG
SOX11
SOX13
SOX17
SOX5
SOX6
SOX9
SP1

SP7

SP8
SREBF1
SST
TAF2
TAF4B
TAF6L
TAL1
TBR1
TBX15
TBX2
TBX21
TBX4
TCF23

Intracellular Signalling
Intracellular Signalling
Transcription Factor
Zinc Finger

Zinc Finger

Zinc Finger
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor

Neurotransmitter Transporter
Neurotransmitter Transporter
Neurotransmitter Transporter
Neurotransmitter Transporter
Neurotransmitter Transporter

Neurotransmitter Transporter

Intracellular Signalling
Intracellular Signalling
Intracellular Signalling
Transcription Factor
Transcription Factor
Axonal Architecture
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Endocrine System
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor

TFAP2B
TFAP2E
TFDP2
TH
TIAM1
TMF1
TOPORS
TRIM33
TRP73
TRPS1
TSC2
TTF1
UACA
UNCX
VAV1
VDR
VEZF1
VIP
VSX1
VSX2
WT1
WWTRI1
XDH
ZBTB33
ZFP128
ZFP263
ZFP287
ZFP354A
ZFP422
ZFP423
ZFP64
ZIC2
ZIC3
ZIC4
ZIC5
ZKSCAN17
ZSCAN21

Transcription Factor
Transcription Factor
Transcription Factor
na

Exchange Factor
Intracellular Signalling
ligase

Transcription Factor
Ion Channels

Ion Channels
Growth Factor
Transcription Factor
Apoptosis
Transcription Factor
Exchange Factor
Intracellular Signalling
Transcription Factor
Intracellular Signalling
Development
Development
Transcription Factor
Transcription Factor
Metabolism
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor
Transcription Factor

Transcription Factor







Appendix B

Variational Inference beyond the mean

field approximation

In this Appendix, we discuss the case of variational inference with partially factorised approx-

imations to the posterior distribution of the parameters: g(®) = q(6;|6;)q(6;) [Ti¢ (k.11 9(6:)
where g(6¢(6;) # q(6).

Y denotes the observed data, ® denotes the parameters (unobserved random variables). For
simpler notations, we will write @ = {6; }y;¢ (14}, S0 that ¢(®) = g (6| 6;)q(6;)q(®").

We have shown in 2.2.6 the relation of equation B.1.

InP(Y) = % +KL(q(®)||P(@]Y)) B.1)

with,
_ 1 |PX.0)
,sf_/@q(@))l { o] o
B p(6]Y) '
KL(gllp) =~ [ (@) | 255 | do

The aim is to find the variational distribution ¢(®) which minimises KL(g(®)||p(®|Y)), or
equivalently which maximises -£’(¢q). For (6,4 x}), the derivations of 2.2.6 apply with no

differences. We here derive the update rules for the conditional distributions ¢(6y|6;) and for
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q(6r)

B.1 Optimisation of ¢(6;)

The ELBO _Z can be rewritten as on equation B.3.

p(¥,0)
q(®")q(6c]6;)q(6r)

p(¥,0)
q(®)q(6k|6:)q(6r)

(
P(Y7®) /
Q(9k|91)} 1 dek} o

_/6161(91) U@ﬁk9(9/)(1(9k|91)lnq(Gl)d(B’dek} de

2(0)= [ (@)a(60)q(0)1n | Ja0

= [ at@| [, at@ateutom |

o

~ [ at@)| [ a@atajerin]

o

} de’ dek} do,

- [aten]| [, at@ateienmg(@erae] ao

Y.®
_ / 4(6)Eer 6,6, {m P( )]del— / 4(6,)Ing(6,)d6, — / (0 Ing(®')de’
) q(6|6r) 0, @
(B.3)
We write P(Y,®) the distribution such that:

< p(Y,®)}
InB(Y,0) = Eg 4,16 |In (B.4)

¥:6)=Eo a0 { q(6k|6;)

We then recognise that .#(q) = —KL (q(6,)||P(Y, 0)) + cst and deduce that £ (g) is max-

imised when:

(B.5)

p¥,0
Ing(6) =Ee g, [hl ( )}

q(6[6;)
We recognise a slightly altered version of the update rules of 2.2.6, which additionally
involves an expectation of Ing(6|6;). The iterative algorithm used in variational inference

can be adapted using equation B.5
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B.2 Optimisation of the conditional distribution ¢(6;|6;)

As g(6|6;) is conditioned on 6}, the update rule for ¢(6|6;) can be obtained easily by fixing
6, in Equation B.2. The derivations of 2.2.6 remain then unchanged and the update rule is

the same as in 2.2.6 but with a conditional expectation on 6, as on equation B.6

Ing(6,|6;) = Eg g, [Inp(Y,0)] (B.6)






Appendix C

Variational inference with non-Gaussian
likelihoods

Bayesian models such as Factor Analysis in conjunction with non-Gaussian likelihoods
are useful when dealing with different data modalities, such as binary values in the case of
genotyping data or counts in the case of RNA-seq data. However, this poses an additional
challenge in the inference of the posterior distribution of the parameters, which is that the

prior distributions of the parameters of the model are no longer conjugate.

In variational inference, one way to address this challenge is to find a lower bound to the
model log likelihood which is quadratic in the model parameters. The quadratic form enables
to approximate the model log likelihood with a Gaussian, and the log likelihood lower bound
can then be re-injected in the standard evidence lower bound of the model without affecting

the inequality.

C.1 Approach from Seeger and Bouchard (2012)

If the second derivative of the model log likelihood is lower bounded, a natural quadratic
lower bound of the log likelihood is its second order Taylor expansion. This is the approach
used by Seeger and Bouchard (2012) and it applies to Poisson, Bernoulli and Binomial data.

Recall that in the Bayesian framework, we approximate the true posterior distribution of
the parameters, P(®|Y), with a variational distribution ¢(®) which is typically factorised
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over some or all of the parameters. Computing the best approximation ¢(®) is equivalent to

maximising the evidence lower bound .# of Equation C.1.

fz/q(@)lnde)

~ [ 4(@)1nP(¥]©)0 +KL[¢(0) p(©)] (€.1)

We now assume a log likelihood which can be written as in Equation C.2

N D
InP(Y|@®) = Z Z a(cna) (C.2)

In the case of Factor Analysis, ¢, 4 = YxZnkWkq and the specific form of f, 4(c,q4) =
InP(y, 4|cnq) depends on the likelihood used for the data. The sum over 7 and d comes from

the fact that observations are treated as independent.

If f,.4 is twice differentiable and f’ , > x,, we can write the lower bound of Equation C.3,
which comes from the second order Taylor expansion in &, ;4 of the individual terms of the

model log likelihood for every observation.

fn,d(cn,d) > fn,d(gn,d) + fl’/l,d(gf’l,d) (Cn,d én d) (Cn d— én d) =d4nd (Cn,d, én,d) (C3)

Therefore, the optimisation problem of maximising the ELBO .Z of Equation C.1, may be

approximated by the maximisation of the new Evidence Lower Bound of Equation C.4.

= ZE (Qn,d(cn,da 5n,d)) +KL [Q(®)Hp(®)]

(C4)
_/ ZlnP ynd|§ndacnd; )d@‘f‘KL[CI(@)HP(@)]

where P(¥,, 4|&,.4, Cn.d; —Kq) corresponds to a Normal distribution with pseudo-data and =
Sna— [ /(énd) /Kq, mean ¢, 4 and precision — K, which is obtained by completing the square
in Equation C.3.

We are now reduced to the Gaussian case where usual variational update rules may be used

with the pseudo data defined before. However, it also becomes necessary to maximise the
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lower bound defined above with respect to the location of the Taylor expansions &, 4 for all n
and d. Taking the first derivative of g, 4(cp.a,&n.4) With respect to &, 4, we find that % is

maximised when &, ; = E4(cnq)-

C.1.1 Poisson likelihood

A standard way of modelling count data is to use a Poisson likelihood as in Equation C.5

P(yn,dlcn,d) = A’<cn,d>yn’d exXp (_l(cn,d)) (C~5)

where A (c, 4) is a log-concave rate function such as A(c,4) = In (1 +exp(cnq)).

It can be shown that in that case:

fra(cna) > Ky =—(1/440.17+max(Y. 4)) (C.6)

which enables to use the method described above for inference.

C.1.2 Bernoulli likelihood

A standard way to model binary data in Factor Analysis models is to use the Bernoulli
likelihood of Equation C.7

P(yn,d|cn,d) = Ber (yn,d’G(Cn,d))
1 (C.7)

T 1+ exp [—(2vpa — el

It can then be shown that

fralena) > kg =—1/4 (C.8)

C.2 Bernoulli case with the approach from Jaakkola and
Jordan (2000)

For the Bernoulli case, it is possible to derive a tighter lower bound to the log likelihood.

Let’s rewrite the Bernoulli likelihood as in Equation C.9
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fn,d(cn,d) =—In [1 +exp _(zymd — 1)Cn,d}

(2yn,d ; l)cn,d . (2yn,d; 1>Cn,d Texp _(2yn,d2_ l)cn,d:|

In |exp (C.9)

=x/2+g(x) withx = (2y,4— 1)c, 4 and g(x) = —1In [exp)—zc +exp %x}

It can be shown that the function g is convex in x2, which is used by Jaakkola and Jordan
(2000) in order to write the lower bound of Equation C.10 which comes from the first order

Taylor expansion of g with respect to x°.

Fua0) > x/24 8(8) + S5 (£)( ~ &)

=x/2—&/2—In(l+exp—&) — Ltanh (§> (Xz— ‘52)

£ 2
2ynd — 1end — 1
_ na=Vena gn’d—ln(1+exp—§nd)— tanh (2 (cna—&ra)
2 ’ 4§n,d 2 7 7

(C.10)
By completing the square in Equation C.10 and re-injecting the likelihood lower bound

into the evidence lower bound of the model, we observe that maximising the ELBO ¢
of Equation C.1 may be reduced to the simpler problem of maximising the new ELBO of
Equation C.11.

cfz:/@q(@)Zlnﬁ(yn7d|én7d,cn7d,‘L'md)d@‘f‘KL[Q(@)Hp(@)] (C.11)
n,d

Where P defines a Normal distribution with pseudo data §, s = (2y, 4 — 1)&, 4/tanh(&, 4/2)
mean ¢, 4 and precision 1, ;s = tanh(&, 4/2)/2&, 4

Like in the approach by Seeger et al., we are reduced to the Gaussian case where usual
variational update rules can be used with the pseudo data defined above. Like in the Seeger
et al. approach, we also maximise .%> with respect to the location of the Taylor expansion
and find that the update for this additional parameter is given by énz q= E(cfl 4)-

The lower bound provided by the Jaakkola method for the Bernoulli likelihood is tighter than

the one provided by the Seeger method, as illustrated in Figure 4.4. This is because in the
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Jaakkola method, the precision of the approximate Gaussian P is dependent on the location

of the Taylor expension ﬁnd (heteroscedasticity)






Appendix D

BIOFAM variational updates

In this section, we give the analytical solution for the approximate posterior distribution of
BIOFAM parameters in the variational inference framework. Additionally, we write down
the analytical form of the Evidence Lower Bound (ELBO) of Equation 2.27. Although
computing the ELBO is not necessary in order to estimate the posterior distribution of the

parameters, it is used to monitor the convergence of the iterative algorithm.

D.1 Variational Updates

D.1.1 Latent variables

Variational distribution:
q(zn1) = AN 2kl eyy> Ozy) (D.1)
where

M Dl’ﬂ 71
o Am 2
o.=X ((sige)”) +1
¥

m=1d 1 (DZ)
M Dy
Mz = Z Z ) (SaxWak) (yZ’d - ; <S?11jwfinj> <an>>
m=1d=1 Jj#k
D.1.2 Spike-and-slab weights

Update for g(s7}):
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q(si ) = Ber(sy 1|77 (D.3)
with
1
ﬁfk - 1—|—exp(—lﬁ’l’7’k)
0 (og") (")
Aﬂ=<1n >+0.51n k 051n< (z2) + )
-0 ) 2 (o) 04
<‘c > ( n1 Y {Znk) — Ytk <S?ngj>zg:1 (Znk) <an>>
N 5 <am>
n=1 <an> + @
Update for g(W7,):
g(Wirlsgr = 0) = A (W [0, 1/04") ©3)
q(Warlsa = 1) = A (Wk‘ﬂwdk’ v%dk>
with
B YNV (zak) — Xk <S?f ,W?j> YN (znk) (znj)
Hoih = N <z2 o)
SN (D.6)
m\—1
_ (1)
O = N /2 {og")
Yoy (zo) + Teny
D.1.3 ARD precision (alpha)
Feature-wise
Variational distribution:
alo") =T (o"|a . b, (D.7)

where
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D
Ay = ag + Tm
D, . (D.8)
R Y <(W31k)2>
b%, = bg‘ .
m,k 2
Sample-wise
Variational distribution:
q(oy) =T (a,f dg‘,k,bgk) (D.9)
where
R N,
Ng < g 2> (D.10)
ba . ba n anl (Zn,k)
k 0 )
D.1.4 Noise precision (tau)
Variational distribution:
AR CA IR (D.11)

where

AT _ T
g = Ao+

N K 2 (D.12)
md = b6+ > Z < (y?d - ZW?kS?kka) >
n k

=1

- oz

D.1.5 Spike-and-slab sparsity parameter (theta)

Variational distribution:
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Qb b (D.13)

where

D,
A = Z (k) +a8
d=1 . (D.14)
bZk = b Z (Sdk) + D
d=1

D.2 Evidence Lower Bound

As seen in 2.2.6, the ELBO can be decomposed into a contribution coming from the data
likelihood under the current estimate of the posterior distribution of the parameters and a
contribution accounting for the KL. divergence between the prior and the posterior distribu-

tions of the parameters:

L= q%)lnP(Y|®) —KL(¢(0)||p(0)) (D.15)

D.2.1 Contribution from the data likelihood (Gaussian case)

& NDy, N X 2n
E InP(Y|®)=— Y In(2m)+ = Y Y In((g}))
9(6) =1 2 2 == (D.16)
B (1) S .
- Z 2 Z (na — X (W) (an>)
m=1d=1 n=1 k=1

D.2.2 Contribution from the KL divergence regulariser

Note that KL (¢(©)||P(®)) = E4(¢(0®)) — E4(P(®)). Below, we will write the analytical

form for these two expectations.
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W and S terms

M M M ,m D, K
Bl p(W,8) =~ Y. =2 )+ Y. 2 Y in(ef) ~ Y X3 Y ((5))
q m=1 m=1 k=1 m=1 d=1k=1

M D, K M Dy,

+((0) Y Y Y i)+ (I(1-6) Y Y Y (1 ()
m=1d=1k=1 m=1d=1k=1
(D.17)
M gp. | M Dy K

Eling(W,8)] =~ Y =5" n(2m)+5 ¥ 3, 2 In({5h) oy + (1= {s510) /o)

3
I
_
3
I
_
N
Il
—_
-
Il
—_

M D, K
+ 3 2 Y (1= (s In(1 = (sG,)) — (sge) In (i)
m=1d=1k=1
(D.18)
Z term
NK 1 Y&
Ellnp(Z)]=——Mm2r) —= Y Y ()
q 2 2 ==
(D.19)
Elng(Z)] = —& (1 + In(27)) 1%%
q q 2 2 o | an
ARD terms (applies to both sample and feature-wise ARD)
M K
Elnp(a)] = ¥ )" (affnb§ + (af 1) (in o) — b () ~ InT(a)))
q =~ i
el (D.20)
Elng(a)] = ¥ ¥ (afInb + (af ~ 1) (Inay) — b (o) — InT'(af"))
4 m=1k=1
Tau term
M M Dm M
Ellnp(t)] = Y Dnaflnbj—+ Z Z ) (Int)') — Z Z b§(ty) — Y. DuInI(ag)
4 m=1 m=1d= m=1d=1 m=1
M D, . A
Eling(2)] = ). Y, (@505 + (@5 — 1) (In) — B, {24) ~ InD(a,,)
m=1d=1

(D.21)
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theta term
M K Dy

Elnp(6)]= Y ) ) (a0 — 1) x (In(x) )+ (bo — 1) (In(1 = ) ) ~ In(B (o, bo)))
m=1k=1d=1
M K Dy

Bling(6)] = 3, ¥ 3. (e~ 1) x (in(mf) ) + (b = 1) {In(1 = 713) ~ In(Blala. b))

(D.22)



Appendix E

Supplementary Analysis of the BIOFAM

software

E.1 Identifiability of the latent structure for sparse and

dense factors

In this section, we analyse further the question of the identifiability of the latent structure
raised in Section 4.4.2, in scenarios where the latent structure is made of factors with dense
effects only, or sparse effects only. We show that dense latent structures are mostly non-
identifiable by any of the biofam models. In the case of latent factors with sparse effects, the
use of spike-and-slab priors on the weights renders factors readily identifiable. Spike-and-
slab priors on the factors provides a marginal identifiability improvement, even when the

factors are simulated as dense with only sparse weights.

E.1.1 Simulations with sparse factors only

We generated data using 30 latent variables with 10 % of active weights for each one of them.
Data was simulated for 800 samples and 1600 features and the latent variables explained
25% of the total variability.

We compared three models. The first model had no spike-and-slab prior, the second model
had spike-and-slab priors on the weights and the third model had both spike-and-slab priors
on the weights and on the factors. All three models were fitted three times with random

initialisations of the latent variables in order to assess the robustness of the inference process.
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Correlating the inferred weights with the simulated weights for the three model showed
that only models with spike-and-slab priors identified the true latent weights (Fig. E.1). In

addition, only those models inferred reproducible weights across multiple trials (Fig. E.2).

Fig. E.1 Correlation of the simulated weights with weights inferred with a model without
any spike-and-slab prior (left), with spike-and-slab priors on the weights (middle) and with
both spike-and-slab priors on the weights and on the factors (right). The generative latent
factors all exhibited sparse effects (10% of active weights). Note that off-diagonal elements
for the two sparse models are only due to factors permutation.

Fig. E.2 Robustness of weights inference for a model without any spike-and-slab prior (left),
with spike-and-slab priors on the weights (middle) and with both spike-and-slab priors on
the weights and on the factors (right). Each heat map shows the correlation matrix between
all inferred weights for all three separate runs, which is then further hierarchically clustered
so that reproduced weights between runs appear as blocks of three on the diagonal. The
generative latent factors all exhibited sparse effects (10% of active weights).

E.1.2 Simulations with dense factors only

We then generated data using 30 latent variables with 100 % of active weights. Data was

simulated for 800 samples and 1600 features and the latent variables explained 75% of the
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total variability (due to the higher density of the weights).

Again, we compared three models: a first model with no spike-and-slab prior; a second model
with spike-and-slab priors on the weights and a third model with both spike-and-slab priors
on the weights and on the factors. Like in Section E.1.1, the three models were fitted three
times with random initialisations of the latent variables in order to assess the robustness of
the inference process. Correlation of the inferred weights with the simulated weights showed
that none of the models could identify the true latent weights (Fig. E.4). Across our three
random trials, inference was only reproducible for the model with spike-and-slab priors on
both weights and factors (Fig. E.4), although the inferred weights were in any case rotated

compared to the true simulated weights.

Fig. E.3 Correlation of the simulated weights with weights inferred with a model without
any spike-and-slab prior (left), with spike-and-slab priors on the weights (middle) and with
both spike-and-slab priors on the weights and on the factors (right). The generative latent
factors were all dense (100% of active weights).

Taken together, these results confirm the usefulness of sparsity-inducing priors for the
identification of sparse latent factors, while showing that dense latent factors pose in any
case an identifiability problem.
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Fig. E.4 Robustness of weights inference for a model without any spike-and-slab prior (left),
with spike-and-slab priors on the weights (middle) and with both spike-and-slab priors on
the weights and on the factors (right). Each heat map shows the correlation matrix between
all inferred weights for all three separate runs, so that off-diagonal blocks correspond to

correlation plots between runs. The generative latent factors were all dense (100% of active
weights).
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