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Robust and tunable bursting requires slow positive

feedback

Abstract.

We highlight that the robustness and tunability of a bursting model critically relies on currents

that provide slow positive feedback to the membrane potential. Such currents have the ability

of making the total conductance of the circuit negative in a time scale that is termed slow

because intermediate between the fast time scale of the spike upstroke and the ultraslow time

scale of even slower adaptation currents. We discuss how such currents can be assessed either

in voltage-clamp experiments or in computational models. We show that, while frequent in

the literature, mathematical and computational models of bursting that lack the slow nega-

tive conductance are fragile and rigid. Our results suggest that modeling the slow negative

conductance of cellular models is important when studying the neuromodulation of rhythmic

circuits at any broader scale.

New and noteworthy

Nervous system functions rely on the modulation of neuronal activity between different

rhythmic patterns. The mechanisms of this modulation are still poorly understood.

Using computational modeling, we show the critical role of currents that provide slow

negative conductance, distinct from the fast negative conductance necessary for spike

generation. The significance of the slow negative conductance for neuromodulation is

often overlooked, leading to computational models that are rigid and fragile.
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Introduction

While the function of neuronal bursting is still debated and probably diverse, the contin-

uous modulation between distinct firing patterns is an important signaling component

of many nervous functions. Those include muscle contraction orchestrated by central

pattern generators [Marder, 2012], control of sleep, wakefulness and attention in thalam-

ocortical circuits [McCormick and Bal, 1997, Sherman, 2001, Bezdudnaya et al., 2006],

and sensing [Krahe and Gabbiani, 2004]. Voltage recordings in those references suggest

robust and continuous modulations between spiking and bursting. All transitions share

a sharp separation between the low frequency of spikes in tonic firing and the high fre-

quency of spikes during bursts. They are observed across a broad range of neuronal and

bursting types.

The mechanisms of this regulation are still poorly understood. At the physiological

level, they seem to involve a variety of ionic currents and neuromodulators, see e.g. the

review [Marder and Bucher, 2007]. At the modeling level, most textbooks on computa-

tional and mathematical neuroscience include a chapter on bursting [Izhikevich, 2007,

Chapter 9],[Ermentrout and Terman, 2010, Chapter 5], but the mathematical theory of

bursting is based on a classification of different types of bursting according to differ-

ent bifurcation mechanisms. Each bursting type is associated to a different bifurcation

mechanism with little importance given to the transitions between bursting types and,

most importantly, to the connection between mathematical transitions and physiological

modulation. To the best of our knowledge, a mathematical theory of bursting modu-

lation and how it relates to physiological mechanisms has not been addressed until the

recent paper [Franci et al., 2014].

In this paper we use a state-of-the-art conductance-based model, widely used in

computational neuromodulation studies, to highlight a modeling feature of bursting that

is critical to robustness and modulation. Specifically, mimicking the classical voltage-
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clamp experiment, we study the conductance of the neuron by analysing the total current

response to a voltage step perturbation around the threshold potential. We aim to show

that, irrespective of the modeling details, the robustness and modulation properties of

the model primarily rely on the ability to modulate the slow temporal component of

the conductance from positive (in spiking mode) to negative (in bursting mode). This

modulation only occurs transiently in a time scale that is slow compared to the fast time

scale of the spike upstroke. The voltage-clamp signature of this slow conductance makes

it model-independent and easy to assess experimentally.

The presence of a slow negative conductance in a circuit, distinct from its fast nega-

tive conductance, is easily overlooked because of its transient nature. We highlight the

transient nature of this property with a computational experiment that only changes the

kinetics of calcium channel activation from slow to fast, without affecting the balance

of currents at steady-state. We show that all the modulation properties of the burst-

ing model are lost when the calcium activation is fast, just because the slow negative

conductance is no longer distinct from the fast negative conductance.

A model can exhibit a slow negative conductance only if it includes an inward current

with slow activation or an outward current with slow inactivation. Such currents have

been named slow regenerative in [Franci et al., 2013]. By definition, a model that does

not include slow regenerative currents cannot exhibit a slow negative conductance in

any voltage range. We show that such models abound in the literature of bursting.

This is because the slow negative conductance, while essential to robust modulation, is

not necessary to bursting per se. But we illustrate on a number of published models

that bursting models that lack a source of slow negative conductance are both fragile

and rigid: they are very sensitive to small parameter variations, and those parameter

variations disrupt the bursting pattern altogether rather than modulating the shape of

the bursting pattern. In sharp contrast, published models that include a slow negative
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conductance are robust and tunable: small parameter variations do not disrupt the

bursting pattern and specific parameter variations modulate the bursting shape between

different bursting types.

The total conductance of a neuronal circuit is modulated in a given time scale by

a balance between currents of negative and positive conductance, or equivalently, by

a balance between currents providing positive and negative feedback to the membrane

potential. Our results suggest that modulating the sign of the slow conductance of a

model is necessary to the regulation of bursting, meaning that slow regenerative channels

are a natural target for neuromodulators involved in bursting modulation, in line with

a number of experimental studies [Marder and Bucher, 2007].

We also provide an analysis of our results in terms of phase portraits and bifur-

cation theory, the classical language of bursting theory. Phase portraits of regen-

erative and restorative models are indeed fundamentally different [Drion et al., 2012,

Franci et al., 2012]. We show that only in the presence of a slow negative conductance a

same phase portrait is both robust to parameter variations and compatible with various

bursting types that have traditionally been associated to distinct models. This compar-

ison suggests the relevance of analyzing bursting as circuits regulated by a balance of

positive and negative feedbacks in distinct time scales as a complement to the traditional

classification based on bifurcation theory.

While the analysis in this paper is performed at the single cell level, there is growing

evidence, see e.g. the recent paper [Dethier et al., 2015] that slow positive feedback at

the cellular level critically impacts the robustness and tunability of rhythmic circuits as

well. This suggests that accounting for the modeling feature highlighted in this paper is

relevant for neuromodulation studies at every scale and therefore a feature that merits

attention both from experimentalists and modelers.
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Methods

All simulations and analyses were performed using the Julia programming language. The Julia

code is available as Extended Data and can be downloaded at https://github.com/elsesma/eNeuro2017-

Code.

Figure 1A is generated using the STG model described in [Goldman et al., 2001]. Briefly,

the model is composed of a leak current Ileak, a transient sodium current INa, a T-type calcium

current ICa,T , a S-type calcium current ICa,S , a delayed rectifier potassium current IK,DR, a

transient potassium current IA, a calcium activated potassium current IK,Ca. Parameters used

in the simulations are as follows. (a): C = 1µF · cm−2, VNa = 50mV , VK = −80mV , VCa =

80mV , Vleak = −50mV , ḡleak = 0.1mS cm−2, ḡNa = 700mS cm−2, ḡCa,T = 6mS cm−2,

ḡCa,S = 9mS cm−2, ḡA = 30mS cm−2, ḡK,DR = 80mS cm−2, ḡK,Ca = 25mS cm−2. (b): same

parameters as (a) except ḡCa,T = 1mS cm−2, ḡCa,S = 1.5mS cm−2, ḡA = 240mS cm−2. (c):

same parameters as (a) except ḡCa,T = 3mS cm−2, ḡCa,S = 4.5mS cm−2, ḡA = 26mS cm−2.

(d): same parameters as (a) except ḡCa,T = 7mS cm−2, ḡCa,S = 10.5mS cm−2, ḡA =

225mS cm−2. Burstiness is defined as spikes per burst×intraburst frequency
bursting period . Voltage steps in the

voltage clamp experiments are from −40mV to −39mV .

Figure 1B is generated with the same model and parameters as Figure 1A except that

τmCa,T and τmCa,S are scaled by 0.5 in the center parameter chart andmCa,T = mCa,T∞(V ),mCa,T =

mCa,T∞(V ) (instantaneous calcium activation) in the right parameter chart. Voltage clamp

steps are from −39mV to −40mV .

Nominal models in Figure 2 are given as follows. The STG model is the same as Fig-

ure 1A with maximal conductance parameters: ḡleak = 0.1mS cm−2, ḡNa = 1200mS cm−2,

ḡCa,T = 6.5.mS cm−2, ḡCa,S = 9.75mS cm−2, ḡA = 100mS cm−2, ḡK,DR = 80mS cm−2,

ḡK,Ca = 40mS cm−2. The Plant R15 model and parameters are the same as given in

[Rinzel and Lee, 1987]. The pancreatic beta cell model and parameters are the same as de-

scribed in [Chay and Keizer, 1983]. The thalamocortical (TC) model and parameters are the

same as given in [Wang, 1994]. The CA1 model and parameters are the same as given in

[Golomb et al., 2006]. The modified CA1+ model is obtained from the nominal model by: the
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persistent sodium current activation is made dynamic with time constant equal to 6 times the

original delayed rectifier activation time constant; the original delayed rectifier activation time

constant is scaled by 4; the cell capacitance is scaled by 0.4.

Figure 3A is generated using the same STG model as Figure 1A. Parameters used in

the simulations are as in Figure 1A except the following. Left trace: ḡNa = 1200mS cm−2,

ḡCa,T = 1.mS cm−2, ḡCa,S = 4.mS cm−2, ḡA = 10mS cm−2, ḡK,DR = 40mS cm−2, ḡK,Ca =

8mS cm−2. Center trace: gNa = 1200mS cm−2, ḡCa,T = 1.mS cm−2, ḡCa,S = 7.mS cm−2,

ḡA = 8mS cm−2, ḡK,DR = 40mS cm−2, ḡK,Ca = 13mS cm−2. Right trace: gNa = 1200mS cm−2,

ḡCa,T = 10.mS cm−2, ḡCa,S = 8.mS cm−2, ḡA = 10mS cm−2, ḡK,DR = 120mS cm−2,

ḡK,Ca = 40mS cm−2.

Figure 3B is generated using the same STG model as Figure 1A. Parameters used in the sim-

ulations are as in Figure 1A except the following. Parabolic case: ḡNa = 1200mS cm−2,

ḡCa,T = 1.mS cm−2, ḡCa,S = 32.mS cm−2, ḡA = 40mS cm−2, ḡK,DR = 150mS cm−2,

ḡK,Ca = 200mS cm−2. Square-wave case: gNa = 1200mS cm−2, ḡCa,T = 10.mS cm−2,

ḡCa,S = 8.mS cm−2, ḡA = 10mS cm−2, ḡK,DR = 120mS cm−2, ḡK,Ca = 50mS cm−2. Tapered

case: gNa = 1200mS cm−2, ḡCa,T = 1.mS cm−2, ḡCa,S = 40.mS cm−2, ḡA = 40mS cm−2,

ḡK,DR = 200mS cm−2, ḡK,Ca = 200mS cm−2.

Figure 5A,B are generated using the same STG model as Figure 1A. The bifurcation

diagrams are computed by setting the calcium-activated potassium channel activation variable

as the bifurcation parameter, and all other ultraslow variables at constant values (hCa,T =

hCa,S = 0.15, hA = 0.05). Bifurcation diagrams of Figure 5A are computed using the original

STG model in spiking and bursting modes. Bifurcation diagrams of Figure 5B are computed

using the STG model in bursting mode for different values of the calcium channel activation

time constant. Figure 5C is computed by simulating the STG model (left) and CA1 model

(right) in bursting mode configuration for different values of the membrane capacitance (Cm =

1µF/cm2 corresponds to the original value in both cases). Figure 5D is computed by simulating

the CA1 mode in bursting mode configuration and after changes in various model parameters

as indicated in the figure. The bifurcation diagrams are computed for the original model and
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after an increase (top right) or a decrease (bottom right) in membrane capacitance.

Figure 6A top is generated using the STG model described in [Liu et al., 1998]. Briefly,

the model is composed of a leak current Ileak, a transient sodium current INa, a T-type

calcium current ICa,T , a S-type calcium current ICa,S , a delayed rectifier potassium current

IK,DR, a transient potassium current IA, a calcium activated potassium current IK,Ca, and

hyperpolarization-activated cyclic nucleotide-gated IH current. Parameters used in the sim-

ulations are as follow. Tonic firing: C = 1µF · cm−2, VNa = 50mV , VK = −80mV , VCa =

80mV , Vleak = −50mV , ḡleak = 0.01mS cm−2, ḡNa = 800mS cm−2, ḡCa,T = 1mS cm−2,

ḡCa,S = 1mS cm−2, ḡA = 50mS cm−2, ḡK,DR = 90mS cm−2, ḡK,Ca = 60mS cm−2, ḡH =

0.1mS cm−2. Bursting: same parameters as tonic except ḡCa,T = 4mS cm−2, ḡCa,S =

8mS cm−2. Voltage steps in the voltage clamp experiments are from −44mV to −42mV .

Figure 6A bottom is generated using the same STG model as Figure 1A. Parameters used

in the simulations are as in 1A except ḡNa = 800mS cm−2, ḡCa,T = 10mS cm−2, ḡCa,S =

8mS cm−2, ḡA = 10mS cm−2, ḡK,DR = 120mS cm−2, ḡK,Ca = 50mS cm−2 (tonic mode) or

ḡNa = 800mS cm−2, ḡCa,T = 1mS cm−2, ḡCa,S = 1mS cm−2, ḡA = 10mS cm−2, ḡK,DR =

120mS cm−2, ḡK,Ca = 50mS cm−2 (bursting mode). Voltage steps in the voltage clamp

experiments are from −44mV to −42mV .

Figure 6B bottom is generated using the Plant R15 aplysia model as described in [Rinzel and Lee, 1987].

Briefly, the model is composed of a leak current Ileak, a transient sodium current INa, a per-

sistent calcium current ICa, a delayed rectifier potassium current IK,DR, a calcium activated

potassium current IK,Ca. Parameters used in the simulation are as follows. C = 0.8µF ·cm−2,

VNa = 30mV , VK = −75mV , VCa = 140mV , Vleak = −40mV , ḡleak = 0.003mS cm−2,

ḡNa = 4mS cm−2, ḡK,DR = 4mS cm−2, ḡCa = 0.006mS cm−2, ḡK,Ca = 0.04mS cm−2. Volt-

age steps in the voltage clamp experiments are from −80mV to −40mV . Figure 6B top is

generated using the same model and parameters as Figure 6B bottom, except that the calcium

current activation is 100 times faster.
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Results

A transient signature of robust and tunable bursting

Figure 1A uses the computational model of [Goldman et al., 2001] to illustrate a classical

physiological transition from tonic firing to bursting. The model includes seven voltage-

and time-dependent conductances as well as a leak conductance (see Methods). The

modulation from tonic firing to bursting is obtained by varying the balance of calcium

and A-type potassium voltage-gated currents. This modulation defines modulatory

paths in the parameter space of the two maximal conductances ḡCa and ḡA (Path a-b

in Figure 1A ). The same plane contains degeneracy paths where modulation of the

maximal conductances results in almost no change in the resulting neuronal activity

(Path c-d in Figure 1A ). The coexistence of degeneracy and modulatory paths has been

shown to be critical for robust neuromodulation [Marder et al., 2014]. A computational

model that reproduces such features does not only exhibit a bursting trace for a well

chosen set of conductance parameters. In addition, the bursting rhythm is robust and

tunable in the parameter space of maximal conductances.

Figure 1B highlights that this tunability property is completely lost by changing a

single parameter in the model, namely, the time constant of activation of the calcium

channels. Before interpreting this result, we stress that the modeling difference between

Figure 1A and Figure 1B is purely dynamical in nature: it does not affect the static

behavior of the model, that is, the model equations at equilibrium. This means in

particular an identical balance of ionic currents at equilibrium and an identical I-V

curve.

To unfold the transient mechanism responsible for the structural change between

Figure 1A and Figure 1B, we mimick the classical voltage-clamp experiment of elec-

trophysiology: we clamp the voltage at a constant value close to threshold potential
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Figure 1: A. The slow transient in a voltage clamp experiment near threshold is a reliable signature to
discriminate between bursting and tonic firing. Left panel: parameter chart of burstiness as a function
of the parameters gA and gCa in the STG model [Goldman et al., 2001]. Burstiness was computed as
described in the Method Section. Right panel: voltage clamp experiment close to threshold potential
in tonic mode (a) and bursting mode (b). Voltage steps are from −40mV to −39mV . The slow
transient of the current response to a voltage step is increasing in spiking mode (a signature of slow
positive conductance) and decreasing in bursting mode (a signature of slow negative conductance).
The signature is modulated along a modulation path (a-b) and conserved along a degeneracy path
(c-d, not shown) in the parameter space of maximal conductances. B. Effects of decreasing calcium
current activation time constant on the parameter chart and the voltage clamp experiment in A. The
decreasing phase of the slow transient vanishes as calcium activation kinetics, the only source of slow
negative conductance in the model, varies from slow to fast. In the parameter charts, reduction of the
calcium activation time constants shrinks the parameter region where the model can be modulated. In
the limit of instantaneous activation, the model has lost its modulation properties and in particular the
transition from tonic firing to bursting.
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(Vth ∼ −40mV in this model) and apply a small voltage step perturbation ∆Vm at time

t = 0. The current step response ∆Im(t) provides us with the temporal evolution of the

local conductance ∆Im(t)/∆Vm of the model around the threshold potential. This total

conductance is the aggregate conductance resulting from all the ionic current variations

at a given time and around a given voltage.

In Figure 1A, we see that the transient behavior of the local conductance is markedly

different in the spiking configuration (a) and in the bursting configuration (b). In

the spiking configuration, the current step response carries the usual signature of an

excitable circuit: an initial phase characterised by a fast inverse response, followed by

a slow monotone convergence to equilibrium. In the bursting configuration, the current

response exhibits an additional slow inverse response, distinct from the initial fast inverse

response. If we decompose the current response into fast, slow, and ultraslow transient

phases, it is the slow transient that discriminates bursting from spiking.

In Figure 1B, the distinct slow transient signature of bursting is progressively lost

as the time constant of calcium activation is decreased. This is because the two distinct

inverse responses progressively merge. In the limiting case of an instantaneous calcium

activation, they simply add up in the fast time scale. This phenomenon is easy to

explain in the computational model used in Figure 1: the first (fast) inverse response of

the current results from the fast activation of sodium channels whereas the second (slow)

inverse response results from the slow activation of calcium channels. The two successive

inverse responses are distinct in the voltage clamp experiment of Figure 1A because the

time scales of the calcium channel activations are significantly slower than the time

scale of the sodium channel activation [Kostyuk et al., 1977], [Hille, 2001, p.127]. In

contrast, the two successive inverse responses merge in Figure 1B because the time scale

of calcium channel activation merges with the time scale of sodium channel activation.
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A robust and tunable bursting model must include a source of

slow negative conductance

In the seminal work of Hodgkin and Huxley, the voltage clamp experiment described

in the previous section was applied to the squid giant axon and served as a foundation

to model the voltage dependence and the dynamics of ionic conductances. The early

inverse current response was attributed to a fast negative conductance modeled by the

fast activation of an inward (sodium) current. Likewise, the late monotone convergence

was attributed to a slow positive conductance modeled both by the slow inactivation of

sodium channels and the slow activation of an outward (potassium) current.

We proceed in the same manner to explain the slow transient signature of a burst-

ing neuron: it requires a voltage-gated current providing a slow negative conductance,

distinct from the fast negative conductance. A negative conductance is provided by the

activation of an inward current or the inactivation of an outward current. It is slow

if the corresponding channel kinetics is distinctively slower than the fast activation of

sodium channels and distinctively faster than adaptation current kinetics. Typical slow

conductance time constants are in the range 5 − 20 ms. Physiological contributors of

such currents include the whole family of calcium currents with slow activation as well

as resurgent sodium channels [Swensen and Bean, 2003]. They also include any outward

current that inactivates slowly, such as some potassium channels [Storm, 1990]. Such

channels have been named slow regenerative in the paper [Franci et al., 2013].

Our computational experiment suggests that a robust and tunable bursting neuronal

model must include a source of slow negative conductance. For a conductance-based

model, this means that the gated ionic currents must include at least one type of slow

regenerative channel. In the simulated STG model, only calcium currents contribute

to the slow negative conductance. They do so because their activation is slow. The

modulation path in Figure 1A amplifies the slow negative conductance of the total
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current from (a) to (b) by modulating the balance between slow regenerative (calcium)

channels and slow restorative (potassium) channels. In Figure 1B, this modulation

property is lost because the calcium channels become fast regenerative. Modulation

of the total conductance in the slow time scale from positive to negative is no longer

possible because the model has lost its only source of slow regenerative channels.

In a conductance-based model, modulation of the total slow negative conductance is

possible only in the presence of slow regenerative channels. The voltage-clamp experi-

ment in the previous section is a general method to assess the negative slow conductance

of a circuit, irrespective of the modeling details of the model. The reader is referred to

the recent paper [Drion et al., 2015] for a method that quantitatively assesses the slow

negative conductance (or any other conductance) of an arbitrary one-port circuit at a

given voltage, either computationally or experimentally.

Robust versus fragile bursting

The absence of slow negative conductance has a dramatic consequence on the robustness

of the bursting model to parameter perturbations. Figure 2 illustrates the striking

contrast between the fragility of models that lack slow negative conductance and the

robustness of models that include slow negative conductance. The chosen perturbation

is a uniform scaling of all maximal conductance parameters, which is mathematically

equivalent to a scaling of the membrane capacitance.

The STG [Goldman et al., 2001] and the R15 [Rinzel and Lee, 1987] models are

two classical bursting models of the literature that are robust to the perturbation.

Both include slow regenerative channels by modeling calcium channels that activate

slowly. The three models pβC [Chay and Keizer, 1983], TC [Wang, 1994], and CA1

[Golomb et al., 2006] are three published models that are fragile to the perturbation.

Small deviations from the nominal parameter set produce large variations in different
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Figure 2: Bursting models that lack currents providing slow negative conductance are fragile: tiny
parameter variations disrupt the nominal rhythm. Green models (STG and R15) do include slow
regenerative channels providing slow negative conductance. Red models (pβC, TC, and CA1) lack slow
negative conductance. Top panels: only the bursting traces of green models are robust to a uniform
scale of the maximal conductance vector (ḡ 7→ 0.8ḡ or ḡ 7→ 1.2ḡ). The red model CA1 is turned into
the robust green model CA1+ by making the calcium activation slow. See Methods for details. Bottom
panels: random uniform scaling of the vector of maximal conductances induce large variability in the
rhythm properties only in models lacking slow negative conductance. The scatter plots are obtained
by scaling the maximal condutance vector ḡ by a uniformly distributed random number in the range
[0.8, 1.2]. Variability plots are absolute for the mean spike height (left) and logarithmic for the burst

period (center) and number of spikes per burst (right): (spike height)
(spike height)nominal

, log
(

(burst period)
(burst period)nominal

)
,

log
(

(spikes-per-burst)
(spikes-per-burst)nominal

)
.
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properties of the rhythm. The three models lack any source of slow negative conduc-

tance. They all include calcium channels or other regenerative channels but assume an

instantaneous activation, making them fast regenerative instead of slow regenerative.

The model CA1+ is a modification of the published CA1 model. In the modified

model, the activation of persistent sodium channels was modified from fast to slow,

making the persistent sodium channels slow regenerative instead of fast regenerative (see

Methods for details). This only modification was sufficient to recover the robustness of

models that have a slow negative conductance.

Tunable versus rigid bursting

Bursting models that include a slow negative conductance are not only robust, but they

are robustly tunable. This means that the shape of the bursting trace can be tightly

controlled by modulating maximal conductance values (i.e. channel densities). Figure

3 illustrates those modulation properties with the same published STG model as in the

previous sections. Figure 3A illustrates the modulation of bursting quality: the intra-

burst frequency and plateau properties are continuously modulated while maintaining

other features of the burst unaffected, such as the interburst frequency or the mean

voltage during resting and spiking phases. Figure 3B illustrates the modulation of the

bursting shape, while maintaining the mean intraburst and interburst frequencies. The

continuous modulation recovers three distinct types of bursting usually referred to as

“square-wave”, “parabolic”, and “tapered”.

The modulation properties illustrated in Figure 3 do not result from a systematic ex-

ploration of the parameter space, a task already formidable for the chosen STG model

[Prinz et al., 2003]. Instead, they only rely on modulating the ratio of the maximal

values of the total slow negative conductance and of the total ultra-slow positive con-

ductance following the methodology of dynamic input conductances [Drion et al., 2015].
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Spike hyperpolarization
Burst hyperpolarization
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Figure 3: Bursting models that include currents providing slow negative conductance are tunable. A.
The bursting quality (intraburst frequency, plateau or non-plateau) can continuously be modulated via
changes in ion channel densities independently of the bursting rhythm (interburst frequency). B. The
bursting shape can be continuously modulated via changes in ion channel densities while maintaining
both intraburst and interburst frequencies (IBF = intraburst frequency). See methods for the used
parameter values.
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Shaping the dynamic conductances relatively to each other is easy and intuitive because

the tuning parameters are few and directly map to the bursting behavior. This qual-

itative tuning is then easily translated into physiologically plausible modulations. For

instance, modulation of the slow negative conductance relative to the ultraslow positive

conductance in Figure 3 was achieved by modifying only the five following maximal

conductances: ḡCa,T , ḡCa,S, ḡA, ḡKd, ḡKCa. In each case, the modulation is robust, that

is, not sensitive to small parameter variations in the large-dimensional space of the

conductance-based model parameters.

The robust modulation illustrated in Figure 3 is in sharp contrast with the rigidity of

bursting models that lack a source of slow negative conductance. The nominal bursting

trace of the three models pβC, TC, and CA1 in Figure 2 is rigid because the relationship

between intraburst and interburst frequencies as well as the relationship between the

mean voltage of the resting and spiking modes is extremely constrained. The resulting

burst is not only fragile; it is also rigid, making it difficult to modulate the burstiness

or the bursting type as in Figure 3. The geometric analysis in the next section provides

additional insight to those limitations.

Connection with phase portrait and bifurcation analysis

The critical role of the slow negative conductance for modulation and robustness will now

be examined in the light of geometric analysis. We rely on the common simplification

that a three time-scale bursting attractor can be analyzed via the bifurcation diagram of

a two time-scale phase portrait. The variables of the phase portrait are the fast voltage

and a slow variable aggregating all the slow variables. The bifurcation parameter is a

representative ultraslow variable. Bursting is modeled as ultraslow adaptation of the

bifurcation parameter across a parameter range where a stable fixed point (the resting

state) and a stable limit cycle (the spiking state) coexist in the phase portraits.
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The role of the slow negative conductance has been previously analyzed in fast-slow

phase portraits (see [Drion et al., 2012],[Franci et al., 2012],[Franci et al., 2013]) and in

mathematical three-time scale models of bursting [Franci et al., 2014]. The results of

this qualitative analysis are summarized in Figure 4. The reduced phase portraits are

called regenerative when they include a slow negative conductance and restorative other-

wise. Figure 4A shows that the two types of phase portrait are qualitatively different. In

restorative phase portraits, the V -nullcline has the classical N -shape of spiking neuronal

models (red). In regenerative phase portraits, this shape is mirrored (green). The reader

is referred to [Drion et al., 2012],[Franci et al., 2012],[Franci et al., 2013] for a detailed

analysis of why the mirrored V -nullcline requires a slow negative conductance. Both

restorative and regenerative phase portraits exhibit bistability between a fixed point and

a limit cycle and both phase portraits rely on the same bifurcations: they are of the same

saddle-node/saddle homoclinic type according to the classification of [Izhikevich, 2007,

Figure 9.24]. However, the difference in their V -nullclines strongly affects the robustness

and the tunability of the bistable attractor. In the regenerative phase portrait (green),

the stable manifold of the saddle point (dark green) is a separatrix that sharply divides

the phase portrait into two distinct regions, each of which corresponds to the basin of

attraction of one of the two attractors: the stable fixed point and the stable limit cycle.

The two stable attractors can be shaped independently from each other by deforming

the nullclines away from the separatrix and modulating the ratio of the fast and slow

time scales. Robust bistability is maintained across a broad range of variations (Figure

4A, top right). In sharp contrast, the bistability of a restorative phase portrait (green)

requires both a specific intersection of the nullclines and a specific ratio between the

fast and slow time scales. The bistability is fragile to any perturbation of this specific

tuning (Figure 4A, bottom right). As a result, the bifurcation diagram associated to

bursting only exists in a narrow parameter range.
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19



Figure 4B illustrates how the geometry of the bistable phase portrait impacts not

only the robustness but also the tunability of the bursting attractor. The resting and

spiking attractors can be shaped independently in a regenerative phase portrait because

deforming the V -nullcline near the fixed point does not affect the limit cycle and vice

versa. As a result, the values of the membrane potential at rest and in spiking mode

can be tuned independently, leading to the generation of both non plateau bursting and

plateau (or square-wave) bursting depending on the maximal conductance parameter

set (Figure 4B, left). This flexibility does not exist in restorative phase portraits. In

particular, the resting state is always more hyperpolarized than the spiking state, forcing

a bursting trace of the square-wave type (Figure 4B, right).

The qualitative analysis above is based on a low-dimensional mathematical model but

the conclusions persist in higher-dimensional computational models. Figure 5 illustrates

the various bifurcation diagrams associated to the numerical observations in the previous

sections.

Fig 5A illustrates how the modulation from tonic spiking to bursting in Figure 1A

affects the corresponding bifurcation diagrams. For the tonic spiking mode (point (a) in

Figure 1A), the bifurcation diagram is the bifurcation diagram of a spiking model: the

equilibrium curve is monotone, and there is no bistable range. For the bursting mode

(point (b) in Figure 1A), the diagram instead exhibits the bistable range of a robust

saddle-homoclinic burster consistent with the regenerative phase portraits of Figure 4A.

As illustrated in Figure 5B, the bistable range of the burster is progressively lost when

the slow conductance becomes fast. Here the bistability is lost not because of a defor-

mation of the equilibrium curve (consistent with the fact that the static properties of

the model are unchanged) but because the two bifurcations that determine the param-

eter range of bistability (saddle-node and saddle-homoclinic) progressively merge to a

saddle-node homoclinic (SNH) bifurcation. Near the SNH bifurcation, the fragility of
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the bistable range is consistent with the fragility of restorative phase portraits of Figure

4A.

The impact of the bistable parameter range on the fragility of bursting is further

illustrated in Figure 5C, where we reexamine the robustness of bursting models to a

perturbation of the membrane capacitance (see Figure 2). This perturbation affects the

time-scale separation between the fast and slow variables of reduced phase portraits.

Bursting in the STG model is robust to this perturbation as far as the capacitance

is low enough to allow for spike generation, consistently with the regenerative phase

portraits of Figure 4A. The time-scale separation between fast and slow variables can

be increased at will without destroying the bistable bifurcation parameter range that is

essential to bursting (Figure 5C, left). In sharp contrast, bursting in the CA1 model

is fragile to the same perturbation, consistently with the restorative phase portraits

of Figure 4A. The bistable parameter range quickly disappears, perturbing the SN-SH

bifurcation diagram of a bursting attractor into one of two possible scenarios: either the

SNIC bifurcation diagram of a slow spiker (smaller values of membrane capacitance)

or the SN-SN bifurcation diagram of a slow rhythm that switches between a low and

high resting states (larger values of membrane capacitance) (Figure 5C, right). In the

case where the capacitance is low enough to allow for spike generation, the robust firing

pattern of the CA1 model is a slow spiking pattern, not a bursting one.

Finally, Figure 5D illustrates that this fragility is generic and not specific to a partic-

ular parameter. The robustness of the nominal CA1 bursting model was tested against

five different parameter perturbations. In each case, the perturbation is well in the

range of physiological variability and it produces the same alteration of the bifurcation

diagram (the effect of a 5 mV change in the potassium reversal potential is particularly

striking). The bursting attractor is fragile, in the sense that small parameter variations

disrupt the rhythm of the nominal model. It is also rigid, in the sense that different
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parameter variations always disrupt the rhythm in the same way (i.e. deform the bifur-

cation diagram in the same way), disrupting either the fast or the slow oscillation of the

bursting rhythm.

Discussion

A transient signature characterizes the transition from spiking

to bursting

The computational experiments in this paper suggest the critical role of the slow conduc-

tance in a robust and tunable bursting model. The classical voltage clamp experiment of

electrophysiology near threshold provides a clear signature that the sign of this conduc-

tance is modulated during a continuous modulation from spiking to bursting. We now

discuss several reasons why the role of the slow negative conductance is often overlooked

both in experimental and modeling studies.

The specific signature of a slow negative conductance has been reported experimen-

tally, at least in two published papers: [Rodriguez et al., 2013, Figures 3 and 5] use

this signature to assess the modulatory effects of the peptide CabPK in regulating a

cellular and circuit bursting rhythm and [Swensen and Bean, 2005, Figure 11] uses the

same signature to assess the cooperation of calcium currents and persistent sodium

currents in Purkinje cell burst excitability. One important reason why this signature

is not more prevalent in experimental studies is that most voltage-clamp experiments

nowadays study the current response to a quasi-static voltage ramp rather than a volt-

age step. There are several reasons to prefer a ramp to a step in an experimental

setup. For instance, a single ramp input experiment might be sufficient to extract the

entire static I-V curve. Unfortunately, a ramp input will mask the transient signa-

ture reported in this paper. The voltage-clamp experiments in [Rodriguez et al., 2013,
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Swensen and Bean, 2005] are rare instances of step input experiments.

More generally, it is the transient nature of the slow conductance that makes it dif-

ficult to assess from the stationary indicators traditionally associated to experimental

investigations of bursting. Most importantly, such indicators include the monotonicity of

the I-V curve [Wilson and Wachtel, 1974], [Chen and Tsai, 2000], [Butera et al., 2005],

[Lewis et al., 1984] or the analysis of slow oscillatory potentials (SOPs) [Amini et al., 1999],

[Canavier et al., 2007], [Zhang and Lewis, 2013], [Wang and Rinzel, 1992], [Wang and Rinzel, 1993],

[Skinner et al., 1994]. Figure 6A contrasts the dynamical voltage clamp signature with

the monotonicity properties of the static I-V curve. It provides four model conditions

for which the electrophysiological distinction between tonic firing and bursting is un-

ambiguously predicted by the slow transient voltage clamp signature but not by the

I − V curve. This is because the I-V curve only depends on the stationary value of

a voltage-clamp experiment, but not on the transient current response. By definition,

the slope of the I-V curve at a given voltage is the local conductance of the model at

steady-state: for a step of small amplitude, this corresponds to the asymptotic value

for large t of the ratio ∆Im(t)/∆Vm. A negative conductance in the I-V curve is thus

synonym of an inverse steady-state response in the voltage clamp experiment. The slow

transient of the voltage clamp is a transient feature that cannot be inferred from the

steady-state response of the voltage clamp.

Bursting and its modulation are also often studied experimentally through slow os-

cillatory potentials (SOPs) observed in the absence of spikes (by blocking sodium chan-

nels). But a slow oscillation is not a reliable signature of bursting per se either. Fig 6B

illustrates that a slow oscillation does not necessarily discriminate between tonic firing

and bursting because either a fast or a slow current can be responsible for the regen-

erative upstroke of the slow oscillation. Fast or instantaneous activation of a calcium

channel as in Figure 1B will generate neither the slow transient voltage clamp signature
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nor bursting. But it provides a steady-state inward current that can be sufficient to

destabilize the resting potential and generate a slow oscillatory potential in the absence

of sodium channels. Once again, the dynamic role of a given current cannot be inferred

from its static properties.

The negative slow conductance is also often overlooked in modeling and compu-

tational studies. Its role can only be captured in models that respect the time scale

separation between fast and slow regenerative channels. This time scale separation is

well acknowledged in the ion channel literature. For instance, activation and inactiva-

tion of calcium channels is often described as similar to activation and inactivation of

sodium channels, but up to fifty times slower for some of them [Kostyuk et al., 1977],

[Hille, 2001, p.127]. But it is often neglected in mathematical and computational mod-

eling. For instance, Figure 5.6 in the textbook [Izhikevich, 2007] refers to both sodium

and calcium activation as fast. The section on calcium channels in the recent textbook

[Ermentrout and Terman, 2010] also suggests that calcium and sodium channels have

similar dynamics. In computational modeling, it is widespread practice to set both

the calcium and sodium activation to steady-state when reducing the complexity of a

model. See Table 1 for a list of important papers that make that assumption. All

those references suggest that the role of slow negative conductances in robustness and

neuromodulation is underappreciated.

Classification versus modulation of bursting models

Mathematical models of bursting often omit the slow negative conductance because

they only include the minimal number of currents that is necessary to bursting. The

rationale is simple: a spiking model only requires two distinct currents to model the

fast negative and the slow positive conductances. In such a model, the modulation

from rest to spike is achieved by modulating the constant applied current. A third
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Reference Slow regenerative gating variable set to steady state
[Terman et al., 2002] Activation of T-type and high-threshold Ca2+ channels

[Rubin and Terman, 2004] Activation of T-type Ca2+ channels
[Butera et al., 1999a] Activation of persistent Na+ channels
[Butera et al., 1999b] Activation of persistent Na+ channels

[Pospischil et al., 2008] Activation of T-type Ca2+ channels
[Rush and Rinzel, 1994] Activation of T-type Ca2+ channels

[Smith et al., 2000] Activation of T-type Ca2+ channels
[Kubota and Rubin, 2011] Activation of T-type and high-threshold Ca2+ channels

[Golomb and Amitai, 1997] Activation of persistent Na+ channels
[Wang, 1994] Activation of T-type Ca2+ channels

[Golomb et al., 2006] Activation of persistent Na+ channels

Table 1: List of published models lacking a slow negative conductance because the activation of slow
regenerative channels is set to steady-sate.

current is then enough to model the additional ultraslow positive conductance that

converts the spiker into a burster. In this approach, bursting is seen as the result of

ultraslow adaptation between resting and spiking. This minimal motif only requires

three distinct ionic currents and is at the core of textbook expositions of bursting such

as Chapter 9 in [Keener and Sneyd, 2009], Chapter 9 in [Izhikevich, 2007], and Chapter

5 in [Ermentrout and Terman, 2010]. It was originally proposed in the work of Chay and

Keyzer [Chay and Keizer, 1983] on secretory (pancreatic) cells. None of those models

include slow regenerative channels, meaning that none of those models includes a source

of slow negative conductance. The fact that a minimal model of bursting does not require

a slow negative conductance probably reinforces the common practice of considering

instantaneous calcium activations in computational models.

If minimal models of the literature show that a slow negative conductance is not

necessary to bursting, our results suggest that bursting models that lack a slow neg-

ative conductance are necessarily fragile and rigid. Robustness and tunability are not

addressed in mathematical textbooks, which focus on classification rather than modula-

tion. Starting with the seminal work of Rinzel [Rinzel, 1985, Rinzel, 1987], the mathe-

matical theory of bursting has relied on a classification based on the possible bifurcations
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that can govern the transition between rest and spike. The recent work of Izhikevich

[Izhikevich, 2007, page 376] provides up to sixteen different such mechanisms.

Our results show that robustness and tunability are properties that are distinct from

a mathematical classification based on bifurcations. For instance, Figure 4 illustrates

that a saddle-node / saddle-homoclinic burster can be fragile or robust. And it also il-

lustrates that a burster can be continuously modulated between different shapes without

affecting the two bifurcations that determine its mathematical class.

The feedback motif of robust and tunable bursting

Our analysis of bursting modulation in terms of conductances in different time scales and

different voltage ranges has a more general interpretation in terms of distinct feedback

loops. When a current source has a positive conductance, it provides negative feedback

to the circuit because it counteracts variations of the membrane potential. When it has

a negative conductance, it provides positive feedback to the circuit because it amplifies

variations of the membrane potential. With this terminology, the main message of this

paper is that a minimal motif of bursting is a three feedback motif whereas a four

feedback motif is required for robust modulation. The fundamental role of the slow

negative conductance is interpreted as the fundamental role of a slow positive feedback.

It is common to associate excitability to a two feedback motif : a fast positive

feedback for the spike upstroke and a slow negative feedback for the refractory period.

The minimal motif of bursting only adds a third ultraslow negative feedback for the

ultraslow adaptation between rest and spike. Instead, our results highlight that bursting

is modulated by a balance of negative and positive feedbacks in the slow time scale.

The interpretation of the results in terms of feedback loops links our results to similar

findings in other areas of systems biology, see e.g. [Tsai et al., 2008]. Positive feedback

loops are the essence of switches and thresholds. Our emphasis on distinct sources
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of fast and slow positive feedbacks has therefore the interpretation of the necessity of

two rather than one thresholds for the robustness and modulation of bursting. Each

threshold accounts for two discrete states of the circuit. An excitable circuit relies on

one threshold, which separates two discrete states: rest and spike. Our results suggest

that a tunable bursting circuit relies on both a fast and a slow thresholds. The two

thresholds determine four discrete states: rest, tonic spiking, slow spiking, and bursting.

In the absence of a slow negative conductance, the circuit has only one source of positive

feedback, leading to a single threshold that makes the distinction between spiking and

bursting fragile and rigid. The distinction between one and two thresholds also has a

clear interpretation on the phase portraits of Figure 4 . The thresholds correspond to

points of ultrasensitivity where small perturbations of the initial condition leads to large

differences in the resulting trajectory. Regenerative phase portraits have distinct fast

and slow thresholds. In contrast, restorative phase portraits have only one threshold,

that requires a specific ratio between the fast and slow time scales.

We stress that the distinction between four distinct feedback loops of a bursting motif

do not necessarily match the physiological distinction between four distinct ionic cur-

rents. For instance, sodium channels usually provide a source of fast positive feedback

through their activation and a source of slow negative feedback through their inacti-

vation. More generally, a same current can contribute to several of the four feedback

loops [Franci et al., 2013, Drion et al., 2015]. But a particular modulation scenario will

usually have a clear interpretation in terms of the four feedback loops. Central to this

paper, the modulation from spiking to bursting will inevitably involve a balance between

the slow positive feedback provided by slow regenerative channels and the slow negative

feedback provided by slow restorative channels. The paper [Drion et al., 2015] intro-

duces the concept of dynamic input conductances to map the modulation of feedback

loops to the modulation of conductance parameters in an arbitrary conductance-based
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model. What is central to the message of the present paper is that the slow positive

feedback is key to a feedback motif that robustly accounts for modulation from spiking

to bursting.

The essential role of the slow negative conductance is consistent

with singularity theory

The recent paper [Franci et al., 2014] uses singularity theory [Golubitsky and Schaeffer, 1985]

to propose a mathematical analysis of modulation in bursting models. It shows that

conductance-based models that have tunable bursting capabilities have a normal form

organised by a codimension three winged-cusp singularity. All the attractors that can

be generated in the vicinity of this singularity can be described in a four dimensional

parameter space : three unfolding parameters and the bifurcation parameter. Those

abstract parameters aggregate all possible behaviors of the original model, regardless

of the number of physiological parameters. They define the parameters that suffice to

shape the attractors of the model.

It is a remarkable mathematical prediction from singularity theory that the four

shaping parameters match the gains of the four feedback loops, or equivalently, the four

distinct conductances discussed in the present paper. In particular, the bifurcation pa-

rameter of the model [Franci et al., 2014] precisely has the interpretation of the balance

between positive and negative feedback in the slow time scale. It is this parameter that

governs the transition from spiking to bursting in the normal form. Singularity theory

therefore identifies this one parameter as the fundamental tuning parameter of a tunable

burster. This mathematical prediction was verified in six different published models of

the literature [Franci et al., 2013]. A key message of the present paper is that this pa-

rameter cannot be tuned in a model that lacks currents with slow negative conductance.

Modelling bursting without a slow negative conductance necessarily leads to models
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with less unfolding parameters than the codimension of its organizing center, a typical

ground for caution in singularity theory [Golubitsky and Schaeffer, 1985, Section IV.1].
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