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ABSTRACT

MicroRNAs are important genetic regulators in both
animals and plants. They have a range of func-
tions spanning development, differentiation, growth,
metabolism and disease. The advent of next-
generation sequencing technologies has made it
a relatively straightforward task to detect these
molecules and their relative expression via sequenc-
ing. There are a large number of published stud-
ies with deposited datasets. However, there are cur-
rently few resources that capitalize on these data
to better understand the features, distribution and
biogenesis of miRNAs. Herein, we focus on Human
and Mouse for which the majority of data are avail-
able. We reanalyse sequencing data from 461 sam-
ples into a coordinated catalog of microRNA expres-
sion. We use this to perform large-scale analyses of
miRNA function and biogenesis. These analyses in-
clude global expression comparison, co-expression
of miRNA clusters and the prediction of miRNA
strand-specificity and underlying constraints. Addi-
tionally, we report for the first time a global analysis
of miRNA epi-transcriptomic modifications and as-
sess their prevalence across tissues, samples and
families. Finally, we report a list of potentially mis-
annotated miRNAs in miRBase based on their aggre-
gated modification profiles. The results have been
collated into a comprehensive online repository of
miRNA expression and features such as modifica-
tions and RNA editing events, which is available
at: http://wwwdev.ebi.ac.uk/enright-dev/miratlas. We
believe these findings will further contribute to our
understanding of miRNA function in animals and
benefit the miRNA community in general.

INTRODUCTION

Non-coding regulators such as miRNAs have been a sig-
nificant avenue of research since their discovery and the re-
alization that these molecules are both widespread in ani-

mals and plants and also frequently highly conserved. The
main mode of regulation by miRNAs in animals is trans-
lational repression and degradation of target transcripts
(1). This regulation involves the binding of a mature 19—
22 nt miRNA to a target transcript through direct forma-
tion of a double stranded duplex driven by complementar-
ity between the miRNA and the target site (2). This bind-
ing event is initiated through the so-called ‘seed’ region of
the miRNA (nts 2-8) which requires for the most part per-
fect complementarity. The biogenesis of miRNAs is now
relatively well characterized (3). They are encoded by long
non-coding transcripts or as passengers in the introns and
UTRs of protein-coding transcripts. They are formed as 70—
120 nt stem-loop structures on the host molecule and are
recognized and excised by enzymes including Drosha and
DGCRS. The resulting cleaved hairpin molecule is referred
to as a miRNA precursor and these pre-miRNAs are ex-
ported from the nucleus to the cytoplasm where they en-
ter the RNA silencing machinery. The enzyme Dicer with
cofactors excises a double-stranded duplex from the pre-
miRNA which is unwound. In general one of the strands
is degraded (the passenger strand) and the other strand be-
comes a mature single-stranded miRNA capable of being
loaded into the RNA-induced silencing complex (RISC)
and capable of silencing target transcripts.

Large-scale cloning and sequencing of small RNAs using
capillary sequencing allowed the initial detection of large
sets of animal miRNAs (4). However, the advent of next-
generation sequencing (NGS) allowed these molecules to
be rapidly detected in different tissues and organisms. The
primary repository for miRNAs is the miRBase database
(5). Initially, miRNAs were usually confirmed by northern
blot or similar assay prior to their inclusion in miR Base.
However, the advent of large-scale NGS studies has meant
that it is impractical to confirm every single sequence de-
tected via targeted amplification. Given that the genome is
replete with putative stem-loop structures and that small
RNA sequencing detects many short molecules and degra-
dation products, there are many putative miR NA sequences
in miRBase which may in fact not be canonical miRNAs
but instead may be other functional ncRNAs or the degra-
dation products of longer molecules.
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While NGS has greatly increased our power to detect
and catalog miRNA expression these data are usually com-
plex and are processed differently from laboratory to labo-
ratory. Hence, while there are currently over 850 deposited
small RNA sequencing datasets (ENA, GEO (6)) there isn’t
a comprehensive database or catalog of where and when
these miRNAs have been detected. Additionally as each
experiment has been processed with different criteria and
filters the results may be difficult or impractical to com-
pare directly. We sought to address these issues by building
a comprehensive catalog of miRNA expression from large
numbers of previously published small RNA sequencing
datasets for both Human and Mouse, for which raw FASTQ
data are available. For each dataset we have performed auto-
mated barcode demultiplexing, 5'/3’ adapter detection us-
ing de Bruijn graph analysis followed by adapter excision
and computational size selection (15-32 nts). Addition-
ally, some samples require the removal of poly-A or poly-
C tracts. This data pre-processing step has been performed
by a pipeline which was based on the already published
pipelines Kraken (7) and Chimira (8). Each dataset has
been mapped to known miRNA precursor sequences us-
ing a single computational pipeline (Chimira). This pipeline
not only represents a cohesive platform for the collation and
analysis of small RNA NGS data but also allows the detec-
tion of events such as 5'/3’ modification of miRNAs via en-
zymes such as terminal uridylyl transferases (tutase) (9) or
adenosine deaminase RNA (ADAR) editing (10). The raw
count data obtained was normalized and annotated accord-
ing to each experiment, providing a comprehensive catalog
of miRNA expression in Human and Mouse together with
a variety of complementary data that can assist us in the
analysis of miRNA function and biogenesis.

Using this comprehensive dataset we have performed the
largest analysis to-date on miRNA expression, expression
of miRNA clusters and the prevalence of miRNA modifi-
cations. Additionally, we provide a database of miRNA ex-
pression and modifications for Human and Mouse accom-
panied with tools for advanced query searches, that we be-
lieve will prove useful to the community.

MATERIALS AND METHODS
Dataset annotation

Annotation for the miratlas database has been generated
manually based on the information that is available in the
original databases for each dataset. The curated annota-
tion classes may refer to either a cell line/type/tissue (e.g.
liver) or a condition/disease (e.g. cancer). In case both a cell
line/type/tissue and a condition/disease are provided for a
dataset, only the condition/disease information is used for
the annotation of that dataset. Additional information is
provided in the miratlas repository as well as the links to
the original resources.

Data normalization

Raw expression data and modification count tables have
been normalized using DESeq?2 (11). Each dataset was pro-
vided as a distinct condition at the design formula of the
DESeq2 normalization method.

Identification process for complex read geometry inference

Input datasets used for this analysis have been prepared,
in general, by different experimental protocols using a va-
riety of barcodes, 3’ adapters and/or 5 adapters. Thus,
it is imperative first of all to infer the read geometry of
each input dataset in order to later clean the sequences
from barcodes/adapters and further process the samples.
We have developed a pipeline that is deciphering the pres-
ence or not of barcode sequence in the input samples by
looking for the enrichment of any sequence of 3-6 nt long
at the 5" end of the first 2 million sequences of an input sam-
ple file. Inference of the 3" adapter is accomplished through
the command-line version of the 3’ adapter detection fea-
ture of Chimira (8), which integrates minion and swan (7).
In that case though, the position of the suggested adapter
relative to the input sequences is also defined and thus the
inferred adapter may either be a 5 or 3’ adapter. In case
the suggested adapter sequence does not match at least 90%
with a known Illumina adapter sequence (without any mis-
matches), input files are also manually checked in order
to identify any potential sequences that are attached to al-
ready known highly expressed miRNAs, such as the let-7
miRNAs. The full pipeline for the inference of barcode and
adapter sequences is described at the flowchart at Supple-
mentary Figure S1. Datasets from ENA/GEO that were de-
tected with ambiguous adapter sequences or barcode anno-
tation were excluded from the analysis. Eventually, we com-
piled a set of 52 datasets with a well characterized read ge-
ometry that we used for our analysis.

Adapter trimming

Following inference of the 3’ adapter sequence, trimming is
performed by Chimira or Sequencelmp (for the loci-specific
expression analysis) that both integrate the tool Reaper.

Genomic clusters definition

Genomic clusters are defined as follows (Supplementary
Figure S2B.a): let mir_I, mir 2 and mir_3 be three miRNA
genes in neighboring locations on the genome without any
other miRNA genes interfering at the genomic space be-
tween mir_l and mir_3. Then, mir_1, mir_2 belong to the
same genomic cluster (GC-1) if and only if: dj; < W. mir_3
also belongs to GC-1 if and only if dy3 < W (d;3 may be
greater than W but it will be less than or equal to 2W). Thus,
a genomic cluster may contain pairs of miRNAs whose dis-
tance is greater than W but for each miRNA there is at least
another miRNA in that cluster that is closer to it less than
W base pairs.

Functional clusters generation

We created a correlation matrix for the co-expression of
all miRNAs detected in this study. This matrix defines a
weighted graph and weights of its edges correspond to the
correlation of expression between two miRNAs. In order to
obtain the functional clusters, we clustered this graph using
MCL (12) setting the value of the filter threshold parameter
to 0.8.



Small RNA-Seq data processing

Chimira has been used in order to trim input sequences
from sequencing adapters, align them against the human
or mouse hairpin precursors and extract miRNA expres-
sion data and their associated modifications. In case of more
complex read geometry Sequencelmp has been used for
cleaning the input data before alignment. Besides, Sequen-
celmp (7) has been used in order to get miRNA expres-
sion data with loci-specific information at the genomic level
in order to correlate miRNA co-expression with genomic
proximity.

Modification analysis using collapsed patterns

Modification counts were extracted by Chimira. Default
output contains all identified modification patterns at the
3, 5 ends of miRNAs as well as internal modifications
(single-nucleotide polymorphisms, ADAR-edits) within the
miRNA sequences. Each pattern is associated with the ex-
act location of this modification relative to the original se-
quence. In order to study the expression and distribution
of very specific variants, i.e. adenylated, uridylated, guany-
lated and cytocylated, we have simplified Chimira’s output
for each dataset into collapsed modification tables. These
data format contains only miRNA variants with a single-
nt or poly-nt modification only, where nt = {A, U, G, C}
and poly-nt may refer to any sequence of two or more iden-
tical nucleotides. All other variants are ignored and their
counts are collapsed with the counts of the respective wild-
type miRNA forms.

Detection of Illumina sequencing biases patterns

We filtered the reads from 12 human samples sequenced by
[llumina, retaining only those that were at least 10 nt shorter
than the maximum length among all the reads, which is the
length that occurs more frequently among the reads of the
sample. This filtering process allows us to retain only the
reads that may correspond to 3’ exons of actual mRNA
transcripts. The filtered reads were then aligned against the
3’ human exons of the reference database we have con-
structed, allowing the identification of sequence artefacts
that are appended to the 3p end of the transcripts that prob-
ably represent sequencing artefacts (Supplementary Figure
S3E).

Strand selection analysis

Free energy calculations have been performed using the
RNAfold program from the RNASoft suite (13) and free-
energy parameters for predictions of RNA duplex stabil-
ity were based on previously published work (14). Com-
plementary miRNA counts of a miRNA contain counts
from all possible loci at the genome, in case the id of that
miRNA is not indicative of its genomic location origin and
there are multiple paralogs for the same mature sequence.
For instance, if ‘hsa-let-7a-5p’ is the miRNA of interest and
counts qm) 1s its expression depth, then the expression depth
of its complementary miRNAs (counts compiarm)) Will in-
clude the counts from both ‘hsa-let-7a-3p’ and ‘hsa-let-7a-
2-3p’, since there is no loci specific information at the id of
the ‘hsa-let-7a-5p” miRNA.
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Detection of mis-annotated miRNAs

We used the modification counts extracted from Chimira
and their accompanied modification index positions to con-
struct the overall coverage profile for each miRNA, that in-
cludes template counts and mismatches at each nucleotide
position. From the entire set of miRNAs for each species,
we retained only those that were expressed in at least 5% of
all datasets of that species. We then parsed all coverage pro-
files and highlighted those that had four or more nucleotide
positions with a mismatch ratio >70%. The filtered list of
modification profiles was then compared manually to the
profiles of the control miRNAs in order to retain only the
miRNAs with a non-canonical modification profile.

RESULTS

A total of 52 NGS datasets were obtained from both ENA
and GEO covering in total 461 biological samples including
biological replicates (Supplementary Table S1). For each
dataset, FASTQ raw data were downloaded and annota-
tion information was manually curated according to tis-
sue, cell type, disease state or cell line (see ‘Materials and
Methods’ section). These raw data serve as the foundation
for all subsequent analyses described below. Of particular
note in the case of small RNA datasets is that the molecule
being sequenced is usually shorter than the sequence read
obtained from an NGS experiment. This means that most
captured sequences contain both small RNA sequence and
some amount of the 3’ sequencing adapter. Because the 3’
adapter sequence used in the original experiment was not
readily available, we automatically inferred the most likely
adapter used, based on 3’ de Bruijn graph assembly and re-
moved the adapter sequences using Reaper (see ‘Materials
and Methods’ section). Finally, these adapter purged se-
quences (representing small RNAs and contaminants) were
de-duplicated, using 7ally, such that each sequence was only
represented once in the final input FASTA file accompa-
nied with its respective coverage depth. These cleaned and
de-duplicated sequences were the primary input into the
miRNA analysis pipeline (Chimira). This pipeline automat-
ically scans each sequence against all known miR Base pre-
cursor sequences from a selected species and detects the
likely miRNA, which arm of the precursor it originated
from (5'/3’) and searches for non-canonical nucleotides
which may be the result of editing and/or modification by
enzymes such as Tutases. All miRNA counts, annotations
and features detected are stored in a MySQL database for
further analysis.

Global analysis of microRNA expression

In order to validate the initial results and to evaluate how
well the automated small RNA analysis performs we nor-
malize the count data (see ‘Materials and Methods’ sec-
tion) and perform sample-to-sample unsupervised cluster-
ing based on co-expression correlation analysis. This al-
lows us to explore both the sample to sample variation
of miRNAs and to identify clusters of miRNAs which
are significantly over-represented in certain datasets. Ad-
ditionally, it allows us to identify groups of samples with
very similar miRNA profiles. Our aim is hence to explore
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miRNA expression across this heterogencous pool of data
and to characterize patterns among datasets of similar or
different conditions. This analysis (Figure 1A, B, D and E)
clearly demonstrates clustering of both miRNAs and sam-
ples across the datasets.

For miRNAs, the data clearly show a disparity between
highly tissue specific and ubiquitously expressed miR-
NAs (Supplementary Figure S2A). For example, the let-
7 family of miRNAs are among the most abundant and
widespread detected miRNAs as expected, together with
miR-21, miR-191 and miR-92a. Some highly expressed
miRNA clusters also show distinct expression, including
the miR-106b-25 cluster and the miR-17-92 cluster. Two
miRNAs, hsa-miR-147a and hsa-miR-518a-5p, were ex-
pressed only in placenta tissue samples, which may im-
ply that their functionality is exclusively influencing em-
bryonic development in humans. Moreover, six miRNAs
(hsa—miR—3689b—3p, hsa—miR—5707, hsa—miR —4534,
hsa—miR —5583—5p, hsa—mir—3529—3p, hsa—mir—603)
are expressed only in a particular dataset from lymphoma
cell lines. The miR-302 cluster, thought to be important
for pluripotency and cell-cycle regulation was among the
most specifically expressed clusters, being predominantly
expressed only in embryonic stem cells and in brain can-
cer. Overall, however these data are complex and it is con-
venient to instead perform pairwise clustering of miRNAs
and samples separately to better detect significant common-
alities and differences between miRNAs in one analysis and
samples in the second analysis. This functionality is avail-
able in the web-based interface of miratlas.

For sample to sample correlations (Figure 1B and E) we
observe specific groups of tissues and conditions clustering
together for example cancer cell lines, B-cells and similar tis-
sues. For some tissues and cell types multiple experiments
from different sources are available. These would ideally
have extremely correlated results with differences being ex-
plained by differing NGS platforms or experimental strate-
gies. We observe on average 0.79 correlation of miRNA
counts across seven human datasets where the same tis-
sue or cell type has been profiled (0.82 respectively across
11 samples in Mus Musculus). In contrast, taking ran-
dom comparisons of different tissues resulted in an average
correlation of 0.68 in human and 0.69 in mouse. Clearly,
although RNA extraction protocols, sequencing platform
and sample treatment account for variation between sam-
ples from the same tissue, the correlations remain highly sig-
nificant (P < 0.018 for human and P < 0.005 for mouse).

Three sample types show much lower expression than
others (Saliva, Spermatozoa and Serum from pulmonary
tuberculosis). These samples do not cluster effectively as
they are difficult to normalize due to low sequence counts.
In these cases it is likely that the correlation observed is spu-
rious and primarily due to low-counts and/or contamina-
tion with RNA degradation products. However, the sper-
matozoa sample likely has low counts due to the previ-
ously observed paucity of small RNAs detectable in sperm
(15,16). Clearly, one of the most defined features of the
miRNA expression level correlation within Human and
Mouse is due to the fact that many miRNAs are co-
expressed from the same host transcript. We next sought to
explore the expression of miRNAs while taking into con-

sideration their genomic context and likely transcriptional
unit.

microRNA clusters derived from genomic proximity

It is well known that many groups of miRNAs are en-
coded by a single transcript (coding or non-coding). These
miRNA clusters are usually predicted by virtue of their
close proximity on the genome. Previous computational
studies have suggested that miR NA hairpins lying within 10
kb (17) are likely to be co-transcribed. We sought to update
these findings from earlier studies, based on EST and cDNA
data, with the data described here. Additionally we use both
the genomic location and also miRNA co-expression anal-
ysis to re-evaluate these predictions and to generate novel
miRNA clusterings. For this analysis we assess the accuracy
of genomic clusters of miRNAs predicted using different ge-
nomic distance thresholds and miRNA co-expression as a
measure of their co-regulation.

We first define all possible miRNA genomic clusters us-
ing a custom window of size W. The W parameter has been
selected as large as possible while still retaining the num-
ber of clusters with negative intrinsic correlation at a rela-
tively low level (Supplementary Figure S2Bb and c). Based
on these criteria and the relevant literature (5,17), we assign
10 000 nt as our window size for further analysis. This value
produces a total of 153 genomic clusters in human and 92
clusters in mouse. After the genomic clusters have been con-
structed, we calculate the average correlation of miRNAs
co-expression within each genomic cluster (Supplementary
Figure S2Bd and e). The number of clusters with positive in-
trinsic correlation compared to those with negative correla-
tion is statistically significant (P < 10~°), based on a model
that is constructed as the average consensus of 10 runs with
random genomic cluster assignments to the miRNAs of our
study. We additionally observe that 33.3% of all genomic
clusters in human datasets demonstrate a significant aver-
age intra-cluster correlation of >0.7 (P < 2.7 x 107%). In-
terestingly, there are 18 clusters in the human datasets and
12 in the mouse datasets that have non-significant negative
correlation values (—0.3 to 0.0). In these instances the small
RNAs detected likely are transcribed from separate tran-
scriptional units, products of alternative splicing, possibly
mis-annotated RNA degradation products or under some
other form of complex regulation. One interesting example
with poor expression correlation is the cluster containing
hsa-miR-1306 and hsa-miR-3618. These miRNAs are prod-
ucts of the DGCRS transcript with the miR-3618 hairpin
present in the SUTR being processed by the microproces-
sor complex as part of DGCRS8s complex transcriptional
control mechanism (18).

Clusters derived from miRNA co-expression

Another way to explore the clustering of miRNAs is to look
for functional clustering of miRNAs based solely on their
co-expression. The assumption here is that miRNAs with
high expression correlation are likely to be involved in simi-
lar biological systems. We expect that clusters defined in this
manner should show considerable overlap with clusters de-
rived from the genomic proximity analysis above. However,
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Figure 1. Global miRNA expression and modification profiles. (A and D) miRNAs expression profile across all 34 human/18mouse datasets. (B and E)
Sample to sample clustering based on the global miRNAs expression. (C and F) Aggregate modification profiles from the human and mouse datasets
positioned with reference a mature miRNA sequence.
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we may also be able to identify groups of miRNAs encoded
by transcripts at different genomic loci that still exhibit cor-
related expression of their host transcripts and may well
be functionally linked. As expected, results show (Figure 2)
significant overlap between clusters derived from proximity
and those derived by expression correlation. However, we
also observe a subset of functional links between groups of
miRNAs expressed at different genomic loci with significant
expression correlation. For example transcriptional cluster
3 (Figure 2A) is comprised of a number of genomic clus-
ters including those on chrX, 19 and 13. Close inspection of
these transcriptionally linked clusters (Figure 3) indeed in-
dicates a preponderance of EGR1 transcription factor mo-
tifs, coupled with SP1 and NRF1. These results indicate that
the high degree of transcriptional correlation observed be-
tween these three genomic clusters is a result of their being
driven by the same transcriptional inputs. The high majority
of the rest of transcriptional clusters with divergent genomic
origin content contain either miRNA paralogs or let-7 fam-
ily miRNAs, in both human and mouse.

Calling and analysis of the prevalence of microRNA modifi-
cations

In the past few years it has been widely demonstrated
that miRNAs go through post-transcriptional alterations
that can modify their 3’ ends, mainly via mono- or poly-
uridylation (9,19). Such epi-transcriptomic alterations can
have tremendous regulatory impact including how the small
RNA machinery in the cell processes these molecules or
whether or not they are degraded. In this study, we present
for the first time a global profile of miRNA modifications
occurring at both 3’ and 5’ ends. In order to identify the
modifications in both ends of each miRNA we have em-
ployed additional analysis steps where all primary miRNA
sequences are mapped against miRNA precursors using
Chimira (8). Chimira scans the aligned regions in order to
detect bases in the miRNA sequence that are not encoded in
the genomic sequence. These unalignable nucleotides can be
any of the following classes: (i) base-calling errors, (ii) sin-
gle nucleotide polymorphisms or (iii) post-transcriptional
miRNA modifications (e.g. via tutases). Base-calling er-
rors are pseudo-random, platform-dependent and are more
likely to occur at the 3’ end of a sequencing read, although at
relatively low frequencies. SNPs are easier to detect as they
will be present in a significant fraction of all reads observed.
Finally, modifications such as uridylation or ADAR edit-
ing can be detected due to their being highly skewed toward
particular modifications (e.g. mono-U, poly-U or A—U).
Overall, we find that 3’ modifications are far more preva-
lent than detected 5’ modifications (Figure 1C and F). In
total, 95 human (4.4%) and 142 mouse (7.8%) miRNAs
showed on average significant levels of 3’ modification (i.e.
more than 25%). Similarly, 23 human (1.1%) and 24 mouse
(1.3%) miRNAs showed on average significant levels (i.e.
more than 25%) of 5 modification. Mono and dinucleotide
additions are the most common modifications, although
longer modifications were observed too, albeit at lower fre-
quencies (Supplementary Figure S3A and B). In both Hu-
man and mouse we observe a preponderance of Adenosine
and Uracil modifications (Figure 1C) suggesting that both

adenylation and uridylation by TUTases are likely the pri-
mary modifications made to miRNAs at least in animal sys-
tems. Both cytoplasmic adenylation by GLD-2 (20) and ter-
minal uridylation by Tut4/Tut7 have been reported before
as important for miRNA stability and degradation (19).
However, we believe this is the first large scale detection and
analysis of these events across animal tissues.

In order to investigate the significance of the presence of
3’ Guanine and Cytosine modifications, we performed an
analysis in 12 human samples from mRNA-Sequencing ex-
periments that were derived from Illumina Sequencing in-
struments to identify whether these G:C modifications may
result from known sequencing biases present in the instru-
ment (see ‘Materials and Methods’ section). To evaluate this
we assume that G:C sequencing biases for mRNA samples
will be largely similar to those obtained from small RNA se-
quencing. However, we would not expect any terminal mod-
ifications to occur within sequencing reads derived from
exonic mRNA sequence, any non-genomic nucleotides ob-
served are more likely to be sequencing errors.

The derived profile of sequencing biases is very rich in
Gs and Cs (Supplementary Figure S3E) and greater than
65% of all observed errors for mono and dinucleotide er-
rors. With regards to the datasets that have been used in
our large-scale miRNA analysis, some of them are derived
from Illumina Sequencing instruments, while others are de-
rived from different types of instruments and another sig-
nificant percentage among them do not provide in their an-
notation any information about the sequencing instruments
that have been used during the experiment. The lack of an-
notation makes it difficult to computationally model and fil-
ter these likely G:C biases, however the data suggest that for
the most part they are largely sequencing artefacts. Besides,
this strongly suggests that the observed A:U enrichments
are highly unlikely to be due to such sequencing artefacts
and instead represent valid biological effects.

The prevalence of 5" modifications is far lower than that
observed for 3’ changes. Although some tRNAs are known
to have 5’ modifications, we are not aware of any reported
biochemical experiments of 5 modification of small RNAs.
For both human and mouse however a preponderance of
5" A and U modifications are observed but are extremely
rare as compared to 3’ modifications. It has already been
reported that the 5p ends of miRNAs are generally post-
processing stable in contrast with the 3p ends (21). Addi-
tionally, addition of 5 nucleotides would dramatically al-
ter the targeting of a miRNA loaded into the RISC com-
plex. This may explain the lower count numbers and also
the lower variability of the 5p modifications in compari-
son with the 3p modifications. However, certain datasets,
among those from spermatozoa, monocytic leukemia and
saliva samples (Supplementary Figure S3F-H) as well as
two cancer datasets (E-GEOD-39841: brain cancer and E-
GEOD-36236: skin cancer; profiles available in miratlas) ex-
hibit a high ratio of 5p modifications, especially at the first
nt upstream to the 5’ end. These modifications essentially re-
define the seed region patterns of the modified miRNAs and
consequently change the repertoire of the mRNAs that are
being targeted by them. This may be affecting the function-
ality of some or all of these tissues by causing irregularities
related with disease conditions.
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Figure 2. Associations of functional miRNA clusters with the respective genomic clusters. (A) Human samples. (B) Mouse samples. Each functional cluster
is denoted by a black colored arc with numeric id. The length of the arc is proportional to the size of the cluster it represents. MicroRNAs that don’t have
any genomic cluster assignment have been omitted from this analysis for the sake of clarity of the figure. Genomic clusters correspond to the arcs of fixed
length, colored with a non-black hue and they are sorted clockwise based on their proximity at the genome.

In the majority of cases, modifications affect less than or
around 20% of the total expression depth while there are
very few cases that they reach 30-40% of the total depth
(Figure 4A and D). Moreover, the prevalence of 3’ modifi-
cations is significantly higher than 5 modifications (Figure
4). A strong enrichment for 3" A and U modifications is ob-
served in both human and mouse which is in agreement with
previous studies implicating tutase enzymes. For 5 modi-
fications a smaller enrichment is observed for 5 Adenyla-
tion, however this enrichment is only observed to be signif-
icant in Human samples and a corresponding shift is not
observed in mouse. The mild enrichment for 5 Adenosine
is puzzling and possibly reflects the presence of 5'Methyl
adenosine sites known to be important for primary miRNA
processing.

We now explore the distribution of adenylated and uridy-
lated variants across all datasets (Figure 5 and Supplemen-
tary Figure S4). We focused on the expression of the let-
7 family miRNAs and we observed a high resemblance
of their modification profiles for these particular variants.
Only mir-98 has a markedly different profile, potentially
due its lower expression compared to other members of the
let-7 family. We also projected the modification distribu-
tion of a set of highly expressed miRNAs. Some of these
profiles show high similarity with the respective let-7 pro-
files while others demonstrate a relatively low modifica-
tion depth (Supplementary Figure S5). This finding sug-
gests that the frequency of modification events is not al-
ways associated with miRNA abundance but may be driven

by other factors related to a particular condition, cell type
or tissue. Several dataset types also tend to cluster together
based on the overall expression of different types of variants
in both species (Supplementary Figure S6) or the modifica-
tion frequencies of the most highly modified miRNAs (Sup-
plementary Figures S7 and 8). However, although overall
expression of let-7 miRNAs is very similar across samples
of the same cell type or condition, the expression of indi-
vidual let-7 variants (e.g. adenlyated, guanylated) seems to
deviate even for samples of the same annotation class.

For ADAR editing events, we observe an enrichment for
brain in both Human and Mouse (Supplementary Figures
S7 and 8), in correspondence with previous studies (10). Ad-
ditionally, we observe an enrichment in serum and some
cancer samples of non neuronal origin. The rate of ADAR
editing observed in brain samples is (2%) and it occurs most
predominantly in the seed region of miRNAs, also in line
with previous studies. We also observe that two cancer sam-
ples from human and mouse have very similar profiles and
that is also the case for another pair of serum samples from
the two species (Supplementary Figure S9). This may imply
that ADAR edits for those particular conditions are pre-
served across these two species.

Finally, we have built the global maps of modification
expression for all distinct types of modification and aggre-
gated variants (Supplementary Figures S10 and 11) and we
observe again that adenylation and uridylation are the most
predominant modification types and they tend to occur sig-
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nificantly more frequently at the 3’ end of miRNAs, both in
human and mouse.

MicroRNA strand-specificity analysis and characterization

The dataset we obtain is extremely useful for exploring
other aspects of miRNA biogenesis. In particular, because
we obtain sequencing counts for both the 5" and 3’ strands
from a miRNA precursor we can use these data to glob-
ally explore mature strand selection of miRNAs. During
the miRNA maturation process in general only one strand
of the miRNA duplex is assembled into RISC while the
complementary strand is degraded. This phenomenon has
been studied in the past and the prevailing theory is that the
asymmetry in the selection of the dominant miRNA strand
may be explained by the difference in the stability of the
bonds of the miRNA duplex at 5’ ends of each strand. This
hypothesis has been proved experimentally for a small num-
ber of miRNAs (22). However, there is no global analysis
so far that evaluates and models strand selection for miR-
NAs. We sought to both test these hypotheses and extract a
global model of strand-selection for miRNAs based on the
Gibbs free energies (AG) of the bonds present in the double
stranded pre-miRNA.

During the formation of a double stranded RNA
molecule, low AG values indicate that the reaction can oc-

cur spontaneously and lead to a stable form. Conversely,
high AG values, calculated with reference to a ds-RNA seg-
ment, indicate high likelihood for that segment to unwind
without the intervention of an external energy source.

For all miRNAs, we calculated the AG free energies for
short double stranded segments of their hairpin structures
around the 5 end of the miRNA from each strand. We
tested a variety of definitions for these segments. In each
case, the window used for the definition of the segments fo-
cuses on a ds-RNA region of the hairpin, starting upstream,
downstream or right at the 5" end of each mature miRNA
and extending for N (N>1) nt overall toward the 3’ end of
the miRNA.. Specifically, we calculated the AG for each seg-
ment starting at the 5’ end of the 5’ mature product (AG1)
and at the 5" end of the 3’ mature product (AG2) and set
their difference as AAG = AG2 — AGI (Figure 6A.1).

Based on expression data from this analysis, all let-7 fam-
ily miRNAs turn out to be very highly 5-strand specific.
Looking closely at the secondary structure of the let-7 fam-
ily hairpin precursors, let us assume that the 5’ end regions
of the 5 miRNA products are more unstable than the corre-
sponding ends of the 3’-miRNA products (e.g. due to preva-
lence of A:U bonds, gaps or wobbles). So, based on the con-
ventions for the calculated free energies we used before, we
would expect that AG1 > AG2, since AGI refers to a more
unstable structure. As a result, we would expect that AAG
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Figure 4. Overall extent of modification events and most dominant patterns. (A and D) Modification ratios coverage across all human and mouse datasets.
(B and E) Prevalence of top-20 most frequent modifications patterns at the 5’ end of miRNAs in human and mouse. (C and F) Prevalence of of top-20
most frequent modifications patterns at the 3’ end of miRNAs in human and mouse.

< 0 for the 5'-strand specific miRNAs, AAG > 0 for the
highly 3p-strand specific miRNAs and AAG ~ 0 for the
non-strand-specific miRNAs.

In order to test our hypothesis, we classified all miRNAs
based on their strand specificity. For this analysis, only miR-
NAs with two mature products, one for each strand of the
hairpin precursor, have been taken into account. We first
calculated the expression ratio of each miRNA strand prod-
uct using the following formula:

expression_ratiogrm =

COUNLS(qrm)

(1)

COUNTS(arm) + COUNLS(compl_arm)

where:

o (arm, compl_arm) = (3p, 5p) or (5p,3p)

® Countsqm): is the total normalized depth of the ‘(arm)’
mature miRNA product across all datasets and

® COunts compiarm): 1 the total normalized depth of the
‘(compl_arm)’ mature miRNA product, at all possible
loci of the genome (see Methods).

Based on the expression_ratio scores calculated using the
formula above, we grouped all miR NA precursors into three
groups:

e highly 5'-strand specific: a < expression_ratios, <b

e highly 3’-strand specific: a < expression_ratios, <b

e non-strand specific: 0.4 < (expression_ratios, |l expres-
sion_ratioz,) < 0.6

for different sets of increasing strand specificity thresh-
olds: (a,b) = {(0.7, 0.85), (0.85, 0.93), (0.93, 0.97), (0.97,
D}.

We then test our hypothesis by calculating the AAG val-
ues for all three types of strand specific groups with refer-
ence to a different segment of the ds-RNA hairpin struc-
ture each time. We have used increasing strand specificity
thresholds for the highly 5 and 3’ strand specific groups
in order to examine if there is any shift in the AAG val-
ues as the strand specificity criteria become more stringent.
Moreover, we checked if the AAG values from each strand
specific group were distinguishable for the other groups im-
plying that free energies calculated for a specific window of
a ds-RNA hairpin segment are correlated with the strand
selection process. Gibbs free energies have also been calcu-
lated for an additional group of 1000 ‘random’ miRNAs.
This group of ‘random’ miRNAs is formed by selecting
randomly 10 non-strand specific miRNAs identified in our
study and generating for each of them 100 permutations of
their hairpin precursor sequences, permitting only permu-
tations that fold to hairpin-like structures in the end.
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After rigorous testing, we identified that there is a strong
separation between the highly 5'-strand specific, highly 3’-
strand specific and the non strand specifics groups of miR-
NAs only when the AAG is calculated using a window that
contains the first N = 2 nucleotides of each strand (Figure
6A.1). In this case, the AAG distribution complies remark-
ably well with the assumption we have made earlier with
regards to the expected AAG values for different types of
miRNAs in terms of their strand specificity (Figure 6A.ii—
v). Besides, the group of random miRNAs, that is used as
a control to examine the variance of AAG across a large
number of hypothetical hairpins, follows quite precisely the
AAG profile of the non-strand specific miRNAs that orig-
inate from real hairpins. Hence, these results indicate that,
in general, the stability of the first 2 nt at the 5’ end of each

strand plays the most crucial role for mature miRNA strand
selection.

Furthermore, we made another observation that refers to
the AAG calculations for a window of 3 nt, starting at the 3’
end of each miRNA strand and extending for an extra nt in
both sides (Figure 6B.i). This window contains nucleotides
that are not present in the ds-RNA that is extracted to the
cytoplasm but exist only in the hairpin precursor. However,
we can notice again that there is a quite clear, although
milder than in the previous case, separation of the miR-
NAs based on the strand specificity of their mature products
(Figure 6B.ii—v,). In this case though, A AG distribution for
the highly 5-strand and 3’-strand specific is reversed com-
pared to the previous distribution. That may indicate that
the unstable 2 nt long ds-RNA segment at the 5’ end of each
strand is reinforced by the adjacent 3nt long ds-RNA seg-
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<1

ment that contains the 2 nt overhang at the 3’ end of the
complementary strand. So, the asymmetry of miRNA du-
plexes in their 5’ ends is balanced by an opposite asymmetry
in their 3’ ends which contributes to the preservation of the
hairpin structure energy equilibrium.

Detection of mis-annotated miRNAs

The data obtained clearly shows that miRNAs have distinct
patterns of expression, modification, strand-selection and
genomic localization. The many hundreds of thousands of
miRNA to precursor alignments obtained from NGS data
also allow us to detect miRNAs which do not appear to il-
lustrate the hallmarks of well characterized miRNAs. Pre-
vious reports have described many such molecules present
in the miRBase database and suggest they represent mis-
annotated sequences likely derived from other non-coding
RNAs or degradation products of longer molecules (e.g. tR-
NAs). We used the alignment data obtained to automati-
cally scan for miRNAs whose alignments and modification

profiles did not fit those of well characterized miRNAs. We
identify 22 Human and 21 Mouse miRNAs whose profiles
clearly differ from miRNAs such as let-7 (Supplementary
Figures S12 and S13). Scanning this set of miRNAs against
miR Base shows that 11 of 43 identified miRNAs show sim-
ilarity to annotated non miRNA molecules in the Rfam
database (23). These miRNAs together with a comparison
of miRNAs whose provenance is well established, e.g. via
northern blot (Supplementary Figure S14), is also available
in miratlas.

Finally, we wanted to examine if the prevalent form of
miRNAs expressed in the miratlas datasets is equivalent
with the miR Base canonical annotation. Specifically, we are
interested in miRNAs whose predominant form detected in
our data was longer or shorter than the annotated version.
Thus, we reanalyzed all human and mouse miratlas regis-
tered samples and extracted the average length of the ex-
pressed template miRNA sequences across them, normal-
ized by their overall expression depth. We then calculated
the difference in length between each expressed miRNA and
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its corresponding annotated sequence in miR Base (Supple-
mentary Figure S15). We detected that for both Human and
Mouse the prevalent form of expressed miRNAs is on av-
erage Int shorter than the accepted canonical sequence in
miRBase. We also detect a small number of miRNAs which
appear to be longer than their annotated mature sequence.
Examples of both are shown (Supplementary Figures S16
and 17).

CONCLUSION

We present a comprehensive analysis of miRNA expression
across multiple tissues and cell lines in Human and Mouse.
These data are derived from high-throughput sequencing
experiments from public resources. We have used these data
to build a comprehensive miRNA expression dataset for
Human and Mouse that takes into account both expression
levels and detected modifications to miRNAs (e.g. 3’ uridy-
lation or ADAR editing). This combined data resource al-
lows us to explore the complex features of miRNA tran-
scription across tissues and to group miRNAs into clusters
based on their expression correlation. Additionally, we use
these data to explore the likely transcriptional coupling of
miRNAs in co-expressed clusters. We explore in detail, for
the first time, the prevalence of both 5 and 3’ nucleotide
modifications to miRNAs and show that mono and din-
ucleotide 3’ modifications are the primary modifications
observed in both human and mouse, with ADAR editing
mostly restricted to brain and cancer cell types. Finally, we
use these data to build a thermodynamic model for how the
mature strand of a miRNA precursor is selected by explor-
ing structural constraints around the ends of miRNA pre-
cursors derived from large-scale NGS data. We believe these
findings and associated data will be of benefit to our under-
standing of miRNA function in animals and will also prove
useful to the miRNA community in general.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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