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Abstract
Performing censuses on stigmatized or vulnerable populations is challenging, 
however, for such populations partial enumeration is often possible using 
different lists or sources. If the sources overlap then multiple systems 
estimation (MSE) methods can be applied to obtain an estimate of the total 
population. These are typically expressed by a log-linear model which permits 
positive/negative dependencies between lists. This paper considers issues 
that arise for the application of MSE to modern slavery where there is little 
to no overlap of individuals across lists. We investigate the robustness of 
MSE in terms of the importance of each list and the impact of combining lists 
on the estimation process. We undertake a simulation study and consider 
real national modern slavery data from the UK and Romania.
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Introduction

Modern forms of slavery persist in the 21st century despite the legislative 
successes of 19th century reformers in having predominantly abolished tradi-
tional slavery. Documenting and quantifying the prevalence of modern slav-
ery is a challenging task for many reasons but not least due to the hidden 
nature of individuals who would be classed in this category and how victims 
of modern slavery are defined. Further, the nature of modern slavery means 
that international boundaries may be crossed with many modern slavery vic-
tims also victims of illegal trafficking (Cruyff et al., 2017; van Dijk et al., 
2017 explain the context to human trafficking). However, the problem is sig-
nificantly wider that the exploitation of illegal immigrants—for example, 
16% of the UK’s identified potential victims of modern slavery are its own 
citizens. The own-citizen percentage was higher still at 32% for the 2,121 
potential victims in 2017 who were children (Home Office, 2018). Major 
other countries-of-origin for UK-identified victims include Albania and 
Vietnam but these two, together with the UK itself, may have a different rep-
resentation within the totality of victims (non-identified as well as identified) 
of modern slavery in the UK. Hence, policy initiatives for the prevention of 
human trafficking that have been directed at Albania and Vietnam might need 
re-orientation when UK’s unidentified victims are estimated by where they 
originated from.

In the UK, all police forces report identified victims of modern slavery to 
the National Crime Agency (NCA). Support, ranging in duration from 7 to 
13 weeks, is available for “probable-cause” victims unless or until their final-
status is determined otherwise. Overlaps between the list held by UK’s NCA 
and those of other service providers arise both because of the support on offer 
to probable-cause victims, or because these services may have referred iden-
tified potential victims to NCA for appraisal of their eligibility for support, or 
because police action could rescue further victims. It is this overlap of indi-
viduals observed by the different sources that permits the use of multiple 
systems estimation (MSE) for estimating the difficult to obtain total preva-
lence and associated measure of the problem within society. See Bird and 
King (2018) for a review of multiple systems estimation and their application 
to different populations; Jewell et al. (2013) for an application to estimating 
nonmilitary deaths in conflict; and Silverman (2020), and references therein, 
for discussion of their application to modern slavery.
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Complexities can occur for modern slavery data as the term covers a 
range of different types of modern slavery, including for example, domestic/
physical labour and forced prostitution. The characteristics of the type of 
victimisation typically varies by gender (e.g., physical vs. domestic labour) 
and age-group (child vs. adult female prostitution); and is also likely to 
determine how many other victims belong to the same cluster as the listed 
victim, for example, many adult males engaged in physical labour, may be 
co-located and controlled by a gang-master; solo female domestic slave; or 
a clutch of sex workers who travel between premises in different towns and 
may include children in their number. Professionals in different capacities 
may report suspect activity to authorities. For example, doctors who are 
made aware that a child is at risk of prostitution, or that victims of human 
trafficking are held at a specific location, may (or be required to) inform the 
relevant authorities so that a rescue can be attempted by the police. 
Considerations pertain to non-governmental voluntary organizations includ-
ing those which might, in less extreme circumstances, be unwilling to cross-
refer leading to minimal overlap between different lists, for example, in 
relation to voluntary organizations giving refuge to escapee women versus 
males, or to adults versus children.

We focus on the common issue of limited or minimal overlap (where rela-
tively few individuals are observed across the different lists used) within 
modern slavery application of MSE. Multiple lists with limited or minimal 
overlap can occur for numerous reasons, and affect different subsets of the 
population. For example, as discussed above, this may be the case for lists 
that are held by different non-governmental voluntary organizations. This, in 
turn, can lead to a number of different issues when applying a MSE approach, 
including models being unidentifiable with inestimable parameters (Sharifi 
Far et al., 2019) and potentially unstable estimation of the total population 
size. Further, demographic information or contextual data, such as type of 
victimization that victims of modern slavery are subjected to and whether 
drug dependent, may be important determinants of capture-propensity on 
some but not all lists, or the interaction between different lists. If such infor-
mation is available, MSE can be extended to directly incorporate such factors 
(King et al., 2005 demonstrates the case of MSE applied to injecting drug 
users). However, this leads to a further reduction in the overlaps observed 
between the different lists, potentially exacerbating the issues further, and 
introducing a greater number of parameters to estimate. Thus, within this 
paper, we do not consider such characteristics further, and focus on the stan-
dard cross-classification of individuals across the different lists.

Our aim in this paper is to investigate, by simulation and empirically, the 
impact of lists with minimal overlaps for capture-recapture estimation of 



4	 Crime & Delinquency 00(0)

victims of modern slavery, and methods to combat effects of such phenomena 
on population size estimation.

Methods

We consider standard log-linear models for MSE, where we are able to 
explicitly account for dependencies between lists via associated log-linear 
interaction terms (Fienberg, 1972). We investigate the effect on population 
size estimation where there is limited overlap between the lists relating to 
the two specific methods of (i) list omission and (ii) list combination. In 
particular, we shall consider an approach where we assess the influence of 
the lists on the estimation process by removing each list in turn from the 
analysis; and the impact of combining two lists where there is limited over-
lap between the lists. We begin by defining the models and associated MSE 
approach.

Multiple Systems Estimation

We begin by describing the general framework for MSE. Let K  denote the 
total number of lists available in the dataset, we label the individual lists 
k K=1, ,  (with a minimum of K = 2 lists). We construct an incomplete 2K  
contingency table where each element of the table corresponds to the number 
of individuals observed by the given list combination. The table is incomplete 
since we do not observe the number of individuals not observed by any of the 
K  lists, and hence taking the total population size to be equal to the total num-
ber of observed individuals will lead to an underestimate of the total popula-
tion size. Mathematically, each cell is indexed in the form k∈{0,1}K , where 
the 1/0 correspond to the given list observing/not observing an individual, 
respectively. For example, when K = 4  the cell k = {0,1,1,0} corresponds to 
being observed by lists 2 and 3 but not lists 1 and 4. The cell k = {0}K corre-
sponds to not being observed by any of the lists.

Let nk  denote the number of individuals in cell k∈{0,1}K of the contin-
gency table; and µk correspond to the mean cell count for cell k . We specify 
the model as a generalized linear model, with Poisson error and log-link func-
tion, such that,

n Poisson
ind

K
k k k k| ( ), {0,1} .µ µ for ∈ 	 (1)

Letting µ denote the column vector of the mean cell counts, µk , we can write,

logµµ θθ= ,X
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where θθ denotes the column vector of log-linear parameters and X  is the 
associated design matrix describing the relationship between the (log) of the 
expected cell counts and the parameters. In general, θθ contains an intercept 
term (associated with the mean cell count), main effect terms for each list 
(associated with the propensity of being observed by a given list) and interac-
tion terms (associated with dependencies between the different lists). Due to 
the incompleteness of the contingency table, we cannot estimate the K -way 
interaction for hierarchical log-linear models.

This modelling structure permits the estimation of the total population size 
as follows: the log-linear parameters, θθ , can be estimated from the observed 
cell counts; given these estimates we are able to obtain the associated maxi-
mum likelihood estimate (MLE) and associated uncertainty of the unob-
served cell, via the model specified in equation (1). The associated uncertainty 
is described via a 95% confidence interval (CI), using the standard asymp-
totic normality assumption and estimated standard error calculated via the 
Hessian matrix evaluated at the MLE of the parameters. However, we note 
that the estimate of the total population size (and 95% CI) is in general, 
dependent on the model specified in terms of the interactions present within 
the model. This typically leads to a two-step process, (i) identify the “best” 
model in terms of the interactions present in the model; then (ii) obtain an 
estimate of the total population size given the specified model.

To discriminate between competing models and conduct the model selec-
tion step, it is conventional to use Akaike’s information criterion, AIC 
(Akaike, 1974), where,

AIC l p= 2 ( ; ) 2 ,− +θθ n 	

such that l( ; )θθ n  denotes the log-likelihood of the model evaluated at the 
MLEs of the parameters denoted θθ , and p denotes the number of parameters 
in the model that is, p =| |θθ . The likelihood in this case simply corresponds to 
a product over independent Poisson terms. The AIC criterion is interpreted as 
a trade-off between the fit of the model to the data and the complexity of the 
model. The model with the smallest AIC statistic is deemed to be the “best” 
of the models considered, in this respect AIC assesses the relative perfor-
mance of the competing models. See, for example, Coumans et al. (2017); 
Silverman (2014); Van der Heijden et al. (2012) for the use of the AIC statis-
tic within the MSE context for modern slavery and other related populations; 
and Davison (2003) for discussion of alternative model selection tools.

In practice, it may not be feasible to fit every possible model (including/
excluding interaction terms) to the data. If the dataset features many sources, 
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the number of possible models becomes prohibitive and so a model search 
algorithm is typically implemented. For example, adding/removing interaction 
terms in a systematic manner until no improvement in the model is detected. In 
this paper, we use a model selection procedure using the AIC statistic and esti-
mate the total population size from the single “best” model in order to investi-
gate the issues of combining and omitting lists without the additional 
confounding with model-averaging issues. In particular, we are interested in 
the influence of each individual list on the total population estimate.

List Influence

The pattern of the observed data, in terms of the number of individuals observed 
in the cross-classification across different lists is the underpinning principle 
permitting the estimation of the total population size via MSE. In general, situ-
ations can arise whereby, for example, there is a dominant list where a substan-
tial proportion of individuals are observed by this single source (Cormack 
et al., 2000); there is substantial dependence between lists (either positive or 
negative: see, for example, Jones et al. (2014)); or limited overlap across lists 
leading to sparse contingency tables, that is, tables with a large number of zero 
counts (Chan et al., 2020; Sharifi Far, 2017). We focus on this last case of mini-
mal overlap between the different lists. Issues encountered in this scenario 
include model fitting complexity, including for example, model identifiability 
and parameter redundancy (Chan et  al., 2020; Fienberg & Rinaldo, 2012; 
Sharifi Far et al., 2019; Silverman, 2020; Vincent et al., forthcoming).

To investigate the influence of the different lists on the statistical analysis, 
and focussing in particular on the estimation of the total population size, we 
consider both a (i) “leave-one-out” approach and (ii) combining lists approach.

Leave-one-out approach.  The leave-one-out approach involves cycling 
through each possible list, removing the given list, constructing the reduced 
incomplete contingency table from the remaining sources before conducting 
the statistical analysis to obtain the total population size estimate as described 
above. In particular, we obtain the MLE of the total population size for the 
model deemed optimal via the AIC statistic and an associated 95% CI. When 
there are K  lists in general, this means conducting K  leave-one-out contin-
gency table analyzes. We note that for each leave-one out analysis, the total 
number of observed individuals is reduced (assuming that all lists observe at 
least one unique individual not observed by any other source). The estimates 
of population size from each of the K  leave-one-out analyzes can be com-
pared with each other and also with the estimate of the total population size 
using all K  sources. In the simulation study, we can also compare the esti-
mates with the (known) true population size.
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Combining lists approach.  In some cases, we may wish to combine two lists 
into a single list prior to analysing the contingency table. For example, we 
focus on the particular case where we may wish to do this due to the limited 
(or even lack of any) overlap between two (or more) of the sources used 
within the analysis. The new list then essentially corresponds to individuals 
observed by source A, say, or source B (or both). In the case of there being no 
individuals observed by both these two sources, the interaction between these 
sources is also not estimable (shown for a saturated model by Sharifi Far 
(2017)). Combining the two sources automatically removes the issue of iden-
tifiability of the interaction between these two sources as this parameter is no 
longer present. Further, unlike the leave-one-out approach, this approach 
does not reduce the number of individuals observed within the new revised 
contingency table; however, the number of lists is reduced by one. Once 
again the estimates of total population size can be compared using the origi-
nal all-list data and then the reduced (combined list) contingency table. For 
the simulation study the estimate can also be compared to the (known) true 
population size from which the data are simulated.

Case Studies

We consider two case studies relating to data from the UK and Romania, both 
with five sources. Both of these cases have minimal overlap between some of 
the sources. For the Romanian data, one of the lists is dominant and contains 
the majority of the observations.

UK Data

We consider the data presented by Silverman (2014) relating to modern slav-
ery in the UK. The data contains five different sources corresponding to: 
Local Authority (LA); Non-Government organisations (NG); Police Force 
and/or National Crime Agency (PF); Government Organisations (GO); and 
the General Public (GP). For further information, including discussion of 
combining the police force and National Crime Agency as a single list, see 
Silverman (2014). The data are presented in Table 1. We note that there is no 
overlap between the lists LA and GP, that is, no individuals are recorded by 
both of these sources, and, in general, there is very little overlap between GP 
and the other remaining lists. Given these data, it can be shown that the inter-
action between LA and GP (and all higher order interactions) cannot be esti-
mated (Sharifi Far, 2017). In our analyzes, due to the sparsity of the 
contingency table, we restrict the interactions to only two-way interactions 
between lists. When modelling the five lists, all the two-way interactions, 
except the LA and GP interaction, are estimable.
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Full data analysis.  We initially analyze the full five-list dataset, in order to 
consider the robustness of the total population estimate when investigating 
the two issues of (i) removing each list in turn; and (ii) combining GP with 
each of the remaining lists in turn. We consider a model search algorithm 
using the AIC statistic to compare competing models. We restrict the set of 
models to those with two-way interactions, omitting the LA× GP interaction. 
The model identified as optimal has the following six two-way interactions 
and associated direction of the interaction (+ve = positive interaction and 
–ve = negative interaction): LA× NG (+ve); LA× PF (+ve); NG× GO 
(–ve); NG× GP (–ve); PF× GP (–ve); GO× GP (–ve). All interactions identi-
fied relating to either GO or GP correspond to negative interactions (so being 
identified by either of these sources leads to a lower chance of being observed 
by the other data source where there is an interaction). Conversely, interac-
tions that involve only the lists LA, NG, or PF have positive relationships. 
Given the above model, the corresponding MLE for the total population is 
11,313 with the 95% CI (9,750, 12,876).

Omitting lists: “Leave-one-out”.  We consider the influence of each list on the 
estimate of the population size, by omitting each list in turn. The estimates 
and 95% CIs are presented in Table 2, along with the sign of the included 
interaction terms. The population size estimates are highly variable for the 
different omitted lists. Identifying structured patterns within the output is 
non-trivial: omitting lists masks patterns in the cell entries, for example, a 
previous overlap between two lists becomes an observation in a single list 
when one of the sources is left-out, and different models (and interactions) 
will be identified given these changes. In all cases where interactions are 
chosen in both the full five-list and reduced four-list dataset analyzes, the 
direction of the interactions remains consistent (except for NG× GO 

Table 1.  UK Modern Slavery Data of Non-Zero Contingency Table Cell Entries.

LA LA LA LA LA LA LA
  NG NG NG NG NG NG NG NG NG
  PF PF PF PF PF PF PF PF
  GO GO GO GO GO GO GO GO
  GP GP GP GP  
54 463 995 695 316 15 19 3 62 19 1 76 11 8 1 1 4 1

Note. The five lists are: LA = local authority; PF = police force and/or National Crime 
Agency; GO = government organisation; NG = non-government organisation; GP = general 
public.
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interaction which is positive when PF is removed). In every instance, the 
reduced dataset includes interactions in common with those identified for the 
full five-list dataset. When omitting lists LA, NG, and PF (that exhibit posi-
tive interactions between them in the full analysis) the reduced datasets lead 
to different set of interactions to the full dataset (but with some common 
interactions). The comparison when removing lists GO and GP is more 
straightforward: the model identified is simply the reduced model from the 
five-list analysis, omitting the interaction terms associated with the omitted 
list. For these latter two cases, the estimate of the population size is similar to 
the estimate from the five-list analysis. List PF has the largest number of 
observations—removing this list provides an estimate where the 95% CI 
does not include the population estimate obtained in the five-list analysis.

Combining lists.  The GP list has very little overlap with the other lists and 
no overlap with LA. Therefore, we combine this list with each of the other 
lists in turn and estimate the total population size from the reduced contin-
gency table. The corresponding MLEs of the population size, 95% CIs and 
selected interaction terms are given in Table 3. To clearly denote which 

Table 2.  MLEs and Associated 95% CIs for the Total Population Size for the UK 
Data, and Corresponding Model Selected in Terms of Interaction Terms Present 
with Associated Estimated Sign of the Interaction.

Omitted 
list

Population 
estimate

95% confidence 
interval Model

— 11,313 (9,750, 12,876) LA×NG (+ve); LA× PF (+ve); NG×GO 
(–ve);

NG×GP (–ve); PF×GP (–ve); GO×GP 
(–ve)

LA 18,945 (11,740, 26,150) NG× PF (+ve); NG×GP (–ve); PF×GO 
(+ve); PF×GP (–ve); GO×GP (–ve)

NG 31,118 (18,893, 43,343) LA× PF (+ve); PF×GO (+ve)
PF 32,042 (13,781, 50,304) LA×NG (+ve); NG×GO (+ve); NG×GP 

(–ve);
GO 10,202 (8,061, 12,343) LA×NG (+ve); LA× PF (+ve); NG×GP 

(–ve); PF×GP (–ve)
GP 11,015 (9,447, 12,583) LA×NG (+ve); LA× PF (+ve); NG×GO 

(–ve)

Note. The first row (denoted by a “—”) gives the results of the complete five-list analysis; the 
remaining rows are the results of omitting each list in turn.
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lists have been combined we “dot product” the list names, for example, the 
combination of GP and LA is denoted by “GP.LA”. The largest deviation 
from the population size estimate of the five-list dataset is observed when 
LA and GP are combined. These two lists have no overlap and their inter-
actions with the other lists are in opposite directions. This appears to have 
resulted in some interactions cancelling each other out. For instance, in the 
five-list analysis GP× NG has a negative interaction whilst LA× NG has a 
positive interaction, once combined GP.LA has no interaction with NG. 
This has further impact on the remaining interactions between the non-
combined lists with clear changes in the selected interaction terms. For the 
combinations of GP with NG and GO the interactions for the combined 
model appear more predictable: where the uncombined lists displayed 
interactions, the combined lists share those same interactions. The combi-
nation GP.PF lies somewhere in between the above cases: the majority of 
interactions can be anticipated from the original interactions, but there are 
also some changes in the interactions of the uncombined lists. Overall, 
when compared to the leave-one-out method there appears to be less vari-
ability in the range of estimates.

Table 3.  MLEs and 95% CIs of the Population Size for the UK Data Given the 
Model Selected, and Corresponding Model Selected in Terms of Interaction Terms 
Present (Estimated Sign).

Combined 
lists

Population 
estimate

95% confidence 
interval Model

— 11,313 (9,750, 12,876) LA×NG (+ve); LA× PF (+ve); NG×GO 
(–ve);

NG×GP (–ve); PF×GP (–ve); GO×GP 
(–ve)

GP.LA 16,071 (12,661, 19,481) GP.LA×GO (–ve); NG× PF (+ve);
PF×GO (+ve)

GP.NG 12,661 (10,920, 14,403) LA×GP.NG (+ve); LA× PF (+ve);
GP.NG×GO (–ve)

GP.PF 13,180 (11,343, 15,017) LA×NG (+ve); LA×GP.PF (+ve);
NG×GO (–ve)

GP.GO 14,394 (11,862, 16,926) LA×NG (+ve); LA× PF (+ve);
NG× PF (+ve); NG×GP.GO (–ve)

Note. The first row (denoted by a “—”) gives the results of the complete five-list analysis; 
the remaining rows are the results of combining list GP with each of the other lists. For the 
model description we denote the combined lists by the combined “dotted” abbreviations.
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Romania Data

We consider data collected for Romania in 2015. Five lists are included cor-
responding to: Police/agency against trafficking in persons and border police 
(PF), International organization for Migration (IM), Non-Governmental 
organisations (NG), Foreign Authorities (FA), and Other (OT). A total of 879 
individuals are observed, with the majority of these obtained by list PF (a 
total of 806 individuals are observed by PF; of these 758 are only identified 
by PF). Thus, PF dominates the other lists. IM observes a total of 48 individu-
als (one individual is unique to IM); NG observes 25 individuals (19 of these 
are observed by at least one other list); FA observes 72 individuals (all these 
individuals are observed by at least one other list); and OT has 66 individuals 
(with 34 only observed by OT).

Full data analysis.  We conduct an analysis of the full five-list dataset. We 
restrict the model search to those including two-way interactions, and use the 
AIC statistic to determine the interactions present. The model selected as 
“best” had interactions: PF× IM (–ve); PF× NG (–ve); PF× FA (+ve); PF×
OT (–ve); IM× FA (+ve); NG× FA (+ve); NG× OT (–ve); FA× OT (+ve). 
The associated estimate of the population size is 921, with 95% CI (879 * , 
993). We truncate the lower limit of the 95% CI to the observed number of 
individuals (indicated by * ). We will use this estimate as a baseline to inves-
tigate the impact of removing each of the lists in turn and secondly combining 
PF with each of the other lists in turn (chosen since PF has the smallest per-
centage overlap with each of the other lists).

Omitting lists: “Leave-one-out”.  The population size estimates, 95% CIs and 
selected model when each list is omitted in turn, are given in Table 4. Remov-
ing the dominant list PF (of which 86% of the individuals on this list are only 
seen on this list) leads to a substantial decrease in the estimate of the total 
population. This is unsurprising given the dominance of this list in observing 
individuals. In particular, this source alone records 74% of all individuals 
observed; and 68% of all individuals observed are only observed by this list. 
Omitting the other lists leads to estimates similar to the estimate obtained 
when using all five lists. We note that removing the OT list leads to a larger 
and highly imprecise estimate of the population size. In line with the observa-
tions from the UK data, there is generally agreement across the different 
omissions in the interactions identified: where an interaction is identified to 
be present, the sign of the interaction remains consistent whenever the inter-
action is detected. On removing lists that have a negative interaction with the 
dominant list PF (i.e. IM, NG, and OT) the interaction terms identified are 
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typically those identified by the five-list analysis with those featuring the 
omitted list removed. For list FA which originally displayed a positive inter-
action with the dominant list PF, and contains no unique individuals, the 
selection of interactions is somewhat different amongst the remaining lists.

Combining lists.  For the Romanian data, PF has minimal overlap with the 
other lists: only 48 individuals observed by list PF are observed by another 
list, which corresponds to only 6% of individuals observed by PF. We inves-
tigate the effect of combining PF with each of the other lists. Whilst this 
approach is similar to that of the UK data (combining with a minimally 
overlapping list), here there is a structural difference in that the list also 
accounts for the majority of observations. The corresponding results are 
given in Table 5. The estimates obtained in each of the combined list ana-
lyzes are reasonably consistent with substantially overlapping 95% CIs 
(compared with the estimate using all five lists). The largest discrepancy 
arises when combining list PF with list FA. This is potentially due to the 
complex relationship between these two lists: of the eight interactions 

Table 4.  Results for the Romanian Data in Terms of the MLEs and Associated 
95% CIs for the Total Population Size Given the Model Selected, and 
Corresponding Model Selected in Terms of Interaction Terms Present with 
Associated Estimated Sign of the Interaction.

Omitted 
lists

Population 
estimate

95% 
confidence 

interval Model

— 921 ( 879* , 993) PF× IM (–ve); PF×NG (–ve); PF× FA (+ve);
PF×OT (–ve); IM× FA (+ve); NG× FA (+ve);
NG×OT (–ve); FA×OT (+ve)

PF 258 (142, 374) IM× FA (+ve); IM×OT (+ve); NG× FA (+ve)
IM 971 (742, 1,200) PF×NG (–ve); PF× FA (+ve); PF×OT (–ve);

NG× FA (+ve); NG×OT (–ve); FA×OT (+ve)
NG 923 (842, 1,005) PF× IM (–ve); PF× FA (+ve); PF×OT (–ve);

IM× FA (+ve); FA×OT (+ve)
FA 1,035 (895, 1,175) PF×NG (–ve); PF×OT (–ve); IM×NG (+ve);

IM×OT (+ve)
OT 2,915 (845*, 5,638) PF× IM (–ve); PF× FA (+ve); IM× FA (+ve);

NG× FA (+ve)

Note. The first row (denoted by a “—”) gives the results of the complete five-list analysis; the 
remaining rows are the results of omitting each list in turn. When the lower bound of the 
confidence interval was truncated to the number of observed individuals, it is indicated by * .
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identified in the five-list analysis, seven feature PF, FA, or both. Once again 
the interactions identified (and associated sign) are remain fairly consistent 
across analyzes. As for the UK data, the combining of lists leads to less vari-
able estimates of population size compared to omitting lists.

The case studies suggest that analyzes should be conducted with some 
caution in the presence of minimally overlapping sources. In particular, omit-
ting sources with limited overlap can lead to different behaviors in the esti-
mate of the population size. Alternatively, combining a list with limited 
overlap to another list appears to provide less variable estimates. Thus, how 
we deal with such sources can have a significant impact on the population 
size estimate—and some sensitivity of the analyzes should be conducted. To 
investigate the impact further where the observed contingency tables are 
more “controlled”, we conduct a simulation study, motivated by the larger 
UK data.

Table 5.  Results for the Romanian Data in Terms of the MLEs and Associated 
95% CIs for the Total Population Size Given the Model Selected, and 
Corresponding Model Selected in Terms of Interaction Terms Present with 
Associated Estimated Sign of the Interaction.

Combined 
lists

Population 
estimate

 95%  confidence 
interval Model

— 921 (879*, 993) PF× IM (–ve); PF×NG (–ve); PF× FA 
(+ve); PF×OT (–ve); IM× FA (+ve); 
NG× FA (+ve); NG×OT (–ve);  
FA×OT (+ve)

PF. IM 1,087 (879*, 1,400) PF. IM×NG (–ve); PF. IM× FA (+ve);
PF. IM×OT (–ve); NG× FA (+ve);
FA×OT (+ve)

PF. NG 904 (879*, 1,647) PF. NG× IM (–ve); PF. NG× FA (+ve);
PF. NG×OT (–ve); IM× FA (+ve);
FA×OT (+ve)

PF. FA 1,679 (912, 2,446) PF. FA× IM (+ve); PF. FA×OT (–ve);
IM×OT (+ve); IM×NG (+ve)

PF. OT 1,139 (879*, 1,585) PF. OT×NG (–ve); PF. OT× FA (+ve);
IM× FA (+ve); NG× FA (+ve)

Note.The first row (denoted by a “—”) gives the results of the complete five-list analysis; the 
remaining rows are the results of combining list PF with each of the other lists. For the model 
description we denote the combined lists by the combined “dotted” abbreviations. When the 
lower bound of the confidence interval was truncated to the number of observed individuals, 
it is indicated by * .
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Simulation Study

The simulation study is motivated by the UK dataset with five sources, which 
represents a common structure between the victims-of-slavery sources—in par-
ticular when there are two sources for which no individuals are observed in com-
mon (sources LA and GP). We use the fitted model to the full five-list data 
analysis (so that there are six interaction terms with non-zero effects) as the gen-
erating model within the simulation study and use the same list names for sim-
plicity. We set the true population size to be equal to 11,313. We generate 500 
datasets from the given (conditional Multinomial) model. Only the cell count 
corresponding to cell k = {0,0,0,0,0}  is unknown. For each simulated dataset, 
we repeat the model search algorithm to identify the model deemed optimal 
using the AIC statistic, and estimate the associated population size and associated 
95% CI. We then remove each list in turn and repeat the analysis; before combin-
ing list GP (which has the smallest expected overlap) with each of the other lists 
and again repeat the model-fitting process. Finally, within the simulation study to 
consider the impact of the model selection process we also fit the generating 
model, or an alternative form of the model when a list is omitted or lists are com-
bined. When omitting lists, the alternative model corresponds to the generating 
model but with all interactions involving the omitted list removed; for combined 
lists for the alternative model we include all possible two-way interactions (there 
are six in total). Note that we only use the simulated datasets for which we do not 
observe any potential identifiability problems to remove any possible confound-
ing errors entering the simulation study. Thus, 30% of the simulated models in 
removing lists, and 55% of models in combining lists are used. For further dis-
cussion on identifiability, see for example, Vincent et al. (forthcoming).

Omitting Lists: “Leave-one-out”

For each simulated dataset we calculate the ratio of both the population estimate 
omitting the given source to the estimated total using all five lists; and the true 
population size (11,313). We plot these estimates against two further statistics 
corresponding to (i) the proportion of the total number of observed individuals 
by the source that is subsequently omitted; and (ii) the proportion of overlap for 
the given list that is omitted (i.e., the proportion of individuals observed by the 
given list that are also observed by at least one other list). These results are plot-
ted in Figure 1, where the left-hand plots, (a) and (c), correspond to the associ-
ated population size ratio for the estimate using all five lists plotted against (i); 
and the right-hand plots (b) and (d), correspond to the population size ratio for 
the estimate with the true simulated population size plotted against (ii). The 
black dots show the same quantities for the original UK data.
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The relationships observed in the plots are similar when considering the 
true population size; or the estimated population size using all five lists (i.e., 
the columns in the figure are similar): although, the variability appears to be 
slightly greater when using the true population size. In general, the greater the 
proportion of individuals observed by a given list, then omitting that list leads 
to a greater variability in the estimate of the population size. Further, within 
this simulation study the variability of the estimates appears to be more depen-
dent on the number of individuals observed by the given list that is omitted, as 
opposed to the proportion of overlap for that list—this is demonstrated by 
relatively similar estimates for LA and GP which observe the smallest number 
of individuals but have very different overlap patterns. Finally, we comment 

Figure 1.  Ratio of estimated total population size using only four of the lists to 
the estimate obtained using all five lists plotted against proportion of individuals 
observed by omitted list (a) or proportion of overlap of omitted list (c); and similar 
plot for the ratio of estimated total population size against true simulated value 
plotted against proportion of individuals observed by omitted list (b) or proportion 
of overlap of omitted list (d). The black dots show the same quantities for the 
original UK data.
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that there does not appear to be any structural over or under estimate of the 
population size when omitting any of the particular lists. However, we do note 
that underestimates do have a lower bound (i.e., the total number of individu-
als observed by the sources); whereas overestimates have no such bound and 
thus overestimates may be larger in magnitude.

To investigate further the performance of the estimates, we consider the 
95% CIs of the estimated population sizes and compare these with the true 
simulated population size. When considering all five lists, 69% of the 95% 
CIs contained the true value of the parameter. This is less than the nominal 
95% level that we would expect and would indicate perhaps that there are 
further potential issues (e.g., relating to model selection; see below for fur-
ther discussion). However, we are primarily concerned with the impact of 
omitting each list, and thus we use this 69% as a comparison when we subse-
quently omit each list. The coverage probabilities in each case correspond to: 
69%, 63%, 41%, 58%, and 63% when removing GP, GO, PF, NG, and LA, 
respectively. Further, the median of the length of these CIs for the models 
with five lists is 3,341. Similarly, the median of the length of the 95% CIs 
after removing GP, GO, PF, NG, LA is respectively 3,451, 5,076, 12,058, 
4,277, 3,402. Thus, omitting the list GP leads to very similar performance as 
the full five lists (in terms of coverage and precision of the estimate) and sug-
gests that the additional information that this list provides is minimal. 
Omitting lists GO, LA, and NG leads to a relatively similar reduction in per-
formance in terms of reduced coverage probabilities and precision. However, 
omitting list PF leads to a significant decrease in performance—this list also 
corresponds to the list that observes the greatest number of individuals.

Finally, we consider the impact of the model selection process by simply 
using the generating model or alternative form of the model. For the gener-
ated and alternative models for the reduced four-list sources when omitting a 
list, the coverage probabilities were significantly higher and equal to 97% 
with using the five lists and 97%, 93%, 100%, 96%, and 91% when removing 
GP, GO, PF, NG, and LA, respectively. Further, the median of the length of 
the 95% CIs are increased to: 14,483 with five lists, 15,049, 22,105, 55,400, 
31,362, 20,781 after removing GP, GO, PF, NG, and LA. Thus model selec-
tion has a significant impact on the performance of the MSE approach—we 
return to this issue in the discussion section.

Combining Lists

For each simulated dataset, the list GP is combined with each of the other four 
lists in turn and the associated total population size is estimated. Figure 2 pro-
vides the corresponding plots of the ratio of the estimated population size 
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using the combined lists compared to the estimated total using all five lists (in 
the left-hand plots); and the true population size used to simulate the data (in 
the right-hand plots), compared to the percentage of overlap of the source GP 
with the list it is combined with. The black dots show the same quantities for 
the original UK data. As for the above case of omitting the lists there is greater 
variability in the ratio of the estimated population size with the true value, 
compared to the case when we consider the estimated value using all five lists. 
Interestingly, within this simulation study there appears to be a clear and con-
sistent overestimate of the total population size when we combine the GP list 
with the LA list—for which in the real UK data there was no overlap observed. 
However, combining the list GP with the other lists (GO, PF, and NG) appears 
to provide less biased estimates of the total population size, and a reduced 
level of variability in the ratios. There also appears to be a slight decrease in 
the variability of the estimated ratio as the proportion of overlap of the com-
bined lists increases.

Figure 2.  Ratio of estimated population size using four lists with GP combined 
with each source in turn with (i) the estimated population size using all five sources 
(on the left-hand side); and (ii) the true population size used to simulate the 
data, compared with the percentage of the list GP overlap with the given list it is 
combined with. The black dots show the same quantities for the original UK data.
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For the set of retained datasets, the 95% CIs for the estimated population 
size using all the five lists, include the true value of the population size in 
67% of the simulated datasets, with a median length of 3,281. After combin-
ing GP with LA, NG, PF, GO this coverage probability is reduced to 23%, 
51%, 33,%, and 54%, respectively. The median length of the 95% CIs were 
7,480, 4,033, 3,814, 4,058, respectively after combining GP with LA, NG, 
PF, and GO. Thus combining GP with each of the other sources leads to sub-
stantially worse performance in terms of coverage probabilities, particularly 
for LA and PF. With regard to LA (for which this has very small overlap 
across the simulations), not only does combining the GP list with the LA list 
lead to poor estimation of the total population size (i.e., a general overesti-
mate and substantially reduced confidence interval performance) but the 
uncertainty of the estimate is also relatively large. Finally, to provide some 
insight into the impact of model selection within the analyzes we also con-
sider the generating and associated alternative models. In these cases the cov-
erage probability are significantly increased to 90% (for the generating 
model) when using the five lists and 92%, 97%, 94%, and 93% after combin-
ing GP with LA, NG, PF, and GO, respectively, for the reduced model. The 
corresponding median length of the 95% CIs are also increased to 13,310 
when using all five lists, and 24,055, 15,702, 15,868, 15,183 after combining 
GP with LA, NG, PF, and GO, respectively. This is a similar observation as 
for the case of omitting lists but without any a large increase in the size and 
variability of the length of the CIs.

The simulation studies suggest that the population size estimates can be 
sensitive to a number of different factors, including the number of sources 
that we include in the analysis and how we define a single source (i.e., a com-
bined source). In general, assuming that we fit the generating model or the 
alternative version of this model (when we omit or combine a list) the corre-
sponding population size estimates appear to be reasonable with generally 
good coverage probabilities. However, when adding the associated model 
search algorithm (using the AIC statistic as the criteria) the performance 
drops significantly and also appears to overestimate the precision of the 
resulting estimates.

Discussion

Collecting data from the different (and potentially diverse) sources and con-
ducting the collation across the different lists requires resources. These 
resources may be limited, for example, in terms of person time or money. Thus, 
understanding the importance of different lists can have a direct impact on 
future data collection, and allocation of resources. Questions may particularly 
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be raised in relation to sources that, for example, observe only a relatively small 
number of individuals, or those which have minimal overlap with other sources, 
since MSE relies on overlap between courses in order to estimate the total 
population size. This latter situation is very common in modern slavery appli-
cations—in this paper we considered the robustness of MSE in the case of 
small overlap between sources.

To reduce the minimal overlap between sources two approaches can be 
adopted: remove a source; or combine a source with another. This latter step 
may be done prior to any analysis being conducted, as may be done not only 
where there is minimal overlap but also in the opposite case where the over-
lap is substantial as was the case with UK data where the police force data 
was combined with the National Crime Agency data (Silverman, 2014). The 
analyzes conducted within this paper suggests a note of caution with regard 
to the application of MSE to modern slavery data. In particular changes to 
the lists (omitting a list or combining two lists) could potentially have a 
significant impact on the total population size estimate—although combin-
ing lists appeared to have a lesser effect than simply omitting a list. Overall 
the model selection algorithm implemented—and in particular the use of the 
AIC statistic commonly used within MSE approaches, see Coumans et al. 
(2017); Silverman (2014); Van der Heijden et al. (2012)—had a significant 
effect on the performance of the MSE. It is possible that several competing 
models may be regarded to fit the observed data equally well but yet have 
very different estimates for the population size. These observations lead us 
to make the following minimum recommendations when implementing an 
MSE approach:

1.	 Fit multiple models to the data to investigate the sensitivity of the 
estimates to the different models—this would particularly include 
“similar” (i.e., neighbouring) models;

2.	 Investigate the robustness of the estimate by omitting each source in 
turn and repeating the analysis;

3.	 Combine pairs of sources together and again investigate the robust-
ness of the parameter estimates; and

4.	 Conduct a simulation study to gain an understanding of the perfor-
mance of the analyzes (e.g., using the MLEs of the fitted model as the 
generating model, as for the simulation study conducted within this 
paper based on the UK data).

The above aim to provide a greater understanding of the particular dataset 
and analysis. If similar estimates are obtained under the different scenarios 
there is some reassurance in the approach being robust. However, deviations 
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may indicate some particular interesting aspect of the data. For example in 
our case for PF from the Romanian data lead to a significant decrease in the 
population estimate—and on inspection this was most likely due to the large 
number of (unique) individuals observed by this source. This in turn may be 
investigated to understand why so many individuals are only observed by PF, 
for example.

The simulation study suggests that the use of the AIC statistic as the model 
selection criteria may not be optimal, leading to poor coverage estimates of 
the true population size and over-confidence in the estimate. Alternative cri-
teria exist, such as the Bayesian information criterion (BIC; Schwarz, 1978) 
and Focused information criterion (FIC; Claeskens & Hjort, 2003). Thus 
these different criteria could also be investigated within the exploratory ana-
lyzes and added to the list of recommendations above. Further, with regard to 
model selection, an additional approach to consider includes a model-averag-
ing approach, and thus removing the reliance on a single model. A weighted 
average over the set of plausible models can be calculated, so that the popula-
tion size estimate includes both parameter and model uncertainty. See for 
example, Buckland et al. (1997) in the classical framework and Hoeting et al. 
(1999); King and Brooks (2001); Madigan and York (1997) in the Bayesian 
framework. If the set of plausible models all provide similar estimates of the 
total population size, then so too will the model-averaged estimate; however 
if the estimates differ between models the model-averaged approach will pro-
vide a weighted point estimate but typically have an associated significantly 
larger uncertainty interval to convey this additional uncertainty. In this latter 
circumstance it is useful to not only provide a single model-averaged esti-
mate but also the set of most likely models and their associated estimate.

Another issue that we have not considered within this data analyzes but 
may arise relates to cross-referrals, where one (or more lists) may refer indi-
viduals to other agencies but not vice-versa leading to asymmetry. For 
example, cross-referrals by another list to police may almost always be 
made when a child is or has been at risk. Cross-referral is also more likely 
when there is the prospect that an intelligence-led police raid could lead to 
the rescue of a clutch of other victims of modern slavery (Bird, 2019). 
Reports on MSE estimation of modern slavery, such as in Serbia and Ireland 
(23 Romanian men exploited in a waste recycling plant), for the United 
Nations Office on Drugs and Crime mention the context of annual counts for 
rescued victims being inflated by a particularly successful police operation. 
More generally, we acknowledge that MSE needs to evolve to take into 
account the underlying networks by which victims came to be listed. For 
example, a rescued victim may provide information leading to the rescue of 
other individuals, so that individuals are not independent of each other. 
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Hence, in addition to list-membership and (selective) cross-referrals, con-
sideration may also need to be given to the size and context of the rescued 
victim-network that selective cross-referral gives rise to. The current presen-
tation of the data in terms of simply the presence of individuals on different 
lists discards the temporal information, so that it is not possible to take into 
account (or estimate) referrals between lists; or possible relationships 
between identifications. Worthington et al. (2019) discuss similarities with 
ecological capture-recapture data where such temporal information is avail-
able and could provide insight/motivation for extended MSE models if such 
temporal information is available for modern slavery data. The challenges of 
modern slavery motivates further developments of MSE to incorporate the 
above particular complexities of the different processes acting on the and 
between the different lists used to identify victims.
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