
Articles

www.thelancet.com   Vol 385   January 24, 2015 351

HMG-coenzyme A reductase inhibition, type 2 diabetes, 
and bodyweight: evidence from genetic analysis and 
randomised trials 
Daniel I Swerdlow*, David Preiss*, Karoline B Kuchenbaecker, Michael V Holmes, Jorgen E L Engmann, Tina Shah, Reecha Sofat, 
Stefan Stender, Paul C D Johnson, Robert A Scott, Maarten Leusink, Niek Verweij, Stephen J Sharp, Yiran Guo, Claudia Giambartolomei, 
Christina Chung, Anne Peasey, Antoinette Amuzu, KaWah Li, Jutta Palmen, Philip Howard, Jackie A Cooper, Fotios Drenos, Yun R Li, 
Gordon Lowe, John Gallacher, Marlene C W Stewart, Ioanna Tzoulaki, Sarah G Buxbaum, Daphne L van der A, Nita G Forouhi, 
N Charlotte Onland-Moret, Yvonne T van der Schouw, Renate B Schnabel, Jaroslav A Hubacek, Ruzena Kubinova, Migle Baceviciene, 
Abdonas Tamosiunas, Andrzej Pajak, Roman Topor-Madry, Urszula Stepaniak, Sofi a Malyutina, Damiano Baldassarre, Bengt Sennblad, 
Elena Tremoli, Ulf de Faire, Fabrizio Veglia, Ian Ford, J Wouter Jukema, Rudi G J Westendorp, Gert Jan de Borst, Pim A de Jong, Ale Algra, 
Wilko Spiering, Anke H Maitland-van der Zee, Olaf H Klungel, Anthonius de Boer, Pieter A Doevendans, Charles B Eaton, Jennifer G Robinson, 
David Duggan, DIAGRAM Consortium, MAGIC Consortium, InterAct Consortium, John Kjekshus, John R Downs, Antonio M Gotto, 
Anthony C Keech, Roberto Marchioli, Gianni Tognoni, Peter S Sever, Neil R Poulter, David D Waters, Terje R Pedersen, Pierre Amarenco, 
Haruo Nakamura, John J V McMurray, James D Lewsey, Daniel I Chasman, Paul M Ridker, Aldo P Maggioni, Luigi Tavazzi, Kausik K Ray, 
Sreenivasa Rao Kondapally Seshasai, JoAnn E Manson, Jackie F Price, Peter H Whincup, Richard W Morris, Debbie A Lawlor, 
George Davey Smith, Yoav Ben-Shlomo, Pamela J Schreiner, Myriam Fornage, David S Siscovick, Mary Cushman, Meena Kumari, 
Nick J Wareham, W M Monique Verschuren, Susan Redline, Sanjay R Patel, John C Whittaker, Anders Hamsten, Joseph A Delaney, 
Caroline Dale, Tom R Gaunt, Andrew Wong, Diana Kuh, Rebecca Hardy, Sekar Kathiresan, Berta A Castillo, Pim van der Harst, Eric J Brunner, 
Anne Tybjaerg-Hansen, Michael G Marmot, Ronald M Krauss, Michael Tsai, Josef Coresh, Ronald C Hoogeveen, Bruce M Psaty, Leslie A Lange, 
Hakon Hakonarson, Frank Dudbridge, Steve E Humphries, Philippa J Talmud, Mika Kivimäki, Nicholas J Timpson, Claudia Langenberg, 
Folkert W Asselbergs, Mikhail Voevoda, Martin Bobak, Hynek Pikhart, James G Wilson, Alex P Reiner, Brendan J Keating, Aroon D Hingorani†, 
Naveed Sattar†

Summary
Background Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in 
risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target.

Methods We used single nucleotide polymorphisms in the HMGCR gene, rs17238484 (for the main analysis) and 
rs12916 (for a subsidiary analysis) as proxies for HMGCR inhibition by statins. We examined associations of these 
variants with plasma lipid, glucose, and insulin concentrations; bodyweight; waist circumference; and prevalent and 
incident type 2 diabetes. Study-specifi c eff ect estimates per copy of each LDL-lowering allele were pooled by meta-
analysis. These fi ndings were compared with a meta-analysis of new-onset type 2 diabetes and bodyweight change 
data from randomised trials of statin drugs. The eff ects of statins in each randomised trial were assessed using 
meta-analysis.

Findings Data were available for up to 223 463 individuals from 43 genetic studies. Each additional rs17238484-G 
allele was associated with a mean 0·06 mmol/L (95% CI 0·05–0·07) lower LDL cholesterol and higher body weight 
(0·30 kg, 0·18–0·43), waist circumference (0·32 cm, 0·16–0·47), plasma insulin concentration (1·62%, 0·53–2·72), 
and plasma glucose concentration (0·23%, 0·02–0·44). The rs12916 SNP had similar eff ects on LDL cholesterol, 
bodyweight, and waist circumference. The rs17238484-G allele seemed to be associated with higher risk of 
type 2 diabetes (odds ratio [OR] per allele 1·02, 95% CI 1·00–1·05); the rs12916-T allele association was consistent 
(1·06, 1·03–1·09). In 129 170 individuals in randomised trials, statins lowered LDL cholesterol by 0·92 mmol/L (95% 
CI 0·18–1·67) at 1-year of follow-up, increased bodyweight by 0·24 kg (95% CI 0·10–0·38 in all trials; 0·33 kg, 95% 
CI 0·24–0·42 in placebo or standard care controlled trials and –0·15 kg, 95% CI –0·39 to 0·08 in intensive-dose vs 
moderate-dose trials) at a mean of 4·2 years (range 1·9–6·7) of follow-up, and increased the odds of new-onset type 2 
diabetes (OR 1·12, 95% CI 1·06–1·18 in all trials; 1·11, 95% CI 1·03–1·20 in placebo or standard care controlled trials 
and 1·12, 95% CI 1·04–1·22 in intensive-dose vs moderate dose trials). 

Interpretation The increased risk of type 2 diabetes noted with statins is at least partially explained by HMGCR 
inhibition. 
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Introduction
Statins reduce LDL cholesterol concentration by inhib-
iting 3-hydroxy-3-methylglutaryl-coenzyme A reductase 
(HMGCR), leading to a proportionate reduction in 
cardiovascular disease (CVD) risk.1–4 Consequently, statins 
have become the most widely prescribed drug class: over 
25% of US adults aged at least 45 years (30 million 
individuals) received these drugs from 2005 to 20085 and 
an estimated 56 million might be eligible for statin 
treatment under new guidelines.6

A meta-analysis of randomised controlled trials of 
statins recently identifi ed a higher risk of type 2 diabetes 
mellitus from statin treatment compared with placebo 
or standard care,7 which was dose related.8 These 
fi ndings prompted a US Food and Drug Administration 
Drug Safety Communication in 20129 and a change to 
statin safety labelling. Subsequently, observational 
studies have also reported a higher risk of type 2 diabetes 
with statin treatment compared with individuals not 
taking statins.10–12 Although type 2 diabetes is a 
cardiovascular risk factor, there remains a net benefi t of 
statin treatment for prevention of CVD3 including 
among patients with diabetes.4

The mechanism underlying the glucose-raising eff ect 
of statins is of interest. A potential explanation in 
observational studies is that statin users adopt a less 
healthy lifestyle than individuals not taking statins, but 
this explanation is unlikely in masked treatment trials, 
which suggests that the eff ect is pharmacological. 
However, whether the glucose-raising eff ect of statins 
is explained by the same mechanisms as for LDL 
cholesterol lowering (ie, HMGCR inhibition) or by one of 
the proposed pleiotropic eff ects of statins13,14 (eg, mediated 
through isoprenoid intermediates and G-protein 
signalling15) is uncertain.

To investigate the mechanism underlying the 
glucose-raising eff ect of statins, we used the mendelian 
randomisation principle,16,17 with common variants in the 
gene encoding a drug target as uncon founded, unbiased 
proxies for pharmacological action on that target.18 We 
identifi ed single nucleotide poly morphisms (SNPs) in the 
HMGCR gene and examined their associations with 
bodyweight, body-mass index (BMI), waist circumference, 
plasma insulin and glucose, and risk of type 2 diabetes. 
Associations with these phenotypes would implicate a 
mechanism involving HMGCR inhibition. To test the 
correspondence of genetic and pharmacological eff ects, 
we updated a meta-analysis of the eff ect of statins on 
type 2 diabetes risk in randomised trials, and added new 
information on bodyweight.

Methods
Genetic studies
We selected as instruments two SNPs (rs17238484 and 
rs12916) in the HMGCR gene on the basis of genetic 
associations with LDL cholesterol in the Whitehall II study 
(n=4678)19 using the IBC HumanCVD BeadChip 

(Cardiochip; Illumina, San Diego CA, USA) (appendix).20 
Both were subsequently associated with LDL cholesterol at 
a genome-wide level of signifi cance,21 with strong 
associations in the largest genome-wide study of lipids so 
far (rs17238484 p=1·35 × 10–²¹; rs12916 p<1·00 × 10–³⁰).22 
Data were available for the greatest number of individuals 
for the rs17238484 SNP, and this was used for the principal 
analysis; a subsidiary analysis used the rs12916 SNP. 
To investigate potential confounding by linkage 
disequilibrium between our lead SNPs and others in 
nearby genes, we assessed the association of the HMGCR 
SNPs with hepatic genome-wide expression data 
(appendix). If the lead SNPs were in strong linkage 
disequilibrium with nearby loci, those genes might 
confound the noted eff ects of HMGCR genotype on 
measured phenotypes.23

In observational population studies (appendix) with 
genotype data for the rs17238484 SNP (or a proxy in strong 
linkage disequilibrium, r²>0·85), we included individuals 
of European descent for whom data were available on one 
or more phenotype of interest. In a secondary analysis, we 
included data from a subset of studies with data available 
on the rs12916 SNP or a suitable proxy.

Biomarkers included in the genetic analysis were total 
cholesterol, LDL cholesterol, non-HDL cholesterol, 
bodyweight, BMI, waist and hip circumferences, waist:hip 
ratio, height, plasma glucose, and plasma insulin 
(appendix). The primary disease outcome was type 2 
diabetes, including prevalent (occurring before study 
baseline) as well as incident cases (occurring subsequently; 
appendix). In the mendelian random isation paradigm, 
the intervention is the naturally randomised allocation of 
genotype, which occurs at conception and exerts its eff ect 
from that point throughout the lifetime of the individual. 
Therefore, events prevalent at the time of recruitment to 
genetic studies are nevertheless incident from the 
perspective of the time of the genotypic randomisation 
and can be included in the genetic analysis. Thus, for the 
genetic analysis, both prevalent and incident cases were 
included to maximise power.

All studies contributing data to these analyses were 
approved by their local ethics committees, as described 
in the published fi ndings of each study (appendix).

Meta-analysis of statin trials
We updated our two previous summary-level meta-
analyses7,8 on the association of statin treatment with 
incident type 2 diabetes in cardiovascular prevention 
trials of at least 1000 participants, followed up for at 
least 1 year. The appendix contains details of the 
exclusion criteria and trials.

Investigators from 20 eligible trials with data on 
incident type 2 diabetes were contacted for information 
on bodyweight change during follow-up by treatment 
allocation, which was used as a coprimary outcome. 
15 trials provided data on bodyweight at baseline and at 
the last visit attended among individuals free from 
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type 2 diabetes at baseline. Two trials (ALLHAT24 
and A to Z25) did not measure bodyweight sequentially, 
and bodyweight data were unavailable from the 
remaining three trials (appendix). Data were also 
analysed separately for participants not experiencing any 
primary cardiovascular outcome (according to 
trial-specifi c defi nitions) to exclude the possibility that 
the eff ect of statin treatment on bodyweight was limited 
to participants experiencing cardiovascular events.

Changes in LDL cholesterol in each treatment group at 
1 year were available from the Cholesterol Treatment 

Trialists’ Collaboration meta-analysis for 18 trials,1 
whereas data for mean changes in LDL cholesterol 
during two trials were taken from the primary 
publications.26,27 Information about plasma glucose and 
insulin concentrations, BMI, waist circumference, and 
waist:hip ratio was unavailable from the trials.

Statistical analysis
For the genetic studies, we assessed study-specifi c 
associations of rs17238484 and rs12916 with each 
continuous trait using univariate linear regression models. 

Figure 1: Association of rs17238484 genotype with type-2 diabetes-related traits 
Association of the rs17238484 genotype with (A) major plasma lipids fractions; (B) plasma glucose and insulin; (C) BMI and bodyweight; (D) waist and hip 
circumference and waist:hip ratio; and (E) risk of type 2 diabetes. Bars are 95% CIs. BMI=body-mass index. 
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Plasma glucose and insulin were analysed on the natural 
logarithmic scale because of their skewed distributions, 
and we present proportional diff erences in geometric 
means per allele. The rs17238484-G allele and rs12916-T 
allele were each associated with lower LDL cholesterol 
concentration and were designated the eff ect alleles, to 
facilitate direct comparison with statin treatment.

We assessed associations of the rs17238484 and rs12916 
SNPs with type 2 diabetes risk using univariate logistic 
regression models to estimate the odds ratio (OR) per 
LDL-lowering allele. We combined within-study estimates 
using fi xed-eff ects and random-eff ects meta-analyses, with 
heterogeneity quantifi ed by the I² statistic.28 Heterogeneity 
between subgroups was assessed using meta-regression. 
All genetic analyses were done using a prespecifi ed routine 
in Stata version 12.1, which was translated for use in SPSS, 
SAS, and R where necessary.

To corroborate our genetic fi ndings, we examined the 
associations of the two lead SNPs in a large genome-wide 
association study of BMI,29 a Metabochip analysis of 
plasma insulin,30 and a genome-wide association and 
Metabochip analysis of type 2 diabetes.31

In the meta-analysis of statin trial data, we synthesised 
within-trial ORs for type 2 diabetes during follow-up in 
participants free from type 2 diabetes at baseline and 
within-trial mean diff erences in bodyweight change 
between treatment groups, calculated as the diff erence 
from baseline to fi nal visit, using random-eff ects and 
fi xed-eff ects meta-analyses. We undertook meta-regression 
analyses of the associations of new-onset type 2 diabetes 
and bodyweight change with change in LDL cholesterol at 
1 year and with follow-up duration. We assessed inter-study 
heterogeneity using the I² statistic and used Stata version 
10.1 for trial-related analyses.

Role of the funding source
The funding sources had no role in study design, data 
collection, data analysis, data interpretation, the writing 
of the report, or the decision to submit for publication. 
DIS, DP, ADH, and NS had full access to all the data in 
the study and had fi nal responsibility for the decision to 
submit for publication.

Results
Of 38 Cardiochip SNPs within 55 kb of the HMGCR gene, 
seven met prespecifi ed criteria for instrument selection 
(appendix), of which all but the two selected, rs17238484 
and rs12916, were in strong linkage disequilibrium (r²>0·9; 
appendix). Gene expression data for rs17238484 were 
unavailable, but the T allele of rs12916 was associated with 
lower hepatic HMGCR expression (p=1·30 × 10–⁵) but not 
with expression of adjacent genes (appendix).

Data for up to 195 444 individuals (43 studies) for the 
HMGCR rs17238484 SNP and 94 652 individuals 
(21 studies) for the rs12916 SNP (or suitable proxies in 
studies in which these were not directly measured) 
contributed to the analysis of genetic associations with 

biomarkers and outcomes. The mean age of study 
participants was 59 years (range 26–75; appendix).

The association of the rs17238484 genotype with 
circulating concentrations of major lipid fractions followed 
an additive model in the meta-analysis of available data 
(fi gure 1A). Each additional rs17238484-G allele was 
associated with 0·06 mmol/L (95% CI 0·05–0·07) lower 
LDL cholesterol (p=1·34 × 10–³⁵; 101 919 individuals, 
26 studies), 0·07 mmol/L (0·06–0·08) lower total 
cholesterol (p=6·46 × 10–³⁶; 117 545 individuals, 30 studies), 
and 0·07 mmol/L (0·06–0·08) lower non-HDL cholesterol 
(p=3·32 × 10–³⁰; 103 375 individuals, 27 studies). The 
association of genotype with LDL cholesterol concentration 
was consistent between subgroups (data available in up to 
29 studies, 116 327 individuals), with all meta-regression 
p values greater than 0·05 (appendix). Associations of 
rs12916 with plasma lipids were directionally concordant 
with rs17238484 and of similar magnitude (appendix).

The rs17238484-G allele was associated with 1·62% 
(95% CI 0·53–2·72; p=0·004) higher plasma insulin 
concentration (37 453 individuals, 12 studies) and with 
higher plasma glucose concentration (0·23%, 0·02–0·44; 
p=0·03; 73 490 individuals, 23 studies; fi gure 1B). Each 
rs17238484-G allele was also associated with 0·30 kg 
higher bodyweight (95% CI 0·18–0·43; p=3·15 × 10–⁶; 
143 113 individuals, 30 studies) and 0·11 kg/m² higher 
BMI (0·07–0·14; p=1·77 × 10–⁷; 152 004 individuals, 
32 studies; fi gure 1C), but not with height (p=0·23; 
77 291 individuals, 23 studies; appendix). Each additional 
rs17238484-G allele was associated with greater waist 
circumference (0·32 cm, 95% CI 0·16–0·47; p=8·32 × 10–⁵; 
69 163 individuals, 19 studies), hip circumference 
(0·21 cm, 0·10–0·32; p=1·67 × 10–⁴; 69 159 individuals, 
19 studies), and waist:hip ratio (0·001, 0·0003–0·002; 
p=0·01; 95 496 individuals, 23 studies; fi gure 1D). The 
rs12916 SNP showed directionally concordant 
associations with these biomarkers (appendix). Additive 
association patterns were noted with all these traits, and 
no diff erences in the rs17238484 SNP eff ect occurred 
between subgroups (all meta-regression p values >0·05; 
appendix). The appendix shows estimates from 
random-eff ects meta-analyses.

Public domain data from a meta-analysis of 
genome-wide association studies of BMI29 and an 
Illumina Metabochip-based32 analysis of plasma insulin30 
revealed directionally concordant associations of the 
rs17238484 and rs12916 SNPs or suitable proxies with 
both these traits: log plasma insulin rs12916 β 0·007 
(95% CI 0·002–0·012; p=4·72 × 10–³) and rs17238484 
β 0·01 (0·004–0·016; p=5·92 × 10–⁴); and BMI rs17238484 
p=9·28 × 10–6 and rs12916 p=1·45 × 10–⁴. Associations of 
both SNPs with fasting insulin were attenuated to the 
null after adjustment for BMI in the same datasets 
(rs17238484 p=0·74; rs12916 p=0·63).

In 26 236 cases and 164 842 controls in 35 population 
studies, the HMGCR rs17238484-G allele, which was 
associated with lower LDL cholesterol and higher 
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bodyweight and BMI, seemed to be associated with 
increased risk of type 2 diabetes (OR per allele 1·02, 
95% CI 1·00–1·05; p=0·09; fi gures 1E and 2). Data on the 
association between HMGCR rs12916 and type 2 diabetes 
were available for 14 976 cases and 74 395 controls 
(16 studies). The OR per rs12916-T allele was 1·06 (95% CI 

1·03–1·09; p=9·58 × 10–⁵). The associations of both SNPs 
were confi rmed when our data were combined in a meta-
analysis with those from a large genome-wide association 
and Metabochip study of risk of type 2 diabetes 
(rs17238484 OR 1·03, 95% CI 1·01–1·06; rs12916 1·02, 
1·00–1·04; appendix).31
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Figure 2: Meta-analyses of the associations of 3-hydroxy-3-methylglutaryl-CoA reductase variants rs17238484 and rs12916 with risk of type 2 diabetes
Data were analysed by fi xed-eff ects meta-analysis. 
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Data from 129 170 participants free from type 2 diabetes 
at baseline were available from 20 statin trials (table). At 
1-year of follow-up, mean LDL cholesterol reduction was 
0·92 mmol/L (95% CI 0·18–1·67) across all 20 trials, 
1·07 mmol/L (0·44–1·70) in the 15 placebo-controlled 

and standard care-controlled trials (96 418 individuals), 
and 0·50 mmol/L (0·25–0·76) in the intensive-dose 
versus moderate-dose trials (32 752 individuals).

Mean follow-up across all 20 trials was 4·2 years (range 
1·9–6·7). Over this time, 3858 individuals allocated to statin 

Number of 
patients
(statin vs 
control)

Treatment
(active vs 
control)

Follow-up
(years)

Trial population Age
(years)

Diabetes 
diagnostic 
criteria*

Weight 
change 
data 
available

Absolute LDL 
cholesterol 
lowering at 
1 year (%)†

Number of 
cases of 
type 2 
diabetes on 
statin
(or intensive 
statin)

Number of 
cases of 
type 2 
diabetes on 
control
(or low-dose 
statin)

4S (1994) 4242
(2116 vs 2126)

S 10–40 mg vs 
placebo

5·2 Angina or previous MI 59 I, II, III Yes –1·77
(–37%)

198 193

WOSCOPS (1995) 5974
(2999 vs 2975)

P 40 mg vs 
placebo

4·8 Male, 
hypercholesterolaemia, 
no history of MI

55 II, III Yes –1·07
(–24%)

75 93

AFCAPS TexCAPS (1998) 6211
(3094 vs 3117)

L 20–40 mg vs 
placebo

5·2 Average cholesterol 
concentrations, no CVD

58 I, II, III Yes –0·94
(–27%)

72 74

LIPID (1998) 6997
(3496 vs 3501)

P 40 mg vs 
placebo

5·9‡ Hospital admission for 
unstable angina or 
previous MI

62‡ II, III Yes –1·03
(–25%)

126 138

GISSI-Prevenzione (2000) 3460
(1743 vs 1717)

P 20 mg vs 
standard care

1·9 Recent MI 59 III Yes –0·35
(–12%)

96 105

LIPS (2001) 1475
(724 vs 751)

F 80 mg vs 
placebo

3·9‡ Recent percutaneous 
coronary intervention

60 I No –0·92
(–27%)

17 14

HPS (2002) 14 573
(7291 vs 7282)

S 40 mg vs 
placebo

5·0 CVD or diabetes 65 I, II No –1·29
(–29%)

335 293

PROSPER (2002) 5023
(2510 vs 2513)

P 40 mg vs 
placebo

3·2 Age 70–82 years with 
CVD or risk factors

75 II, III Yes –1·04
(–31%)

165 127

ALLHAT-LLT (2002) 6087
(3017 vs 3070)

P 40 mg vs no 
treatment

4·8 CHD or CHD risk factors 66 III No –0·54
(–18%)

238 212

ASCOT-LLA (2003) 7773
(3910 vs 3863)

A 10 mg vs 
placebo

3·3‡ Hypertension, no CHD 63 IV Yes –1·07
(–35%)

154 134

PROVE-IT TIMI 22 (2004) 3395
(1707 vs 1688)

A 80 mg vs 
P 40 mg

2·0 Recent hospital 
admission for ACS

58 I, II, III Yes –0·65
(–22%)

101 99

A to Z (2004) 3504
(1768 vs 1736)

S 40–80 mg vs 
Placebo –S 20 mg

2·0‡ Recent hospital 
admission for ACS

60 I, II No –0·30
(–15%)

65 47

TNT (2005) 7595
(3798 vs 3797)

A 80 mg vs 
A 10 mg

5·0 Stable CHD 61 I, II, III Yes –0·62
(–22%)

418 358

IDEAL (2005) 7461
(3737 vs 3724)

A 80 mg vs 
S 20–40 mg

4·8‡ Previous MI 62 I, II, III Yes –0·55
(–16%)

240 209

SPARCL (2006) 3803
(1905 vs 1898)

A 80 mg vs 
placebo

4·4 Recent stroke or transient 
ischaemic attack

63 I, II, III§ Yes –1·43
(–42%)

166 115

MEGA (2006) 6086
(3013 vs 3073)

P 10–20 mg vs no 
treatment

5·3 Hypercholesterolaemia, 
no previous CHD or stroke

58 I, II, III Yes –0·67
(–17%)

172 164

CORONA (2007) 3534
(1771 vs 1763)

R 10 mg vs 
placebo

2·5 Systolic heart failure 73 I Yes –1·63
(–45%)

100 88

JUPITER (2008) 17 802
(8901 vs 8901)

R 20 mg vs 
placebo

1·9‡ No CVD, no diabetes, 
hsCRP ≥2·0 mg/L

66‡ I, II Yes –1·09
(–50%)

270 216

GISSI-HF (2008) 3378
(1660 vs 1718)

R 10 mg vs 
placebo

3·6 Chronic heart failure 67 III Yes –0·92
(–35%)

225 215

SEARCH (2010) 10 797
(5398 vs 5399)

S 80 mg vs 
S 20 mg

6·7 Previous MI 64 I No –0·39
(–12%)

625 587

Total 129 170
(64 558 vs 
64 612)

·· 4·2
(1·6)

·· ·· ·· ·· ·· 3858 3481

A=atorvastatin. CHD=coronary heart disease. CVD=cardiovascular disease. F=fl uvastatin. L=lovastatin. P=pravastatin. MI=myocardial infarction. R=rosuvastatin. S=simvastatin. *Diagnostic criteria: I=adverse 
event report or physician report; II=glucose lowering therapy; III=raised fasting plasma glucose (≥7·0 mmol/L) on at least one occasion. †Change in lipid values at 1 year except for SPARCL (average diff erence 
during trial) and CORONA (diff erence at 3 months). ‡Median values. §Included criterion that diagnostic raised fasting plasma glucose must be at least 2·0 mmol/L higher than baseline glucose.  

Table: Baseline data for participants without diabetes in 20 large statin trials 
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or intensive-dose statin and 3481 allocated to placebo, 
standard care, or moderate-dose statin were diagnosed with 
new-onset type 2 diabetes. The OR for new-onset 
type 2 diabetes with statin treatment was 1·12 (95% CI 
1·06–1·18; fi gure 3), with little heterogeneity between 
trial-specifi c ORs (I² 16·2%, 95% CI 0·0–50·7). The 
appendix provides fi xed-eff ects meta-analysis estimates. 
There was no association between LDL cholesterol lowering 
at 1 year and within-trial ORs for new-onset type 2 diabetes 
(log-odds per 1% reduction in LDL cholesterol 0·004, 
95% CI –0·001 to 0·009; p=0·10; appendix), or between 
duration of follow-up and risk of type 2 diabetes in either 
univariate meta-regression (log odds per year increase in 
trial duration –0·021, 95% CI –0·058 to 0·017; p=0·26), or 
after adjustment for trial type (ie, placebo-controlled and 
standard care-controlled or intensive vs moderate statin 
dose) and percent LDL cholesterol change (log odds –0·006, 
–0·051 to 0·039; p=0·77).

Data on the eff ect of statin treatment on bodyweight 
were available from 15 trials, including 91 393 participants 
free from type 2 diabetes at baseline. Mean follow-up was 
3·9 years (range 1·9–5·9). Recipients of statin treatment 
or intensive-dose statin treatment were 0·24 kg (95% CI 
0·10–0·38) heavier by the end of follow-up than were 
control recipients in a random-eff ects meta-analysis 
(fi gure 4), although there was substantial heterogeneity 
between trials (I² 78·6%, 95% CI 65·3–86·8). The 

appendix provides fi xed-eff ects meta-analysis estimates. 
When limited to individuals not experiencing a 
cardiovascular event, estimates were similar (0·21 kg, 
95% CI 0·08–0·35; 83 959 individuals). The eff ect on 
bodyweight change was noted only in trials comparing 
statin treatment with placebo or standard care (0·33 kg, 
95% CI 0·25 to 0·42; I² 18·6%), but not in trials comparing 
moderate-dose with intensive-dose statin treatment 
(–0·15 kg, 95% CI –0·39 to 0·08; I² 63·2%). No association 
was noted between relative LDL cholesterol reduction and 
within-trial bodyweight change (meta-regression β 0·004,  
95% CI –0·012 to 0·021; p=0·58; appendix). There was no 
relation between duration of follow-up and bodyweight 
change in either univariate meta-regression 
(β –0·028 kg/year, 95% CI –0·147 to 0·092; p=0·63) or 
multivariate meta-regression analysis (β –0·009, 95% CI 
–0·091 to 0·073; p=0·81) after adjustment for relative LDL 
cholesterol change and trial type. No relation was noted 
between bodyweight change and risk of new-onset 
type 2 diabetes across the trials (log-odds per 1 kg 
bodyweight increase –0·14, 95% CI –0·41 to 0·13; p=0·29).

Discussion
HMGCR genetic variants in population studies and 
statin treatment in trials were associated with higher 
bodyweight and higher risk of type 2 diabetes, suggesting 
that these eff ects are a consequence of HMGCR 

Figure 3: Eff ect of statin treatment on new-onset type 2 diabetes
Data were analysed by random-eff ects meta-analysis. OR=odds ratio. Case=developed type 2 diabetes. Non-case=did not develop type 2 diabetes.
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inhibition. The association of HMGCR SNPs with risk of 
type 2 diabetes is new, as is the association of statin 
treatment and HMGCR SNPs with increased bodyweight.

Increased bodyweight plays a causal part in the 
development of type 2 diabetes,33 suggesting a possible 
mechanism for the dysglycaemic eff ect of statin treatment. 
However, whether the relation between HMGCR 
inhibition and type 2 diabetes is mediated exclusively by 
changes in body composition remains unknown. Statin 
treatment led to higher bodyweight and increased risk of 
type 2 diabetes, and both HMGCR SNPs studied were 
associated with higher bodyweight and waist circum-
ference, and one with higher plasma insulin and glucose 
concentrations. Insulin resistance might accompany 
bodyweight gain and a central distribution of adipose 
tissue. However, we were unable to identify a specifi c 
association of statin treatment with insulin resistance in 
these analyses because the relevant measures were 
unavailable from trials. One small trial34 that was ineligible 
for the present study reported 2 months of atorvastatin 
treatment led to higher glycated haemoglobin (HbA1c) and 
insulin concentrations and lower insulin sensitivity than 
with placebo, and fi ndings from a previous meta-analysis35 
of statin trials suggested diff erential eff ects on insulin 
sensitivity between statins. In JUPITER36 and PROVE-IT 
TIMI 22,37 small increases in HbA1c were noted in 
individuals randomly assigned to statin treatment 
compared with control individuals, and in AFORRD,38 
HbA1c also increased slightly in patients on atorvastatin 
compared with placebo after 4 months. Nevertheless, the 
association of one HMGCR SNP with fasting insulin and 
glucose concentrations, and its attenuation to the null  

after adjustment for BMI, support a bodyweight-mediated 
association between HMGCR inhibition and insulin 
resistance as a possible mechanistic explanation. 
Conversely, the magnitude of bodyweight gain we noted 
in both statin trials and genetic studies seems insuffi  cient 
to account for the corresponding risk of type 2 diabetes. 
Intensive statin treatment also showed no greater eff ect 
on bodyweight than low-dose or moderate-dose treatment, 
although type 2 diabetes risk was greater with intensive 
statin treatment.

The anatomical site of the genetic and drug eff ects on 
energy metabolism that we report is not completely 
certain. The liver is a likely location, in view of its 
important involvement in lipid metabolism; however, the 
dysglycaemic phenotypes reported here might be caused 
by modulation of HMGCR function in skeletal muscle. 
Additional, off -target eff ects of statins might also make a 
further contribution to bodyweight gain.39

Inhibition of HMGCR by statins impairs hepatocyte 
cholesterol synthesis, upregulates hepatic LDL receptor 
expression, and reduces circulating LDL cholesterol 
concentrations. Although the genetic fi ndings provide 
evidence that the eff ect of statins on bodyweight and 
type 2 diabetes risk is caused by HMGCR inhibition, 
whether this eff ect requires or is independent of 
reductions in circulating LDL cholesterol remains 
unclear. A meta-regression analysis of trial data did not 
provide evidence for an association between LDL 
cholesterol reduction and bodyweight or type 2 diabetes 
risk, but these analyses were done with summary-level 
data, which might have limited our ability to detect any 
such relation. Studies of genetic variants from other loci 

Figure 4: Eff ect of statin treatment on bodyweight
Data were analysed by random-eff ects meta-analysis. In most trials, the total number of participants without type 2 diabetes at baseline for whom bodyweight data 
were available was smaller than the total number for whom data were available for the analysis of new-onset type 2 diabetes. 
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aff ecting LDL cholesterol22 or drugs lowering LDL 
cholesterol by other mechanisms would probably help to 
resolve this uncertainty.

An association with BMI has been identifi ed for a SNP 
350 kb from HMGCR at a genome-wide level of signifi cance 
(p=2·17 × 10–¹³),29 although with no other variants within the 
HMGCR gene. In publicly available data from two genome-
wide association studies,29–30 associations of the rs17238484 
and rs12916 with BMI and plasma insulin concentration 
were noted at strong but sub-genome-wide levels of 
signifi cance. This evidence, the consistent eff ect of both 
SNPs on LDL cholesterol, and a specifi c association with 
hepatocyte HMGCR mRNA expression for one of the 
SNPs (rs12916; appendix) supports their validity as genetic 
instruments in this analysis.

We used two HMGCR SNPs in the genetic analysis, 
one for the main (rs17238484) and another (rs12916) for a 
subsidiary analysis. Although the fi ndings were broadly 
consistent, the small diff erences in eff ect estimates 
between the two variants could be caused by the diff erent 
allele frequencies, available sample size for each, and the 
association of each with a functional variant or variants 
that were not identifi ed. 

This study has some limitations. Not all phenotypes 
measured in genetic studies were available in the statin 
trials—notably plasma glucose and insulin, waist and hip 
circumference, and waist:hip ratio. Moreover, not all 
studies in the genetic analysis measured glucose in 
fasting samples. In view of the wide age range of 
participants included in these analyses, survival bias 
might have aff ected our fi ndings; however, this is unlikely 
and any such eff ect, if present, would probably have been 
limited. The HMGCR variants might aff ect the odds of 
being prescribed lipid-lowering drugs and thus introduce 
bias to the association between HMGCR and risk of 
type 2 diabetes. However, we found no evidence of an 
interaction between genotype, lipid-lowering drug use 
at study baseline, and risk of type 2 diabetes (appendix). 
The source of the heterogeneity between the statin 
trials that provided bodyweight data, particularly for 
dose-comparison trials, remains uncertain. Reductions in 
LDL cholesterol between arms in the dose comparison 
trials was smaller than that achieved in the placebo-
controlled trials. Our analysis was restricted to 
participants without type 2 diabetes at baseline. However, 
we did not have access to data on within-trial death, 
withdrawal, or loss to follow-up. Although observational 
pharmacoepidemiological studies have also examined the 
association of statin prescription with the development of 
type 2 diabetes, studies of this type can be prone to 
confounding and bias. For this reason, and to permit 
more direct comparison with the genetic analysis, we 
focused on data from randomised trials. Finally, trial 
analyses were done with summary-level data, which 
limited power for meta-regression.

Our fi ndings pertain to the mechanism by which statins 
slightly increase the risk of type 2 diabetes—an association 

that has already been established. Findings from recent 
analyses of trials have shown that, although this 
association is robust, the absolute risk of developing 
type 2 diabetes is greatly off set by the benefi ts of statin 
treatment for CVD risk.3,40 Indeed, the effi  cacy of statin 
treatment to reduce the risk of CVD has been shown 
conclusively in several large primary and secondary 
prevention randomised controlled trials, including in 
individuals with type 2 diabetes, with a favourable 
risk:benefi t profi le.1,3,4 For this reason, our fi ndings 
provide mechanistic insight, but should not alter present 
guidance on prescription of statins for prevention of 
CVD. Nevertheless, our results, including the new fi nding 
of increased bodyweight with statin treatment, suggest 
lifestyle interventions such as bodyweight optimisation, 
healthy diet, and adequate physical activity should be 
emphasised as important adjuncts to prevention of CVD 
with statin treatment to attenuate risks of type 2 diabetes. 
The reason why bodyweight change does not seem to be 
greater with intensive statin treatment compared with 
moderate-dose treatment needs further investigation.

In conclusion, both statin treatment in randomised 
trials and carriage of common SNPs in the HMGCR 
gene in population studies were associated with 
bodyweight gain and higher risk of type 2 diabetes. 
Bodyweight gain is physiologically linked to insulin 
resistance and is one of the strongest risk factors for 
type 2 diabetes, which might partly explain the higher 
risk of type 2 diabetes in statin-treated patients.
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