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We study the adaptation properties of the multivariate log-concave
maximum likelihood estimator over three subclasses of log-concave
densities. The first consists of densities with polyhedral support
whose logarithms are piecewise affine. The complexity of such densi-
ties f can be measured in terms of the sum Γ(f) of the numbers of
facets of the subdomains in the polyhedral subdivision of the support
induced by f . Given n independent observations from a d-dimensional
log-concave density with d ∈ {2, 3}, we prove a sharp oracle in-
equality, which in particular implies that the Kullback–Leibler risk
of the log-concave maximum likelihood estimator for such densities
is bounded above by Γ(f)/n, up to a polylogarithmic factor. Thus,
the rate can be essentially parametric, even in this multivariate set-
ting. For the second type of adaptation, we consider densities that
are bounded away from zero on a polytopal support; we show that
up to polylogarithmic factors, the log-concave maximum likelihood
estimator attains the rate n−4/7 when d = 3, which is faster than
the worst-case rate of n−1/2. Finally, our third type of subclass con-
sists of densities whose contours are well-separated; these new classes
are constructed to be affine invariant and turn out to contain a wide
variety of densities, including those that satisfy Hölder regularity con-
ditions. Here, we prove another sharp oracle inequality, which reveals
in particular that the log-concave maximum likelihood estimator at-

tains a risk bound of order n
−min

(
β+3
β+7

, 4
7

)
when d = 3 over the class

of β-Hölder log-concave densities with β ∈ (1, 3], again up to a poly-
logarithmic factor.
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1. Introduction. The field of nonparametric inference under shape
constraints has witnessed remarkable progress on several fronts over the
last decade or so. For instance, the area has been enriched by methodolog-
ical innovations in new research problems, including convex set estimation
(Gardner et al., 2006; Guntuboyina, 2012; Brunel, 2013), shape-constrained
dimension reduction (Chen and Samworth, 2016; Xu et al., 2016; Groene-
boom and Hendrickx, 2018) and ranking and pairwise comparisons (Shah et
al., 2017). Algorithmic advances together with increased computing power
now mean that certain estimators have become computationally feasible
for much larger sample sizes (Koenker and Mizera, 2014; Mazumder et al.,
2018). On the theoretical side, new tools developed in recent years have
allowed us to make progress in understanding how shape-constrained proce-
dures behave (Dümbgen et al., 2011; Guntuboyina and Sen, 2013; Cai and
Low, 2015). Moreover, minimax rates of convergence are now known∗ for a
variety of core problems in the area, including decreasing density estimation
on the non-negative half-line (Birgé, 1987), isotonic regression (Zhang, 2002;
Chatterjee et al., 2018; Deng and Zhang, 2018; Han et al., 2019) and con-
vex regression (Han and Wellner, 2016). Groeneboom and Jongbloed (2014)
provide a book-length introduction to the field; many recent developments
are also surveyed in a 2018 special issue of Statistical Science devoted to the
topic.

One of the most intriguing aspects of many shape-constrained estimators
is their ability to adapt to unknown features of the underlying data gen-
erating mechanism. To illustrate what we mean by this, consider a general
setting in which the goal is to estimate a function or parameter that belongs
to a class D. Given a subclass D′ ⊆ D, we say that our estimator adapts to
D′ with respect to a given loss function if its worst-case rate of convergence
over D′ is an improvement on its corresponding worst-case rate over D; in
the best case, it may even attain the minimax rates of convergence over
both D′ and D, at least up to polylogarithmic factors in the sample size.
As a concrete example of this phenomenon, consider independent observa-
tions Y1, . . . , Yn with Yi ∼ N(θ0i, 1), where θ0 := (θ01, . . . , θ0n) belongs to
the monotone cone D := {θ = (θ1, . . . , θn) ∈ Rn : θ1 ≤ . . . ≤ θn}. Zhang
(2002) established that the least squares estimator θ̂n over D satisfies the
worst-case `2-risk bound

E
{
‖θ̂n − θ0‖2

}
≤ C

{(
θ0n − θ01

n

)2/3

+
log n

n

}
∗In the interests of transparency, we note that in some of our examples, there remain

gaps between the known minimax lower and upper bounds that are polylogarithmic in the
sample size.
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ADAPTATION IN MULTIVARIATE LOG-CONCAVE ESTIMATION 3

for some universal constant C > 0; thus, in particular, it attains the mini-
max rate of O(n−2/3) for signals θ0 ∈ D of bounded uniform norm. On the
other hand, the fact that the least squares estimator is piecewise constant
motivates the thought that θ̂n might adapt to piecewise constant signals.
More precisely, letting D′ ≡ D′k denote the subset of D consisting of signals
with at most k constant pieces, a consequence of Bellec (2018, Theorem 3.2)
is that

sup
θ0∈D′k

E
{
‖θ̂n − θ0‖2

}
≤ k

n
log
(en
k

)
.

Note that, up to the logarithmic factor, this rate of convergence (which
is parametric when k is a constant) is the same as could be attained by an
‘oracle’ estimator that had access to the locations of the jumps in the signal.
The proof of this beautiful result relies on the characterisation of the least
squares estimator as an `2-projection onto the closed, convex cone D, as well
as the notion of such a cone’s statistical dimension, which can be computed
exactly in the case of the monotone cone (Amelunxen et al., 2014; Soloff et
al., 2019).

As a result of intensive work over the past decade, the adaptive be-
haviour of shape-constrained estimators is now fairly well understood in
a variety of univariate problems (Balabdaoui, Rufibach and Wellner, 2009;
Dümbgen and Rufibach, 2009; Jankowski, 2014; Chatterjee et al., 2015; Kim
et al., 2018; Chatterjee and Lafferty, 2019). Moreover, in the special cases
of isotonic and convex regression, very recent work has shown that shape-
constrained least squares estimators exhibit an even richer range of adapta-
tion properties in multivariate settings (Han and Wellner, 2016; Chatterjee
et al., 2018; Deng and Zhang, 2018; Han et al., 2019; Han, 2019). For in-
stance, Chatterjee et al. (2018) showed that the least squares estimator in
bivariate isotonic regression continues to enjoy parametric adaptation up to
polylogarithmic factors when the signal is constant on a small number of
rectangular pieces. On the other hand, Han et al. (2019) proved that, in
general dimensions d ≥ 3, the least squares estimator in fixed, lattice design
isotonic regression† adapts at rate Õ(n−2/d) for constant signals, and that it
is not possible to obtain a faster rate for this estimator. This is still an im-
provement on the minimax rate of Õ(n−1/d) over all isotonic signals (in the
lexicographic ordering) with bounded uniform norm, but is strictly slower
than the parametric rate. We remark that, in addition to the ideas employed
by Bellec (2018), these higher-dimensional results rely on an alternative char-
acterisation of the least squares estimator due to Chatterjee (2014), as well

†Here and below, the Õ(·) notation is used to denote rates that hold up to polyloga-
rithmic factors in n.
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as an argument that controls the statistical dimension of the d-dimensional
monotone cone by induction on d; see Han (2019, Theorem 3.9) for an alter-
native approach to the latter. Given the surprising nature of these results, it
is of great interest to understand the extent to which adaptation is possible
in other shape-constrained estimation problems.

This paper concerns multivariate adaptation behaviour in log-concave
density estimation. The class of log-concave densities lies at the heart of
modern shape-constrained nonparametric inference, due to both the mod-
elling flexibility it affords and its attractive stability properties under oper-
ations such as marginalisation, conditioning, convolution and linear trans-
formations (Walther, 2009; Saumard and Wellner, 2014; Samworth, 2018).
However, the class of log-concave densities is not convex, so the maximum
likelihood estimator cannot be regarded as a projection onto a convex set,
and the results of Amelunxen et al. (2014), Chatterjee (2014) and Bellec
(2018) cannot be applied.

To set the scene, let Fd denote the class of upper semi-continuous, log-
concave densities on Rd, and suppose that X1, . . . , Xn are independent and
identically distributed random vectors with density f0 ∈ Fd. Also, write

dH(f, g) :=
{∫

Rd (f1/2 − g1/2)2
}1/2

for the Hellinger distance between two
densities f and g. Kim and Samworth (2016) proved the following minimax
lower bound‡: for each d ∈ N, there exists cd > 0 such that

(1) inf
f̃n

sup
f0∈Fd

E{d2
H(f̃n, f0)} ≥

{
c1 n

−4/5 if d = 1

cd n
−2/(d+1) if d ≥ 2,

where the infimum is taken over all estimators f̃n of f0 based on X1, . . . , Xn.
Thus, when d ≥ 3, there is a more severe curse of dimensionality than for the
problem of estimating a density with two bounded derivatives and exponen-
tially decaying tails, for which the corresponding minimax rate is n−4/(d+4)

in all dimensions (Goldenshluger and Lepski, 2014). See Section S3.3.1 in
the supplementary material (Feng et al., 2020) for further details and discus-
sion. The reason why this comparison is interesting is because any concave
function is twice differentiable Lebesgue almost everywhere on its effective
domain, while a twice differentiable function is concave if and only if its
Hessian matrix is non-positive definite at every point. This observation had
led to the prediction that the rates in these problems ought to coincide (e.g.
Seregin and Wellner, 2010, page 3778).

The result (1) is relatively discouraging as far as high-dimensional log-
concave density estimation is concerned, and has motivated the definition

‡In fact, more recently, Kur et al. (2019) proved that cd may be chosen independently
of the dimension d.
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ADAPTATION IN MULTIVARIATE LOG-CONCAVE ESTIMATION 5

of alternative procedures that seek improved rates when d is large under
additional structure, such as independent component analysis (Samworth
and Yuan, 2012) or symmetry (Xu and Samworth, 2019). Nevertheless, in
lower-dimensional settings, the performance of the log-concave maximum
likelihood estimator f̂n := argmaxf∈Fd

∑n
i=1 log f(Xi) has been studied with

respect to the divergence d2
X(f̂n, f0) := n−1

∑n
i=1 log f̂n(Xi)

f0(Xi)
(cf. Kim et al.,

2018, page 2281). This loss function is closely related to the Kullback–Leibler
divergence KL(f, g) :=

∫
Rd f log(f/g) and Hellinger distance. Indeed, we

have d2
H(f̂n, f0) ≤ KL(f̂n, f0) ≤ d2

X(f̂n, f0), where the the first bound is stan-
dard and the second inequality follows by applying Dümbgen et al. (2011,
Remark 2.3) to the function x 7→ log

(
f0(x)/f̂n(x)

)
. A small modification

of the proof of Kim and Samworth (2016, Theorem 5) yields the following
result, which is stated as Theorem S2 in the supplementary material (Feng
et al., 2020) for convenience:

(2) sup
f0∈Fd

E{d2
X(f̂n, f0)} =


O(n−4/5) if d = 1

O(n−2/3 log n) if d = 2

O(n−1/2 log n) if d = 3;

see also Doss and Wellner (2016) for a related result in the univariate case.
Moreover, very recently, Kur et al. (2019) proved that§

(3) sup
f0∈Fd

E{d2
H(f̂n, f0)} = Od(n

−2/(d+1) log n)

for d ≥ 4, so that, at least in squared Hellinger loss, it follows from (1), (2)
and (3) that f̂n attains the minimax optimal rate in all dimensions, up to a
logarithmic factor.

Our goal is to explore the potential of the log-concave maximum likelihood
estimator to adapt to three different types of subclass of Fd. The definition
of the first of these is motivated by the observation that log f̂n is piecewise
affine on the convex hull of X1, . . . , Xn, a polyhedral subset of Rd. It is
therefore natural to consider, for k ∈ N and m ∈ N ∪ {0}, the subclass
Fk(Pm) ≡ Fkd (Pm) ⊆ Fd consisting of densities that are both log-k-affine
on their support (see Section 1.1), and have the property that this support
is a polyhedral set with at most m facets. Note that this class contains
densities with unbounded support. By Proposition 1 in Section 2 below, the
complexity of such densities f can be measured in terms of the sum Γ(f) of
the numbers of facets of the subdomains in the polyhedral subdivision of the

§Here and below, the Od(·) notation is used as shorthand for an upper bound that
holds up to a dimension-dependent quantity.
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support induced by f . A consequence of our first main result, Theorem 2,
is that for all f0 ∈ Fk(Pm), we have

(4) E{d2
X(f̂n, f0)} = Õ

(
Γ(f0)

n

)
when d ∈ {2, 3}; moreover, we also show that Γ(f0) is at most of order k+m
when d = 2, and at most of order k(k +m) when d = 3. Thus, when k and
m may be regarded as constants, (4) reveals that the log-concave maximum
likelihood estimator adapts at a parametric rate to Fk(Pm) when d ∈ {2, 3},
up to the polylogarithmic term. Moreover, Theorem 2 offers a complete pic-
ture for this type of adaptation by providing a sharp oracle inequality that
covers the case where f0 is well approximated (in a Kullback–Leibler sense)
by a density in Fk(Pm) for some k,m. Unsurprisingly, the proof of this
inequality is much more delicate and demanding than the corresponding
univariate result given in Kim et al. (2018), owing to the greatly increased
geometric complexity of both the boundaries of convex subsets of Rd for
d ≥ 2 and the structure of the polyhedral subdivisions induced by the densi-
ties in Fk(Pm). In particular, the parameterm plays no role in the univariate
problem, since the boundary of a convex subset of the real line has at most
two points, but it turns out to be crucial in this multivariate setting. Indeed,
no form of adaptation would be achievable in the absence of restrictions on
the shape of the support of f0 ∈ Fd; for instance, when f0 is the uniform den-
sity on a closed Euclidean ball in Rd with d ≥ 2, consideration of the volume
of the convex hull of X1, . . . , Xn yields that E{d2

H(f̂n, f0)} ≥ c̃d n−2/(d+1) for
some c̃d > 0 depending only on d (Wieacker, 1987).

In contrast to the isotonic regression problem described above, Theorem 2
indicates that even when d = 3, the log-concave maximum likelihood esti-
mator also enjoys essentially parametric adaptation when f0 is close to a
density in Fk(Pm) for small k and m. Unfortunately, our arguments do
not allow us to extend our results to dimensions d ≥ 4, where the relevant
bracketing entropy integral diverges at a polynomial rate. Recent work by
Carpenter et al. (2018) derived worst-case rates in squared Hellinger loss for
the log-concave maximum likelihood estimator when d ≥ 4; the crux of their
argument involved using Vapnik–Chervonenkis theory to bound

E
(

sup
K∈K∗d

∣∣∣∣ 1n
n∑
i=1

1{Xi∈K} − P(X1 ∈ K)

∣∣∣∣),
where K∗d denotes the set of all closed, convex subsets of Rd. Kur et al.
(2019) obtained an improved bound on this quantity of Od(n

−2/(d+1)) using
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ADAPTATION IN MULTIVARIATE LOG-CONCAVE ESTIMATION 7

a general chaining argument, and this allowed them to deduce the worst-
case guarantees on the performance of the log-concave maximum likelihood
estimator stated in (3). Unfortunately, it is unclear whether this approach
can provide any adaptation guarantees.

Sections 3 and 4 consider different subclasses of Fd, and are motivated by
the hope that if we rule out ‘bad’ log-concave densities such as the uniform
densities with smooth boundaries mentioned above, then we may be able to
achieve faster rates of convergence, up to the n−4/(d+4) rate conjectured by
Seregin and Wellner (2010). Since this rate already coincides with the worst-
case rate for the log-concave maximum likelihood estimator given in (2)
when d = 1, 2 (up to a logarithmic factor), and since the same entropy
integral divergence issues mentioned above apply when d ≥ 4, we focus on
the case d = 3 in these sections. In Section 3, we restrict attention to densities
with polytopal support (that need not satisfy the log-k-affine condition of
Section 2). Theorem 5 therein provides a sharp oracle inequality, which
reveals that in such cases, the log-concave maximum likelihood estimator
attains the rate Õ(n−4/7) with respect to d2

X divergence, at least when the
density is bounded away from zero on its support.

In Section 4, we introduce an alternative way to exclude the bad uniform
densities mentioned above, namely by considering subclasses of Fd consist-
ing of densities f whose contours are well-separated in regions where f is
small. A major advantage of working with contour separation, as opposed
to imposing a conventional smoothness condition such as Hölder regularity,
is that we are able to exhibit adaptation over much wider classes of densi-
ties, as we illustrate through several examples in Section 4. A consequence
of our main theorem in this section (Theorem 9) is that the log-concave
maximum likelihood estimator attains the rate Õ(n−4/7) with respect to d2

X

divergence over the class of Gaussian densities; again, one can think of this
result as partially restoring the original conjecture of Seregin and Wellner
(2010), in that their rate is achieved with additional restrictions on the class
of log-concave densities. A key feature of our definition of contour separa-
tion is that it is affine invariant; since the log-concave maximum likelihood
estimator is affine equivariant and our loss functions d2

H, KL and d2
X are

affine invariant, this allows us to obtain rates that are uniform over classes
without any scale restrictions.

We mention that alternative estimators have also been studied for the
class of log-concave densities. One such is the smoothed log-concave max-
imum likelihood estimator (Dümbgen and Rufibach, 2009; Chen and Sam-
worth, 2013), which matches the first two moments of the empirical distri-
bution of the data, but for which results on rates of convergence are less
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8 O. Y. FENG, A. GUNTUBOYINA, A. K. H. KIM AND R. J. SAMWORTH

developed. Another interesting proposal is the ρ-estimation framework of
Baraud and Birgé (2016), for which similar adaptation properties as for the
log-concave maximum likelihood estimator are known in the univariate case.

Proofs of most of the main results in Section 2 are given in the Appendix
(Section 5). The remaining proofs, as well as numerous auxiliary results, are
presented in the supplementary material (Feng et al., 2020); these results
appear with an ‘S’ before the relevant label number. In particular, the proofs
of all the stated results in Sections 3 and 4 are deferred to Sections S1.4
and S3.1 respectively.

1.1. Notation and background. First, we set up some notation and defi-
nitions that will be used throughout the main text as well as in the proofs
later on. For a fixed d ∈ N, we write {e1, . . . , ed} for the standard basis of
Rd and denote the `2 norm of x = (x1, . . . , xd) =

∑d
j=1 xjej ∈ Rd by ‖x‖ ≡

‖x‖2 =
(∑d

j=1 x
2
j

)1/2
. For x, y ∈ Rd, let [x, y] := {tx + (1 − t)y : t ∈ [0, 1]}

denote the closed line segment between them, and define (x, y), [x, y), (x, y]
analogously. For x ∈ Rd and r > 0, let B̄(x, r) := {w ∈ Rd : ‖w − x‖ ≤ r}.
For A ⊆ Rd, we write dim(A) for the affine dimension of A, i.e. the dimen-
sion of the affine hull of A, and for Lebesgue-measurable A ⊆ Rd, we write
µd(A) for the d-dimensional Lebesgue measure of A. If 0 < dim(A) = k < d,
we can view A as a subset of its affine hull and define µk(A) analogously,
whilst also setting µl(A) = 0 for each integer l > k. In addition, we denote
the set of positive definite d × d matrices by Sd×d and the d × d identity
matrix by I ≡ Id.

Next, let Φ ≡ Φd be the set of all upper semi-continuous, concave functions
φ : Rd → [−∞,∞) and let G ≡ Gd := {eφ : φ ∈ Φ}. For φ ∈ Φ, we write
domφ := {x ∈ Rd : φ(x) > −∞} for the effective domain of φ, and for
a general f : Rd → R, we write supp f := {x ∈ Rd : f(x) 6= 0} for the
support of f . For k ∈ N, we say that f ∈ Gd is log-k-affine if there exist
closed sets E1, . . . , Ek such that supp f =

⋃ k
j=1Ej and log f is affine on

each Ej . Moreover, let F ≡ Fd be the family of all densities f ∈ Gd, and let
µf :=

∫
Rd xf(x) dx and Σf :=

∫
Rd (x− µf )(x− µf )>dx for each f ∈ Fd. In

addition, we write F0,I ≡ F0,I
d := {f ∈ Fd : µf = 0, Σf = I} for the class

of isotropic log-concave densities.
Henceforth, for real-valued functions a and b, we write a . b if there exists

a universal constant C > 0 such that a ≤ Cb, and we write a � b if a . b
and b . a. More generally, for a finite number of parameters α1, . . . , αr,
we write a .α1,...,αr b if there exists C ≡ Cα1,...,αr > 0, depending only on
α1, . . . , αr, such that a ≤ Cb. Also, for x ∈ R, we write x+ := x ∨ 0 and
x− := (−x)+, and for x > 0, we define log+ x := 1 ∨ log x.
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ADAPTATION IN MULTIVARIATE LOG-CONCAVE ESTIMATION 9

To facilitate the exposition in Section 4, we now introduce some addi-
tional terminology. We say that the densities f and g on Rd are affinely
equivalent if there exist an Rd-valued random variable X and an invertible
affine transformation T : Rd → Rd such that X has density f and T (X) has
density g; in other words, there exist b ∈ Rd and an invertible A ∈ Rd×d
such that g(x) = |detA|−1f(A−1(x − b)) for all x ∈ Rd. Thus, each f ∈ Fd
is affinely equivalent to a unique f0 ∈ F0,I

d . A class D of densities is said to
be affine invariant if it is closed under affine equivalence; in other words, if
f belongs to D, then so does every density g that is affinely equivalent to f .

The rest of this subsection is devoted to a review of some convex analysis
background used in Section 2. A closed half-space is a set of the form {x ∈
Rd : α>x ≤ u}, where α ∈ Rd \ {0} and u ∈ R, and the interiors and
boundaries of closed half-spaces are known as open half-spaces and affine
hyperplanes respectively. For a non-empty and convex E ⊆ Rd, we say that
an affine hyperplane H supports E if H ∩ E 6= ∅ and H is the boundary of
a closed half-space that contains E. A face F ⊆ E is a convex set with the
property that if u, v ∈ E and tu + (1 − t)v ∈ F for some t ∈ (0, 1), then
u, v ∈ F . We say that x ∈ E is an extreme point if {x} is a face of E. Also,
we say that F ⊆ E is an exposed face of E if F = E ∩ H for some affine
hyperplane H that supports E. Exposed faces of affine dimensions 0, 1 and
dim(E)− 1 are also known as exposed points (or vertices), edges and facets
respectively. We write F(E) for the set of all facets of E.

A polyhedral set is a subset of Rd that can be expressed as the inter-
section of finitely many closed half-spaces, and a polytope is a bounded
polyhedral set, or equivalently the convex hull of a finite subset of Rd;
see Theorems 2.4.3 and 2.4.6 in Schneider (2014). As a special case, we
also view Rd as a polyhedral set with 0 facets. Let P ≡ Pd denote the
collection of all polyhedral sets in Rd with non-empty interior, and for
m ∈ N0 := N ∪ {0}, let Pm ≡ Pmd denote the collection of all P ∈ P with
at most m facets. For 1 ≤ k ≤ d, a k-parallelotope is the image of [0, 1]k

under an injective affine transformation from Rk to Rd, i.e. a polytope of
the form {v0 +

∑k
`=1 λ`v` : 0 ≤ λ` ≤ 1 for all `}, where v0, v1, . . . , vk ∈ Rd

and v1, . . . , vk are linearly independent. Recall also that a k-simplex is the
convex hull of k + 1 affinely independent points in Rd. Finally, for P ∈ Pd,
a (polyhedral) subdivision of P is a finite collection of sets E1, . . . , E` ∈ Pd
such that P =

⋃ `
j=1Ej and Ei ∩ Ej is a common face of Ei and Ej for all

i, j ∈ {1, . . . , `}. A triangulation of a polytope P ∈ Pd is a subdivision of P
consisting solely of d-simplices.
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10 O. Y. FENG, A. GUNTUBOYINA, A. K. H. KIM AND R. J. SAMWORTH

2. Adaptation to log-k-affine densities with polyhedral support.
In order to present the main result of this section, we first need to understand
the structure of log-k-affine functions f ∈ Gd with polyhedral support. Due
to the global nature of the constraints on f , namely that log f is concave on
supp f ∈ P and affine on each of k closed subdomains, the function f neces-
sarily has a simple and rigid structure. More precisely, Proposition 1 below
shows that there is a minimal representation of f in which the subdomains
are polyhedral sets that form a subdivision of supp f , and the restrictions
of log f to these sets are distinct affine functions. The proof of this result is
deferred to Section S2.1.

Proposition 1. Suppose that f ∈ Gd is log-k-affine for some k ∈ N
and that supp f ∈ P. Then there exist κ(f) ≤ k, α1, . . . , ακ(f) ∈ Rd,
β1, . . . , βκ(f) ∈ R and a polyhedral subdivision E1, . . . , Eκ(f) of supp f such

that f(x) = exp(α>j x+βj) for all x ∈ Ej, and αi 6= αj whenever i 6= j. More-

over, the triples (αj , βj , Ej)
κ(f)
j=1 are unique up to reordering. In addition, if

supp f ∈ Pm, then Ej ∈ Pk+m−1 for all j.

In particular, for each such f , the sum of the numbers of facets of the
polyhedral subdomains E1, . . . , Eκ(f), which we denote by

(5) Γ(f) :=

κ(f)∑
j=1

|F(Ej)|,

is well-defined and can be viewed as a parameter that measures the complex-
ity of f . Now for k ∈ N and P ∈ P, let Fk(P ) denote the collection of all f ∈
Fd for which κ(f) ≤ k and supp f = P , so that Fk(Pm) =

⋃
P∈Pm Fk(P )

for m ∈ N0. It is shown in Proposition S21 that Fk(Pm) is non-empty if
and only if k + m ≥ d + 1. We remark here that it is more appropriate to
quantify the complexity of a polyhedral support in terms of m, which refers
to the number of facets of the support, rather than in terms of the number
of vertices. Indeed, the former quantity may be much greater than the latter
when the support is unbounded; for example, a polyhedral convex cone has
just a single vertex but may have arbitrarily many facets. That said, if the
support is a polytope with v vertices and m facets, it can be shown that
v = m when d = 2, and that v ≤ 2m − 4 and m ≤ 2v − 4 when d = 3; see
the proof of Lemma S23 and the subsequent remark.

We are now in a position to state our sharp oracle inequality for the risk
of the log-concave maximum likelihood estimator when the true f0 ∈ Fd is
close to some element of Fk(Pm).
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ADAPTATION IN MULTIVARIATE LOG-CONCAVE ESTIMATION 11

Theorem 2. Fix d ∈ {2, 3}. Let X1, . . . , Xn
iid∼ f0 ∈ Fd with n ≥ d+ 1,

and let f̂n denote the corresponding log-concave maximum likelihood estima-
tor. Then there exists a universal constant C > 0 such that

(6) E{d2
X(f̂n, f0)} ≤ inf

k∈N,m∈N0:
k+m≥d+1

inf
f∈Fk(Pm)

{
C Γ(f)

n
logγd n+ KL(f0, f)

}
,

where γ2 := 9/2 and γ3 := 8. Moreover, for d ∈ {2, 3}, we have Γ(f) .
kd−2(k +m) for all f ∈ Fk(Pm).

The ‘sharpness’ in this oracle inequality refers to the fact that the approxi-
mation term KL(f0, f) has leading constant 1. A consequence of Theorem 2
is that if d = 2 and f0 ∈ Fk(Pm) with k + m small by comparison with
n1/3/ log7/2 n, then the log-concave maximum likelihood estimator attains
an adaptive rate that is faster than the rate of decay of the worst-case risk
bounds (2) of Kim and Samworth (2016). When d = 3, the same conclusion
holds when k(k +m) is small by comparison with n1/2/ log7 n.

Theorem 2 is proved in Section 5 by first considering the case k = 1, where
it turns out that we can prove a slightly stronger version of our result. We
therefore state it separately for convenience:

Theorem 3. Fix d ∈ {2, 3}. Let X1, . . . , Xn
iid∼ f0 ∈ Fd with n ≥ d+ 1,

and let f̂n denote the corresponding log-concave maximum likelihood estima-
tor. Then there exists a universal constant C̄ > 0 such that

(7) E{d2
X(f̂n, f0)} ≤ inf

m≥d

{
C̄m

n
logγd n + inf

f∈F1(Pm)
supp f0⊆supp f

d2
H(f0, f)

}
.

We suspect that the restriction on the support of the approximating den-
sity f in (7) is an artefact of our proof. Indeed, in the case d = 1, Baraud
and Birgé (2016) obtain an oracle inequality for their ρ-estimator where the
approximating density f need not have this property (although their result
is stated for d2

H rather than d2
X); moreover, we have been able to strengthen

the corresponding univariate result for the log-concave maximum likelihood
estimator (Kim et al., 2018, Theorem 5) by removing this restriction.

The proof of Theorem 3 in fact constitutes the main technical challenge
in deriving Theorem 2. This entails deriving upper bounds on the (local)
Hellinger bracketing entropies of classes of log-concave functions that lie in
small Hellinger neighbourhoods of densities in f ∈ F1(Pm) for each m ∈ N
with m ≥ d. Our argument proceeds via a series of steps, the first of which
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12 O. Y. FENG, A. GUNTUBOYINA, A. K. H. KIM AND R. J. SAMWORTH

deals with the case where f is a uniform density on a simplex (Proposi-
tion S8); it turns out that any density in a small Hellinger ball around such
an f satisfies a uniform upper bound (Lemma S25(ii)), and a pointwise lower
bound whose contours are characterised geometrically in Lemma S30 (and
illustrated in Figure S5). We proceed by considering a finite nested sequence
of polytopal subsets of the simplex, each of which has a controlled number of
vertices and approximates the region enclosed by one of the aforementioned
contours; see the accompanying Figure S1. After constructing suitable tri-
angulations of the regions between successive polytopes (Corollary S33), we
exploit existing bracketing entropy results for classes of bounded log-concave
functions (Proposition S7).

In the next step, we consider the uniform density on a polytope in Pm;
here, using the fact that there is a triangulation of the support into O(m)
simplices (Lemma S23), we apply our earlier bracketing entropy bounds in
conjunction with an additional argument which handles carefully the fact
that these simplices may have very different volumes (Proposition S9).

Finally, in the proof of Proposition 10 in Section 5, we generalise to set-
tings where f is an arbitrary (not necessarily uniform) log-affine density
whose polyhedral support may be unbounded. There, we subdivide the do-
main by intersecting it with a sequence of parallel half-spaces whose normal
vectors are in the direction of the negative log-gradient of the density. Our
characterisation of such log-affine densities in Section S2.1 ultimately allows
us to apply our earlier results to transformations of the original density and
thereby obtain the desired local bracketing entropy bounds (Proposition 10).
The conclusion of Theorem 3 then follows from standard empirical process
theory arguments (e.g. van de Geer, 2000, Corollary 7.5); see Section 5.

We do not claim any optimality of the polylogarithmic factors in Theo-
rems 2 and 3. In fact, we can improve these exponents in the special case
where f0 is well-approximated by a uniform density fP := µd(P )−1

1P on
a polytope P ∈ Pd. Note that every polytope in Pd has at least as many
facets as a d-simplex, namely d+ 1; see for example Lemma S22.

Proposition 4. Fix d ∈ {2, 3}, and for m ≥ d+ 1, denote by F [1](Pm)

the subclass of all uniform densities on polytopes in Pm. Let X1, . . . , Xn
iid∼

f0 ∈ Fd with n ≥ d + 1, and let f̂n denote the corresponding log-concave
maximum likelihood estimator. Then there exists a universal constant C ′ > 0
such that

(8) E{d2
X(f̂n, f0)} ≤ inf

m≥d+1

{
C ′m

n
logγ

′
d n + inf

f∈F [1](Pm)
supp f0⊆supp f

d2
H(f0, f)

}
,
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ADAPTATION IN MULTIVARIATE LOG-CONCAVE ESTIMATION 13

where γ′2 := 3 and γ′3 := 6.

3. Adaptation to densities bounded away from zero on a poly-
topal support. Recall from the discussion in the introduction that in
order to observe adaptive behaviour for the log-concave maximum likeli-
hood estimator, we need to exclude uniform densities supported on convex
sets with smooth boundaries. In fact, we will see from Proposition 6 below
that we also need to rule out subclasses containing sequences of elements
of Fd that approximate such uniform densities. In this section, we continue
to work with densities in Fd that are close to a log-concave density with
polyhedral support, but, in contrast to Section 2, now drop the requirement
that this approximating density be log-k-affine. In fact, we do not impose
any extra structural constraints or smoothness conditions that would regu-
late further the behaviour of the densities on the interiors of their supports.
It will turn out, however, that we will only be able to improve on the worst-
case risk bounds of Theorem S2 when the approximating density is also
bounded away from zero on its support, which must therefore necessarily be
a polytope. The generality of the resulting new classes means that we can
no longer expect near-parametric adaptation, and moreover, for the reasons
explained in the introduction, our main result of this section (Theorem 5
below) is restricted to the case d = 3. As an example of a density that will be
covered by this result, we can consider the density of a trivariate Gaussian
random vector conditioned to lie in [−1, 1]3.

Following on from Proposition 4, we now extend the definition of F [1](Pm)
given above and introduce our new family of subclasses of Fd. For θ ∈ (0,∞)

and a polytope P ∈ Pd, let F [θ](P ) ≡ F [θ]
d (P ) denote the collection of all

f ∈ Fd for which supp f = P and f ≥ θ−1fP on P . Then F [1](P ) = {fP }
and F [θ](P ) is non-empty if and only if θ ≥ 1. For θ ∈ [1,∞) and m ∈
N with m ≥ d + 1, denote by F [θ](Pm) ≡ F [θ]

d (Pmd ) the union of those
F [θ](P ) for which P is a polytope in Pm ≡ Pmd , and note that this is a non-
empty affine invariant subclass of Fd. Indeed, fix b ∈ Rd and an invertible
A ∈ Rd×d, and let T : Rd → Rd be the invertible affine transformation
defined by T (x) := Ax + b. If X ∼ f ∈ F [θ](P ) for some polytope P ∈
Pm, then µd(T (P )) = |detA|µd(P ), and so the density g of T (X) satisfies
g(x) = |detA|−1f(T−1(x)) ≥ {θ |detA|µd(P )}−1 = {θµd(T (P ))}−1 for all
x ∈ T (P ). Since supp g = T (P ) is also a polytope in Pm, this shows that
g ∈ F [θ](Pm), as required.

The sharp oracle inequality (9) below may be viewed as complementary
to Theorem 3 and Proposition 4.
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Theorem 5. Let X1, . . . , Xn
iid∼ f0 ∈ F3 with n ≥ 4, and let f̂n denote

the corresponding log-concave maximum likelihood estimator. Then there ex-
ists a universal constant C > 0 such that

E{d2
X(f̂n, f0)} ≤ inf

m≥4
θ∈(1,∞)

{
C

(
log6/7 θ

(m
n

)4/7
log

17/7
+

(
n

log3/2 θ

)

+
(m
n

)20/29
log85/29 n+ θ log3(eθ)

m log6 n

n

)
+ inf

f∈F [θ]
3 (Pm)

supp f0⊆supp f

d2
H(f0, f)

}
.(9)

For a fixed θ ∈ (1,∞), note that if n/m is sufficiently large, then the
dominant contribution to the right-hand side of (9) comes from the first
term. It follows that for fixed θ,m, the log-concave maximum likelihood

estimator f̂n of f0 ∈ F [θ]
3 (Pm) converges at rate Õ(n−4/7) as n→∞, which

was the rate originally conjectured by Seregin and Wellner (2010).
Despite the attractions of the adaptation mentioned in the previous para-

graph, it is worth considering the bound (9) in the limits as θ ↘ 1 and
θ → ∞. In the first case, owing to the presence of the second term on the
right-hand side of (9), we do not recover the bound (8) from Proposition 4
when we take the limit of the right-hand side of (9); see Section S1.3 for
further discussion. We also mention here that for a fixed n, the bound in (8)

may be stronger than that in (9) if for example f0 ∈ F [θ]
3 (Pm) for some

θ ≡ θn ∈ (1,∞) sufficiently close to 1. To substantiate this remark, we note
that if θ ∈ [1,∞) and P ∈ P3 is a polytope, then it follows from the proof

of Lemma S25(iii) that every f ∈ F [θ]
3 (P ) satisfies θ−1fP ≤ f . log3(eθ)fP

on P . Thus, if f0 ∈ F [θ]
3 (P ), then

d2
H(f0, fP ) =

∫
P

(√
f0 −

√
fP
)2

. (1− θ−1) ∨
(
log3(eθ)− 1

)
. θ − 1

when θ ≤ 2. Consequently, if θ is such that θ ≤ 1 + n−20/29 and m ≤
n9/29 log−6 n, then for any f0 ∈ F [θ]

3 (P ) with P ∈ Pm, the bound in (8) is at
most a universal constant multiple of (m/n) log6 n+(θ−1) . n−20/29, while
the bound in (9) is at least a universal constant multiple of n−20/29 log85/29 n.

It is also notable that the bound in (9) diverges to infinity as θ → ∞.
In fact, we will deduce from Proposition 6 below that this is not just an
artefact of our analysis; more precisely, the log-concave maximum likelihood
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ADAPTATION IN MULTIVARIATE LOG-CONCAVE ESTIMATION 15

estimator does not adapt uniformly over
⋃
θ≥1F

[θ]
d (P ), or indeed over any

subclass of Fd containing an approximating sequence for a uniform density
on a closed Euclidean ball.

Proposition 6. Fix d ∈ N and n ≥ d + 1. Let (f (`)) be a sequence of
densities in Fd for which the corresponding sequence of probability measures
(P (`)) converges weakly to a distribution P (0) with density f (0) : Rd → [0,∞).

For each ` ∈ N0, let X
(`)
1 , . . . , X

(`)
n

iid∼ f (`), and let f̂
(`)
n denote the correspond-

ing log-concave maximum likelihood estimator. Then

lim inf
`→∞

E
{
d2
X

(
f̂ (`)
n , f (`)

)}
≥ E

{
d2
X

(
f̂ (0)
n , f (0)

)}
.

To understand the consequences of this lower semi-continuity result, fix
any polytope P ∈ Pd and a closed Euclidean ball B ⊆ IntP . We can find

a sequence (f (`)) in
⋃
θ≥1F

[θ]
d (P ) such that the corresponding probability

measures converge weakly to the uniform distribution on B. Such a sequence
must necessarily satisfy infx∈P f

(`)(x)→ 0, and Proposition 6, together with
the result of Wieacker (1987) mentioned in the introduction, then ensures

that lim inf`→∞ E
{
d2
X

(
f̂

(`)
n , f (`)

)}
&d n

−2/(d+1) for d ≥ 2. Thus, indeed, no
adaptation is possible.

The proof of Theorem 5 follows a similar approach to that set out after the
statement of Theorem 3. The key intermediate results are the local brack-
eting entropy bounds in Propositions S10 and S11 in Section S1.3, which
are analogous to the Propositions S8 and S9 that prepare the ground for
the proof of Theorem 3. As we explain in the discussion before the proof of
Proposition S8, some modifications to the previous arguments are necessary,
but we once again draw heavily on the technical apparatus developed in Sec-
tion S2.2. The key reason we are able to apply these techniques here is that
the densities in F [θ](Pm) are bounded away from zero, as evidenced by the
fact that the bound (9) diverges as θ →∞. Once we have obtained Propo-
sition S11, all that remains is to appeal to standard empirical process the-
ory (van de Geer, 2000, Corollary 7.5), from which the desired conclusion (9)
follows readily; see Section S1.4. In contrast to the proof of Theorem 3, we
do not require an additional argument along the lines of the proof of Propo-
sition 10 given in Section 5, which is specific to the log-1-affine densities
(with possibly unbounded polyhedral support) studied in Section 2.

4. Adaptation to densities with well-separated contours. In this
section, we consider adaptation of the log-concave maximum likelihood es-
timator over yet further subclasses of Fd. As discussed in Examples 4 and 5
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below, these are designed to generalise notions of Hölder smoothness, while
at the same time satisfying our key property of affine invariance. Given
S ∈ Sd×d and x ∈ Rd, we write ‖x‖S := (x>S−1x)1/2 for its S-Mahalanobis
norm.

Definition 1. For β ≥ 1 and Λ, τ > 0, let F (β,Λ,τ) ≡ F (β,Λ,τ)
d denote

the collection of all f ∈ Fd that are continuous on Rd and satisfy

(10) ‖x− y‖Σf ≥
{f(x)− f(y)} det1/2 Σf

Λ
{
f(x) det1/2 Σf}1−1/β

whenever x, y ∈ Rd are such that f(y) < f(x) < τ det−1/2 Σf . In addition,
we define F (β,Λ) :=

⋂
τ>0F (β,Λ,τ).

The defining condition (10) imposes a separation condition on contours
below some fixed level. For instance, when f is isotropic, the condition asks
that for all small t > 0, the contours of f at levels t and 2t are at least
a distance of order Λ−1t1/β apart. See the motivating examples below for
further discussion. We now collect together some basic properties of the
classes F (β,Λ,τ).

Proposition 7. For β ≥ 1 and Λ, τ > 0, we have the following:

(i) F (β,Λ,τ) is affine invariant; i.e. if X ∼ f ∈ F (β,Λ,τ) and T : Rd → Rd
is an invertible affine transformation, then the density g of T (X) also
lies in F (β,Λ,τ).

(ii) F (β,Λ,τ) ⊆ F (β,Λ∗) for all Λ∗ ≥ Λ(Bd/τ)1/β, where we set Bd :=
sup

h∈F0,I
d

supx∈Rd h(x) ∈ (0,∞).

(iii) If α ∈ [1, β), then F (β,Λ,τ) ⊆ F (α,Λ′,τ) for all Λ′ ≥ B1/α−1/β
d Λ.

(iv) There exists Λ0,d > 0, depending only on d, such that F (β,Λ) is non-
empty only if Λ ≥ Λ0,d.

Note in particular that since the log-concave maximum likelihood estima-
tor f̂n is affine equivariant (Dümbgen et al., 2011, Remark 2.4), and since
our loss functions d2

H, KL and d2
X are affine invariant, property (i) above

allows us to restrict attention to isotropic f ∈ F (β,Λ,τ), namely those be-
longing to F0,I

d . Property (iii) indicates that the classes F (β,Λ,τ) are nested
with respect to the exponent β ≥ 1.

In addition, by taking α = 1 in (iii) and then applying (ii), we deduce
that the densities in F (β,Λ,τ) are all Lipschitz on Rd, but as we will see in
Examples 2 and 4, they need not be differentiable everywhere. In cases where
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ADAPTATION IN MULTIVARIATE LOG-CONCAVE ESTIMATION 17

f ∈ Fd is differentiable on an open set of the form {x ∈ Rd : f(x) < τ∗}
for some τ∗ > 0, the necessary and sufficient condition in the following
proposition provides us with a simpler way of checking whether f belongs
to F (β,Λ,τ). For w ∈ Rd and S ∈ Sd×d, let ‖w‖′S := (w>S−1w)1/2 det−1/2 S
denote its scaled S-Mahalanobis norm.

Proposition 8. Suppose that there exists τ∗ > 0 such that f ∈ Fd is
continuous on Rd and differentiable at every x ∈ Rd satisfying f(x) < τ∗.
Then for β ≥ 1 and any τ ≤ τ∗ det1/2 Σf , we have f ∈ F (β,Λ,τ) if and only
if

(11) ‖∇f(x)‖′
Σ−1
f

≤ Λ
{
f(x) det1/2 Σf

}1−1/β

for all x ∈ Rd with f(x) < τ det−1/2 Σf .

Our main result in this section is a sharp oracle inequality for the per-
formance of the log-concave maximum likelihood estimator when the true

log-concave density is close to F (β,Λ)
d when d = 3. In view of Proposition 7(ii),

we work here with the classes F (β,Λ)
3 rather than the more general classes

F (β,Λ,τ)
3 for ease of presentation. Let Λ0 ≡ Λ0,3 > 0 be the universal constant

from Proposition 7(iv) and its proof, and for each β ≥ 1, let rβ := β+3
β+7 ∧

4
7 .

Theorem 9. Let X1, . . . , Xn
iid∼ f0 ∈ F3 for some n ≥ 4, and let f̂n

denote the corresponding log-concave maximum likelihood estimator. Then
there exists a universal constant C > 0 such that
(12)

E{d2
X(f̂n, f0)} ≤ inf

β≥1,Λ≥Λ0

{
CΛ

4β
β+7
∧ 1
n−rβ log

16β+39
2(β+3)

rβ n + inf
f∈F(β,Λ)

3

d2
H(f0, f)

}
.

Ignoring polylogarithmic factors and focusing on the case where f0 ∈
F (β,Λ)

3 for some β ≥ 1 and Λ > 0, Theorem 9 presents a continuum of rates
that interpolate between the worst-case rate of Õ(n−1/2), corresponding to
rate when β = 1, and Õ(n−4/7), again matching the rate conjectured by
Seregin and Wellner (2010).

As mentioned in the introduction, the main attraction of working with
the general contour separation condition (10) is that we can give several ex-
amples of classes of densities contained within F (β,Λ,τ) for suitable β, Λ and
τ . Since each of the conditions (10) and (11) are affine invariant, it suffices
to check these conditions for the isotropic elements of the relevant classes
(or for any other convenient choice of scaling). Moreover, to verify (10) for
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densities that are spherically symmetric, it suffices to consider pairs x, y of
the form y = λx for some λ > 0; in other words, if f(x) = g(‖x‖), then it is
enough to verify the contour separation condition (10) for g.

Example 1 (Gaussian densities). Writing f : x 7→ (2π)−d/2 e−‖x‖
2/2 for

the standard Gaussian density on Rd and fixing an arbitrary β ≥ 1, we have

‖∇f(x)‖′I = ‖∇f(x)‖ =
‖x‖

(2π)d/2
e−‖x‖

2/2 = 21/2f(x) log1/2

(
1

(2π)d/2f(x)

)
≤ β1/2

(2π)d/(2β)
e−1/2f(x)1−1/β

for all x ∈ Rd. Hence, it follows from Proposition 8 that f ∈ F (β,Λ) for
all β ≥ 1, with Λ = β1/2e−1/2 (2π)−d/(2β). Thus, Theorem 9 implies that
when d = 3, the log-concave maximum likelihood estimator attains the rate
Õ(n−4/7) in d2

X divergence uniformly over the class of Gaussian densities.

Example 2 (Spherically symmetric Laplace density). Writing Vd :=
µd(B̄(0, 1)) = πd/2/Γ(1+d/2), we see that f : x 7→ (d!Vd)

−1e−‖x‖ is a density
in Fd with corresponding covariance matrix Σ ≡ Σf = (d + 1)I. For τ ≤
(d+ 1)d/2 (d!Vd)

−1 and any β ≥ 1, we have

‖∇f(x)‖′Σ−1 = (d+ 1)(d+1)/2f(x) ≤ (d+ 1)(d+1)/2

(d!Vd)1/β
f(x)1−1/β

for all x ∈ Rd with f(x) < τ det−1/2 Σ = τ(d+1)−d/2. Hence, when d = 3, the
log-concave maximum likelihood estimator attains the rate Õ(n−4/7) in d2

X

divergence uniformly over the class of densities that are affinely equivalent
to f , even though f is not differentiable at 0. A similar conclusion holds for
the densities f1, f2 satisfying f1(x) ∝ exp(−e‖x‖) and f2(x) ∝ exp

(
−ee‖x‖

)
.

Example 3 (Spherically symmetric bump function density). Consider
the smooth density f : x 7→ Ce−1/(1−‖x‖2)

1{‖x‖<1}, where C > 0 is a nor-
malisation constant. By Xu and Samworth (2019, Proposition 2), f is log-
concave. Writing Σ ≡ Σf = σ2I for the covariance matrix corresponding to
f , and again fixing an arbitrary β ≥ 1, we see that each x ∈ Rd with ‖x‖ < 1
satisfies

‖∇f(x)‖′Σ−1 = σd+1‖∇f(x)‖ = σd+1 2C‖x‖
(1− ‖x‖2)2

e−1/(1−‖x‖2)

≤ 2σd+1f(x) log2

(
C

f(x)

)
≤ Λβ

{
f(x) det1/2 Σ}1−1/β,
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where Λβ := 8C1/ββ2e−2σ1+d/β. Thus, again by Proposition 8, we deduce
that f ∈ F (β,Λβ) for all β ≥ 1. Consequently, when d = 3, the log-concave
maximum likelihood estimator attains the rate Õ(n−4/7) in d2

X divergence
uniformly over the class of densities that are affinely equivalent to f .

Example 4 (Hölder condition on the log-density). For γ ∈ (1, 2] and
L > 0, let H̃γ,L ≡ H̃γ,Ld denote the subset of densities f ∈ Fd such that
φ := log f is differentiable and

(13) ‖∇φ(y)−∇φ(x)‖Σ−1
f
≤ L‖y − x‖γ−1

Σf

for all x, y ∈ Rd. We extend this definition to γ = 1 by writing H̃1,L for the
subset of densities f ∈ Fd for which φ = log f satisfies

(14) |φ(y)− φ(x)| ≤ L‖y − x‖Σf .

for all x, y ∈ Rd. Note that the densities in H̃1,L can have points of non-
differentiability for arbitrarily small values of the density. For instance, if we
define f ∈ Fd by

f(x) ∝ exp

(
−
∞∑
r=0

‖x‖ − r
2r

1{‖x‖≥r}

)
,

which is not differentiable at any x ∈ Rd with integer Euclidean norm, then
f ∈ H̃1,L for suitably large L > 0.

The careful and non-standard choice of norms in (13) and (14) ensures
that the classes H̃γ,L are affine invariant. Moreover, Proposition S41(iv) in
Section S3.1 shows that for each β ≥ 1, there exists Λ′ ≡ Λ′(β, L) such
that

⋃
γ∈[1,2] H̃γ,L ⊆ F (β,Λ′). Thus, when d = 3, the log-concave maximum

likelihood estimator attains the rate Õ(n−4/7) in d2
X divergence uniformly

over
⋃
γ∈[1,2] H̃γ,L.

A related result in the literature is Dümbgen and Rufibach (2009, Theo-
rem 4.1), which applies when d = 1, γ ∈ (1, 2] and the logarithm of the true
fixed f0 ∈ F1 is γ-Hölder on some compact subinterval T of the interior of
supp f0. In this case, the corresponding f̂n is shown to achieve an adaptive

rate of order
( logn

n

) γ
2γ+1 with respect to the supremum norm over certain

compact subintervals of the interior of T . We remark that this is not entirely
comparable with the rate we obtain in the paragraph above, especially since
our loss function d2

X is rather different.
Observe that the densities in the classes H̃γ,L must be supported on the

whole of Rd, and that conditions (13) and (14) imply that the rate of tail
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decay of f is ‘super-Gaussian’. This is quite a stringent restriction; note for
example that the density f satisfying f(x) ∝ exp(−e‖x‖) does not feature in
any of the classes H̃γ,L. Another drawback of this definition of smoothness is
that the classes are not nested with respect to the Hölder exponent γ ∈ (1, 2];
this can be seen by considering a density f satisfying f(x) ∝ exp(−‖x‖γ),
which belongs to H̃γ̃,L for some L > 0 if and only if γ̃ = γ.

Example 5 (Hölder condition on the density). To remedy the issues
mentioned in the previous example, fix β ∈ (1, 2] and L > 0 and let Hβ,L ≡
Hβ,Ld denote the set of f ∈ Fd such that f is differentiable on Rd and

(15) ‖∇f(y)−∇f(x)‖′
Σ−1
f

≤ L‖y − x‖β−1
Σf

for all x, y ∈ Rd. Again, it can be shown that the classes Hβ,L are affine
invariant, and if f ∈ Fd is β-Hölder in the usual Euclidean sense, i.e.
‖∇f(y) − ∇f(x)‖ ≤ L‖y − x‖β−1 for all x, y ∈ Rd, then f ∈ Hβ,L̃ with

L̃ := Lλ
β/2
max(Σf ) det1/2 Σf , where λmax(Σf ) denotes the maximum eigen-

value of Σf . This follows from the facts that ‖w‖Σf ≥ ‖w‖λ
−1/2
max (Σf ) and

‖w‖′
Σ−1
f

≤ ‖w‖λ1/2
max(Σf ) det1/2 Σf for all w ∈ Rd. Moreover, Proposition S40

shows that the classes Hβ,L are nested with respect to the Hölder exponent
β; more precisely, if β, L are as above, then there exists L̃ ≡ L̃(d, β, L) > 0

such that Hβ,L ⊆ Hα,L̃ for all α ∈ (1, β].
The condition (15) can in fact be extended to an affine invariant notion of

β-Hölder regularity for all β > 1; see Section S3.3 for full technical details.
Here, we present the analogue of (15) for β ∈ (2, 3] and L > 0, for which
we require the following additional notation. First, if g : Rd → R is twice
differentiable at x ∈ Rd, then denote by Hg(x) ∈ Rd×d the Hessian of
g at x. In addition, for each S ∈ Sd×d, define a norm ‖·‖′S on Rd×d by

‖M‖′S := ‖S−1/2MS−1/2‖F det−1/2 S, where ‖A‖F := tr(A>A)1/2 denotes
the Frobenius norm of A ∈ Rd×d. We now define Hβ,L to be the collection
of f ∈ Fd for which f is twice differentiable on Rd and

(16) ‖Hf(y)−Hf(x)‖′
Σ−1
f

≤ L‖y − x‖β−2
Σf

for all x, y ∈ Rd. In Section S3.3, we present a unified argument that estab-
lishes the affine invariance of the classes Hβ,L defined by (15) and (16); see
the proof of Lemma S39.

In addition, for each β ∈ (1, 3] and L > 0, parts (i) and (iii) of Proposi-
tion S41 imply that Hβ,L ⊆ F (β,Λ) for some Λ ≡ Λ(β, L); when β ∈ (1, 2],
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we can take Λ(β, L) := L1/β(1 − 1/β)−1+1/β. It was this fact that moti-
vated our choice of parametrisation in β in (10). Theorem 9 therefore yields

the rate Õ
(
n
−min

{
β+3
β+7

, 4
7

})
for the log-concave maximum likelihood estima-

tor, uniformly over Hβ,L. An interesting feature of this rate is that, when

β ∈ (1, 9/5), it is faster than the rate O(n
− 2β

2β+3 ) that can be obtained in
squared Hellinger distance for β-Hölder densities that satisfy a ‘tail domi-
nance’ condition (Goldenshluger and Lepski, 2014, Section 4). For further
details of this comparison, see Section S3.3.1. Thus, in this range of β, the
log-concavity shape constraint results in a strict improvement in the rates
attainable.

5. Appendix: Proofs of main results in Section 2. The following
notation is used in this section and in the supplementary material.

To define bracketing entropy, let S ⊆ Rd and let G be a class of non-
negative functions whose domains contain S. For ε > 0 and a semi-metric
ρ on G, let N[ ](ε,G, ρ, S) denote the smallest M ∈ N for which there exist

pairs of functions {[gLj , gUj ] : j = 1, . . . ,M} such that ρ(gUj , g
L
j ) ≤ ε for every

j = 1, . . . ,M , and such that for every g ∈ G, there exists j∗ ∈ {1, . . . ,M}
with gLj∗(x) ≤ g(x) ≤ gUj∗(x) for every x ∈ S. We then define the ε-bracketing
entropy of G over S with respect to ρ by H[ ](ε,G, ρ, S) := logN[ ](ε,G, ρ, S)

and write H[ ](ε,G, ρ) := H[ ](ε,G, ρ,Rd) when S = Rd.
For each f0 ∈ Fd and δ > 0, let G(f0, δ) ≡ Gd(f0, δ) := {f1supp f0 : f ∈

Gd, dH(f, f0) ≤ δ}. In addition, let F(f0, δ) ≡ Fd(f0, δ) = Fd ∩ Gd(f0, δ)
and let F̃(f0, δ) ≡ F̃d(f0, δ) := {f ∈ Fd : dH(f, f0) ≤ δ}. Writing ‖M‖ ≡
‖M‖op := sup‖u‖≤1 ‖Mu‖ for the operator norm of a matrix M ∈ Rd×d, we

denote by F̃1,η ≡ F̃1,ηd
d := {f ∈ Fd : ‖µf‖ ≤ 1, ‖Σf − I‖ ≤ ηd} the class

of ‘near-isotropic’ log-concave densities, where the constant η ≡ ηd ∈ (0, 1)
is taken from Kim and Samworth (2016, Lemma 6) and depends only on d.

Finally, we define h2, h3 : (0,∞) → (0,∞) by h2(x) := x−1 log
3/2
+ (x−1) and

h3(x) := x−2 respectively.
The proof of Proposition 1 is lengthy and is deferred to Section S2.1.

The main goal of this subsection, therefore, is to prove Theorem 2, which
proceeds via several intermediate results, including Theorem 3. We begin by
stating our main local bracketing entropy result, whose proof is summarised
at the end of Section 2. Note that by Proposition S21, the subclass F1(Pm)
is non-empty if and only if m ≥ d.

Proposition 10. Let d ∈ {2, 3} and fix m ∈ N with m ≥ d. Then there
exist universal constants %2, %3 > 0 such that whenever 0 < ε < δ < %d and
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f0 ∈ F1(Pm), we have

(17) H[ ](2
1/2ε,G(f0, δ), dH) . m

(
δ

ε

)
log3

(
1

δ

)
log3/2

(
log(1/δ)

ε

)
when d = 2 and

(18) H[ ](2
1/2ε,G(f0, δ), dH) . m

{(
δ

ε

)2

log6

(
1

δ

)
+

(
δ

ε

)3/2

log7

(
1

δ

)}
when d = 3.

See Propositions S8 and S9 for details of the initial stages of the proof,
which deal with the case where f0 is the uniform density fK := µd(K)−1

1K

on some polytope K ∈ Pm. Here, we turn our attention to the general non-
uniform case, where the support of f0 may be unbounded. Writing F1 for
the subclass of all log-1-affine densities in Fd, we note that any f ∈ F1

must take the form x 7→ fK,α(x) := c−1
K,α exp(−α>x)1{x∈K}, where K ⊆ Rd

and α ∈ Rd are the support and negative log-gradient of f respectively, and
cK,α :=

∫
K exp(−α>x) dx ∈ (0,∞); see (S75). It follows from the character-

isation of F1 given in Proposition S15 that K and α satisfy the conditions of
Proposition S13(ii), which in turn implies that mK,α := infx∈K α

>x is finite.
In addition, let MK,α := supx∈K α

>x ∈ (−∞,∞], and for t ∈ R, define the
convex sets

Kα,t := K ∩ {x ∈ Rd : α>x = t},
K+
α,t := K ∩ {x ∈ Rd : α>x ≤ t},

K̆α,t := K ∩ {x ∈ Rd : t− 1 ≤ α>x ≤ t},

which are all compact by Proposition S13; see Figure S2 for an illustration.
Finally, we denote by F1

? the collection of all f = fK,α ∈ F1 for which
mK,α = 0.

Proof of Proposition 10. For a fixed d ∈ {2, 3}, let C ≡ Cd := 8d+7,
υ ≡ υd := 2−3/2 ∧ {d−1/2(d + 1)−(d−1)/2} and % ≡ %d := {υd e−C/2 γ1/2} ∧
νd, where γ ≡ γ(d,C) and ν ≡ νd are taken from Lemmas S17 and S26
respectively. For 0 < ε < δ < υ, the important quantity Hd(δ, ε) is defined
in Proposition S8.

Fix 0 < ε < δ < % and m ∈ N with m ≥ d. It follows from Corollary S16
and the affine invariance of the Hellinger distance that we need only consider
densities f0 = fK,α ∈ F1

? ∩ F1(Pm), which have the property that K ∈ Pm
and mK,α = 0. Since Proposition S9 handles the case α = 0, we fix an

imsart-aos ver. 2012/08/31 file: MAFinalSubRev.tex date: January 20, 2020



ADAPTATION IN MULTIVARIATE LOG-CONCAVE ESTIMATION 23

arbitrary fK,α ∈ F1
? ∩F1(Pm) with α 6= 0, and set L := dMK,αe ∈ N∪{∞}.

Now define

K ′j :=

{
K+
α,C for j = C

K̆α,j for each j ∈ N with C + 1 ≤ j ≤ L,

which is compact for all integers C ≤ j ≤ L. Note also that since K ∈ Pm,
it follows from Bruns and Gubeladze (2009, Theorem 1.6) that K ′C ∈ Pm+1

and K ′j ∈ Pm+2 for all integers C + 1 ≤ j ≤ L.
In addition, let a+ be the smallest integer C + 1 ≤ j ≤ L such that

δ2ej+1µd(K̆α,j)
−1cK,α ≥ υ2 if such a j exists, and let a+ = L+ 1 otherwise.

Since (1/δ̃)d−1 ≥ logd−1(1/δ̃) ≥ d(d+ 1)d−1 υ2 logd−1(1/δ̃) for all δ̃ ∈ (0, 1),
we deduce from (S78) in Lemma S17 that

δ2et+1cK,α(
µd(K̆α,t)

) ≥ δ2et+1cK,α(
dtd−1µd(K

+
α,1)
) ≥ δ2et

dtd−1
≥ υ2

for all t ≥ (d + 1) log(1/δ), and hence that a+ . log(1/δ). Next, set u2
j :=

c exp{−(j − a+)/2} for each integer a+ ≤ j ≤ L, where c := 1 − e−1/2 is
chosen to ensure that

∑L
j=a+

u2
j ≤ 1, and also define

ε2
j :=


2ε2/3 for j = C

2ε2(a+ − C)−1/3 for j = C + 1, . . . , a+ − 1

2u2
j ε

2/3 for j = a+, . . . , L.

Since K =
⋃L
j=C K ′j and

∑L
j=C ε2

j ≤ 2ε2, we can write

H[ ](2
1/2ε,G(fK,α, δ), dH) ≤ H[ ](εC ,G(fK,α, δ), dH,K

′
C)(19)

+
∑a+−1

j=C+1H[ ](εj ,G(fK,α, δ), dH,K
′
j)(20)

+
∑L

j=a+
H[ ](εj ,G(fK,α, δ), dH,K

′
j),(21)

and we now address each of the terms (19), (20) and (21) in turn. Note that
while there are infinitely many summands in (21) when MK,α = L = ∞, it
will follow from the bounds we obtain that the series remains summable.

For (19), let AC := cK,α/µd(K
′
C), which by Lemma S17 satisfies e−C ≤

AC ≤ γ−1. Now for f ∈ G(fK,α, δ), define f̃C : Rd → [0,∞) by f̃C(x) :=
AC exp(α>x)f(x)1{x∈K′C} and observe that

δ2 ≥
∫
K′C

(
f1/2 − f1/2

K,α

)2
=

∫
K′C

e−α
>x

AC

{
f̃

1/2
C (x)− f1/2

K′C
(x)
}2
dx

≥ e−C

AC

∫
K′C

(
f̃

1/2
C − f1/2

K′C

)2
,
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which shows that f̃C ∈ G
(
fK′C , A

1/2
C eC/2δ

)
. Since δ < % < υe−C/2 γ1/2, it

follows from the above bounds on AC that

(22) δ ≤ A1/2
C eC/2δ < υ < 2−3/2 and A

−1/2
C ε−1

C . ε−1.

Recalling that K ′C ∈ Pm+1, we can now apply Proposition S9 to deduce that

there exists an
(
A

1/2
C εC

)
-Hellinger bracketing set {[g̃L` , g̃U` ] : 1 ≤ ` ≤ NC}

for G
(
fK′C , A

1/2
C eC/2δ

)
such that

(23) logNC . (m+ 1)Hd

(
A

1/2
C eC/2δ, A

1/2
C εC

)
. mHd(δ, ε).

We see that {f1K′C : f ∈ G(fK,α, δ)} is covered by the brackets {[gL` , gU` ] :
1 ≤ ` ≤ NC} defined by

gL` (x) := A−1
C exp(−α>x) g̃L` (x); gU` (x) := A−1

C exp(−α>x) g̃U` (x).

Moreover, exp(−α>x) ≤ 1 for all x ∈ K ′C , so∫
K′C

(√
gU` −

√
gL`

)2

= A−1
C

∫
K′C

(√
g̃U` (x)−

√
g̃L` (x)

)2

exp(−α>x) dx ≤ ε2
C

for all 1 ≤ ` ≤ NC . Together with (23), this implies that

(24) H[ ](εC ,G(fK,α, δ), dH,K
′
C) ≤ logNC . mHd(δ, ε).

For (20), fix an integer C + 1 ≤ j ≤ a+ − 1 (if such a j exists) and let
Aj := cK,α/µd(K

′
j). For f ∈ G(fK,α, δ), define f̃j : Rd → [0,∞) by f̃j(x) :=

Aj exp(α>x)f(x)1{x∈K′j}. Now

δ2 ≥
∫
K′j

(
f1/2 − f1/2

K,α

)2
=

∫
K′j

e−α
>x

Aj

{
f̃

1/2
j (x)− f1/2

K′j
(x)
}2
dx

≥ e−j

Aj

∫
K′j

(
f̃

1/2
j − f1/2

K′j

)2
,

so f̃j ∈ G
(
fK′j , A

1/2
j ej/2 δ

)
. Since j ≤ a+ − 1, it follows from the definition

of a+ that Aj < δ−2υ2 e−(j+1). In addition, since K ′j ⊆ K+
α,j , we can apply

Lemma S17 to deduce that Aj ≥ cK,α/µd(K+
α,j) ≥ e−j . Therefore,

δ ≤ A1/2
j ej/2 δ < υ < 2−3/2 and A

−1/2
j e−(j−1)/2 . 1.
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Since K ′j ∈ Pm+2, we can apply Proposition S9 to deduce that there exists

an (A
1/2
j e(j−1)/2 εj)-Hellinger bracketing set {[g̃L` , g̃U` ] : 1 ≤ ` ≤ Nj} for

G
(
fK′j , A

1/2
j ej/2 δ

)
such that

(25) logNj . (m+ 2)Hd

(
A

1/2
j ej/2 δ, A

1/2
j e(j−1)/2 εj

)
. mHd(δ, εj).

We see that {f1K′j : f ∈ G(fK,α, δ)} is covered by the brackets {[gL` , gU` ] :

1 ≤ ` ≤ Nj} defined by

gL` (x) := A−1
j exp(−α>x) g̃L` (x); gU` (x) := A−1

j exp(−α>x) g̃U` (x).

Moreover, exp(−α>x) ≤ e−(j−1) for all x ∈ K ′j , so∫
K′j

(√
gU` −

√
gL`

)2

= A−1
j

∫
K′j

(√
g̃U` (x)−

√
g̃L` (x)

)2

exp(−α>x) dx ≤ ε2
j

for all 1 ≤ ` ≤ Nj . Together with (25) and the fact that a+ . log(1/δ), this
implies that

a+−1∑
j=C+1

H[ ](εj ,G(fK,α, δ), dH,K
′
j) . log(1/δ)mHd

(
δ, ε/ log(1/δ)1/2

)
,

which is bounded above up to a universal constant by

(26) m

(
δ

ε

)
log3

(
1

δ

)
log3/2

(
log(1/δ)

ε

)
when d = 2 and

(27) m

{(
δ

ε

)2

log6

(
1

δ

)
+

(
δ

ε

)3/2

log7

(
1

δ

)}
when d = 3.

For (21), if L ≥ C + 1, consider f = eφ ∈ G(fK,α, δ) and define ψ ≡
φ̃K,α : Rd → [−∞,∞) by ψ(x) := φ(x) +α>x+ log cK,α, as in the statement
of Lemma S26. First, we claim that

(28) ψ(x) ≤ 4d+ 2

a+ − 2
α>x

for all x ∈ K \ K+
α, a+−1. To see this, first set K̃ := K+

α, a+−1 and Ã :=

cK,α/µd(K̃), and define f̃ : Rd → [0,∞) by f̃(x) := Ã exp(α>x)f(x)1{x∈K̃}.
Observe that

log f̃(x) = log f(x) + α>x+ log cK,α − logµd(K̃) = ψ(x)− logµd(K̃).
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Then by similar arguments to those given above, we deduce that f̃ ∈
G
(
fK̃ , Ã

1/2 e(a+−1)/2 δ
)
. Moreover, if a+ ≥ C + 2, then it follows from the

definitions of a+ and υ that

Ãea+−1δ2 ≤ µd(K̆α, a+−1)−1cK,α e
a+−1δ2 < e−1υ2 < 2−3.

Otherwise, if a+ = C + 1, then recall from (22) that

Ãea+−1δ2 = AC e
Cδ2 < υ2 < 2−3.

Thus, in all cases, Lemma S25(ii) implies that

log f̃(x) ≤ 27/2d (Ãea+−1 δ2)1/2 − logµd(K̃)

for all x ∈ K̃, and hence that ψ ≤ 4d on Kα, a+−1. On the other hand, we
know from Lemma S26 that there exists some x− ∈ K+

α,1 such that ψ(x−) >

−2. Now if x ∈ K and α>x > a+ − 1, then s := (a+ − 1 − α>x−)/(α>x −
α>x−) satisfies 1 ≥ s ≥ (a+ − 2)/(α>x − 1) > 0, and w := sx + (1 − s)x−
lies in Kα, a+−1. It then follows from the concavity of ψ that

ψ(x) ≤ 1

s
ψ(w)− 1− s

s
ψ(x−) ≤ 4d

s
+

2 (1− s)
s

=
4d+ 2

s
−2 <

4d+ 2

a+ − 2
α>x,

which yields (28), as required.
Now fix an integer a+ ≤ j ≤ L (if such a j exists). First, recalling the

definition of a+, we deduce from the bound (S78) in Lemma S17 that

(29)
µd(K

′
j)

cK,α ea+
≤
(

j

a+ − 1

)d−1 µd(K̆α, a+)

cK,α ea+
≤ eυ−2δ2

(
j

a+ − 1

)d−1

.

Also, it follows from (28) that if f ∈ G(fK,α, δ), then the function f̃j : Rd →
[0,∞) defined by f̃j(x) := cK,α exp(α>x)f(x)1{x∈K′j} belongs to the set

G−∞,Bj (K ′j) :=
{
g1K′j : g ∈ G, g1K′j ≤ e

Bj
}

, where Bj := (4d+2)j/(a+−2).

Now if {[g̃L` , g̃U` ] : 1 ≤ ` ≤ N} is a (c
1/2
K,αe

(j−1)/2 εj)-Hellinger bracketing set
for G−∞,Bj (K ′j), then {f1K′j : f ∈ G(fK,α, δ)} is covered by the brackets

{[gL` , gU` ] : 1 ≤ ` ≤ N} defined by

gL` (x) := c−1
K,α exp(−α>x) g̃L` (x); gU` (x) := c−1

K,α exp(−α>x) g̃U` (x).

Moreover, exp(−α>x) ≤ e−(j−1) for all x ∈ K ′j , so∫
K′j

(√
gU` −

√
gL`

)2

= c−1
K,α

∫
K′j

(√
g̃U` (x)−

√
g̃L` (x)

)2

exp(−α>x) dx ≤ ε2
j
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for all 1 ≤ ` ≤ N . Recalling that a+ ≥ C = 8d + 7 and that hd is a
decreasing function for d = 2, 3, we now apply (29) and the bound (S35)
from Proposition S7 to deduce that

H[ ]

(
εj ,G(fK,α, δ), dH,K

′
j) ≤ H[ ]

(
c

1/2
K,αe

(j−1)/2 εj ,G−∞,Bj (K ′j), dH

)
. hd

 c
1/2
K,αe

(j−1)/2 εj

µd(K
′
j)

1/2 exp
{

(4d+2) j
2(a+−2)

}


. hd

{ cK,α
µd(K

′
j)

}1/2
e(j−a+)/2ea+/2e−(j−a+)/4 ε

exp
{

(4d+2)(j−a+)
2(a+−2) + (4d+2) a+

2(a+−2)

}


. hd

{cK,α ea+

µd(K
′
j)

}1/2

ε exp

{
−
(

4d+ 2

2(a+ − 2)
− 1

4

)
(j − a+)

}
. hd

(
ε

δ

(
a+ − 1

j

) d−1
2

exp

{
−
(

4d+ 2

2(a+ − 2)
− 1

4

)
(j − a+)

})

. hd

(
ε

δ

(
a+ − 1

j

) d−1
2

exp

{
−
(

4d+ 2

2(8d+ 5)
− 1

4

)
(j − a+)

})
,

and we note that 4d+2
2(8d+5) −

1
4 < 0. Thus, when d = 2, the final expression

above is bounded above by a constant multiple of

δ

ε
log3/2

(
δ

ε

)
j1/2 (log3/2 j) exp

{
−
(

1

4
− 4d+ 2

2(8d+ 5)

)
(j − a+)

}
,

where we have used the fact that log+(ax) ≤ (1 + log a) log+ x for all x > 0
and a ≥ 1. It follows that

(30)

L∑
j=a+

H[ ](εj ,G(fK,α, δ), dH,K
′
j) .

δ

ε
log3/2

(
δ

ε

)
when d = 2. Similarly, when d = 3, we conclude that

(31)
L∑

j=a+

H[ ](εj ,G(fK,α, δ), dH,K
′
j) .

(
δ

ε

)2

.

The result follows upon combining the bounds (19), (20), (21), (24), (26),
(27), (30) and (31).

We are now in a position to give the proof of Theorem 3.
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Proof of Theorem 3. By the affine equivariance of the log-concave
maximum likelihood estimator (Dümbgen et al., 2011, Remark 2.4) and
the affine invariance of dH, we may assume without loss of generality that
f0 ∈ F0,I

d . In addition, by Kim and Samworth (2016, Lemma 6), we have

(32) sup
f0∈F0,I

d

P(f̂n /∈ F̃1,ηd
d ) = O(n−1),

where F̃1,ηd
d is the class of ‘near-isotropic’ log-concave densities defined at

the start of Section 5. For fixed f0 ∈ Fd and m ≥ d, let

∆ := inf
f∈F1(Pm)

supp f0⊆supp f

d2
H(f0, f).

First we consider the case d = 2 and assume for the time being that ∆ ≤
%2/2, where %2 is taken from Proposition 10. If δ ∈ (0, %2 −∆), then for all
η′ ∈ (0, %2−∆−δ), there exists f ∈ F1(Pm) with supp f0 ⊆ supp f such that
dH(f0, f) ≤ ∆ + η′. It follows from the triangle inequality that F(f0, δ) ⊆
F(f, δ + ∆ + η′) ⊆ F(f, %2), and we deduce from the first bound (17) in
Proposition 10 that

H[ ](2
1/2ε,F(f0, δ), dH) . m

(
δ + ∆ + η′

ε

)
log3

(
1

δ

)
log3/2

(
log(1/δ)

ε

)
.

But since η′ ∈ (0, %2 −∆− δ) was arbitrary, it follows that

(33) H[ ](2
1/2ε,F(f0, δ), dH) . m

(
δ + ∆

ε

)
log3

(
1

δ

)
log3/2

(
log(1/δ)

ε

)
and hence that∫ δ

δ2/213

H
1/2
[ ] (ε,F(f0, δ), dH) dε

. m1/2(δ + ∆)1/2 log3/2

(
1

δ

)∫ δ

0
ε−1/2 log3/4

(
log(1/δ)

ε

)
dε.(34)

Now for any a > eδ, we can integrate by parts to establish that∫ δ

0
ε−1/2 log3/4

(a
ε

)
dε = a1/2

∫ ∞
log(a/δ)

u3/4e−u/2 du

= 2δ1/2 log3/4
(a
δ

)
+

3a1/2

2

∫ ∞
log(a/δ)

e−u/2

u1/4
du

≤ 5δ1/2 log3/4(a/δ).(35)
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Thus, setting a := log(1/δ) and combining the bounds in (34) and (35), we
see that

1

δ2

∫ δ

δ2/213

H
1/2
[ ] (ε,F(f0, δ) ∩ F̃1,η2 , dH) dε . m1/2

(
δ + ∆

δ3

)1/2

log9/4

(
1

δ

)
,

where the right-hand side is a decreasing function of δ ∈ (0, %2−∆). On the
other hand, if δ ≥ %2 −∆, which is at least %2/2, then it follows from Kim
and Samworth (2016, Theorem 4) that

H[ ](ε, F̃1,η2 , dH) . h2(ε) .
1

ε
log

3/2
+

(
1

ε

)
.
δ

ε
log

3/2
+

(
1

ε

)
and hence that

1

δ2

∫ δ

δ2/213

H
1/2
[ ] (ε,F(f0, δ) ∩ F̃1,η2 , dH) dε .

1

δ
log

3/4
+

(
1

δ

)
.

Consequently, there exists a universal constant C ′2 > 0 such that the function
Ψ2 : (0,∞)→ (0,∞) defined by

Ψ2(δ) := C ′2m
1/2 δ1/2(δ + ∆)1/2 log

9/4
+ (1/δ)

satisfies Ψ2(δ) ≥ δ ∨
∫ δ
δ2/213 H

1/2
[ ] (ε,F(f0, δ) ∩ F̃1,η2 , dH) dε for all δ > 0

and has the property that δ 7→ δ−2 Ψ2(δ) is decreasing. Setting c2 :=
269/4C ′2 ∨ 1 and δn := (c2

2mn
−1 log9/2 n + ∆2)1/2, we have ∆ ≤ δn and

δ−1
n ≤ c−1

2 m−1/2 n1/2 log−9/4 n ≤ n1/2, so

(36) δ−2
n Ψ2(δn) ≤ 21/2C ′2m

1/2 δ−1
n log9/4(n1/2) ≤ 2−19n1/2.

We are now in a position to apply van de Geer (2000, Corollary 7.5), which
is restated as Theorem 10 in the online supplement to Kim et al. (2018). It
follows from this, (32) and the bound (S2) from Lemma S1 that there are
universal constants C̄, c, c′, c′′ > 0 such that

E{d2
X(f̂n, f0)} ≤

∫ 8d logn

0
P
[
{d2
X(f̂n, f0) ≥ t} ∩ {f̂n ∈ F̃1,η2}

]
dt

+ (8d log n)P(f̂n /∈ F̃1,η2) +

∫ ∞
8d logn

P
{
d2
X(f̂n, f0) ≥ t

}
dt

≤ δ2
n +

∫ ∞
δ2
n

c exp(−nt/c2) dt+ c′n−1 log n+ c′′n−3

≤ δ2
n + 2c′n−1 log n ≤ C̄m

n
log9/2 n+ ∆2(37)
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for all n ≥ 3, provided that ∆ ≤ %2/2. On the other hand, when ∆ >
%2/2, observe that by Theorem S2, which is a small modification of Kim
and Samworth (2016, Theorem 5), we have E{d2

X(f̂n, f0)} . n−2/3 log n .
(%2/2)2 ≤ ∆2. We have now established the d = 2 case of the desired result.

The proof for the case d = 3 is very similar in most respects, except that
the first term in the local bracketing entropy bound (18) from Proposition 10
gives rise to a divergent entropy integral. If ∆ ≤ %3/2, then

1

δ2

∫ δ

δ2/213

H
1/2
[ ] (ε,F(f0, δ) ∩ F̃1,η3 , dH) dε . m

(
δ + ∆

δ2

)
log4

+

(
1

δ

)
for all δ > 0, where we once again appeal to the global entropy bound

H[ ](ε, F̃1,η3 , dH) . h3(ε) .
1

ε2

from Kim and Samworth (2016, Theorem 4) to handle the case δ ≥ %3 −
∆. We conclude as above that there exists C ′3 > 0 such that the function
Ψ3 : (0,∞)→ (0,∞) defined by

Ψ3(δ) := C ′3m
1/2(δ + ∆) log4

+(1/δ)

has all the required properties. Also, if we set c3 := 216C ′3 ∨ 1, then δn :=(
c2

3mn
−1 log8 n + ∆2

)1/2
satisfies δ−2

n Ψ3(δn) ≤ 2−19n1/2 for all n ≥ 4. The
rest of the argument above then goes through, and we once again use the
worst-case bound E{d2

X(f̂n, f0)} . n−1/2 log n from Theorem S2 to handle
the case where ∆ > %3/2.

Proof of Proposition 4. Observe that in Proposition S9, the poly-
logarithmic exponents in the local bracketing entropy bounds for uniform
densities on polytopes in Pm are smaller than those that appear in Proposi-
tion 10. We can therefore exploit this and deduce Proposition 4 from Propo-
sition S9 in the same way as Theorem 3 is derived from Proposition 10. We
omit the details for brevity.

Now that we have established our main novel results of this section, the
proof of Theorem 2 is broadly similar to that of the univariate oracle in-
equality stated as Theorem 3 in Kim et al. (2018), so our exposition will be
brief, and we will seek to emphasise the main points of difference.

Proof of Theorem 2. Fix f0 ∈ F and an arbitrary f ∈
⋃
m∈NFk(Pm)

such that KL(f0, f) < ∞. Note that we must have supp f0 ⊆ supp f .
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Proposition 1 yields a polyhedral subdivision E1, . . . , E` of supp f ∈ P
with ` := κ(f) ≤ k such that log f is affine on each Ej , and recall that

Γ(f) =
∑`

j=1 dj , where dj := |F(Ej)|. Setting pj :=
∫
Ej
f0 and qj :=

∫
Ej
f

for each j ∈ {1, . . . , `}, we see that
∑`

j=1 pj =
∑`

j=1 qj = 1. Moreover, let
Nj :=

∑n
i=1 1{Xi∈Ej} for each j ∈ {1, . . . , `}, and partition the set of indices

{1, . . . , `} into the subsets J1 := {j : Nj ≥ d + 1} and J2 := {j : Nj ≤ d}.
Then |J2| ≤ d` and

(38) d2
X(f̂n, f0) ≤ 1

n

∑
j∈J1

∑
i:Xi∈Ej

log
f̂n(Xi)

f0(Xi)
+
d`

n
max

1≤i≤n
log

f̂n(Xi)

f0(Xi)
.

The bound (S1) from Lemma S1 controls the expectation of the second
term on the right-hand side of (38), so it remains to handle the first term.

For each j ∈ J1, let f
(j)
0 , f (j) ∈ F be the functions defined by f

(j)
0 (x) :=

p−1
j f0(x)1{x∈Ej} and f (j)(x) := q−1

j f(x)1{x∈Ej}. We also denote by f̂ (j) the
maximum likelihood estimator based on {X1, . . . , Xn} ∩ Ej , which exists
and is unique with probability 1 for each j ∈ J1 (Dümbgen et al., 2011,
Theorem 2.2). Writing M1 :=

∑
j∈J1

Nj and arguing as in Kim et al. (2018),
we find that ∑

j∈J1

∑
i:Xi∈Ej

f̂n(Xi) ≤
∑
j∈J1

∑
i:Xi∈Ej

Nj

M1
f̂ (j)(Xi).

It follows that

1

n
E
{∑
j∈J1

∑
i:Xi∈Ej

log
f̂n(Xi)

f0(Xi)

}
≤ 1

n
E
{∑
j∈J1

∑
i:Xi∈Ej

log
Nj f̂

(j)(Xi)/M1

pjf
(j)
0 (Xi)

}

=
1

n
E
{∑
j∈J1

∑
i:Xi∈Ej

log
f̂ (j)(Xi)

f
(j)
0 (Xi)

}
+ E

(∑
j∈J1

Nj

n
log

Nj

npj

)
(39)

+ E
(
M1

n
log

n

M1

)
=: r1 + r2 + r3.

To bound r1, we observe that f (j) ∈ F1(Pdj ) and supp f
(j)
0 ⊆ supp f (j) for

each j ∈ J1. Consequently, after conditioning on the set of random variables

{Nj : j = 1, . . . , `}, we can apply the risk bound in Theorem 3 to each f
(j)
0
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and the corresponding f̂ (j) to deduce that

r1 ≤
1

n
E

(∑
j∈J1

Nj

{
C̄dj
Nj

logγd Nj + inf
f1∈F1(Pdj )

supp f
(j)
0 ⊆supp f1

d2
H

(
f

(j)
0 , f1

)})

≤ C̄ Γ(f)

n
logγd n+

∑̀
j=1

pj d
2
H

(
f

(j)
0 , f (j)

)
≤ C̄ Γ(f)

n
logγd n+ KL(f0, f),(40)

where the penultimate inequality follows as in the proof of Kim et al. (2018,
Theorem 3). Moreover,

r2 ≤
∑̀
j=1

E
{
Nj

n

(
Nj

npj
− 1

)}
− E

(∑
j∈J2

Nj

n
log

Nj

npj

)
≤ `

n
+
d`

n
log n.

(41)

Finally, for r3, we first suppose that d` < n/2, in which case M1/n ≥
1 − (d`)/n > 1/2. Thus, arguing as in Kim et al. (2018), we deduce that
r3 ≤ (2`d)/n. Together with (39), (40), (41) and the fact that ` ≤ Γ(f), this
implies that the desired bound (6) holds whenever d` < n/2. On the other
hand, if d` ≥ n/2, then Γ(f)/n & 1 and we can apply Lemma S1 again to
conclude that

E{d2
X(f̂n, f0)} ≤ E

{
max

1≤i≤n
log

f̂n(Xi)

f0(Xi)

}
. log n .

Γ(f)

n
logγd n.

This completes the proof of (6). The final assertion of Theorem 2 follows from
Lemma S23 in the case d = 2 and from the final assertion of Proposition 1
in the case d = 3.
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