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SUMMARY

By Ruping Mo

The work described in this thesis can be divided into two parts. In the first part (Chap-
ters 2 and 3) we demonstrate how the wave-induced mean motion can be described
in terms of the dynamics of Rosshy-Ertel potential vorticity (PV). In the second part
(Chapters 4 and 5), Rossby waves and their mean effects in the middle atmosphere are
investigated within the framework of quasi-geostrophic theory.

Chapter 2 describes a simple thought experiment to highlight the usefulness of the de-
scription of wave-mean interaction in terms of wave-induced transport of PV-substance
(PVS). It is shown that the wave-induced irreversible PVS transport depends crucially on
wave dissipation. When the invertibility principle for the mean PV anomaly field applies
from a coarse-grain perspective, the resulting balanced mean motions are dissipation-
dependent, and are equivalent to the O(a?) dissipation-dependent mean motions deduced
from the momentum viewpoint (a is a dimensionless amplitude parameter). When the
invertibility principle applies [rom a fine-grain perspective, the balanced mean motions
include also the O(a?) mean motions induced by the ellfect of wave transience. In addi-
tion, the O(a?) dissipation-dependent mean motions are cumulatively much larger than
the O(a?) dissipation-independent mean motions as time goes on. Thus, even from a
coarse-grain perspective, the PV description can provide a key to understanding and
characterizing the general nature ol wave-induced mean motions.

Some general relationships between the wave-induced PVS transport and momentum
transport are derived in Chapter 3. It is shown that the wave-induced contribution to
the PVS transport is closely related to the rate of dissipation of quasimomentum. This
result generalizes Taylor’s well-known identity, which was derived for a two-dimensional,
incompressible, non-rotating fluid (Taylor, 1915), to a stably stratified, rapidly rotating
fluid. It also provides a physical basis for the description of wave-induced mean motions
in terms of PVS transport.

Chapter 4 focuses on the dissipative nature of the Rosshy waves and their mean effects
in a Charney-Drazin madel. It is shown Lhat dissipative processes in the atmosphere
not only act to damp the wave amplitude, but also affect significantly the wave phase
structure. Moreover, our results suggest that the existence of anomalously-signed (pos-
itive) Eliassen-Palm (EP) flux divergences in the middle atmosphere may be physically
possible, and the difference between the transformed Eulerian-mean and the generalized

Lagrangian-mean meridional circulation is not always negligible.

A sharp-edge model on the polar 4-plane is introduced in Chapter 5 to study Rossby
waves associated with the polar vortex. Results show that the vortex edge can support
hoth free travelling and forced Rossby waves that have a horizontal structure decaying
exponentially away from the vortex edge. When the polar night jet is strong enough,
ihe free travelling Rossby waves with each zonal wavenumber tend to travel eastward
with approximately the same zonal angular phase velocity, resembling many aspects of
the behaviour of the 4-day waves observed in the winter stratosphere (Randel and Lait,
1991). Of the waves forced by the topography, only those of planetary scale can exist
under the typical parameter conditions of the winter stratosphere. Dependences of the
EP flux divergence and the mean meridional circulation in the sharp-edge model are also
examined. In particular, our result gives no support to the ‘Nowing processor’ hypothesis
(Tuck et al., 1992, 1993), which requires a significant transport of chemically perturbed
air from within the stratospheric polar vortex to mid-latitudes to explain the observed
ozone depletion.
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CHAPTER 1

INTRODUCTION

Within wave science as a whole, the nature of waves in fluids is characterised especially by
their ability to interact with complex fluid flow fields.

— Sir James Lighthill (1978)

1.1 General remarks

The interaction between waves and mean flow is a fundamental problem in the theory
of fluid dynamics. It is well-known that a wave packet propagating in a fluid medium is
capable of transporting momentum, thereby exerting forces on and inducing changes in
the mean flow. On the other hand, the mean-flow configuration can strongly modify the

structure of the waves.

In the meteorological context, many phenomena observed in the atmosphere cannot
be properly understood without considering the complex interactions between the waves
and the mean flow. The most dramatic example of such interaction is the so-called
quasi-biennial oscillation (QBO) discovered independently by Reed et al. (1961) and by
Veryard and Ebdon (1961). The phenomenon involves the reversal of the mean easterly or
westerly winds with a variable period between about 24 and 32 months in the equatorial
lower stratosphere throughout a belt encircling the globe (see Andrews et al., 1987 and
Holton, 1992). Our current theoretical understanding of this phenomenon is based on
the work of Lindzen and Holton (1968) and Holton and Lindzen (1972), who argued that
the QBO is an internal oscillation that results from the interaction between mean flow
and vertically propagating Kelvin and Rossby-gravity waves from the troposphere'. The
two basic mechanisms involved are first the wave-induced angular momentum transport,
cumulatively changing the mean velocity profile as the waves dissipate; and second the
effect of mean shear in Doppler shifting and refracting the waves (Mclntyre, 1993). These

mechanisms are simultaneous and highly interdependent. An idealized form of the same

L 1t is not clear, however, that observed Rossby-gravity waves have sufficient amplitude; and other
waves may also be involved (Dickinson, 1968; Lindzen and Tsay, 1975; Andrews and MecIntyre, 1976a;
Dunkerton, 1985; Boville and Randel, 1991; Takahashi and Boville, 1992).



§1.1 General remarks 9

phenomenon — a periodically reversing mean flow with qualitatively the same space-

has been demonstrated in

time pattern, driven entirely by a steady input of waves
the laboratory by Plumb and McEwan (1978).

Another interesting example of wave-mean interaction in the atmosphere is the mid-
winter stratospheric sudden warming®. Matsuno (1971) proposed the first successful
theory to model this phenomenon. According to his theory, the stratospheric sudden
warming results from the upward propagation from the troposphere of Rossby waves and

their interaction with the mean stratospheric flow.

This thesis is concerned with the general nature of wave-mean interaction in the
atmosphere, with dynamics of the middle atmosphere® particularly in mind, and with
emphasis on the description of the problem in terms of the potential vorticity dynamics.
One important reason for being interested in the middle atmosphere is the increasing
scientific and public concern over the detectable depletion of atmospheric ozone, which
is largely confined to the stratosphere. Since the pioneering study of Hartley (1881), it
has been known for more than a century that ozone in the stratosphere is an essential
filter of ultraviolet radiation that protects life on the Earth’s surface (Rowland, 1991;
Wayne, 1991). By its strong absorption of ultraviolet radiation, ozone also provides
the heat source that is responsible for the observed temperature inversion between the
tropopause and the stratopause (see Andrews et al., 1987). Thus, the discovery of the
spectacular decrease in October Antarctic total ozone starting at the end of 1970’s, as
first reported by scientists of the British Antarctic Survey (Farman et al., 1985), has led

to a blossoming of interest in the middle atmosphere.

Clearly, the distribution and evolution of ozone in the atmosphere depends not only on
photochemical reactions, but also on dynamical transport by air motions. It is now widely

recognised that there exists a systematic, persistent, global-scale mean mass circulation in

? The climatological zonal-mean temperature in the winter stratosphere generally decreases towards
the winter pole. The thermal wind balance condition thus requires a polar vortex with strong westerly
shear with height. During some winters, however, this zonal-mean configuration is dramatically disrupted
with an accompanying large-scale warming of the polar stratosphere, which can quickly (within a few
days) reverse the meridional temperature gradient and create a circumpolar easterly current. Such an
event is called a siralospheric sudden warming.

3 The middle atmosphere is generally regarded as the region extending from the tropopause (about
10-16 km altitude depending on latitude) to about 100 km. The bulk of the middle atmosphere consists
of two main layers, i.e., the stratosphere exiending from the tropopause to the stratopause at about
50 km and the mesosphere extending from the stratopause to the mesopause at about 86 km. Below
the stratosphere is the troposphere and above the mesosphere is the thermosphere. The stratosphere
has large static stability associated with an overall increase of temperature with height, while in the
troposphere and mesosphere the temperature generally decreases with height.
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Figure 1.1: Mass transport streamlines of Lhe global-scale mean cir-
culation for January 1979 estimated using satellite data (light curves)
from Solomon et al. (1986). The heavy dashed streamline was added
by Mclntyre (1992) to indicale schematically the mesospheric mean
circulation deduced from other observational and theoretical evidences

(e.g., WMO, 1985; Andrews el al., 1987).

the middle atmosphere, as shown in [lig.1.1 (alter McIntyre, 1992). This mass circulation
is believed to make a significant contribution to the meridional transport of ozone from its
source region in the tropical upper stratosphere to the high-latitude lower stratosphere.
It may also be a crucial factor in the verlical transport of ozone-destroying chemicals
(e.g., HO,, NO., and ClO.) from the polluted troposphere to the middle atmosphere;
this is believed to be an important mechanism that causes the significant depletion of

stratospheric ozone (IParman ¢l al., 1985; Wayne, 1991; Tlolton, 1992; Mclntyre, 1992).

I'rom a dynamical viewpoint, on the other hand, the mean meridional circulation in
the middle atmosphere is primarily a wave-induced circulation (Andrews el al., 198T;
Holton, 1992). In the absence of wave motions the zonal mean temperature of the mid-
dle atmosphere would relax to a radiative equilibrium which can be calculated from
a radiative-photochemical model of the middle atmosphere together with a radiative-
convective model of the troposphere (Fels, 1985). The corresponding circulation would

consist of a zonal-mean zonal flow in thermal wind balance with the meridional tem-
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perature gradient, and a negligible meridional circulation associated with the annually-
varying, radiatively-determined temperature field. This implies that any significant de-
parture [rom the radiatively determined state in the middle atmosphere, such as the
systematic mean meridional mass circulation shown in Fig.1.1, must be maintained by
various wave motions (Andrews et al., 1987; Holton, 1992). Thus, the study of the waves

and their interaction with the mean flow is a critical aspect of middle atmosphere science.

For a stably stratified, rapidly rotating fluid such as the middle atmosphere, it proves
to be very useful and instructive for many different purposes to describe the motion in
terms of the evolution of the Rossby-Ertel potential vorticity, hereafter PV (Hoskins ef
al., 1985; Kurganskiy and Tatarskaya, 1987; Mclntyre, 1992). The concept of PV first
appeared in the works of Rossby (1936, 1940) in the development of the general theory of
hydrostatic vortex motions as applied to problems in atmospheric and oceanic dynamics.
In 1942 Ertel showed, for general (hydrostatic or nonhydrostatic) motion in the absence

of diabatic heating and nonconservative forces, that the quantity
P=p"1¢, V0 (1310

is materially conserved, where p(x,t) and 0(x,1) denote respectively the density of the

fluid and the potential temperature at each point x and instant ¢, and
=280+ X n (1.1.2)

is the absolute vorticity vector, with € being the Earth’s angular velocity vector and
u(x,t) the three-dimensional velocity vector relative to the Earth. Bq.(1.1.1) gives a
general definition of PV. The significance and importance of PV for understanding the
geophysical fluid motion stems from some fundamental properties of the PV, which are

now briefly summarised as follows:

e the PV is materially conserved in the absence of diabatic heating and nonconserva-
tive forces — a result known in the general, nonhydrostatic case as Ertel’s theorem

(Ertel, 1942);

e the PV satisfies an exact conservation equation, which allows us to imagine PV as
the mixing ratio of a generalised tracer, whose “molecules” are neither created nor
destroyed away from boundaries — this generalised tracer may be referred to as
the “PV-substance” or the “PVS” (Haynes and Mclntyre, 1987, 1990);
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e the isentropic surfaces behave as if they were completely impermeable to the PVS,
even in the presence of friction and diabatic heating — the impermeability theorem

(Haynes and Mclntyre, 1987, 1990);

e the isentropic PV distributions contain nearly all the dynamical information of
the large-scale motion in the sense that, if the total mass under each isentropic
surface is specified, then, under a suitable balance condition, a knowledge of the
distribution of PV on each isentropic surface and of potential temperature at the
lower boundary is sufficient to deduce diagnostically all the other dynamical fields
— the (PV) invertibility principle (Charney, 1948; Kleinschmidt, 1950a.b, 1951;

Hoskins et al., 1985 and references therein.)

These fundamental properties of PV, together with their mathematical and physical

background, will be [urther discussed in Section 1.5.

1.2 A brief historical review

Early studies relevant to wave-mean interaction in fluids date from the late nineteenth
century with the pioneering contributions by Lord Rayleigh. In his theoretical investiga-
tions of the stability of a parallel flow of an inviscid fluid, Rayleigh (1880) demonstrated
that a necessary condition for an initially small-amplitude wave to grow with time is
that the mean parallel-flow velocity must possess an inflection point. The application
and generalisation of Rayleigh’s stability theory to the problems of meteorological interest
have been successfully treated by Charney (1947), Eady (1949), Kuo (1949, 1951,1953),
Fjgrtoft (1950), Charney and Stern (1962), among others, In 1896, Rayleigh published
his second volume of “The Theory of Sound”, in which he pointed out that certain mean
flows can be induced by dissipating acoustic oscillations. This idea has been revitalized
by recent evidence that the dissipative type of wave-induced mean flows plays an impor-
tant role in the middle atmospheric circulation (e.g., Holton and Lindzen, 1972; WMO,
1985; Mclntyre and Norton, 1990).

Probably the first to state explicitly that the atmospheric circulation involves the
interaction between the waves and the mean flow was Helmholtz, as is evidenced by the

following quotation from the introduction to a paper by him published in 1889:

The calculations performed by me show [urther that for the observed velocities of the
wind there may be formed in the atmosphere not only small waves, but also those whose
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wave-lengths are many kilometers which, when they approach the earth’s surface to within
an altitude of one or several kilometers, set the lower strata of air into violent motion and
must bring about the so-called gusty weather. The peculiarity of such weather (as T look at
it) consists in this, that gusts of wind often accompanied by rain are repeated at the same
place, many times a day, at nearly equal intervals and nearly uniform order of succession.

I think it may be assumed that this formation of waves in the atmosphere most fre-
quently gives occasion to the mixture of almospheric strata and, under favourable circum-
stances, when the ascending masses form mist, give opportunity for disturbances of an
equilibrium that had already become nearly unstable. Under conditions, such as those
where we see water waves breaking and forming white caps, thorough mixtures must form
between the strata of air [Originally written in German, English transl. in Abbe (1893,
pp.94-111)].

Although Helmholtz did not realise at that time that the dominant waves in the atmo-
sphere may have horizontal wave-lengths of thousands of kilometers, he had a clear idea
in mind that waves should play a role in the general circulation of atmosphere. TFur-
thermore, the remark quoted above embodies clearly the basic concept of wave-mean
interaction; in particular, Helmholtz correctly identified wave breaking as an important

mechanism through which waves exert their influences on the atmospheric circulation.

—
.

The modern era in the study of the wave-mean interaction begins with two pioneering
papers by Eliassen and Palm (1961) and Chamcylaud Drazin (1961). Eliassen and Palm
pointed out that the eddy flux of momentum is constant in an inviscid, adiabatic, and
nonrotating fluid, except at a critical level where the mean velocity is equal to the
horizontal phase velocity of the waves. This result had in fact been worked out already
by Foote and Lin (1950) in the context of hydrodynamic stability theory (also see Lin,
1955). The matter becomes much complicated in the atmosphere when the effect of
the Earth’s rotation cannot be omitted, because under such cireumstances both eddy
heat and momentum transports may modify the mean flow. Ilowever, Eliassen and
Palm (op. cit.) were able to demonstrate that the combined effects of eddy heat and
momentum transports on the mean flow in a rotating fluid can be summarised into a
vector, which now is generally referred to as the ‘EP flux’. Charney and Drazin (op. cit.)
first demonstrated that vertical propagation of stationary Rossby waves can occur only in
the presence of westerly winds weaker than a critical value that depends on the horizontal
scale of the waves. When regard was paid to the rectified nonlinear effects of the waves
on the mean flow, they revealed that, away from the critical level, the divergence of the
EP flux associated with steady, conservative and linear Rossby waves is zero; thus there
is no forcing of the zonal mean flow by such waves. This rather surprising result is called

the Charney-Drazin nonacceleration theorem.

Neither Eliassen and Palm nor Charney and Drazin discussed what happens when
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the waves encounter critical levels. The major difficulty arises from the fact that there
is a singularity in the wave structure equation at the critical level. The problem was
first investigated by Bretherton (1966a, 1969). Using the concept of wave packets in
a slowly varying mean flow, Bretherton pointed out that a wave packet travelling with
the appropriate local group velocity will approach the critical level but never reach it;
thus the packet is neither transmitted nor reflected — it simply slows down until either
dissipation or nonlinearity destroys it as a coherent entity. Booker and Bretherton (1967)
gave an alternative description of the problem by intreducing a complex phase velocity
for internal gravity waves with a small imaginary part in order to remove the singularity
associated with the critical level, and by looking at the asymptotics of the time-dependent
initial value problem. Their result indicates that a wave travelling through the critical
level has its amplitude attenuated by a constant factor dependent on the local Richardson
number, thus the proof of the constancy of the eddy flux of momentum by Eliassen and
Palm (1961) fails at the critical level. In oﬁﬁbr-s\'ords, a wave-induced [orce is exerted on

the mean flow in the vicinity of the critical level (i.e., in the critical layer).

Hazel (1967) pointed oul that a small, positive imaginary part of the phase velocity
introduced by Booker and Bretherton (op. e#t.) corresponds physically to a wave damped
by mechanical and thermal dissipation. On the other hand, Benney and Bergeron (1969)
and Davis (1969) argued that, if allowance is made for disturbances of finite amplitude,
the critical layer need not be associated with dissipation effects, and there are some
important cases where the nonlinear theory is very appealing. In fact, the importance
of nonlinear processes in the problem had already been noted by Booker and Bretherton
themselves. Incidentally, since the pioneering study of the linear, time-dependent Rossby-
wave critical layer by Dickinson (1970), whose theory was further elucidated by Warn and
Warn (1976), there has been continuing interest in the corresponding nonlinear problem
for Rossby-wave critical layers (e.g., Geisler and Dickinson, 1974; Béland, 1976, 1978;
Stewartson, 1978; Warn and Warn, 1978; Killworth and Mclntyre, 1985; Haynes, 1985,
1989; McIntyre and Norton, 1990). The importance of the problem in the geophysical
context is that it provides a paradigm for the phenomenon of Rossby-wave breaking

processes that seems typical of large-scale atmospheric motions (Mclntyre and Palmer,
1983, 1984, 1985).

Booker and Bretherton’s theory for the critical layer problem is based on a non-

rotating model for internal gravity waves. Applications of this theory to the rotating
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atmosphere were immediately made by Lindzen and Holton (1968) to show how upward-
propagating, planetary-scale equatorial waves may drive the QBO in the zonal wind
observed in the tropical stratosphere, and by Dickinson (1969a) to show how vertically
propagating, mid-latitude Rossby waves may account for the remarkable zonal wind
changes which occur during the sudden warming in the winter stratosphere. Dickinson’s
study also dealt with the effects of thermal dissipation without critical levels. Later on,
Holton and Lindzen (1972) replaced their earlier QBO theory, which depended on the
presence of critical levels, with a new theory wherein the damping of short-period waves
by infrared cooling, rather than the critical levels, is directly relevant to the acceleration
of the mean flow. Andrews and McIntyre (1976a,b, 1978a) and Boyd (1976) took a key
step by deriving a general relationship between the acceleration of zonal mean flow and

wave transience and nonconservative forcing, which mmay be expressed as

%+V-S='D+O(a3), (1.2.1)

where a is a dimensionless amplitude parameter, S is the EP flux vector whose divergence
is a direct measure of the total forcing of the zonal-mean state by the eddies, A and D,
being respectively referred to as the density of wave activity and the non-conservative
source (or sink) of wave activity, are O(a?) mean quadratic functions of disturbance
quanlities that generally involve parcel displacements associated with the waves. The
nonlinear wave effects are implicitly represented by the O(a®) term. £q.(1.2.1) is called
the generalized Eliassen—Palm theorem (Lidmon ef al., 1980). It makes explicit the depen-
dence of the EP flux divergence on the wave transience (—8.4/dt) and non-conservative
wave effects (D). The effects of these physical mechanisms may be amplified by, but not

crucially depend on, the presence of critical levels.

The generalized Eliassen-Palm theorem given in Eq.(1.2.1) does not explicitly include
nonlinear wave effects. For linear, conservative waves, Andrews and Mclutyre (1976a,
1978b) emphasized that wave transience by itsell can cause only a temporary, reversible
mean-flow change; in contrast, irreversible momentum transport can be induced by wave
dissipation processes, which lead to permanent mean-flow changes. It is worth noting
that the linear theory must be applied to the atmosphere with extreme caution. Mclntyre
and Palmer (1983, 1984, 1985) obtained some clear signs, which show that the dynam-
ics of the stratosphere is highly nonlinear in some regions, where Rossby wave breaking
appears to be a very common process. In order to recover a full description of wave

generation, propagation, breaking, and their interaction with the mean-flow, a number
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of finite-amplitude generalisations of the generalized Eliassen-Palm theorem have been
constructed (e.g., Andrews and McIntyre, 1978b,c; Killworth and Mclntyre, 1985; Mcln-
tyre and Shepherd, 1987; Haynes, 1988). Iaving noted the facts that both dissipating
and breaking waves tend to rearrange PVS along the isentropic surfaces, and that the
PV distribution contains nearly all the dynamical information of the large-scale motion,
MclIntyre and Norton (1990) suggested that it might be convenient and useful to widen
the sense of wave dissipation to include all wave-breaking processes, and to replace the

notion of wave-induced mean force by the notion of wave-induced PVS transport.

Here we should take note of a remarkable similarity. In 1915, G. L. Taylor suggested
that a disturbance-induced mean force in an incompressible two-dimensional fluid can
be thought of as equivalent to an averaged transport-ef vorticily. Taylor realised well
that the fundamental mean effect of eddies (waves or turbulence) is to transfer momen-
tum from the layer in which they are generated to the layer in which they are dissipated
(mixed). However, he felt that it would be difficult to analyze directly the eddy transport
of momentum, because in the case of transfer of momentum the eddy can lose or gain
velocity owing to the existence of local variations in pressure over a horizontal plane.
Noticing that vorticity is a materially conserved quantity in a two-dimensional, homoge-
neous, and incompressible fluid and its evolution is not affected by the existence of local
pressure gradients, Taylor suggested that the effect of eddies on the mean flow could he
examined conveniently in terms of the diffusion of vorticity. To justify his ideas, Tay-
lor derived an important identity to relate the eddy momentum flux divergence to the
eddy vorticity transport, and further proved that the momentum transport theory turns
out to be identical to the vorticity transport theory when the eddies are confined to a

two-dimensional plane perpendicular to the direction of the mean flow.

Taylor’s idea has been applied and generalized to geophysical fluid dynamics within
the framework of quasi-geostrophic theory for a stably stratified, rapidly rotating fluid
since the 1960s. Bretherton (1966a) first derived an important quasi-geostrophic rela-
tionship between the northward eddy flux of potential vorticity and the divergence of the
EP flux. Such a relationship was re-derived by Green (1970) and applied to atmospheric
data by Edmon et al. (1980). Dickinson (1969a) further pointed out that it is necessary
to transport potential vorticity by the eddies in order to force a zonal flow. It is un-
derstood that the potential vorticity used by Bretherton (op. cit.) and Dickinson (op.
cit.) is the quasi-geostrophic potential vorticity (henceforth denoted QGPV). Charney



§1.3 Zonal mean temperature and wind distributions 10

and Stern (1962) derived an elegant relationship between the derivatives of the QGPV
and the PV, which shows that, when quasi-geostrophic scaling holds, the variation of the
QGPYV on a constant altitude or pressure surface is approximately proportional to the
variation of the PV on an isentropic surface. Generally speaking, however, the QGPV
differs from the PV in significant respects: for instance, it is not even a quasi-geostrophic
approximation to the PV, and, in the absence of diabatic and frictional effects, the QGPV
is conserved only in an approximate sense, i.e., it is conserved following the horizontal
geostrophic flow, rather than following an air parcel (Hoskins et al., 1985). Furthermore,
there are difficulties in applying quasi-geostrophic theory to domains wide enough to in-
clude both the mid-latitudes and the tropics. In addition, the quasi-geostrophic theory is
inaccurate near sloping tropopause transitions in the static stability and near jet streams
with relative vorticity comparable to the planetar}ﬁi'grticity due to the Earth’s rotation
(Hoskins et al., 1985; Hoskins, 1991). These [acts, together with the PV fundamentals
outlined in Section 1.1, directly motivate the renewed interest in recent years in using the
PV to illuminate the geophysical fluid dynamics, including the wave-mean interaction

processes in the atmosphere.

1.3 Zonal mean temperature and wind distributions

This thesis is about the interaction between the waves and the mean flow in the atmo-
sphere. To begin with, we need some overview of the characteristics of the mean flow
and the superposed waves in the atmosphere. In this section, the zonal mean tempera-
ture and wind distributions in the winter and summer atmosphere are briefly described.

Important wave motions in the middle atmosphere will be outlined in the next section.

Fig.1.2 shows the observed zonal mean temperature cross sections for January and
July in the troposphere and middle atmosphere. Data for the diagrams are obtained from
the 1986 COSPAR Iuternational Reference Atmosphere compilation (see Fleming et al.,
1990). In the troposphere, the temperature structure is determined mainly by the balance
between infrared radiative cooling and heat transport due to small-scale and synoptic-
scale eddies. As a result, the temperature in the troposphere has its maximum on the
Earth’s surface in the equatorial region, decreasing horizontally toward both the winter
and summer poles, and vertically toward the tropopause. Above the tropopause, on the
other hand, the main features of the temperature structure are determined primarily by

radiative processes. In the stratosphere, for instance, the increase of temperature with
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height to a maximum at the stratopause near 50 km is due to absorption of solar radiation
by ozone, and the uniform decrease from summer pole to winter pole above about 25 km
is also in qualitative accord with radiative equilibrium conditions. In the mesosphere,
temperature decreases with height owing to the reduced solar heating of ozone. Above
the mesopause, solar ultraviolet radiation is strongly absorbed, particularly by molecular
and atomic oxygen, resulting in the rapid increase of temperature in the thermosphere
(Holton, 1992).

A most striking feature of the data of Ilig.1.2 is that thelowest temperature occurs
at the polar mesopause in the summer hemisphere rather than in the winter hemisphere
where there is no solar radiation. Clearly, radiative considerations cannot provide an
explanation of this phenomenon. lts existence, therefore, demonstrates that it is neces-
sary to include some dynamical processes to model the climatological thermal structure
of the middle atmosphere. Reference to Fig.1.1 shows that there is a global-scale mean
mass circulation in the middle atmosphere. Associated with this mass circulation, air
is being compressed and trying to warm adiabatically when it is descending, and wvice
versa (Mclntyre, 1992). Therefore, it is the upper-mesospheric branch of the circulation,
as sketched schematically by the heavy dashed streamline in Fig.1.1, that cause the re-
markably cold temperatures at the summer polar mesopause. The stratospheric mass
circulation shown in Fig.1.1 is also believed to be responsible for the departures from
radiative equilibrium occurring in the lower stratosphere, where, as shown in Fig.1.2,
the observed temperatures are substantially colder over the equator than over the poles
(Holton, 1983a). As mentioned in Section 1.1, the mass circulation shown in I%ig.1.1
should be regarded as primarily a wave-induced circulation. Its existence depends cru-
cially on the irreversible transfer of angular momentum by certain atmospheric wave
motions propagating or diflracting upwards from the troposphere and dissipating in the
middle atmosphere (Andrews et al., 1987; Holton, 1992; Mclntyre, 1992).

The mean zonal winds derived from the associated temperature field are shown in
Fig.1.3. The main features are an easterly jet in the summer hemisphere and a westerly
jet in the winter hemisphere, with maxima in the wind speeds occurring near 60 km. This
mean-flow configuration exerts a strong control on wave propagation in the atmosphere,
as will be discussed in Section 1.4. In particular, the high-latitude westerly jets in the
winter hemisphere provide wave guides for the vertical propagation of quasi-stationary

Rossby waves, which are believed to be the essential dynamical mechanism responsible
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for the stratospheric sudden warming phenomena (Matsuno, 1971).

1.4 Important wave motions in the middle atmosphere

For middle atmosphere the two most important types of waves are those known as Rossby
waves (or planetary waves) and internal gravity waves. Rossby waves are important in
their own right as major components of the total circulation. In an inviscid barotropic
atmosphere of constant depth, the Rossby wave is an absolute vorticity-conserving mo-
tion that owes its existence to the variation of the Cori&is force with latitude (Rossby,
1939, 1940, 1945). More generally, the restoring mechanism to which the Rossby wave
owes its existence depends on the presence of gradients of potential vorticity along some
or all of the isentropic surfaces of the stable stratification (Hoskins et al, 1985). In
the troposphere, the Rossby wave may arise as the result of baroclinie or barotropic
instabilities (Charney, 1947; Eady, 1949; Kuo, 1949, 1953), or be excited by topographic
forcing (Charney and Eliassen, 1949; Bolin, 1950) and by large-scale thermal asymme-
tries associaled with ocean-continent surface heati-ng contrasts (Smagorinsky, 1953). The
possibility that the energy of Rossby waves excited in the troposphere may propagate into
the stratosphere and mesosphere was firstly investigated by Charney and Drazin (1961).
Using a -plane geometry with constant basic zonal flow U and buoyancy frequency N,
Charney and Drazin showed that vertical propagation of conservative, lipear Rossby

waves could occur only when

B

0<(U—-¢)<U= [1(2 > /(2NH]2]1

(1.4.1)

where [ is the Coriolis parameter, 3 the northward gradient of the planetary vortic-
ity, K the horizontal wave number, H the standard scale height, ¢ the zonal phase
speed. Charney and Drazin’s theory provides the conceptual cornerstone for much of
our understanding of properties of the vertically propagating Rossby waves in the atmo-
sphere. It suggests thal the “window” for vertical propagation of Rossby waves, defined
by Eq.(1.4.1), becomes smaller as the zonal wavenumber increases. This is in qualitative
agreement with observations, which show that all Rossby-type disturbances tend to be
absent in the summer stratosphere where the mean zonal winds are easterly (see Iig.1.3),
and only the planetary-scale stationary disturbances can penetrate from the troposphere
into the winter stratosphere where the mean zonal winds are strong and westerly (Holton,

1975; Andrews et al., 1987).



§1.4 Important wave motions in the middle atmosphere 15

Eq.(1.4.1) is derived under the assumption of constant mean zonal flow U (and con-
stant buoyancy frequency N as well). However, U is not uniformly distributed in the
atmosphe'rc. Matsuno (1970) first tried with a linear quasi-geostrophic numerical model
to study the propagation of Rossby waves in the stratosphere in the presence of realistic
mean zonal wind profiles. His results show that the wave energy, or rather the wave
activity, is guided along the axis of maximum westerly mean zonal winds. This property
agrees well with the observations and is confirmed by-the more sophisticated models
subsequently developed (Matsuno, 1971; van Loon et al., 1973; Holton, 1975; Schoeberl
and Geller, 1977; Lin, 1982; Andrews et al. 1987; Chen and Robinson, 1992).

Pure internal gravity waves owe their existence to buoyancy restoring forces. The
detailed theory of these waves can be found in standard texts, such as Lighthill (1978). In
the atmosphere, gravity waves are generally affected to some extent by the rotation of the
earth. This is particularly true for the gravity waves with horizontal scales greater than
a few hundred kilometers and periods greater than a few hours, which are usually called
inertia-gravity waves (see, e.g., Gill, 1982; Andrews et al., 1987; Holton, 1992). The
excitations of internal gravity waves in the atmosphere can arise from fluid instabilities,
collapse of fronts, forcing of topography, and so forth. Although they are not a dominant
part of the tropospheric large-scale circulation in mid-latitudes, the internal gravity waves
become dynamically important when they propagate into the upper mesosphere where
the growth of wave amplitudes with height due to the evanescence of the density may
lead to gravity-wave breaking (Lindzen, 1981; Holton, 1982). For conditions of constant
mean wind U and buoyancy frequency ¥, it can be shown (e.g., Gill, 1982; Holton, 1992)
that vertical propagation of internal gravity waves requires that

N s N
7E < (U -—C) < E, (142)

where K and ¢ are, again, the horizontal wavenumber and phase speed, respectively.

Eq.(1.4.2) indicates that only for magnitudes of mean wind less than the critical value

N/K will vertical propagation of stationary internal gravity waves occur.

The properties of waves mentioned above are all derived from linear theory, which

restricts attention to sufficiently small, reversible displacements of material contours

i from some known state of equilibrium. However, owing to the decay with altitude of the
§  densityof air, linear, nondissipative wave theory predicts that the velocities and geopotential
associated with vertically propagating disturbances grow with altitude. Thus, at some

height the nonlinear terms that have been neglected will become important, and wave
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breaking followed by turbulence, small-scale mixing, and dissipation turns out to be
a common process under such circumstances. As generally believed, it is mainly the
irreversible angular-momentum transport due to gravity-wave breaking that drives the
upper-mesospheric mass circulation (see Fig.1.1), which is responsible for the remarkable
coldness of the summer polar mesopause (Houghton, 1978; Lindzen, 1981; Holton, 1982,
1983b; Iritts, 1984, 1989; Mclntyre, 1992). On the other hand, Rossby-wave breaking
is believed to dominate the wintertime stratospleric dyii';.mics, leading to strong quasi-
horizontal mixing and irreversible tracer transport in the midlatitude “surf zone” and
polar-vortex erosion (McIntyre, 1982, 1992; Mclntyre and Palmer, 1983, 1984, 1985;
Juckes and Mclntyre, 1987; Juckes, 1989; Norton, 1994).

Breaking Rossby waves may be compared with and contrasted with breaking gravity
waves: whereas the latter tend (i) to generate three-dimensional turbulence, (ii) to deform
isentropic surfaces irreversibly, and (iii) to rearrange entropy downgradient in the vertical,
the former tend (i) to generate layerwise-two-dimensional geostrophic turbulence, (ii)
to deform PV contours irreversibly, and (iii) to rearrange PVS and chemical tracers
downgradient along the same isentropic surfaces (McIntyre and Palmer, 1985; Mclntyre,
1987, 1992; Mclntyre and Norton, 1990). Concerning the qualitative behaviour of a
certain set of material contours, McIntyre and Palmer (1983) took the defining property of
wave breaking to be the rapid and irreversible deformation of those material contours that
would otherwise be undulated reversibly by the waves’ restoring mechanism under the
conditions assumed by the linear, nondissipative wave theory. Noticing the conservation
and transport properties of PVS outlined in Section 1.1, McIntyre and Norton (1990)
further pointed out that the effects of breaking Rossby and gravity waves upon the global
mean circulation can be understood in a unified way by viewing all the phenomena in
terms of wave-induced PVS transport along the isentropic surfaces. The main approach

taken in the first part (i.e., Chapters 2 and 3) of this thesis is in this direction.

1.5 Fundamental properties of PV and PV-substance

Emphasis in this study is placed on the description of wave-mean interaction processes in
terms of PVS transport. It is perhaps informative at this stage to recall more extensively

the PV fundamentals which have been brieflly mentioned in Section 1.1.

Consider an atmosphere surrounding the rotating Earth. The basic equations of
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motion may be written as follows,

Du 1

b BN 1Vp+ Ve =F, 1.5.1
D + 20 xu+ - p-+ ( )
Do

— = 152
Di @, (1.5.2)
Dp

— ‘= 1558
D TPV u=0, (1.5.3)
p = phT, e (1.5.4)

Y B ()
s ] = Bt EEY 1.8
(p) pR(p) (5)

where € is the Earth’s angular velocity vector, u is the velocity vector relative to the
Earth, p is the density of air, p is the pressure, p, is a constant reference pressure, T
is the temperature, @ is the potential temperature, @ is a potential for the sum of the
gravitational and centrifugal forces, F is the viscous force vector, () is proportional to
the rate of diabatic heating, R is the gas constant for dry air, & = R/c, = 2/7, with ¢,
being the specific heat at constant pressure, and D /Dt is the material derivative defined
by

D @
E#'ﬁﬁ'ﬂ'v. (]56)

Taking the curl of Eq.(1.5.1) and then forming the scalar product of it with V@, with
the aid of Eq.(1.5.2) we obtain the following equation for the PV:

%(pP}+V-J=0, (1.5.7)
where
J=pPu-0Q¢(,—F x V0, (1.5.8)

and P, ¢, are delined by Egs.(1.1.1) and (1.1.2), respectively. Eq.(1.5.7) is in general
conservation form (Haynes and Mclntyre, 1987, 1990; Mclntyre; 1992). It should be
emphasized that the notion of conservation used here is not in the material or Lagrangian
sense, but in the traditional, general sense used in theoretical chemistry and physics. In
other words, it is used to highlight the fact that the PV behaves like the mixing ratio
of a peculiar chemical ‘substance’, namely the PVS, which has zero source away from
boundaries. A chemical substance with zero source means a chemical substance whose
molecules are neither created nor destroyed, and then its mixing ratio can change only

by transport processes. Eq.(1.5.7) shows that sources and sinks for the PVS can occur
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only at the ground, and not within the atmosphere itsell. I'rictional and diabatic terms

do not act to create or destroy the PVS, but only help redistribute it.

Another important property of PVS hidden behind Eq.(1.5.7) can be revealed by

rewriting the flux J as

J = pPuyy + pPuyj — QC,H -F X v, (1.5.9)
where
-V -V
69/5tve, = v L

il — —W er ’ Ca“ = Ca = W—Vﬂ, (1510)

with “||” denoting projection parallel to the local f-surface, and ugy being just the
velocity of the f-surface normal to itself. Thus, the last three terms in Eq.(1.5.9) all
represent vectors lying parallel to the local isentropic surface, while the first is just
pP times the normal velocity ug) of that surface. Therefore it follows that a point
moving with velocity J/pP must always remain on exactly the same isentropic surface.
In other words, PVS ‘molecules’ behave as if they never cross isentropic surfaces, even
though air can move across these surfaces in the presence of the diabatic heating. This
result is called the impermeability theorem (Haynes and Mclntyre, 1987, 1990). An
alternative interpretation of this theorem can be provided by noting that the advective
PVS transport across the isentropic surface due to the diabatic velocity ug; = u—ug; —1
is cancelled exactly by the term (=4, @), where (| = ¢,—(, is normal to the f-surface.

This cancellation is manifest, because

Uy  Su—uy —uj= W(%PVB, (1.5.11)
- pPVO
Gai =6~y = TV (1.5.12)
so that =
pPugy — Q¢ =0. (1.5.13)

A useful alternative form of the conservation equation (1.5.7) is the Lagrangian form
pp
Dt

which follows from substituting the mass-conservation equation (1.5.3) into Eq.(1.5.7)

=p WV (QC+FxV8)=p, - VQ+p YV xF) V0, (1.5.14)

and performing a little manipulation (see Ertel, 1942; Truesdell, 1951; Haynes and McIn-
tyre, 1987, 1990). Eq.(1.5.14) shows that PV is materially conserved if diabatic heating

and nonconservative forces are negligible. This result is known as Ertel’s theorem.



§1.5 Fundamental properties of PV and PV-substance 19

Figure 1.4: A cylindrical fluid parcel bounded by two nearby neighbour-
ing isentropic surfaces, 0 and 6 — 60 with a small distance 6h apart, and
a lateral material surface. £ is the intersection of the lateral material
surface with the isentropic surface f. The area enclosed by £ is denoted
by S.

Ertel’s theorem has a very simple physical meaning. To see this, consider a cylindrical
fluid parcel bounded by two nearby neighbouring isentropic surfaces, say 8 and 6 — 60,
and a lateral material surface, as shown in Fig.1.4. Assume the fluid motion is inviscid
and adiabatic. Now let £ be the intersection of the lateral material surface with the
isentropic surface §. A kinematic relation between the absolute circulation along £, say

C,, and the absolute vorticity ¢, is given by Stokes’ theorem

CB='?€(2.Q><x+u)—d£=ff(ZQ+Vxu)-ndS:ijn-ndS, (1.5.15)
S S

vecto T
where x is the position vector, n is the unitnormal to the isentropic surface 8, & denotes

the arca enclosed by £, and dS denotes an element of area. Obviously, £ in this case is a
material contour on the isentropic surface. Thus, C, is materially conserved by Kelvin’s
cireulation theorem. For the case of an infinitesimal cylinder (both 6k and & arbitrarily
small), C, = ¢, - nS. In addition, the mass in the cylinder is given by m = pSéh (8h is
the height of the cylinder). Thus, it follows that

1
— ;ca- V=P (1.5.16)

Since C,, m, and &0 are all conserved following the motion in a frictionless, adiabatic
fluid, P will be conserved also, and then Ertel’s theorem follows (Gill, 1982; Hoskins,
1991).
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The above interpretation shows how the PV combines the dynamics and thermo-
dynamics into a single equation of great usefulness in a large class of problems having
meteorological and oceanographical interest. The reasons are the conservation properties
just discussed, and the invertibility principle mentioned in Section 1.1. According to the
invertibility principle, the PV field can be inverted to yield the velocity field and any
other relevant dynamical information (Hoskins et al., 1985). Note that motions such ob-
tained are called balanced motions, relerring to the fact, as was said in Section 1.1, that
the invertibility principle depends on a ‘suitable balance condition’. Mathematical sub-
tleties are involved here, but one way to described ‘balance’ is the approximate absence of
acoustic and inertia-gravity waves. Thus, balanced motions are vortical motions, with the
implication that some approximation is unavoidable (MclIntyre and Norton, 1995; Ford
and Mclntyre, 1995 and references therein). Mclntyre and Norton (1990,1995) pointed
out, however, that in practice the approximations involved are much smaller than might
be imagined from the standard approximate inversion theories which restrict attention

to Mach, Froude and/or Rossby numbers much less than unity.

The invertibility principle with its property of accuracy greatly simplifies the prog-
nostic aspects of the atmospheric motion. The problem now reduces to timestepping the
distribution of PV on each isentropic surface, the distribution of potential temperature
at the lower boundary, and the mass under cach isentropic surface; otherwise it would

involve all three velocity components and a thermodynamic variable (Mclntyre, 1992).

1.6 Scope of the thesis

As already mentioned, this study focuses on some fundamentals of wave-mean inter-
action necessary for understanding the middle atmospheric circulation. An outline of
the organisation of the rest of the thesis is the following: Chapter 2 describes a simple
thought experiment to highlight the usefulness of the description of wave-mean inter-
action in terms of wave-induced PVS transport. The same thought experiment, which
focuses attention on the mean motion induced by inertia-gravity waves, was examined
by MclIntyre (1980a) and Andrews (1980) from a perspective of the wave-induced mo-
mentum transport. Our major objective is to show how, and at what order of accuracy,
the PV description of the problem is consistent with the momentum description. Many

ideas and methods used in the subsequent chapters are presented in this chapter.
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Chapter 3 examines in further detail the general relationship between the descrip-
tions of wave-mean interaction in terms of momentum transport and in terms of PVS
transport. Both integral and differential properties are discussed. Some general identities
linking the wave-induced PVS transport to the rate of dissipation of quasimomentum are
derived. These identities generalize the well-known identity obtained by Taylor (1915)
to the general geophysical fluid system.

In Chapter 4 we turn to the study of Rossby wave dynamics within the framework
of quasi-geostrophic theory. Particular attention is paid to the EP flux divergences
induced by steady, nonbreaking, dissipating Rossby waves. Also discussed is the differ-
ence between the the {ransformed Eulerian-mean and the generalized Lagrangian-mean
meridional circulations. It will be shown that the difference is not always negligible in

the middle atmosphere.

Chapter 5 continues the detailed examination of the ideas introduced in Chapter 4,
looking at a highly idealized model for the polar vortex in the winter stratosphere. The
aim of this chapter is to highlight the dynamical effects of Rossby waves associated with
the polar vortex. Discussion presented in this chapler has direct relevance to current
question about the effectiveness of the Rossby-wave restoring mechanism in inhibiting
chemical transport across the edge of the polar vortex marked by steep PV gradients
on isentropic surfaces, which is believed to be crucial to the formation of the Antarctic
ozone hole (Mclutyre, 1989).

Chapter 6 summarises the main conclusions obtained in this thesis.



CHAPTER 2

DESCRIPTION OF WAVE-INDUCED MEAN MOTIONS IN TERMS OF
WAVE-INDUCED TRANSPORT OF PV-SUBSTANCE: A THOUGHT EX-
PERIMENT

2.1 Introduction

It is possible, according to the invertibility principle, to describe the global circulation
entirely in terms of the source, sink, and transport of PV-substance (PVS). The main
point is the idea that, as well as being easy to visualise, distributions of PV on isentropic
surfaces and of potential temperature on boundaries contain nearly all the information
about the dynamics of fluid motion, apart from any inertia-gravity oscillations that may

be present.

This chapter describes a simple thought experiment, in which perhaps the simplest
methodology for applying the invertibility principle is demonstrated. Our main attempt
is to show how, and at what order of accuracy, the wave-induced mean motion can
be described in terms of the wave-induced PVS transport. Although some detailed
calculations involved are somewhat cumbersome, the nature of our thought experiment
is, in fact, very simple. It concerns only the mean flows induced by linear, dissipating
inertia-gravity waves, without taking into account the modification by the mean-flow
configuration of the wave motions. It is, therefore, a self-consistent problem only when
the wave-induced mean flows remain small in the sense that their effect on the wave fields

is always negligible.

A general description of the thought experiment is given in Section 2.2. In Section 2.3
some useful approximations are introduced, and the set of equations to be used in later
sections is written in its nondimensional form. Section 2.4 is devoled to the study of
inertia-gravity waves. The waves are assumed to be generated by a corrugated bottom
boundary and to be weakly dissipated in some layer away from the bottom boundary.
Wave solutions are calculated from the linearised equations by utilising the asymptotic

expansion method. It is the mean effect of these dissipating inertia-gravity waves that

22
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form the main concern of the thought expeﬁfﬁant.

Section 2.5 returns to the discussion of wave-induced PVS transport. Detailed cal-
culations of the PV anomalies induced by the dissipating inertia-gravity waves are car-
ried out, and gradient-independent PVS transport is demonstrated in this section. The
wave-induced balanced mean motions associated with the PVS anomalies are calculated
in Section 2.6, where the application of the invertibility principle is taken up from both
the coarse-grain and fine-grain perspectives. The wave-induced mean motions in the
Eulerian-mean and the generalised Lagrangian-mean frameworks are considered in Sec-

tion 2.7. Some conclusions are presented in Section 2.8.

2.2 Description of the thought experiment

Consider a stably-stratified fluid in a Cartesian coordinate system (z,y, z), where z, y,
and z are respectively the eastward, northward, and vertical distances to the origin of
coordinates, which is chosen on the Earth’s surface with some reference latitude and lon-
gitude. The velocity components in the 2-, y-, and z-directions are denoted respectively
by u, v, and w, i.e., u = (u,v,w). For simplicity without loss of generality, we assume
that the fluid is contained in a channel between two rigid vertical walls at y = 0, b and
a moving lower boundary z = h(=,y,t); it is unbounded above (as z — co). The fluid
1s initially in an undisturbed, zonally symmetrie, steady, hydrostatic equilibrium state
described by

u=0; p=mlz), pr=nlz); T'=T(), B=08(z), (2.2.1)
where
dp, _ _B _ B (p)
dz =—RK9, T;a m pr;: HB T Rﬂﬁ (Ps ) (2.2.2)

with g being the magnitude of the gravity acceleration. a,, p,, T, and f, can be thought
of as respectively the density, pressure, temperature and potential temperature of the

“background”.

At { = 0 some waves are generated by a corrugated bottom boundary moving parallel
to the z axis with constant velocity ¢. The waves are imagined to be dissipated in
a layer D above the bottom boundary, as suggested schematically in Fig.2.1. Thus,
according to the generalised Charney—Drazin theorem discussed in Section 1.2, a wave-

drag force exerted by the boundary on the fluid is felt in the layer D. This force acts to
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Figure 2.1: Schematic illustration of waves generated in a resting,
stably-stratified fluid by a corrugated bottom boundary moving par-
allel to the z axis with constant velocity ¢, propagating upward and
dissipated in the layer D (i.e. z1, < z < z,) above the bottom boundary.

accelerate the fluid there in the direction of the phase velocity c¢. As a result, a mean
flow, with some appropriate definition of “mean”, is induced. It should be noted that in
a stratified, rotating fluid, such as the middle atmosphere, changes in velocity field are

always companied by changes in temperature field.

There are, at least, two routes by which the wave-induced motions in the above
problem can be approached. Traditionally, the problem is analyzed by evaluating directly
the wave-induced momentum and heat transport. More precisely, the mean velocity and
temperature fields can be obtained by substituting the wave-induced mean force and
diabatic heating into the mean momentum and thermodynamic equations respectively,
and then integrating the resulting equations to obtain the mean velocity and temperature
fields. This approach has been discussed intensively by several authors under various
circumstances (e.g., Matsuno and Nakamura, 1979; Mclntyre, 1980a; Andrews, 1980;
Uryu, 1980; Takahashi and Uryu, 1981). These works provide some simple yel beautiful
illustrations of the well-known ability of waves to transport momentum between regions

of wave generation and regions of wave dissipation.
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Wave-induced mean motions can also be approached from the viewpoint of wave-
induced PVS transport, as suggested by McIntyre and Norton (1990). Such an approach
carries with it an implication that the wave-induced mean motions are approximately
balanced motions that can be obtained by applying the invertibility principle. Mclntyre
and Norton (op. cit.) argued that the robust parts of the dissipative Lype of wave-
induced mean motions are controlled by PV evolution, insensitive to what kind of mean
is taken, and cumulatively much larger than the reversible, dissipation-independent parts
of the mean motions that are uniformly bounded by O(a?) and depend on the continued
presence of the waves and on the choice of averaging operator. Thus the general nature
of the dissipative type of wave-induced mean motions can be understood by viewing the
phenomena in terms of wave-induced PVS transport along the isentropic surfaces. More
preciscly, wave-induced mean motions can be examined by evalualing the PV distribution
from the PV evolution equation, and then applying the invertibility principle to deduce

the mean velocity field and other relevant dynamical information.

To make the foregoing ideas more concrete and explicit, in what follows we shall
confine attention to one of the simplest possible models, in which dissipating inertia-
gravily waves are the primary agents for the forcing of mean flow. The wave-induced
mean motions will be derived from both the viewpoints of wave-induced momentum
transport and PVS transport. Before proceeding with the detailed formulation, we shall

introduce some commonly used approximations to simplily the discussion.

2.3 Approximations to the governing equations and nondi-
mensionalization

The fundamental equations governing the atmospheric motion have been outlined in
Section 1.5. They are the momentum equation (1.5.1), the thermodynamic energy equa-
tion (1.5.2), the mass conservation equation (1.5.3), and the equation of state (1.5.4).
These equations, however, are far more complicated than necessary for description of the
thought experiment considered in this chapter. Therefore some appropriate approxima-
tion becomes essential. This section introduces three commonly used approximations,

the most important being the Boussinesq approximation.
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2.3.1 The Boussinesq approximation

The Boussinesq approximation was introduced independently by Oberbeck (1879) and
Boussinesq (1903). It consists essentially of neglecting the departures of density from
the background density except insofar as they are coupled with gravity to give rise to
a buoyancy force. Originally, this approximation was developed for a stratified, incom-
pressible fluid. 1t was extended by Spiegel and Veronis (1960) to apply to certain flows
of compressible fluids, in which the vertical length scale, D say, of the motion is very
small compared to the scale height, H say, of the reference state. Mathematically, the
Boussinesq approximation is satisfactorily applicable in an compressible fluid only when

the following condition

D
Sl (2.3.1)

is satisfied.

This chapter is concerned with the nature of mean motion induced by dissipating
inertia-gravity waves. In the middle atmosphere, H is about 7 km. On the other hand,
observational studies have shown that the vertical wavelengths of inertia-gravily waves
detected in the middle atmosphere range from 1 km to 15 km (Sawyer, 1961; Hearth et
al., 1974; Balsley and Garello, 1985; Hirota and Niki, 1985, 1986; Ushimaru and Tanaka,
1990; Wilson et al., 1991; Nakamura ef al., 1993). This implies that the vertical length
scale of these waves, which equals to the wavelength divided by 27, is small enough to
satisfy Eq.(2.3.1). Under such circumstances, Eqs.(1.5.1)-(1.5.5) reduce to the following

Boussinesq equations (for the detailed derivation, see Appendix 2A):

%%+fixu—®%+VH=F, (2.3.2)
E‘FNUJ—.T, (2.3.3)
Vou=0, (2.3.4)
dp 66
e 2.3.5
= T (2.3.5)
where
[ =20sin ¢, (2.3.6)
do K
NZ = 9% = 9 0.
S P T A
and
ép el 9Q
Bl g BL s8¢ 2.3.8
Py O, 3 i
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with ¢ being the latitude on the Earth, ép, ép, and 60 representing departures from the
background density g,, background pressure g, and background potential temperature
0,, respectively. Note.that p,, p, and 0, represent the hydrostalic equilibrium state
described by Egs.(2.2.1) and (2.2.2), and it is assumed that

Sp L p,y OpEp, 606, (2.3.9)

Incidentally, f and © are referred to as the Coriolis parameter and the buoyancy accel-

eration, respectively.

In the spirit of the Boussinesq approximation, the PV defined by Eq.(1.1.1) can be

approximated as
1 s ma s ;
P:-Ca-Wwa(fHqu)-(Nz+ve), (2.3.10)
P

and the PV equation (1.5.14) can be approximated as

%—f:v-{%[;rcau‘x (J\ﬁ25+v9)]}. (2.3.11)

Eqs.(2.3.4), (2.3.2), (2.3.3), (2.3.11), whose nondimensional counterparts will be given

in §2.3.3, form the basic equations for the motions considered in this chapter.

2.3.2  f-plane approximation

As mentioned already, the vertical Coriolis force can be consistently neglected in the
relevant equations. The horizontal Coriolis force is represented by the the Coriolis pa-
rameter f defined by Eq.(2.3.4). In general, [ is a function of latitude ¢. In this chapter,
we shall concentrate exclusively on extratropical flows for which the meridional extent
of the motion is so small that the elfect of the variation of the Coriolis parameter with
latitude is not dynamically important. Under such circumstances, the horizontal can be
taken to be a plane surface that has a fixed inclination to the rotation vector, and f can

be regarded as constant. These assumptions are called the f-plane approximation.

2.3.3 Non-dimensional equations and the small turbulent dissipation assumption

In Egs.(2.3.2) and (2.3.3), the effects of dissipation are represented by the viscous force

F and the diabatic heating 7, respectively. From the molecular viewpoint, the viscous
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force results from momentum exchanges in collisions between the molecules. It should
also include the intermolecular forces. A detailed discussion of the this force was given,
e.g., by Batchelor (1967). It turns out that if changes of the dynamic viscosity coefficient

and compressibility effects can be ignored, the viscous force can be expressed as
F = vV, (2.3.12)

where v is the kinematic viscosity coefficient. F given by Fq.(2.3.12) obviously results

from a net downgradient transport of momentum by random motion of the molecules.

It can be shown that, for the atmosphere below 100 km, » is so small that the molec-
ular viscous force is invariably negligible on atmospheric scales (Pedlosky, 1987; Holton,
1992). From the practical viewpoint, however, the viscous force in the atmosphere may
arise [rom momentum transport due to turbulent flows.! Observations in the atmosphere
suggest that the atmospheric turbulence exists on almost cvery scale. Therefore, even
when observations are taken with very short temporal and spatial separations, some
smaller-scale turbulent flows will still be unobservable. One common notion, being first
put forward by Boussinesq (1877), is that the smaller-scale motions act to smooth and
mix fluid properties (e.g., momentum, heat, etc.) on the motions with larger scales,
which are the focus of our interest, by processes analogous to molecular, diffusive trans-
port. Therefore one way to estimate the dissipative influence of turbulent motions is to
retain Bq.(2.3.12), but replace v by a turbulent viscosity Km of much larger magnitude

than the molecular value, namely
F = K,Vu. (2.3.13)

In this chapter, this concept of turbulent viscosity will be adopted. Further discussion
of its validity and limitations can be seen, e.g., in Pedlosky (1987) and Brown (1991).

In a similar fashion, the thermal dissipation J due to turbulent hcat transport is
modelled by

J = EnV'0, (2.3.14)

'In general, the main characteristic of turbulent motion is the random nature of the velocity field
in time and space, so that the classical hydrodynamic problem of finding positions of all fluid particles
at any instant t from the given positions and velocities of the particles at an initial instant {o and
boundary conditions becomes meaningless in the case of turbulent motion. In atmospheric applications,
however, turbulent flows are usually referred to as the motions that have spatial and temporal scales
much smaller than the scales of separation of the observations. These flows may include both the wavy
motions and the apparently disorganised motions of turbulence. But since il is impossible to identify
these small-scale motions, we have to call them turbulence. Although this is not a very satisfactory
definition, it is adequate for practical purposes.
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where I, represents the turbulent diffustvity of heat. TFor the present purposes, both
K, and Ky, are assumed to be smoothly varying function of altitude alone, and to be
sero oulside the dissipative layer D defined in Fig.2.1. The dissipation due to molecular

transport will be neglected.

It is now convenient to introduce non-dimensional coordinates and variables by the

relations

(#,7) = (&,9)/L, Z=2/D, [=t/(L/V),

(09) = (o) V, B=w/(VD/L), &=/,

IM=1/(29VL), ©= 0/20VL/D), P= P/(SQ:’TCLZ/gpSDz), (2.3.15)

{Zf/(ZQ), 1513 = p/ps; gs_= GBY/TC!

F=F/(V*L), J= J]2av?/D), (Kn, )= (Km, K1)/ Ko,
where L, D, V, and Ko are characteristic scales of horizontal length, vertical length,
horizontal velocity, and turbulent viscosity (or turbulent diffusivity of heat), respec-
tively. Substituting Eqs.(2.3.13)—(2.3.15) into Eqs.(2.3.2), (2.3.3), and (2.3.4), and, for
convenience without risk of confusion, dropping the checks (7) from the non-dimensional

coordinates and variables, we readily obtain the following non-dimensional equations of

motion

Du all s
Rﬁ' == f’U + 53:- = MRI{mV Uy (23.16)

Dv all -

g 7L 2.3
Ry +iut o uR KV, (2.3.17)
Dw a1l 3

2_._— . —_— 2 Vz vt
Re D O+ i REnVw, (2.3.18)
R% + N = pRE,V?O, (2.3.19)
Gu  Ov OJw
sty T e

where R, t, N, and p are dimensionless parameters defined by

14 D ND KoL

R T m—— e —_ —_— —_—— 3.
sar - =g MeEggp fatat)
and V2 is the dimensionless Laplacian operator defined by
v ot 9 @
g - B( & . &, G
N/% = (aw"" -+ Byz) - 357" (2.3.22)

The non-dimensional version of Eq.(2.3.11) is

Pa%? =RV {6 [7¢+ P x (V2 + RrVO)|}, (2.3.23)
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where P, ¢,, F,and J are all non-dimensional variables, defined respectively by

P= %i- [(f2+ ¥ xu)- (N2 + RVO)|, (2.3.24)
C.=[E+V xu, (2.3.25)
F = plw (Viu, V70, Viw) (2.3.26)
T = pl,V?0. (2.3.27)

and the non-dimensional operator V is defined by

= BA(,) BA[,) BA(Z)
A= | 8 = 2.3.
A L( e * (23.28)
. a0 d0 a0

- - s 9z 2.3.
VO t(amx-{— ayy)+ azz, (2.3.29)

g B 0A(;) 19AW)\ 5 1A 0A()\ - 614@) 0A(2) 5 ;
VxA~(& 3y i+ X+ o 1 v A 7. (2.3.30)

Note that ¢ is the ratio of the vertical and ‘_horizonl.al length scales. If & & 1, then
Eq.(2.3.18) reduces to the hydrostatic equation. For gravity wave motions, the vertical
length scale is not necessarily much less than the horizontal length scale, so that the
hydrostatic relation may not always hold. p is a parameter measuring the magnitude of
turbulent dissipation. The square of A is sometimes called the Burger number. R is the
Rossby number. For large-scale atmospheric motions R is usually a small number and
then the motions are characterised by geostrophic balance between the Coriolis force and
the pressure gradient force in the horizontal momentum equations. For inertia-gravity
wave motions, on the other hand, R is O(1). In this chapter we are concerned with
the mean motions induced by dissipating inertia-gravity waves. Therefore for simplicity

without loss of generality, we shall let

R=1. (2.3.31)

It should be further noted that, although the turbulent viscosity and diffusivity of
heat are much larger than their molecular counterparts, the direct effects of mechanical
and thermal dissipation associated with much smaller-scale turbulence on the large-scale
atmospheric flow are, more often than not, completely negligible away from the planetary
boundary layer. However, in the theory of wave-mean interaction turbulent dissipation
nevertheless always plays an important role in damping the gravily waves and then

leading to violation of the Charney-Drazin nonacceleration theorem. Therefore it is
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necessary to include the turbulent dissipation terms in the equations for gravity wave
motions, though these terms may still be small in comnparison with inertial and pressure-
gradient forces. In Eqgs.(2.3.16)-(2.3.19), the smallness of the turbulent dissipation is
measured by the dimensionless parameter p. In our thought experiment, inertia-gravity

waves are assumed to be weakly dissipated by turbulent processes, so that
1. (2.3.32)

In the following analysis, ;¢ will serve as the small parameter, in powers of which solutions

of the problem considered can be solved asymptotically.

2.4 The linearised inertia-gravity waves

In this section linear, dissipating inertia-gravity waves in the f-plane channel model are
examined. We shall separate each flow quantity into an z-averaged part (with some
appropriate definition of “average”) and a disturbance part. All disturbance quantities
are taken to be O(a), where a < 1. Furthermore, all wave-induced mean quantities must
be O(a?) or smaller. A demonstration of the sell-consistency of these conditions on the

disturbances and the mean ficlds can be found in Andrews et al, (1987).

In our thought experiment, the fluid is initially in an undisturbed, zonally symmetric,
steady, hydrostatic equilibrium state that is described by Eqs.(2.2.1) and (2.2.2). Thus,
it follows that

(u,v,w,0,1) = (v',v', ', 0, 11') + O(a?). (2.4.1)

Substitution of Eq.(2.4.1) into Eqs.(2.3.16)~(2.3.20) leads to the following sct of linearised

equations for inertia-gravity waves:

!
6 -—f + %H == ;.:.K..lvzu', (2.4.2)
60’ , o1 2,
IR 5~ = uKn Vi (2.4.3)
/ !
L:’%—i -0+ Bl'i = p i’ K V', (2.4.4)
a;a + Nw' = pl V*e), (24.5)
f
O B8 (2.4.6)

9z By Oz
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Figure 2.2: F(Y) and Gg(rT).
The initial condition is that all disturbances are zero, namely
()Y=0 for t<0. (2.4.7)
At t = 0 a moving topographic disturbance, b’ = O(a), is slowly switched on. The
specific form of & is assumed to be
W = aF(Y)G(T)sin(kz — at), (2.4.8)

where T' and Y represent respectively the ‘slow time’ and ‘slow length’ variables defined

by
Y =uy; =4t (p < 1). (2.4.9)
Similarly, a ‘slow height’ variable Z is also defined by
Z = pz, (2.4.10)
and, because of the condition (2.3.1), the dimensionless p, and , may be expressed as
p, = exp(—2mZ), 0, = exp(2xn, Z), (2.4.11)
where ny; is an O(1) dimensionless parameter defined by
zl% = pny < L (2.4.12)
F and G, depicted schematically in Fig.2.2, are smoothly varying functions of ¥
and T, respectively. k is the zonal wavenumber, and o the frequency of the sinusoidal

topographic corrugations which move with phase speed ¢ = o/k. For later reference,

F2(Y) is expanded in the Fourier series as

FY) = 3 Msin(taY), (2.4.13)

n=1
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where

nmw

EHZE!

2 b
M f FHY)sin(L,Y)dY. (2.4.14)
ub Jo

The boundary conditions are

il smliem = 0 on y = 0,b within the layer D; (2.4.15)
v'=0 on y=0,b outside the layer D; (2.4.16)
hu‘
gl = 867 o #=0; (2.4.17)
()Y —0 as z — 00 (t < ). (2.4.18)
Substitution of Eq.(2.4.8) into Eq.(2.4.17) gives
w' = —acF(Y)G(T) cos(kz — ot)
+ua.7-"(l")% [G(T)]sin(kx — ot), on z=0. (2.4.19)

Now let us seek solutions to the linearised equations Eqs.(2.4.2)~(2.4.6) in the form

of asymptotic expansions with respect to the small parameter p, namely

n! - n n

(o, 0, @, 11) = ¥ (ul,, v}, w}, O, 1) o7, (2.4.20)
=0

where {ul, v}, w,- -} are all O(a) and independent of the small parameter . Further-

more, we assume that
(0 Wy O, TI2) = Re{ (in, By By O, 1) exp ik + mz — o))}, (2.4.21)

where m is a real vertical wavenumber and the complex amplitudes {ii,, 9, ®,, -} are

functions only of Y, T, and Z.

Substituting Eq.(2.4.20) with (2.4.21) into Eqgs.(2.4.2)-(2.4.6) and equating the coef-
ficients of ° yields

—ictig— fUy + ikllo =0, (2.4.22)
~igBo+ filo =0, (2.4.23)
—iloiy — Qg + imfly = 0, (2.4.24)
—ig®g + Ny = 0, (2.4.25)

ikl + imip = 0, (2.4.26)
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which lead to the following identities

m ifm . o iN? . o m(a? - f?) .
- Wos

ok

Ug = -—zfﬁos iy =

and the dispersion relation

g N2k2+f2m2

e e (2.4.28)

In the atmosphere, the dimensional buoyancy frequency usually exceeds the dimen-
sional Coriolis parameter by a large factor. This corresponds to the condition :™*N > 1.
In addition, f = sin¢ < 1. Therefore Eq.(2.4.28) indicates that the existence of propa-

gating waves, with both k and m real, requires that

1] € lol N (2.4.29)

The vertical group velocity can be obtained from Eq.(2.4.28) as,
do m(a? = [?)

= e e (2.4.30)

Noticing the facts that o/m represents vertical phase velocity and o satisfies Eq.(2.4.29),
we see from Eq.(2.4.30) that wave phase and wave energy propagate in opposite vertical

directions.

To determine o we must proceed to the O(yu!) equations. Substituting Fq.(2.4.20)
with (2.4.21) into Eqs.(2.4.2)~(2.4.6) and equating the coefficients of p! yields

R e . 0
ity — foy + ik, = — [I{m (2K 4 m?®) 0 + %] , (2.4.31)
85, Ol
. o Pl e 212 2\ = 0 0
—tot) + fiy = — [Km (r, k*+m ) By 4 ar + _—3}'] ; (2.4.32)
b g B s _ 0@ ol
—ic®;— 0, +imll; = -2 [Km (L2k2+?n.2) o -+ %] - (’)‘ZO’ (2.4.33)
—ig®; + N*@y = — | Ky, [.»,?k’ +m?) B0 + 99, (2.4.34)
ar |?
e 0ty 0w
1&;‘!!-1 —+ mwy = ‘-5% = -a—lz“,g. (2435)

From Egs.(2.4.31)~(2.4.35) we obtain the following equation for wo:

dio divo ol
o+ o [{TZ + A(Z)wo] =0, (2.4.36)
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where A(%) is defined by

(N2E2 4 2f*m?) N2
L+ Kw(Z :
+ K )Zazcgz

A(Z) = Kn(Z) (2.4.37)

202c;s

Using the lower boundary condition (2.4.19), we obtain the solution of Eq.(2.4.36) as

@ = —acF(YYH(2)G(T), (2.4.38)
where
zZ
H(7Z) = exp [— fu A(Z)dZ] 1 (2.4.39)
P B i (2.4.40)

Applying the upper boundary condition (2.4.18) to q.(2.4.38) shows that
A(Z) 2 0. (2.4.41)
Thus, from Egs.(2.4.37) and (2.4.30) it follows that
&z 2 0, namely sgn(m) = —sgn(o). (2.4.42)
Eq.(2.4.42) indicates that the wave phase has a downward component of propagation

(0/m < 0), in contrast to the upward energy propagation (czz = 0).

Now a particle displacement function £ = (€,1',¢’) can be defined by (Andrews and
MclIntyre, 1978b; Andrews, 1980)

%ﬁr =u' 4 0(d%). (2.4.43)

From Eqs.(2.4.6) and (2.4.7) it follows that

V& =0 (2.4.44)
By analogy with Eqs.(2.4.20) and (2.4.21) we let

g = i(&,?};,ﬁ)ﬂ“ = Re {(501%1 o) exp [i(kz + mz — crt)]} + O(pa), (2.4.45)

n=0
where {Eg,ffu, EU} depend on (Y, Z,T) only. From Eqs.(2.4.43) and (2.4.27) it follows that

- im s m . B ¥
fo= ==z o = _i_f];w[” (o= 2 o (2.4.46)
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Figure 2.3: (a) The dimensionless (turbulent) viscosity Km(Z) and
diffusivity of heat Kj,(Z) specified in the thought experiment. For sim-
plicity we assume that Ku(Z) = Kn(Z). (b) The amplitude function
H(Z) of an inertia-gravity wave, whose horizontal and vertical wave-
lengths are, respectively, 200 km and 1.5 km. It is assumed in this case
that ¢ = 45°N and N = 0.0257%.

As an example, a mid-latitude (¢ = 45°N) inertia-gravity wave is considered in our
thought experiment. The dimensional horizontal and vertical wavelengths of this wave
are 200 km and 1.5 km, respectively. For simplicity we shall let Kn(Z) = Kn(Z) and
specify their vertical structure as that shown in Fig.2.3a. Then the amplitude function
H(Z) for the specified wave is shown in Fig.2.3b. As expected, the wave is damped in
the dissipation layer (i.e. Zy < Z < Z.). Tts dynamical effect on the mean flow will be

examined in later sections.

2.5 PVS redistribution due to the wave dissipation

Now let us turn to the detailed formulation of the thought experiment described in
Section 2.2. As a first step towards the description of the wave-induced mean motions in
terms of PVS transport, in this section we shall first consider how the PVS is transported

by dissipating inertia-gravity waves.
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2.5.1 The generalised Lagrangian-mean PV distribution

We start with a consideration of the PVS budget in a material tube V of fluid enclosed
by a surface S, where S is specified to consist of four material surfaces Sy, Sz, S3, and
Sy, as shown in Fig.2.4. Initially, V lies along an arbitrary latitude, and §; and S
are specified to coincide with two isentropic surfaces 8,,, and 6, respectively. We shall
consider sufficiently small amplitudes to prevent wave breaking. It is understood that
the wave dissipation is capable of inducing a Lagrangian mean meridional circulation,
which, in principle, may lead to the permanent migration of the material tube ¥V away
from its original position. But it will turn out that such wave-induced mean meridional
circulation is uniformly bounded by O(pa?) (Section 2.7). Thus we may assume that
the wave dissipation is weak enough (1 < 1) to ensure that the material tube remains

approximately in its original position throughout the thought experiment.

The total amount of PVS in the tube at instant ¢ is defined by
P(;Y,Z) = //prPdT, (2.5.1)
v

where the coordinates Y and Z serve to indicate the average position of the tube, and dr
is an element volume. If both the viscous force and diabatic healing are absent, Ertel’s
theorem says that PV is materially conserved. Under such circumstances, the total
amount of PVS within the material tube ¥V must be also unchanged, i.e., P(;Y,7) =
P(0:Y, Z) =const., provided that waves do not break.

In our thought experiment, however, the inertia-gravity waves are assumed to be
dissipated within the layer D. Therefore Ertel’s theorem can be expected to be violated
and the total VS within the material tube V can change by PVS transfer across the
material surface S due to the wave dissipation. Differentiation of Eq.(2.5.1) with respect

to time ¢ and use of the mass-conservation equation (1.5.2) gives (see Batchelor, 1967)

%[P(t;}’, z)| = % [[[apar=[][ pB%JJT. (25.2)

Substitution of Eq.(2.3.23) into Eq.(2.5.2) and use of the divergence theorem (and R = 1)

leads to
LIP:Y,2) = [ 34876+ cm x (a e v0) o

= ] f {6,[7¢.+ 7'F x (N2 4 VO)] }-Ads, (2.5.3)
S
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(c) TAE K

Figure 2.4: A closed material tube V of fluid specified to be bounded
by four material surfaces Sy, Sz, Ss, and Sy. The length, width, and
height of V are denoted by L, 8y, and 6z, respectively. The coordinates
of four reference particles A, B, C, and D are denoted by (z,,4,,2,),
(Zgs Us» Za)s (Tos Yor 2 )s a0d (25,9, 2,), vespectively. (a) Initially, V lies
along an arbitrarily latitude, and S, and Sy are specified to coincide
with two isentropic surfaces §,, and 0., respectively. In this state
(t < 0), there is no disturbance anywhere. (b) The undulation of the
material tube when the waves arrive from below. (c¢) The waves fade
down to nothing in the final state.

where fi denotes the outward unit vector normal to the surface of the material tube and

dS is an element area.

Integrating 1q.(2.5.3) with respect to time ¢ gives
P(t;Y,Z) =P(0;Y,Z) + 6P(t; Y, Z), (2.5.4)

where §P represents the increment of PVS in the tube V, given by
_/;{Z’f 6, [7¢,+'F x (N2 + VO)] -ﬁdS} dt
/;{(jﬁﬁiﬁ{f) 4 [7¢,+"Fx (N2 V0)] -ﬁdS} di. (2.5.5)

Sy Sy

§P(1;Y, Z)

Il
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In addition, the total mass in the tube V is

M= [[]pgdf. (2.5.6)
v

Note that, since V is a material tube and the waves in question are assumed not to break,

M given by I5q.(2.5.6) should be independent of time.

Now an average of P weighted by mass along the material tube ¥ may be defined by
P =P;Y,2)/M. (2.5.7)

It should be noticed that the material tube V was initially straight and uniform (Fig.2.4a),
and has been distorted by the waves into the shape shown in Fig.2.4b. Therefore in the
limit 6y = (y, —y,) = 0 and 6z = (2, —y,) = 0, P! defined by Eq.(2.5.7) is equivalent
to the generalised Lagrangian mean (GLM) of P, which is usually denoted by P with
ﬁh representing a GLM quantity. For the concept and detailed mathematical theory of
the GLM formulation, see Andrews and Mclntyre (1978b,c). The fact that

P’z lim P (2.5.8)
by—0
bz — 0
was pointed out by McIntyre (1980a,b). Since the tube V is arbitrarily chosen, the overall
distribution of P" can be evaluated by using Eqgs.(2.5.8) and (2.5.7), provided that P

and M are obtainable from Eqgs.(2.5.4)-(2.5.6).

To carry out the surface integral in Eq.(2.5.5), we need first to calculate the outward
element area vector idS normal to the material surfaces Sy, &3, 83, and &4, Suppose

these surfaces are given parametrically by the equations

=l ) ¥ =9(rp, 8p), =8 (2.5.9)

where 7, and s, are parameter variables, ranging over some domains of the (rp, sp)-plane.
Thus fidS can be given by (e.g., see Bronshtein and Semendyayev, 1979)

LR L RS AT
Orp 85, Orydsy) | \Orpds, dryOsy

{0z dy Oy dx .
i (8r'p ds, Or, asp)] drpdsp, (2.5.10)

fds - & &

where the sign must be specified to guarantee fi to be an outward vector normal to the

surface.
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Now let us fix attention to a material particle arbitrarily specified on §. The position
of this particle is denoted by X + &'(X,t), where ¢’ is the particle displacement vector
defined by Eq.(2.4.43), and % the position vector on a suitably defined line parallel to
the = axis and moving with the GLM velocity i (see Andrews and McIntyre, 1978b).
Thus, at the leading order in g we have

x=17+ Re {é};(?, Z)exp [i(kT + mZ — Jt)]} + O(pa), (2.5:11)
y = i+ Re{ijo(V, Z) exp [i(kT + mZ — ot)]} + O(pa), (2.5.12)
z =7+ Re{G(V, Z) exp [i(k% + mZ — at))} + O(pa), (2.5.13)

where ¥ = uj, Z = pz. Clearly Egs.(2.5.11)~(2.5.13) can be regarded as the parametric
equations representing the material surfaces Sy and Sz when y is specified as a constant
and #, 7 as the parameter variables, and representing the material surfaces S; and S
when 7 is specified as a constant and %, § as the parameter variables (see Fig.2.4).
Therefore, substitution of Eqs.(2.5.11)=(2.5.13) into Eq.(2.5.10) and use of Eqs.(2.4.20),
(2.4.27), and (2.4.46) will lead to

k ' k I r ! ’
nds = —{L—Up-i-{—t. (1-—%—%) ?4—%24—0(&2,;1&]} d¥dZ, onSy; (2.5.14)

a

B kw . kul\ " —

fidS = Tx +11— =z %+ 0(a*, pa) ¢ didy, on 8; (2.5.15)

» kvj . kuy muwg) . mug., 9 e

fdS = {1 2% 41 | 1—-———2 | §+—2+0(a", pa) ¢ dzdz, on 83; (2.5.16)
a a a a

R kw} T 3 s .

fdS = - === +{1- — ) 2 + O(d?, pa) p dzdy, on 8. (2.5.17)

Assume that all wave-induced mean quantities depend on (Y, Z,T") only. In addition,

all these quantities are O(a?), as mentioned in Section 2.4, Thus it follows that

¢, = J2 + V x uj + O(pa), (2.5.18)
VO = VO + O(pa?), (2.5.19)
J = pkyV?0y + 0(p’a), (2.5.20)
F = plm (V2uh, V20, oVPup) + 0(4%a). (2.5.21)

Now we are able to calculate the surface integral in Eq.(2.5.5) by using Eqs.(2.5.14)-
(2.5.21). For example, in the limit of 6z — 0,

ff% [7¢.+F x (W% + VO)|-idS

Sy
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EA? oo (NP 005 o
—pj / { [ o V21J0+( (ku0+mwo] J\ﬂ—?;—) 2‘72110

'
daeov'z 1] —l—Kh(fmU:)-f %_L awo)vg@{]-{-O(a , )}cﬁdg

0z )
=g | ,um.r\f’}f; = 1%} / [A(Z)ﬁﬁ(YA,Z,T) 4 O(Gshuaf‘))] Lz
= {ﬂ”ﬁ%’_—f_)eaz\(m [FOaR(2)6(D) +0(e, #az)} P EEER)

Similarly, we have
[] 6 [76.+F x (W +V0)| -ids
Sa

{_—“sz zi"z‘f Lg,a(2) [F(vp)H(2)G(T)) 2+0(a3,ua’)}£éa (2-520)

and in the limit dy — 0,

(]fJ,/j) [7¢.+F x (N + V0)|-1dS = [O(ue?, u*a®)| 0,L8y.  (2.5.24)

S S
Note that for adiabatic motions the material surfaces 8§ and &y should always coincide
with isentropic surfaces ,, and 6., respectively (see Fig.2.4). Under such circum-
stances, the impermeability theorem ensures that there is no net PVS transport across
S, and Sy, so that the surface integral in Eq.(2.5.24) should be zero exactly. Thus the
O(pa®, *a?) term on the right-hand side of £q.(2.5.24) must be due to diabatic processes.
Eqgs.(2.5.22)-(2.5.24) indicate that for weakly dissipating waves, the net PVS transport

across §; and Sy is negligible compared with the transport across S; and Ss.

Substituting Eqs.(2.5.22)-(2.5.24) into Eq.(2.5.5), correct to O(ua®) we obtain

5P Y, 2) = BEmN (" =g azyH2(2) {.7-"3 Yp)—F*(Ya)| £62 f G2(T)dt
o BN, :C(" g nz D (Z) 7 [f*(y]fc TVCoyz,  (25.25)
where
T . .
K(Z,Ty= ]0 GHT — Z/cy,)dT. (2.5.26)

In addition, in the limit of §y — 0 and éz — 0, the total mass in the tube V is

M = [//pgdr = p, Lbybz, (2.5.27)
v
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Figure 2.5: (a) Vertical structures of the PV anomalies, namely -
defined by Eq.(2.5.32), at Y = 1ub (dashed) and Y = Jpub (solid). (b)
Meridional distribution of p®. Negative contours are represented by
dashdot lines and positive contours by solid lines. The zero contour is
omitted.

and the initial PVS within the tube V is
P(0;Y, Z) = ff]gsgd—r = p, P, Lbybz, (2.5.28)
v
where P, is the non-dimensional background PV, defined by

B(Z) = fN?0,/p,. (2.5.29)

Now the GLM PV, defined by Eq.(2.5.8), can be written as

PY,2,T) = B(2)+ E%A(Z)H’(Z))C(Z,T) i Pocos(£,Y),  (2.5.30)

where

mN?*(a? — fz)f,.Mn
k ]

with £, and M, being defined by Eq.(2.4.14). Note that in the above calculation, only

the leading-order wave solutions in x are needed in order to obtain P correct to O(pa®).
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0 T T il

Figure 2.6: Schematic distribution of the function K(Z,T') defined by
Eq.(2.5.26)

It may be convenient Lo replace the total GLM PV field P" with the deviation from
its background value B, (Z). Thus, we let
g =
pL = ﬁo‘—ﬂﬂl = pa®A(ZYHAZ)K(Z,T) 3 Pucos(L.Y) (2.5.32)
B n=1
designate the normalised GLM PV anomalies. It is evident from Eq.(2.5.32) that these
anomalies are non-zero only within the dissipation layer D, where A(Z) > 0. Outside

the layer D, A(Z) = 0, so that §“ = 0, as shown in Fig.2.5.

As mentioned in Chapter 1, the PVS is neither created nor destroyed away from
boundaries. Thus the effect of wave dissipation upon the distribution of PV in interior of
a fluid can be thought of in terms of the transport of PVS exactly along isentropic surfaces
(Mclntyre and Norton, 1990; McIntyre, 1992). Fig.2.5 shows a typical dipole pattern of
PV anomalies induced by an eastward propagating inertia-gravity wave (a/k > 0). The
dipole pattern consists of a cyclonic PV anomaly in the northern half and an anticyclonic
PV anomaly of compensating strength in the southern half of the channel, indicating a
northward PVS transport along the isentropes. 1t should be noticed incidentally that in
our f-plane model the initial PV distribution on each isentrope is spatially uniform, so

that the wave-induced PVS transport shown in Fig.2.5b is gradient-independent.
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The structure of K(Z,T), which is defined by Eq.(2.5.26), is schematically depicted
in Fig.2.6. At a fixed altitude, Z = Z; say, K remains zero for T’ < Zy[cgz; it becomes a
Tmonotonic increasing function of T' when Zt/cg. < T < T3+ Zi /¢, (for the definition of
T, see Fig.2.2), and achieves its maximum value at the end of the thought experiment,
ie, at T = Ts + Zt/cgs. This implies that [p| within the dissipation layer D is a
cumulatively increasing quantity in the presence of waves and achieves its maximum

value at the end of the thought experiment.

2.5.2 The Eulerian-mean PV distribution

We have already derived the GLM PV distribution. For the purpose of applying the in-
vertibility principle, it may be more convenient to deal with the Fulerian-mean PV, which
can be easily interpreted either from a coarse-grain perspective as the scalar product of
the Tulerian-averaged absolute vorticity and the Eulerian-averaged gradient of poten-
tial temperature divided by the background density (Shapiro, 1976, 1978; MclIntyre and
Palmer, 1983; Keyser and Rotunno, 1990), or from a fine-grain perspeclive as the Eulerian
average of the scalar product of the absolute vorticity and the gradient of potential tem-
perature divided by the background density (Danielsen and Hipskind, 1980; Danielsen et
al., 1987; Keyser and Rotunno, 1990). For example, when the Eulerian-mean operator
() is applicd to Eq.(2.3.24), we find that

T s
P = i[(fz+qu)-(Ar2z+ve)]

TN RV O oy (e
= H’“‘pﬂ{faz"’\ v Tar |9\ e o
a oy O
Pgp (—):,(-;?“—a%’)]ah()(p“a?}}. (2.5.33)

In this fine-grain interpretation, P is decomposed into a mean contribution that involves
only the mean fields, and an eddy contribution that involves Reynolds averages of wave
fields. Thus, when P,, P and wave solutions are available, with suitable boundary
conditions and a specified balance condition, @ and © can be deduced from Eq.(2.5.33),
as will be shown in Section 2.6. By contrast, it will be shown in Section 3.2 that the
fine-grain interpretation of the GLM PV does not completely separate contributions
from Lagrangian-mean and eddy fields under general circumstances, thereby bringing

extra difficulties to the PV inversion problem (the barotropic, inviscid motion is an
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exception). Although for all practical purposes the coarse-grain interpretation of the
mean PV (either Eulerian mean or GLM) is meaningful enough for large-scale dynamical
motion (Mclntyre and Palmer, 1983), for the sake of argument we would also like to
examine the consequences produced by employing the fine-grain interpretation of mean

PV. This task can be easily achieved in the conventional Eulerian mean formulation.

Unlike its GLM counterpart, the Eulerian-mean formulation involves taking averages
over a set of coordinates fixed in (z,y, z)-space. Therefore in principle, P can be obtained
by evaluating the PVS budget in a tube fixed in the space. But this procedure turns out
to be very complicated, involving the advection due to the wave-induced mean meridional
circulation, eddy flux, and diffusive transport. In particular, the determination of the net
PVS transport across the boundary of the fixed tube involves careful consideration of the
large cancellation between the mean advection and the eddy flux. In addition, in order
to obtain P correct to O(pa®), one needs to know wave solutions correct to O(pa), which
are not given in Section 2.4 (although, in principle, these solutions can be determined by
proceeding to higher order equations, they are expected to be much more complicated
than their leading-order counterparts). Since P" is known already, one can evaluate P
by examining its Stokes correction FS, which, by definition, is the difference between P"
and P. Tt will be shown in Section 3.2 that the Stokes correction for an arbitrary field ¢
can be evaluated from linear wave solutions, as given by Eq.(3.2.10). Note that, in our

present model it is assumed that wave amplitudes and mean quantities are all functions

of (Y, Z,T) only. Therefore Eq.(3.2.10) reduces to
gy 8 (—— 8 pe— 5 s o
i 0¥ oo 0 ; 5.
e ay(”‘*’)“*az(w) + 0(a’gp) + O(s*a’) (2.5.34)

where U denotes the Eulerian mean and @° is the Stokes correction to . Note that 7>

is also called Stokes drift if ¢ is a velocity component.

[2q.(2.5.34) shows that all Stokes corrections are O(pa®, a*gy) or smaller in our model.

Recalling that P is of O(pa?) and P} = O(a), we obtain the Eulerian-mean PV as

. e o d S IE ) a 1 pr ! 5
P=P -P° =P -y [a—y(qopﬂhﬁ(@g)] + O(a2P}) 4 O(p*a®), (2.5.35)

where P~ is given by Eq.(2.5.30), and Fj is the leading order PV disturbance defined by

0 [,09% e (2500 r
B 5 F T + N s | € (2.5.36)
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Substituting the leading-order wave solutions (2.4.27) into Eq.(2.5.36), we sce that
Pi=0. (2.5.37)
Thus Eq.(2.5.33) reduces to
P =TP"+0(p*d?). (2.5.38)

In other words, the Stokes correction to the Eulerian-mean PV is negligible to the order

O(ua®) in our model.

2.6 The wave-induced balanced mean motions

Having obtained the distribution and evolution of the Eulerian-mean PV, we are now
ready to apply the invertibility principle to find the wave-induced mean zonal velocity
% and buoyancy acceleration ©®. For this purpose we need [urther to specify the total
mass under each isentropic surface and a suitable balance condition. In addition, suitable

boundary conditions should be prescribed.

2.6.1 The mass distribution, balance condition and boundary conditions

In the absence of diabatic heating, the potential temperature is a materially conserved
quantity, so that the total mass under each isentrope is constant and then can be de-
termined [rom the initial reference state. This simplicity may be lost when the effect
of diabatic heating is considered. The presence of diabatic heating implies that there
exists cross-isentropic transport of mass that may change the mass distribution under
each isentropic surface. But it turns out that changes of the reference state due to this
diabatic effect can be neglected under the assumption of weak dissipation. Therefore,
for simplicity without loss of generality, we shall always assume that the total mass
under each isentropic surface can be determined by the background density defined by
Eq.(2.3.5).

The balance condition is chosen to be the simplest one, which consists of hydrostatic
and geostrophic balance. Therefore the zonal component of velocity and the buoyancy
acceleration must satisfy the thermal wind relation

ou a0

S (2.6.1)
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In our model, the lower boundary coincides initially with an isentropic surface, namely
0(z,y,0,0) = 6,(0). This coincidence will last for ever, because the motion near the lower
boundary is assumed adiabatic. Therefore the lower boundary condition for our model

can be written as
G=1 on Z=0. (2.6.2)
From Egs.(2.6.1) and (2.6.2) it follows that

du

— = 7=y 2.6.3
37 0 on ( )
It is reasonable to suppose that the fluid at infinity (z — oo) is not forced by the

waves excited at Z = (. Therefore the upper boundary conditions are

i, 0 =0 as 4 — oo, (2.6.4)

Since the fluid is assumed to be bounded by two vertical walls, the lateral boundary

conditions can be written as
v=10, at Y =0,pb (2.6.5)

In addition, it can be easily checked that the forcing of the mean zonal flow due to the
Reynolds stress associated with the inertia-gravity waves is, correct to O(a?), zero at
the lateral boundaries in our model. Thus, the overall forcing of the mean zonal flow is,

again correct to O(a?), zero at the lateral boundaries. This implies that, to O(«?),
w=0 at Y =0,pub; (2.6.6)

because the fluid is initially at rest everywhere.

2.6.2 The balanced mean motions from a coarse-grain perspective

Since P, P, and wave solutions in our model are all available from the above discussion,
with the aid of balance condition and boundary conditions described in §2.6.1 we can
deduce u and O straightforwardly from Eq.(2.5.33), which provides a fine-grain interpre-
tation of P. In meteorological practice, however, small-scale fluctuations in the vorticity
and potential-temperature gradients are not always resolvable by the observational data.

Therefore, to a first approximation, the Reynolds averages on the right-hand side of
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Eq.(2.5.33) usually have to be ignored. This neglect of eddy contribution is expected
ot to bring significant error to the inversion problem. As Mclntyre and Palmer (1983)
pointed out, if some such coarse-grain approximation were not dynamically meaningful,
numerical model simulations of the large-scale behaviour of the atmosphere would hardly
be practicable. To see how and why the large-scale dynamics survives in the coarse-grain
approximation to the mean PV, we now first discuss the invertibility principle from the

coarse-grain perspective.

Neglecting the Reynolds averages on the right-hand side of Eq.(2.5.33) and, for con-
venience, denoting the corresponding mean zonal velocity and buoyancy acceleration as

i and O, respectively, we obtain
= a0 du
F=F % = (fa[; NE?}?) (2.6.7)

correct to O(pa?). We further assume that u and O also satisfy the balance condition and
boundary conditions given in §2.6.1. In other words, and O are defined by Eqs.(2.6.1)
and (2.6.7) with boundary conditions (2.6.2)~(2.6.4) and (2.6.6), rather than by applying
the Eulerian-mean operator directly to u and © fields. Now taking 9(2.6.7)/9Y and using
Egs.(2.5.38), (2.5.30), and (2.6.1), after some manipulation we obtain

© . This is a (non-standardised) Poisson equation. To obtain a solution satis{ying the bound-

322 = azA(Z)HQ(Z]IC(Z,T) Z £, P, sin(£,Y). (2.6.8)
n=1
~ ary condition (2.6.6), we expand u as
(Y, 2,T) = a® ) Un(Z,T)sin(L.Y). (2.6.9)
n=1

Inserting Eq.(2.6.9) into Eq.(2.6.8) and equating each component, yields

0°U, £.P,
87?2 T

i AMZYHHZ)K(Z,T), n=123,--, (2.6.10)

where

T =Nt/ f. (2.6.11)

By using the method of variation of parameters, the general solution of Eq.(2.6.10)
can be written as

P;

Num(? T)]exp(l Z)+[ )= %UQH(Z,T) exp(—I'nZ), (2.6.12)

Un=|An(T)+
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where A, and B, are two arbitrary functions of 7', and Uy, and U3, are defined by
= z
o g f AMZYHA(Z)K(2,T) exp(~TnZ) dZ, (2.6.13)
0
Z
Up(Z,T) = f MZYH*(2)K(Z,T)exp (T, Z2) dZ. (2.6.14)
0
The upper boundary condition (2.6.4) requires that
A (T) = szuln(OO T = 7 v?zﬁ,.(Za,T) (2.6.15)
The last expression in Eq.(2.6.15) comes [rom the fact that A(Z) = 0 when Z > Z, (see
Fig.2.3).
The lower boundary condition (2.6.3) requires that
Ba(T) = An(T). (2.6.16)

We now turn to evaluate ©. Using Eq.(2.6.9), it is a straightforward calculation to
obtain © from the integration of Eq.(2.6.1) with respect to Y, namely

8(v,2,1) = 8],_, zz[ {‘w“ cos{l Yy ] = 6” } (2.6.17)
At Y =0, Eq.(2.6.7) can be rewritten as
6| _ N au o
i -l (2.6.18)
0Z |y _ f oy him il ga

By substitution of Eqs.(2.5.32) and (2.6.9) into Eq.(2.6.18) and integration of the resulting
= equation with respect to Z, we obtain

—4

o _afz[m j Un(Z, T)dz+‘j 1 (Z)Hz(Z)x(z,T)dz].

(2.6.19)
Noticing that
Z
/0 Unn(Z,T) exp(TnZ)dZ
Z Z
= [ exp(l'2) [ f AZYHX(2)K(Z,T) exp(—FnZ)dZ] dz
i} Q
= T‘l" {ul,,(z,T) exp(TnZ) — fo A(Z)HX(2)K(Z, T)dZJ (2.6.20)

and, similarly,

z
[] Uon(Z,T) exp(=TZ)dZ

o [ZA’:,;(Z,T)exp(—FnZ)— /ﬂ . A(Z)H2(Z)J‘C(Z,T)d2], (2.6.21)
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Figure 2.7 (a) Vertical structures of the wave-induced dissipation-
dependent mean zonal flow, @, at ¥ = 3pub. (b) As in Fig.2.5b, but

for u.

then we see that

z 1 B P, /% 2
foU,,(Z,T)dZ=1_,—n[Uan(d,T)—Ubn(Z,T)—fN/o MZ)H (Z)!C(Z,T)dz], (2.6.22)
where
B8, T) = [An(T) + g}%ul,,(z,i")] exp(I'L 2), (2.6.23)
Ui (2.7) = [A,.(T) = %mnw, T)] exp(—I'n2). (2.6.24)

Now, by using Eqgs.(2.6.12)-(2.6.15), (2.6.17), (2.6.19), and (2.6.22)-(2.6.24), @ and

O can finally be written as follows, respectively:

(Y, 2,T) = a® i [Oan(Z,T) + Usa(Z, T)]sin(£,Y), (2.6.25)
o, 2,T)=d’N i [Uan(Z,T) — Bpn(Z,T)] cos(£,Y). (2.6.26)

n=1
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Figure 2.8 As in Fig.2.5, but for 0.

Note first from Egs.(2.6.13) and (2.6.14) that both 11,(Z,T') and Usn(Z,1') are zero
below the dissipation layer D (i.e., Z £ Z). Within the layer D (i.e., Zy < Z < Z,), both
Uy, (Z,T) and Uy, (Z,T) remain zero if T < Z/c,,, are monotonic increasing functions
of T for Z/c,s < T < Za/cy:, and are constants independent of time for T > il G
Above the layer D (i.e., Z = Z,), they are zero if T < Za/cy, and otherwise are constants
independent of time. Also note from Eq.(2.6.15) that A.(T) is a function that is zero
for T < Zy/cy., increases with T for Zv/ce: < T < Zs/cyz, and remains constant for
T > Z,/c,,. These imply that both |i| and |®], where & and © are given respectively by
Egs.(2.6.25) and (2.6.26), are cumulative quantities and achieve their maximum values
at the end of the thought experiment. As pointed out in §2.5.1, the wave-induced mean
PV anomaly, i.e. g%, is also a cumulative quantity, whose magnitude increases with time

within the dissipation layer D as long as the wave forcing remains.

The structures of @ and © are shown in Fig.2.7 and Fig.2.8, respectively. In com-
parison with Fig.2.5 we see that, although the dissipating wave can only modify the

the distribution of PVS within the dissipation layer D, the wave-induced velocity and
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buoyancy acceleration fields can penetrate vertically out of the layer D. Such feature
has been pointed out by many authors (e.g., Thorpe, 1985; Hoskins et al., 1985; Norton,
1988). Irom the general properties of the Poisson equation, it follows that # and &)
are significantly different from zero only within a:layer that is centred at the altitude of

maximum PV anomaly and has a vertical extent :
AZ ~ pbf/N = H,, (2.6.27)

provided that the vertical length scale of ", say Ds, is much less than the Rossby height
H,. If Ds is large compared to Hy, then i and P- arc significantly diflerent from zero

only within the layer where § P is significantly different from zero (Andrews, 1980).

2.6.3 The balanced mean motions from a fine-grain perspective

We now return to the fine-grain interpretation of P. Substituting wave solutions (2.4.27)
into Fqs.(2.5.33) and using Egs.(2.4.38), (2.4.13), (2.4.30) and (2.5.31), we obtain

il 2 e ————— i
f N ay+ o oy \Po

J\“(ﬁkz _I_,mZ) 9 (.-.g)]

_p oyl |28 20U @
_g+ppﬁ [faZ—N BY—Z’H(Z)G ZP cos(fY)|,  (2.6.28)

n=1

correct to O(pa?), where % and 0 represent respectively the O(a®) mean zonal velocity
and buoyancy acceleration deducible from Eq.(2.6.28) with the balance condition (2.6.1)
and boundary conditions (2.6.2)-(2.6.4) and (2.6.6). In comparison with Eq.(2.6.7), we
see that there is an extra term on the right-hand side of Eq.(2.6.28), representing the
eflect of Reynolds averages in Eq.(2.5.33). Therefore when the invertibility principle for
P defined by Eq.(2.6.28) applies, the resulting balanced mean motions % and O can be
expected to be different from @ and @ obtained from Eq.(2.6.7).

To see what results can be obtained from the fine-grain interpretation of P, we now
take 9(2.6.28)/9Y and use Eq.(2.5.32) and the thermal wind relation. After some ma-

nipulation we obtain

= a,’H’(Z) [A2)K(2,T) | 3 & Pysin(e,Y
n=1

Dissipation-dependent effect
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+ 1a®13(2)GX(T) i €, P, sin((,Y). (2.6.29)

n=1

s

Dissip&tion-indvr—:piendent effect

In comparison with Eq;(Z.G.S), we see that Eq.(2.6.29) includes on its right-hand side
a dissipation-dependent forcing which is identical to the only forcing term on the right-
hand side of Eq.(2.6.8), and a dissipation-independent forcing which does not appear in
Eq.(2.6.8). With the aid of boundary conditions (2.6.3), (2.6.4), and (2.6.6), we obtain
the solution of Eq.(2.6.29) as following:

WY, 2,1)=u(Y,2,T) - Z

4.N'f - [T1a(Z, T) + T,2(Z,T)] sin(€,Y), (2.6.30)

Dissipation-independent motion

where @(Y, Z,T) is given by Eq.(2.6.25), and Z; and Z; are defined respectively by
T Z T = exp(T5E) /g ~ 12(2)6X(T) exp(~TnZ)dZ, (2.6.31)
Ton(Z,T) = exp(—T'n %) []m 'HZ(Z)QE(T) exp(-T',2)dZ
0

+ 22 (2)0A(T) cxp(FnZ)dZ] . (2.6.32)

Eq.(2.6.30) shows that & deduced from the fine-grain perspective differs from & de-
duced from the coarse-grain perspeclive by a dissipation-independent term, which does
not vanish in the limit of zero dissipation. At first sight, the wave-induced dissipation-
independent mean motion appears o be as important as its dissipation-dependent coun-
terpart, i.e. i, because both of them appear to be O(a?) quantities. It should be remem-
bered, however, that @ is a cumulative quantity whose magnitude increases irreversibly
with time as long as the wave forcing remains, as pointed out in Section 2.6. In con-
trast, Iiqs.(2.6.30)—(2.6.32) show that the wave-induced dissipation-independent mean
motion is uniformly bounded by O(a?) and effectively vanishes after the waves propagate
out of the region of interest. In other words, the dissipative mean effect of waves is
irreversible and permanent, while the non-dissipative mean effect of waves is reversible
and temporary. It should be noticed that the dissipation-independent mean motion in
Eq.(2.6.30) may never vanish exactly after the last wave packet propagating out of the
region of interest. However, it can be significantly different from zero only within two
layers associated with the leading edge and the trailing edge of the wave packet. These
layers have a vertical scale characterised by the Rossby height H, defined by Eq.(2.6.27),
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and propagate away with the vertical group velocity ¢,. (Andrews, 1980; Uryu, 1980).
Therefore as time goes on the wave-induced dissipation-dependent mean motion can be

expected to dominate its dissipation-independent counterpart.
Integrating the thermal wind relation (2.6.1) with respect to ¥, gives

P
4fcgs

8(Y,2,T) =Y, 2,T)-a’ Y.

n=1

[Tin(2,T) = Toa( 2, T)] sin(€,Y),  (2.6.33)

’

Dissipation—in&ependent field

where O(Y, Z,T") is defined by Eq.(2.6.26). Note again that 8 deduced from the fine-grain
perspective differs from O deduced from the coarse-grain perspective by a dissipation-
independent term, which does not vanish in the limit of zero dissipation but is uniformly
bounded by O(a?) and vanishes effectively after the waves propagate out of the region of

interest.

2.7 The wave-induced mean moti‘ons in the Eulerian-mean
and GLM frameworks

In the preceding section, the wave-induced Eulerian-mean PV anomaly field was inverted
to yield the wave-induced balanced mean motions. The analysis suggests a succinct yet
general way of describing the wave-mean interaction in terms of the wave-induced PVS
transport. This PV approach, as pointed out by McIntyre and Norton (1990), tries
to complement, rather than compete with, existing theories of wave-mean interaction.
This is because applying the PV invertibility principle is an inherently approximate
process (Hoskins et al., 1985; McIntyre and Norton, 1990, 1995), therefore in principle
no claim can be made about the exactness of the approach, although in practice the
approximations involved can be astonishingly good in comparison with what one might
imagine from the standard approximate inversion theories that restrict attention to some

small parameters (Mclntyre and Norton, 1995).

In this section, we shall discuss the description of wave-induced mean motions in
terms of the wave-induced momentum transport. Both the Eulerian-mean and GLM for-
mulations are considered. Comparisons of the results obtained here with those obtained
in Section 2.5 and Section 2.6 provide further insights into the general nature of the
wave-induced mean motions and the usefulness, together with the ultimate limitations

of applicability, of the PV approach to analysis of wave-mean interaction.
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2.7.1 The wave-induced Eulerian-mean motion

Our starting point is the Eulerian-mean set of equations. Applying the Eulerian-mean
operator () to Egs.(2.3.16)-(2.3.20) and assuming as before that all wave-induced mean
quantities are functions of (Y, Z,T) only, we obtain (cf. Andrews, 1980):

kD8 5= [ 2 (7) + 2 ()] + 00, 211)
pg—; +fu+ pg—g =-—p [% (2® )+ ;Z (‘”r"')] +0(w*0), T2
m"‘g}_" -0+ ng—z i [% (7) + aaz (F)] H0(m),  @18)
WD N = [ (79) 4 5 ()| s 00®), @
% g% 5 (2.7.5)
where _
B B el (2.7.6)

The corresponding boundary conditions are (see Andrews, 1980)

=0 on Y =0, ub, (2.7.7)

W= ﬂ—E’L (%) on Z=0 (2.7.8)
Iy : T

(ﬁ, 7,0, TI-,T) -0 as 4 — oo. (2.7.9)

The initial conditions are as before, namely all wave-induced quantities vanish for £ < 0.

Noticing that u is a small parameter (@ < 1), we now seek asymptotic solutions to
Eqgs.(2.7.1)-(2.7.5) by setting

=w0(Y, 2,T) + pa (Y, Z,T) + p*un(Y, Z,T) +
=0o(Y, Z,T) 4 1 (Y, Z,T) + p*v0o(Y, Z,T) + - --
w=wo(Y, Z,T) + pwi(Y, Z2,T) + p*w(Y, 2,T) + - -- (2.7.10)
[¥)
1I

ol g

=0o(Y,Z,T)+ 0. (Y, 2, 1) + p*0,(Y, Z,T) + - -+

== ”—lﬁ_l(}z’ Z.,’T) + ﬁo(Y, Z, T) + ﬂrﬁl(Y, Z, T‘) o sl

where %o, Ty, etc. are all O(a?) and independent of the small parameter p. Note that,
for consistency with the fact that  and © are O(a?), it is necessary to assume that II is
O(p'a?); also see Andrews (1980).
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Substituting Eq.(2.7.10) into Eqgs.(2.7.1)—(2.7.5) and equating coefficients of like pow-

ers of jz, we obtain

= abds
=0, W=, A iR
) B;I};‘ =10, (2.7.12)
S 4 %% ==, (2.7.13)

Eq.(2.7.11) indicates that both © and W are O(pa®) or smaller. Eqgs.(2.7.12) and (2.7.13)
show that the leading order fields are in geostrophic and hydrostatic balances. Combining

these two equations leads to the thermal wind relation

5 =~5v (2.7.14)
At pt:

aﬁn s a a T 5
T F = ~ay (U’Dug) ~ 37 (wnuo) 2 (2.7.15)

_d1 8" =5 d ;
fU1 5—}; = _3—Y ( 0'2) — ﬁ (w{,vo) § (2716)

— 01 d J

O + a—; = —lps (vbw) — fax (wp?), (2.7.17)
86& 1 9 T dJ 7 5
S A= (+87) - 5 wh0}) , (2.7.18)
dvy 0wy
W + a—Z =0, (2.7.19)

with boundary conditions
v =0 on Y =0, ub, (2.7.20)
W= "a%" (vo) on Z=0, (2.7.21)
()—0 as 4 — . (2.7.22)
Now taking
2

2_W g2

N 577 [(2.7.15)] — f 5705 [(2.7.18)] (2.7.23)

and using Lgs.(2.7.12), (2.7.13), and (2.7.19), we obtain

o et o S S P (V-85 % Fomees & (w§®%) 2.7.24
oy T azz ar =NV gV St gyaze P AR
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where Sg is the leading order EP flux defined by

So = — (uhvh) ¥ — (uhwh — Fo§OF/N?) . (2.7.25)
The last term in Eq.(2.7.24) will ‘turn out to be zero, reflecting the fact that w' and ©
are nearly in quadrature, with only O(y) phase error due to the dissipation process.

The lateral and lower boundary conditions for Eq.(2.7.24) are

au a a
% -y (v5) - YA (whup) on Y =0, ub, (2.7.26)
B?uu 18 d ; ) a . -

9zoT ~ foy [ay (v60% + '/ N?) + EVA (w3 )] on Z=0. (2.7.27)

The upper boundary condition is given by Eq.(2.7.22).

Substituting the wave solutions (2.4.27) and (2.4.38) into Eq.(2.7.24) and integrating
the resulting equation with respect to 7', we obtain

W0 0T - PHDADK(ZT) Y baPasinLY)

az2

n=1

Dissipat-ion—dgp_endent effect

a2
S A

N [6%(T~2/c,.))| dT fj Lo Pysin(£,Y), (2.7.28)

-

Dissipation-independent effect

where P, is delined by Eq.(2.5.31). The corresponding boundary conditions are

g =0 on Y =0,ub, (2.7.29)
duy

"5*2* = U on 4 = U, (2730]
Ty — 0 as 7 — oo. (2.7.31)

The integral in the last term of Eq.(2.7.28) can be Inanipula.tcd as follows:
ol -~ oo T—-Zfcqz ]
— T = Zfcy,)| dT = —
/ﬂ az [g ( /Cg )] -/-Z/cgc Cyz aT [g J)] dF
__GAT = Zcys) = GH(=2/cq2)

Cpz

ol QZ(T), (2.7.32)

where T' is defined by Eq.(2.4.40) and G(—Z/ey:) = 0 by definition of G in our model.
Thus, it is evident that the dissipation-independent effect in Eq.(2.7.28) represents the

effect of wave transience.
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Substituting Eq.(2.7.32) into Eq.(2.7.28) will give an equation that is identical to
Eq.(2.6.29). In addition, the boundary conditions (2.7.29)~(2.7.31) are also identical to
those used to solve Eq.(2.6.29). Therefore the solution of Eq.(2.7.32) must be identical
to that of Eq.(2.6.29), i.e.;

|

0 = U, (2.7.33)

where 1 is given by Eq.(2.6.30). Similarly,

By =0, (2.7.34)

whete © is given by Eq.(2.6.33).

2.7.2 The wave-induced GLM motions

The wave-induced mean motions can also be examined by using the GLM [ormalism. It
is possible, as shown in Appendix 2B, to derive the GLM motions directly from the GLM
set of equations. Since the Eulerian-mean motions are known already from §2.7.1, an
alternative approach to the GLM motions can be obtained by evaluating the correspond-
ing Stokes corrections. As shown in Eq.(2.5.34), all Stokes corrections are O(pa®, a’¢p)
or smaller in our model. In addition, from §2.7.1 we know that @, © are of O(a?) and 7,

W are of O(pa®). Therefore we obtain

= u+ U =+ O(pd®, d®), (2.7.35)
0" =04+0 =0+ 0(ua’,a’), (2.7.36)
=047 = O(pd®,d®), (2.7.37)
T =W+ = 0(pa?,d?), (2.7.38)

where o and @y are O(a?) and are given by Eqs.(2.7.33) and (2.7.34), respectively.
Thus, Egs.(2.7.35)~(2.7.38) show that in our model the Stokes corrections to the zonal
velocity and buoyancy acceleration are negligible, but not the meridional and vertical
Stokes drifts. Furthermore, from Eqs.(2.7.33)-(2.7.37) we see that the wave-induced
mean motions described in terms of PVS transport [rom the fine-grain perspective consist,

to the leading order, with those described in terms of momentum transport.

2.8 Summary and remarks

From the above discussions, we draw the following main conclusions:
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1. The wave-induced mean motions can be separated into dissipation-dependent mean
motions, which exist only in the presence of wave dissipation, and dissipation-
independent mean motions, which are associated with various non-dissipative ef-
fects (such as wave transience, Stokes corrections, etc.). In the thought exper-

iment described above, the wave-induced PV anomalies depend crucially on the

wave dissipation. They are different {rom zero only within the dissipation layer.
The dissipation-dependent mean zonal velocity and buoyancy acceleration can be
nonzero outside the dissipation layer. They vanish, however, if the dissipation van-
ishes everywhere. In contrast, although the wave-induced dissipation-independent
mean motions may also be modified by the effect of wave dissipation, they do not

vanish in the absence of wave dissipation.

2. The O(a*) wave-induced mean motions can be understood in terms of the wave-

induced PVS transport. From a fine-grain perspective, it is demonstrated in the

above thought experiment that the mean motions derived from the PVS view-

point are the same as the O(a?) mean motions derived from the momentum view-
point. Even from a coarse-grain perspective, the PVS viewpoint still promises a
correct description of the O(e?) dissipation-dependent mean motions, which, in the
presence of wave dissipation, are cumulatively much larger than their dissipation-

independent counterparts as time goes on.

3. The PV inversion is an inherently approximate process. In the above thought ex-
periment, the wave-induced mean motions deduced from the invertibility principle
are correct only to O(a?) in comparison with results obtained from the momentum
viewpoint. In practice, however, the approximations involved can be astonishingly

good, as pointed out by McIntyre and Norton (1990, 1995).

It would appear that the coarse-grain interpretation of the mean PV is the only prac-
tical option for diagnostic studies because observing analysis systems cannot capture
correctly the small-scale fluctuations in velocity and temperature fields. Under such cir-
cumstances, only the dissipative type of wave-induced mean motions can be understood in
terms of the wave-induced PVS transport. Nevertheless, since the dissipation-dependent
mean motions are cumulative quantities, as time goes on they are much larger and more
dynamically important than their dissipation-independent counterparts. In this sense,
the PVS description of wave-mean interaction captures the essentials well. It not only

complements previous descriptions of wave—mean interaction in terms of radiation stress,
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quasimomentum, etc., but also gives a succinct and general way of saying why certain
contributions to the radiation stress are significant for mean flow, and others not (Mcln-

tyre and Norton, 1990).

In the above discussicu{, dissipation is prescribed in a layer above the bottom bound-
ary. It has been shown that, from a viewpoint of PVS dynamics, the essential effect
of dissipating waves on the mean motion is to cause irreversible PVS transport along
isentropic surfaces. It is worth mentioning here that our above arguments rely on the
validity of linear theory. The underlying assumption of linear theory allows us to specify
and follow a material tube whose surface only undulates gently when waves propagate
through it (Fig.2.4). In recent years, however, wave breaking processes have been fre-
quently identified in the real atmosphere (Hines, 1972; Houghton, 1978; Lindzen, 1981;
Meclntyre and Palmer, 1983, 1984, 1985; Fritts, 1984, 1989; WMO, 1985; Palmer et al.,
1986; Andrews et al., 1987; Hauchecorne et al., 1987; McIntyre and Norton, 1990; Waugh
et al., 1994). With nonlinear dynamics being involved, the wave breaking processes are
characterised by the rapid and irreversible deformation of otherwise wavy material sur-
faces. Under such circumstances, it appears that our above arguments are very difficult
to justify. Nevertheless, McIntyre and Norton (1990) pointed out that, since the essential
effect, of the breaking waves is to transport irreversibly the PVS along isentropic surfaces
as do the dissipative waves, it is convenient to widen the word ‘dissipation’ to include all
cases of wave breaking. With this generalisation in mind, McIntyre (1992) argued that
the effects of breaking Rossby and gravity waves upon the global distribution of PV, and
hence the way in which they control the mean circulation, can be thought of in terms
of the total transport of PVS exactly along the isentropic surfaces of the atmosphere’s

stable stratification, no matter how complicated the details.

Appendix 2A: The Boussinesq approximation in a compressible
atmosphere

A natural starting point for the discussion of the Boussinesq approximation in a com-
pressible, continuously-stratified atmosphere is the hydrostatic equilibrium state that is
described by Egs.(2.2.1) and (2.2.2). Substituting the second expression in Eq.(2.2.2)
into the first expression yields

Lldp _

g
k- x (2A.1)
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Between the BEarth’s surface and the 100 km level, the background temperature T,
for the Farth’s atmosphere is within 20% of a constant value of T, = 240K. Therefore,
integrating Eq.(2A.1) with respect to z leads to, approximately,

B, = psexp (—gz/RT.) = p.exp(—2/H), (2A.2)
where
H = RT./g (2A.3)

is called the scale height of the atmosphere, i.e., the height at which the background
pressure has fallen to e™! of its surface value (Gill, 1982). In the middle atmosphere,
H 2 7 km.

For practical purposes we can also use Eq.(2A.2) to define the background pressure
p,. With this definition, the background density p, and the background potential tem-

perature @, are given respectively by
n(2) = poexp(—2z/H),  O(z)'= Teexp(z/H), (2A.4)
where
ps = ps/ BT (2A.5)

To describe motions which represent departures from the static state mentioned above,
we now introduce the perturbation density ép, the perturbation pressure ép, and the

perturbation potential temperature §0 defined by the equations
p=p(2)+68p, p=pn(2)+6p, 0=0,(z)+60, (2A.6)

and assume that 8p, ép, and 60 are much smaller than their background counterparts g, ,
s, and 6, respectively. Thus, we can use the binomial expansion to approximate 1/p as

1 1 1 1 6p)
- = = ol s 9A.7
p p+ép p(1+6p/p) B ( Pe (2A.7)

For most motions of meteorological interest, the Coriolis force associated with the hor-
izontal component of Lthe Earth’s rotation vector can be consistently neglected. Therefore,
substituting Eq.(2A.6) into Egs.(1.5.1)~(1.5.5) and using conditions (2.3.9) and (2A.7),
we obtain the following approximate equations:

1
I | o e i Plpp, (2A.8)
Dt Pa 8
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Dso  do, )

E‘,ﬂ + WE' = Q, (JA.Q)

150 i

ot +V u+pﬂ =, (2A.10)
80

B0 e (2A.11)

Po n b

where f = 2{)sin ¢ is the Coriolis parameter (¢ being the latitude on the Earth.)

Further simplifications of above equations may be applied by using scaling arguments.
Let the motion in question be characterised by a horizontal velocity V, a horizontal length
scale I, and a vertical length scale D. The scales of ép and 6p are denoted by Ap and
Ap, respectively, We further assume that the scale of time is given by L/V, and the
scale of vertical velocity is given by VD/L. Thus for the magnitudes of the terms in
Eq.(2A.10) we have the estimates

1 96p __VAP Veu ~ K Edﬁ ~ E (2A.12)

e e

P Ot Lp,

Noticing the assumed conditions D < H and Ap/p, < 1, we see that Eq.(2A.10) can

be safely replaced by Eq.(2.3.4), which is identical to the idealisation of incompressibility.

It should be pointed out that Eq.(2.3.4) is valid only for those motions whose vertical

length scale is much less than the almospheric height scale. For motions with D ~ I, on

the other hand, the compressibility associated with the height dependence of background

density must be taken into account, and the corresponding results are usually referred to

as the anelastic approzimation® (Batchelor, 1953; Ogura and Phillips, 1962; Lipps and
Hemler, 1982; Scinocca and Shepherd, 1992).

Now consider Eq.(2A.11). Note first that the order of magnitude of pressure pertur-
bation, Ap, is indicated by the vertical component of Eq.(2A.8), which shows that
P,
D A
From Eqs.(2A.13), (2A.2)-(2A.5), it follows that
bp Ap _gDAp _ gDpAp _ gDAp _ DAp

i.e., Ap~ gDAp. (2A.13)

- : (2A.14
B B B pps  RLp,  Hp )
Therefore the order of magnitude of the second term in Eq.(2A.11) is given by
- —k)D
(1—r)ép (1—r)DAp (2A.15)

B Hp,

2 The anelastic approximation was first introduced by Batchelor (1953) in a discussion of dynamical
similarity. The name “anelastic” was suggested by Ogura and Phillips (1962) to refer to the ability of
the approximation to effectively filter out sound waves, which are of little meteorological interest and
whose presence would require the use of very small time steps in a numerical integration.
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/
'

while the order of magnitude of the first term in Eq.(2A.11) is given by Ap/p,. Therefore,
the second term in Eq.(2A.11) can be neglected compared with the first term in the same

equation when
D« H/(l1—k)=TH/5 (2A.16)

Since D is assumed to satisfy Eq.(2.3.1), it satisfies Eq.(2A.16) automatically. Therefore,
to a first approximation Eq.(ﬁA.ll) can be replaced by 1q.(2.3.5), which indicates that
the changes of density perturbation resulting from the changes of pressure perturbation

are negligible for atmospheric motions with D <« H.

Using Eqs.(2.3.5), (2A.4) and (2.3.1), one can manipulate the vertical components of
the third and fourth terms in Eq.(2A.8) as follows:

19% B . 5(51’) Dedn; 80

%G g 0z pldz 0,
o 2ty . ot 9
= e Hp, &,
. 9 [ép gél
()% i

Substituting Lq.(2A.17) into Eq.(2A.8) leads to Eq.(2.3.2)., Note that in Eq.(2.3.2)
the background density g, has been brought under the gradient operator in the pressure-

gradient force.

Using condition (2.3.1) and the definition of © given in Eq.(2.3.8), we can easily
replace Eq.(2A.9) by Eq.(2.3.3).

Appendix 2B: An independent derivation of the GLM motion
induced by inertia-gravity waves

Assuming that all wave-induced mean quantities are functions of (¥, Z,T') only, we can
obtain the GLM versions of Egs.(2.3.16)-(2.3.20) as follows (Andrews and Mclntyre,
1978b; Mclntyre, 1980a)

Dat RN -
o —u[gg( a_) a—Z(HE)}+O(pu ), (2B.1)

ﬁbﬁ] iy a (o ¢
DT +fu +#8Y = |:a—y (HE")—{- 7(11 ):|+O(# ) (2B.2)
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=L, =7
Dw" _ oI i} oy d ac’
il ] W " =L A, N I 5 9B.
O Ta i = a7 — M [3}’( B + 37 11 e +0(p*w~), (2B.3)
D'e" 21, agl
dget o 2 of
oy * 5z = 0Wd), R
where
—L
@ 5 . ond
pT=artPar t¥ oz —
The corresponding boundary conditions are
wr=10 on Y =0, ub, (2B.7)
wt =0 on Z=0, (2B.8)
(z-, 7%, wt, T, 8%) =0 as Z — co. (2B.9)

The initial conditions require that all wave-induced quantities vanish for ¢ < 0

Since gt is a small parameter (g < 1), we can let

@ =u4(Y, Z,T) + pax(Y, Z,T) + p2ak(Y, 2,T) + -+~

T=h(Y 2, F)-f-uﬁ}'(YZf)-{-va(YZl)—l-

wL—wO(YZ T) 4+ pw' (YZT}+‘L£3_LYZT)+ (2B.10)
o ~—e(yz:r T (YZT)+u’G) (1, 2,7) +

T = p~ T (¥, 2,T) + TE(Y, 2,T) 4 uTl" (YﬁT)-j—

where %y, Uy, etc. are all O(a?) and independent of the small parameter Jt. Substituting

Eq.(2B.10) into Eqs.(2B.1)-(2B.5) and equating coefficients of like powers of j, we obtain
at pu°:

=0, Ws=0,

(2B.11)
L oI
fug + ayl =0, (2B.12)
3 i
B8 = R 2B.1
9z ( 3)
Eqs.(2B.11)~(2B.13) are identical to their Eulerian-mean counterparts (2.7.11)-(2.7.13)
At pl;

L 1
8_ —fit= [6‘9 (Hog"’)Jra (no‘()}i‘)] (2B.14)
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B () A o
o+ %_H;g =5 [5?/ (E%IE) ! % (HB%)] ’ =
é('g‘ i+ Nt = (2B.17)
‘;'_}i’ " %‘j ~0, (2B.18)

with boundary conditions

7y =0 on Y =0, ub, (2B.19)
Wy = on Z=0, (2B.20)
0" =0 as Z — oo, (2B.21)

From Eqs.(iZB.lQ)—(ZB.H) (2]3.17), and (2B.18), it follows that

82 : 2 8 aql 6 OC
M 2 il i) “5o0

The lateral and lower boundary conditions for Eq.(2B.22) are

6”3 “y d E’)’70 BCU 5 é
el -
3—2-571-, = 0, on Z=0. (2B24)

The upper boundary condition is given by Iiq.(2B.21).

Substituting the wave solutions (2.4.27) and (2.4.38) into Eq.(2B.22) and integrating
the resulting equation with respect to T, after some manipulation we obtain
a*uy

et ==t 5 = *H(Z)M(Z2)K(2,T) Y LaPysin(£,Y)

n—1

~ 3

Dissipation-dependent effect

Q'HZ(Z) f [G*(F—2/c,0)] dF S £uPusin(t ¥), (2825

n=1

Dissipation-independent effect

where P, is defined by IIq.(2.5.31). The corresponding boundary conditions are

= on Y =0,ub, (2B.26)
o v _ -
9z = 0 an - & =il (2B.27)

T —0 as Z — 0. (2B.28)
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Eq.(2B.25) and the boundary conditions (2B.26)-(2B.28) are identical to their Eulerian-

mean counterparts (2.7.28)-(2.7.31). Therefore their solutions must be identical, i.e.,

£

Vi -
Uy =

o

: (2B.29)

In addition, use of the thermal wind relation yields

By = 0,. (2B.30)



CHAPTER 3

WAVE-INDUCED TR:XNSPORT OF PV-SUBSTANCE AND THE RATE
OF QUASIMOMENTUM DISSIPATION: THE GENERALIZED TAYLOR
IDENTITY

It was demonstrated in Chapter 2 that wave-induced mean motions in a simple thought-
experiment can be understood in a unified way by viewing the phenomena in terms of
the wave-induced PV-substance (PVS) transport. As a further step towards developing
the theoretical tools needed to quantify these ideas and extend the argument to more
complicated fluid systems, in this chapter we derive some general relationships between

the wave-induced momentum transport and the wave-induced PVS transport.

3.1 Introduction

As mentioned in Section 1.2, the idea that transport of momentum by disturbances (wave-
like or turbulence motions) may be related to the flux of PV or vorticity can be traced
back to G. I. Taylor (1915). Taking one of the simplest cases in which incompressible,
non-rotating fluid motions are limited to two dimensions, say = and z, Taylor found
that the effect of disturbances on the mean flow can be examined in terms of vorticity
transport. The most important result of his investigation was the discovery of the well-

known relation (known as the Taylor identity):

du'  Ouw'
— , —
1= pjw (32 52 ) dz, (3.1.1)
where I is the rate at which z-momentum leaves a layer of unit thickness, defined by
- a
e %/p(U + v )w'de = 5 f u'w'de, (3.1.2)

with p being the fluid density, U a mean zonal velocity that is assumed constant, u’ and
w' the z-component and z-component eddy velocities, respectively. Since the term in the
parentheses on the right-hand side of Eq.(3.1.1) represents the eddy vorticity, the Taylor

identity states that in an incompressible, two-dimensional, non-rotating fluid, the momentum

flux divergence is equal to the eddy flux of vorticity.
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It worth emphasising here that, although waves in fluids can transfer momentum

from where they are created to where they are dissipated, they do not generally have a
uniquely defined mean momentum, or, in other words, the momentum of the fluid may
not be spatially distributed in the same way as the waves (Mclntyre, 1973, 1981). In
practice, one can define a quasimomentum (also known as pseudomomentum), which is a
wave property evaluable from linear wave solutions, but is not physically the same thing
as momentum (Andrews and McIntyre, 1978b,c; McIntyre, 1981). In most cases, however,
there is a fairly close relationship (although not equality) between the momentum and
quasimomentum fluxes (Brillouin, 1925; Gordon, 1973; Andrews and Mclntyre, 1978b,c;
McIntyre, 1981, 1993). Thus, the Taylor identity may also be interpreted as stating that
the rate of dissipation of quasimomentum is equal to the eddy flux of vorticity in the

. 2 s . y - |
incompressible, two-dimensional, non-rotating fluid.

Bretherton (1966a,b) first applied Taylor’s idea of eddy transport of vorticity to geo-
physical fluid dynamics within the framework of quasigeostrophic theory. He found an
important equation, which can be written as (also see Green, 1970; Edmon et al., 1980;
Dunkerton et al., , 1981; Killworth and McIntyre, 1985):

V.S = puldl, (3.1.3)

where S, is the quasi-geostrophic version of EP flux, v the y-component quasi-geostrophic
eddy velocity, and g} the quasi-geostrophic potential vorticity. Thus, Eq.(3.1.3) shows
that the divergence of the guasi-geostrophic EP flux, V-8, is equal to the northward
eddy flux of the quasi-geostrophic potential vorticity. On the other hand, according to
the quasi-geostrophic version of the generalised Charney-Drazin theorem (Edmon et al.,
1980), V-8, represents the sole forcing of the mean state by the disturbances, and is
closely related (but not equal) to the quasimomentum flux divergence (Andrews, 1987).
Therefore Eq.(3.1.3) can be regarded as a quasi-geostrophic generalisation of the Taylor
identity.

However, Eq.(3.1.3) cannot be applied near the equator, where geostrophic approx-
imation breaks down, nor is it applicable in regions with sharp meridional variation of
the static stability (Hoskins, 1991). In addition, the EP flux divergence that is expected
to express quasimomentum flux divergence unfortunately includes the diflerence between
the residual-mean and the Lagrangian-mean advection of angular momentum (Iwasaki,
1989). It is desirable, therefore, to derive a more general relation which may avoid such

problem. Such an effort has been made by McIntyre and Norton (1990). In favour of the

1 . - .
Here we assume that the wave in question is steady.
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usefulness of PV, McIntyre and Norton argued that to any wave-induced contribution to
the PVS transport, J¥ say, there always corresponds an ‘effective mean force’ per unit

mass
Feg = I x VO/|V0|?, say, (3.1.4)

that would have the same eflect as the waves upon the PVS transport. Moreover, they
gave some examples to show that the effective mean force defined by Eq.(3.1.4) is equal

to the horizontal projection of the rate of dissipation of quasimomentum.

Motivated by the examples given in McIntyre and Norton’s paper, the objective of
the present chapter is to develop some general relations between the wave-induced PVS
transport and wave-induced momentum transport. Since the most convenient framework
for our discussion is the generalised Lagrangian-mean (GLM) formulation in which the
quasimomentum can be defined exactly (Andrews and Mclutyre, 1978b,c), in Section 3.2
we first recall some basic properties of the GLM theory. Some of these properties also have
application in other chapters. In Section 3.3 we demonstrate how the wave-induced PVS
transport across a material surface is related to the rate of dissipation of quasimomentum.
In Section 3.4, a transport equation for the mean PV is constructed, and a generalised
Taylor identity is given within the framework of non-geostrophic theory for a stably

stratified, rapidly rotating fluid.
3.2 Some basic properties of the GLM theory

Since this chapter concentrates exclusively on the PVS transport in the GLM framework,
it 1s desirable to recall briefly some basic properties of the GLM description. Those who
desire a more detailed discussion are referred to the excellent papers by Andrews and
MclIntyre (1978b,c).

The GLM description is in fact a hybrid Eulerian-Lagrangian description in which the
GLM flow is described by equations in Eulerian form, with spatial position x and time ¢
as independent variables rather than initial particle position and time. The essential idea
is to average over positions displaced by the disturbance motion. Let = be the position
vector of particles displaced by the waves. The particle displacement &’ associated with

the waves is defined as a function of x and # by the mapping x — x + £'(x,1), i.e.,

£(x,1) = E(x,t) — x. (3.2.1)
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The GLM operator ﬁl' entaif’x;s averaging over particles at the displaced positions x +

£'(x,t), namely

P50) = @t (%, b), (3.2.2)
where
P(,8) = o+ E(x,1),0), (3.2.3)

and () denotes a corresponding Eulerian mean at x in any of the usual senses (time,
space, ensemble, etc., depending on the problem to be examined). The difference between

¢ and ", denoted by ¢!, is called the Lagrangian disturbance of ¢, i.e.,
o=t - (3.2.4)
It is evident that
ol =0. (3.2.5)

In addition, the parcel displacement vector € can be equivalently defined by

—L .
BE _ .
= 2.6
B = (3.2.6)
where ﬁL/Dt is the Lagrangian-mean material derivative, defined as
—L
D d L
U s i IR o
= o o (3.2.7)

The difference between the Eulerian mean and the Lagrangian mean of ¢ is referred

to as the Stokes correction 3°:

P51 =250 — o1 (328)

S

When ¢ is velocity u, the Stokes correction T” is sometimes referred to as the Stokes

‘drift’.
For small-amplitude waves, Taylor expansion of ¢* shows that

O¥(x, 1) = (%, 1) +€- V [p(x, )]+ 3¢ (€ V)V (%, 1))+ O(a’p)
=P+ +&-V (F+¢)+3£ (£ V)VE+0(a’¢')+0(a’p),  (3.2.9)
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since @ + ¢’ = ©(x,1) by definition. Application of the Eulerian-mean operator ﬁ to
Eq.(3.2.9) gives Lthe [ollowing)result immediately,

7 = (€ V) + L& (& V)V +0(a%). (3.2.10)
Substituting Eq.(3.2.9) into Eq.(3.2.4) and using Eqs.(3.2.8) and (3.2.10), gives
o= + & - Vo + 0(ay). (3.2.11)

In the GLM description, the quasimomentum per unit mass can be defined exactly

as

Pi(x,t) = =& {ui + (2 x &);}, (3.2.12)

where the Carlesian tensor and vector notations have been used interchangeably, with

A = A;, (),; = 3/0z;, and summation of repeated indices over the values 1, 2, and 3.

Three basic results of the GLM theory for any ¢(x,t) can be expressed as

3 Al—L

(%) = DD‘f], (3.2.13)
1 et

(ao.,-)a =R (wE)IjKa/ J, (3.2.15)

where J is the Jacobian of the mapping x — x + &', defined as
J=det {5;+ ¢}, (3.2.16)

and K}; is the (i, j)th cofactor of J.

Using the definitions and properties described above, Andrews and Mclntyre (1978b)
derived the exact equations of GLM motion, which, after some manipulation, can be

written as

O (@ —p)+ 202+ V x (@ - p)] x 7"

Jt
+V [ab- (@t - p) + T — 7@ p#$)VE =F" +F, (3.217)
LAl
DU
i = Q, (3.2.18)
.
DBy rooah =4, (3.2.19)
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where .
/r

M=e@,p)+3 —ut- [Jut + (2 x¢)], (3.2.20)

F.= f‘l = 5;,1F;I =} (pl).;q’ (3221)

= prd, (3.2.22)

with € representing the enthalpy per unit mass and

e . 5
= P“"»P{){p@",p‘f)'

Other symbols are the same as in Section 1.5. It can be checked that ¢ = 0 if the fluid

(3.2.23)

motion is adiabatic. Thus F is a wave property explicitly involving departures from
conservative motion. It was recognised by Andrews and Mclntyre (1978b,c) as the rate

of dissipation ol quasimomentum.

Finally, we note that for any vector field A(x,t), an associated vector A can be

defined as
A = A; = K;; A% (3.2.24)

If A is governed by an equation

%—? —Vx(uxA)=0, (3.2.25)

then A satisfies the following equation (Molfatt, 1978):

‘1‘—‘? — Vx(i% A) =0, (3.2.26)

and A can be regarded as a mean quantity in the sense that

—— k>

A=A (3.2.27)
(Andrews and Mclntyre, 1978b). When the right-hand side of Eq.(3.2.25) is different

from zero, A is not generally a mean quantity,

3.3 Wave-induced contribution to the PVS transport: Inte-
gral properties

In Section 2.5 we have demonstrated how to evaluate the PVS budget following a material

element. This section considers a slightly different situation, in which the PVS budget
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Figure 3.1: A specified volume clement of fluid V in the Earth’s atmo-
sphere. V is bounded by two isentropic surfaces Sg,, Ss, and a lateral
material surface Sy, that is initially parallel to a fixed latitude.

within a volume V shown in Fig.3.1 is examined. Here V is chosen to be enclosed by two
nearby isentropic surfaces Sg,, Sp,, and a lateral material surface Sy, which is initially
parallel to a latitude. If the diabatic heating is zero everywhere, then V can be identified
as a material mass of fluid since mass cannot cross the isentropic surfaces under such

circumstances.

The total amount of PVS within the volume V, denoted by P(t), is given by,

P(t):ff de1~=/] Ca-Vﬂdr=//fv-(cat?)dr:/fﬁca-ﬁds, (3.3.1)
v v v )

where P is the PV defined by Eq.(1.1.1). With reference to Fig.3.1, Eq.(3.3.1) may be
written as

P)=160 [ [ ¢uiids +0[(60)7) = Cas0 +0 [(60)], (3.3.2)

Say

where the O[(60)?] term represents contribution from the side surface Sy, Cla is the
absolute circulation around the circuit T't, which is the intersection of the lateral material

surface S, with the isentropic surface Sp,. Eq.(3.3.2) shows that in the limit 6 — 0, the
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contribution from the side/surface Sy, to the surface integral in Eq.(3.3.1) is negligible

compared to those from the isentropic surfaces Sp, and Sy, .
For weak thermal dissipation, I'f can be regarded approximately as a material curve
I'¢, and then
c,.:f (u+ 92 xE)- dE
r¢

=f {ﬁl + u{ + [ x (x+ E)]} il

= {5 o+ 1 x o+ )]} (65 + )t

> j‘i [a - pi + (@ x x)] dt;, (3.3.3)
where p; is the ith component of the quasimomentum per unit mass defined in Iiq.(3.2.12),

I'is the image of T'* under the inverse mapping Z — x, and df; represents a displacement

vector locally tangent to I'.

Differentiation of Eq.(3.3.2) with respect to time ¢ and use of Eq.(3.3.3), gives
dP(t)  _dC,

dt dt
—59—f [t _p,+(n><x)]d£ +0 (60

_5f{Dt[u —pi+ (2 xx)] +ak [at p,+(Qxx]]}d€i+O[(a§g)z], (3.3.4)

where the last step follows immediately [rom the standard identity (Andrews and MecIn-
tyre, 1978h)

i}{ ~df-:j£ &+ﬁ1-‘- | de; (3.3.5)
dt Jp 7 r\ Dt e ¥ =4
Now substituting Eq.(3.2.17) into Eq.(3.3.4), with some manipulation we obtain
dP(1) o 2
= =80 (Fi+7)d+ 0807, (3.3.6)

where the fact that I' lies in a surface of constant EL has been used. Note that F; is the

rate of dissipation of quasimomentum defined by Eq.(3.2.21).

According to the impermeability theorem, there can be no transport of PVS across
isentropic surfaces. This implies that the total amount of PVS within V can change only
as a result of non-advective PVS transport across the lateral material surface Sp. There-

fore Fq.(3.3.6) shows that the wave-induced contribution to the PVS transport across a
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7

material surface is related closely to the rate of dissipation of quasimomentum. It thus
generalizes the result obtained by Taylor (1915) for an incompressible, two-dimensional,

non-rotating fluid.

3.4 Wave-induced contribution to the PVS transport: Differ-
ential properties

In the preceding section we discussed the integral properties of PVS transport. The
majority of problems in fluid dynamics, however, require use of equations in differential
form. 5q.(3.1.3) is such a differential relation. It shows that within the framework of
quasi-geostrophic theory, the EP flux divergence, which is related closely to the rate of
dissipation of quasimomentum, is equal to the meridional eddy flux of potential vorticity.
Since the constraint of the geostrophic approximation may be a severe limitation in
practice, it is desirable to derive a more general differential equation, which may relate
the wave-induced PVS transport directly to the rate of dissipation of quasimomentum.
The existence of such a relation is suggested by examples discussed in Mclntyre and

Norton (1990) and hinted in the integral equation (3.3.6).

First, let us have a quick look at the exact GLM PV transport equation,

9pP"
ot

+V-(pP'E) =V (QGFF X VO) (3.4.1)

which is obtained by applying the GLM operator UL directly to Eq.(1.5.14) and using
Eqs.(3.2.13) and (3.2.19). The most important information shown in Eq.(3.4.1) is that

there are no advective eddy flux terms in the GLM PV transport equation, so that only

'diSSipatjve- processes can be responsible for the wave-induced PVS transport in the GLM

framework.

It is difficult to see any way of simplifying Eq.(3.4.1) further. In particular, the wave-
induced contribution to the PVS transport cannot be easily separated from the total

nonadvective PVS transport on the right-hand side of this equation.

To show how the wave-induced contribution to the PVS fransport is connected to
the rate of dissipation of quasimomentum, we now turn to consider a useful alternative
to Eq.(3.4.1). Let us start by noting that the vorticity equation can be written as

¢,
at

VpxVp

PE

-Vx(uxg,)= +V xF. (3.4.2)
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It shows that if the fluid is barotropic and inviscid, the absolute vorticity ¢, satisfies
Eq.(3.2.25). Under such circumstances, the associated absolute vorticity C,, defined by
Eq.(3.2.24) with ¢, replacing A, should be a mean quantity, and then P by definition

can be manipulated as

= € =~ = = s =
P = [p1(C); 0] = A K (G0 0, = 518, 08, = 57'Ca - VBT, (34.3)
using Egs.(3.2.2), (3.2.15), (3.2.22) and (3.2.24), and (3.2.27).

In the presence of baroclinicity and/or viscous force, the last expression in Eq.(3.4.3)
is not justified because there is no guarantee that the associated absolute vorticity ¢, is
a mean quantity under such circumstances. In any case, nevertheless, we can define a

‘quasi-GLM PV’, P say, by

P

1l

ﬁ_lzn ' VELJ (3‘4'4)

which is always a mean quantity in the sense that P = P. Note that P is approximately
equal to P" whenever ¢, is approximately a mean quantity; in particular, P is identical

to P in the case of barotropic and inviscid fluids, as shown in Iiq.(3.4.3).

In addition, Andrews and McIntyre (1978b) showed that
C.=22+V x (@ - p), (3.4.5)

where p is the quasimomentum density defined in Eq.(3.2.12).

Now taking the curl of Eq.(3.2.17) yields

333; +V x (za x ﬁL) -V x [T(@, F)VE] =V x (F'+ 7). (34.6)

Forming the scalar product of £q.(3.4.6) with V8" leads to
% (#P) + V- [,aﬁaL L VE“] S (3.4.7)

where
T =-FxV0" (3.4.8)
In the absence of baroclinicity and viscous force, q.(3.4.7) is equivalent to Eq.(3.4.1).

Under general circumnstances, it represents a transport equation for the quasi-GLM PV.

Note that no eddy quantity appears on the left-hand side of this equation. Thus, the
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wave-induced contribution to ft—he PVS transport is represented solely by the eddy quan-
tity J™ on the right-hand side of Eq.(3.4.7).

The relationship between the wave-induced PVS transport (I*) and the rate of dis-
sipation of quasimomcntu:ﬁ (F) is expressed by Eq.(3.4.8). This is a general relation,
valid in a three-dimensional, compressible, rotating fluid without the constraint of the
geostrophic approximation. Thus it, together with the integral relation (3.3.6), gener-
alizes straightforwardly the well-known result of Taylor (1915) for an incompressible,
two-dimensional, non-rotating fluid and the result of Bretherton (1966a,b) which is valid

only within the framework of quasi-geostrophic theory.

Melntyre and Norton (1990) pointed out that, to any wave-induced contribution to
the PVS transport, there always corresponds an effective mean force per unit mass, which
may be defined by Eq.(3.1.4) and would have the same cifect as the waves upon the PVS
transport. When Eq.(3.4.8) is substituted into Eq.(3.1.4), we sce that the effective mean
force may be given as

_ Fxvtt  (Fx VoY) x ve© (_‘F-V?L) v
B S Vg2 = = B ey e
VO] Vo2 Ve

Poes, =L
where “||” denotes projection parallel to the ¢ -surface.

Eq.(3.4.9) shows that the effective mean force defined by Eq.(3.1.4) is equal to the
rate of dissipation of quasimomentum projected on the mean isentropic surface. This

result has been confirmed by examples analyzed in Mclntyre and Norton (1990).

3.5 Discussion

The invertibility principle has been widely recognised as a powerful simplifying princi-
ple in geophysical fluid dynamics. It enables us to deduce all the relevant dynamical
information from the knowledge of a single scalar field (PV) with suitable boundary
and balance conditions. Applying this principle to the wave-mean interaction theory, we
have shown in Chapter 2 that the description of the wave-induced mean flow from a PVS
viewpoint is, at least to the leading order, equivalent to the description of the same phe-
nomenon from a momentum viewpoint. This drops a strong hint of an inherent relation
between the wave-induced PVS transport and the wave-induced momentum transport.
In this chapter, we demonstrated that such a relation has its origin in the Taylor identity

derived for an incompressible, two-dimensional, non-rotating fluid (Taylor, 1915). The
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generalised Taylor identity, i.e. the integral relation (3.3.6) or the differential relation
A

(3.4.8), strongly support i'.hf/ idea that the general nature of the dissipative type of wave-

induced mean motion can be understood in a unified and succinct way by viewing all the

phenomena in terms of the wave-induced PV transport.
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ROSSBY WAVES AND THEIR MEAN EFFECTS IN A CHARNEY-DRAZIN
MODEL ON THE MID-LATITUDE 3-PLANE

In this and the next chapter, extratropical Rossby waves and their mean effects will be
examined. The basic equation for dynamical analysis is the quasi-geostrophic potential
vorticity (QGPV) equation. It is understood that the QGPV equation has fallen out of
favour as the equation for modelling the global atmospheric circulation since it is not
uniformly valid as one approaches the equator, or sloping tropopause transitions in static
stability. However, it remains of great value in diagnosing and gaining insight into the
dominant dynamical processes in the extratropical regions.

4.1 Introduction

Rossby waves, which are also {requently referred to as planetary waves, have been gener-
ally recognised as the most important waves for large-scale meteorological and oceano-
graphical processes. These waves owe their existence to the latitudinal variation of PV
on isentropic surfaces (Hoskins ef al., 1985). In atmospheric studies there has been con-
siderable emphasis on the vertical propagation of Rossby waves. The primary motivation
has been the importance of Rossby waves for the dynamics of the middle atmosphere, as
reviewed in Holton (1975, 1992), Dickinson (1978), and Andrews et al. (1987).

Observations have long suggested that planetary-scale Rossby waves in the tropo-
sphere can be traced into the winter stratosphere. The simplest and most illuminating
theory for the upward propagation of Rossby waves is due to Charney and Drazin (1961).
In a quasi-geostrophic model with constant mean zonal flow and constant static stability,
Charney and Drazin demonstrated that stationary Rossby waves can only occur for east-
ward zonal winds greater than zero and less than a cutoll velocity defined in Eq.(1.4.1).
They found in particular that the range criteria in Eq.(1.4.1) were so restrictive for higher
zonal wavenumbers that only the largest scale, essentially zonal wavenumbers one and

two, would be expected to propagate significantly into the winter stratosphere. This is

79
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in qualitative agreement with observations (sce Holton, 1975; Andrews et al, 1987).

In the present chapter we consider how Rossby waves in the Charney-Drazin model
arc modified by dissipatﬁf{;: processes, and how these dissipating waves modify the mean
flow. According to Charneir and Drazin’s theory, substantial vertical energy propagation
should occur during the equinoctial seasons when the mean winds are weak westerlies
in the stratosphere and mesosphere. However, there is little evidence to support this
argument. After examining Rossby-wave behaviour in the presence of radiative dissipa-
tion, Dickinson (1969b) pointed out that the absence of large internal Rossby waves at
the equinoxes could be ascribed in part to the damping of Rossby waves by Newtonian
cooling as they propagate upward through the weak westerlies in the middle atmosphere.
Considerable sensitivity of the wave amplitude to the strength of the dissipation was
also reported by Schoeberl and Geller (1977) in a spherical model. In addition, the im-
portance of wave dissipation has been further emphasized in studies of the interactions
between waves and zonal flow. According to the generalized Charney-Drazin theorem,
the divergence of the EP flux, which serves as the effective force per unit mass acting
on the zonal mean flow due to disturbances, is directly related to wave dissipation and
transience (Andrews and Mclntyre, 1976a,b, 1978a; Boyd, 1976). Andrews and McIntyre
(19762, 1978b) pointed out that the wave transience associated with a temporary con-
servative disturbance can force only a temporary mean-flow change. In other words, the
mean effect of wave transience tends to average out as time goes on, leaving systematic
modification of the mean flows due to wave dissipation as the dominant effect in the long

time average (McIntyre and Norton, 1990).

In Section 4.2, a QGPV equation is derived on the mid-latitude S-plane. Based on
this equation and the assumptions of Rayleigh friction and Newtonian cooling, linear
and steady solutions for dissipating Rossby waves are examined in Section 4.3. Their
mean effects are considered in Section 4.4. Our emphasis will be on possibilities for the
existence of divergent EP fluxes, which have frequently emerged in the winter stratosphere
and mesosphere in observational studies (e.g., lamilton, 1982; Geller et al., 1933, 1934;
[lartmann ef al., 1984; Mechoso et al., 1985; Marks, 1989; Rosenlof and Holton, 1993),
and have caused some interesting arguments (Mahlman and Umscheid, 1984; Robinson,

1986; Andrews, 1987; Marks, 1989).

Another objective of the present chapter (Section 4.5) is to re-examine the difference

between the transformed Eulerian-mean (TEM) and the generalized Lagrangian-mean
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(GLM) meridional circulations. This problem is directly relevant to tracer transport in
the middle atmosphere. It Hias been widely recognized that tracer transport is closely
related to the GLM flow ('i)uukertou, 1978; Andrews et al., 1987). Dunkerton (op. cit.)
further suggested that the GLM meridional circulation could be approximated by the
TEM meridional circulation. In contrast to this argument, Rood & Schoeberl (1983)
found that using the TEM circulation instead of the GLM circulation would significantly
overestimate the advection by Rossby waves. It will be demonstrated in Section 4.5
that, in the presence of thermal dissipation, the difference between the TEM and GLM
circulation is unlikely to be negligible. In fact, they are not only different, but also

opposite-signed in some situations.

4.2 The f-plane approximation in the mid-latitudes

In order to avoid the complexity of spherical geometry, in Chapter 2 we considered
inertia-gravity waves on an f-plane, in which the Coriolis parameter f was taken as
constant., To examine the dynamics of a Rossby ‘wave whose typical horizontal length
scale is over 1,000 km, it is necessary to retain the dynamical effect of the variation of f
with latitude in the Coriolis force term in the momentum equation. This variation can
be approximated by expanding the latitudinal dependence of f in a Taylor series about a
reference latitude @y and retaining up to the linear term. This approximation is usually

referred to as the J-plane approzimation (Rossby, 1939; Phillips, 1963).

In this section, we invoke the mid-latitude 8-plane approximation to obtain the quasi-
geostrophic equations. Our starting point is the prémitive equations in spherical coordi-

nates.

4.2.1 The primitive equations of atmosphere in spherical coordinates

Most motions in the atmosphere can be described by the primitive equations, which
consist of the horizontal momentum equation, the hydrostatic approximation, the con-
tinuity equation, and the thermodynamic energy equation. To analyze Rossby waves in
the stratosphere it is convenient to write these equations in the log-pressure coordinate
system, in which the vertical coordinate is defined by (see Holton, 1975; Andrews et al.,
1987),

= —H In(p/ps), (4.2.1)
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2

where p is pressure and p. a standard reference pressure, H is the scale height of the

atmosphere. Now the primitive equations in spherical coordinates can be expressed as

follows,
%—(f+£tan¢)v+%c;;£=}f, (4.2.2)
%+(f+itan¢)u+ig%=}’, (4.2.3)
aﬂc;m [g; + B%S(U cos ¢)] + i%(ﬂa“’) =0, (4.2.5)
% [‘% " %] e é (4.2.6)

where A is the longitude, ¢ is the latitude, and (u, v, w) are velocity components defined
by

P D\ D¢ Dz
(u, v, w) = {(a,,, cos @) i }..aE Dr Dt] 2 (4.2.7)
with the material derivative D/Dt defined by,
D d u 4 " v d (4.2.5)

Dt~ 0t GeosgOn | 05 0z
In addition, f = 2 sin ¢ is the Coriolis parameter, R is the gas constant for dry air,
¢, is the specific heat at constant pressure, « is the ratio of R lo ¢,, & is the radius of
the earth. The basic density p,(z) is defined by p,(2) = p.exp(—z/H) with p, being a
standard reference density. 75(z) and ®5(2) are basic state temperature and geopotential,
respectively, while T and ® are departures of local temperature from Ty and of local

geopotential from @y, respectively. J is the diabatic heating rate per unit mass. X and

Y are horizontal components of friction.

When the hydrostatic approximation, namely Eq.(4.2.4), is substituted into Eq.(4.2.6)
and the fact that T < T} has been used as a basis for neglecting kwT'/H compared to

kwly/H, we obtain a further simplified thermodynamic energy equation:

D (8® . kJ
Dt (a_) N =5 2
where
R (dT, T
72 i _B ._B
N (z)_H(dz #oy ) (4.2.10)

is the buoyancy frequency squared.
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4.2.2 The [§-plane a}ﬁﬁ?ﬁximation and quasi-geostrophic theory

Despite a few simplifications having been used in deriving it, the set of primitive equations
is still very complicated. To focus on the large-scale motions in the mid-latitude region
around some central latitude ¢o distant from both the equator and the poles, we can
introduce the mid-latitude §-plane approximation to simplify our analysis. Following
Pedlosky (1987), we define z and y by

T =aAcosgy, Y =a(p— g). (4.2.11)

Expanding the trigonometric functions in the primitive equations about the latitude

¢, we obtain,

5 4
sy 4 . A0 (4.2.12)
a 2q;
: 2
CoS ¢ = COS ¢y — ysings Y cosd (4.2.13)
a 2¢:°
2
Yy ¥~ tan ¢o
t = o 4.2.14
an ¢ = tan ¢p + T vy 8 ( )
. L
I % ytango  y*(1 4+ sin® ¢o) (4.2.15)

cos¢  cosdo " & cos do 20,2 cos® ¢g

Further dynamical simplifications involve systematically using scaling arguments.
Our primary purpose is to deduce quantitative rules and simplified equations for large-
scale motion of limited meridional extent. The resulting equations should consistently
describe the essential dynamics of the assumed motion, while disregard the unnecessary
complications inherent in the original equations. It should be kept in mind, however,
that it may not be possible to find a single scaling approach which is appropriate for all
the phenomena of interest. For one thing, the time scales of the large-scale motions in
the atmosphere vary from several hours to many months, and the horizontal space scales
from several hundred kilometers to global dimensions (Holton, 1975). For another thing,
the scaling arguments assume that a partial derivative of a quantity, a say, will have an
order of magnitude at most equal to the magnitude of & divided by the appropriate scale
length (Phillips, 1963). Such assumption may fail in regions where variables have steep
gradients, as the potential vorticity does at the edge of the polar vortex (Mclntyre and
Palmer, 1983, 1984). Nevertheless, it suffices for us to derive the model and find those
conditions under which quasi-geostrophic solutions can exist (Charney, 1947, Phillips,
1963, Iolton, 1975).
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Let V, L, D and Ny repf‘égéﬁt the typical magnitudes, or the scales, of horizontal
velocity, horizontal length, vertical length, and buoyancy frequency, respectively. We
further assume that geostrophic balance is the leading approximation of the motion, so
that the typical magnitude of the geopotential ® is 2QV L. Then we can define the

following non-dimensional variables (denoted by an over-check):

(#,9) = (z,9)/L, %=2/D, t=t/(L/V), ®=2/(2VL),
(@,3) = (w,v)/V, ©=w/(VD/L), N=N/No, f=n/p, (8]
(X, 7) =(X,Y)/[(V*/L), J = J/[2QHV?[(xD)).

Substituting Eqgs.(4.2.11)—(4.2.16) into Eqs.(4.2.2), (4.2.3), (4.2.5), and (4.2.9), and
dropping the over-check from the non-dimensional variables, we obtain the following

non-dimensional equations

'R%—(ﬁ]+7€ﬂy+---)v+(1+R%+---)g—i-—*RX, (4.2.17)
R%+(fu+nﬁy+---)u+g—j=mf, _ (4.2.18)
(1+R%’+---) {%*a% [v (1—R%+---)]}+i%(ﬁaw)=0, (4.2.19)
’R% (%?) + BN*w =TRJ, (4.2.20)
S
-}%E%+u(l+7€%+---)%+v%+wi, (4.2.21)

and the non-dimensional parameters R, B, fo, 8, and A are defined as follows, respec-

tively,

_ Vv s NoDy? L ] ZQchosg‘Sg t y
R = m, B = (QQL) , fo=singy, B= PR B = Btan® ¢y. (4.2.22)

Note that R and B are usually called the Rossby number and Burger number, respec-
tively. Tor the planctary-scale motion in the stratosphere, we choose specilic magnitudes

for the scalings as follows,
V=30ms", L=15x10m, D=10"m, Nj =5x 1072 (4.2.23)

In addition, H = 7 x 10°m, ¢o = 45°, @ = 6.371 x 10°m, g = 9.8ms™?, and 2Q =
1.4584 x 107%s. Substituting these values into Iq.(4.2.22), we see that

R =0.1371, B=1.0448, fo=0.7071, B =1.2140, B'=1.2140. (4.2.24)
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Eq.(4.2.24) shows that R < 1 while other dimensionless parameters, i.e. B, fo, 5 and
B!, are all O(1) in our model. Therefore we can expand all the variables in asymptotic

series in R, namely,
T.E(.’l:, Y2, taﬂ} : RGU;(L% y t) = Rlun(xs ¥,z t) e 5
‘U(.’{:! Y, Z,t,R) = Roﬂs(ma Y,z t) + Rlva(‘rs yEZQt) + . (4225)

where g, 1, etc., are independent of R. Substituting these expansions into Eqs.(4.2.17)-

4.2.20) and equating coelficients of R”, we obtain the leading order equations
1 8 g q

1 9%, Oy, 19%, i
= 1 T8 (Ui e R o DV = 4.2.2
fodz 0z’ T fody & " " P

Vg
where by = ®,/ fo is the geostrophic stream function. Eq.(4.2.26) shows that the leading-
order fields are in geostrophic balance and do not contain enough information to complete
the dynamical determination of the motion in the sense that &g remains undetermined.
In order to obtain the equation governing the evolution of @, we must resort to the first
order equations in R. Substituting Eq.(4.2.25) into Eqs.(4.2.17)-(4.2.20) and equating

coefficients of R', we obtain

09,

Dgug + e 09,

Di . (18 s -3 )yvg Xs = d + fﬂvm (4227)
D.v 99, "y
pr T Puts— Yo =~ = fora, (4.2.28)

Dy (0%) _ ;| _ _pgne
[Tj_t ( 52 ) Jg] = —BN"w,, (4.2.29)
Bt a Jua  Ova 1 0

Eﬁtyvs) = ‘é-;:- ay -+ —F;;a—z(pawa), (4230}

where

D, @ d )

sz = "a—L + ug'éE + vg%. (4.2.31)

Now taking 9(4.2.28)/dz — 0(4.2.27) /8y, yields
Dy (s e P\ 0o (B 0K\ (0 Bw)
Dt (’3“%_ ay)*ﬂ B Vg [, VR )

Combining Eq.(4.2.32) with Egs.(4.2.30) and (4.2.29), we obtain the QGPV equation as

follows,

Dege
o £y (4.2.33)
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where
Oy 0%y 1 0 g
= —— lep,— 4.2.34
qg\\,\_ﬁ;y 7+ Be? zk ayg 25 n az €Pp 9z )’ ( 3 )
g e 8}(5 a‘XE 1 _(1 o ar
ZS’ = P W + fupﬂ 92 (E(JH Jg) 5 (4.23«))
with

fs

<) = Baneay

Note that gy 1s the QGPV and Z; represents the effect of nonconservative processes. In

(4.2.36)

the QGPV equation, the only elfect of the spherical shape of the earth on the leading-
order fields of quasi-geostrophic motions is the term [Fy. This § effect obviously comes
from the approximation of using the Cartesian geometry but letting the Coriolis param-
eter vary linearly with . Such an approximation is referred to as the #-plane approx-
imation. Application of the [(-plane approximation is limited to flow fields for which
the meridional extent of the motion is small compared to the radius of the earth. Note
that the QGPV equation with the appropriate boundary conditions forms the complete
dynamical basis for the calculation of the leading-order fields of motion. In principle,
higher-order fields can be calculated in a similar fashion (e.g., Zeytounian, 1990). In
this chapter we shall concentrate exclusively on quasi-geostrophic motions and need not

invoke the first-order ageostrophic motions.

4.3 Forced Rossby waves on the -plane

The most important large-scale wave disturbances in the middle atmosphere are identified
as forced Rossby waves that have their origin in the troposphere. In this section, we shall
discuss linear Rossby waves forced from below within the framework of quasi-geostrophic

theory in the 3-plane geometry.

4.3.1 Linearised equations for Rossby waves

Suppose that small-amplitude disturbances are superimposed upon a basic zonal flow
[U(y, 2), 0, 0]. Following standard practice, we use an overbar to denote a zonal mean
and a prime to represent a departure from the zonal mean. Then the equation for the

disturbance QGPV can be written as

= 2
Dtg + vg, = Z, + 0(a®), (4.3.1)
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alise |
wr T gt s () a2
Z - %’f' - 3_67;_& ﬁ.{% (ca2) (4.3.4)
gl o
% = % N 'ﬁ%_ (4.3.5)

In addition, a is a dimensionless amplitude parameter that is assumed much less than 1,

namely
a < 1. (4.3.6)

Under such circumstances, the nonlinear effect represented by the O(a?) terms in Eq.(4.3.1)

can be omitted.

X[, Yy, and J; in Eq.(4.3.4) are unspecified forcing terms in the linearised zonal mo-
mentum, meridional momentum and thermodynamic energy equations, respectively. In
general, these arbitrary forcing terms may represent either wave dissipation or excitation,
depending on whether their correlations with the corresponding disturbance motions are
positive or negative (Andrews and McIntyre, 1976a). In what follows, only wave dissi-
pation is concerned. Thus, in our model X}, ¥, and J are assumed to be correlated
negatively with ug, vg, and 99 /9z, respectively. In the absence of other effects, they
tend to bring the corresponding disturbance motions to zero. This, however, does not
imply automatically that Z; defined by 1q.(4.3.4) will tend to bring q; to zero; see the

discussion in §4.4.3.

Owing to radiative and photochemical effects, temperature perturbations in the strato-
sphere and mesosphere tend to relax towards a state of radiative equilibrium. The dynam-
ical consequences of the relaxing are usually considered approximately by parameterising

the diabatic heating rate as proportional to the perturbation temperature, i.e.,

aa!
Jg = —pa a:, (4.3.7)

where ay is the non-dimensional Newtonian cooling coefficient and g a non-dimensional
parameter that characterises the dissipation strength. We shall assume that the dissipa-

tion processes are weak in the sense that g is a small number, i.e.,

o 1. (4.3.8)
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The mechanical dissipation terms in the atmosphere are poorly understood. For

simplicity, X and Y; are parameterised by the Rayleigh friction approximation, that is

S
-

XY= —ponil,, V] = —pedf, (13.9)

where ay is the non-dimensional Rayleigh friction coefficient. Though Rayleigh friction
is, generally speaking, unrealistic in the real atmosphere, it may be used to estimate some

mechanical dissipation such as that caused by the breaking of gravity waves (Holton and
Wehrbein, 1980; Chen and Robinson, 1992).

To retain the maximum simplicity we shall assume that both ey and @, are constants,

although they are, in general, functions of all the independent variables.

We now specialise the motion by assuming that the flow is confined to a channel
bounded by two rigid vertical walls at y = —Ay/2, Ay/2. Thus, the lateral boundary

conditions are

a !
v, = % =, at y = —Ay/2 and Ay/2. (4.3.10)
"E .
To model the stationary Rossby waves that are forced in the troposphere and propa-
gate into the stratosphere and mesosphere, we specify the disturbance geopotential at a

given log-pressure level z = z as

Yg(@, y, 20, t) = Re {a cos(fy) exp(ikz)}, (4.3.11)
where
sl wl
B w ey ==, 4.3.12
a5, COS ¢y Ay ( )

with s being the zonal wavenumber (s = 1,2,3,:+). In this chapter, we choose { =
1.0595, which corresponds to a channel centred at ¢ = 45° latitude and bounded re-

spectively by walls at 25° and 65° latitudes.

As for the upper boundary condition, we require that the density of wave-energy

remains finite at great heights. This corresponds to

pn|-z,(')"f| = bounded, as z — 00, (4.3.13)

We now look for steady, stationary solutions to Eq.(4.3.1) of the form

= Re{ib(y, 2) exp (ika)} (4.3.14)
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Substituting Eq.(4.3.14) into Eq.(4.3.1) and neglecting the nonlinear effect, we obtain

the following second-order partial differential equation for ¥(y, z),

10 52};) A (z’kF+ ;Lan) (321;,; , A) ikg, .
= e L)t r——L 55 kY )+ == =0. 4.3.15
py Oz (Epﬂ 0z) * (ikU + poy) \O¥* v (iKT + pow) ¥ (LIS

For realistic flows U(y, z), Eq.(4.3.15) with suitable boundary conditions can only be
solved by numerical methods (e.g., Matsuno, 1970). To gain some insight into the nature

of the solutions, in what follows we assume that U = U(z) and

$(z,y) = U(z) cos(fy). (4.3.16)
Then, 1q.(4.3.15) reduces
4T dlne dV B
Ez_2+(dz —2nﬁ)€Tz+(C+nﬂ)w_0, (4.3.17)
where
D 3
M= (4.3.18)
and
(K + ) [k(ue = U) +ipos| _
- i oy T 4.3.19
(o TS ng’ = Cr + 1C (4.3.19)
with
Ty
= 4.3.
uC kz +£2! { 3 20]
k2 4+ 0 K20 (u, = U) — pPoaya
r=( ] _(2 ) = e e (4.3.21)
(kU + ploy?)
E(kE 4+ ) lax(ue — U) 4+ axU
o= }[_.:( b S ] (4.3.22)
(kU™ + plax?)

Following Charney and Drazin (1961), we shall call u.  the Rossby critical veloeity.!
The corresponding boundary conditions are

-~

U =ugq, at z = zo, (4.3.23)
p|U> = bounded,  as z — co. (4.3.24)

n Charney and Drazin’s original paper, uc defined by Eq.(4.3.20) is called the Rossby critical
velocity. In some standard text books of dynamic meteorology (e.g., Holton, 1975; Andrews et al.
1987), however, this terminology usually refers to another quantity U defined by Eq.(4.3.33), which is
called the modified Rossby critical velocily in Charney and Drazin’s paper. Note that U < i, provided
that 7, > 0.
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4.3.2 Wave solutions for constant U/ and N*

Let us consider first the simplest situation in which both U and N? are taken to be
constant. Under such g‘}réumstances, the solution of Eq.(4.3.17) satisfying the boundary
conditions (4.3.23) m1{1‘;.(4.3.24) can be written as

U(2) = aexp[(imy — ny)z], (4.3.25)

where my, ny are real numbers. Substituting Eq.(4.3.25) into Eq.(4.3.17) yields (note
that d1ne/dz = 0 in this case)

my? — (g + 1) = Cr, (4.3.26)
2my (ny +ny) = Ci. (4.3.27)

The upper boundary condition (4.3.24) requires (ny + ny) = 0. With this constraint m
and ny can be solved from Eqs.(4.3.26) and (4.3.27) as

my = sgn(Ci)y/(IC| + Cr) /2, (4.3.28)
ny = —ny +/(IC] = 1) /2. (4.3.29)

It is demonstrated in Appendix 4A that the vertical wave-energy flux due to the
dissipating Rossby waves, whose solutions are described by Eq.(4.3.25) with Eqs.(4.3.28)
and (4.3.29), is always positive. This is in accordance with the assumptlion that the

waves are forced from below.

Now letting p — 0, we see that

. [ T, if0<U<U; (ie, Co>0),
}11—1:% i it { 0, if otherwise; il
. I if0<U < U,
}11.% o { —ny ++/—Cro, if otherwise; (4.5:9%)
where
B4 £ -U
PO s i) Sl W) (4.3.32)
el
K2+ £ [}
B e Seth HI) 7y (4.3.33)

(k% + 2 + eng?) (k2 + 22 + eny®)

U, is referred to as the modified Rossby critical velocity (Charney and Drazin, 1961). m
is chosen to be positive to guarantee an upward wave-energy flux, as is demonstrated

explicitly in Appendix 4A.
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Eqs.(4.3.30) and (4.3.31) show that m # 0 (and n = —ny) if and only if the basic

zonal flow U satisfies the following equation
v
AP Dl el (4.3.34)

This criterion was first derived by Charney and Drazin (1961) to illustrate the fact that
there exists a “window” (to be referred to as the CD window), 0 < U < U., within which
the vertical structure of a conservative, stationary Rossby wave is of oscillating shape
(m # 0,n = —ng) and the wave is free to propagate vertically. It should be noted that,
owing to the exponential decrease of density with altitude, the amplitude of disturbance
geopotential for the linear, conservative, stationary Rossby wave grows with altitude
exponentially within the CD window (rn = —ny < 0). At some height, therefore, the
nonlinear terms that have been neglected will become important, and the linear theory

will break down.

Qutside the CD window, where m = 0 and n > —ny, the amplitude of the disturbance
geopotential (and disturbance velocities as well) for the linear, conservative, stationary
Rossby wave decays or grows with altitude; depending on whether n > 0 or n < 0. For
positive g, it can be easily seen from Eqs.(4.3.31) and (4.3.32) that there exists another

“window”,
0<U < u, (4.3.35)

within which n < 0, and then the amplitude of the disturbance geopotential grows
with height; otherwise the waves are vertically evanescent. I'or convenience, the domain
defined by Eq.(4.3.35) will be referred to as the geopotentiol-growth (GG) window for
the linear, conservative, stationary Rossby wave. Note that, within the GG window,
disturbance geostrophic velocities u, and v, also grow with height, as can be seen from
Eqs.(4.2.26) and (4.3.14). Since u. > U,, as indicated by Eq.(4.3.33), the GG window is

somewhat wider than the CD window.

How m and n depend on U is shown in Fig.4.1. It is seen that both the CD window
and the GG window become smaller as the zonal wavenumber s increases, in agreement
with observational evidence that only planetary-scale quasi-stationary disturbances can

be observed in the winter stratosphere (see Holton, 1975; Andrews el al., 1987).

Variations of m; and n; with U for dissipating Rossby waves are shown in Fig.4.2 and

Fig.4.3. Here y = 0.0827 is chosen. This value corresponds to a dimensional Newtonian
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Figure 4.1: The dependence of (a) the vertical wavenumber m and
(b) the vertical decay rate n on the basic zonal flow U (U is given
in ms™') for linear, conservative, stationary Rossby waves with s =

1,2,3.

cooling rate of (7 days)™'. In comparison with Fig.4.1 we see that dissipation produces
noticeable amplitude attenuation and phase modification of the Rosshy waves in some
neighbourhood of U = 0. Thus, the waves in the stratosphere and mesosphere should be
strongly damped during the equinoctial seasons when the mean winds are weak westerlies
(Dickinson, 1969b). The wave amplitudes are least attenuated for westerly winds with
velocities near the Rossby critical velocity U.. It should also be noted that the sign of
my depends on the sign of Ci. If ay = ar # 0, Eq.(4.3.22) shows that C; is positive, so
that my is positive, which implies that the wave phase line tilts westward with increasing
altitude. If, on the other hand, e # ag, we see [rom Eqs.(4.3.22) and (4.3.28) that mi
is negative il

DIN(UC — U) + ﬁnf}_ < G, {4.3.36]

(Takahashi and Uryu, 1981). In particular, if the waves are dissipated by Newtonian
cooling alone, my is negative if U > wu,, as shown in Fig.4.3a. Note that a negative my

corresponds to an eastward tilt of phase line with increasing altitude.
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Figure 4.2: The dependence of (a) the vertical wavenumber my and
(b) the vertical decay rate nt on the basic zonal flow U for linear,
dissipative, stationary Rossby waves with s = 1,2,3. ay = an = 0.5.

We have seen that m; and ny can be solved exactly from Egs.(4.3.26) and (4.3.27).
For small ¢ (u < 1), it appears that approximations to m; and n; may be obtained by
expanding the solutions of Eqs.(4.3.26) and (4.3.27) in perturbation series in powers of
p. To seek such asymptotic series we note first that, provided both U and €,y are of
order O(1), Cy and C; can be written as

Cr = Cro + O(p?), (4.3.37)
Ci = uCio + O(p), (4.3.38)
where Cpp is defined by Eq.(4.3.32) and Cjg by

K+ ) lag(te— T) + o
et )[a::UQ ke U]. (4.3.39)

Then we assume that the solutions of Eqs.(4.3.26) and (4.3.27) can be written as

05T

my=m+ pmy + pima 4o, (4.3.40)
ny=n+pn; +plng 4o, (4.3.41)
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Figure 4.3 Same as Fig.4.2, but for ay = 1,05 = 0.

respectively. Substituting Eqs.(4.3.37), (4.3.38), (4.3.40) and (4.3.41) into Eqgs.(4.3.26)

and (4.3.27), and equating coefficients of equal powers of u on both sides of equations,

we obtain
m® — (n4ng) =Cro, (4.3.42)
m(n+ny) =0, (4.3.43)
mym —ny (n+ny) =0, (4.3.44)
2 [mng + my(n + ny)] = Cho. (4.3.45)

Eqs.(4.3.30) and (4.3.31) can be recovered immediately from [iqs.(4.3.42) and (4.3.43).
When g # 0, the dissipation terms produce a modification factor exp [u(imy — nq)z],
where m; and n; can be obtained from Eqs.(4.3.30), (4.3.31), (4.3.44) and (4.3.45) as
follows,

it0-2T &,

0,
s { Cio/[2(n + ng)], il otherwise; [45:46)
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order in u. (a) ay = ax =0.5. (b) ay =1,ar =0.

= { Cio/(2m), if0< U < Ue, it

0, if otherwise,
Substituting Eqs.(4.3.31) and (4.3.47) into Eq.(4.3.41) shows that the extra damping of
waves due to weak dissipation is important within the CD window, where ny = n+pun; +
O(u?), and is negligible outside the CD window, where ny = n + O(p?). In contrast, the
modification of wave phase due to weak dissipation is important outside the CD window,
where m = 0 but m; # 0, and is negligible within the CD window, where m # 0 but
m; = 0. Because (n + ny) > 0 outside the CD window, m; given by Eq.(4.3.46) has
the same sign as Cip. Therefore it is straightforward to show that m, is negative and
m zero when U satisfies Eq.(4.3.36). This implies that my = pm; + O(p?) is negative,
in accordance with Eq.(4.3.28). In addition, ny > 0 is required by the upper boundary
condition (4.3.24).
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It should be emphas;:red that the asymptotic expansions of Eqs.(4.3.37), (4.3.38),
(4.3.40) and (4.3. 41)/51.3 based on the assumption that both Cy and Cjo, given respec-
tively by Eq.(4.3.32) and Eq.(4.3.39), are of order unity. Since C;p — co and Cjp — o
as U — 0, there must be some neighbourhood of U = 0 such that the expansion based
on Eqs.(4.3.37) and (4.3.38) fails to be uniformly valid (as U varies). On the other hand,
when U — U, Eq.(4.3.32) shows that C,o — 0. This also violates the assumption men-
tioned above, Therefore there must also be some neighbourhood of U = U, on which the

expansion based on Eq.(4.3.37) fails to be uniformly valid.

The asymptotic approximations for my and ny, given respectively by Eqs.(4.3.40) and
(4.3.41) to the first order in g for zonal wavenumber s = 1, are shown in Fig.4.4. In
comparison with Fig.4.2 and Fig.4.3 we see that my and ny are appropriately represented
by these approximations except on some small neighbourhood of U = 0 and U = U, in

agreement with the above argument.

4.3.3 Wave solutions for U and N? varying with z

In §4.3.2 the characteristics of forced Rossby waves in an atmosphere with constant U and
N? were discussed. However, the restriction to constant U and N? is rather unsatisfactory
in the real atmosphere. To gain [urther insight into the structure of forced Rossby waves

in the real atmosphere, we now consider the effects of vertical variations of U and N?.

Consider a channel model centred at 45°N with a meridional extent equal to 40°
latitude (i.e., 25°N—65°N). The basic zonal winds U(z) and temperature 7} (2) in January
for this model are plotted in Fig.4.5a and Fig.4.5b, respectively. Data for the diagrams
are obtained from the 1986 COSPAR International Relerence Atmosphere compilation
(see Fleming et al., 1990), as shown in IYig.1.2 and Fig.1.3. These data are averaged
across the channel to represent the winter mean conditions in middle latitudes. IMig.4.5¢

shows N?(z) calculated from Eq.(4.2.10) using the temperature profile given in Fig.4.5b.

Now Eq.(4.3.17) can be solved by numerical methods. Following Matsuno (1970), we
impose a radiation condition at the top of the model (z = z = 85 kin) by assuming that
U and N? are independent of z above z. This allows analytical solutions to be found
above 2, and the solutions with upward wave-energy flux are chosen to supply the upper

boundary condition required by the numerical method of solution.

Fig.4.6 shows the vertical structures of the amplitude |W(z)| for waves with s = 1-3.
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Figure 4.5: Vertical structures of (a) the basic zonal flow U(z), (b) the basic state tem-
perature Ty(2), and (c) the buoyancy requency squared N*(z) in the winter Northern
Hemisphere. U(z) and Ty(z) are calculated by using data from 1986 COSPAR In-
ternational Reference Atmosphere compilation (see Fleming et al., 1990). N?(z) is
calculated from 15q.(4.2.10) using the temperature profile given in Fig.4.5b.

Waves with s = 4 were also calculated but omitted from this discussion, because their
amplitudes are much smaller than that of wave 3. For conservative waves (ax=az=0,
Fig.4.6a), the amplitude of wave 1 (s = 1) increases with height rapidly in the strato-
sphere, reaching its maximum near the stratopause. In contrast, the amplitude of wave
2 in the same figure is approximately constant in the stratosphere, and that of wave 3
decreases with height monotonically. When wave dissipation is included in the model,
wave | is heavily attenuated, while the damping of waves 2 and 3 due to dissipative

effects is insignificant (Fig.4.6b,c).

An investigation into the vertical structure of the wave phase indicates that the
behaviour of the Rosshy wave largely depends on the dissipation mechanisms. For oy =
ar = 0.5, all phase lines tilt westward (phase angle increases with height), as shown
in in Fig.4.Ta. For ax = 1, ax = 0, on the other hand, eastward inclination (phase

angle decreases with height) occurs in the mesosphere for all wave components and in
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Figure 4.6: Vertical structures of wave amplitude |¥(z)]| for waves with s = 1-3.

the stratosphere for waves 2 and 3 as well, as shown in Fig.4.7b.

For constant U and N2, it was shown in §4.3.2 that the disturbance geopotential
associated with conservative, stationary Rossby waves grows with height within the GG
window (i.e., 0 < U < u.), and decays with height otherwise. In addition, conservative,
stationary Rossby waves are free to propagate vertically with phase line tilting westward
within the CD window (i.e.,0 < U < U.). Outside the CD window, these waves are not of
oscillating shape, so that there is no phase tilt with height. For dissipating Rosshy waves,
the extra damping of wave amplitude due to weak dissipation is significant within the
CD window and negligible otherwise, while the modification of wave phase due to weak
dissipation is negligible within the CI) window and significant otherwise. In particular, if
Rossby waves are dissipated by the Newtonian cooling alone, the phase line tilts eastward.
To see whether these results are still valid when U and N? vary with height, we now plot
the vertical structures of (U — U;) and (U — u.) in Fig.4.8. In comparison with Fig.4.6
and Fig.4.7 we see that the amplitudes for conservative waves grow with height when

U < u. and decay otherwise. Moreover, the damping of waves due to weak dissipation
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Figure 4.7 Vertical structures of wave phase for waves with s = 1-—3.

is significant only when U < U.. In addition, when waves are dissipated by Newtonian
cooling alone, their phase lines tilt westward if U < u, and eastward if otherwise (an
exceplion can be seen in the lower stratosphere where the phase line of wave 1 tilts
westward, though the corresponding u. is less than U/). These phenomena indicate that
the conclusions obtained in §4.3.2 for constant U and N? are loosely applicable for the

case in which U and N? vary with height.

4.4 The quasi-geostrophic EP flux

Many phenomena observed in the stratosphere involve the interaction of the mean flow
with planetary-scale Rossby waves. The discussion of Section 4.3 illustrates explicitly
how the mean flow can modify the disturbances in the model atmosphere. The question
of how the Rossby waves modify the mean flow i1s investigated in this and the next
section. The focus of this section is the quasi-geostrophic EP flux, the divergence of
which represents the sole forcing of the mean state by large-scale disturbances (Edmon

et al., 1980).
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ue(z), where U(z) is the basic zonal wind and uc(z) the Rossby critical
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4.4.1 The TEM equations and the generalized Eliassen—Palm theorem

The dynamical role of eddies in maintaining the zonal mean motion can be elucidated
by utilizing the so-called transformed Eulerian-mean (TEM) equations introduced by
Andrews and Mclutyre (1976a, 1978a). In the TEM description, a new mean meridional
circulation, sometimes known as the residual circulation, is defined as the sum of the con-
ventional mean meridional circulation and some additional wave disturbance quadratic
terms, in order that the wave effects on the zonal-mean flow can be separated from

the mean properties. In the quasi-geostrophic case, the residual circulation (0,93, 7;) is
defined by

P 1 9 , 00, I N !
=0y ~ fDPBE (epﬁvs-g) 3 W, = Wa + 5y (Us 32 ) ; (4.4.1)

Now applying the conventional Bulerian-mean operator to Iqs.(4.2.27), (4.2.29), and

(4.2.30), and then substituting Eq.(4.4.1) into the resulting mean equations to eliminate
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T, and W,, we obtain the following TEM equations:

/’/" dug fgﬂ.‘ = 'P:VSS + Ig, (4.42]
a a%, ”
3 ( 2 ) + BN*w, = Jg, (4.4.3)
v, .
a‘; ——( ) =0, (4.4.4)

where X represents all contributions to the mean zonal force per unit mass associated
with gravity waves and other small-scale disturbances, Jg is the zonal-mean radiative
heating rate, and S is the quasi-geostrophic Eliassen-Palm flux, defined by,
Sg = s (0, —VLuL, efy 0,09, [0z ). (4.4.5)
In Eqgs.(4.4.2)—(4.4.4), the eddy forcing due to Rossby waves is expressed entirely in
terms of the divergence of EP flux in the mean zonal momentum equation; in particular,
no eddy quantity appears in the thermodynamic energy equation at all. Note that the
EP flux divergence has a useful interpretation in terms of QGPV. Using the chain rule of

differentiation and the fact that z derivatives of zonal-mean quantities vanish, one can
find that (see Bretherton, 1966a; Edmon et al., 1980)

1
= gv-sg. (4.4.6)

Thus, from Eqs.(4.4.2) and (4.4.6) it follows that the net eddy forcing of the mean flow
can be interpreted as the meridional eddy flux of QGPV. This generalizes straightfor-
ward the well-known result of Taylor (1915), which was derived for the incompressible,
two-dimensional, non-rotating fluid, to the geophysical fluid within the framework of
quasi-geostrophic theory (see the discussion in Section 3.1). Incidentally, Edmon et al.
(1980) pointed out that for Rossby wavelike disturbances, S, is parallel to the meridional
projection of the local group velocity in situations where the group-velocity concept is
applicable (e.g., Lighthill, 1978). Thus, the quasi-geostrophic EP flux is also a measure

of net wave propagation from one height and latitude to another.

To gain further insight into the nature of the quasi-geostrophic EP flux divergence,
we now multiply (4.3.1) by p,q; and apply the Eulerian-mean operator to the resulting
equation. With the aid of Eq.(4.4.6), we obtain

6£8 + V-8, = D, +0(c®), (4.4.7)
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where

g A
DE

1 a4 /qy, (4.4.8)
sqs/qw (4.4.9)

provided that g, is non-zero everywhere. A useful alternative form for Eq.(4.4.7) can be

given as follows (Edmon et al., 1980; McIntyre and Norton, 1990)

a;* + V-8, = D, + 0(a®), (4.4.10)

where
Ay =—p, (S0 + ) » (4.4.11)
Dy = —puL 2, (4.4.12)

with n; being the northward geostrophic particle displacement defined by Eq.(4.5.3).
Eq.(4.4.10) can be derived by multiplying (4.3.1) by p,5;, then applying the Eulerian-
mean operator to the resulting equation. Note that Eq.(4.4.10) is valid even for g, = 0.

Egs.(4.4.7) and (4.4.10) are two quasi-geostrophic versions of the generalized EP
theorem. They make explicit the dependence of the EP flux divergence on the so-called
“wave transience”, namely the 9( )/dt terms, and nonconservative wave effects. Thus, if
wave dissipation and transience vanish in Eqs.(4.4.7) and (4.4.10), the EP flux divergence
vanishes (Eliassen and Palm, 1961; Andrews and McIntyre, 1976a; Boyd, 1976). Under
such circumstances, Eq.(4.4.2) shows that there is no forcing of the mean flow by the

waves. This is the ‘non-acceleration’ theorem of Charney and Drazin (1961).

4.4.2 The mean effect of wave transience: Linear versus nonlinear Rossby

waves

Since the paper of Edmon ef al. (1980), EP flux has frequently been used in observational
and theoretical studies as a powerful diagnostic ol wave propagation and wave-induced
forcing of the mean flow in the atmosphere (Dunkerton ef al., 1981; McIntyre, 1982;
Andrews et al., 1987, 1983; Gao et al., 1990). According to the generalized EP theorem,
the EP flux divergence depends explicitly on the wave transience and wave dissipation
in a way expressed by Eq.(1.2.1). In general, the explicit expressions for A and D in
Eq.(1.2.1) are very complicated in form and then it is difficult to make general state-

ments about their signs, except in the region where quasi-geostrophic theory is a valid
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approximation for 1;‘_he flow under consideration (Andrews, 1987). For quasi-geostrophic
motion, Eq.(4.4.8)/§hows that Ag takes the same sign as g,. In the region of positive
7, therefore, 5}{;/& is positive if the wave is ‘growing’ in the sense that 3@/(’% > 0,
and is negative if the wave is decaying. Likewise, in the region of negative g,, 8 Az/d1 is
negalive if the wave is growing and is positive if the wave is decaying. Thus, Eq.(4.4.7)
shows that in the region of positive (negative) g,, V-Sy is negative (positive) if the conser-
vative wave is growing, and vice versa, provided that the assumption of small-amplitude
theory remains valid. These propertics imply that the wave transience? associated with
a conservative, nonbreaking disturbance can force only a temporary mean-flow change,

because the 8( )/t terms in Eqs.(4.4.7) and (4.4.10) tend to average out as time goes

Oll.

In reference to long-term averages (monthly or seasonal), Robinson (1986) discounted
the possibility that wave transience can account for the regions of divergent EP flux in
the middle and upper stratosphere, which were observed in the climatological studies
of Geller et al. (1983, 1984) for the Northern Hemisphere winter and of Hartmann et
al. (1984) and Mechoso et al. (1985) for Southern Hemisphere winter. Robinson (op.
cit.) [urther argued and demonstrated that these divergent regions were spurious and
resulted from the overestimation of the horizontal momentum flux divergence when it was
calculated from geostrophic winds. When the exact EP flux for a system described by
the primitive equations (instead of the quasi-geostrophic model) was computed, he found
that the divergent region essentially disappeared except at high latitudes in the upper
stratosphere, where a region of weak divergence remained in his calculation. Similar
results were also pointed out by Randel (1987) and Boville (1987). Robinson suspected
the region of weak divergent EP flux remaining in his model as the inaccuracy of the
numerical calculation. Using three-dimensional fields of wind derived from global satellite
temperature data, Marks (1989) found that the positive EP flux divergences disappeared
altogether from the stratosphere bul appeared more strongly in the mesosphere. In
addition, some regions of positive divergences observed by Hartmann et al. (1984, 1985)
were found to be associated with mean westerly acceleration, suggesting their existence

may be physically possible (Andrews, 1987).

The existence of regions ol positive EP flux divergences in the middle atmosphere sug-

gests that some dissipative mechanisms may act to generate wave activity under certain

2 Tn general, the wave transience refers to the effect of a 4( )/8t term, (_j being an Q(a?) mean
quantity, in a relevant mean equation.
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conditions (Robinson, 1986; Andrews, 1987). This possibility will be examined in detail
in §4.4.3. Anoth}e‘g ‘possibility is that the effect of nonlinearity may contribute to positive
values of V-8, under certain conditions. We have mentioned that the contribution of
wave transience to the long-term average distribution of EP flux divergences is negligi-
ble under the assumption that the waves are of small amplitude. For finite-amplitude
disturbances, the issue deserves a nonlinear investigation: Firstly, the finite-amplitude
generation of Ay is not directly related to the current value of g, (y, z,) (Andrews, 1987),
so that there is no obvious e priori reason why the time-averaged V-5; need be negative
or positive. Secondly, if the transient, finite-amplitude Rossby waves are breaking, as
commonly observed in the winter middle atmosphere (MclIntyre and Palmer, 1983, 1984),
the idea that the time-integrated effects of the d( )/d¢ terms are zero becomes invalid.
In fact, even () itsell may not return to zero when it involves Lagrangian displacement
fields that need not return to zero — and are very unlikely to return to zero if the waves
have broken. In addition, when waves break, the O(a?) theory becomes invalid, too, in

the sense that the O(a®) term is no longer negligible.

It has been suggested that the Rossby-wave breaking may lead to positive V-S; in the
regions of negative g, (Mahlman and Umscheid, 1984; Mechoso et al., 1985; Andrews,
1987). The fact that the sign of V-S; is positive is made plausible by the evidence
emerging in theoretical, observational and numerical studies, which show that breaking
Rossby waves tend to rearrange the Rossby-Ertel potential vorticity downgradient in the
north-south direction along isentropic surfaces (Stewartson, 1978; Warn and Warn, 1978;
Mclntyre and Palmer, 1983, 1984; Juckes and Mclntyre, 1987; Juckes, 1989; Haynes,
1989; Norton, 1994). If the same holds qualitatively for quasi-geostrophic quantities
on z surfaces, then v_fg:g_; > 0 in the regions of negative §,, and hence V-S; > 0 by
Eq.(4.4.6). On the other hand, the presence of negative g, in some regions implies that
instabilities of quasi-geostrophic disturbances might be possible (Charney and Stern,
1962). If these instabilities do develop, small-amplitude waves can be expected to grow

to finite amplitude, and then a wave-breaking process is likely to follow.

Based on U(y,z) shown in Fig.1.3 and e(z) defined in Eq.(4.2.36), g, is calculated
from Eq.(4.3.3) and its cross sections in the extratropical stratosphere and mesosphere
(25°—65° latitudes, 10 km—=85 km) for January in the Northern Hemisphere and July
in the Southern Hemisphere are shown in Fig.4.9. It can be seen that g, has its largest

values in the regions of the strongest winds. This is due primarily to the second term on
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Figure 4.9: Meridional gradients (dimensionless) of the zonal mean
quasi-geostrophic potential vorticity for (a) Northern emisphere
in January and (b) Southern Hemisphere in July.

the right-hand side of Eq.(4.3.3). Above the tropopause, g, is normally positive, except
in the high-latitude mesosphere and in the middle and low-latitude lower stratosphere.
Regions of negative g, on the poleward flank of the mesospheric jet were also noted by,
e.g., Dunkerton (1987) and Marks (1989). These regions roughly overlap the regions of
positive EP flux divergences in the mesosphere documented by Marks (1989), suggesting
that these divergent regions are likely to be related to the breaking transient Rossby

waves.,

4.4.3 EP flux divergences induced by steady, nonbreaking, dissipating Rossby

waves

The discussion in §4.4.2 suggests that the breaking transient Rossby waves may be re-

sponsible for some positive EP flux divergences that occur in the region of negative 7.
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However, ].\'IfC]lOSO et al. (1985) found that some divergent EP fluxes observed in the
stratospher¢ are actually associated with positive §,. The most likely mechanism for
this phenomenon is wave dissipation. In order to concentrate on this mechanism, in this
section we analyze an idealized case in which the steady, stationary Rossby waves are
dissipating without breaking, and the waves are of small amplitude so that the nonlinear

effect is negligible. Under such circumstances, Eq.(4.4.7) reduces to

V-Sg =Dy =, Zydy/ Ty (4.4.13)

[2q.(4.4.13) shows that, under the assumed conditions, the value of the EP flux divergence
depends on the value of G, and the correlation of g, with Z{. The correlation of g; with
Z! should be negative if the Z; term, defined by Eq.(4.3.4), represents the dissipation of
g~ Tor example, if the Rossby waves are dissipated by Rayleigh friction and Newtonian
cooling with equal constant relaxation coefficients, namely, ag = ay = a # 0, we can see
that Z, = —pag), which follows from substituting Fqs.(4.3.7) and (4.3.9) into Eq.(4.3.4).

Under such circumstances, Eq.(4.4.13) further reduces to
¥ ol 1 12
vgy =V Sy =—na /7, (4.4.14)

Fq.(4.4.14) indicates that V-5 is negative provided that g, is positive (Holton, 1983a;
Robinson, 1986; Andrews 1987). Conversely, V-8, is positive if 7, is negative. As already
mentioned in §4.4.2, Rossby-wave breaking can also lead to positive V-Sg in the region

of negative 7.

Now let us consider the case in which ay # ag. In order to avoid the complications of
the critical surface, i.e. the surface on which U(y, z) = 0, in what follows we assume that
U # 0. For simplicity, we further assume that U = O(1). Thus, for weakly dissipated
Rossby waves (i < 1), the disturbance QGPV can be manipulated as follows,

q; = Re {[(?:if k?zj) f -’;l;% ( ?ﬁ)] exp (ik;l:)}
Re{{( dy? ik (z'k(_]+,ucz,.-) dy? e (ikU+pﬂx)¢ Pt

- inlan—ax) (0% ipen 7 ,
= e {[ kU (ay = ‘[) (1+ kU)¢}exp(1km)}+O(p a). (4.4.15)

The first expression comes from substituting solution (4.3.14) into Eq.(4.3.2). The sec-

ond expression results from substituting Eq.(4.3.15) into the first expression. The last
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expression (:;an be obtained by expanding the second expression in perturbation series in

f
powers of .
In addition, vy is given by

. .

L i —
8 fz

Re {iki exp(ikz)} . (4.4.16)

Substituting Eqs.(4.4.15) and (4.4.16) into Eq.(4.4.6), we obtain

V.S = M—Z_U‘“’)_@Rc{;,‘ (%‘g_k?zﬁ)}ﬁ %Mﬂ%owfﬁ), (4.4.17)
where ;HA; is the complex-conjugate of . When ay = ay = a # 0, the first term on the
right-hand side of Eq.(4.4.17) vanishes, so that V-S; < 0 if g, > 0 (and vice versa).
This is in agreement with the results mentioned above. When oy # ag, Eq.(4.4.17)
indicates that the distribution of V-S; depends strongly on the meridional structure of
wave amplitude %, which is governed by Eq.(4.3.15). In particular, if U depends on z
alone and 1 is given by Eq.(4.3.16), then Eq.(4.4.17) reduces to

w2+ ) lo(ue —U) + arU|
V8g=— [ 7 ]PBI‘]’

— 2 cos?(Ly). 4.4.18
i E (Ly) ( )

Eq.(4.4.18) shows that V-8, is positive whenever
oy [uc(z) - ﬁ(z)] +ayU(2) < 0. (4.4.19)

In particular, if the waves are dissipated by Newtonian cooling alone (ie., ayx = 0
but ay # 0), V-8, is positive when T(z) > uc(z). Note that for constant U and
tte, Eq.(4.4.19) reduces to £q.(4.3.36), which is the condition for m} being negative.

Fig.4.10 shows the vertical distributions of p,~'V-S; at y = 0. We see that V-5,
is always negative for ay = ax = 0.5 (Fig.4.10a). For ay = |, ax = 0, on the other
hand, significant positive V-S; can be found in the lower stratosphere (near z = 20 km)
for all wave components considered (Fig.4.10b). Positive values of V-8 are also found
in the mesosphere. Comparing with Fig.4.8b we can see that these positive values are

associated with the condition U > wu,.

In the above discussion, we assume that Rossby waves are dissipated by Rayleigh
friction and Newtonian cooling. In fact, this assumption is not necessary. To carry out

a more general analysis, it will prove instructive to split g; into a relative vorticity (RV)
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Figure 4.10: Vertical structures of p,~'V-S§; at y = 0, induced
respectively by waves with s =1-3.

term and a static stability (SS) term, and then examine the contribution of each term to
g, under various conditions. Note that by the RV term we refer to the sum of the first
and second terms on the right-hand side of Eq.(4.3.2), and the 5S term to the third term
in the same equation. To keep the algebra as simple as possible we still assume that U

depends on z alone and ¥ is given by Eq.(4.3.16). Thus, for conservative waves we have

O OMY 15( aw;)

“= G2 oy 05\ P0: )
RV SS
i o 2 Ez
= (4 £y Ll £ 0D
e ! ~ U =
RV cg
uc(k? + %) ,
o R s T 44,
+y; (44.20)
Using the last expression, we can rewrite the second expression in Bq.(4.4.20) as
¥ i
C c

RV S8
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When U/u, L|:>"'l], which is assumed to be true in the following discussion, Eq.(4.4.21)
shows that the sign of the RV term is always identical to the sign of gj, while the sign of
the SS term is the same as that of ¢; only if U < ue. When U > u., the sign of the SS

term is opposite to that of gg.

We next include the effects of mechanical and thermal dissipation on g;. As mentioned
in §4.3.1, the mechanical dissipation of waves refers to those physical mechanisms repre-
sented by Xj and Y{ in the linearised momentum equations, which correlate negatively
with, and therefore act to damp, the disturbance velocities u; and vg. It is not diflicult
to show that these mechanisms also act to damp the RV term in Eq.(4.4.21). Similarly,
the thermal dissipation refers to those mechanisms represented by Jg in the linearised
thermodynamic equation, which act to damp the temperature disturbance 9®;/dz and
the §S term in Eq.(4.4.21) as well. Since the RV term in Eq.(4.4.21) has the same sign
as qy, the effect of the mechanical dissipation alone is to decrease the magnitude of g,.
In other words, the mechanical dissipation term correlates negatively with gz, and then
always acts to damp g¢;. The negative correlation implies that the EP flux divergence
is negative and the wave-induced QGPV transpor-t is downgradient in the absence of
thermal dissipation. This situation remains unchanged in the presence of thermal dissi-
pation, provided that U < u.. If U > uc, however, the effect of thermal dissipation is
to increase rather than decrease the magnitude of gg, since the 53 term in Eq.(4.4.21)
has an opposite sign to ¢ under this condition. ‘This implies a positive correlation of the
thermal dissipation term with qj. Therefore, if the thermal dissipation is present as the
only source of dissipation for the waves, the EP flux divergence is negative when U < e
and positive otherwise. When U > u., positive EP flux divergences might still occur
in the presence of both thermal and mechanical dissipations, depending on the relative
strength of the thermal dissipation as compared with that of the mechanical dissipation.
This result does not depend crucially on the details of dissipation assumptions (such
as Rayleigh friction, Newtonian cooling, etc.). It is a straightforward consequence of
the opposite-signed relations of the RV term and the 35 term to ¢ in Eq.(4.4.21) when

U > ue

The results described above are interesting and important. They remind us that “dis-
sipative” could, in principle, mean different things for different purposes. For example,
when U > u, “dissipative” in the sense of Newtonian cooling in our model is not dissi-

pative from a TEM wave-activity viewpoint, because thermal dissipation actually iries
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to enhance pGPV anomalies.
=

4.5 The difference between GLM and TEM meridional circu-
lations ‘

Planetary-scale Rossby waves in the stratosphere play an important role in meridional
and vertical transport of ozone and other chemical tracers. In the absence of eddy motions
the zonal mean motion of the middle atmosphere would relax to a radiatively determined
state, in which the temperature T would correspond to a radiative equilibrium, say
T, and the circulation would consist only of a zonal-mean zonal flow in thermal wind
balance with meridional gradients of T (Andrews et al., 1987). However, comparisons of
the hypothetical radiatively-determined temperature field with the observed temperature
field have revealed some striking differences in certain parts of the middle atmosphere
(e.g., Fels, 1985). These differences, therefore, must be maintained by eddy transports.
Since the large departure of 7' from Ty implies a large net radiative heating rate Jy, it
can be expected from Eqs.(4.4.3) and (4.4.4) that a TEM meridional circulation is being

driven.

It is well-known that the TEM meridional circulation is generally not the same as
the generalized Lagrangian mean (GLM) meridional circulation, which is more closely
related to the meridional mass circulation. The difference between the TEM and GLM
circulations depends on wave transience, nonlinearity, and nonconservative effects (An-
drews and Mclnl;,yre, 1976a; Andrews et al., 1987). Dunkerton (1978) showed that the
Stokes correction to the diabatic heating was relatively small. Thus he suggested that
the GLM circulation might be inferred, as a first approximation, from the TEM circula-
tion. Since direct application of the GLM theory to atmospheric data encounters serious
practical difficulties, in practice the TEM meridional circulation has been frequently used

for describing and interpreting the tracer transport in the atmosphere.

The hypothesis posed by Dunkerton (op. eit.) is re-examined in this section. The
result obtained here raises again the question of how well and under what circumstances

the TEM circulation can approximate the meridional mass transport in the atmosphere,

We begin with brief discussions of the particle displacement and Stokes correction for

quasi-geostrophic motion.
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4.5.1 The p'a\rticle dis_placement and Stokes correction for quasi-geostrophic

motions

The particle displacement vector &' was formally introd uced in Section 3.2 and defined by

Eq.(3.2.1). For the quasi-geostrophic motion, ¢’ can be consistently expanded as follows,

6’ = e;; + (R‘E’a e (E;! 7?’53 C;) -+ R(é;!?}:n(:;) e (451)

where & = (€5 Mg ) may be conveniently referred to as the geostrophic particle dis-
placement vector. Substituting Eq.(4.5.1) into Eq.(3.2.6) and equating coefficients of like
powers of R, with the use of Eq.(3.2.11) we obtain

D¢ o3

D—fzu; = 1¢;+€;-VU+O(32), ('152)
ﬁ !

Pl = of = v+ 0(e?), (453)
o >

. wh, = wj + 0(a®), (4.5.4)
ﬁf; I i + . 2

Dt = U, =+ ‘Ea VU + O(a ), (455)
E 1

F’;e = vl = vl + 0(a?), (4.5.6)
Wl

DDC; = w:] =w, + O(ag), (4.5.7)

where it is assumed that g, Ty, W, Ua, Ta, and Wy are all wave-induced quantities, and

therefore are all O(a?) or smaller. From the linearised version of Eq.(4.2.26) together

with Eqs.(4.5.2)—(4.5.4), we have
('){:; a’?; 2 ' 2 &
e -+ B 0(a®), ¢, =0(d"), (4.5.8)

when suitable initial condilions are given.
Tor a wave-induced quantity 7, which should be O(a?) or smaller, the quasi- geostrophic

version of Eq.(3.2.10) can be written as

75 =(&, - V)¢'+O(Ray')+0(a’¢) =aiy (7 ) +0(Rag) +0(a*¢),  (45.9)

where w}, = 0 has been used. 7° is the Stokes correction to . It represents the difference

between the Lagrangian mean and the Eulerian mean of ¢, i.e.

P =747 (4.5.10)
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4,52 Con{parisons of the TEM and GLM circulations

To illustrate the wave-driven mean meridional circulation in a simple context, we now
assume that the wave-mean system has settled down as a whole to an exactly steady
state in which not only is the wave amplitude steady but also the mean circulation. We

further assume that dissipation processes are weak in the sense that
X, ~O(pa), Ji~O(ua), Xyg~O(ua), Tg~O(ua®).  (45.11)

In addition, from Eqs.(4.5.9) and (4.5.11) it follows that Yi ~ Q(pa?), T

e ~ O(ua®),
and then f{; ~ O(pa?), jls' ~ O(pa?).

The steady versions of Eqs.(4.4.2), (4.4.3) and (4.4.10) are as follows:

1 -
~fovz = -p;V-Sg + Xg, (4.5.12)
BN =7, (4.5.13)
V8¢ = —pm 2y (4.5.14)

From Bqs.(4.5.11)-(4.5.14) we can see that 3 = O(pa®) and @, = O(pa?). Using
[gs.(4.2.36), (4.5.9) and (4.5.10), we can manipulate Eq.(4.5.13) as follows,
d

w‘:i?,;:i('f"—js)=mf;—%6—y

8 Ve (@E)+O(Rua2)+0(ua3). (4.5.15)

W, — W, = —=J, = ;—(qéJ;) +O(Rpa’) + O(pa®), (4.5.16)

we see that the difference between WL and @, is related to 72, the Stokes correction to

the diabatic heating. For adiabatic motions, 72 = 0, so that

oL = (4.5.17)

which was first pointed out by Dunkerton (1978). Eq.(4.5.17) shows that, within the
framework of quasi-geostrophic theory, the TIEM meridional circulation is equivalent to
its GLM counterpart in the absence of thermal dissipation. Dunkerton (op. cit.) further
argued that, even in the presence of thermal dissipation, the leading contribution to jz,
i.e. the m term, was small and then could be neglected. However, Eq.(4.5.16) shows

that ji is an (O(ua?) quantity in the presence of thermal dissipation. This implies that
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jz is by no"ngeans negligible compared to @}, which is also an O(pa?) quantity. In other
words, the difference between the GLM and TEM meridicnal circulation is unlikely to

be negligible when diabatic heating plays an important role.

To make the above argument more explicit, we now further assume that the mechan-
ical dissipation due to gravily waves or other small-scale disturbances is absent, so that
the dissipation of the whole system is purely thermal, namely, X = 0 and X, =0
Under such circumstances, Eqs.(4.5.12) and (4.5.14) reduce to

1

e Y78 4.5.18

Ua fUPB 4 ( )
ng 0 g

V.S, = "}'z"a—z @RAR (4.5.19)

respectively. Eq.(4.5.13) remains unchanged. From Eq.(4.5.18) we sece that, in the ab-
sence of mechanical dissipation, the meridional component of the TEM circulation, o3,
is related, and has an opposite sign, to the EP flux divergence V-S,. Substituting
Eq.(4.5.19) into Eq.(4.5.18) yields

. _T".;;_E ! I r
Ve 7 az(cpn.]g). (4.5.20)

Substituting q.(4.5.20) into Eq.(4.4.4) and integrating the resulting equation with

respect to z, we obtain

w, : fm 0 (epsdg) | d2
), = ———
uy fﬂzﬂB = ay T}ga o
s L an’ _
= e (mT7) - —fngpa f gy (Jé . ) dz, (4.5.21)
where the boundary condition p,W; — 0 as z — co has been used to fix the constant of
integration. The procedure leading to Eq.(4.5.21) is referred to as the downward control

principle, which states that W. at any altitude is directly related to the forcing above

a

that level (Mclntyre, 1987; Haynes and MclIntyre, 1987; Haynes et al., 1991).

Substituting Eq.(4.5.21) into Bq.(4.5.16), we see that

= 1 ad ad ,6 ,rg 5 5
W= fo’pe f Py (J £, |9 TORpa®) + O(pe’). (4.5.22)
2 O(pa®)

On the other hand, the GLM continuity equation can be written as (see Andrews and

Meclntyre, 1978b; Mclntyre, 1980a),

o 18, gy
= m (put) = 0. (4.5.23)
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Figure 4.11: (a) Vertical distributions of the TEM meridional velocity
v, at 45°N, driven by steady, thermally dissipative Rossby waves (i.e.,
ax = l,ap = 0) with s = 1-3, respectively. (b) Same as (a), but for
the GLM meridional velocity Tl.

Substituting Bq.(4.5.22) into Eq.(4.5.23) and integrating the resulting equation with
respect to y, we obtain
-] J’% + O(Rpa®) + O(ua®). (4.5.24)
=\
An independent check of Eqs.(4.5.22) and (4.5.24) is given in Appendix 4B.

As already mentioned, the sign of 77 in this case is opposite to the sign of the EP
flux divergence V-Sy. It is shown in Section 4.4 that V-S, induced by thermally dissi-
pating Rossby waves is positive where U > u, and vice versa. Therefore 7. is negative
(equatorward) where U > u,, and vice versa. These results, however, are unlikely to be
applicable to TY. For example, if the waves are assumed to be dissipated by Newtonian
cooling alone, substituting Eqs.(4.3.7) and (4.3.14) into Eq.(4.5.24) and using Eqs.(4.5.3)
and (4.2.26), we see that

Ot 8§ (!
b= %%5 (%) + O(Rpa®) + O(ua®)
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IL\ v \* 130 !
VB ”ff%‘ [(—é’iﬁ-) —ﬁg( g-{%bf) ] +O(Rua®)40(pa®). (4.5.25)

For constant U, Eq.(4.5.25) indicates that TY is positive whenever U > 0, in contrast to

the negative T where V-SIE >0 (ie, U >u>0).

In summary, in the presence of thermal dissipation, the difference between the GLM
and TEM meridional circulations has the same order of magnitude as the GLM and
TEM circulations themselves, so that it is unlikely to be negligible. In fact, the GLM

circulation can even be opposite to its TEM counterpart under certain circumstances.

McIntyre and Norton (1990) showed that in the steady state, and with the customary
neglect of the PVS transport directly contributed by the diabatic heating and mechanical
forcing, the quasi-material contours defined by the displacement field do not systemat-
ically drift northwards or southwards. In other words, the GLM meridional velocity
must vanish in their model. Therefore, if 7L given by Eq.(4.5.24) is non-zero, it must
be related to the diffusive PVS transport directly contributed by the diabatic heating,
which is one of the factors neglected in MecIntyre and Norton’s argument (other factors
neglected by them include wave breaking and the diffusive PVS transport directly con-
tributed by mechanical forcing, which are also neglected in the present argument). Note
that the leading order term on the right-hand side of £q.(4.5.24) depends on the vertical
derivative of the northward parcel displacement 7. Therefore, if 1 is independent of z,
T is negligible to the order O(pa?). In this special case, the conclusion of MclIntyre and
Norton (op. cil.) is still applicable. In general situations, however, n; may vary with z,
and then 7% can be of O(pa?).

The vertical structures of 77 and TY at y = 0, calculated respectively from Eqgs.(4.5.20)
and (4.5.24) with the Newtonian cooling assumption, are plotted respectivelyin Iig.4.11a
and Fig.4.11b. The stream functions X and Y for s = 1, where ¥* and X" arc defined

respectively by

e <L
e _%‘%, T = %, (4.5.27)

are shown in Fig.4.12a and Fig.4.12b, respectively. The first feature to note is that
the TEM circulation, driven by each wave component (i.e., s = 1,2,3), is opposite ta its

GLM counterpart in the mesosphere and the upper stratosphere. The equatorward TEM
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Figure 4.12: (a) Contours of the stream functions of the TEM meridional cir-
culation, driven by steady, thermally dissipating, non-breaking Rossby waves
with s = 1. (b) Same as (a), but for the GLM meridional circulation. In both
(a) and (b), the values of contour lines are £10°, £10!, £10%, £10%, £10%,

+10%, respectively, with unit 10~>kgm~'s"!. Negative contours are repre-

sented by dotted lines, and positive contours by solid lines. The zero contour
is omitted. Note that velocity is parallel to the stream function contours,
but its magnitude is not inversely proportional to the spacing of the contours

because of the unequal contour intervals, and the multiplication factor p, in
Lgs.(4.5.26) and (4.5.27).

transport in these regions is associated with the positive EP flux divergence shown in
Fig.4.10b. In these regions, the GLM circulation shows consistent upward motion at low
latitudes and downward motion at high latitudes, resembling to the mass-weighted zonal-
mean meridional circulation in isentropic coordinates shown by Ko et al. (1985), and the
Lagrangian-mean circulation calculated by Lyjak and Smith (1987). The second feature
to note is the equatorward TEM transport in the lower stratosphere, where the EP flux
divergence induced by the thermally dissipating Rossby waves is positive (see I"ig.4.10b).
In comparison, the GLM transport in this region is much weaker, and usually poleward.
The third feature is that the TEM circulation is much stronger (over two times) than

the corresponding GLM circulation. Incidentally, the weak equatorward GLM transport
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near z =35 km (see Fig.4.11b and Fig.4.12b) is likely to be associated with the large

vertical shear of basic zonal flow U there.

4.6 Discussion

In this chapter, we have focused our attention on the structure and mean effects of
dissipative Rossby waves in a Charney-Drazin model on the mid-latitude S-plane. In
order to clarify the fundamental characteristics as far as possible, we have assumed
that the waves are dissipated by Newtonian cooling and/or Rayleigh [riction, and, in
most cases, neglected the meridional variation of the mean zonal flow. In the case of
constant mean zonal flow U and constant buoyancy frequency N, our results show that
the vertical wave-energy flux is always positive (upward) in the presence of Newtonian
cooling and/or Rayleigh friction. Because of wave dissipation, the wave-energy density
always decays with altitude, though the amplitude of the disturbance geopotential (or
disturbance velocities, temperature, etc.) may, or may not, grow with height. The
extra damping of waves due to weak dissipation is more important in the CD window
defined by Eq.(4.3.34), than out of the window. By contrast, the modification of wave
phase by dissipation is less significant in the CD window than out of the window. If
the waves are dissipated by Newtonian cooling alone, their phase lines tilt westward in
the GG window defined by Eq.(4.3.35), and eastward otherwise. These results remain
qualitatively applicable when U and N vary with height.

Our analyses show that the existence of divergent EP flux in the stratosphere and
mesosphere is physically possible. In regions of negative (southward) gradient of mean
QGPV, it is pointed out that transient, conservative breaking Rossby waves are likely
to result in positive V-S;, and, in addition, steady, nonbreaking Rossby waves also
lead to positive V-S; if the waves are dissipated by Rayleigh’ friction and Newtonian
cooling with equal constant relaxation coeflicients. In regions of positive (northward)
gradient of mean QGPV, it is found that the sign of EP flux divergence associated with
steady, nonbreaking Rossby waves depends on the strength of the thermal dissipation
as compared with that of the mechanical dissipation. For example, if the Rossby waves
are dissipated by Rayleigh friction and Newtonian cooling with equal constant relaxation
coeflicients, the associated EP flux divergence is always negative, as pointed out by Holton
(1983a), Robinson (1986), and Andrews (1987). On the other hand, if the waves are

dissipated by Newtonian cooling alone, positive EP flux divergence will occur whenever
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the Basic zonal wind T exceeds the critical Rossby velocity u. defined by Eq.(4.3.20).

The effects of steady, thermally dissipative Rossby waves on the mass transport were
also investigated in this chapter. The problem was formulated in both the GLM and TEM
frameworks. Results indicate that, in the presence of thermal dissipation, the difference
between the GLM and TEM meridional circulations is unlikely to be negligible. This isin
sharp contrast to the argument of Dunkerton (1978). In particular, the TEM meridional
circulation can be opposite to its GLM counterpart in some cases. This fact reminds us
that the TEM and GLM descriptions of the same thing could look strikingly different

under certain circumstances.

The model used in this chapter is highly simplified. In order to represent more
faithfully the wave-mean interactions in the real atmosphere, the restriction to linear,
steady Rossby waves must be relaxed to include the Rossby- and gravity-wave breaking
events, and not only vertical shear, but also horizontal shear of the basic zonal wind
should be taken into account. In addition, further observational and theoretical work
needs to be done to obtain more accurate parameterization schemes for the dissipative

processes.

Appendix 4A: Demonstration of the upward wave-energy flux
due to Rossby waves in the case of constant U and N?

In this appendix, we wish to show whether the wave solution expressed by Eq.(4.3.25)
with (4.3.28) and (4.3.29) in the case of constant mean zonal flow U and constant buoy-
ancy frequency N is consistent with the assumption that the waves are forced from below.
A wave that is forced from below should obey the radialion condition: that is, it should
not transfer energy downward at great heights (Andrews et al., 1987). Multiplying the
linearised versions of Egs.(4.2.27), (4.2.28), (4.2.29) by p,ug, g, vg, pﬂefn_z&‘@;/(?z, respec-
tively, adding the resulting equations and averaging zonally, with a little manipulation

we obtain the wave-energy equation

a Sy g € A ’ d o _T"T ﬁtJ v P’
b_t {%pﬂ |:'U'g2 +U52+ ?3‘( azg) ]}+ 6_9‘ ]:.UB (t’g@a+vn®s fU (I’ )

J ae;
(,;j (pBwf@f) = (X-’u -}-Y'v + — f2 ) (4A.1)

Eq.(4A.1) shows that the vertical wave-energy flux for the case of constant U is rep-

resented by g,w[®;. Note that w] can be obtained by substituting the wave solution
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[4.3.1*1) with Egs.(4.3.16) and (4.3.25) into the linearised version of Eq.(4.2.29), namely

, e [D o !
‘%——ﬁfm(ﬁf)+“”a§]

- —%Re { (ikU+";,saH) (im+ — n3) cos(Ly) exp [tkz + (imy — n1)z]} : (4A.2)

Therefore the vertical wave-energy flux is given by

pwi®l = 1e (kU?’ﬂf + "lﬂ.’}gﬂf) a® cos?(Ly) exp [—2(ny + nyr)z] . (4A.3)

For conservative Rossby waves, Bq.(4A.3) reduces directly to

pwa®) = %ekvmarag cos®(Ly) exp [—2(nt + ny)z], (4A.4)

which shows that m; must be chosen to be positive within the CD window to guarantee
an upward wave-energy flux. It can be verified that a positive my corresponds to a
positive vertical group velocity (see Andrews et al., 1987). Outside the CD window, the

vertical wave-energy flux associated with conservative Rossby waves is zero.

For dissipating Rossby waves, Eq.(4.3.29) shows that (n; -+ n,) > 0. Thus it can be
shown that

s kUC;
(kUm, ¥+ uaﬂnt) = 2 + pragng

e + nu)
B pk*U (k2 + 2) [Cm (uc - U) - GRU]

== + poygn
2¢ (ny + ) (WU'2 + pzaNz) S
_ plowe(Cr 4 n®) + an (K + )]
B 2¢ (ng + ny) AR
 plowe (mg? + n?) + calk + @)
il 2¢(ny + ny)
>0 [because (n4 + 15) > 0] . (4A.5)

The first expression results from using Eq.(4.3.27). The second expression results from
substituting Iq.(4.3.22) into the first expression. The third expression comes from us-
ing Bq.(4.3.21) with a little manipulation. The fourth expression comes from using
Eq.(4.3.26). Substituting Eq.(4A.5) into Eq.(4A.3) we sec that the vertical wave-energy
flux is always positive for dissipative Rossby waves, in accordance with the assumption

that the waves are forced from below.
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Appendix 4B: An independent check of Eqs.(4.5.22) and (4.5.24)

Agéume that the wave-mean system has settled down as a whole to an exactly steady state
and the dissipation of the whole system is purely thermal. Under such circumstances, the
GLM equation for the zonal momentum can be written as (see Andrews and McIntyre,
1978b; MclIntyre, 1980a),

L
i 2 a B.1
fov, Jg Bz’ (4 )
where j; is defined by

Dj! ,

.Dts = J; = O(pa®). (4B.2)

For stationary Rossby waves, E/Dt = Ud/dz, and then Eq.(4B.1) reduces to

Jotr = —C;—- 2E 4 O(pa®), (4B.3)

and from Eqgs.(4.5.3) and (4.2.26) we have

¥, = T + 0(a?). (4B.4)

In addition, the linearised version of Eq.(4.2.29) can be written as

0%, U
w= - ; [m(a) fooy 5| + 0(ua)

Oy, dU "
_EE ( 5 g e ) + O(pa). (4B.J)
Combination of Eq.(4.5.7) with Eq.(4B.5) gives
=% (32 5 ) +Olua) +0(e). (4B.6)
0

Substituting Eq.(4B.6) into 1iq.(4B.3) and using Eq.(4B.4), we obtain

an
=L _ 1 2,2 4B.7
Ty 7z (Jga )+O(pa)+0(ua) (4B.7)
To O(pa?), Eq.(4B.7) is identical to Eq.(4.5.24).

Substituting Eq.(4B.7) into Bq.(4.5.23) gives

g% (&%) = -a, %”y }f’ ;J (J T%) +O(Wd) +O(ua®).  (4B.S)
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Integrating Eq.(4B.8) with respect to z, we obtain

o0 7 o'\
WL = _EZITB]H cpa%(‘fé-a—%-) dz +0(p*a®) + O(pa®), (4B.9)

2 O(pua?)

where the boundary condition p, W% — 0 as z — oo has been used to fix the constant of

integration. To O(ua?), Fq.(4B.9) is identical to Eq.(4.5.22).



CHAPTER 5

STRATOSPHERIC ROSSBY WAVES ON AN IDEALIZED POLAR VOR-
TEX

5.1 Introduction

It this chapter the discussion of extratropical Rossby waves and their mean effects will be
continued. We shall concentrate exclusively upon the Rossby waves associated with the
winter-time stratospheric polar vortex. The primary motivation is the considerable im-
portance of such waves for understanding the formation of the Antarctic ozone hole and
the recently observed depletion in middle- and high-latitude total ozone of both hemi-
spheres (Stolarski et al., 1991, 1992). Our analysis may also provide important insights
into the mechanism of the so-called 4-day waves observed in the winter stratosphere (e.g.,

Randel and Lait, 1991).

The idea that small disturbances at a vortex edge can propagate as wave motions has
long been established. An early discussion of the theory was given by Lord Kelvin (1880),
who considered wave disturbances on an initially undisturbed cylindrical vortex consist-
ing of a core of uniform vorticity, surrounded by irrotational fluid. In the atmosphere,
observations have showed that the winter-time stratospheric circulation is dominated by
a cold, cyclonic polar vortex and planetary-scale disturbances on that vortex. The centre
of the polar vortex is surrounded by a region of unusually strong radial gradients of po-
tential vorticity (PV) on isentropic surfaces (Mclntyre and Palmer, 1983, 1984; Newman,
1986; Mahlman and Umscheid, 1987; Tuck, 1989; Haynes, 1990). Since the dynamical
restoring mechanism of Rossby waves depends on the existence of the PV gradients on
isentropic surfaces (Hoskins et al. 1985), the intense PV gradients at the edge of the polar

vortex are expected to be well able to support Rossby waves that would have a horizontal

structure decaying exponentially away from the vortex edge (McIntyre and Palmer, 1983,
; 34, Tao, 1991; Dritschel and Saravanan, 1994), To develop a suitable and simple model for the
dynamical analysis of these waves, in Section 5.2 we shall first introduce the so-called

v-plane approzimation, in which a quadratic variation of the Coriolis parameter f with

122
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1aLiLIude (the + term) is taken into account. The approximation is motivated by the fact
tha'f,the familiar linear meridional gradient of f (i.e., the 3 term) vanishes at the pole, so
that the quadratic variation is the dominant gradient in the polar region. In Section 5.3,
analytical solutions a,na]oéous to Rossby waves associated with the polar vortex are dis-
cussed in a sharp-edge model with all gradient of the PV being concentrated at the edge
of the polar vortex. Both free travelling and forced Rossby waves are examined. Aspects
of the roles of the friction and diabatic heating in dissipating these waves are investigated

in Section 5.4, using the Rayleigh friction and the Newtonian cooling idealizations.

In Section 5.5 the eddy forcing of the mean flow induced by dissipating, non-breaking
Rossby waves is discussed. Section 5.6 is concerned with the meridional circulation driven
by dissipating Rossby waves. We shall also investigate if such a circulation can resulf in

a persistent mean outflow from the polar vortex.

5.2 The y-plane approximation in the polar region

Our starting point is the set of primitive equations given in Section 4.2. I'or the sake of
simplicity, the buoyancy frequency N, defined by Eq.(4.2.10), is assumed to be constant
in this chapter. In addition, the lower boundary is now a material surface. Thus the
kinemalic lower boundary condition is
B :
—(z"=h)=0 at z"=h(A¢1), (5.2.1)
Dt
where z* is the geometric height and h(A, ¢,t) the shape of the topography (Andrews et

al., 1987). In terms of @, Eq.(5.2.1) can be written as

D ddg _ 15 ] 1
P (® —gh)+w g = 0, on z*=h(A¢t); (5:2.2)

where z is the ‘pressure height’ defined by Eq.(4.2.1). As far as the upper boundary
condition is concerned, we require as in Chapter 4 that the density of wave-energy stays

finite at great heights.

For the purpose of understanding the dynamical properties of the polar vortex, which have
attracted the persistent attention of scientists since the discovery of the Antarctic ‘ozone
hole’ by Farman et al. (1985), it is convenient to make some geometrical simplifications
to the set of primitive equations. In Section 4.3 the usual f-plane approximation was
introduced to simplify mid-latitude Rosshy wave motions. This approximation, however,

is not suitable for the analysis of the polar vortex. For one thing, the 8-plane cannot
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North Pole

Figure 5.1: The polar-cap geometry.

accommodate the convergence of meridians toward the poles (Holton, 1975); and for
another, if one tries to make the j-plane approximation using a plane tangent to the
sphere at the pole, no term that corresponds to the usual 3 term will appear, and then
the result will be merely an f-plane approximation in which the Coriolis parameter
f is constant (e.g., Phillips, 1963). Though an f-plane model can provide substantial
simplification in the analysis and can capture some important characteristics of the polar
vortex (Polvani and Plumb, 1992), it is essential, as noted by Rossby (1949), to retain
the significant characteristics of the spherical earth in the vicinity of the pole when we
are concerned with the motions of the polar vortex as a whole. To obtain a simplified
model suitable for polar atmosphere, Simmons (1974) introduced a polar-cap geometry
in which the region around the North Pole was mapped into cylindrical polar coordinates
(Fig.5.1) and a quadratic variation of the Coriolis parameter f with latitude was included
as an approximation. Similar approximations were introduced by LeBlond (1964) in a
polar oceanic basin. In contrast with the 3-plane, such a geometrical simplification may
be referred to as the ‘y-plane’, referring to the coeflicient 5 describing the quadratic

variation of f with latitude (Nofl, 1990). Note that the v term sometimes is called the &
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‘term in the literature (e.g., Verkley, 1990; Yang, 1991).

In the polar-cap geometry shown in Fig.5.1, the region around the North Pole is

mapped into cylindrical polar coordinates A, r and z, where r is defined by
' ™
=G (5 - é) = a7, (5.2.3)

with ¢ being the latitude as before and ¥ = (37 — ¢) being the co-latitude. For conve-
nience we also define a southward velocity » as

D

'H=‘—U:C!5})—;.

(5.2.4)

For small 9, the trigonometric functions in the primitive equations can be expanded

as power series about the co-latitude 7 = 0, 1.e.,

; 93 r r? B
cos¢__sm15‘—19—€+---—;—E—a;i+---, (5.2.5)
. ﬂz ,,_2
3111@5:(2081.9:1——54""=1—E+"‘, (5.2.6)

1 1 iR - & T
cos:;é_sin'ﬂu§+g+”._?+ég+”-' ([2:7)

When Eqgs.(5.2.3)(5.2.7) are substituted into Eqs.(4.2.2), (4.2.3), (4.2.5), and (4.2.9)

the primitive equations can be formally rewritien as

Du 1 2 I T dd
ﬁ+[2ﬂ+u(;+---)] (1——+---)B+(;+ﬁ+---)a=}€, (5.2.8)

¥

2a? O
Dv 1 i a0 .
ﬁ—[251+u(;+---)} (1_55_24'"')“-"@—};’ (5.2.9)
1 r a 72 du 1 g
(;-l- @+) {E [B (?”— @4‘)] 3 a} i P:E(Psw} =0, (5.2.10)
D (a0 2 kJ 3
2 (E) +Nw= (5.2.11)
where

£=£+ (1+r_+)_8‘+ .24_ i 5.2.12

Dt =0t " U\y G a " ar waz' (5.212)
Combining Eq.(5.2.2) with Eq.(5.2.11) and using Eqs.(4.2.4) and (2A.3), we have

D (88 N? 3 kJ

We now let V, L, D and M represent the scales of horizontal velocity, horizontal
length, vertical length, and height of bottom topography, respectively. We further as-

sume, as in Chapter 4, that geostrophic balance is the leading approximation of the
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\
|

11__1'ot.ion, so that the typical magnitude of geopotential @ is 20V L. Then we can define

fh_e following non-dimensional variables (denoted by an over-check):

f=v/L, #=2/D, h=h/M, i=t/(L]V),
(#,9) = (u,v)/V, = w=w/(VD/L), ci> ®/(%V L), (5.2.14)
(X,7) = (X, )/(V*/L), J=J/[HV*/(xD)), f = /S

ey 200

Substituting the above scalings into (5.2.8)—(5.2.13), and dropping the over-check

from the non-dimensional variables, we obtain the following non-dimensional equations

R@+{1_R[7r2+..._u(%+...)]}g+( +17e, e )3‘;3 RX, (5.2.15)

2
RE—{I—R[Tr2+---—u(%+ )]} +?3= =RY, (5.2.16)
Cagrr e ) (- 3o+ )]+ Gl s L2y =0, 2
’R— (gf) + Bw =TRJ, (5.2.18)

and the lower boundary condition

2 JO8E n®+ah|=J atz=Rah(r, \1)/B, (5.2.19)
Dt dz
where
D d L ¥ i d ad d
E=E+ (;+§R;’?+ )8A+aar+waz, (5.2.20)

and the non-dimensional parameters R (Rossby number), B (Burger number), v, a and

n, are defined respectively as follows,

Ri=

2 3 \r? 72
V B = (ND) , QL N*DM - N D. (5.2.21)

20L° 20L “Ve: YT oavi®

In the polar stratosphere, the horizontal velocity scale can be taken to be 30 ms™2.
The appropriate horizontal length scale L for our model is the radius of the polar vortex,
which is about 3 x 10° m. This specific magnitude also corresponds to the wavelength
of zonal wave number 1 around the 60°N divided by 27. Other parameter values are
assumed as H = 7T x 10° m, D) = 10¢ m, M = 500 m, and NV? = 5 x 10~*s~2. This choice
of scales, together with the facts that @ = 6.371 x 10°m and 20 = 1.4584 x 10~%s7?,

leads to

R =0.0686, B=02612, v=16169, a=0.1905 n.=0.5102. (5.2.22)
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Eq.(5.2.22) shows that the Rossby number R may be regarded as a small parameter.

Therefore all variable fields can be expanded in asymptotic series in 7%, namely,

w2 LR = ’R,Dug(r,A z i)—l—'R'.lu,,( Az i)-i-
‘B(? A, 7,1 ‘R) R%g(r, A, 2,8) + Rlua(r, A, 2,0) + (5.2.23)

where v, v, etc., are independent of R. Substituting these expansions into Eqs.(5.2.15)-

(5.2.20) and equating coefficients of like powers of R, we obtain the leading order equa-

tions
199 ae -
By g BA Uy = a—:, Wy =0 (5.2.24)
and the first order equations
Dgu, ( 5 u_g) ﬁ& _ 1%, - -
Dt s s == ‘Hg 3 6/\ —Xg = _;a—A_Ha, (0.2.20)
Dy & “'s) 09,
o T (71 =) e ¥ e o Tl (5.2.26)
A B ey LG Gay (19
3ror )7 [ar(”’“) o) T o) 2
Dg (00,
[E (E) _ Jg] . (5.2.28)
where
D, 0 1l 0 d
Dot ron %o e
is the convective derivative in the quasi-geostrophic flow.
The corresponding lower boundary condition is
0%,
Bt ( R —n, Dy +ah) Jgy BEXEN (5.2.30)

Taking r=* {3 [r(5.2.25)] Or — 8[(5.2.26)] )}, after some manipulation, yields

{2} - L2
a a d Oua
e L B S FRCEEY

Combining Eq.(5.2.31) with Egs.(5.2.27) and (5.2.28), we obtain the QGPV equation as
follows,

Dyqy
—== =7 Bk
D &3 (5.2.32)
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Figure 5.2: The Coriolis parameter (solid line) and its approxima-
tion on the y-plane (dashed line), both are normalised by 212.

where

B + (r e 31-15 p I 8 &
9= i or ax Bpnaz pﬂaz

: d [ 0B 20, 1 9 [ 09,
— o B -] il
il - = [1 o (r a ) e o <t Bp 02 ( EP )] (5.2.33)
1[a aY, 1 9 o
Zg= [ar(ng) ] P aa(;@ Jg)- (5.2.34)

It can be seen that the effect of the spherical shape of the earth in the QGPV equation
is represented by the term —v7? (y term) alone. Thus the 7 term in the y-plane approxi-
mation plays the same role as the 8 term plays in the mid-latitude 8-plane approximation.
Its presence is due to the variation of the Coriolis parameter f with latitude. In con-
trast with the fact that f linearly varies with latitude on the mid-latitude or equatorial
fB-planes, f varies quadratically with latitude on a polar y-plane. Fig.5.2 shows that the
variation of f in high latitudes is simulated quite well on the y-plane. The importance of
the - effect for the dynamics of stratospheric polar vortex was first recognised by Rossby

(1949) and considered in detail by Simmons (1974). In the analysis given above, the
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y-plane approximation is justified for the QGPV equation in the polar region.

5.3 Conservative interfacial Rossby waves associated with the
polar vortex

Since Rossby waves owe their existence to isentropic gradients of PV, they are expected
to be significant around the edge of the polar vortex that is characterized by unusually
large isentropic gradients of PV (McIntyre and Palmer, 1983, 1984). This section uses an
idealized, analytically tractable model in the 7-plane to investigate the characteristics of
Rosshy waves associated with a polar vortex. Both free travelling and forced waves are
analyzed. The effects of friction and diabatic hea.ti/ug on these waves will be discussed in

the Section 5.4.

5.3.1 A sharp-edge model for the polar vortex

To get the simplest relevant model, we consider a-steady, zonally symmetric basic zonal
flow TU(r), which is independent of height. From Eq.(5.2.33), U(r) can be related to a
zonal mean QGPV by

Qe il ). (5.3.1)

To elucidate and emphasize the dynamical effect of the steep PV gradient on the
edge of 'the polar vortex, we shall consider first an undisturbed polar vortex of uniform
QGPV, say g, surrounded by an infinite region of uniform and lower QGPV, say gy, as
shown schematically in Fig.5.3. Following Dritschel and Saravanan (1994), we shall refer

to this idecalized model as the ‘sharp-edge model’.

Assume that the vortex has a radius r.. The QGPV gradients can be expressed by
_ _0g e =
7, = 28 = —(@ ~T)8ulr) = ~AT8(), (532)
where A7 = (g, —7,) > 0 and §,,(r) is the Dirac 6-function defined by é,.(r) = é(r—1.) =
0, 7 # 1, and
f P (F()dr = F(r) (11 <1 <), (5.3.3)

where F(r) is an arbitrary function that is continuous at r = ..

Integrating Eq.(5.3.1) with respect to r, yields

3 IS oD
=y _@r A A Ag(rt —nt) "
Ulr) = 5 - o H(r rg)——-—g?‘ ; (5.3.4)
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Figure 5.3: Schematic diagram of the basic QGPV (solid lines) in
the sharp-edge model. The dashed line represents the variation of
the Coriolis parameter, i.e., the —yr? term in Eq.(5.3.1).

where H is the Heaviside step [unction deflined by

L 1 @y |0 forz<,
H($)‘2(1+|m1)‘{1 for 20, (5315)

In the present model, we choose r. = 1.1119 (i.e., ¥ = 30°), g, = 0.6, g, = —4.3.
With these parameters, variation of U(r) with the co-latitude is shown in Fig.5.4. The
unrealistically strong winds near cquator result from the unrealistic assumption that
there is an infinite region of uniform QGPV surrounding the polar vortex. Nevertheless,
their effect on the waves in question is likely to be negligible in our model because the
amplitudes of the waves are expected to decay quickly away from the vortex edge, as will

be shown later on.

We now consider small-amplitude disturbances, which are all taken to be O(a), to
the basic zonal flow mentioned above. The presence of these small disturbances can only

lead to O(a?) departures of zonal mean motion from the basic state (Andrews et al.,
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Figure 5.4: Basic zonal flow (dimensional U) in the sharp-edge
model on the v-plane.

1987), namely
ug=U +u 4+ 0(a®), ug=1;+0(da"), etc. (5.3.6)

|
Substituting Eq.(5.3.6) into Eq.(5.2.32) and other relevant equations, we obtain the dis-
turbance QGPV equation as

Dy’
-ﬁf + g, = Zy + 0(d?), (5.3.7)

where the O(a?) term in Eq.(5.3.7) represents the error incurred by linearization, and

D 8.7 .
= (5.3.8)
1 8 [avN &, 29[ 0V
. qa = r—g‘ [1"5; (T a?‘g) + 8/\: <h ﬂg (pn azg)] ] (539)
, 1[8, ., oY 18, |,
=5 [ar(rxs) o a,\] + B 0z o) (5:8:10)

In what follows we shall consider the linear, conservative waves, so that Z, = 0 and

the effects of nonlinearity will be neglected.

5.3.2 Free travelling interfacial Rossby waves

Rossby waves in the atmosphere can be separated into forced and free travelling waves.
Forced waves are continually maintained by excitation mechanisms, while free travelling
waves may be initially excited by random disturbances, barotropic or baroclinic insta-
bilities. etc., but are not necessarily so maintained as the forced waves (Andrews et al.,

1987). It was generally believed that forced Rossby waves are more important than free
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< travelling Rossby waves for the stratospheric atmosphere. A recent study of Elbern and
Speth (1993), however, showed that free travelling Rossby waves could account for a con-
siderable part of global atmospheric oscillations. In this subsection, the characteristics
of free travelling Rossbhy waves associated with a polar vortex are investigated using the
disturbance QGPV equation on the v-plane. Topographically forced Rossby waves will
be discussed in §5.3.3.

To investigate free travelling Rossby waves, we assume that the lower boundary is

flat, i.e., h = 0, and look for linear solutions to Eq.(5.3.7) of the form
P, =Re {;I;(r, z) exp[i(s)\—at)—!—nﬂz]} =Re {@)(r)@{z) expli(sA—at) +n;,z]} , o (5.3.11)

where ny is defined by Eq.(4.3.18), s is the specified zonal wavenumber, ¢ is the un-
determined frequency, and ®(r,z) = O(r)¥(z). Substituting Eq.(5.3.11) into (5.3.7),
yields

d ( d6 srAG 6, (r) s?] ~
} S _ q _e T e 18 -
= (r—dr) [—w o) +Cr4 r] 0 =0, (5.3.12)
4?0 -
=24 (BC —ny?) ¥ =0, (5.3.13)

where (U is a separation constant. Note that, for historical reasons, a so-called equivalent
depth is often introduced as the separation constant in atmospheric tidal theory. Its
dimensionless form, /i say, can be related to € in Eqs.(5.3.12) and (5.3.13) by

The

ﬁ,:ﬁ.

(5.3.14)

It is required that wave energy per unit volume is finite everywhere. Then the bound-

ary conditions are

|8| = bounded, atr =0 and as r — oo; (5.3.15)
dv &

¥ (g —m)U =0, atz=0, (5.3.16)
|¥|? = bounded, as z — oo. (5.3.17)

Now Eqs.(5.3.13), (5.3.16) and (5.3.17) compose an eigenvalue problem for the sepa-
ration constant C'; and Eqs.(5.3.12) and (5.3.15) compose another eigenvalue problem for
the frequency a. The solution of Eq.(5.3.13) satisfying the boundary conditions (5.3.16)
and (5.3.17) can be written as

U(z) = exp[(n — ng)2], (5.3.18)
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which implies that

C = n(2n; — n;)/B, (5.3.19)
q); o exp(ngz). (5.3.20)

From Eqs.(5.2.24) it follows that u} and v, are also proportional to exp(m.z). Waves
of this kind, which have no phase tilt with height and whose velocity and geopotential

disturbances grow with height, are sometimes referred to as “Lamb waves”.

Substituting Eq.(5.3.19) into Eq.(5.3.14) yields

ho=1/(2n0 — ne). (5.3.21)

Before proceeding to solve Eq.(5.3.12) with boundary conditions (5.3.15), it is helpful
to make some general remarks on this eigenvalue problem and its solutions. Firstly, note
that although Eq.(5.3.12) is written in the usual Sturm-Liouville form, it is obviously
not a classical Stutm-Liouville equation on the domain [0, c0). For one thing, the eigen-
value is ¢ rather than C, and for another the equ‘ation is singular at r = r. because of
the é-function behaviour of 7,. Secondly, the equation itself implies that, in order to
balance the §-function terin in the equation, its solution must be continuous at r = 7
(“continuity condition”, say), and that the derivative of its solution must have a jump

at r = 1, (“jump condition”, say). The strength of the jump is given by

o \"dr

A good way to see this is to integrate Bq.(5.3.12) term by term from r = re— to r = ret,

Tete N sreéﬁé(re)

or—sU(r)

(5.3.22)

Te=—¢

namely

Tete 8 ete€ gy =6
G [ (r‘de)dr—lim sragBlrlialr)s,

e0Jr—e dr dr 0 Jr—¢ JT—SU(T)

0 Jr ¢

rete 52X o
—lim (C’r -+ ?) Q(r)dr =0. (5.3.23)

The first and the second terms in Eq.(5.3.23) are given by

 nte d [ dO ‘ 46\ [**

| & (d_) dr = lig (:r) (5:3.24)
Teiki€ 70 51-‘ e 76 e

e srAGO(r)é, () P A7 O(r) (5.3.25)

e~0Jr—e ar—sU(r) ore—sU(r)’
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- _respectively. The third term in Eq.(5.3.23) reduces to zero in the limit, since B(r) is

finite'at r=m:

lim - (Gr+ )é(r)dr:o. (5.3.26)

e—0

Then Eq.(5.3.22) follows from substttuting Eqgs.(5.3.24)-(5.3.26) into Bq.(5.3.23).

An immediate consequence of the jump condition is that the solution of Eq.(5.3.12)
must be non-zero at r = r, (“non-zero condition”, say). This is because the derivative of
the solution must have a jump at r = 7., so that &(r.) appearing on the right-hand side
of Eq.(5.3.22) should be different from zero.

Under the typical parameter conditions of the winter stratosphere, i.e., with use of
parameters shown in Eq.(5.2.22), C given by Eq.(5.3.19) is pesitive (C=1.7939). Thus,
away from r = r,, q.(5.3.12) reduces to a Bessel equation whose solutions are I,(+/Cr)
and ]{3(\/51‘), where I, and K, are the modified Bessel functions of the first and the
second kind, respectively. With the requirements represented by lateral boundary condi-
tions (5.3.15) and the continuity condition at r = r,, we obtain the solution of Eq.(5.3.12)
on the domain [0, c0) in the form ‘

B.(r) = { B.K.(VCr)I,(VCr), ifr <ng

o) = BIL(VCr)K,(VTr), ifr > n;

(5.3.27)

where B, is an arbitrary constant. Following standard practice, we now choose B, to

make the solutions ©,(r) normalised with respect to the weighting function 7, namely,
j O (r)dr = 1. (5.3.28)
0

This can be done by substituting Eq.(5.3.27) into Eq.(5.3.28) and using the following

integral and recurrence formulae

2

/[]rFIf(b?‘)dr‘:—%{ 8 (br)]}2 %(r +b:)lf(br), (5.3.29)
fr FIC2(bF)dF = z{d K, (bT)]}z—l(r i zﬂ) KXbr),  (5.3.30)

—[xr (r)] = [ 1) + Liga(7)], (5.3.31)
E [Hs(r)] = — [I(_g-l r)+ Koq(r)], (5.3.32)
IS(T)I{3+1(T‘) -+ I5+](?)I(5( ) = 1/?' " (5333)

(see Prudnikov et al., , 1986, p47-p48 and Watson, 1944, p79-80). Alter some manipu-
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eigenfunction

co-latitude 9 (degree)

Figure 5.5: Horizontal structure of the free travelling Rossby waves
associated with the polar vortex in the sharp-edge model.

lation we obtain

2 2
B_, =— 2 20
r‘e\l VTR Kot (VO + K pa V)] = K2V/Cr) |11 (VTR + L1 (VTR
" (5.3.34)

Eq.(5.3.27) shows that the free travelling Rossby waves discussed here are trapped
on the vortex edge, as shown in I'ig.5.5. These waves owe their existence to the sharp
change of the PV gradient on the vortex edge. They will be referred to as the ‘interfacial

Rossby waves’, in partial analogy with the inierfacial gravity waves in the textbooks.

Note that the solution given in Eq.(5.3.27) should not be referred to as the eigen-
function of the eigenvalue problem, because it is independent of the eigenvalue o, which
has yet to be found. The eigenvalue o can be determined by substituting the solution

(5.3.27) into Eq.(5.3.22). After some manipulation we obtain
T U(r)

] ATL(VCrR)KL(VCr)| . (5.3.35)
-

Eq.(5.3.35) shows that, in general, the free travelling wave can travel either westward

or eastward, depending on whether ¢ is negative or positive. The case of a strong polar

jet seems particularly interesting and important. When U(r) > nAGL(VCr)K,(vCr),

from Eq.(5.3.35) it follows that
] (5.3.36)

Te

R
<

In other words, waves with various zonal wavenumbers travel eastward with approx-

imately the same zonal angular phase velocity. This means that the Rossby elastic-
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ity has negligible effect on the angular phase speed, and the wave passes the observer
like a passive tracer. The existence of waves with this character in polar latitudes of
the winter stratosphere has been reported by several observational studies (Venne and
Stanford, 1979, 1982; Prata, 1984; Lait and Stanford, 1988, Randel and Lait, 1991).
These eastward-propagating waves are substantially stronger in the Southern Hemi-
sphere, where the polar jet is stronger, than in the Northern Hemisphere, where the
polar jet is weaker. They have peak amplitudes between 60° and 75° latitudes, little
or no vertical phase tilt, and largest amplitudes in the upper stratosphere. In addition,
higher zonal-wavenumber components move with successively faster frequencies (wave 1
with a period near 4 days, wave 2 near 2 days, etc.), but all components travel with
approximately the same zonal angular phase velocity. All these features are remarkably

in accordance with the above theory.

5.3.3 Topographically forced interfacial Rossby waves

To consider topographically forced Rossby waves, we assume that the waves are forced

from below by small-amplitude undulation of topography of the form
h = Re {fi(r) exp(is) } . (5.3.37)

For consistency with this boundary undulation, we now seck steady, conservative, and

stationary solutions to Eq.(5.3.7) of the form
@), = Re {O(r)¥(2) exp(isA + nq2)} . (5.3.38)

Substituting Tq.(5.3.38) into (5.3.7) we obtain the equation for the horizontal structure

function ©(r) as follows,

d [ dO rAgé.(r) . $*]a
= (r' dr) + ["ﬁ(r) Cr——16=0, (5.3.39)

where (' is the separation constant again. The equation for the vertical structure func-
tion, @(z], and the lateral and upper boundary conditions remain the same as those
represented respectively by Eqs.(5.3.13), (5.3.15) and (5.3.17). The lower boundary con-
dition from Eq.(5.2.30) is, after substitution of Eqs.(5.3.37) and (5.3.38),

-

(?— s nglif) @(r) = uaﬁ(r), at =10, (5.3.40)
z



§5.3 Conservative interfacial Rossby waves associated with the polar vortex 137

Egs.(5.3.39) and (5.3.15) consist of an eigenvalue problem for C. Applying the same
argument to Eq.(5.3.39) as was done in §5.3.2 to Eq.(5.3.12), we see that the eigenfunction
of Eq.(5.3.39) must satisfy the continuity condition, the jump condition, and the non-zero
condition at r = r. (see pages 133 and 134 for more details). To find the eigenfunction

we note that three possibilities arise, according as the eigenvalue C' is negative, zero, or
positive:
1. C = —b,? < 0 with b, being a posilive number

In this case, the vertical structure equation (5.3.13) indicates that the waves always
decay with height. The solutions to the horizontal structure equation (5.3.39) with
boundary conditions (5.3.15)) denoted by 0, (r), can be written as

By J,(bsr), ity <

O(r) = 64,(r) ={ Bodi (o) + BaYilbir), ¥ > 1, (5.3.41)

where By, B, and B are arbitrary constants, and J,(b,r) and Y;(b,r) are Bessel functions

of the first kind and the second kind, respectively.”

Applying the continuity condition at r = 1, to Eq.(5.3.41), yields

ByJo(be) = ByJu(bare) + BsYa(bara). (5.3.42)

The non-zero condition at r = r, implies that
B1 #£0, and J(bs) # 0. (5.3.43)
Thus, from Eq.(5.3.42) it follows that

By = By — B3Y(bs1e) [ J(bste), (5.3.44)

Substituting solution (3.3.41) and ¢ = 0 into the jump condition (5.3.22), with some

manipulation, we obtain

” N _2B3U(rc) _
Js (bs're) — B]_TT?‘EAg’ (5.3.42’))
where the following recurrence formulac for Ji(z) and Y;(z) have been used,
210N = 5 1aca () = L) 5.3.46
d?" s\7 = 9 s—1 341 3 ( . )
d 1
i [Yi(r)] = 5 [Youi(r) = Yora(r)], (5.3.47)

Jo(r)Yopa(r) = Joqa (r)Ye(r) = =2/(7r) (5.3.48)
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(again, pé:e Watson, 1944, p45 & p66).

Irom Eqgs.(5.3.43) and (5.3.45) we see that that By and B3 must have opposite signs
and neither of them can be zero, i.e. BiBs < 0. In addition, any negative number
¢ = —b,° that is not a toot of the equation Js(byr:) = 0 can be an eigenvalue of
Fq.(5.3.39) with boundary conditions (5.3.15), because, apart from the requirement that
B1Bs < 0, B, and B; can be arbitrarily chosen to satisfy Eq.(5.3.45). In other words,
the negative eigenvalues of Eq.(5.3.39) with boundary conditions (5.3.15) consist of a
piecewise continuous spectrum. Note that the associated solutions, given by Eq.(5.3.41),
are not square-integrable in the sense that f;° r@)is(r)c{r is not convergent. These so-
lutions sometimes are referred to as “pseudo-eigenfunctions” (Pryce, 1993). In addition,
the solutions are not necessarily confined at the edge of the polar vortex. In fact, the
solution given by Eq.(5.3.41) is of oscillating shape and its maximum value can approach
the pole (r = 0) when b, is sufficiently large. Waves represented by these solutions are
not specially relevant to the problem concerned in this chapter, and, therefore, will not

be discussed further.
2.C=0

For C' = 0, the solutions of Eq.(5.3.39) with boundary conditions (5.3.15) can be

written as

o | Bu(vfR)% ifrdy
D)= { Bilrs[r)%,, ifromw, (5.3.49)
where By is an arbitrary constant. When Fq.(5.3.49) with o = 0 is substituted into the
jump condition (5.3.22), we obtain that
A7
- = .3.50
s 5T (5.3.50)

Eq.(5.3.50) shows that C = 0 could be an eigenvalue for the problem only when there

exists an integer s that satisfies Eq.(5.3.50). This is improbable. Obviously, a wave
depending on such a coincidence is of little practical interest. So this case will not be

further discussed, either.
3. C' = (2> 0 with £, being a positive number

In this case, the eigenfunctions of £q.(5.3.39) with boundary conditions (5.3.15),
denoted by (:j,ga(r), can be written as

Be, K (L) (6r), ifr<r,

Ou(r) ={ Bu (b Ku(ber), if 7 > 7, SED
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- whery‘ By, is an arbitrary constant. We shall choose By, as

i

T 2 (5.3.52)
w= T ]E(Esre)[-[{sd (gsfé)‘I‘I{SH (Esrc)]z B 1{3(8,?})[[,_1(631‘5) +Ia+l(£8re)12 .

to make the eigenfunction normalized in the sense that [ r@)i (r)dr = 1 (see the relevant

argument in §5.3.2).

Substituting Eq.(5.3.51) and ¢ = 0 into the jump condition (5.3.22) leads to the

following transcendental equation

g(r,)
A7’

L€ K (L) = (5.3.53)

from which €, and then the eigenvalue C' = {2 can be delermined. These waves, which

are trapped on the vortex edge (r = r.), may be called forced interfacial Rossby waves.

To determine £, from Eq.(5.3.53), we first note that the asymptotic formulae for the
associated Bessel functions I,(r) and K,(r) for large and positive argument r may be
written as (see Watson, 1944, p202-203)

g i 1—4s? (1 —4s%)(9—4s?) P
1er 21 (8r)? ;

[ 2 1—4s? (1 -—45%)(9— 4s%) g
ALy rre?” [1 ~ o 1l8r * 2! (8r)? e (5.3.55)

respectively. Eqgs.(5.3.54) and (5.3.55) suggest that I,(r)K(r) ~ (zr)~! as r approaches
infinity. In addition, I,(0)K,(0) = (2s)7%. In fact, I,(z)K,(z)is a monotonically decaying

function of + with a finite maximum at r = 0, as is evident from Fig.5.6. Thus, there is

(5.3.54)

at most one real solution £, of Eq.(5.3.53). In other words, if U(r.) satisfies the following
criterion

18 A7
0 < U(n) < A7 L(0)K,(0) = % (5.3.56)

we can expect one positive cigenvalue C' = £Z from Eq.(5.3.53); otherwise there will be

no positive eigenvalue for the problem.

Tor the parameters chosen in the present model (i.e., 7. = 1.1119, 7, = 0.6,7, = —4.3),
it can be shown that U (s)/(rAg) = 0.1632. Thus, from Fig.5.6 we sce that no positive
eigenvalue C' = £2 for the Rossby wave with s > 3. The positive eigenvalues for s < 3
are given in Table 5.1. The corresponding eigenfunctions are shown in ["ig.5.7. We see

that all waves are trapped on the vortex edge.
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y = I(r)K,(r)

= = ()

Figure 5.6: Some curves of I,(r)I(s(r) for various values of zonal
wavenumber $.
When C' = £2 exists and is known, the vertical structure of the waves can be deter-
mined by solving Eq.(5.3.13). A solution satisfying the boundary condition (5.3.17) has

the form
Wy, (2) = Ay, exp|(im — n)z], (5.3.57)

where A;, is a constant to be determined and

m = +H(w)V@, where w= (B —mn,%), (5.3.58)
n=H(@)Ve', where @ = (B —n,); (5.3.59)

with the step function M defined by Eq.(5.3.5). Two possibilities can be seen from
Fqs.(5.3.58) and (5.3.59), according as the term (BE? — ny?) is positive or negative. For
(B2 — ;%) < 0, no oscillation in z is possible. This is a kind of vertically diffracting (or
trapped) wave without phase tilt with leight. In the real atmosphere, the waves of this
kind cannot penetrate into the middle and upper stratosphere, but may be important
in the troposphere and the lower stratosphere. On the other hand, for (B£2 — ng*) > 0,

waves can propagate vertically and their phase lines tilt with height. These vertically
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Figure 5.7: Horizontal structure of the topographically forced
Rossby waves associated with the polar vortex in the sharp-edge
model.

Table 5.1: Figenvalues and some associaled parame-
ters for forced Rossby waves in the sharp-edge model

(1 £ BEE —ny,? m n
6.8418 | 2.6157 0.6257 0.7910 0
4.2228 | 2.0549 0.2905 0.5390 0
0.2820 | 0.5310 | -0.2139 0 0.4625

[ o et B

propagating Rossby waves may play a significant role in the dynamics of the stratosphere.
It is generally believed that planetary-scale Rossby waves normally propagate upward
from the troposphere into the stratosphere (Andrews et al., 1987). This requires that
the waves transfer energy upward. In other words, waves must satisfy the radiation
condition. It can be shown that an upward propagating Rossby wave requires a positive
m, so the upper sign must be chosen in Eq.(5.3.58). This implies that the phase lines of
vertically propagating Rossby waves tilt westward with height.

With the parameters given in Eq.(5.2.22), m and n for waves with s = 1,2,3 are
tabulated in Table 5.1. We see that wave 1 and wave 2 propagate vertically, while wave 3
decays with height. This is in broad agreement with observations, which show that only

planetary-scale Rossby waves survive in the winter stratosphere (Andrews et al., 1987).

It remains to determine the constant A;, in Eq.(5.3.57). Now the lower boundary

condition (5.3.40) must be used. For simplicity we consider a special topography

R(r) = 64, (). (5.3.60)
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Substituting Eqs.(5.3.57) and (5.3.60) into Eq.(5.3.40), yields

a

Ag, = — 2
¢ im — (n 4 n — ny)

3

(5.3.61)

5.4 The effect of weak dissipation on the forced interfacial
Rossby waves

In this section the effect of weak dissipation on forced interfacial Rossby waves is ex-
amined. For simplicity we assume that the waves in question are weakly dissipated by

Rayleigh friction and Newtonian cooling, namely
!

! ! 3@ -
X;= —poauy, Y = —ponyy,, Jg = —poy 3:7 with g < 1. (5.4.1)

g L4

Substituting Eq.(5.4.1) into Eq.(5.3.7) and seeking steady, stationary solutions of the

form

@, = Re {éT(T)@T(Z)eXP(i‘gA + n;;z)} (5.4.2)

we obtain the equation for horizontal structure of the topographically forced, dissipating

Rossby wave as

; O Zose 7 e\ &
() )20 e o

(5.4.3)
where Cj is the separation constant. Comparing this equation with (5.3.39), we see that
the effects of dissipation are represented by those terms which are proportional to iu
in Eq.(5.4.3). The vertical structure equation and the boundary conditions remain the
same as those represented by Eqgs.(5.3.13), (5.3.15), (5.3.17) and (5.3.40), respectively,
with ' being replaced by C. For simplicity we have neglected the diabatic effect on the
lower boundary, arising from the term on the right-hand side of Eq.(5.2.30).

If o = 0, Eq.(5.4.3) reduces simply to Eq.(5.3.39), and the eigenvalue problem has
been solved in §5.3.3. For a small but nonzero yt, we can seek approximate solutions to

O; and C; by letting

Ci = Co+ipCy+ p*Ch+ -+, (5.4.4)
B4(r) = Bg(r) + 10y (r) + p?Os(r) + - -, (5.4.5)

where Cy, Cy, Cay--+; 0o, B4, O,, - -+ are independent of the small parameter . Sub-
stituting Eqs.(5.4.4) and (5.4.5) into Eq.(5.4.3) and equating coefficients of like powers
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of j1, we obtain

d [ dB, rAgé, (1) 32\ A
0. o ] e = = B
at p: & (r r‘ ) + ( T0r) —Cor — - Oy = 0; (5.4.6)
d { dOy rAgé,. (v) s2\ .
1., W R a el T o S S A
at p ¢ = (r » ) -+ ( T0r) Cor — v O

Ll 02)-2a]--sgle). o

Eq.(5.4.6) is identical to Iq.(5.3.39). This means that the leading order eigenvalue and
eigenfunction for an interfacial Rosshy wave associated with the polar vortex are, respec-

tively,

Co=102  B(r)=0,(r), (5.4.8)

§

where £, can be determined from q.(5.3.53) and Oy, is given by Eq.(5.3.51). Substituting
Eq.(5.4.8) into Eq.(5.4.7), we have

d [ dO, rAgs.(r) _3_2 ~
dr( dr )+( U(r) - o

i) 28] o3

Dir awrAGéL(r))
(C‘ Ul 50 )Bf’(r)’ )

where
Dy = E(ay — ag)/s. (5.4.10)

Away from r = 1, (5.4.9) is a non-homogeneous Bessel equation. Using the method of

variation of parameters, we obtain its solution in the form

B.K,(, r,){[e1+N,1 ()] L€~ Naa(r) K, €, r)}, 5 & i

i) = _ (5.4.11)
By 1€ ?;.){[eg — Naa(r)] Ko €)= N, (E,r} o S
where ¢y, e, are integral constants and

r r =2 = =

Nl /u FIL(L7) K J(€,7)dF — Dy ] LI’—(-%———MJF, (5.4.12)
r I (£

Naa(r) = G4 /0 FI(6F)dE — Dy | " T )’") (5.4.13)
r "2

Naa(r) = G / FLL(LF) K, (6,F)dF — Dy f _% (5.4.14)

72
Noa(r) = le FK2(6,7)dr — Dy _/ iu(%-r—)d" (5.4.15)
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Table 5.2: O, defined in Fq.(5.4.19) for s = 1,2,3 and

various combinations of ay and ay

ay=ayg =05 |ay =10 =0 | ay =0, =1
1 9.6602 18.8033 0.5171
=2 4.8025 6.3707 3.2342
3 2.8956 0.3358 5.4554

Since the solution (5.4.11) should be continuous at r = 1., as implied by Eq.(5.4.9) itself,

e, and e; must satisfy the following relation,
NQE(Te)I:(Esrc) = ME(I}:)I{:(ES?‘E)
L) K (Br) ’

with e; being arbitrary. Note that the solution given by Eq.(5.4.11) does satisfy the

ea=¢€1+ .N‘]I(?‘QJ + (5416)

boundary conditions (5.3.15). This is guaranteed by the following asymptotic represen-

tations
Naalr)o(tar) ~ (s ‘11”1)12(5 KL (6r), foremall v, (BAIT)
Nao(r)I5(£,r) ~ gi%j{(— [ (25 )]) —f,]{f({.’,r)} for large r, (5.4.18)

which tend to zero as r tends to zero and infinity, respectively. Eqs.(5.4.17) and (5.4.18)
can be easily verified from substitution of Eq.(5.3.4) and use of Eqs.(5.3.29) and (5.3.30).

Now C; can be determined by substituting Eqs.(5.4.11) and (5.3.51) into Eq.(5.4.9)

and then integrating term by term from » = n— to r = r.+. After some manipulation

we obtain ' ; p— ) )]
Qpr o Es A? Ay — g (3.3_[(3 oTh + ﬁ-i]_, Esre
Gy = sAT [es K2(€sre) + esl2(£se)] ) (5.4.19)
where
e rzfz(f 7) FIC(L
b 5 5.4.20
-/ U(7) o o j, U(r) Ty ( )
e = fﬂ R0, es = L FR2( (5.4.21)

Table 5.2 lists some values of the eigenvalues C for s = 1,2,3 and for various com-
binations of ay and ay. The corresponding eigenfunctions (:)1(?') are plotted in Fig.5.8.

We see that (:)1(:') also decays away from the vortex edge.

To the first order in p, therefore, the eigenvalue and eigenfunction for the problem

can be written as

Ci= £ +ipCy + 012, (5.4.22)
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B84(r) = B4.(r) +ip®i(r) + O(?), (5.4.23)
where C is defined by Eq.(5.4.19) and &, (r) by Eq.(5.4.11), respectively.

Substituting Eq.(5.4.22) into Eq.(5.3.13) and solving the resulting equation, we obtain
the corresponding vertical structure function @1(2) as

Uy(2) = Ayexpl(imy — ny)z], (5.4.24)

where m4 and ny are real numbers determined by the following equations
mi® — n;* = B — n,”, (5.4.25)
2myny = uBCh, (5.4.26)

and, for the special topography represented by Eq.(5.3.60), Ay is given by
Ap= - (5.4.27)

_irm{ — (ny+n —ng)’

The upper boundary condition (5.3.17) requires ny > 0. With this constraint ny and
my can be solved from Egs.(5.4.25) and (5.4.26) as

ny = \/ % [\/(seg — m,2)? + (uBCy)? — (B - n,,?)], (5.4.28)

1
S sgn(p()l]\/ s [\/(Be";f’ — n?) + (uBC1) + (BE — n,,?)]. (5.4.29)
Note that, for ¢ — 0, mt — m and ny — n, where m and n are defined respectively by

Eqs.(5.3.58) and (5.3.59), with m being positive for wave energy propagating upward.
For pt < 1 and (B2 — n,?) # 0, Eqs.(5.4.28) and (5.4.29) can be expanded in Taylor

series as,

ny = n + pny + O(p?), (5.4.30)
myi = sgn(pCy) [m + pmy + O(Juz)] 5 (5.4.31)
where
ny = H{w)%, - where @ = (B —n,?), (5.4.32)
my = 'H(w')%, where @’ = —(B€ — n,?). (5.4.33)

From Eqs.(5.3.45), (5.3.46), (5.4.30)—(5.4.33) it is obvious that ny = O(s) and my = O(1)
if (B£2 — ng?) > 0, otherwise ny = O(1) and my = O(y1).

Substituting Eqs.(5.4.30) and (5.4.31) into (5.4.27), after some manipulation we ob-
tain

A = As, (1 e EBL L ) : (5.4.34)

mm —n + 1y

where Ay, is defined by Eq.(5.3.61).
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5.5 The quasi-geostrophic EP flux on the y-plane

The TEM equations and EP flux divergences on the mid-latitude 3-plane were discussed

in Section 4.4. Their y-plane versions are outlined in this section.

5.5.1 The TEM equations and the generalized Eliassen—Palm theorem

First, a residual mean meridional circulation is defined by

e < ]. a E@rs ke 1 B / atp;g 5
U, =T, — Ba 0z (Psf’]’; e ) " U, =W, + Bror (WSE : (5.5.1)
Then the TEM equations take the following forms
Ot 1 —
¢ 52
2t £ +% ,GBI‘V Sg+ X, (5.5.2)
d (0%, cy e 2
Bt ( 52 ) G 1 (5.5.3)
(0% + o ) =0 (5.5.)
‘rar e P, 0z Paa) =5 "
where the quasi-geostrophic EP flux S, is defined by,
Sg = py (0, —r¥ug, —Bre,00,/0z ). (5.5.5)

The term (g,7) ' V-8, in Eq.(5.5.2) represents the net driving of the mean zonal flow by
Rossby waves. It combines the eddy momentum flux v’ u, and eddy heat flux # w00 [z g/ 0=

in the form
1 1L @ 7o 1 9 afI)’
N, e () 5
parv * r? dr (r vgug) Bp, 9z (pﬂ % 0z ) (5:56)
X represents all further contributions to the mean zonal force per unit mass associated

with gravity waves and other small-scale disturbances, and J; is the zonal-mean net

radiative heating rate.

From Eqs.(5.2.24) and (5.5.6) it follows that

#,_,16(,) av’+13 B@;
s% =%\ 7 |5 ")t o | T aa e P e
M e td, N, 1 a8 A%\ 1980w
‘Fﬁ(r“sshﬁﬁ(%)*ﬁ 2 \5%%; | "Bz 5:
1

1 3 ) 1 5@; g 1
EEMPREN = o~ e o (U W77 — v-S.. BB
= Sg 21" - ’\ [HE ( z ) = - SS (d 5 7)
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Note that the minus sign in the last expression occurs because a positive v, corresponds

to a southward motion.

When the basic QGPV gradient 7, is smooth and non-zero everywhere, the quasi-

geostrophic version of the generalized EP theorem on the y-plane can be written as,

9, = —;:—,V’-Sg = —% (92/3.)+ 24,/ 3 (5.5.8)

Alternatively, it can be shown that
1 a —

Vel = —5‘7'55 =t (Mg + 4073, ) — mieZg, (5.5.9)

where 7 is the southward parcel displacement, defined by

Dy’ i
Dtg = ¥,. (5.5.10)

Note that Eq.(5.5.9) holds even when g, = 0. Thus, it is more general than Eq.(5.5.8)

and specially useful in the sharp-edge model described in Section 5.3.

5.5.2 EP flux divergences induced by dissipating Rossby waves

In a Charney—Drazin model on the mid-latitude §-plane, it has been demonstrated
(§4.4.3) that when the meridional gradient of mean QGPYV is northward everywhere,
the quasi-geostrophic EP flux divergence is always negative if the steady Rossby waves
are dissipated by Rayleigh friction and Newtonian cooling with equal relaxation coeffi-
cients, and it may be positive in situations in which either the meridional gradient of
mean QGPV is southward or other types of dissipation are present. In particular, when
the Rossby waves are dissipated purely thermally, the quasi-geostrophic EP flux diver-
gence is positive if U > u,, where U is the mean zonal flow and u. is the Rossby critical

velocity defined by Eq.(4.3.20).

In this section, we examine the EI’ flux divergence on the 7-plane. Let us start
with the simple case in which the Rossby waves are dissipated by Rayleigh friction and
Newtonian cooling with equal relaxation coefficients, namely ar = ay = o # 0. Under

such circumstance, it can be shown that

Zy= —paq;. (5.5.11)
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This is because in the quasi-geostrophic equations, D/Dt and pe always occur in com-

bination (D/Dt + pa) when ap = ay = a; therefore

D o o :
(E + pa) qg + 'ngr =) (0-5.12)
follows from the conservative case
‘q"
—'DEE- + H;qr =) (5-5.13)

When waves are steady and g, # 0 everywhere, from Eqs.(5.5.8) and (5.5.11) it follows

that
1

T
It shows that any basic state with smooth, negative (northward) g, must have VS, < 0

V-Sg = —pa g2/ g, (5.5.14)

T S -
Yels =

when Rossby waves are assumed steady and dissipated by Rayleigh [riction and Newto-
nian cooling with ap = ax = a # 0. This result has been pointed out by Holton (1983a),
Robinson (1986), Andrews (1987), and in §4.4.3.

We now turn our attention to the sharp-edge model, in which 7, is assumed zero
everywhere except at the edge of the polar vortex (r = r.). Note first that, away fromr =
7, Eq.(5.5.13) reduces to a hyperbolic equation because G, = 0. Thus, for conservative
waves, g, is identically zero if it is so at some initial instant. This can be shown explicitly
by substituting the conservative wave solution obtained in Section 5.3 into Eq.(5.3.9),

namely,

LB oy D], LD (05
=7 |ar \"Ve dA|  Bp, 0z e

RV SS
=00, - 8, =0, F#nl) (5.5.15)
RV  SS

In Eq.(5.5.15) we see that, away from the edge of polar vortex, the relative vorticity
(RV) term takes an opposite sign to the static stability (SS) term. For conservative wave

motion, these two terms cancel each other exactly, leading to ¢, = 0.

For the steady, dissipative Rossby waves, Eq.(5.5.8) shows that
Zgqy =0, (r#mn) (5.5.16)

because g, = 0 away from the vortex edge. If the waves are assumed to be dissipated by

Rayleigh friction and Newtonian cooling with oy = ay = a # 0, we can
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substitute Eq.(5.5.11) into Eq.(5.5.16) to show that
—nag? =0, (r#mn). (5.5.17)

Eq.(5.5.17) implies that_':q; is again zero away from » = r,. Therefore the argument
illustrated by Bq.(5.5.15) must remain valid for this case, Furthermore, when g =0is
substituted into the left-hand side of Eq.(5.5.8), we see that V.S, = 0. This result is
in sharp contrast to the analogous problem in the Charney-Drazin model with smooth,
northward meridional gradient of mean QGPV; in that case the EP flux divergence is
always negative for steady, dissipating Rossby waves with ax = an = a # 0 (see the
discussion in §4.4.3 and Holton, 1983a; Robinson, 1986; Andrews, 1987).

"o see what would happen when ay # an, we now calculate V-8, from Eq.(5.5.9)
using the wave solution obtained in Section 5.4. Tirst, from Eqs.(5.5.10) and (5.2.24) it
follows that

fy = =0 /U + 0(d®). (5.5.18)

In addition, Z; is given by

N AN AT A
Zs——”{r—z[a(" g )V on | TBuee\P e )| by

Substituting solution (5.4.2) into Eq.(5.5.19) gives

S O O 2 Ag6.(r)
%= “R{[“(’?s o

(tms—n4)?—m,
el L .

2 -~
B ! ]@ga (1), (2) exp [isA + nyz + p(im; — nl)z]} , (5.5.20)

correct to O(ua). Now, with the aid of Egs.(5.4.25) and (5.4.26), it can be shown that

+ao

(imy —ny)? —n,® = ny® —my® — ng® —i(2miny) = B + O(p). (5.5.21)
Thus, away from the edge of the polar vortex, we see that
Zy = —pli(op — an)®; + O(p’a), (r#r). (5.5.22)
Substituting Eqs.(5.5.18) and (5.5.22) into (5.5.9), for steady waves we obtain

—_— 2 i -
V5, = —%&MQF@:’ (r)exp [=2(n+pn1)z] + O(p®a®), (r#mn). (5.5.23)
Eq.(5.5.23) shows that, away from r =, V-8, is zero to the first order in g if ap = ay.

In fact, the general argument given above has shown that V-S, should be zero to any
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order in g if o = ay. Since both U(r) and @y, (r) are continuous at r = 1, Eq.(5.5.23)
indicates that V-S, is also continuous there. In addition, U(r) is assumed positive in
our model. Therefore, we sce from Eq.(5.5.23) that V-S; < 0 when ay < ax, and vice
versa. Note that these results are also in sharp contrast to the analogous problem in the
Charney—Drazin model with smooth, northward meridional gradients of mean QGPV
(sce the discussion in §4.4.3).

In the winter stratosphere, sizable regions of divergent EP {lux have been documented
in a recent paper by Rosenlof and Holton (1993). Maximum positive values can be seen
within the polar vortex both in Northern and Southern Hemispheres. The physical reality
and robustness of these phenomena are likely to be trustworthy because the EP flux
divergences were calculated from a 10-year data set that is based on linear balance wind
estimates rather than geostrophic wind estimates. We have shown that the Rossby waves
associaled with the polar vortex can cause positive EP flux divergences when ax > ay.
This suggests a possible mechanism for explaining the observed phenomena mentioned
above. Observational and model studies have shown that gravity wave drag is important
in the lower stratosphere where tilting and overturning of isentropic surfaces can lead
to gravity-wave breaking over mountainous regions (e.g., Palmer et al., 1986, & refs.
therein). This will strengthen the mechanical dissipation of Rossby waves. According to
the above discussion, when the mechanical dissipation is strong enough to dominate the
thermal dissipation, interfacial Rossby waves will lead to positive V-S; both inside and
outside the polar vortex. On the other hand, in the wintertime lower stratosphere Rossby
wave breaking is a frequent occurrence outside the polar vortex (Mclntyre and Palmer,
1983,1984; Juckes and McIntyre, 1987; Juckes, 1989; Waugh el al., 1994). Since breaking
Rossby waves induce a downgradient eddy flux of PV, they are likely to contribute to
systematically large negative values of V-8, in the midlatitude surf zone. Outside the
polar vortex, therefore, the negative V-S; due to breaking Rosshy waves will submerge
the positive V-8 due to mechanically dissipating, non-breaking Rossby waves associated
with the polar vortex. For this reason, significant positive V-S,; may only be observed
within the polar vortex in the lower stratosphere. We shall return to this phenomenon

in the following section.
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5.6 Wave-induced mass transport across the edge of the polar
vortex

Planetary-scale Rossby waves in the stratosphere play an important role in the meridional
and vertical transport of ozone and other chemical tracers. Noticing the characteristics
of Rosshy-wave breaking in the winter stratosphere, Mclntyre (1989) pointed out that
the steep PV gradients on isentropic surfaces on the edge of the polar vortex could act
as a flexible PV barrier against poleward eddy transport of mass and chemical tracers,
and then the polar vortex might behave as an isolated material entity, or air mass, if the
vortex is not disturbed too violently. This vortex isolation hypothesis is believed to be
essentially important in the formation of the Antarctic ozone hole (McIntyre and Norton,

1990; Mclntyre, 1992).

However, the recently observed depletion in middle- and high-latitude total ozone
of both hemispheres (Stolarski ef al., 1991, 1992) has raised a controversial question,
namely how effective such PV barriers might be in the real stratosphere (e.g., Anderson
et al., 1989; Proffitt et al., 1989, 1990; Pierce and f‘airlie, 1993). Tuck ef al., (1992, 1993)
argued that there might be a significant rate of transport of processed air through the
polar vortex, taking chlorine-activated air out of the lower-stratospheric polar vortex to
lower latitudes where sunlight enables ozone destruction to occur (the so-called ‘flowing
processor’ hypothesis). McIntyre and Pyle (1993) pointed out that this hypothesis re-
quired an implausibly high rate of air transport out of the polar vortex, which could not
be provided by vortex erosion alone. It might be argued that, since the PV barrier at
the edge of the polar vortex inhibits only eddy transport but not mean transport, there
might be a mean outflow from the vortex in the lower stratosphere. From a TEM per-
spective, such an mean outflow might be driven by, for instance, the anomalously-signed
(positive) EP flux divergences in the high-latitude lower stratosphere, as documented in
Ilig.3 in the paper by Rosenlof and Holton (1993).

It should be remembered, however, that besides the quasi-geostrophic EP flux diver-
gence, there is another term X, representing contributions to the mean zonal force from
gravity waves and other small-scale disturbances, on the right-hand side of Eq.(5.5.2).
Therefore, the TEM circulation is not determined by the structure of the EP flux alone.
Furthermore, the actual mass transport is closely related to the GLM circulation, which,
in general, is not the same as its TEM counterpart. As pointed out in Section 4.5, the

TEM and GLM meridional circulation in the Charney—Drazin model may be oppositely-

-
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signed in certain situations. This problem is further investigated in a sharp-edge model

in this section.

For simplicity, let us first assume that dissipation of the wave-mean system is purely
thermal and the system has settled down as a whole to an exactly steady state in which
not only is the wave amplitude steady but also the mean circulation. Under such cir-
cumstances, lqgs.(5.5.2), (5.5.3) and (5.5.9) reduce to

T =—V-8 5.6.1
2 pﬂrv € ( )
w, = Jg/B, (5.6.2)
1‘Tf’ a i =4
V-8, “pErﬁSZ' =3 a(pBJg). (5.6.3)

Substituling 1q.(5.6.3) into Eq.(5.6.1) yields
¢ B

Ti
— L - i
L= B, 32( P 1})- (5.6.4)
Now Eq.(5.5.4) can be rearranged as i}
& B e T B d p .
g 07 = =2 2 0w) =~ 2 [ T | (5:65)
Integrating Fq.(5.6.5) with respect to z gives
s 1 (=9
W= BpBrfz or [ %0 (p“J):|
b 10 o 1 o 9 A
= e [3? ﬁng) — Efz i (TJE—C,E) dz] ; (5.6.6)

where the boundary condition p,@W; — 0 as z — oo has been used to fix the constant of

integration.

It is well-known that the residual mean circulation only provides an estimate of the
actual mass circulation, which is a Lagrangian quantity. To examine the GLM circulation,

we first note that the y-plane version of Eq.(4.5.9) can be written as
7 = (€ V)¢ + 0(a’p’) = —— (rqst,o) + O(Ray') + O(a?y'). (5.6.7)

In addition, the GLM continuity equation and steady thermodynamic equation can
be written as, respectively:
19 ok 14d =L\ _
;5‘; (f‘b‘a) - EE (pnwa) = 0, (5.68)
wt =7, /B. (5.6.9)
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On the other hand, Eq.(5.6.2) can be manipulated as follows,

. (e 7) + O(Rpa®) + O(ua®),  (5.6.10)

i — —L —=3 ]
T Y

where Eq.(5.6.9) has beén used and J; = O(pa) has been assumed. Substituting
Eq.(5.6.6) into Eq.(5.6.10), together with use of Eq.(3.6.8), we obtain the GLM vertical

and meridional velocities, respectively,

W =T + L 2 (rﬁ) + O(Rpa®) + O(pa®)

5 ar
i /wpa ol ® ”’E dz + O(Rud?) + O(pa®) (5.6.11)
" Bar or ’ o
= —ﬁﬁ + O(Rpa?) 4+ O(pa®) (5.6.12)
& B 0z ’ o

Egs.(5.6.4), (5.6.6), (5.6.11), and (5.6.12) show that both the TEM and GLM meridional
circulations depend explicitly on the diabatic heating. Thus, for steady and conservative
waves,

e e =T, (5.6.13)

al a

If

to O(a?) (see Dunkerton, 1978). For dissipative waves, the above relationship will not
be exactly true. The difference between Wy and w; is jz/B, where 72 is the Stokes
correction to the diabatic heating. Substituting the Newtonian cooling approximation
and the wave solutions obtained in Section 5.4 into Egs.(5.6.4), (5.6.6), (5.6.11), and

(5.6.12), after some manipulation we obtain

ponly|Ae,

= —Z_pBU_let‘ exp [~2(n + pn1)2], (5.6.14)
~2

o pogl?|Ag > O ”Qc

= : 6.1
R TR P e[~ tine i
2
%-:_. - _ PO [m —}-Q%I;Uﬂ ”At,l 6 exp[ -9 n+;m1)z]+0(u2a ,Rﬂaz,pas), (5616)
+(na—n)Y sl 8 (-6,
i EE; +(;:1);pB]rIAd ar (TU&) exp[—2(n-+pm)2]+0(p* e’ Ra®, pa®). (5.6.17)

The above equations indicate that the TEM and GLM circulations induced by steady,
thermally dissipating interfacial Rossby waves have the same vertical and horizontal

structures. Both ¥ and @ are O(pa?) quantities. They are negative because U(r) is

a
assumed positive. This means that the mass transport is poleward rather than equator-

ward.
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. The difference between 8% and 5 can be obtained as

5 3 P = poyn(ng —n)|Ag,|®

a a Bﬂs U(T]

6y, exp [~2(n + pma)2] + O(uPa®, Rpa®, pa®),  (5.6.18)

£ which is O(p?a?, Rpa?, pa®) for vertically propagating waves (n = 0, ny # 0) and O(ua?)
i for vertically diffracting waves (n # 0, n; = 0). The latter has the same order as % and
B themselves, so that in general it is not negligible. In addition, for vertically diffracting
interfacial Rossby waves, Eq.(5.3.59) shows that 0 < n < ny. In such circumstances the
first term on the right-hand side of Eq.(5.6.18) is positive, implying that the poleward
GLM flow is weaker than its TEM counterpart.

Note that w; and WY are of O(a?) for vertically propagating waves and are O(pa?) for
vertically diffracting waves. The difference between them is not negligible, either, when

the waves are vertically diffracting.

=
i

4 3 We have seen that thermally dissipating interfacial Rossby waves induce mean mass

transport into rather than out of the polar vortex, giving no support to the ‘flowing
processor’ hypothesis (Tuck et al., 1992, 1993), which requires a significant transport
of chemically perturbed air from within the polar vortex to midlatitudes to explain
the observed ozone depletion there. In the real atmosphere, the mean inflow has to
act against vortex erosion which transfers air out of the polar vortex via Rossby-wave
breaking. Thus, the wave-induced mean inflow may not imply real, significant intrusions

« into the polar vortex.

When gravity-wave drag has some role to play in the winter stratosphere, the me-

chanical dissipation of Rossby waves should be taken into account. The discussion in

Section 5.5 suggests that the effects of mechanical and thermal dissipation on interfa-
cial Rosshy waves always try to cancel each other, to some extent. In particular, when
mechanical dissipation becomes the dominant factor, positive EP flux divergences V-§,
can be induced by interfacial Rossby waves. If the contribution of gravity-wave drag to
the mean zonal force X; were negligible under such circumstances, an equatorward &=

would be expected from the steady version of Eq.(5.5.2).

In the real stratosphere, however, it would be a formally inconsistent approximation
to neglect the gravity-wave drag contribution to the mean zonal force while retaining
its effect on Rossby waves. A review of the direct and indirect evidence for the possible
importance of orographically induced gravity-wave drag on the mean flow has been given

in Palmer et al. (1986), and a clear laboratory demonstration has been reported in Delisi
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and Dunkerton (1989). It is beyond the scope of this study to discuss in detail how to
calculate 75 using some useful but complicated parameterisation schemes, such as those
described in Palmer et al. (op. cit.) and McFarlane (1987). To conclude our discussion,
here we simply mention some relevant evidence identified from model studies. Firstly,
results of model comparisons (Palmer et al., 1986; Rosenlof and Holton, 1993) have
shown that the lower stratosphere is a region where the effect of orographically induced
gravity-wave drag on the mean flow is important. Secondly, Palmer et al. (op. cit.)
further pointed out that including gravity-wave drag in their model resulted, generally
speaking, in a large deceleration of westerlies in the lower stratosphere; this is consistent
with the observational evidence. A reduction in westerlies in turn tends to induce a
poleward meridional circulation. This implies that in Eq.(5.5.2) the effect of the gravity-
wave drag on the zonal force X, in the lower stratosphere is opposite to that on the EP
flux divergence V-Sg. In addition, as pointed out in Section 5.5, possible positive VS,
due to mechanically dissipating interfacial Rossby waves in the midlatitude surf zone are
likely to be submerged by the large negative V-S; due to Rossby-wave breaking there.
Therefore, it is unlikely that a persistent and significant mean outflow can be driven by

mechanically dissipating Rossby waves in the real stratosphere.

Several recent studies have addressed aspects of air motion through the stratospheric
polar vortex. Results from barotropic models showed that there is little transport across
the vortex edge (Bowman, 1993a, Bowman and Chen, 1994). Diagnostic studies of Bow-
man (1993b), Dahlberg and Bowman (1994), and Chen et al. (1994) revealed that there
is a transition in the lower stratosphere in late winter around the 400K isentropic surface,
above which the polar vortex is nearly completely isolated from midlatitudes and below
which more mixing occurs. The mixing in the lower stratosphere is generally believed to
be the result of Rossby-wave breaking (Juckes and McIntyre, 1987; Juckes, 1989; Norton,
1994; Waugh et al., 1994; Plumb et al., 1994). On the other hand, trajectory calculations
using horizontal winds from the U.K. Meteorological Office data assimilation system and
vertical velocities from a radiation scheme showed that the net air motion is poleward
and downward throughout the winter (Manney et al., 1994). This is in agreement with

our above argument.
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5.7 Discussion

The growing interest in the polar vortex requires a closer look at fundamental processes
active in the polar region: The polar 4-plane approximation introduced in Section 5.2
is an attempt to simplify the dynamical analysis of the problem. By systematically
applying scaling analysis to the model equations for the polar vortex, it is shown that
the v term is the only effect of the spherical shape of the Earth that appears in the

equation of quasi-geostrophic potential vorticity in the polar region.

A sharp-edge model was used to analyze the characteristics of Rossby waves associated
with the polar vortex. This highly idealized model is deliberately simplified in a way that
is guided by intuition about which aspects of the real polar vortex are interesting and
need to be understood in a simplified context before there is hope of understanding the
same aspects of the real polar vortex. The unusually steep isentropic gradients of PV at
the vortex edge is one of the most significant characteristics of the polar vortex observed
in the winter lower stratosphere (Mclntyre and Palmer, 1983, 1984). High-resolution
modelling studies (Juckes and McIntyre, 1987; Juckes, 1989; Salby et al., 1990; Polvani
and Plumb, 1992; Yoden and Ishioka, 1993; Waugh ct al., 1994; Norton, 1994) have
revealed that, through Rossby-wave breaking, the air is usually stripped or eroded from
the vortex edge and mixed into the surrounding surf zone. As a result, the isentropic
gradients of PV that mark the vortex edge are further steepened. The sharp-edge model
studied here is not intended to describe the nonlinear dynamics of the Rossbhy-wave
breaking, vortex erosion, formation of the sharp vortex edge, etc. Instead, it confines
attention to the way in which the sharp-edge structure of the polar vortex supports
Rossby-wave motions. In the sharp-edge maodel, the basic PV gradients are idealized as
a é-function centred at the vortex edge, in contrast with the continuously-distributed PV
gradients in the Charney-Drazin model. With this idealization, the interfacial Rossby
waves can be derived analytically. Unlike the Rossby waves found in the Charney-Drazin

model, these interfacial waves are trapped on the vortex edge.

The dynamical differences between the interfacial Rossby waves in the sharp-edge
model and the Rossby waves in the Charney-Drazin model can be further highlighted
by examining the characteristics of wave-induced EP flux divergences (V:Sg). When
steady interfacial Rossby waves in the sharp-edge model are assumed to be dissipated

by Rayleigh friction and Newtonian cooling with equal relaxation coeflicients, V-8, is
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zero everywhere, in contrast to the negative V-5, everywhere in the Charney-Drazin
model (Holton, 1983a; Robinson, 1986; Andrews, 1987). When the Newtonian cooling
dominates the Rayleigh friction, namely if oy > g, V:S; associated with steady inter-
facial Rosshy waves in the sharp-edge model is always negative, while the corresponding
V-8¢ in the Charney-Drazin model is positive whenever Eq.(4.4.19) is satisfied (see the
discussion in §4.4.3). On the other hand, when an > ay, V-8 is positive in the sharp-
edge model and negative in the Charney-Drazin model, as shown by Egs.(5.5.23) and
(4.4.18), respectively.

We have argued that the dissipating interfacial Rossby waves are unlikely to drive a
signilicant mean flow out of the polar vortex. In particular, if the waves are thermally
dissipated, the wave-induced GLM (and TEM as well) meridional circulation is poleward

in the winter stratosphere.



CHAPTER 6

CONCLUSIONS

Some fundamental problems of wave-mean interaction relevant to the middle atmospheric
circulation are studied in this thesis. In the first part (Chapters 2 and 3) we demonstrate
how the wave-induced mean motion can be described in terms of the wave-induced PVS§
transport. In the second part (Chapters 4 and 5), Rossby waves and their mean effects
in the middle atmosphere are investigated within the framework of quasi-geostrophic

theory.

To demonstrate how, and at what order ol accuracy, the wave-induced mean mo-
tion can be described in terms of the wave-induced PVS transport, in Chapter 2 we
discuss a simple thought experiment in which iﬁertia.wgra,vity waves are dissipated in
some layer away from the bottom boundary in a Boussinesq fluid at rest. It is shown
that the wave-induced irreversible PVS transport depends crucially on wave dissipation.
More precisely, the wave-induced mean PV anomalies are non-zero only within the dis-
sipation layer. When the invertibility principle for the mean PV anomaly field applies
from a coarse-grain perspective, the resulting balanced mean motions (namely, the mean
motions inverted [rom the mean PV anomalies) are dissipation-dependent in the sense
that they vanish identically in the limit of zero dissipation. Moreover, these dissipation-
dependent balanced mean motions are equal to the O(¢?) dissipation-dependent mean
motions deduced from the momentum viewpoint. When the invertibility principle ap-
plies from a fine-grain perspective, the balanced mean motions include also the O(a?)
mean motions induced by the effect of wave transience. In addition, it is demonstrated
that the O(a?) dissipation-dependent mean motions are cumulatively much larger than
the O(a?) dissipation-independent mean motions as time goes on. Thus, even from a
coarse-grain perspective, the PVS description can grasp the essence of the dissipative

type of wave-induced mean motions.

It is understood that the wave-induced balanced mean motions are inherently approx-
imate motions. In the simplest case described in Chapter 2, the mean motions inverted

from the mean PV anomalies agree only to the leading order with mean motions described

159
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in terms of wave-induced momentum transport. Such agreement is unlikely to exist in
the higher order mean fields. Nevertheless, model studies (e.g., McIntyre and Norton,
190, 1995) have shown that the approximations involved in the balanced motions are
astonishingly good in comparison with what one might guess from the standard approx-
imate inversion theories that restrict attention to some small parameters. In practice,

therefore, the concept of balanced mean motion is widely applicable.

The theoretical basis of description of wave-mean interaction in terms of the PVS
transport is discussed in Chapter 3. Both integral and differential relationships between
the wave-induced PVS transport and momentum transport are derived. It is shown that
the wave-induced contribution to the PVS transport is closely related to the rate of
dissipation of quasimomentum. This result generalizes Taylor’s well-known identity to a
stably stratified, rapidly rotating fluid, such as the middle atmosphere. It also strongly
supports the idea that the general nature of the dissipative type of wave-induced mean
motion can be understood in a succinct and unified way, by viewing all the phenomena

in terms of the wave-induced PVS transport.

In Chapter 4, forced Rossby waves are examined in a Charney-Drazin model within
the framework of quasi-geostrophic theory. Our attention is focused on the dissipative
nature of the Rossby waves and their mean effects. It is shown that dissipative processes
in the atmosphere nol ounly act to damp the wave amplitude, but also affect signifi-
cantly the wave phase structure. For the simplest case in which the basic zonal flow and
buoyancy frequency are assumed constant and Rossby waves are dissipated by Rayleigh
friction and Newtonian cooling with equal, constant relaxation coeflicients, the phase
line always tilts westward with increasing altitude. If, on the other hand, the waves
are dissipated by Newtonian cooling alone, the phase line tilts eastward when the basic
zonal flow exceeds the Rossby critical velocity defined by Eq.(4.3.20). Under such cir-
cumstances, the divergence of quasi-geostrophic EP flux, V.S, is anomalously-signed
(positive) and the TEM meridional velocity is equatorward, while the GLM meridional
velocity is poleward. These results, which are found to be qualitatively applicable when
the basic zonal flow and buoyancy frequency vary with height, suggest that the existence
of anomalously-signed EP flux divergences in the middle atmosphere may be physically
possible, and the difference between the TEM and GLM meridional circulation is not

always negligible.

In Chapter 5, a sharp-edge model on the polar y-plane is introduced to study Rossby
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waves associated with the polar vortex. In this highly idealized model, the gradient of
the mean QGPV is described by a §-function centred at the vortex edge, in contrast to
the assumption in the Charney-Drazin model that the gradient of the mean QGPV is
continuously distributed. Results show that the vortex edge can support both free trav-
elling and forced Rossby waves that have a horizontal structure decaying exponentially
away from the vortex edge. When the polar night jet is strong enough, the free travelling
Rossby waves with each zonal wavenumber tend to travel eastward with approximately
the same zonal angular phase velocily, resembling many aspects of the behaviour of the
4-day waves observed in the winter stratosphere (Randel and Lait, 1991). Of the waves
forced by the topography, only those of planetary scale (usually zonal waves 1, 2 and
sometimes 3) can exist under the typical parameter conditions of the winter stratosphere
(depending crucially on the strength of the polar-night jet). Again, the sign of the wave-
induced quasi-geostrophic EP flux divergence depends on the relative strengths of the
mechanical and the thermal dissipation (in a certain well-delined sense of the dissipa-
tion strength). When the waves are assumed to be dissipated by Rayleigh friction and
Newtonian cooling with cqual relaxation coefﬁcienté, i.e., ap = ay where a, and ay are
respectively the Rayleigh friction coefficient and the Newtonian cooling coefficient, V- Sg¢
becomes zero everywhere. If ap > ay, on the other hand, V-8, is positive, and vice versa.
Note that these results are in sharp contrast to those obtained from the Charney—Drazin
model. The wave-induced meridional circulation and its relevance to current questions
about the effectiveness of the Rossby-wave restoring mechanism in inhibiting chemical
transport across the edge of the polar vortex are also discussed. Qur result gives no
support to the ‘flowing processor’ hypothesis, which requires a significant transport of
chemically perturbed air from within the polar vortex to mid-latitudes to explain the

observed ozone depletion.
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