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ABSTRACT

New thermodynamic data for skiagite garnet (Fe3Fe2
3þSi3O12) are derived from experimental

phase-equilibrium data that extend to 10 GPa and are applied to oxybarometry of mantle perido-

tites using a revised six-component garnet mixing model. Skiagite is more stable by 12 kJ mol–1

than in a previous calibration of the equilibrium 2 skiagite¼ 4 fayaliteþ ferrosiliteþO2, and this
leads to calculated oxygen fugacities that are higher (more oxidized) by around 1–1�5 log fO2

units.

A new calculation method and computer program incorporates four independent oxybarometers

(including 2 pyropeþ 2 andraditeþ2 ferrosilite¼2 grossularþ 4 fayaliteþ3 enstatiteþO2) for use

on natural peridotite samples to yield optimum log fO2
estimates by the method of least squares.

These estimates should be more robust than those based on any single barometer and allow

assessment of possible disequilibrium in assemblages. A new set of independent oxybarometers

for spinel-bearing peridotites is also presented here, including a new reaction 2 magnetiteþ
3 enstatite¼ 3 fayaliteþ 3 forsteriteþO2. These recalibrations combined with internally consistent

PT determinations for published analyses of mantle peridotites with analysed Fe2O3 data for gar-

nets, from both cratonic (Kaapvaal, Siberia and Slave) and circumcratonic (Baikal Rift) regions, pro-

vide revised estimates of oxidation state in the lithospheric mantle. Estimates of log fO2
for spinel

assemblages are more reduced than those based on earlier calibrations, whereas garnet-bearing

assemblages are more oxidized. Importantly, this lessens considerably the difference between gar-
net and spinel oxybarometry that was observed with previous published calibrations.
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INTRODUCTION

The redox state of the Earth’s mantle is of fundamental
importance in understanding how it melts, how the

abundance and disposition of carbon-bearing minerals

and fluids vary at greater depths, where diamonds

form, and the depths at which they entrap a variety of

silicate and oxide inclusions (Harte & Cayser, 2007;

Frost & McCammon, 2008; Dasgupta & Hirschmann,
2010; Foley, 2010; Harte, 2010; Stagno et al., 2013).

Most attempts to determine mantle log fO2
are based

on the pioneering calibration of Gudmundsson & Wood
(1995), who used an oxygen barometer based on the

reaction

2ski ¼ 4faþ fsþO2 (1)

where ski is skiagite (Fe3Fe2
3þSi3O12), fa is fayalite

(Fe2SiO4) and fs is ferrosilite (Fe2Si2O6). Accounting for

the activities of ski, fa and fs in garnet, olivine and
orthopyroxene allows determination of the oxygen

activity, usually expressed in terms of log fO2
. More

recently this calibration has been questioned by Stagno
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et al. (2013), who proposed an alternative oxybarometer

based on the equilibrium of Luth et al. (1990):

2pyþ 2 andrþ 2 fs ¼ 2 grþ 4 faþ 3 enþO2 (2)

where py is pyrope (Mg3Al2Si3O12), andr is andradite

(Ca3Fe2Si3O12), gr is grossular (Ca3Al2Si3O12), and en is

enstatite (Mg2Si2O6). On the basis of their own oxygen
sensor measurements, Stagno et al. (2013) suggested

that reaction (2), calibrated using the thermodynamic

data of Holland & Powell (2011), provides an oxybarom-

eter that satisfies the available data better than reaction

(1). Stagno et al. (2013) showed that calculations

based on reaction (1) deviated from their experiments
by 0�5–2 log units in which log fO2

was measured by an

Ir–Fe sensor, with the largest deviations occurring at the

highest pressures (6–7 GPa). Here we show that there

was an error in the original thermodynamic calibration

of reaction (1) and proceed to derive new thermody-

namic data for skiagite that allow reconciliation

between the two barometers and pave the way to using
a multi-reaction approach involving optimization of log

fO2
by least squares. This should help determine

whether minerals in an assemblage have equilibrated

effectively and hence should provide more robust esti-

mates for log fO2
.

The problem with the original calibration of reaction
(1) lies in an error in the Gibbs free energy adopted for

that reaction by Gudmundsson & Wood (1995). In their

analysis the Gibbs energy change for reaction (1) was

estimated as 133�3 kJ at 1 bar and 1100�C (log K1¼
–5�07), this value being based on the calculations of

Woodland & O’Neill (1993) on the reaction involving

hercynite (hc, FeAl2O4):

skiþ hc ¼ almþmt (3)

for which they derived a Gibbs energy of –69�3 kJ. This

led them, through a sequence of calculations based on

thermodynamic data from Holmes et al. (1986) and

Holland & Powell (1990), to deduce the free energy of

reaction (4) involving quartz (qz, SiO2) and iron metal

(Fe)

ski ¼ 5Feþ 3qþ 3O2 (4)

as 981�0 kJ at 1 bar and 1100�C. This value was used by

Gudmundsson & Wood (1995) in their derivation of the

free energy for reaction (1). A recalculation of the free

energy of reaction (4) (see Appendix), with the data

sources used by Woodland & O’Neill (1993), leads to a

significantly smaller value (970�4 kJ), which in turn
causes the oxybarometer to be systematically in error.

The newer thermodynamic data of Holland & Powell

(2011), as opposed to those of Holland & Powell (1990),

lead to essentially the same value (969�0 kJ) and there-

fore a reassessment and recalibration of reaction (1) is

warranted.

Reaction (1) requires thermodynamic data for
skiagite that may be combined with existing data for

fayalite, ferrosilite and oxygen. The following three

equilibria, involving hc (hercynite, FeAl2O4), alm

(almandine, Fe3Al2Si3O12), frw (ferroringwoodite,

Fe2SiO4), mt (magnetite, Fe3O4), and coe (coesite, SiO2)

are involved in the experimental data of Woodland &

O’Neill (1993):

skiþ hc ¼ almþmt (3)

ski ¼ frwþmtþ 2 coe (5)

frwþ hcþ 2 coe ¼ alm: (6)

It should be noted that reaction (6) is a linear combina-

tion of (3) and (5) but can provide a test of consistency
between the experimental results of Woodland &

O’Neill (1993) and the thermodynamic data of Holland

& Powell (2011) that is independent of skiagite.

Woodland & O’Neill (1993) used only reaction (3) above

to derive thermodynamic data for skiagite, because the

spinel in their lower pressure experiments (<45 kbar)

was dominantly a hercynite–magnetite solid solution,
whereas in the higher pressure runs increasing

amounts of ferroringwoodite component were present.

Availability of thermodynamic data for ferroringwoodite

in the more recent dataset of Holland & Powell (2011)

allows use of reaction (5) as an additional check on

internal consistency of the data. The lowest pressure
studied by Woodland & O’Neill (1993) involved quartz

rather than coesite, and so, although the results

reported here involve coesite, quartz was used in place

of coesite in our analysis of the 27 kbar runs.

Clearly, use of reactions (3), (5) and (6) requires a sol-

ution model for ternary hc–mt–frw spinel. In this study
we assume complete disorder in spinel and use the

three-site model simplification as proposed by Bryndzia

& Wood (1990) and Wood et al. (1990). Several lines of

evidence suggest that this is reasonable and adequate

for the purposes of this study: first, a binary mt–hc

spinel using Whc,mt¼ 38 kJ allows calculation of the sol-

vus of Turnock & Eugster (1962) almost perfectly; sec-
ond, O’Neill & Navrotsky (1983) in their treatment of

order–disorder in spinels also found that Whc,mt¼ 38 kJ

was required to fit the solvus using their more complex

model; third, the calorimetry performed by Navrotsky

(1986) on MgFe2O4–MgAl2O4 demands a value for

Whc,mt of 40�4 6 4 kJ, which matches closely that found
here for the analogous binary FeFe2O4–FeAl2O4; fourth,

the activity of hercynite and magnetite in a binary spinel

at 1300�C has been experimentally measured by Petric

et al. (1981), and the calculated activities of both hercyn-

ite and magnetite are close to 0�5 at Xmt¼0�5 as in the

experimental determination; finally, the ternary spinel

model when fitted to the three reactions (3), (5) and (6)
using the experiments of Woodland & O’Neill (1993)

yields thermodynamic data that are entirely consistent

with the dataset of Holland & Powell (2011), as shown

below. These considerations suggest that the simple

spinel model that we have used is an adequate approxi-

mation for this system at these conditions.
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RECALIBRATION OF THE SKIAGITE BAROMETER

Woodland & O’Neill (1993) equilibrated garnet and

spinel experimentally at 1100�C and analysed their

results using equilibrium (3). They deduced the free
energy of skiagite from their data, using only experi-

ments at pressures below 45 kbar (where the spinels

contain very little of the frw end-member). Woodland &

O’Neill (1993) also assumed that, at these conditions,

garnet and spinel form binary alm–ski and mt–hc solid

solutions. We have extended their calibration by incor-

porating all of their high-pressure data using the ternary
mt–hc–frw solution model for spinel outlined above. For

reaction (3) the equilibrium constant is

Kð3Þ ¼
aalmamt

askiahc
:

In the binary alm–ski garnet (gt), with mixing on only

the Y sites, the ideal activities (id) are given as

aid
ski ¼ ðX

gt

Fe3þ;Y
Þ2 ¼ X 2

ski; aid
alm ¼ ðX

gt
Al;YÞ

2 ¼ X 2
alm

and in a ternary spinel (sp) the ideal mixing activities become

aid
mt ¼ 27

4
X sp

Fe ðX
sp

Fe3þÞ2;aid
hc ¼ 27

4
X sp

Fe ðX
sp
Al Þ

2;

aid
frw ¼ 27

4 X sp
Si ðX

sp
Fe Þ

2:

Adding in non-ideality, the usual condition of equili-

brium at 1 bar and 1100�C (1373 K) may be written as

0 ¼ DGð3Þ1;1373 þ PDVð3Þ þ RT ln
aid

mtðaid
almÞ

2

aid
hcðaid

skiÞ
2
þ RT lnci :

where DG(3)1,1373 is the Gibbs free energy of reaction (3)

at 1 bar and 1373 K and the
P

RTln ci terms come from a
regular solution model (see Appendix) in both garnet

(ski, alm) and spinel (hc, mt, frw), giving for reaction (3)

0 ¼ DGð3Þ1;1373 þ PDVð3Þ þ RT ln
aid

mtðaid
almÞ

2

aid
hcðaid

skiÞ
2

þWalm;skið2pski � 1Þ þWhc;mtðphc � pmtÞ þ pfrwDW

where DW¼ (Wfrw,mt – Whc,frw), and pi is the proportion of

end-member i. The end-member proportions are as fol-

lows: pski ¼ X gt
ski, phc ¼ 3

2 X sp
Al , pmt ¼ 3

2 X sp

Fe3þ and

pfrw ¼ 3X sp
Si . The data of Woodland & O’Neill (1993) allow

evaluation of the activity terms, and DV(3) is taken as

approximately –0�205 kJ kbar–1 (linearizing the data

in Table 1 at the pressures and temperatures of the experi-

ments). We can take Walm,ski¼2�0 kJ, under the assump-

tion that Al–Fe3þ mixing is the same as in grossular–

andradite (Holland & Powell, 2011; see Appendix), and
Whc,mt¼ 38 kJ as described above. Plotting

�RT ln
aid

mtðaid
almÞ

2

aid
hcðaid

skiÞ
2
þ 0 �205P

� 38ðphc � pmtÞ � 2ð2pski � 1Þ

against pfrw yields a slope of DW and intercept of

DG(3)1,1373, thus providing a rapid visual estimate for the

free energy of skiagite at this temperature (Fig. 1). The

data at pressures greater than 45 kbar, disregarded in

the analysis of Woodland & O’Neill (1993), are repre-

sented in Fig. 1 by values of pfrw> 0�1 and are clearly

required in providing a sufficient range to determine a
slope, and hence a value for DW.

Additionally, reaction (5) provides further endorse-

ment for the skiagite free energy from the experiments

of Woodland & O’Neill (1993). The equilibrium condi-

tion for reaction (5) is

0 ¼ DGð5Þ1;1373 þ PDVð5Þ þ RT ln
aid

mta
id
frw

aid
ski

þWalm;skið1� pskiÞ2

þWhc;mtphcð1� 2pmtÞ þWfrw;mt½1� 2pfrwðphc þ pmtÞ�

þDW ð2pfrwphc � phcÞ

which allows simultaneous determination of both

Wfrw,mt and the free energy of skiagite. Furthermore,

reactions (3) and (5) are linearly related by the equili-

brium (6) frwþhcþ 2 coe¼alm, for which the data in

Holland & Powell (2011) provide a constraining value of

DG(6)1,1373¼ –32�1 kJ. All three equilibria were therefore

fitted to the experimental data simultaneously, using
THERMOCALC (Powell & Holland, 1988) to generate an

updated version of the Holland & Powell (2011) dataset.

Thermal expansion and compressibility for all end-

members were incorporated (see Table 1). The best fit

to all of the data yields

DW ¼ 45612 kJ

Wfrw;mt ¼ 2368 �5 kJ

Whc;frw ¼ –2268 �5 kJ

DGð3Þ1;1373 ¼ –69 �561 �1 kJ

DGð5Þ1;1373 ¼ –37 �461 �1 kJ:

Experimental data for reaction (3) fit the model

remarkably well, yielding a value for the free energy at

1 bar and 1373 K of –69�5 kJ, which is in near-perfect

agreement with the earlier analysis of Woodland &

O’Neill (1993). This is unsurprising, given that both

studies use essentially the same value of Whc,mt¼ 38 kJ,

and at the pressures of the Woodland & O’Neill (1993)
analysis (<45 kbar) the spinels are close to the binary

hercynite–magnetite. However, the newly derived free

energy for reaction (1) differs from that used by

Gudmundsson & Wood (1995) by over 24 kJ, resulting

in log K1 values that are more positive by 1 log unit than

those used in the oxygen barometer calibration by
Gudmundsson & Wood (1995). Thus the apparent

agreement between the derived barometer expression

and the oxygen sensor experiments of Gudmundsson

& Wood (1995) is fortuitous. Oxygen fugacities that are

1 log unit more oxidizing than those in the literature

appear to be in very good agreement with the meas-

ured and calculated bulk Fe2O3 contents of mantle peri-
dotites (Jennings & Holland, 2015, fig. 14). The new free
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energies of reaction are found to be non-linear in pres-

sure and temperature and are fitted with a simple poly-
nomial whose coefficients are given in the Appendix.

Because the magnitudes of the mixing energy terms in

garnet, particularly the cross-site or reciprocal reaction

terms, contribute significantly to the application of the

barometer they require further discussion and assess-

ment. It should be stressed that inclusion of reaction (5)
makes no discernible difference to the derived skiagite

free energy, but coupled with reaction (6) it does consti-

tute a valuable endorsement of the internal consistency

of the thermodynamic data and of the higher P experi-

mental results.

Recalibration of the garnet mixing model
The magnitudes of the free energies of the following
four reciprocal reactions strongly affect the garnet activ-

ities used in the barometer reaction (1):

Ca3Fe2Si3O12 þ Fe3Al2Si3O12

¼ Fe3Fe2Si3O12 þ Ca3Al2Si3O12 (7)

Ca3Fe2Si3O12 þMg3Al2Si3O12

¼Mg3Fe2Si3O12 þ Ca3Al2Si3O12 (8)

Mg3Al2Si3O12 þ Ca3Cr2Si3O12

¼Mg3Cr2Si3O12 þ Ca3Al2Si3O12 (9)

Fe3Al2Si3O12 þ Ca3Cr2Si3O12

¼ Fe3Cr2Si3O12 þ Ca3Al2Si3O12: (10)

These four reactions represent the cross-site contri-

butions to the garnet activities (see Appendix), such

that WCaAlFeFe3XY¼ –DG(7), WCaAlMgFe3XY¼ –DG(8),

WCaAlMgCrXY¼ –DG(9) and WCaAlFeCrXY¼ –DG(7) are the
cross-site energies for garnet X and Y sites (e.g. Powell

& Holland, 1993). Gudmundsson & Wood (1995) recog-

nized that varying the garnet mixing parameters, other

than for reactions (7) and (8), makes only small differen-

ces to results in calculated log fO2
for mantle peridotite

garnets with low to moderate Cr contents. Reactions (9)
and (10) become significant in Cr-rich garnets. Luth

et al. (1990) also recognized that WAl,Fe3þ¼Wgr,andr can,

Table 1. Thermodynamic data used in this study

H sd(H) S V a b c d a0 K0 K0
0

fo –2172�64 0�54 95�10 4�366 0�2333 0�1494 –603�8 –1�8697 2�85 1285�0 3�84
fa –1477�94 0�64 151�00 4�631 0�2011 1�7330 –1960�6 –0�9009 2�82 1256�0 4�68
py –6282�03 1�00 269�50 11�313 0�6335 0 –5196�1 –4�3152 2�37 1743�0 4�05
alm –5261�08 1�21 342�00 11�525 0�6773 0 –3772�7 –5�0440 2�12 1900�0 2�98
gr –6642�99 1�38 255�00 12�535 0�6260 0 –5779�2 –4�0029 2�20 1720�0 5�53
andr –5769�28 1�47 316�40 13�204 0�6386 0 –4955�1 –3�9892 2�86 1588�0 5�68
knor –5706�17 2�17 302�00 11�738 0�6130 0�3606 –4178�0 –3�7294 2�37 1534�0 4�34
ski –4332�16 1�92 403�40 12�144 0�6899 0 –2948�6 –5�0303 2�85 1574�0 6�70
uv –6057�65 1�62 320�90 13�077 0�6051 0�3606 –4760�6 –3�4171 2�20 1620�0 4�70
en –3090�25 0�63 132�50 6�262 0�3562 –0�2990 –596�9 –3�1853 2�27 1059�0 8�65
fs –2388�92 0�76 189�90 6�592 0�3987 –0�6579 1290�1 –4�0580 3�26 1010�0 4�08
sp –2301�22 0�79 82�00 3�978 0�2229 0�6127 –1686�0 –1�5510 1�93 1922�0 4�04
herc –1953�18 0�80 113�90 4�075 0�2167 0�5868 –2430�2 –1�1783 2�06 1922�0 4�04
mt –1114�85 0�90 146�90 4�452 0�2625 –0�7205 –1926�2 –1�6557 3�71 1857�0 4�05
frw –1471�98 0�72 140�00 4�203 0�1668 4�2610 –1705�4 –0�5414 2�22 1977�0 4�92
q –910�70 0�26 41�43 2�269 0�0929 –0�0642 –714�9 –0�7161 0 730�0 6�00
coe –906�98 0�26 39�60 2�064 0�1078 –0�3279 –190�3 –1�0416 1�23 979�0 4�19
iron 0�00 0�00 27�09 0�709 0�0462 0�5159 723�1 –0�5562 3�56 1640�0 5�16
O2 0�00 0�00 205�20 0 0�0483 –0�0691 499�2 –0�4207 0 0 0

End-member names correspond to those of Holland & Powell (2011). H is the regressed enthalpy of formation from the elements at
1 bar and 298 K; sd(H) is one standard deviation on the enthalpy of formation; S is the entropy; V the volume (all properties at 1 bar
and 298 K); a, b, c and d are the coefficients in the heat capacity polynomial Cp¼aþbTþ cT�2þdT�1/2; a0 and K0 are thermal expan-
sion and bulk modulus at 298 K; K0’ is the first derivative of bulk modulus at 298 K. Units: H, kJ; S, J K–1; V, kJ kbar–1; Cp, kJ K–1; a0, T–1;
K0, kbar. It should be noted that Cp(b) and a0 need to be multiplied by 10–5. [See Holland & Powell (2011) for further information on the
dataset including details of unchanged order–disorder parameters for sp, herc, mt, iron, q.] Data sources for end-members changed
since Holland & Powell (2011) are as follows. ski: V, Woodland & O’Neill (1993); K0, K0’, Woodland et al. (1999); S, Cp, a0, estimated
from gr, andr and alm. alm, S, Cp, Dachs et al. (2012). knor: S, reduced after Wijbrans et al. (2014). uv: S, V, Klemme et al. (2005); Cp,
estimated from gr, esk and cor; a0, as gr; K0, K0’, Leger et al. (1990).

Fig. 1. The data of Woodland & O’Neill (1993) used to calibrate
skiagite properties, according to reaction (3). The plot is of

DG� ¼ �RT ln
aid

mtðaid
alm
Þ2

aid
hc
ðaid

ski
Þ2 þ 0 �205P � 38ðphc � pmtÞ � 2ð2pski � 1Þ

against pfrw, where pfrw is the proportion of ferrroringwoodite
in spinel. The line has slope DW¼ (Wfrw,mt – Whc,frw) and inter-
cept DG(3)1,1373. Woodland & O’Neill (1993) used only the data
for pfrw<0�1 in their analysis (see text for further explanation).
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if large in value, lead to significant changes. We find

that uncertainties of 10 kJ in these three mixing parame-

ters lead to changes of the order of 0�5 log fO2
units,

whereas similar uncertainties on all other mixing

parameters produce barely perceptible differences.
Although of minor impact, we prefer to include all the

within-site mixing energies to avoid any small system-

atic bias to calculated log fO2
, but concentrate here on

the important variables affecting calculated log fO2
.

The thermodynamic dataset of Holland & Powell

(2011), updated here with the addition of the skiagite

end-member, provides the free energy for reaction (7),
DG(7), linearized as 53�8þ 0�0017T – 0�068P kJ. Similarly,

the free energy of reciprocal reaction (9), DG(7), is given

as 10�2 – 0�0338Tþ 0�121P kJ. This last energy is pro-

vided by inclusion of uvarovite in the updated Holland

& Powell (2011) dataset through the breakdown reac-

tion uvarovite¼pseudowollastoniteþ eskolaite, deter-
mined experimentally by Huckenholz & Knittel (1975).

From literature data and the dependent end-member

relations (Powell & Holland, 1999) we may derive a

complete set of internally consistent garnet mixing

energies (see Appendix) involving skiagite and other

garnet end-members as follows:

Wpy;alm ¼ 4�0þ0�01P Walm;sp ¼ 2�0þ0�02P

Wpy;gr ¼ 40�0�0�012T þ0�1P Wgr;ski ¼ �47�8�0�0017T þ0�168P

Wpy;ski ¼ 6�0þ0�01P Wgr;uv ¼ 2�0

Wpy;uv ¼ 31�8þ0�0218T – 0�021P Wgr;sp ¼ 0�06P

Wpy;sp ¼ 9�0þ0�04P Wski;uv ¼ –58�0þ0�0321T þ0�047P

Walm;gr ¼ 4�0þ0�1P Wski;sp ¼ –19�8 – 0�0017T þ0�058P

Walm;ski ¼ 2�0 Wuv;sp ¼ 32þ0�03P

Walm;uv ¼ –4�2þ0�0338T – 0�021P

and for a set involving andradite, the following addi-
tional energies may be calculated:

Wpy;andr ¼ 95�8 – 0�0103T þ0�032P Wgr;andr ¼ 2�0

Walm;andr ¼ 59�8þ0�0017T þ0�032P Wsp;andr ¼ 32�0þ0�03P

Wandr;uv ¼ 2�0 Wandr;ski ¼ 4�0þ0�1P:

A new measurement on the entropy (301 J K–1) of

knorringite (knor, Mg3Cr2Si3O12) has recently been
determined by Wijbrans et al. (2014) that is slightly

smaller than the value (317 J K–1) estimated by Holland

& Powell (2011). We have elected to use these updated

values in deriving the revised dataset and hence in reac-

tion (9), even though the effects on the oxybarometer

are negligibly small (less than 0�01 in log fO2
). It should

be noted that, although garnets are asymmetric in their

mixing properties (especially for Ca–Mg mixing), a sim-

pler symmetric model has been fitted to garnets that

are low in Ca relative to Mg, such as pyropes found in

mantle peridotites. Use of the symmetric model has an

imperceptible effect on calculated oxygen fugacity.

The equilibrium relation for reaction (1), rewritten as

logfO2
¼ 1

ln ð10Þ
�DGð1ÞP ;T

RT
� ln

a4
faafs

a2
ski

 !

may be used to determine oxygen fugacity using the

expressions in the Appendix for the activities of fa, fs

and ski and the free energy of reaction (1).

Revised garnet oxybarometer reactions
The garnet mixing model above may be used directly in

reactions such as (1) and (2) to determine oxygen fugac-

ities of garnet-bearing peridotites. With the new ther-

modynamic data for skiagite it is possible to write 25

barometer reactions among the mineral end-members

almandine (alm), skiagite (ski), andradite (andr), grossu-
lar (gr), pyrope (py), forsterite (fo), fayalite (fa), enstatite

(en), ferrosilite (fs) and oxygen (O2). However, with 10

end-members and six components (Ca–Mg–Fe–Al–Si–

O), only 10 – 6¼4 of these reactions are independent

and provide all the information in the system. We

choose the following four independent reactions, using

data from the updated Holland & Powell (2011) dataset:

2 ski ¼ 4 faþ fsþO2 (1)

2 pyþ 2 andrþ 2 fs ¼ 2 grþ 4 faþ 3 enþO2 (2)

2 skiþ fo ¼ 5 faþ enþO2 (11)

6skiþ 2 py ¼ 2 almþ 12 faþ 3 enþ 3O2 (12)

where reactions (1) and (2) are the equilibria used in the

barometers of Gudmundsson & Wood (1995) and

Stagno et al. (2013), respectively. Both are now formu-

lated on the same set of internally consistent thermody-
namic data. It should be noted that reciprocal reaction

(7) is one of the 25 reactions that may be written among

these end-members and, because it is involved in the

garnet mixing model, lends an added degree of internal

consistency to the barometry. Each of the four reactions

(1), (2), (11) and (12) furnishes a value of log fO2
that will

be identical only in the case of perfect activity models,
perfect thermodynamic data and perfect equilibrium in

the mineral assemblage. However, an optimum log fO2

may be found from these reactions by least squares,

analogous to the average pressure calculations of

Powell & Holland (1988). In the least squares fit, each

reaction carries different weight according to how well
its thermodynamic data are known (via uncertainties

and correlations among the free energies from the ther-

modynamic dataset, and in the uncertainties in the mix-

ing parameters for garnet, orthopyroxene and olivine).

Additionally, the uncertainties in weight per cent of all

oxides in garnet, olivine and orthopyroxene are propa-

gated to contribute to the uncertainty of the activities in
each reaction and hence its weight. In these calculations

the errors are assigned as follows: in mineral analyses

the uncertainty on each oxide weight per cent is taken

as 1% relative with a minimum uncertainty of 0�02 wt %.

Uncertainty in Fe2O3 for garnet is taken as 20% of the

measured value [from scatter in experimental measure-
ment and from corrections from 80 K to room tempera-

ture (Woodland & Ross, 1994)]. In olivine all Fe is taken
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as FeO, and Fe2O3 in orthopyroxene is estimated as

0�4 6 0�3 wt %, based on the 14 tabulated measure-

ments of Canil & O’Neill (1996). These assumptions are

much more defensible than estimating Fe2O3 from

pyroxene stoichiometry, which produces large random
variations that may far exceed the measured values of

Canil & O’Neill (1996). The uncertainty on each interac-

tion energy (including reciprocal terms) is assigned as

10% relative with a minimum uncertainty of 1�0 kJ,

based on typical calorimetric errors, and the uncertain-

ties and correlations between the enthalpies of reaction

are taken from the updated Holland & Powell (2011)
dataset. Doubling or halving these error assumptions

made little difference to calculated log fO2
values. Error

propagation is used to determine the covariance matrix

(V) for the log fO2
values from the four reactions (in col-

umn vector F) and the optimum fav is found by the least

squares result

fav ¼ r2
fitð1T V�1F Þ

where r2
fit ¼ ð1

T V�11Þ�1 and 1 is a column vector of
ones.

The appropriateness of averaging the four reactions

in this way is provided by a v2 test and the value of rfit,

the mean weighted deviation (�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSWD
p

). If there is

good agreement among the four equilibria within their

mutual errors, the overall rfit is expected to be around
1�0 or less [see the discussion by Powell & Holland

(1994) for the analogous case of average pressure cal-

culations]. Values of rfit significantly greater than a cut-

off value of 1�61 [the maximum allowed by a v2 test at

the 95% confidence level for three degrees of freedom

for the four independent reactions; see Powell &

Holland (1994)] indicate that the barometers disagree

sufficiently and averaging is inappropriate. This could

occur either through disequilibrium, through analytical
error, or simply by choosing an inappropriate tempera-

ture or pressure for the calculation. The correlations

among the reactions frequently cause the calculated

optimal log fO2
to differ considerably from a simple

average of the four log fO2
values. Enlarging the

assumed uncertainties on the input variables (e.g.

chemical analyses, W values, etc.) will cause rfit to be
smaller, so a failure of the v2 test may be flagging that

input uncertainties have been underestimated rather

than pointing to disequilibrium in the sample.

Output is shown in Table 2 from program GtfO2 for a

mantle garnet-harzburgite from the Finsch mine,

Kaapvaal Craton (F5; Lazarov et al., 2009) that equili-
brated at 54 kbar and 1150�C (Table 3). The output

shows input mineral analyses for garnet, orthopyrox-

ene and olivine, recalculated cations and their uncer-

tainties, and calculated activities for end-members

used in oxybarometry. The calculated Dlog fO2
(FMQ)

values are –2�69 6 0�89, –2�40 6 0�90, –2�45 6 0�88 and
–1�95 6 0�90 for reactions (1), (2), (11) and (12), respec-

tively. The least squares optimum is –2�63 6 1�28, with a

rfit value (labelled f in the output) of 1�49. This is smaller

than the cut-off of 1�61 so combining the reactions is

appropriate and the assemblage is reasonably well

equilibrated. The fact that the v2 test for internal consis-

tency among the four independent reactions is passed

Table 2. Example output from program GtfO2; sample F5, for P¼54�4 kbar and T¼1150�C

SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O Total

Garnet
wt % 42�27 0�08 19�03 6�36 0�41 5�98 0�32 21�08 5�75 0�02 0�00 101�30
cations 2�998 0�004 1�591 0�357 0�022 0�355 0�019 2�228 0�437 0�003 0�000 8�014
cat 6 0�028 0�001 0�025 0�007 0�015 0�017 0�001 0�035 0�009 0�003 0�000
ln a(py)¼ –1�18 (6 0�03)
ln a(al) ¼ –6�69 (6 0�13)
ln a(sk) ¼ –15�78 (6 1�37)

Orthopyroxene
wt % 58�53 0�01 0�56 0�30 0�40 4�07 0�11 36�40 0�64 0�09 0�00 101�11
cations 1�980 0�000 0�022 0�008 0�010 0�115 0�003 1�835 0�023 0�006 0�000 4�003
cat 6 0�014 0�001 0�001 0�001 0�005 0�006 0�001 0�027 0�001 0�001 0�000
ln a(fs) ¼ –5�38 (6 0�10)
ln a(en) ¼ –0�17 (6 0�03)

Olivine
wt % 41�48 0�00 0�00 0�00 0�00 7�06 0�09 51�08 0�03 0�00 0�00 99�74
cations 1�005 0�000 0�000 0�000 0�000 0�143 0�002 1�844 0�001 0�000 0�000 2�995
cat 6 0�011 0�000 0�000 0�000 0�000 0�003 0�000 0�021 0�001 0�000 0�000
ln a(fa) ¼ –4�74 (6 0�04)
ln a(fo) ¼ –0�16 (6 0�02)

Reaction log fO2
6 DelFMQ

FMQ –5�40 0�06 2mtþ3q¼3faþ2O2

R1 –8�09 0�89 –2�69 2ski¼4faþ fsþO2

R2 –7�80 0�90 –2�40 2skiþ fo¼5faþenþO2

R3 –7�85 0�88 –2�45 6skiþ2py¼2almþ12faþ3enþ3O2

R4 –7�35 0�90 –1�95 2pyþ2andrþ2fs¼2gr þ4faþ3enþO2

avfo2 –8�03 1�28 –2�63 with f¼1�49 (limit 1�61)
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Table 3. Pressure, temperature and oxygen fugacity estimates for mantle xenoliths from the Baikal Rift, Siberian Craton, Kaapvaal
Craton, and Slave Craton

Sample Rock type This study Published data

Dlog fO2
(FMQ) Dlog fO2

(FMQ)

P T Sp Gt P T Sp Gt
(kbar) (�C) (kbar) (�C) (BW90) (GW95)

Baikal Rift, Vitim Field
Spinel lherzolites
314-56 lherz 16�7 858 –0�84 n.a. 15�0 818 –0�77 n.a.
314-58 lherz 15�8 813 –0�44 n.a. 14�0 775 –0�29 n.a.
Vt11 lherz 17�2 881 0�54 n.a. 17�0 937 0�62 n.a.
Vt12 lherz 16�4 850 –0�22 n.a. 16�0 885 –0�19 n.a.
314-5 lherz 20�8 1048 –0�05 n.a. 21�0 1055 0�28 n.a.
314-6 lherz 21�1 1072 –1�29 n.a. 19�0 1006 –0�96 n.a.
314-59 lherz 21�9 1101 –0�79 n.a. 21�0 1061 –0�24 n.a.
Vt13 lherz 22�0 1105 0�01 n.a. 22�0 1109 0�65 n.a.
Vt14 lherz 21�0 1066 –0�67 n.a. 22�0 1098 –0�32 n.a.
Garnet–spinel lherzolites
313-5 lherz 21�4 1087 –0�35 –1�79 22�0 1097 0�11 –2�97
313-37 lherz 22�9 1074 –0�38 n.a. 22�0 1031 –0�09 n.a.
314-74 lherz 20�6 1067 –0�03 n.a. 23�0 1103 –0�09 n.a.
314-230 lherz 20�6 1074 –0�43 n.a. 21�0 1077 –0�07 n.a.
314-580 lherz 22�0 1106 –0�17 n.a. 22�0 1096 –0�07 n.a.
Vt4 lherz 19�4 1044 0�20 –0�78 20�0 1065 0�30 –2�10
Vt6 lherz 19�7 1012 n.a. –1�59 21�0 1030 n.a. –3�02
Vt7 lherz 20�9 1073 –0�32 –1�58 22�0 1092 –0�01 –3�16
Vt8 lherz 20�4 1069 –0�25 –1�16 21�0 1089 –0�41 –2�62
Vt9 lherz 22�0 1057 0�11 –1�52 24�0 1096 0�26 –2�84
Vt15 lherz 18�3 929 –0�09 –0�14 21�0 985 –0�09 –1�60
Vt37 lherz 20�5 1041 n.a. –0�56 21�0 1053 n.a. –1�87
Vt44 lherz 20�0 1018 n.a. –0�98 21�0 1031 n.a. –2�34
Vt52 lherz 21�2 1074 n.a. –0�67 22�0 1099 n.a. –1�97
Garnet lherzolites
313-3 lherz 21�9 1023 n.a. –1�82 21�0 981 n.a. –2�84
313-4 lherz 20�7 1032 n.a. –1�81 20�0 1027 n.a. –2�93
313-6 lherz 20�5 1041 n.a. –1�80 21�0 1053 n.a. –2�86
313-8 lherz 21�6 1067 n.a. –1�67 21�0 1039 n.a. –2�81
Vt5 lherz 20�0 1037 n.a. –0�92 21�0 1053 n.a. –2�50
Vt16 lherz 19�9 1040 n.a. –1�11 20�0 1051 n.a. –2�53
Vt19 lherz 22�0 1040 n.a. –0�41 24�0 1078 n.a. –1�98
Vt20 lherz 20�8 1031 n.a. –0�58 23�0 1076 n.a. –1�96
Vt39 lherz 20�3 1034 n.a. –1�52 21�0 1045 n.a. –2�89
Vt40 lherz 20�0 1030 n.a. –1�11 20�0 1041 n.a. –2�51
Vt43 lherz 22�9 1173 n.a. –1�47 25�0 1186 n.a. –2�79
Vt46 lherz 20�2 1024 n.a. –1�58 21�0 1036 n.a. –2�82
Vt47 lherz 19�1 989 n.a. –1�53 20�0 1005 n.a. –2�93
Siberian Craton, Udachnaya
Spinel-bearing peridotites
U15 harz 33�3 827 –0�60 n.a. 38�0 917 0�02 n.a.
U24 harz 28�4 742 –1�09 n.a. 29�0 763 –0�65 n.a.
U52 harz 24�6 678 –0�55 n.a. 27�0 738 –0�20 n.a.
U97 harz 23�9 667 –0�09 n.a. 24�0 676 0�76 n.a.
U151 lherz 32�2 806 –0�52 n.a. 25�0 692 0�62 n.a.
U504 harz 30�5 779 –1�71 n.a. 29�0 761 –0�93 n.a.
U1123 harz 22�5 779 –0�36 n.a. 21�0 615 0�31 n.a.
87/55 harz 32�7 815 n.a. n.a. 32�0 811 n.a. n.a.
87/72 dun 32�9 818 n.a. n.a. 32�0 814 n.a. n.a.
Garnet–spinel harzburgites
U283 harz 29�3 762 –1�37 0�23 32�0 791 –1�01 –0�88
87/100 harz 46�2 1132 n.a. –2�66 46�0 1132 n.a. –2�43
87/59 harz 42�0 552 n.a. –2�06 42�0 950 n.a. –4�64
Garnet-bearing peridotites
Uv-4-05 lherz 62�3 1292 n.a. –2�03 62�3 1292 n.a. –3�70
Uv-9-05 lherz 30�9 768 n.a. –1�08 31�0 770 n.a. –2�50
Uv-26-04 lherz 51�5 960 n.a. –1�81 51�6 962 n.a. –3�40
Uv-50-04 lherz 56�1 1278 n.a. –3�60 56�1 1278 n.a. –5�00
Uv-129-03 lherz 53�4 1167 n.a. –1�34 53�5 1168 n.a. –3�30
Uv-87-03 lherz 61�2 1324 n.a. –1�86 61�2 1324 n.a. –3�60
Uv-59-03 lherz 59�3 1244 n.a. –2�31 59�3 1244 n.a. –4�00
Uv-45-03 lherz 36�9 897 n.a. –1�88 37�0 899 n.a. –3�00
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Table 3. Continued

Sample Rock type This study Published data

Dlog fO2
(FMQ) Dlog fO2

(FMQ)

P T Sp Gt P T Sp Gt
(kbar) (�C) (kbar) (�C) (BW90) (GW95)

Uv-88-03 lherz 69�0 1363 n.a. –2�39 69�0 1364 n.a. –4�00
Uv-130-03 lherz 70�6 1259 n.a. –4�93 70�6 1259 n.a. –5�90
Uv-68-03 lherz 52�6 1234 n.a. –1�93 52�7 1234 n.a. –3�60
Uv-89-03 lherz 64�3 1252 n.a. –2�58 64�4 1253 n.a. –4�30
Uv-34-03 lherz 61�3 1289 n.a. –1�58 61�3 1290 n.a. –3�40
Uv-42-03 lherz 38�7 945 n.a. –2�67 38�8 947 n.a. –4�00
U29 lherz 48�3 911 n.a. –2�00 50�0 897 n.a. –3�27
U64 harz 56�2 1194 n.a. –2�32 61�0 1211 n.a. –3�36
U501 harz 48�9 895 n.a. –2�27 47�0 859 n.a. –3�28
U506 harz 59�1 988 n.a. –1�92 55�0 941 n.a. –3�03
Y17 lherz 29�0 781 n.a. –1�24 29�0 784 n.a. –3�49
U4 lherz 59�0 1305 n.a. –1�66 59�0 1308 n.a. –2�96
U9 harz 51�9 1170 n.a. –1�40 57�0 1239 n.a. –2�67
U10 harz 61�6 1293 n.a. –2�02 63�0 1295 n.a. –3�05
U50 lherz 56�9 1271 n.a. –1�46 60�0 1287 n.a. –3�00
U70 lherz 51�4 1233 n.a. –1�46 63�0 1268 n.a. –3�52
U71 harz 58�4 1266 n.a. –1�80 63�0 1293 n.a. –3�24
U85 lherz 53�1 1216 n.a. –2�08 55�0 1240 n.a. –3�57
U148 lherz 58�3 1261 n.a. –2�19 60�0 1274 n.a. –3�61
U183 harz 64�0 1224 n.a. –2�99 64�0 1241 n.a. –3�76
U267 lherz 58�8 1257 n.a. –2�45 54�0 1221 n.a. –3�58
U507 lherz 59�6 1284 n.a. –2�37 60�0 1290 n.a. –3�87
87/114 harz 51�9 1247 n.a. –1�02 52�0 1248 n.a. –1�91
87/70 harz 54�3 1231 n.a. –1�63 54�0 1232 n.a. –2�53
87/97 lherz 56�5 1350 n.a. –2�67 57�0 1350 n.a. –4�02
Y1 lherz 52�1 1242 n.a. –1�27 52�0 1243 n.a. –1�80
Y3 lherz 53�0 1238 n.a. –2�17 53�0 1238 n.a. –3�72
Y4 lherz 50�4 1225 n.a. –1�05 50�0 1225 n.a. –1�98
Y10 lherz 51�3 1163 n.a. –1�95 51�0 1163 n.a. –2�90
Y16 wehr 52�0 1250 n.a. –1�60 52�0 1251 n.a. –2�91
Y19 wehr 45�9 1181 n.a. –1�41 46�0 1181 n.a. –2�42
Kaapvaal Craton, Finsch
Garnet-bearing peridotites
F1 harz 51�1 1153 n.a. –1�87 57�0 1204 n.a. –3�76
F2 dun 55�5 1190 n.a. –2�59 47�0 1066 n.a. –3�17
F3 dun 52�4 1125 n.a. –2�35 48�0 1178 n.a. –3�16
F5 harz 54�4 1150 n.a. –2�63 50�0 1149 n.a. –3�67
F6 harz 53�2 1181 n.a. –2�34 53�0 1203 n.a. –3�58
F7 harz 60�3 1222 n.a. –3�12 49�0 1109 n.a. –3�65
F8 dun 55�5 1166 n.a. –2�57 56�0 1189 n.a. –3�70
F9 harz 55�9 1156 n.a. –2�46 48�0 1073 n.a. –2�53
F11 harz 54�3 1187 n.a. –2�38 53�0 1224 n.a. –4�06
F12 harz 56�8 1134 n.a. –2�64 59�0 1197 n.a. –3�81
F14 harz 59�3 1208 n.a. –2�60 57�0 1179 n.a. –3�67
F15 lherz 52�5 1157 n.a. –2�49 55�0 1193 n.a. –3�92
F16 lherz 50�8 1156 n.a. –2�44 59�0 1207 n.a. –4�64
556-XM48 harz 58�9 1220 n.a. –2�68 54�0 1191 n.a. n.a.
695 55�9 1172 n.a. –2�77 56�0 1196 n.a. –3�46
865 harz 64�0 1282 n.a. –3�78 59�0 1161 n.a. –4�71
Kaapvaal Craton, other Kaapvaal
Spinel-bearing harzburgites
Let 19 harz n.a. n.a. –0�88 n.a. 25�0 986 –0�67 n.a.
Let 23 harz n.a. n.a. –0�05 n.a. 25�0 901 –0�11 n.a.
Liq 9 harz n.a. n.a. –1�12 n.a. 30�0 920 –0�91 n.a.
Kim 8 harz n.a. n.a. 0�29 n.a. 46�0 997 0�94 n.a.
Garnet-bearing peridotites
Let 1 lherz n.a. n.a. n.a. –2�47 45�0 1113 n.a. –3�30
Let 4 harz n.a. n.a. n.a. –2�27 40�5 993 n.a. –3�31
Let 6 lherz n.a. n.a. n.a. –1�10 34�3 928 n.a. –2�31
Let 7 lherz n.a. n.a. n.a. –1�81 37�2 912 n.a. –2�49
Let 8 sheared n.a. n.a. n.a. –2�45 48�6 1177 n.a. –3�28
Let 9 sheared n.a. n.a. n.a. –2�79 63�6 1429 n.a. –4�12
Let 12 sheared n.a. n.a. n.a. –2�32 62�0 1389 n.a. –3�63
Let 14 lherz n.a. n.a. n.a. –2�18 44�5 1108 n.a. –3�31
Let 21 lherz n.a. n.a. n.a. –2�35 44�2 1029 n.a. –3�30
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Table 3. Continued

Sample Rock type This study Published data

Dlog fO2
(FMQ) Dlog fO2

(FMQ)

P T Sp Gt P T Sp Gt
(kbar) (�C) (kbar) (�C) (BW90) (GW95)

Let 22 lherz n.a. n.a. n.a. –2�26 43�5 1066 n.a. –3�17
Let 39 lherz n.a. n.a. n.a. –2�39 46�4 1083 n.a. –3�37
Liq 1 lherz n.a. n.a. n.a. –2�33 46�3 1157 n.a. –3�18
Liq 5 harz n.a. n.a. n.a. –2�94 45�2 1079 n.a. –3�91
Liq 10 harz n.a. n.a. n.a. –1�35 38�0 1010 n.a. –2�46
Liq 11 lherz n.a. n.a. n.a. –2�45 44�7 1083 n.a. –3�45
Mat 2 lherz n.a. n.a. n.a. –2�15 42�1 1042 n.a. –3�16
Mat 4 lherz n.a. n.a. n.a. –2�49 45�5 1106 n.a. –3�39
Mat 5 lherz n.a. n.a. n.a. –2�20 41�4 1049 n.a. –3�30
Mat 7 lherz n.a. n.a. n.a. –2�41 42�5 1028 n.a. –3�12
Mat 10 lherz n.a. n.a. n.a. –2�19 42�5 1055 n.a. –3�33
Mat 12 lherz n.a. n.a. n.a. –2�53 44�0 1077 n.a. –3�46
Mat 13 lherz n.a. n.a. n.a. –2�44 45�7 1069 n.a. –3�46
Jag 1 lherz n.a. n.a. n.a. –2�78 62�0 1353 n.a. –4�14
Jag 2 lherz n.a. n.a. n.a. –1�68 45�0 1098 n.a. –3�08
Jag 4 sheared n.a. n.a. n.a. –2�21 52�7 1337 n.a. –3�21
Jag 7 sheared n.a. n.a. n.a. –2�76 60�4 1290 n.a. –4�12
Jag 9 harz n.a. n.a. n.a. –2�58 55�0 1259 n.a. –3�87
Mon 2 lherz n.a. n.a. n.a. –1�58 37�9 935 n.a. –2�64
Mon 5 harz n.a. n.a. n.a. –2�16 41�0 1011 n.a. –3�28
FSM 1 lherz n.a. n.a. n.a. –2�71 60�0 1355 n.a. –3�99
Kim 1 lherz n.a. n.a. n.a. –1�96 43�7 1112 n.a. –2�81
Kim 5 harz n.a. n.a. n.a. –1�92 42�6 1082 n.a. –3�13
Kim 11 harz n.a. n.a. n.a. –1�91 42�1 1071 n.a. –2�88
Kim 13 lherz n.a. n.a. n.a. –2�58 53�5 1198 n.a. –3�47
Kim 14a harz n.a. n.a. n.a. –1�51 42�3 1037 n.a. –2�58
Kim 17 harz n.a. n.a. n.a. –1�92 46�4 1196 n.a. –2�62
Kim 22 harz n.a. n.a. n.a. –0�98 33�7 894 n.a. –1�98
Kim 24 harz n.a. n.a. n.a. –0�67 35�7 952 n.a. –1�81
Kim 25 lherz n.a. n.a. n.a. –1�90 43�0 1048 n.a. –2�99
Kim 30 lherz n.a. n.a. n.a. –1�94 43�1 1020 n.a. –3�01
Kim 35 lherz n.a. n.a. n.a. –1�23 39�8 1016 n.a. –2�52
Kim 38 lherz n.a. n.a. n.a. –1�90 44�6 1081 n.a. –2�91
Kim 44 lherz n.a. n.a. n.a. –1�47 41�7 1091 n.a. –2�20
Kim 45 lherz n.a. n.a. n.a. –1�63 42�1 1043 n.a. –2�66
Kim 48 lherz n.a. n.a. n.a. –2�36 46�4 1117 n.a. –3�25
KBD7 lherz 45�0 1086 n.a. –2�74 40�9 1008 n.a. –3�33
KBD12(c) lherz 43�3 1042 n.a. –1�59 47�4 1116 n.a. –2�43
KBD12(r) lherz 43�7 1040 n.a. –0�57 46�1 1124 n.a. –1�02
KBD18 lherz 38�8 938 n.a. –0�90 35�8 887 n.a. –1�70
Wesselton(c) lherz 50�6 1061 n.a. –1�68 47�0 1060 n.a. –3�00
Wesselton(r) lherz 50�0 1059 n.a. –0�61 47�0 1060 n.a. –1�20
Slave Craton, Diavik Mine
Spinel-bearing peridotites
8-7 lherz 30�0 696 –1�71 n.a. 25 683 –1�3 n.a.
44-12 lherz 34�2 770 –2�44 n.a. 30 771 –1�8 n.a.
Garnet–spinel peridotites
10-12a lherz 33�2 744 0�17 –1�20 30�3 792 0�4 –1�8
21-1 lherz 32�1 783 0�44 –1�10 30�8 811 0�4 –2�9
26-11 lherz 43�2 926 0�13 –1�44 42�7 944 0�6 –2�1
Garnet-bearing peridotites
A154-01 lherz 60�5 1181 n.a. –2�91 67�9 1227 n.a. –3�71
A154-06 lherz 56�4 1195 n.a. –0�53 53�9 1176 n.a. –1�70
A154-09CR lherz 50�8 1092 n.a. –1�39 54�0 1146 n.a. –2�84
A154-10 harz 55�4 1145 n.a. –0�44 44�7 1032 n.a. –1�01
MX001 lherz 56�8 1260 n.a. –1�18 57�3 1293 n.a. –2�46
MX029 lherz 59�6 1190 n.a. –0�82 68�0 1246 n.a. –2�13
MX031 harz 54�3 1140 n.a. –0�83 44�4 1045 n.a. –1�28
MX032 lherz 60�6 1239 n.a. –0�35 57�1 1239 n.a. –1�67
MX044 lherz 59�1 1299 n.a. –0�47 66�0 1346 n.a. –2�70
MX088 lherz 57�5 1174 n.a. –0�68 60�0 1206 n.a. –2�44
MX104 lherz 62�6 1255 n.a. –2�82 68�4 1293 n.a. –4�31
MX118 harz 60�2 1225 n.a. –1�43 49�9 1110 n.a. –2�00
MX131 lherz 55�6 1232 n.a. –2�17 62�8 1282 n.a. –3�92
MX144 lherz 55�1 1214 n.a. –1�70 64�5 1281 n.a. –3�81

(continued)
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in the majority of natural samples investigated here

confirms the internal consistency now attainable

between the skiagite barometer (1) and the andradite

barometer (2).

Typical uncertainties for each barometer reaction lie

in the range 0�6–0�9 log fO2
units, depending mainly on

mineral compositional uncertainties, particularly in fer-

ric iron content. If all reactions agree within mutual

error then the overall uncertainty will be of this magni-

tude. However, if the barometers do not mutually agree

then rfit will be greater than 1�0 and the overall error

will be enlarged through multiplication by rfit. Thus the

minimum uncertainty on log fO2
will be of the order of

0�6–0�9 log units.

Figure 2a illustrates the experimental log fO2
data

from Gudmundsson & Wood (1995) and Stagno et al.

(2013) compared with calculations from reactions (1)

and (2). Calculated values tend to be somewhat scat-

tered, but with uncertainties on calculated and experi-

mental values being of the order of 2 and 1 log units,

respectively, the agreement is deemed satisfactory. The

calculated results tend to be higher at more reducing
conditions but are in fairly good agreement at higher

log fO2
, perhaps more so with the experiments of

Stagno et al. (2013). It should be noted that only about

20% of the experimental samples of Gudmundsson &

Wood (1995) and Stagno et al. (2013) pass the v2 test,

suggesting that the experimental runs may not have

fully equilibrated. This should not be surprising, how-
ever, as experiments of short duration are likely to be

less well equilibrated than natural samples. When the

least squares results using all four equilibria (1), (2), (11)

Table 3. Continued

Sample Rock type This study Published data

Dlog fO2
(FMQ) Dlog fO2

(FMQ)

P T Sp Gt P T Sp Gt
(kbar) (�C) (kbar) (�C) (BW90) (GW95)

MX158 lherz 62�0 1174 n.a. –2�57 68�0 1200 n.a. –4�27
MX162 lherz 56�3 1196 n.a. –1�98 58�6 1244 n.a. –3�35
MX165 lherz 62�0 1245 n.a. –1�38 61�9 1257 n.a. –2�58
MX5000 lherz 60�4 1259 n.a. –2�83 63�1 1261 n.a. –4�23
MX5001 lherz 58�4 1235 n.a. –1�38 61�9 1241 n.a. –3�05
MX5003 lherz 43�0 903 n.a. 0�03 40�5 913 n.a. –0�71
MX5004 lherz 57�0 1211 n.a. –1�64 57�6 1223 n.a. –2�90
MX5006 lherz 58�6 1212 n.a. –1�82 59�1 1237 n.a. –3�01
MX5007 harz 41�8 875 n.a. –1�03 25�7 777 n.a. –0�58
MX5008 lherz 60�6 1256 n.a. –1�25 68�5 1304 n.a. –3�29
MX5009 lherz 59�9 1275 n.a. –1�43 62�7 1316 n.a. –2�91
MX5010 harz 44�4 857 n.a. –0�61 27�6 714 n.a. 0�15
MX5011 lherz 58�7 1261 n.a. –3�21 57�0 1271 n.a. –3�95
MX5012 lherz 52�7 1189 n.a. –2�23 56�0 1238 n.a. –3�58
MX5020 harz 58�5 1236 n.a. –1�43 52�8 1135 n.a. –2�40
22-5 lherz 40�4 861 n.a. –1�02 42�9 951 n.a. –2�2
25-4 lherz 48�0 980 n.a. –2�14 47�7 975 n.a. –2�6
25-9 lherz 34�2 769 n.a. –1�49 36�6 842 n.a. –3�1
14-107 lherz 47�8 992 n.a. –0�18 51�6 1068 n.a. –1�9
40-11 lherz 49�0 1037 n.a. –2�13 52�1 1104 n.a. –3�4
21-6 lherz 55�5 1121 n.a. –2�51 62�2 1190 n.a. –4�2
21-4 lherz 47�0 1003 n.a. –1�96 55�2 1097 n.a. –3�8
21-3 lherz 84�9 1121 n.a. –4�91 51�2 1088 n.a. –3�7
22-7 lherz 84�2 1205 n.a. –3�94 53�4 1187 n.a. –2�9
41-1 lherz 51�0 1197 n.a. –1�00 55�5 1274 n.a. –2�4
8-1 lherz 53�1 1216 n.a. –2�38 56�4 1282 n.a. –3�5
14-78 lherz 78�1 1303 n.a. –4�52 59 1300 n.a. –4�2
40-38 lherz 54�1 1265 n.a. –1�55 49�5 1286 n.a. –2�0
23-5 lherz 50�8 1189 n.a. –1�39 59�2 1262 n.a. –3�2
9-10 lherz 53�7 1129 n.a. –1�76 62�9 1214 n.a. –3�5
14-124 lherz 55�7 1155 n.a. –2�06 64�2 1230 n.a. –3�8
41-3 lherz 50�0 1188 n.a. –1�15 60 1281 n.a. –3�1
32-2 lherz 53�3 1083 n.a. –1�52 68�3 1178 n.a. –4�1
99-12 lherz 66�2 1167 n.a. –3�73 56�5 1026 n.a. –4�2
18-1 lherz 51�8 1046 n.a. –1�96 61�7 1139 n.a. –3�8
38-2 lherz 45�6 872 n.a. –2�34 49�1 971 n.a. –3�9
11-5 lherz 61�0 1174 n.a. –2�50 64�8 1255 n.a. –3�6
99-14C lherz 53�8 1064 n.a. –1�87 52�3 1027 n.a. –3�1
38-1 lherz 55�2 1066 n.a. –2�61 62�3 1122 n.a. –4�2

Rock types: lherz, lherzolite; harz, harzburgite; dun, dunite; wehr, wehrlite; sheared, sheared lherzolite. Data sources for Baikal Rift:
Ionov et al. (2005) and Goncharov & Ionov (2012). Data sources for Siberian Craton: Ionov et al. (2010), Goncharov et al. (2012) and
Yaxley et al. (2012). Data sources for Kaapvaal Craton: Woodland & Koch (2003), Lazarov et al. (2009), Berry et al. (2013) and
Hanger et al. (2015). Data sources for Slave Craton: Kopylova et al. (1999), Kopylova & Caro (2004), McCammon & Kopylova (2004)
and Creighton et al. (2009). n.a., not applicable.
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and (12) are compared with the experiments (Fig. 2b)

the results are less scattered, illustrating the more
robust estimation of log fO2

values in comparison with

those from each of the equilibria. Figure 2c is a plot of

the new calibration expressions for reactions (1) and (2)

against the original barometer expressions of

Gudmundsson & Wood (1995) and Stagno et al. (2013)

and shows the fairly uniform relative offset of 1–1�5 log

units of the new calibrations. Given that Stagno et al.

(2013) used the Holland & Powell (2011) dataset, the off-

set relative to their expression must be caused by the

different interaction energies in garnet, especially in the

two reciprocal reactions (7) and (8) and the large value
of WAl,Fe3þ used by them. The differences between the

new calibrations and earlier studies for reactions (1)

and (2) may be seen readily in Fig. 3. In Fig. 3a the sepa-

rate effects of replacing the interaction energies

(WCaAlFeFe3XY¼ –DG(7), WCaAlMgFe3XY¼ –DG(8) and

WAl,Fe3þ) used by Gudmundsson & Wood (1995) by the
new ones used in this study are illustrated clearly.

Changing WAl,Fe3þ from zero to 2�0 kJ has only a small

impact whereas the other two have large and opposite

effects on log fO2
. The opposing effects mean that

changing WCaAlFeFe3XY and WCaAlMgFe3XY by the

same amount (23 kJ) has only a negligible effect on
log fO2

. The net effect of changing all three Ws together

gives a result fortuitously identical to the original

Fig. 3. The effect on calculated log fO2
of varying three signifi-

cant garnet W mixing parameters. (a) The calculations on reac-
tion (1) using the calibration of Gudmundsson & Wood (1995)
on the x-axis and similar calculations varying W parameters on
the y-axis. Circles, WAlFe3þ changed to 2�0 kJ; diamonds,
WCaAlMgFe3XY changed by þ23 kJ; squares, WCaAlFeFe3XY

changed by þ23 kJ; crosses, all three changes. (b) The equiva-
lent calculations on reaction (2) using the calibration of Stagno
et al. (2013). Symbols as for (a). [Note the cumulative effects of
WCaAlMgFe3XY and WCaAlFeFe3XY for reaction (2) as opposed to
the compensating effects in reaction (1).]

Fig. 2. Calculated log fO2
compared with experiments. (a) The

experiments of Gudmundsson & Wood (1995) (GW) and of
Stagno et al. (2013) (Stag). Upward-facing triangles are for
reaction (1) and downward-facing triangles are for reaction (2).
(b) The same data but for the least squares calculation using
reactions (1), (2), (11) and (12). The least squares results are
less scattered than those for each of the barometers and in bet-
ter agreement with the experiments. (c) Comparison of calcula-
tions using the new calibrations against the original result of
Gudmundsson & Wood (1995) (GW) and that of Stagno et al.
(2013) (Stag); this shows a consistent 1–1�5 log unit offset.
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Gudmundsson & Wood (1995) expression, and thus

demonstrates that the difference between our new cali-

bration and the original barometer lies entirely with the

revised Gibbs energy for reaction (1). Figure 3b shows a

rather different situation for reaction (2) where the
effects of WCaAlFeFe3XY and WAl,Fe3þ are small but that of

WCaAlMgFe3XY is large. In contrast to reaction (1) changes

of 23 kJ in both WCaAlFeFe3XY and WCaAlMgFe3XY move

log fO2
in the same direction. Changing all three Ws

simultaneously to the new values raises log fO2
by

around 1 log unit and it is these W differences and not

any change in Gibbs energy of reaction (2) that make
our new calibration differ from that of Stagno et al.

(2013). The internal inconsistency in the Stagno et al.

(2013) barometer lies in their values for WCaAlFeFe3XY

and WCaAlMgFe3XY, which do not agree with the free

energies in the updated Holland & Powell (2011) dataset

(Table 1) for reactions (7) and (8). Making both WCaAlFe-

Fe3XY and WCaAlMgFe3XY larger barely affects reaction (1)

because of the opposing senses of change, whereas

reaction (2) is additively affected. Reaction (1) was well

chosen by Gudmundsson & Wood (1995) in being more

robust to uncertainties in mixing parameters.

The new barometer results are in fairly close agree-
ment with the experimental data of Stagno et al. (2013)

as shown in Fig. 2b. The lack of perfect agreement of

the new calibrations with the high-pressure metal sen-

sor techniques (Gudmundsson & Wood, 1995; Stagno

et al., 2013) will be discussed after reassessment of the

spinel oxybarometer.

REVISED SPINEL OXYBAROMETER EQUILIBRIA

The advantage of solving several reactions simultane-
ously by the least squares method makes it desirable to

extend this approach to spinel oxybarometry. The fol-

lowing three independent equilibria are used:

2 mtþ 3 fs ¼ 6 faþO2 (13)

2 mtþ 3 en ¼ 3 faþ 3 foþO2 (14)

2 mtþ 3 enþ 6 hc ¼ 6 spþ 6 faþO2: (15)

The first of these three equilibria was calibrated by
Bryndzia & Wood (1990) and has been used widely

since. We use the activity model for spinel from

Bryndzia & Wood (1990) coupled with thermodynamic

data from Holland & Powell (2011). The free energies

for (13) are virtually indistinguishable from those given

by Bryndzia & Wood (1990). It is important to note that

(13) is rather sensitive to the activity of fs. This is signifi-
cant because the mol fraction of fs in mantle orthopyr-

oxenes is very small and poorly determined (especially

with uncertain Fe2O3 content) and because the earlier

calibrations assumed ideal mixing. Reaction (14) is

more resistant to uncertainty as (1) it does not depend

on the fs end-member, (2) it involves fo and en end-
members, which have large and better determined

activities in olivine and opx, and (3) the Mg-poor silicate

end-member is fa, the activity of which is more reliably

estimated than that of fs. When averaging log fO2
from

(13), (14) and (15) it is reaction (14) that has smallest

error and dominates the calculation. Non-ideality in oli-

vine is taken directly from Gudmundsson & Wood
(1995), who used a slightly smaller value of Wfo,fa than

Bryndzia & Wood (1990). Non-ideality in orthopyroxene

(see Appendix) makes a small but significant difference

to the results, raising calculated log fO2
for reaction (13)

by around 0�2 log units. Wood (1990, fig. 2c) showed

that an offset of 0�2 log units would produce an almost

perfect fit of the barometer equation (13) with his
experiments. Thus the new calibration here is in excel-

lent agreement with the 1 bar oxygen sensor measure-

ments. The equations for free energies of reactions (13),

(14) and (15) are presented in the Appendix, and com-

puter programs will be made available (from links at

http://www.esc.cam.ac.uk/directory/tim-holland) to per-
form the error propagation of the uncertainties in chem-

ical analyses, the thermodynamic data and the mixing

properties of the phases in a least squares optimization

of log fO2
.

An important finding of our new calibrations is that,

in comparison with earlier parameterizations, the multi-
reaction spinel barometry yields log fO2

values that

are more reducing by around 0�5 log units. This

results from the dominance of the new barometer reac-

tion (14) with its smaller uncertainty and the addition of

non-ideal mixing in orthopyroxene. The implications

of this and application of both garnet and spinel barom-

etry to mantle peridotites will be explored in the next
section.

CAUSES OF DIFFERENCES IN OXYBAROMETERS

There may be several factors that cause differences

between the new calibrations of garnet oxybarometers

and earlier work. One is the error in the earlier calcula-
tion of skiagite free energy as discussed above.

Although it is possible that the new skiagite free energy

may be uncertain, the high level of agreement between

calculations on all three reactions (3), (5) and (6) with

the phase equilibrium experiments of Woodland &

O’Neill (1993) at all pressures from 27 to 90 kbar at
1100�C suggests that the new data are reliable. The fact

that the combined results of four independent reac-

tions, via least squares, yield consistent results within

error for well-equilibrated natural samples and most of

the experimental samples of Stagno et al. (2013) also

suggests that the thermodynamic data and phase equi-

librium studies on the end-members used are in good
agreement. In this context an error of 12 kJ on skiagite

free energy, as noted above, would correspond to an

error of 23 kbar on the breakdown pressure of skiagite

at 1100�C as measured experimentally by Woodland &

O’Neill (1993). Their experiments are most unlikely to

be in error by that amount.
One possible explanation for the discrepancy may

be in the use of oxygen sensor techniques at elevated
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pressures. The spinel barometer reaction (13) is in

excellent agreement with the 1 atm oxygen sensor

measurements of Wood (1990), as shown above, but

the garnet equilibria are in less good agreement with

the higher pressure oxygen sensor measurements of
Gudmundsson & Wood (1995) and Stagno et al. (2013).

It would appear also that the new calibrations are in

much better agreement with the measurements at

higher than lower oxygen fugacity, and this might

reflect the difficulty of measuring accurately the ferric

iron content in garnets at very low concentrations.

APPLICATIONS

A reliable method of calculating fO2
values for mantle

peridotites is important for assessing melting, metaso-

matism and fluid speciation. The use of the oxybarome-
ters presented here requires the measurement of major

element oxides for olivine, orthopyroxene, garnet and/

or spinel, as well as a PT estimate for each xenolith.

Because some literature data provide only the Mg-

number for olivine and orthopyroxene, the application

programs developed here allow for these to be entered
in place of a full analysis, and approximate fo, fa, en

and fs activities are assigned. It is very important to

have an accurate Fe2O3 analysis for garnet as this

greatly affects the activity of skiagite, and is the last

remaining hurdle in accurately calculating fO2
for garnet

peridotites.

Variability in the oxidation state of the
lithospheric mantle
We have applied the new garnet and spinel oxybarome-

ter calibrations presented above to published data from

four mantle xenolith suites. The samples come from a

range of tectonic settings—the Baikal Rift (Vitim

Volcanic Field; Goncharov & Ionov, 2012) and three
major global cratons: Siberian (Udachnaya; Goncharov

et al., 2012; Yaxley et al., 2012), Kaapvaal (Woodland &

Koch, 2003; Lazarov et al., 2009; Hanger et al., 2015) and

Slave (Diavik; McCammon & Kopylova, 2004; Creighton

et al., 2009). All these samples have Fe3þ/Fetotal ratios

for pyrope garnets that were measured by Mössbauer
spectroscopy, Fe K-edge XANES or the flank method,

which currently provide the most accurate values. For

internal consistency, we have taken the published anal-

yses of mineral chemistry and recalculated pressures

and temperatures using the PTmantle program (Nimis

& Grütter, 2010). The following combinations of ther-

mobarometers (with associated errors) were used for
the xenolith suites: for garnet lherzolites we used the

opx–gt barometer of Nickel & Green (1985; PNG85; 63

kbar) and the cpx–opx solvus thermometer of Taylor

(1998; TTa98; 631�C); for garnet harzburgites PNG85 was

used with the opx–gt thermometer of Nimis & Grütter

(2010; TNG10; 650�C); for spinel lherzolites we have fol-
lowed Goncharov et al. (2012) and extrapolated temper-

atures, calculated using TTa98, to the conductive

geotherm that was estimated from garnet-bearing sam-
ples. We have used our new oxybarometer programs to

give revised values of log fO2
relative to the fayalite–

magnetite–quartz (FMQ) buffer. For the FMQ buffer we

use the expression of O’Neill (1987) with a volume cor-

rection from Holland & Powell (2011), as given in the

Appendix. Carbon phase stability has then been

assessed using log fO2
buffers, calculated using an

updated version of the Holland & Powell (2011) dataset,

and the relevant conductive geotherms for the various

tectonic settings calculated using the GeoTherm pro-

gram (Mather et al., 2011) for each xenolith suite. A

summary of the results is given in Table 3.

Baikal Rift (Vitim Volcanic Field)
Spinel- and garnet-bearing mantle peridotites occur in

the Vitim Volcanic Field, which is situated to the SE of
the Siberian Craton. Our recalculated PT estimates for

36 xenoliths analysed by Goncharov & Ionov (2012)

show that spinel-only-bearing samples occupy almost

the whole depth range (45–65 km) sampled by Vitim

magmas (Table 3 and Fig. 4). Because Vitim peridotites

contain both garnet and spinel they offer a rare insight

into the accuracy of fO2
estimates provided by our new

independent oxybarometers. For these samples, our

spinel oxybarometer gives Dlog fO2
(FMQ) from –0�43 to

þ0�20 (av. –0�17), whereas our garnet oxybarometer

gives Dlog fO2
(FMQ) in the range –1�79 to –0�14 (av.

–1�22). For spinel-only-bearing Vitim peridotites Dlog fO2

(FMQ) estimates range from –1�29 to þ0�52 (av. –0�42)
and in the spinel-absent garnet-bearing peridotites Dlog

fO2
(FMQ) ranges from –1�82 to –0�41 (av. –1�22). A

Fig. 4. Plot of pressure vs temperature estimates for off-craton
Vitim peridotites from the Baikal Rift zone, using mineral chem-
istry from Ionov & Wood (1992) and Goncharov & Ionov
(2012), together with the thermobarometers of Nickel & Green
(1985), Taylor (1998) and Nimis & Taylor (2000). A model con-
ductive geotherm of 61�4 mW m–2 has been calculated to best
fit the PT estimates for garnet-bearing samples in the xenolith
suite, using the depth to the Moho of Suvorov et al. (2002) and
the program described by Mather et al. (2011). The diamond–
graphite transition (Kennedy & Kennedy, 1976) is indicated,
along with a greyscale indication of the Dlog fO2

(FMQ) value
for each xenolith. The data indicate that the base of the
mechanical boundary layer (MBL) under the Vitim Volcanic
Field is relatively shallow at 82 km (26�5 kbar), which is consis-
tent with a previous estimate based on the composition of the
host lavas (85 km; Johnson et al. 2005).
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comparison of these new values with the published

estimates of Goncharov & Ionov (2012) shows that
there is a change in spinel-based estimates by –0�2 Dlog

fO2
(FMQ) units to more reducing conditions, whereas

the garnet-based oxybarometry has increased fO2
esti-

mates by þ1�3 Dlog fO2
units. As a consequence the D

log fO2
(FMQ) values calculated using our new oxybar-

ometers for all samples are in remarkable agreement
(Figs 5 and 6), which contrasts with the distinct oxida-

tion states for different assemblages proposed by

Goncharov & Ionov (2012). Furthermore, there is no

clear variation in Dlog fO2
with depth for the Vitim gar-

net and spinel peridotites. The wide range in Dlog fO2

(FMQ) (–1�82 to 0�52) over a small pressure range (20–

25 kbar) may relate to variable extents of metasoma-
tism by ascending carbonatitic melts at the carbonated

peridotite solidus ‘ledge’ (e.g. Eggler, 1974; Wyllie &

Huang, 1976).

Siberian Craton (Udachnaya)
We have used the published data of Yaxley et al. (2012)

for 18 samples of garnet peridotite and those of

Goncharov et al. (2012) for 37 samples of spinel- and

garnet-bearing peridotites entrained by the Udachnaya

kimberlite from the Siberian Craton with our new oxy-

barometer calibrations. These xenoliths were entrained

from a large depth interval (40–210 km; Table 3 and Fig.
7). Spinel- and garnet-bearing samples last equilibrated

at depths of 40–100 km and 90–210 km, respectively.

Only a few samples (Table 3) contain both aluminous

phases. For the Udachnaya spinel peridotites estimates

of Dlog fO2
(FMQ) range from –1�71 to –0�09 (av. –0�70).

For the deeper garnet peridotites Dlog fO2
(FMQ) ranges

from –4�93 to –1�02 (av. –2�01). A comparison of our

new values with the published estimates of Goncharov

Fig. 5. Plots of Dlog fO2
(FMQ) vs pressure for Vitim peridotites

from the Baikal Rift zone: (a) using the oxybarometer calibra-
tion from this study; (b) published P and fO2

values from
Goncharov & Ionov (2012), based on the oxybarometer of
Gudmundsson & Wood (1995) (GW95) and the oxybarometer
of Bryndzia & Wood (1990) (BW90). Buffer reactions relative to
FMQ (fayalite–magnetite–quartz) were calculated from the
Holland & Powell (2011) dataset and are as follows: WM,
wüstite–magnetite; IW, iron–wüstite; D/GCO, diamond/graph-
ite–CO; EMOD/G, enstatite–magnesite–olivine–diamond/graph-
ite. MBL as in Fig. 4.

Fig. 6. Plots of Dlog fO2
(FMQ) vs pressure for Vitim spinel–

garnet peridotites: (a) using the oxybarometer calibration from
this study; (b) published P and fO2

values from Goncharov &
Ionov (2012), based on the oxybarometer of Gudmundsson &
Wood (1995) (GW95) and the oxybarometer of Bryndzia &
Wood (1990) (BW90). Buffer reactions are relative to FMQ as in
Fig. 5. MBL as in Fig. 4.
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et al. (2012) and Yaxley et al. (2012) shows a change in

Dlog fO2
of –0�7 units for spinel-based oxybarometry

and þ1�3 Dlog fO2
for the garnet-based oxybarometry.

The published Dlog fO2
(FMQ) values, together with our

recalculated values (Fig. 8), indicate that a number of

xenoliths that previously plotted in the diamond stabil-
ity field now plot at more oxidized conditions on the car-

bonate stability side of the enstatite–magnesite–olivine–

diamond/graphite (EMOD/G) buffer. These more oxi-

dized values agree with the findings of experimental

work by Stagno et al. (2013), which also suggest that

the Gudmundsson & Wood (1995) oxybarometer pro-

vides fO2
estimates that are too low. The Udachnaya

mantle xenoliths show a clear Dlog fO2
(FMQ) versus

depth relationship (Fig. 8). Over a depth range of

165 km, the Dlog fO2
(FMQ) values change from 0�0 at

the top of the lithospheric mantle to –3�0 near the base.

This gives a lithospheric mantle Dlog fO2
(FMQ) gradient

of c. 0�18 log units per 10 km, which is lower by 0�07 log
units per 10 km than the gradient estimated by

Goncharov et al. (2012).

Kaapvaal Craton
We have used published analyses of mineral phases

present in 16 peridotites from the Finsch mine, South
Africa (Lazarov et al., 2009) and 53 peridotite xenoliths

from the wider Kaapvaal Craton (Woodland & Koch,

2003; Hanger et al., 2015) to estimate equilibration pres-

sures and temperatures together with fO2
. All samples

are garnet bearing and cover a large depth range (75–

190 km; Table 3 and Fig. 9). All of the Finsch garnet-
bearing peridotites have fO2

estimates that range from

–3�78 to –1�87 Dlog fO2
(FMQ) (av. –2�61). The other

Kaapvaal xenoliths have fO2
estimates that range from

–2�94 to –0�67 Dlog fO2
(FMQ) (av. –2�09).

A comparison (Fig. 10) of the fO2
values calculated

by Lazarov et al. (2009), who used the calibration of

Gudmundsson & Wood (1995) as corrected by

Woodland & Peltonen (1999), with recalculated values
for the same xenoliths using our new oxybarometers

indicates a shift in fO2
estimates of þ1�0 Dlog fO2

(FMQ)

units. The same shift in fO2
estimates is also seen for

the other Kaapvaal xenoliths. Moreover, garnet lherzo-

lites from across the entire craton give a lithospheric

mantle gradient of 0�24 Dlog fO2
(FMQ) per 10 km,

whereas garnet harzburgites indicate a lithospheric

gradient of 0�29 Dlog fO2
(FMQ) per 10 km, which is sim-

ilar to the estimate of Lazarov et al. (2009).

Reassuringly, both diamond-bearing samples plot in

the diamond stability field. The relatively large spread

of fO2
that is observed at depth in the Kaapvaal

Fig. 7. Pressure vs temperature estimates for Udachnaya peri-
dotites (Siberian Craton). Mineral analyses used for PT estima-
tion are from Goncharov et al. (2012) using the
thermobarometers of Nickel & Green (1985), Taylor (1998),
Nimis & Taylor (2000) and Nimis & Grütter (2010). A model
conductive geotherm of 50�4 mW m–2was calculated to best fit
the PT estimates from the xenolith suite, along with the depth
to the Moho (Suvorov et al., 2006) using the program described
by Mather et al. (2011). The estimated mechanical boundary
layer (MBL) thickness is 202 km. The diamond–graphite transi-
tion pressure (Kennedy & Kennedy, 1976) is indicated, along
with a greyscale indication of the Dlog fO2

(FMQ) value for each
xenolith.

Fig. 8. Plots of Dlog fO2
(FMQ) vs pressure for Udachnaya peri-

dotites (Siberian Craton): (a) using the mineral analyses of
Goncharov et al. (2012) and Yaxley et al. (2012) with the oxy-
barometer calibration from this study; (b) published P and fO2

values from Goncharov et al. (2012) and Yaxley et al. (2012),
based on the oxybarometer of Gudmundsson & Wood (1995)
(GW95) and the oxybarometer of Bryndzia & Wood (1990)
(BW90). Buffer reactions are relative to FMQ as in Fig. 5. MBL
as in Fig. 7.
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lithosphere may reflect variable metasomatic enrich-

ment over short length scales.

Slave Craton (Diavik Mine)
Analyses of mineral phases present in 69 garnet-

bearing mantle peridotites from Diavik Mine, central

Slave Craton have been used to calculate final equilibra-

tion pressures and temperatures with the PNG85 barom-

eter and the TTa98 thermometer (Table 3 and Fig. 11).

Creighton et al. (2009) presented two sets of PT esti-

mates for these same xenoliths: one using the Brey &
Köhler (1990) barometer (PBKN) and thermometer

(TBKN); the other using the thermometer of O’Neill &

Wood (1979; TOW) in combination with PBKN. The PT

estimates using the PBKN and TOW combination were

lower than the PBKN and TBKN combination. Our recalcu-

lations agree more closely with the PBKN and TBKN com-
bination. Based on these calculations, most of the

xenoliths were entrained from 150 to 190 km with a few

additional samples from 125 to 135 km.

Using our new oxybarometers, estimates of Dlog fO2

(FMQ) for Diavik garnet peridotites range from –3�73 to

þ0�03 (av. –1�68), which is an increase of þ1�4 Dlog fO2

(FMQ) units compared with the previous Gudmundsson
& Wood (1995) calibration. This range in fO2

occurs

in the lower half of the cratonic lithosphere, and has

had the effect of moving half of the xenolith samples

out of the diamond stability field, crossing the wüstite–

magnetite (WM) and EMOD/G buffers to more oxidizing

conditions (Fig. 12). The large range in fO2
for the litho-

spheric mantle beneath the central Slave Craton is simi-

lar to that for the Siberian Craton (Udachnaya; Fig. 8).

Small-scale variability of fO2
: an example from

the Kaapvaal Craton
The variations in fO2

that we have described above rep-
resent changes in oxidation state of the lithospheric

mantle over large depth intervals. Localized interactions

between percolating metasomatizing melts and existing

mineral phases, immediately prior to or during entrain-

ment, may also cause micro-scale changes in fO2
.

Although high-quality garnet Fe2O3 data are limited for

such samples, Berry et al. (2013) made observations
and calculations on a single zoned garnet from a

Kaapvaal mantle peridotite, using the compositions of

the core and the rim to deduce their separate PT and fO2

conditions. They assumed that the core of the garnet

was in equilibrium with the surrounding orthopyrox-

ene, and calculated a pressure of 47 kbar (PNG85) and
temperature of 1060�C with the Canil (1994) thermome-

ter. Our PT recalculation using PNG85 and TTa98 for both

Fig. 9. Pressure vs temperature estimates for peridotites from
the Kaapvaal Craton. Circles, spinel-bearing samples; dia-
monds, garnet-bearing samples. Mineral analyses are from
Woodland & Koch (2003) and Lazarov et al. (2009). Pressures
and temperatures were estimated using the thermobarometers
of Nickel & Green (1985), Taylor (1998) and Nimis & Grütter
(2010). A model conductive geotherm of 45�6 mW m–2 has
been calculated to best fit the PT estimates from the Finsch
xenolith suite, along with the depth to the Moho (Nair et al.,
2006) using the program described by Mather et al. (2011). The
estimated thickness of the mechanical boundary layer (MBL) is
204 km. This is in reasonable agreement with published find-
ings for Finsch (Gibson et al., 2008; Lazarov et al., 2009). The
diamond–graphite transition (Kennedy & Kennedy, 1976) is
shown, along with a greyscale indication of the Dlog fO2

(FMQ)
value for each xenolith.

Fig. 10. Variation of Dlog fO2
(FMQ) vs pressure for Finsch and

other Kaapvaal garnet-peridotites: (a) using the mineral analy-
ses of Woodland & Koch (2003) and Lazarov et al. (2009), and
the oxybarometer calibration from this study; (b) published P
and fO2

values from Woodland & Koch (2003) and Lazarov et al.
(2009). Buffer reactions are relative to FMQ as in Fig. 5. It
should be noted that Lazarov et al. (2009) did not publish fO2

values for all 28 xenoliths. MBL as in Fig. 9.
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garnet core and rim oxide data from Berry et al. (2013)

gave revised estimates of 50�6 kbar and 1061�C for the

core, and 50�0 kbar and 1059�C for the rim. Although

identical to the results of Berry et al. (2013), it should be

noted that the PTmantle program (Nimis & Grütter,

2010) suggests orthopyroxene–clinopyroxene disequili-

brium errors for both estimates, and a garnet–pyroxene
disequilibrium error for the core calculation.

Our new oxybarometer calibration gives estimates

of Dlog fO2
(FMQ)¼ –1�59 for the garnet core and –0�57

for the rim compositions. This increase in Dlog fO2

(FMQ) of þ0�8 for the core and þ0�5 for the rim places

the rim firmly in the carbonate stability field whereas
the core moves to the EMOD/G buffer, making diamond

stability questionable. Nevertheless, the oxybarometer

presented here, and in earlier versions (Gudmundsson

& Wood, 1995; Woodland & Peltonen, 1999), relies on

the assumption that the phases used in the calculation

were in equilibrium. It seems likely that either the core

or the rim of the garnet, being compositionally different,
was not in equilibrium with the xenolith assemblage.

This is most probably due to cryptic metasomatism of

the garnet rim, either immediately prior to or during

entrainment.

Relative effects of P and ferric ratio of garnet on
calculated log fO2

The relative effects of pressure and ferric ratio (f¼Fe3þ/P
Fe) of garnet on log fO2

are investigated for a particu-
lar peridotite sample, along an imposed mantle geo-

therm. For this example, sample Y17 from Udachnaya

(Siberian Craton, Table 3) was selected. The litho-

spheric geotherm of 50�4 mW m–2 from Fig. 7 was used
and these conditions are represented as T (�C)¼
252þ 17�39P (kbar). Total Fe in sample Y17 garnet was

maintained, but the ferric ratio f was varied from 0�03 to

0�12, a range typical of mantle xenolith samples (e.g.

Woodland & Koch, 2003, fig. 3). Compositions of olivine

and orthopyroxene were kept constant, a procedure
that leads to imperceptible error. Because Fe and Mg in

garnet depend on the garnet–olivine exchange equili-

brium, the Fe/Mg ratio was adjusted at each tempera-

ture and pressure along the geotherm using the values

of Kd from O’Neill & Wood (1979). Concentrations of

other elements in garnet were held constant. Figure 13

shows the results of applying the multi-reaction oxybar-
ometry to Y17 in the range 30–60 kbar along the geo-

therm, for four chosen values of f. As expected,

calculated values of log fO2
decrease with increasing

pressure, with the smallest f yielding the most reduced

Fig. 11. Pressure vs temperature estimates for Diavik perido-
tites (Slave Craton). Mineral analyses from McCammon &
Kopylova (2004) and Creighton et al. (2009) were used with the
thermobarometers of Nickel & Green (1985), Taylor (1998) and
Nimis & Grütter (2010). A model conductive geotherm of 45�2
mW m–2 has been calculated to best fit the PT estimates from
the xenolith suite, along with the depth to the Moho (Bank
et al., 2000) using the program described by Mather et al.
(2011). The estimated thickness of the mechanical boundary
layer (MBL) beneath the central Slave Craton is 211 km. The
diamond–graphite transition pressure (Kennedy & Kennedy,
1976) is indicated, along with a greyscale indication of the Dlog
fO2

(FMQ) value for each xenolith. It should be noted that
McCammon & Kopylova (2004) assumed a pressure of 30 kbar
for the spinel-only peridotites.

Fig. 12. Variation of Dlog fO2
(FMQ) vs pressure for Diavik peri-

dotites (Slave Craton): (a) using the mineral analyses of
Creighton et al. (2009) and the oxybarometer calibration from
this study; (b) published P and fO2

values from McCammon &
Kopylova (2004) and Creighton et al. (2009), based on the oxy-
barometers of Bryndzia & Wood (1990) (BW90) and
Gudmundsson & Wood (1995) (GW95). Buffer reactions as in
Fig. 5.
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values. It is well known (e.g. Woodland & Koch, 2003)

that f increases with temperature (and hence pressure
via the imposed geotherm) such that the deepest sam-

ples will be less reduced than shown by extrapolating

along lines of constant f. The shaded region in Fig. 13

corresponds to the range in f from fig. 3 of Woodland &

Koch (2003) and has a shallower slope than the con-

stant f isopleths. In these calculations the garnet com-
position was not varied, except for allowing changes to

the ferric iron via the parameter f and adjustment of Fe/

Mg ratios at constant Ca to satisfy garnet–olivine equili-

brium. Garnet in sample Y17 contains 4�8 wt % Cr2O3, a

value slightly smaller than the median of the observed

range in this study (maximum around 12 wt % Cr2O3).

Exchanging Cr2O3 for Al2O3 in garnet to cover the range
0–12 wt % Cr2O3 was found to make less than 0�1 log

unit log fO2
difference to the results shown.

Also shown in Fig. 13 are calculated curves for three

assigned values of Fe2O3 for the Y17 bulk composition,

using the thermodynamic model of Jennings & Holland

(2015), to indicate the effects of changing the bulk ferric
iron content. The constant bulk composition slopes are

significantly shallower than the f isopleths and flatten

off to almost constant log fO2
at high pressures. They

also match the slope of the shaded region reasonably

well. It is important to keep in mind the very different

nature of the information in Fig. 13: the isopleths of f

are based on oxybarometry on a natural sample,
whereas the constant ferric bulk composition curves are

predictions from a thermodynamic model using the

same sample bulk composition. The measured log fO2

values for Udachnaya, as seen in Fig. 8, suggest a

change from –1 to –3 log units over this pressure range,

in good agreement with the shaded region in Fig. 13. A
comparison with fig. 14 of Jennings & Holland (2015)

suggests that a mantle with a composition similar to

fertile peridotite KLB-1 (Takahashi, 1986), with around

0�2 wt % Fe2O3, can satisfactorily explain the bulk of
mantle xenolith data, whereas depleted mantle perido-

tites may be characterized by slightly lower bulk Fe2O3

contents. Values of log fO2
in natural samples appear to

be closely controlled by relatively constant composi-

tion. The variation in f from 0�03 to 0�12 at any pressure

along the geotherm in Fig. 13 leads to changes of

around 2�5 log fO2
units.

CONCLUSIONS

Assuming that all phases are in equilibrium within a
spinel- and garnet-bearing peridotite, it is expected that

fO2
estimates from the two independent spinel-based

and garnet-based oxybarometers will give the same

value. Our revision of the spinel- and garnet-based oxy-

barometers has changed estimates of fO2
for both oxy-

barometers. As detailed above, spinel-based estimates

are now more reduced, whereas garnet-based esti-
mates are more oxidized, leading to a reduced discrep-

ancy between the two methods by around 2�0 Dlog fO2

units. Figures 5, 6 and 8 show the effect that recalibra-

tion has had on fO2
estimates in resolving the discrep-

ancy between spinel- and garnet-based oxybarometers.

In Fig. 6 all the spinel- and garnet-bearing peridotites
now cluster around the wüstite–magnetite (WM) and

enstatite–magnesite–olivine–diamond/graphite (EMOD/

Fig. 13. Variation of Dlog fO2
(FMQ) vs pressure along the man-

tle geotherm from Fig. 7 for peridotite sample Y17 from
Udachnaya (Siberian Craton, Table 3) using four values of
Fe3þ/

P
Fe in garnet. Details are discussed in the text. The

shaded field corresponds to the range in measured mantle
Fe3þ/

P
Fe in garnet from Woodland & Koch (2003) and the

dashed lines are calculated for the Y17 bulk composition, with
three Fe2O3 contents using the thermodynamic model from
Jennings & Holland (2015).

Fig. 14. A summary plot comparing recalibrated oxygen fugac-
ities with earlier studies for all peridotites in this study. For
spinel-bearing peridotites (circles) the oxygen fugacities are 0–
1 log units more reduced than those estimated by the Bryndzia
& Wood (1990, BW90) barometer; for garnet-bearing perido-
tites the largest change is relative to the Gudmundsson &
Wood (1995, GW95) barometer (black diamonds), which shows
more reduced oxygen fugacities by 0–2�5 log units, whereas
the barometer of Stagno et al. (2013, Stagno13) lies closer to
the present results (grey diamonds) but is displaced to more
reducing conditions by 0�2–1�5 log units, values that are within
the combined uncertainty of measurements and barometers.
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G) buffers. Further conclusions from this work are as

follows.

1. Recalibration of the Gudmundsson & Wood (1995)

skiagite oxygen barometer using (a) the recalcula-

tion of skiagite free energy derived from the experi-

mental data of Woodland & O’Neill (1993) and (b)

the recalibration of the garnet mixing model has

shifted garnet-based oxybarometer fO2
estimates to

more oxidized values by c. 0�70–1�5 Dlog fO2
(FMQ)

units (Fig. 14). This shift to more oxidized conditions

has moved fO2
estimates away from the iron–wüstite

(IW) buffer, and hence away from the highly reduc-

ing conditions necessary for metal saturation at the

base of the lithosphere.

2. Several xenoliths previously thought to have origi-
nated from the diamond stability field may have

experienced more oxidizing conditions, placing

them above the WM and EMOD/G buffers, where

carbonate is the stable carbon phase. Known dia-

mondiferous xenoliths from Finsch Mine remain

within the diamond stability field (within error)
(Fig. 10).

3. Revision of spinel oxybarometry in combination with

our new garnet oxybarometer calibration reduces the

difference between spinel- and garnet-based fO2
esti-

mates for mantle peridotites. The revised spinel oxy-

barometer now gives slightly more reduced fO2

values, by c. 0�7 Dlog fO2
units (Fig. 14).

4. Peridotites with coexisting spinel and garnet from

the Vitim Volcanic Field (Baikal Rift, Russia) now

show similar fO2
values for the two independent

methods, but whether they should be identical

remains questionable.

5. Introduction of multi-reaction oxybarometry for spinel
and garnet peridotites increases the robustness of the

estimation process and allows assessment of the pos-

sible disequilibrium in mantle samples.

6. Accurate and reliable measurement of Fe2O3, from

Fe3þ/
P

Fe ratios, remains the last hurdle in reliable

oxygen fugacity calculation, as the amount of Fe2O3

greatly affects the activity of skiagite, and hence the

fO2
value calculated.
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APPENDIX

Calculation of reaction (4)
At 1373 K the free energy of reaction (4)

ski ¼ 5 Feþ 3 qþ 3 O2

may be obtained from reaction (3)

skiþ hc ¼ almþmt

for which DG3¼ –69�3 kJ, as explained in the text.

First the Gibbs energy of skiagite is derived from

reaction (3) and data from Holland & Powell (2011) tabu-

lated below;

Gski ¼ Galm þGmt–Ghc þ 69 �3 ¼ –5348 �8 kJ:

The Gibbs energies for alm, mt, hc, q, O2 at 1373 K are
listed below, where HP11 is Holland & Powell (2011),

HP90 is Holland & Powell (1990), RH is Robie &

Hemingway (1995), HONA is Holmes et al. (1986).and

give (using HP11) DG4¼ 5 GFeþ 3 Gqþ 3 GO2 –

Gski¼ 969�0 kJ.

Using the data in the older HP90 dataset yields an
almost identical result (DG4¼ 970�4 kJ).

This is significantly different from the value for DG4

(981�0 kJ) given by Woodland & O’Neill (1993) from the

same starting point of DG3¼ –69�3 kJ. Repeating the cal-

culation of Woodland & O’Neill (1993) using the data

tabulated above (they used HONA for Fe & O2, HP90 for
all other phases) yields DG4¼ 967�2 kJ, very similar to

the calculation using the new Holland & Powell (2011)

dataset.

As can be seen in the table above, the dataset values

of Holland & Powell (1990, 2011) are in very good agree-

ment with those of Robie & Hemingway (1995) and

Holmes et al. (1986) for phases with available calorimet-
ric data.

Gudmundsson & Wood (1995) calculated the free

energy of reaction (1) using the following equilibria:

ski ¼ 5 Feþ 3 qþ 3 O2 (4)

fa ¼ 2 Feþ qþO2 (a)

faþ q ¼ fs (b)

with DG1¼2 DG4 – 5 DGaþDGb¼ 133�3 kJ (or log K1¼
–5�07). However, using the correct value for DG4 of

969�0 kJ in place of 981�0 kJ changes DG1 by 24 kJ and

hence log K1 by 0�91 log units.

Garnet barometer equilibria
The following four reactions:

2 ski ¼ 4 faþ fsþO2 (1)

2 pyþ 2 andrþ 2 fs ¼ 2 grþ 4 faþ 3 enþO2 (2)

2 skiþ fo ¼ 5 faþ enþO2 (11)

6 skiþ 2 py ¼ 2 almþ 12 faþ 3 enþ 3 O2 (12)

have been calibrated on the basis of this work and

the updated dataset of Holland & Powell (2011; see

Table 1) and expressed as equations of the form

DG¼ aþbTþ cPþdT2þ eP2þ fPT in Joules, which
reproduce the full calculations to within 100 J [or 300 J

for (12)] over the range 0–100 kbar and 1300–1800 K.

Spinel barometer equilibria
The following three reactions:

2 mtþ 3 fs ¼ 6 faþO2 (13)

2 mtþ 3 en ¼ 3 faþ 3 foþO2 (14)

2 mtþ 3 enþ 6 hc ¼ 6 spþ 6 faþO2: (15)

have been calibrated from the updated dataset of

Holland & Powell (2011) (see Table 1) and free energies

(in Joules) expressed as equations of the same form as

above, and are valid for the range 0–40 kbar and 1300–
1800 K.

Log fO2
values are given relative to the FMQ buffer,

which is taken from O’Neill (1987) and pressure-

corrected using the volumes from Holland & Powell

(2011); the expression used is (with P in kbar and T in K)

Logfo2ðFMQÞ ¼ ð–587474þ 1584 �427 T – 203 �3164 T lnTþ

0 �09271T 2 þ 1810P Þ=½8 �3144 T lnð10Þ�:

Garnet mixing model
Garnets with formula (Ca,Mg,Fe,Mn)3(Al,Fe3þ,Cr)2Si3O12

are here described with the following six independent

end-members: gr (Ca3Al2Si3O12), alm (Fe3Al2Si3O12), py

GHP11 (kJ) GHP90 (kJ) GRH (kJ) GHONA (kJ)

q –1029�1 –1028�8 –1029�1
Fe –70�1 –70�0 –70�1 –70�4
O2 –314�0 –314�0 –313�9 –314�4
mt –1516�4 –1517�3 –1516�6
alm –6176�2 –6177�3
hc –2274�5 –2273�7

a bT cP d(103)T2 e(102)P2 f(102)PT

(1) 344670 –163�36 858 –7�5577 –2�3764 –2�0898
(2) 339010 –164�59 829 –7�6931 –2�0380 –11�299
(11) 971930 –462�79 2141 –25�2302 –5�1024 –42�632
(12) 971930 –141�02 320 –8�1706 –1�2421 –35�412

a bT cP d(103)T2 eP2 fPT

(13) 471793 –172�28 –763 3�0957 1�5013 –0�30644
(14) 489249 –169�80 –639 4�1382 1�6490 –0�083798
(15) 467590 –143�15 –414 13�081 1�2801 –0�1818
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(Mg3Al2Si3O12), sps (Mn3Al2Si3O12), uv (Ca3Cr2Si3O12)

and ski (Fe3Fe3þ
2Si3O12).

Five compositional variables are required to describe

the variations in composition, and are taken as the site
fractions on X and Y sites:

x¼X X
Fe, c¼X X

Ca, m¼X X
Mn, f¼X Y

Fe3þ , z¼X Y
Cr. This leads

to the remaining two dependent site fractions as

X X
Mg¼ 1 – x – c – m, X Y

Al¼1 – z – f.

The end-member proportions pi, are given by

ppy ¼ 1–x–c–m

puv ¼ z

pski ¼ f

palm ¼ x–f

pgr ¼ c–z

psps ¼ m:

The ideal activities may be written out using mixing-

on-sites as

apy ¼ X 3
Mg;XX 2

Al;Y ¼ ð1–x–c–mÞ3ð1–z–f Þ2

auv ¼ X 3
Ca;XX 2

Cr;Y ¼ c3z2

aski ¼ X 3
Fe;XX 2

Fe3þ;Y
¼ x3f 2

aalm ¼ X 3
Fe;XX 2

Al;Y ¼ x3ð1–z–f Þ2

agr ¼ X 3
Ca;XX 2

Al;Y ¼ c3ð1–z–f Þ2

asps ¼ X 3
Mn;XX 2

Al;Y ¼ m3ð1–z–f Þ2

and the non-ideal activity coefficients may be found

from the macroscopic symmetric formalism as

RT ln ca ¼ �
X

i

X
j>i

ðp0
i � piÞðp0

j � pjÞWij

in which pk is the proportion of end-member, k, in the

phase, p0
k is the value of pk in pure a, and Wij is the mac-

roscopic interaction parameter for the ij binary. The
summations are over an independent set of end-

members chosen to represent the composition of the

phase. So, for example, the ski activity coefficient would

be

RT ln cski ¼ �ppypalmWpy;alm � ppypgrWpy;gr

�ppypspsWpy;sps � ppypuvWpy;uv

þppyð1� pskiÞWpy;ski � palmpgrWalm;gr

�palmpspsWalm;sps � palmpuvWalm;uv

þpalmð1� pskiÞWalm;ski � pgrpspsWgr;sps

�pgrpuvWgr;uv þ pgrð1� pskiÞWgr;ski

�pspspuvWsps;uv þ pspsð1� pskiÞWsps;ski

þpuvð1� pskiÞWuv;ski

and, for the dependent end-member andr (� grþ ski –

alm), the activity may be simply determined from

RT ln aandr ¼ RT ln agr þ RT ln aski � RT ln aalm � DGð7Þ

where DG(7)¼53�8þ 0�0017T – 0�068P kJ (see text).

Garnet mixing energies
For garnet mixing, the within-site and reciprocal energy

terms used are given below (units kJ, K, kbar) including

references (lower-case roman numerals) to their

derivation.

WMgCaX ¼ 40–0 �012T –0 �10P (i)

WFeCaX ¼ 4þ 0 �10P (ii)

WMgFeX ¼ 4þ 0 �01P (iii)

WMgMnX ¼ 9þ 0 �04P (iv)

WMgCaX ¼ 0þ 0 �06P (v)

WFeMnX ¼ 2þ 0 �02P (vi)

WFe3AlY ¼ 2 (vii)

WCrAlY ¼ 2 (viii)

WCrFe3Y ¼ 2 (ix)

WCaAlMgFe3XY ¼ – 53 �8 – 0 �0017T þ 0 �068P (x)

WCaAlFeFe3XY ¼ – 53 �8 – 0 �0017T þ 0 �068P (x)

WCaAlMnFe3XY ¼ – 30þ 0 �03P (x)

WCaAlMgCrXY ¼ 10 �2 – 0 �0338T þ 0 �121P (x)

WCaAlFeCrXY ¼ 10 �2 – 0 �0338T þ 0 �121P (x)

WCaAlMnCrXY ¼ – 30þ 0 �03P : (x)

The within-site terms refer to mixing of three cations

on X sites and two cations on Y sites. The references for
the within-site terms are as follows: (i) symmetric fit to

the Ca-poor half of the binary data of Newton et al.

(1977), Wood (1988) and Ganguly et al. (1996); (ii)

Geiger et al. (1987), Koziol (1990); (iii) Geiger et al.

(1987), Hackler & Wood (1989) and Koziol & Bohlen

(1992); (iv) Davies & Navrotsky (1983) and Ganguly

et al. (1996); (v) Koziol (1990); (vi) Pownceby et al.
(1987); (vii) Holland & Powell (2011) based on fitting

measured Fe3þ/(Fe3þþAl) ratios of garnet in experi-

ments of Holdaway (1972) for coexisting gar-

netþ anorthiteþwollastoniteþquartz; (viii) Mattioli &

Bishop (1984) and Wood & Kleppa (1984); (ix) taken as

the same as WFe3AlY; (x) this study.
The cross-site terms are determined here as follows.

WCaAlFeFe3XY comes from the discussion in the text and

uses our free energy of skiagite in conjunction with the

data of Holland & Powell (2011). It should be noted that
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the cross-site Ws here have opposite sign to the free

energies of the reactions in the text. WCaAlMgFe3XY is

made identical to WCaAlFeFe3XY as done by

Gudmundsson & Wood (1995) and is equivalent to
assuming a zero energy for FeFeþMgAl¼MgFeþ FeAl.

This latter was estimated by Ottonello et al. (1996) as a

small value, within error of zero on inspection of their

other estimates. A value for WCaAlMgCrXY was deter-

mined from the updated Holland & Powell (2011, see

Table 1) dataset, and that for WCaAlFeCrXY was taken to
be identical. The two cross-site terms involving Mn are

given much smaller values based on the fact that cal-

derite Mn3Fe3þ
2Si3O12 is stable to much lower pres-

sures (it is found in natural blueschists) than knorringite

or skiagite. Oxybarometry is not sensitive to

WCaAlMgCrXY, WCaAlFeCrXY, or the Mn cross-site terms.

This set allows us to determine the complete set of
macroscopic Ws presented in the text, using the rela-

tions given below.

Wpy;gr ¼WMgCaX

Wpy;alm ¼WMgFeX

Wpy;sps ¼WMgMnX

Wpy;uv ¼ –WCaAlMgCrXY þWCrAlY þWMgCaX

Wpy;ski ¼WCaAlFeFe3XY–WCaAlMgFe3XY þWFe3AlY þWMgFeX

Wgr;alm ¼WFeCaX

Wgr;sps ¼WMnCaX

Wgr;uv ¼WCrAlY

Wgr;ski ¼WCaAlFeFe3XY þWFe3AlY þWFeCaX

Walm;sps ¼WFeMnX

Walm;uv ¼ –WCaAlFeCrXY þWCrAlY þWFeCaX

Walm;ski ¼WFe3AlY

Wsps;uv ¼WCaAlFeFe3XY–WCaAlMnFe3XY þWFe3AlY þWFeMnX

Wuv;ski ¼ –WCaAlFeCrXY þWCaAlFeFe3XY þWCrFe3Y þWFeCaX:

When considering andradite, the additional W terms

used in the text are defined as

Walm;andr ¼ –WCaAlFeFe3XY þWFe3AlY þWFeCaX

Wpy;andr ¼ –WCaAlMgFe3XY þWFe3AlY þWMgCaX

Wandr;uv ¼WCrFe3Y

Wgr;andr ¼WFe3AlY

Wsps;andr ¼ –WCaAlMnFe3XY þWFe3AlY þWMnCaX

Wandr;ski ¼WFeCaX:

Orthopyroxene mixing
Orthopyroxene non-ideality has only minimal impact

on garnet oxybarometry, but affects the spinel barome-

ters significantly, raising the typical calculated log fO2

for reaction (13) by around 0�2 log units. Here we mod-

ify the mixing model of Green et al. (2012) and Jennings

& Holland (2015), simplifying it by making it symmetric,

by ignoring Fe–Mg ordering between M2 and M1 sites
and by taking all non-ideal interactions as contributed

only by the end-members en, fs, di, mgts. The di end-

member refers to orthorhombic diopside (CaMgSi2O6)

and mgts to Mg-Tschermak pyroxene (MgAlAlSiO6).

For the en and fs end-members the ideal activities are

given by

aideal
en ¼ X M2

Mg X M1
Mg ðX T

SiÞ
1=2 and aideal

fs ¼ X M2
Fe X M1

Fe ðX T
SiÞ

1=2:

The powers of 1
2 (rather than two) come about because

the entropy of mixing on the tetrahedral sites is taken

as a quarter that of full disorder, to help mimic short-

range order between M and T sites (Green et al., 2012).
Non-ideality is expressed as a regular solution, as dis-

cussed above for garnet, with the following parameters

(in kJ):

Wfs;en ¼ 2 �0

Wfs;mgts ¼ 7 �0 – 0 �15P

Wfs;di ¼ 24 �0

Wen;mgts ¼ 13 �0 – 0 �15P

Wen;di ¼ 32 �2þ 0 �12P

Wmgts;di ¼ 75 �0 – 0 �94P :

Olivine mixing
Olivine mixing is represented as in Gudmundsson &

Wood (1995), with ideal activities for fo and fa given as

aideal
fo ¼ X M2

Mg X M1
Mg and aideal

fa ¼ X M2
Fe X M1

Fe

and non-ideality expressed as a regular solution, taking
Wfo,fa¼ 7�4 kJ (Gudmundsson & Wood, 1995).
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