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Abstract

Composite materials/structures are advancing in product efficiency, cost-effectiveness and the development of superior
specific properties. There are increasing demands in their applications to load-carrying structures in aerospace, wind tur-
bines, transportation, medical equipment and so on. Thus, robust and reliable non-destructive testing of composites is
essential to reduce safety concerns and maintenance costs. There have been various non-destructive testing methods
built upon different principles for quality assurance during the whole lifecycle of a composite product. This article
reviews the most established non-destructive testing techniques for detection and evaluation of defects/damage evolu-
tion in composites. These include acoustic emission, ultrasonic testing, infrared thermography, terahertz testing, shearo-
graphy, digital image correlation, as well as X-ray and neutron imaging. For each non-destructive testing technique, we
cover a brief historical background, principles, standard practices, equipment and facilities used for composite research.
We also compare and discuss their benefits and limitations and further summarise their capabilities and applications to
composite structures. Each non-destructive testing technique has its own potential and rarely achieves a full-scale diag-
nosis of structural integrity. Future development of non-destructive testing techniques for composites will be directed
towards intelligent and automated inspection systems with high accuracy and efficient data processing capabilities.
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Detection and evaluation to maintain structural integ-
rity are particularly challenging since composites are
usually non-homogeneous and anisotropic. Defects and
damage can occur within numerous locations at vari-
ous levels of scale, making it difficult to track all the
damage sites which can result in complex damage
mechanisms.? In addition, damage accumulation within
a composite is closely related to the actual strength,
stiffness and lifetime prediction of the component.
Therefore, robust and reliable non-destructive testing
(NDT) of composites is essential for reducing safety
concerns, as well as maintenance costs* to minimise
possibilities for process disruption and downtime.
These factors attract interest from both academic
researchers and industrial engineers.

There are a wide variety of NDT techniques built
upon different principles. These have demonstrated
effectiveness in quality assurance throughout the whole
lifecycle of composite products, that is, in process
design and optimisation, process control, manufacture
inspection, in-service detection and structural health
monitoring.’> There are reviews available on NDT
methods used for composite research over different
timelines, focusing on various aspects: for general
methods and trends over last 30 years refer to,* ! spe-
cific areas include those which concentrate on porosity
in composite repairs,'? crack damage detection,'® bond
defect determination in laminates,'* thick-wall compo-
sites,'” sandwich structures,'®!” large-scale compo-
sites,'® smart structures,” as well as inspection and
structural health monitoring of composites,’*! espe-
cially for marine,”” wind turbine®>® and aerospace
applications.””*® Audiences are recommended to refer
to further information on their specific interests.

This article reviews the most established NDT tech-
niques for detection and evaluation to ensure the struc-
tural integrity of composite materials/structures;
however, a full description of all methods is beyond the
scope of this article. Instead, we aim to provide a prac-
tical review of the established and emerging NDT tech-
niques and their applications to composite research.
The American Society for Testing and Materials
(ASTM) has developed more than 130 standards,
guides and practices, containing technical specifica-
tions, criteria, requirements, procedures and practices
for most of the NDT techniques.?’ We also include the
standard practices for each NDT method available
from the ASTM to provide guidance for researchers
and engineers. These make it a unique state-of-the-art
review article to cover the most up-to-date practical
information for NDT techniques and their applications
to composite materials and associated structures.

The article is organised as follows. Section ‘Defects
and damage evolution in composites’ introduces the
potential defects and damage evolution in composites.
Section ‘NDT and evaluation techniques’ provides an

overview of development and principles of NDT tech-
niques and then elaborates on eight well-established
NDT methods in subsections, covering a brief historic
background, principles, standard practices, equip-
ment and facilities for each NDT method in compo-
site research. These include visual inspection (VI),
acoustic emission (AE), ultrasonic testing (UT), infra-
red thermography (IRT), terahertz (THz) testing,
shearography, digital image correlation (DIC), as well
as X-ray and neutron imaging (NI) and these are
described in sections ‘VI’, ‘AE’, ‘UT’, ‘IRT’, ‘THzZ’,
‘Shearography’, ‘DIC’, ‘XRI’ and ‘NI’, respectively.
Section ‘Conclusion and outlook’ compares and dis-
cusses the benefits and limitations of above NDT
techniques and further summarises their capabilities
and applications to composite structures. This article
is concluded by the further development of NDT
techniques, which is driven by intelligent and auto-
mated inspection systems with high accuracy and effi-
ciency in data processing.

Defects and damage evolution
in composites

Manufacturing-induced flaws/defects can occur in
many forms: unevenly distributed fibres cause resin-rich
regions; laminate—tool interactions result in in-plane
fibre waviness or out-of-plane fibre wrinkling;***! voids
and porosities arise from poor resin infusion; inclusions
from contaminated ambient conditions; misalignment of
ply and fibre orientation; matrix cracking, laminate
warping and buckling from build-up of thermal residual
stresses during curing and so on.**?* Flaws/defects act as
stress concentration points, promoting crack propagation
and delamination to reduce effective strength, stiffness
and service time of composite products.>* Although resi-
dual stresses can occasionally be beneficial, especially for
producing morphing composite structures,® >® they are
usually detrimental.>> A wide range of processes have
been developed for the moulding of composite materials
to reduce flaws, defects and build-up residual stresses
that may occur during manufacture. These can involve
multi-step processing, expensive consumables and equip-
ment, to meet technical requirements. Typical industrial
practice generally includes NDT inspection and evalua-
tion of composite products to ensure their structural
integrity and mechanical performance, which can be par-
ticularly challenging.*

Figure 1 summarises the typical flaws and defects
that may occur during manufacturing and the in-service
damage evolution of a composite material/structure.
There are no clear boundaries on the scales of different
defects and damage (which also depend on composite
constituents); thus, here we provide general guidance
according to the published literature.
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Figure |. Manufacturing-induced flaws/defects, and in-service damage evolution of a composite material/structure, with their

potential scale dimensions.

In-service damage evolution within a composite
material/structure depends on composite constituents
and loading conditions. Their failure processes are an
accumulation of basic rupture mechanisms that include
matrix cracking, fibre/matrix debonding, fibre fracture
and pull-out, micro-buckling and waviness, delamina-
tion and so on.***! The damage process initiates at the
nano- or micro-scale, where molecular chains, crystals
and amorphous regions (for semi-crystalline thermo-
plastic polymers) or cross-linked molecular networks
(for thermosetting polymers) carry loads until their lim-
its are reached; damage then starts to accumulate on
the micro-scale through crack propagation, interface
debonding and micro-buckling, fibre fracture and pull-
out, which lead to delamination, ultimately developing
into macro-scale failure of the composite.

NDT and evaluation techniques

The term ‘NDT’ covers a wide range of analytical tech-
niques to inspect, test or evaluate chemical/physical
properties of a material, component or system without
causing damage. Early established NDT techniques
include ultrasonic, X-ray radiography, liquid penetrant
testing (LPT), magnetic particle testing and eddy-
current testing, which were initially developed for steel
industry. Among these, ultrasonic and radiographic
detection are also effective inspection techniques for

composite structures.'” It is difficult to select appropri-
ate NDT techniques for a specific purpose; however,
ASTM E2533° serves as a practical guide in using
NDT methods on composite materials/structures for
aerospace applications.

To date, there have been numerous NDT methods
based on different principles, see Figure 2. They can be
categorised into five groups: (1) VI (i.e. those visible to
the human eye); (2) acoustic wave—based techniques,
such as AE, nonlinear acoustics and ultrasonic waves;
(3) optical techniques, which include IRT, THz testing,
shearography, DIC; (4) imaging-based techniques, for
example, X-ray/neutron radiography/tomography and
micro-tomography;* (5) electromagnetic field-based
techniques, such as eddy-current testing, remote field
testing, magnetic particle inspection and magnetic flux
leakage testing.*?

Here, we focus on eight established and emerging
NDT techniques and their applications to composite
research in categories (1) to (4), with the exclusion of
category (5). Since NDT methods in category (5) are
based on electromagnetic induction, their applications
are limited to conductive materials.** Eddy-current test-
ing (ECT), for example, is well established and widely
used for detecting cracks and corrosion in homoge-
neous metallic materials. Although it may be applicable
to carbon composites, their conductivities are usually
very low and inhomogeneous due to the layup and
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Figure 3. Diagram of the electromagnetic spectrum, defining the various regions of radiation according to their range of

frequencies and wavelengths.

bundling of the conductive fibres.** This leads to fur-
ther issues and difficulties for ECT to be an efficient
and cost-effective solution for most composite NDT
applications.

The measurement principles of each elaborated
NDT technique depend on the characteristics of the
electromagnetic waves based. Figure 3 shows the elec-
tromagnetic spectrum with divided wavelength sub-
regions: the soft boundaries indicate terminologies for
the subsections. Developments in generation and detec-
tion within each spectral regime have induced numer-
ous industrial applications.** Tonising radiation consists
of short-wave ultraviolet (UV), X-rays, gamma-rays or
highly energetic particles, such as a-particles, B-parti-
cles or neutrons, which are harmful to biological tis-
sues, whereas the remaining part of the spectrum is
considered to be non-ionising radiation.

To date, there have been a growing number of
research activities in this field. We performed an

electronic database search on articles published in last
30years (until 31 December 2019) using the Web of
Science Core Collection database, to trace the trends in
using various NDT techniques within composite
research, see Figure 4. The use of AE on composites
has a long history and is well established; it is still active
in a relatively steady state. Due to significant develop-
ments in equipment manufacture, computing power,
imaging processing and acquisition techniques over last
three decades, there have been rapid increases in the
application of IRT, ultrasonic, DIC and X-ray imaging
(XRI) to non-destructive detection and evaluation of
composite materials/structures. THz-based NDT tech-
nology has become a promising technique for compo-
site inspection within the last decade.***’ Research
articles on the shearography technique are less, but it
was promoted significantly by the invention of the laser
in the 1960s;*® thus, it is well-established and widely
used for industrial NDT, especially in aerospace.**->°
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Figure 4. A comparison of publication numbers on various NDT methods and their applications to composite materials/structures
in the last 30 years; data are retrieved from Web of Science Core Collection database.

Although NI shares similar principles to XRI, the gen-
eration of neutrons is more expensive than for X-rays,
the former requiring either a nuclear reactor or spalla-
tion process.”’ This has resulted in relatively few publi-
cations on its application to composite materials.

Vi

VI is the most basic type of NDT technique to inspect
damage. It is quick, economically viable and flexible,
while its disadvantages are quite obvious and signifi-
cant.'"’ VI methods include visual and optical testing
(VOT) and LPT. VOT analysis is a leading procedure
in the monitoring of surface imperfections for
acceptance-rejection criteria during composite parts
production.>® The LPT technique is a widely applied,
low-cost inspection method. It has been used in non-
porous materials to detect casting, forging and welding
surface defects including cracks, surface porosity, leaks
in new products, in-service fatigue cracks and so on.

VI methods are particularly effective in detecting
macroscopic flaws, such as poor joints, erroneous
dimensions, poor surface finish and poor fits. It usually
employs easy-to-handle equipment such as miniature
cameras or endoscopes.”® VI studies of small integrated
circuits have shown that the modal duration of eye
fixation from trained inspectors was ~200ms. Here,
variation by a factor of six in inspection speed led to a
variation of less than a factor of 2 in inspection

accuracy; inspection accuracy also depends on training,
inspection procedures and apparatus (optics, lighting,
etc.).”

AE

Damage occurrences within a composite produce loca-
lised transient changes in stored elastic energy; the
energy releases stress waves, resulting in fibre breakage,
matrix cracking, debonding, delamination and so on.?
AE-based NDT techniques detect and track these sud-
den releases of stress waves through arrays of highly
sensitive sensors or transducers,’® as illustrated in
Figure 5. Use of the AE method started in the early
1950s when Kaiser> first used electronic instrumenta-
tion to detect audible sounds produced by tensile defor-
mation of a metallic specimen. His discovery on the
effect of sample stress history on the production of AE
became known as the ‘Kaiser effect’.”® AE was first
applied to the study of composite materials in the
1970s,® and it has now been widely used in various
aspects of composite research.”’

The AE method is unique in that (1) the signals, i.e.
stress waves, are emitted by the testing sample, not
from external sources (as with other NDT methods);
(2) strain or displacement data are usually recorded,
rather than as geometrical defects; (3) it monitors
dynamic processes in a material, tracking the develop-
ment of certain defects, which significantly benefits
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Figure 5. Schematic of localised transient changes in stored
elastic energy within a material system under loading, showing
the measuring principle of the acoustic emission-based NDT
technique.

fatigue tests. It has been reported that AE-based NDT
can detect fatigue cracks, fibre fractures, matrix micro-
cracks, interface debonding as well as delamination.'!
However, there are also certain difficulties. Data col-
lected during the loading of a composite system can be
in different forms; the most common is the AE ampli-
tude signal. Processing and analysis of data are time-
consuming and require certain skills and experience:* in
particular, the distribution of amplitudes exhibits over-
lapped areas, which sometimes causes difficulties in
associating these with the damage mechanisms.

Efforts have been made to address these issues. A
common approach is to analyse multiple parameters to
complement the damage analysis, such as cumulated
event counts,”™ energy,*® duration® or frequency of
the received amplitude signals.®* Other solutions
include verifying damage modes through other meth-
ods, for example, microscopy, to provide more reliable
analysis.%® Standardised practices of using AE include
ASTM E1067%* on examining glass fibre-reinforced
plastic (GFRP) tanks/vessels; ASTM E1118% on com-
posite pipes; ASTM E2191°® on filament-wound

composite pressure vessels; ASTM E2076%” on compo-
site fan blades as well as ASTM E2661° on plate-like
and flat composite structures for aerospace. Table 1
summarises some of the commercial suppliers of AE-
based NDT systems, which may be applied to compo-
site research.

There is also some interest in a combined method of
AE and UT, namely the acousto-ultrasonic technique
(AUT), as first introduced by Vary’® in 1981. By adopt-
ing the ultrasonic transducer, repeated ultrasonic pulses
are introduced into a material, and resultant waveforms
carry the morphological information that contributes
to damage mechanisms. A concept of ‘stress wave fac-
tor’ is defined as a relative measurement of efficiency of
energy dissipation to indicate regions of damage.”® In
NDT, the AUT is mainly used to determine the severity
of internal imperfections and inhomogeneities in com-
posite materials."!

ur

UT is an acoustic inspection technique, which is
expanding rapidly into many areas of manufacturing
and in-service detection.”’ It operates through surface
wave testing, bulk wave propagation and guided wave
propagation, while the guided wave analysis technique
is superior for anisotropic materials.”® For further
information, the use of ultrasonic bulk wave testing in
the sizing of flaws has been reviewed by Felice and
Fan.” For NDT inspection of composite materials,
elastic waves or ‘Lamb waves’ propagate in selective
directions due to their anisotropic nature which makes
the technique effective. UT operates in three detection
modes, that is, reflection, transmission and backscatter-
ing of pulsed elastic waves in a material system.'” It
introduces guided high-frequency sound waves (rang-
ing from 1kHz to 30 MHZz*) to effectively detect flaw
size, crack location, delamination location,®® fibre
waviness,’! meso-scale ply fibre orientation®! and layup
stacking sequence.®?

Table |I. Summary of suppliers of devices and systems used for the acoustic emission-based NDT technique.

Supplier Resolution Dynamic Bandwidth Sampling Ref.

(bit) range (dB) (MHz) speed (MHz)
Physical Acoustics Co. 16 100 0.001-1.2 5-20 Ramirez-Jimenez et al.,*’

Marec et al.”® and Sikdar et al.”'

Meggitt Endevco - 100 0.002-1.0 - Barré and Benzeggagh®?
Soundwel Technology Co.Ltd 16 85 0.001-2.5 0.5-10 Cuietal.”?
IPPT PAN - 40 0.005-0.5 - Schabowicz et al.”
Vallen Systeme - 100 0.1-0.45 - Svetko et al.”

NDT: non-destructive testing.

Please note the information in this table is incomplete, and not for advertising purposes — it should not be taken as endorsements by the authors.
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Table 2. Summary of suppliers for the ultrasonic-based NDT technique.

Supplier Resolution (bit) Dynamic range (dB) Bandwidth (MHz) Sampling speed (MHz) Ref.

ZETEC Inc. 16 - 0.5-18 50 or 60 Sherafat et al.2®
Inspection Technology Europe 16 90 0.1-30 50/160 Dong et al.®¢
Advanced Technology Group 12 80 1-22 100 Rozek et al.®”
Peak NDT 16 60 0.001-40 10-100 Riise et al.%®
Olympus - 60 0.2-20 - Kim et al.®
Polytec Co. 14 0-25 Derusova et al.”°

NDT: non-destructive testing.

Please note the information in this table is incomplete, and not for advertising purposes — it should not be taken as endorsements by the authors.
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Figure 6. Principle of ultrasonic testing a composite material in
transmission mode.

There are various types of UT systems with hun-
dreds of guided wave modes and frequencies being
available.”® A typical UT system consists of a transmit-
ter and receiver circuit, transducer tool and display
devices, see Figure 6. The transmitter can either be
arranged at an angle to the sample or in the form of
phased array.®® The guided Lamb waves can be gener-
ated using (1) ultrasonic probe, (2) laser, (3) piezoelec-
tric element, (4) interdigital transducer or (5) optical
fibre.** Table 2 provides some suppliers of UT equip-
ment which may be applied to composites research.

The potential types of damage that guided Lamb
wave-based NDT can provide are summarised by
Rose:”” the mode selection, generation and collection,
modelling and simulation, signal processing and inter-
pretation have been well documented by Su et al.%* A
later review on guided waves for damage identifica-
tion in pipeline structures is provided by Guan et al.”!
UT techniques for composites have been standar-
dised: ASTM E2373°? gives the requirements for
developing a time-of-flight (TOF) UT examination;
ASTM E2580% for inspections on flat composite
panels and sandwich structures in aerospace applica-
tions; ASTM E2981°* for filament-wound pressure
vessels in aerospace applications.

IRT

IRT is a method used to detect and process infrared
energy emissions from an object by measuring and
mapping thermal distributions.”® Infrared energy is
electromagnetic radiation with wavelengths longer than
visible light, see Figure 3. The discovery of thermal
radiation dated back to the early 1800s.%> Every object
with a temperature higher than absolute zero emits
electromagnetic radiation that falls into the infrared
spectrum.”® IRT has undergone rapid development in
the last 30 years with developments in infrared cameras,
data acquisition and processing techniques. It provides
capabilities in terms of non-contact, non-invasive, real-
time measurement, high resolution and covering large
volumes.”’

The IRT method is effectively used to monitor the
entire life of a product, from manufacturing (on-line
process control), to the finished product (NDT evalua-
tion) and to in-service maintenance and diagnostics.>
It has been applied to research and various aspects
within the industry, including NDT,”® building diag-
nostics,” adhesion science,”” condition monitoring,'®
predictive or preventive maintenance,'” medical diag-
nostics,'%? veterinary medicine'® and many more. As
for composite materials and structures, IRT-based
NDT has also been widely used, especially during man-
ufacturing for aerospace applications. It is used to
detect inclusions, debonding, delamination and cracked
networks.”” Both Boeing and Airbus have used IRT for
structural health monitoring to ensure the integrity of
their composite products.’’

A typical IRT system contains an infrared radio-
meter, with/without energy source, synchronising
and control panel, display software, see Figure 7. The
radiometer is the core of the IRT system; it absorbs IR
energy emissions and converts them into electrical vol-
tage or current signals. They are then transmitted and
displayed as infrared images of temperature distribu-
tion.>* The use of IRT can be implemented through (1)
passive and (2) active thermography (AT).'® In passive
thermography (PT), thermal radiation is directly
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Table 3. Summary of commercial infrared thermography systems and their key parameters applied to composite research.

Supplier Spatial Thermal Imaging Imaging rate  Ref.

resolution (mrad)  sensitivity (mK)  resolution (pixel®)  (fps)
Thermal Wave Imaging Inc.  1.13 25 320 X 256 60 Avdelidis et al.'”” and

Chatterjee et al.'®

Thermoteknix System Ltd.  0.47 70 384 x 288 50 or 60 Bolu et al.'®
Fluke Corporation 0.93 50 640 X 480 9 or 60 Huetal.''®
InfraTec GmbH 0.08-1.3 20 640 X 512 1-100 Jorge Aldave etal.'"!
Mikron Infrared 1.0 80 320 X 240 9 or 50 Naderi et al.''2
Optris - 130 382 X 288 80 Bailey and Lafferty''?
NEC Avio 0.87 50 320 X 240 60 Vavilov et al.'"*
FLIR System 0.19-1.36 20 320 X 256 50 Usamentiaga et al.''® and

16
Meola and Carlomagno

Please note the information in this table is incomplete, and not for advertising purposes — it should not be taken as endorsements by the authors.
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Figure 7. Schematic of the measurement principles for an infrared thermography system in reflection mode.

emitted from surfaces of the test body under natural
conditions and subsequently monitored. For AT, a
heating or cooling flow is generated and propagated
into the test object, and thermal responses according to
the Stefan-Boltzmann law are then detected and
recorded to reveal internal structures. Recent advances
in signal processing techniques and equipment develop-
ments have made the AT method more practical and
effective than the conventional PT approach.'®>1%
Table 3 gives some suppliers of IRT equipment which
may be applied to composites research.

Based on energy stimulation methods, the AT
method has developed into different categories. First,
optical thermography is the most traditional form of
IRT, using optical sources such as photographic
flashes, halogen lamps or lasers, which are also known
as pulsed thermography,''” modulated (lock-in) ther-
mography''® or laser thermography,''®'?° respectively.
Second, induction thermography, which shares similar
principles to ECT, that uses electronic or magnetic cur-
rents to induce energy waves.'>''** Third, mechanical
thermography, which uses mechanical waves to interact

with internal structures to detect thermal waves from
defects;'® it can be implemented through vibrothermo-
graphy,'?®"?” microwave thermography'?*'?* or ultra-
sonic lock-in thermography'*® which attracts increasing
interest. Yang and He'’! have presented a compre-
hensive review of the optical and non-optical IRT
methods and their NDT applications in composite
materials/structures. The reader is referred to ASTM
E2582'3% for standard practice on using IRT with
composite panels and repair patches in aerospace
applications.

THz testing

THz waves lie within the electromagnetic spectrum
from 100GHz to 30THz'*? which belong to non-
ionising radiation and are not harmful to biological tis-
sues (Figure 3). There are many THz wave sources in
nature, although previously it has been difficult to gen-
erate and detect THz waves, so for many years, there
have been few applications.'** Due to breakthroughs in
ultrafast lasers and ultra-micro machining technologies
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Table 4. Summary of terahertz-based NDT system suppliers.

THz supplier Setup Resolution  Dynamic Scanning Spectrum band  Ref.

(bit) range (dB)  range (mm?)  (THz)
Virginia Diodes Inc. THz-CW - 10 100 X 100 0.05-1.0 Dobroiu et al."*’
Zomega Terahertz Co. THz-TDS - 70 150 X 150 0.14.0 Redo-Sanchez et al.'®®

and Wang et al.'*

TeraView THz-TDS 16 95 150 X 150 0.06-3.0 Dong et al.'*!
TeraSense THz-CW 16 - 128 X 64 0.05-1.0 Zhang et al.'*?
MenloSystems THz-TDS I8 90 150 X 150 0.14.0 Han and Kang'*?
Toptica Photonics THz-CW - 100 100 X 100 0.1-6.0 Yahng et al."
Luna Ltd. THz-TDS 16 95 - 0.1-2.0 Zhang et al.,'* Lopato'*® and

Okano and Watanabe'*”

NDT: non-destructive testing; THz: terahertz; CW: continuous wave; TDS: time-domain spectroscopy.
Please note the information in this table is incomplete, and not for advertising purposes — it should not be taken as endorsements by the authors.

during the 1980s,'*>!%® there has been a rapid expan-
sion in applications for THz science and technology.*®
THz-based NDT technology has also started to be a
promising technique for composite inspections,*’
offering advantages in terms of higher resolution and
better penetration in most materials compared to other
techniques. '’

THz waves have good penetrating power for
non-metallic, non-polar materials, including foams,
ceramics, glass, resin, paint, rubber and composites.
THz-based NDT techniques use the wave characteris-
tics to detect, analyse and evaluate material systems,
which has attracted wide interest in various fields, lead-
ing to rapid expansion.'*® Figure 8 shows an example
of a typical setup of the THz-based NDT method, pre-
senting the basic measuring principles in transmission
mode.*> The system induces THz short waves into a
material, which interact with different phases, inclu-
sions, defects or damage. Internal structures within the
material are determined by detection and analysis of
reflected or transmitted THz waves. Therefore, the

multi-phase and multi-layered nature of composites are
well-suited to THz-based NDT - it offers multi-scale,
more comprehensive information to detect and reveal
internal structures and damage within a composite.*’
The THz-based NDT technique is usually implemen-
ted through (1) a THz time-domain spectroscopy sys-
tem (THz-TDS), also known as pulsed spectroscopy, or
(2) a continuous wave (THz-CW) system. The detection
setup determines how information is evaluated within
composite materials. In the THz-TDS system, short-
pulsed THz waves are generated by optical excitation
of a photoconductive antenna using a laser pulse emit-
ting in the femtosecond regime,'*® the time-dependent
evolution of the THz electric field of a single pulse is
measured, which can be used to determine phase infor-
mation within a composite. For the THZ-CW system,
high-power THz waves are produced through gas
lasers, quantum cascade lasers or parametric sources’
and phase information is measured by recording the
average intensity (related to the amplitude of the wave)
of the electromagnetic field. Table 4 shows some of the
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Table 5. Summary of commercialised shearography system suppliers, and their key parameters applied to composite research.

Supplier Inspection Imaging Imaging Ref.
area (m?) resolution (pixel?) rate (Hz)

Dantec Dynamics 0.01-2 1392 X 1040 10 Razek et al.¥” and
Kadlec and Razek'8

ZEISS Optotechnik - 220 X 160 - Ibrahim et al.'®

Optonor AS 0.01-4 1936 X 1216 - Bisle et al.'® and Vollen et al.'®

isi-sys GmbH - 2560 X 1920 - Pickering and Almond'?® and
Ochéa et al.'?!

Laser Optical Engineering Ltd. 0.49 1280 X 1024 12 Francis et al.'””

Laser Technology Inc. 0.01-0.05 1628 X 1236 30 Tyson and Newman'??

Please note the information in this table is incomplete, and not for advertising purposes — it should not be taken as endorsements by the authors.

commercialised THz-based NDT systems and their key
parameters. As an emerging NDT technique, standar-
dised practice on using the THz approach is still
developing.

There have been several reviews regarding applica-
tions of the THz-based technique, focusing on different
aspects: Dhillon et al.*® presented a comprehensive
review on the roadmap of THz science and technology;
Jansen et al.'*® reviewed progress and applications of
THz systems in the polymer industry; Amenabar et al.”
summarised the detection and imaging methods using
THz waves, as well as their applications in composites;
Zhong"’ further summed up the most recent advances.

Shearography

Shearography testing (ST) is a laser-based non-contact
NDT technique, using a full-field speckle shearing inter-
ferometric method to overcome the limitations of holo-
graphy testing.*’ This technique was first described and
applied by Leendertz'* and Leendertz and Butters'>®
in the 1970s. To date, it has been used in various fields
as a practical quantitative inspection tool to detect
flaws and defects,'>!13 leakage,154 delamination and
damage,'”>'*® as well as measurement of displacement
and strain,”>”1%® curvature,'>1%? residual stress,'®16°
mechanical analysis,'**'®” surface profiling'®®
dynamic vibration.'®*"!"!

A typical shearography setup is shown in Figure 9.
A laser beam illuminates a sample surface, and the
beam is then scattered and reflected. The resulting
speckle pattern is imaged through a shearing device
(Michelson interferometer or diffractive optical ele-
ment), which divides it into two coherent images with
one being monitored during deformation. A controlled
stressing process is essential and is applied through
thermal,'’*!'”®  vacuum,'®*!'"*  vibration,'® micro-
wave' > or mechanical loading.'’® The interferometric
pattern is then captured and recorded by a charge-
coupled device (CCD) camera, which results in a fringe
pattern that contains structural information.'”” It has

and

been adopted for inspection and evaluation in various
composite products, for example, pipes,'”*!'”® sandwich
structures,'!"1% wind turbine blades,'®' aerospace
structures, % ' as well as racing tyres.'®> An example
of standard practice using shearography for polymer
composites and sandwich core materials in aerospace is
represented by ASTM E2581."%° Some suppliers of
commercialised shearography systems are given in
Table 5.

DIC

DIC is a simple and cost-effective optical NDT tech-
nique for measuring strain and displacement, which are
critical parameters within engineering and construction
projects. It was developed in the 1980s'®* and has
become widely used only in recent years due to the
rapid development of computers and image acquisition
methods. Images are usually captured through CCD
cameras, possibly with the aid of microscopy. The DIC
system tracks blocks of random pixels on a sample sur-
face and compares digital photographs at different
stages of deformation to build up full-field two-dimen-
sional (2D) or three-dimensional (3D) deformation vec-
tor fields and strain maps.'”* Thus, any changes in the
structure or surface can easily be reflected to give details
on surface strain, deformation or crack propagation,
making it ideal for studies of crack propagation and
deformation. It offers more accurate strain monitoring
than conventional extensometers or strain gauges,
which often suffer from imperfect attachment to the
measured surface and the limitations imposed by values
that are averaged over the gauge length.'®”

Figure 10 shows a typical DIC system for strain
mapping of a composite sample; here, special illumina-
tion may be required. The sample is sprayed with a
white stochastic speckle pattern prior to testing and two
CCD cameras need to be calibrated each time. Imaging
data can be analysed through commercialised software
to reveal changes in speckle with reference images and
strain or deformation can be calculated during the tests.
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Figure 9. Schematic illustration of a shearography system.

Table 6. Summary of suppliers of DIC systems and their key parameters applied to composite research.

DIC supplier Hardware/ Imaging Precision Strain mapping Ref.
software resolution (m/pixel)
(pixel?)

Correlated solutions Yeslyes 2240 X 1680 - 2D and 3D Caminero et al. 2%

Limess Yeslyes 4096 X 3068 1.0 2D and 3D Willems et all.2°'

Dantec Dynamics Yeslyes 2560 X 1920 5.0 2D and 3D Elhajjar and Shams>%2

GOM Yeslyes 4096 X 3068 4.8 2D and 3D Catalanotti et al.,”°® Dias et al.?**
and Furtado et al.>*®

LaVision Yes/yes 2240 X 1680 5.86 2D and 3D Smyl et al.>%¢

Instron Yeslyes 1280 X 720 1.0 2D Sarasini et al.2%’

MatchID Nolyes - - 2D and 3D Wang et al2%®

isi-sys GmbH Yes/no 1920 X 1200 2.0 2D and 3D Manzato et al.??

DIC: digital image correlation; 2D: two-dimensional; 3D: three-dimensional.

Please note the information in this table is incomplete and not for advertising purposes — it should not be taken as endorsements by the authors.

Thus, quality of the speckle pattern is vital for accuracy
and precision in the DIC technique.'”® Pan'®’ presented
the historic developments, recent advances and future
of DIC for surface deformation measurement; Hild
et al.'”® discussed the capabilities of DIC in damage
measurements; Aparna et al.'”” summarised studies on
fatigue testing of composites using the DIC technique.
Therefore, they are not elaborated here. Table 6 sum-
marises some suppliers of DIC systems and certain
examples in the literature. Audiences are recommended
to refer to each supplier for full details.

Given the flexibility and versatility of DIC systems,
standardisation of the DIC technique is difficult or
even impossible to be applicable to each individual
situation. '’

Imaging techniques

Imaging techniques refer to the NDT methods that are
based on phase-contrast imaging, which were first
developed in the 1930s.2!® They enable high-resolution
imaging (a few angstroms), making it possible to

distinguish features at atomic or molecular levels.
Developments in digital imaging technology and syn-
chrotron radiation facilities have promoted the use of
imaging techniques since the 1990s.>'' To date, it has
been reported that XRI is carried out either through
lab-based X-ray tubes or synchrotron light sources;
alternatively, NI uses neutrons generated from fission
reactors or spallation sources.”'? Both X-ray and neu-
tron radiography have developed to be indispensable
tools in various research fields ranging from solid mat-
ter to soft tissues.?"!

Synchrotron X-ray and neutron radiation are NDT
techniques that provide insights into micro-structures,
residual stress, strain and stress fields, crystallographic
textures and so on, at atomic and crystalline levels.
Their measurement and detection principles are
similar, mainly depending on scattering techniques,
see Figure 11. The incident light beams (monochro-
matic or white) are directed onto a sample, the scat-
tered beams are captured by the detectors as a function
of momentum transfer and/or transferred energy
AE”" Diffraction patterns from a material in (a) can
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Figure 10. Schematic of a typical stereo-DIC setup for strain mapping of a composite sample sprayed with stochastic speckle

pattern.

Crystalline
Incident beam. L ® \ 20
I—) e o o --I .
[ [ ] [ ]
(a)

Incident beam

(~ "~ _

Sample surface

(©)

Cluster )
Incident beam . . ® V320
I ® 9 e /
—>
° 9 .
v /X
Light beam *
—_—
(d)

Figure 1 1. Schematic of synchrotron and neutron measurement techniques: (a) diffraction, (b) small-angle scattering, (c)

reflectometry and (d) spectroscopy.

be used to characterise the crystalline structure, resi-
dual stress and crystallographic textures; in (b), small-
angle scattering (SAS) uses smaller scattering angles than
(a) to investigate material structures with various sub-
stances to provide quantitative statistical information at
nanoscale levels; in (c), reflectometry is used to study the
surface morphology of thin films or multi-layered com-
posites and so on;*'* in (d), spectroscopy is performed to
determine electronic, vibrational or magnetic excitations
and diffusional processes in solids and liquids.

Although synchrotron and NI share basic principles,
the neutron technique is superior in terms of penetra-
tion depth; that is X-rays (photons) can only be used
non-destructively for examination in the near-surface
regions.?'”> Neutrons carry no electric charge, so there

is no electrostatic interaction with the electron cloud of
an atom.”'® The characterisation and analysis of resi-
dual stresses in materials science using synchrotron and
neutron radiation has been documented by Fitzpatrick
and Lodini,>"® and Hutchings et al.>'® Also Banhart
et al.”!'> have reviewed the applications of X-ray and

NI to materials science and engineering.

XRI. A commonly used laboratory-based X-ray source
for imaging is the X-ray tube, as schematically illu-
strated in Figure 12. A bias voltage of 30-60kV is
applied between the filament and metallic target in an
evacuated X-ray tube, causing clectrons emitted from
the filament to collide with the metallic target at high
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Figure 12. Schematic representation of laboratory-based X-ray imaging.

velocity (energy) and radiate X-rays. The wavelengths
of the X-rays are about 0.5-2.5A and depend on the
target material. The most commonly used metallic tar-
get is copper, which emits strong X-rays with a wave-
length of 1.54 A2 Laboratory XRI systems are
usually cheaper and easier to access and are suitable
for materials with higher phase contrast, such as glass
fibre-reinforced composites. The acquisition time for
laboratory XRI ranges from minutes at low resolution
(sub-millimetre) to hours or even days at high resolu-
tion (sub-micron).>'®

A major disadvantage of laboratory XRI systems is
the lack of capability to penetrate deeply into engineer-
ing materials, which depends on X-ray energy and
wavelength.>'® Although gamma-rays have higher
penetrating capacity than X-rays, they are usually gen-
erated from a radioactive source, which cannot be
turned off and is difficult to adopt as a compact source
to provide a photon flux comparable to an X-ray tube;
thus, detection efficiency is fairly low and long measur-
ing times are required.?"”

The limitations on penetration depth have been
overcome by the rapid development of synchrotron
facilities. Laboratory X-ray sources produce polychro-
matic and divergent X-ray beams, while a synchrotron
X-ray beam is parallel, monochromatic, more coherent,
with higher orders of flux and brightness. These factors
determine the image quality and acquisition time. A
synchrotron XRI system offers much higher levels of
both signal-to-noise ratio and phase contrast, which
makes it superior for low contrast materials, such as
carbon fibre-reinforced composites. The high flux and
brilliance of the X-ray beam allow very fast imaging
acquisition with high resolution; for example, 1 tomo-
gram per second with 1.1 pm spatial resolution using
the TOMCAT beamline at the Swiss Light Source
facility.??°

Synchrotron facilities have gone through four gen-
erations of technical evolution. The first-generation
synchrotron facility was built in the United States in
1946 and was primarily used for high-energy particle
physics. The second-generation synchrotrons were dedi-
cated to the production of synchrotron light in the
1980s, which used bending magnets to generate syn-
chrotron light. The third-generation light sources origi-
nated in the 19903,22] with facilities that used insertion
devices (wigglers and undulators) to produce intense
and tuneable X-ray beams. The fourth-generation facil-
ities will be based on free electron lasers which offer
more advanced capabilities to generate brighter light
sources.”*? Currently, there are about 50 synchrotron
facilities around the world, supporting various investi-
gations in engineering, health and medicine, materials
science, chemistry, cultural heritage, environmental sci-
ence and many more.”**> ?*! Table 7 summarises the
third- and fourth-generation synchrotron light source
facilities throughout the world. Given that the first
third-generation synchrotron facilities were built in
1993, some will be subjected to upgrading in the near
future.!

XRI can also be implemented through different meth-
ods as recently presented by Liu et al.;*'® Garcea et al.>'®
reviewed the applications of X-ray computed tomography
(CT) to polymer composites. Standard practice in using
computed radiography (X-rays or y-rays) for metallic and
non-metallic materials is recommended in ASTM
E2033;%% ASTM E2662*** provides guidance on the
radiographic examination of flat composite panels and
sandwich core materials for aerospace applications.

NI The neutron was discovered by Sir J Chadwick?*

at Cambridge in 1932 through the collision of beryllium
by a-particles from polonium. Neutrons have a wave
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Table 7. Summary of third- and fourth-generation synchrotron light sources in operation and under construction worldwide.

Country Location Source Energy (GeV) Brilliance Circumference (m) Beamlines Operation year/status
United States Berkeley ALS 1.9 10" 196.8 40 1993

Italy Basovizza  ELETTRA  2.0/2.4 10" 259.2 28 1994

France Grenoble ESRF 6.0 10" 844 56 1994

China Taiwan TLS 1.5 107 120 25 1994

Korea Pohang PLS 3.0 10%° 281.82 36 1995

United States Lemont APS 7.0 10' 1104 68 1995

Japan Hyogo SPing8 8.0 10%° 1436 62 1997

Germany Berlin BESSY Il 1.7 10" 240 46 1999

Canada Saskatoon  CLS 2.9 10%° 171 22 1999

Switzerland Villigen SLS 2.4 10%° 288 16 2001

United States Menlo Park SPEAR3 3.0 10%° 234 30 2004

United Kingdom Didcot DLS 3.0 10%° 561.6 39 2006

France Saint-Aubin  SOLEIL 2.75 10" 354 29 2006

Australia Clayton AS 3.0 10'2 216 10 2007

China Beijing BEPCIl 20 10'3 240 14 2008

Germany Hamburg ~ PETRAIIl 6.0 10%' 2304 21 2009

China Shanghai SSRF 35 10%° 432 31 2009

Span Barcelona  ALBA 3.0 10%° 268.8 9 2012

United States Upton NSLS-II 3.0 10%' 792 28 2014

China Taiwan TPS 3.0 10%! 518.4 7 2016

Krakow Poland SOLARIS 1.5 10'8 96 2 2016

Jordan Allan SESAME 2.5 10'® 133 7 2017

Germany Schenefeld ~ XFEL 17.5 1033 1700 6 2017

United States Ithaca CHESS-U 6.5 102 768.4 ] 2018

Sweden Lund MAXIV 3.0 10%2 528 17 2019

France Grenoble ESRF-EBS 6.0 102! 844 8 Under construction
Brazil Campinas SIRIUS 3.0 10%! 5184 13 Under construction
China Beijing HEPS 6.0 10%2 1360 14 Under construction
Brilliance (brightness) is shown in photons/s/mradzlmmZ/O,I%bw,

character, their wavelengths are in the order of intera- produce — neutron sources are usually generated

tomic distances (~0.1 nm) and kinetic energies close to
atomic vibration energies (~102eV). Thus, they give
rise to the possibilities of diffraction and inelastic scat-
tering studies, which were experimentally demonstrated
in 1946 by Wollan and Clifford using the Graphite
Reactor at Oak Ridge National Laboratory, in the era
of the Manhattan Project in the United States.?!?
Important progress was made on neutron strain scan-
ning (NSS) during the 1960s and 1970s. Techniques
such as small-angle neutron scattering (SANS), neutron
TOF scattering, backscattering or spin-echo techniques
and neutron reflectivity subsequently broadened the
applications of NSS to larger scientific domains such as
solid-state chemistry, liquids, soft matter, materials sci-
ence, geosciences and biology.>*’

A schematic example of NSS using ENGIN-X (ISIS
Neutron and Muon Source, Rutherford Appleton
Laboratory, UK) is presented in Figure 13.2° The
pulsed neutron beam with a wide range of energy tra-
vels to the sample and, being scattered, the detectors
then collect the diffracted neutrons at a fixed angle of
26,. As neutrons can penetrate deeply into composite
materials, strain/stress can be non-destructively mea-
sured.”*’ Neutrons are difficult and expensive to

through either nuclear fission reactors (continuous neu-
tron sources) or neutron spallation (pulsed neutron
sources). Neutron source facilities are summarised
chronologically in Table §.2!3:238:23

NI has progressed as a reliable NDT technique, in
the forms of neutron topography and radiography;

Detector 1

Neutron
source

L, Slit

A

Detector 2

Figure 13. Schematic representation of a time-of-flight
neutron strain scanner at the ENGIN-X. The elastic strain is
measured along with the directions of the impulse exchange
vectors, q; and @, through the two detectors.
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Table 8. Summary of neutron source facilities worldwide and their basic parameters.

Country Location Source First Power Flux (10'* n/em?/s)  Scattering Operating
open (MW) instruments  time (days/year)
Continuous neutron sources
Canada Chalk River NRU 1957 120 3.0 6 300
Australia Lucas Heights ~ HIFAR 1958 10 1.4 7 300
Hungary Budapest BNC 1959 10 1.6 7 200
Russia Gatchina WWR-M 1959 16 1.0 12 200
Denmark Risa DR3 1960 10 1.5 7 286
Sweden Studsvik R-2 1960 50 4.0 8 187
Japan Tokai JRR-3 1962 20 2.0 23 182
Germany Juelich FRJ-2 1962 23 2.0 16 200
Netherlands Delft HOR 1963 2 0.2 I 160
United States Brookhaven HFBR 1965 30 4.0 14 260
United States Columbia MURR 1966 10 6 4 338
Russia Ekaterinburg IWW-2M 1966 15 2.0 6 250
United States Oak Ridge HFIR 1966 85 25.0 14 210
Norway Kjeller JEEP2 1967 2 0.22 8 269
United States Gaithersburg NBSR/NIST 1969 20 2.0 17 250
France Grenoble HFR-ILL 1972 58 12.0 32 225
Germany Berlin BER-2 1973 10 2.0 16 240
France Saclay Orphée 1980 14 3.0 25 240
Russia Moscow IR-8 1981 8 1.0 10 -
United States Sacramento MNRC 1990 2 0.1 5 50
Switzerland Villigen SINQ 1996 | 2.0 22 250
Korea Taejon Hanaro 1996 30 2.8 6 252
Australia Lucas Heights ~ OPAL 2007 20 1.0 I5 300
Pulsed neutron sources
United States Argonne IPNS 1980 7 5 13 147
Japan Tsukuba KENS-KEK 1980  3kW 3.0 16 80
Russia Dubna IBR2 1984 2 100 13 104
United Kingdom  Didcot ISIS 1985  160kwW  20-100 28 141
United States Los Alamos LANSCE 1985 56 34 7 100
United States Bloomington LENS 2004 6kw 0.001 3 -
United States Oak Ridge SNS 2006 | 1.5 19 240
Japan Tokai J-PARC 2007 I 0.8 I -
China Dongguan CSNS 2018 0.1 0.0l 18 Under construction
ERIC Lund ESS 2023 5 - I5 Under construction

specialised instrumentation at pulsed neutron sources
includes RADEN@J-PARC?* and IMAT@ISIS.**!
Neutron tomography allows 2D or 3D imaging of the
attenuation coefficient distribution within a material
system; thus, internal structures and material composi-
tion can be visualised;*** neutron radiography is a
transmission imaging technique for heterogeneous
materials, taking advantage of the scattering and/or
absorption contrast between different elements.**

NI offers a typical spatial resolution of a few hun-
dred microns®** and below 10 um in the best case.”*
Although XRI is able to provide sub-micron resolution,
NI offers better sensitivity to light elements, especially
hydrogen.>* In terms of efficiency, NI may take several
hours (days) compared to minutes or even seconds for
XRI; this is due to the low neutron flux, dependency on
the number of slices/rotation steps and the materials
under investigation. The fundamentals, instrumenta-
tion and early applications of NI are covered by Strobl

et al.;?* for recent advances and applications, refer to
Kardjilov et al.**” and Woracek et al.**’

Conclusions and outlook

NDT techniques are invaluable as tools for testing and
evaluation, as may be required during various stages
within the lifetime of a composite product. It is clear
that each technique has its own potential but rarely
achieves the capabilities for a full-scale diagnosis of
possible defects and damage evolution in a composite
system. Table 9 presents the benefits and limitations of
the reviewed NDT methods. Appropriate selection of a
suitable NDT technique can be challenging but is
clearly essential to provide appropriate information for
maintaining the structural integrity of composite mate-
rials and structures.

The applications and capabilities of each reviewed
NDT technique for detection and evaluation of defects
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specimens have to be analysed using radiation facilities
which are inconvenient compared to other NDT tech-
niques. Also, locations and availability of synchrotron
facilities are very limited, which further constrain their
accessibility and costs. Portable X-ray or neutron gen-
erators have been commercialised to provide easier
access. While they have found applications in aero-
space, marine, construction and pipeline inspection,
their capabilities for composite industries are limited.
The use of NI depends on advances in neutron produc-
tion and instrumentation, while its research community
is growing rapidly. Free electron lasers and modern
spallation sources are promising techniques that should
enhance the future development of NDT technology
towards more advanced capabilities.
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