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Preface

This dissertation is the result of my own work and includes nothing
which is the outcome of work done in collaboration except as declared
in the Preface and specified in the text.

It is not substantially the same as any that I have submitted, or,
is being concurrently submitted for a degree or diploma or other
qualification at the University of Cambridge or any other University
or similar institution except as declared in the Preface and specified
in the text. I further state that no substantial part of my dissertation
has already been submitted, or, is being concurrently submitted for
any such degree, diploma or other qualification at the University of
Cambridge or any other University of similar institution except as
declared in the Preface and specified in the text.

It does not exceed the prescribed word limit for the relevant Degree
Committee.

As referenced in the text this work includes a testable experimental
hypothesis identified by Orr Yarkoni of the Ajioka lab in the Pathology
department, University of Cambridge. The RNA-seq data analysed
in this thesis, as discussed in the text, was produced by Lalitha Sun-
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Abstract

Modelling interactions between genes and their regulators is funda-
mental to understanding how, for example a disease progresses, or
the impact of inserting a synthetic circuit into a cell. We use an ex-
isting method to infer regulatory networks under multiple conditions:
the Joint Graphical Lasso (JGL), a shrinkage based Gaussian graph-
ical model. We apply this method to two data sets: one, a publicly
available set of microarray experiments perturbing the gram-positive
bacteria Bacillus subtilis under multiple experimental conditions; the
second, a set of RNA-seq samples of Mouse (Mus musculus) embry-
onic fibroblasts (MEFSs) infected with different strains of the parasite
Toxoplasma gondii. In both cases we infer a subset of the regulatory
networks using relatively small sample sizes. For the Bacillus sub-
tilis analysis we focused on the use of these regulatory networks in
synthetic biology and found examples of transcriptional units active
only under a subset of conditions, this information can be useful when
designing circuits to have condition dependent behaviour. We devel-
oped methods for large network decomposition that made use of the
condition information and showed a greater specificity of identifying
single transcriptional units from the larger network using our method.
Through annotating these results with known information we were
able to identify novel connections and found supporting evidence for
a selection of these from publicly available experimental results. Bio-
logical data collection is typically expensive and due to the relatively
small sample sizes of our MEF data set we developed a novel empirical
Bayes method for reducing the false discovery rate when estimating
block diagonal covariance matrices. Using these methods we were able
to infer regulatory networks for the host infected with either the ME49
or RH strain of the parasite. This enabled the identification of known
and novel regulatory mechanisms. The Tozoplasma gondii parasite has
shown to subvert host function using similar mechanisms as cancers
and through our analysis we were able to identify genes, networks and
ontologies associated with cancer, including connections that have
not previously been associated with T. gondii infection. Finally a
Shiny application was developed as an online resource giving access
to the Bacillus subtilis inferred networks with interactive methods for
exploring the networks including expansion of sub networks and large
network decomposition.
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1
Network Biology

OVER THE PAST FEW DECADES there have been huge advances in
both the experimental methods for gathering data on cellular mecha-
nisms and the computational tools used to analyse this information.
These mechanisms include the processes by which a cell responds to
stimuli and these stimuli can be either endogenous to or from outside
the cell. Cells are the building blocks of organisms, providing physi-
cal structure and carrying out essential functions such as generating
energy. Each cell within an organism is enclosed within a plasma mem-
brane [Robertson, 1981]. Through the plasma membrane molecules
are transported to and from the cell’s environment. The plasma mem-
brane forms a barrier between the external environment and the cell.
This barrier is critical to the ability of the cell to respond to stimuli as
a self-contained unit. These self-contained units can self-replicate; cells
provide the hereditary information and material required to produce
identical copies of themselves through cell division [Noireaux et al.,
2011, Bell and Dutta, 2002, Sclafani and Holzen, 2007].

Living organisms can be classified into two basic types based on
their cell types; prokaryotes and eukaryotes. Prokaryotes are simpler,
lacking internal membrane bound structures such as the mitochondria
and nuclei that are found in eukaryotic cells. The hereditary informa-
tion, deoxyribonucleic acid (DNA) is found in different cellular loca-
tions for prokaryotes and eukaryotes. In prokaryotes, DNA is located
within the cell cytoplasm. In contrast, eukaryotic DNA is primarily
found within the nucleus. Some membrane-bound organelles carry
their own genomes, for instance the mitochondria contain mitochon-
drial DNA (mtDNA). DNA has a double-stranded helical structure,
first identified by Watson and Crick [Watson and Crick, 1953]. Each
strand of DNA is a chain of nucleotides (adenosine A, guanine G, cy-
tosine C, thymine T), including a sugar-phosphate backbone on the
outside of the helical structure [Franklin and Gosling, 1953]. The two
DNA strands are joined in complementary base pairing by hydrogen

N\

Sugar phosphate
Backbone

Bl e
Bl cenosine
Bl oosie
Bl conine

Figure 1.1: DNA has a double
helical structure with the sugar
phosphate backbone of the helix
is on the outside of the struc-
ture. Nucleotides are joined in
pairs by hydrogen bonds. These
pairs are always guanine with
cytosine and adenosine with
thymine.
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bonds. Complementary base pairing is the pairing of G with C bases
and A with T bases across the two strands of DNA, Figure 1.1. The
complete DNA sequence of an organism, its genome, is large and com-
plex; the publication of the first full human DNA sequence contained
over 3 billion bases [Lander et al., 2001].

The central dogma of molecular biology states that DNA is tran-
scribed into ribonucleic acid (RNA) which can be translated into
protein [Crick, 1970], Figure 1.2. In this case, the sequence order
of the bases in DNA contains the coding information for a protein.

In general, a gene is a DNA sequence that is transcribed to form a
RNA transcript. RNAs can be either coding or non-coding; a coding
RNA, or messenger RNA (mRNA) is translated to protein where

a non-coding RNA is not. Coding RNAs are translated into three-
dimensional protein structures. In eukaryotes, the enzyme, RNA
Polymerase II transcribes DNA to mRNA in the 5’ to 3’ direction. In
prokaryotes, sigma factors combine with RNA polymerase to for a
holoenzyme that binds to a ‘promoter’ sequence upstream (5’) of the

gene and initiates transcription. RNA is a single stranded molecule Sigma factor proteins are required
for the initiation of transcription in
. . . . prokaryotes. Sigma factors direct the
with the thymine base replaced by uracil. Triplets of RNA bases, binding of the RNA polymerase to the

called codons, are translated into amino-acids by a large protein/RNA DNA sequence. Sigma factors recog-
nise different promoter sequences.

like DNA but based on the ribose sugar rather than deoxyribose and

complex called the ribosome. The amino-acid chains created by trans-
lation fold into three dimensional structures. In this way, the heritable
DNA sequence contains the information necessary to produce the
proteins and RNAs required for cellular function and these in turn are
responsible for mediating all other cellular functions.

A gene that has been transcribed into mRNA is said to be ‘ex-
pressed’. The expression of a gene is required for activity of its corre-
sponding RNA or protein. Typically, each cell contains the same DNA,
however there is great diversity in the functions performed by different
cell types [Gurdon, 1968]. Cellular processes are therefore coordinated
through the activity of specific subsets of genes and different cells tend
to express different combinations of cell type-specific genes. In addi-
tion, the activity or expression of genes is altered in response to the
needs of the organism. These varying gene expression profiles arising

from biological samples are often attributed to a phenotype. The regu- Phenotype: an observable trait in an
organism, including disease state or

lation of biological processes occurs at many levels both transcriptional ' !
physical traits.

and post-transcriptional, however an important mode of regulation is
the activation and inhibition of gene transcription by means of small
sequence motifs knows as regulatory elements.



5’ 3
A G G G C C A
DNA ACAAACCGAG
3 5
Transcription
mRNA
A G G G C C A
s I 3
Codon s—— [——) — —
l l l l Translation
Protein Met Phe Gly Ser

1.1 Transcriptional requlation

In eukaryotes, regulatory elements are included within regions called
enhancers and promoters. These regions are both cis-acting elements,
DNA sequence regions that combinatorially regulate the transcription
of nearby genes [Wittkopp and Kalay, 2012]. Cis motifs are recog-
nised by proteins called transcription factors that bind to DNA and
influence the transcription of the gene. Clis-regulatory elements act

as binding sites for trans-acting factors, this includes the class of
transcription factors. In contrast, the DNA sequence encoding these
trans-acting factors is typically far from the location of the cis ele-
ments that they bind to [Gilad et al., 2008]. Trans-acting factors bind
to the the constituent factors within the transcription machinery and

direct the assembly of this machinery at the target promoter sequence.

Transcription factors are a subset of ¢rans factors that can bind to
both DNA and protein. Transcription factors typically have a specific
set of sequence motifs that are found in the DNA sequence of all genes
that they regulate. Transcription factors are required to direct RNA
Polymerase to DNA to initiate transcription [Butler and Kadonaga,
2002]. In the simpler prokaryotic system, a single transcription factor,
called a sigma factor, is required to initiate transcription whereas
eukaryotic transcription often requires multiple trans-acting factors
that bind both to the promoter and to enhancer regions that can be

NETWORK BIOLOGY 3

Figure 1.2: The Central Dogma
of molecular biology. DNA is
transcribed into mRNA. The
three base codons of mRNA
each are translated into one
amino acid. In this example, the
amino-acid sequence is Methion-
ine (Met), Phenylalanine (Phe),
Glycine (Gly) and Serine (Ser).
Such amino-acid sequences fold
into proteins.
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far away [Paget, 2015]. As transcription factors for eukaryotes have
been identified, databases of information on them and specifically their
target sequences have been curated. This sequence information can be
integrated with gene expression profiles to further refine the functional
groups of genes and identify new targets of a transcription factor.

It was hypothesised by Britten and Davidson in 1969 that RNAs
are more likely than proteins to evolve or form new regulatory ele-
ments. Regulatory RNAs do not need to undergo an additional step
to be translated into protein to have function [Britten and Davidson,
1969]. It has now been shown that RNAs can have function as reg-
ulatory molecules without being translated to protein. Indeed, the
ENCODE project showed that around 80% of the genome is perva-
sively transcribed; pervasive transcription is the transcription of DNA
that does not apparently, code for protein [Encode and Consortium,
2007, The ENCODE Project Consortium, 2012]. However, the func-
tionality of these low-level transcripts is a current area of debate [van
Bakel et al., 2010]; transcription is an imperfect mechanism [Raj and
van Oudenaarden, 2008], transcription can occur at low-levels with no
functional implications [Graur et al., 2013]. Though some non-coding
RNAs have been shown to have function, the extent of functional
RNAs in the genome is still not well understood [Bakel et al., 2011,
Clark et al., 2011]. Recent studies of the human genome identified
19,175 potential IncRNAs, with potential regulatory function [Hon
et al., 2017]. This is still a relatively small proportion of the perva-
sively transcribed RNAs [Palazzo and Lee, 2015]. However, multiple
classes of functional non-coding RNAs have now been identified.

MicroRNAs (miRNAs) and long non-coding RNAs (IncRNAs) are
two examples of classes of non-coding RNAs that can regulate the
transcription of genes. LncRNAs are defined as those non-coding
RNAs over 200 nucleotides in length. The RNA structure of these
regulatory elements means that they can in principle interact with
both proteins and DNA, resulting in a wide range of mechanisms
through which they can influence regulation [Fatica and Bozzoni,
2013]. The identification of miRNAs and IncRNAs confirmed the
hypothesis of RNA based regulatory elements first proposed by Britten
and Davidson. For example, the IncRNA HOTAIR represses the
expression of the HOXD10 transcription factor through recruitment of
a transcription repression complex [Rinn et al., 2007].

In 1993, the first miRNAs were identified by Lee et. al [Lee et al.,
1993] in the worm, Caenorhabditis elegans. miRNAs are short nu-
cleotide sequences that have multiple mRNA targets and affect gene
expression through cleavage or destabilisation of mRNA. They can
also inhibit translation of mRNA to mature protein [Bartel, 2009].
The two short miRNAs of lin-4, 22 and 61 nucleotides in length, were



found to be unlikely to encode for protein whilst nevertheless regu-
lating the expression of the gene lin-14. Expression of lin-4 resulted
in a decrease of lin-14 gene expression and a concordant decrease

in LIN-14 protein expression. These examples highlight the role of
non-coding RNAs in the regulation of gene expression. Identifying
miRNAs, IncRNAs and transcription factors and their targets can help
to understand and infer regulatory mechanism. Therefore, measuring
the transcription of coding genes and regulatory RNAs is important
for understanding cellular function.

1.2 Measuring transcription

Transcriptomics is the simultaneous measurement and study of all
transcripts in a biological sample. The ability to study genome-wide
expression has advanced our understanding of biological function
[Deng et al., 2015]. Advances in experimental methods have enabled
the simultaneous genome-wide measurement of transcript expression.
Microarrays are a hybridisation based methodology. The microarray
contains probes of known gene DNA sequences that hybridise to the
fluorescently labelled sample ‘cDNA’; DNA that has been reverse-
transcriobed from the sample RNA [Hegde et al., 2000]. Microarray

protocols fluorescently tag the sample cDNA . Then, through imaging,

they measure the amount of cDNA that hybridises to each of the
probe sequences on the array is measured. The relative strength of
the different fluorescence probe signals determines the gene expression
profile of the sample. Using a pre-defined set of probes, microarrays
can identify all known genes but not novel genes. They also produce
noisy datasets because of the hybridisation of mismatched sequences
and probes.

RNA-seq is an approach that is becoming dominant in which
cDNA sequences of length between 30-500bp, these fragments are
then sequenced [Head et al., 2014]. As the fragments are fractions
of the full RNA sequence the sequenced fragments are aligned to a
reference genome to establish the read counts per gene. RNA-seq
can find novel genes or transcripts and has a larger dynamic range
that microarrays. [Conesa et al., 2016] Microarrays are limited at the
lower end by background noise and the maximum is capped by signal
saturation. By contrast, RNA-seq is not in principle restricted. In
practice however, the sequencing depth does place constraints on the
range of gene expression values. The greater the number of sequencing
reads, the greater the number of genes that can be measured. This
is because the expression values vary for different genes. For a small
number of total reads the genes identified can be dominated by a few
highly-expressed genes. This has consequences for genes expressed

NETWORK BIOLOGY 5

cDNA complementary DNA is a
single strand of DNA, obtained from
the reverse transcription of a strand
of RNA such as mRNA or a miRNA.
Reverse transcription is the opposite
of transcription as shown in Figure
1.2

Dynamic range defined as the ratio
between the smallest and largest value
a variable can take. For Microarrays,
the ratio of fluorescence probe signals.
For sequencing, the ratio of read
counts per gene.

Sequencing depth refers to the
total number of reads sequenced.
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at relatively low levels, which require higher sequencing depth to be
identified by RNA-seq [Wang et al., 2009Db).

Chromatin immunoprecipitation (ChIP) methods, ChIP-chip or
ChIP-seq, are used to measure in vivo interactions between proteins
and DNA [Buck and Lieb, 2004, Park, 2009]. In chromatin immuno-
precipitation experiments the protein of interest is cross-linked to
its target DNA. After the protein is cross-linked to the DNA, the
DNA is sheared into small fragments of several hundred base pairs.
Using an antibody that recognises the protein, DNA sequences where
the protein has bound are purified. These DNA sequences are then
either hybridised to a microarray (ChIP-chip) or sequenced using
high-throughput sequencing (ChIP-seq). These methods are a useful
method for identifying the target DNA sequences of a transcription
factor (protein) [Valouev et al., 2008]. Information on transcription
factors and their targets is often used to validate or infer regulatory
networks.

1.3 Regulatory networks

Microarray and RNA-seq provide a rich source of measurements for
the activity of molecules which are responsible for biological function
[Malone and Oliver, 2011]. Understanding the interactions between
genes, proteins and regulatory elements such as transcription factors
and IncRNAs is essential to elucidate the mechanisms of biological
functions [Zhou et al., 2015]. Recently, with the improvement in pro-
teomic methods, it has become experimentally tractable to measure Proteomics is the study of all
the activity of proteins including transcription factors. Developing proteins within an organism
methods to analyse proteomic data is an active area of research. How-
ever, it is currently still easier and more cost effective to produce
genomic data, and large repositories of publicly available gene expres-
sion datasets such as ArrayExpress [Rustici et al., 2013] and Gene
Expression Omnibus (GEO) [Barrett et al., 2013a] have been curated.
These databases contain expression sets from microarray and RNA-seq
technologies. Further, it has been shown that the activity of many
proteins can be approximated using the expression of the genes that
encode them. This is despite the post-transcriptional regulation of
some mRNAs through factors such as miRNAs [Pe’er and Hacohen,
2011]. Therefore, the expression levels of transcription factor proteins
can be estimated using transcriptomic expression data. Using tran-
scriptomic data, the regulation of gene expression in the cell can be
represented as a network.

Regulatory networks can include interactions between proteins,
genes and regulatory elements. At an ‘omics’ level, the term regulatory
network is used to refer to the interaction of regulatory elements and
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their targets. These regulatory networks, and their corresponding
gene expression profiles, are specific to different phenotypes [Vidal
et al., 2011]. This includes the mis-regulation of gene expression that
can result in a disease phenotype. In these large-scale regulatory
networks, multiple biological functions are represented [Hartwell
et al., 1999]. A regulatory module is a set of genes in the networks
under the control of a group of cis and trans acting elements that are
sufficient to control the transcription of the gene set in a coordinated
fashion, Figure 1.3. We view inference of regulatory networks in this
thesis as inference of one or more interacting regulatory modules
for a given phenotype. Using transcriptomic data from microarrays
or RNA-seq the resulting regulatory network specifically refers to a
transcriptional regulatory network [Blais and Dynlacht, 2005]. Given
the large number of transcripts measured, computational /statistical
analysis is required to understand these data. This relies on the use
of robust statistics to analyse large data sets. Transcriptomic data
can be used to infer interactions between multiple genes. To identify
regulatory networks, mathematical methods can be used [Karlebach
and Shamir, 2008].

We are interested in two different areas where regulatory networks
can be inferred from experimental genomic data generated using mi-

croarrays or RNA-seq. The first area is synthetic biology where infor- Figure 1.3: Representation of a

. . . 1 k th i
mation on regulatory networks can aid the design of new constructs by regulatory network that contains

providing insight into functional regulatory modules [Lim et al., 2013]. multiple regulatory modules.

In synthetic biology, not only are the interactions between promoters Two regulatory modules, shown

and DNA sequences important, it is also important to understand in blue and red that are under

how these functional units can vary under different conditions. A the control of a single regulatory

recent paper produced and analysed data on Bacillus subtilis under clement. A regulatory network
104 different conditions [Nicolas et al., 2012]. The analysis included

identification of sigma factors, which control gene expression for some

that results in a phenotype may
contain one or more regulatory

genes and the hierarchical clustering of genes and conditions. Recently modules.

network analysis has been done on this data set combining all samples
and conditions. However, no network analysis has been performed to
allow for regulatory networks over different conditions to be inferred.
By comparing the regulatory networks over different conditions, we
identified commonalities and differences between them. By decompos-
ing subnetworks according to which condition they are present in we
identified smaller, regulatory modules from transcriptomic data.

The second area is in understanding how the Tozoplasma gondii
parasite subverts its host cells. Toxoplasma gondii is a protozoan from
the Apicomplexan group that infects nearly a quarter of the adults
world-wide causing birth defects and perinatal deaths. Additionally,
it is an opportunistic pathogen and is responsible for 15% of deaths
in the AIDS epidemic. In general, identifying potential drug targets
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involves finding those signalling proteins and pathways that are af-
fected by the invading parasite. Understanding how the parasite can
co-opt the host cells function to proliferate and survive should suggest
potential approaches to protect against it. By considering two different
applications, one the regulatory network associated with a disease
phenotype and the second the identification of regulatory modules in
synthetic biology we demonstrate how, transcriptomic data analysis
can be used to infer these networks.

The interactions between regulatory elements and the expression
of their target RNA transcripts can be written as a mathematical net-
work. A mathematical network is defined by a set of nodes and edges.
In a regulatory network a node represents a gene. An edge between
two nodes exists when an interaction between the nodes exists. The
area of graph theory is the analysis and inference of networks. Graph
theory was first introduced by Euler in 1736 [Shields, 2012]. Network
analysis can identify subnetworks that could relate to regulatory mod-
ules. To infer regulatory networks from gene expression data there
are different mathematical frameworks that can be used [Pe’er and
Hacohen, 2011].

In this chapter, first we consider the role of network analysis in
molecular biology, and how graphical models are used to model regula-
tory interactions. We then discuss methods for inferring networks for
a single biological condition. Finally, we discuss differential network
analysis for analysing networks under different biological conditions
and how the methods used to infer these networks compare to each
other.

1.4 Mathematical analysis of requlatory networks

IN RECENT YEARS, THE APPLICATION OF MATHEMATICAL NET-
WORKS to the analysis of many real world situations has increased.
Applications include modelling of social and communication networks,
transport networks or the file systems for computers. These networks
use a node and edge structure to represent at the simplest level undi-
rected topological links between nodes. More advanced network mod-
els can also be used to represent hierarchical causal relationships or
directed connections between elements. This gives the flow or direction
of the network as well as its connectivity structure.

Many networks that have been modelled in real world situations

follow random network structures. In these cases, the degrees of
Degree of a node is defined as the

the nodes follow a Poisson distribution. As the Poisson distribution .
number of edges connected to it.

tends to the Normal distribution we expect a network whereby the
spread of degree values is close to symmetrical around a mean value.



Thereby giving a network of nodes with similar degree values, for

all nodes. However, it has been shown that biological networks are
scale-free networks [Jeong and Albert, 2000]. This means that the
degree distribution of the nodes follows a power law. The power

law distribution has a heavy right tail and is not symmetric. This
gives networks whereby there are relatively few nodes with high
degree value that are connected to many nodes and many of the nodes
have low connectivity, or low degree value. Together this results in
sparse networks or several hubs, where groups of nodes are highly
interconnected within a hub but not between hubs.

Results on biological networks have shown that there are often
several sub networks that are highly connected and that these net-
works centre around functionally important genes. From a biological
perspective, these central hubs can be categorised in different ways,
either functional, disease or co-expressed/topological [Barabdsi et al.,
2011]. This is due to the highly-interconnected nature of these hubs;
within them there are likely to be multiple functional units as well
as subnetworks that are specific to a disease type, while the overall
hub demonstrates a co-expression or topological network. This means
that it is possible to decompose and categorise these hubs via different
metrics depending on the aim of the analysis. Networks can be used
in a wide range of contexts to model interactions between molecular
components including genes, proteins and metabolites. Networks can
be inferred using quantitative data to identify functional or causal
interactions. Qualitative information such as known interactions found
from experimental results can also be represented as networks. With
graphical models the regulatory networks are connections between
genes. Each gene is represented by a node and the edges of the net-
work represent probabilistic relationships between genes [Jordan,
2004].

There exist many methods for inferring regulatory networks
based on different data assumptions [Lefebvre et al., 2012]. Broadly
these can be grouped into either, correlation, Bayesian, dynamic, or
information-theoretic models [Marbach et al., 2010]. These can be
used to infer biological networks between molecular components. Some
of these networks are between one type of molecular component, such
as protein-protein interaction (PPI) networks. Alternatively, the re-
lationships between two different molecular components, for example
transcription factor proteins and the genes they regulate can be in-
ferred. The combination of data from different experimental methods
facilitates this analysis. Binding data of transcription factors from
ChIP-chip combined with gene expression data of target genes pro-
vides a more comprehensive view of the networks than either data set
in isolation.

NETWORK BIOLOGY 9

Poisson distribution a discrete
probability distribution that is used
to model the number of events over a
fixed interval

Normal distribution, model for a
continuous random variable that has
a symmetric range around a mean
value.
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Recently models have also been developed for integrating pro-
teomic and transcriptomic data into one framework [Rogers et al.,
2008, Kholodenko et al., 2012]. In addition, it is has been shown that
transcriptomic data can be used to infer signalling networks. The
nested effects model (NEM) uses the subset effects on transcriptional
response to infer the signalling hierarchy [Markowetz et al., 2007].
This model uses the observation that, for a given signalling network,
knocking out a child node in the network will result in a subset of
changes in the gene expression that is caused by the parent node,
Figure 1.4. This model allows inference of signalling networks from
genome-wide transcriptomic data. To use this model, the perturba-
tions must be specific knockouts. Therefore, some prior information
on elements of the signalling network would be useful to ensure the
overlap in the expression profiles that is needed to infer the signalling
networks. These examples highlight the use of networks in modelling
biological processes. These processes can be activated or modified in
response to disease. Therefore, understanding these networks is critical
to understand disease progression.

In the analysis of disease progression, it can be particularly useful
to take a genome-wide view because we do not necessarily have prior
knowledge on all the genes or cellular functions being targeted by the
disease. While other methods may give greater detail at a smaller
level of tens as opposed to thousands of genes, these are not high level
enough to capture all the transcriptional effects and consequently lim-
its the ability to capture the full development of disease phenotype. In
synthetic biology, optimising constructs can benefit from the detailed
low-level view, however, an equally important aspect is to understand
how changing a part of a regulatory network will impact on the rest
of the cell, as many off-target or unintended effects can be seen when
altering part of a system. To answer these questions, bioinformatics,
can provide a useful tool by giving a genome-wide context specific view
of the cell that can help to design circuits to minimise these off-target
effects. This should help to design more specific constructs and reduce
the laboratory costs by providing some of the testing without the need

for experimental validation.

1.5 Regulatory models for a single condition

We first consider the inference of regulatory networks, the interactions
between genes, under a single experimental condition. Later we discuss
advances in inferring and comparing networks over multiple experi-
mental conditions and the emergence of differential network biology.
In both cases one common constraint is to view these networks at a

single time point. It is argued that at this level, the models represent

Figure 1.4: In a graphical sense
a parent node is above a child
node in a hierarchy. For exam-
ple, in gene ontology Regulation
of gene expression is a parent
node of negative regulation

of gene expression. A parent
node can also indicate the flow
of a network. For example, a
Transcription factor (parent)
regulating its target genes (chil-
dren).
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Steady-state A stable condition
a steady-state of the network. It has been shown that this assumption of the system. Gene or protein
can still result in useful models that can accurately identify novel expression would be constant.
interactions between elements that have been experimentally validated.
The static as opposed to dynamic models focus on genetic interactions
at a single time point, ignoring feed-back loops or post-translation
modifications. We broadly categorise and give examples of different
modelling frameworks and data types that have been used to infer

regulatory mechanisms in both prokaryotic and eukaryotic organisms.

1.5.1 Boolean and logic models

Two closely related sets of models are boolean and logic models. A
boolean model is a two-state discrete model where variables are given
the value 0 or 1. In reference to regulatory networks, gene expression
values would be discretised to 0 and 1 and would be interpreted as
not expressed or expressed respectively. This is a simplification of the
model that makes it easier to infer the network, computationally it

is easier to work with binary and integer values than real numbers
and gives a simple and finite set of states that two genes can be in
together, either both not expressed (0,0), one expressed (0,1 or 1,0)
or both expressed (1,1). Even with this simplification boolean net-
works have been successfully used to infer regulatory networks. One
natural partner of boolean networks are logic models. These extend
the boolean network to include logic functions such as, AND, OR,
NOT, which are used to model the relationships between elements.
For example, a gene may be activated by one of two transcription
factors in which case the model would have two edges between the
gene and each of the transcription factors with an OR gate govern-
ing them. Alternatively, it could require both transcription factors

to activate transcription, in the case it would be an AND operator.
Another advantage of logic models is that they can be used to describe
and combine several different data sources. For example, using this
framework it has been possible to both discretise experimental data
and describe known prior information from the literature in logic
form and therefore combine the two to improve network inference
[Saez-Rodriguez et al., 2009].

Davidson et al. used logic models to model the cis-regulatory inter-
actions for sea urchins [Davidson et al., 2002]. Cis-regulatory elements
such as promoters direct the binding of transcription factors to switch
on transcription. Viewed as an on-off switch, it is sensible to model
the activation of these cis-regulatory elements using a logic framework.
Logic models can be used to represent whether an element is active
and combinations between elements. The authors refer to this model
as a ‘first-stage regulatory model’ and this information enabled them

11
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to identify genes and interactions that are involved in the developmen-
tal process of the organism. While these modelling frameworks are
unable to capture the kinetic reactions between transcription factors
and their targets, they are able at a lower level, to model the combi-
natorial interactions between elements. The analysis was based on
perturbation data of gene expression and this data was subsequently
combined with information on the cis-regulatory motifs for genes that
enabled the authors to determine which interactions were direct or
indirect. Using known interactions can improve model inference by
reducing model search space or resolving two equally fitting models
mathematically where only one is consistent with the prior knowledge.

1.5.2  Correlation, co-expression methods

Correlation or co-expression methods model linear relationships be-
tween genes. These methods often use gene expression data from
biological replicates or under different conditions. Intuitively these
models assume that genes under the similar regulation will have sim-
ilar expression profiles. These models can be applied to genome wide
transcriptomic data given the relative simplicity in calculating these
metrics. There are several different correlation metrics including the
parametric Pearson’s correlation and the non-parametric Kendall’s tau.
Parametric metrics assume that the data follow a known distribution,

A

whereas non-parametric measures do not. Pearson’s correlation p, for two

Correlation based metrics do not however, determine causal re-

variables X, Y, where the mean and

standard deviation of X are py, 0y and

lationships. Therefore, a significant correlation cannot be used to the mean and standard deviation of Y
" . . E(X—px)(Y—
definitively say that two genes are connected in the same regulatory are py, oy is p = %M

units or that one gene is controlled by a transcription factor as this
correlation could be due to an indirect regulatory relationship. How-
ever, by comparing DNA microarray expression profiles over multiple
organisms, functional and conserved genes have been identified due

to their co-expression [Stuart, 2003]. In this case, the conservation
across different organisms including human, mouse and yeast, provides
further evidence for positive selection of these genes. Consequently,
they are more likely to be functionally important. Further, those with
similar expression profiles may also share similar function. The value
of co-expression was measured by the Pearson’s correlation coefficient.
Statistical significance of these correlations was assessed by comparing
them to values that would be observed by chance.

A further step in correlation analysis is to calculate the partial cor-
relations, as opposed to correlation. Although computationally more
demanding, the partial correlation does give causal information and
allows a hierarchical network to be inferred. The partial correlation
is defined as the correlation between two variables conditional on all



other variables. It is this conditioning that allows the hierarchy to be
inferred. By conditioning on the expression of all other genes, a signifi-
cant correlation between two genes then implies a causal relationship,
intuitively conditioning on all other variables means removing any
other direct or indirect relationships and consequently if a significant
relationship still exists after removing all other possible controlling
factors the interaction is said to be direct or causal. Where the Pear-
son’s correlation matrix is used, the network defined by the partial
correlations is called a Gaussian Graphical Model (GGM).

Shrinkage methods have been used successfully with partial corre-
lation methods, these shrinkage methods aid interpretability of the
model by shrinking low value correlations to zero and consequently re-
moving the respective edge. These shrinkage methods therefore result
in sparse graphs which are consistent with the power law properties
observed in biological networks. One such method is the Graphical
Least Absolute Squares Shrinkage Operator (glasso) that shrinks
the parameter estimates based on a penalised maximum likelihood
[Friedman et al., 2008]. The maximum likelihood estimate @, is the
parameter set that maximises the likelihood L(X|®) which gives the
likelihood of observing the data X given the set of parameter values ©O:

argmax L(X|O)
(C]

The general form of a penalised maximum likelihood, with penalty
term P(@) is then:

argmax {L(X|®)—P(®)}
(S)

The penalty used in glasso is the L1 norm. For a graph defined by a

partial correlation matrix @, the L1 norm penalises the sum of the

0; i
2)

absolute values of the parameters: P(®) =), ;

1.5.8 Information-theoretic

Given the assumption of multivariate normality, the Gaussian graphi-
cal models can infer conditional dependencies for linear relationships.
However, regulatory networks may include non-linear relationships.
For example, time series data could capture feed-back mechanisms or
switches that repress or activate gene expression. These non-linearities
can be captured by different measures such as dcor [Székely et al.,
2007] or MIC statistic [Reshef et al., 2011]. However, these are single
pairwise distance measures, that have not, so far, been used to create
graphical models. Another measure capable of capturing non-linear
relationships, mutual information, is an information theoretic measure

that has been used to infer networks. Using information theoretic
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Gaussian Graphical Model a
model of continuous multivariate nor-
mal observations that are represented
in a network structure. In this graph-
ical model, probabilistic connections
between nodes are determined by the
significance of the partial correlations.
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measures clearly gives an advantage over correlation statistics when
the relationship is non-linear. However, if the relationship is linear,
the information-theoretic methods are less powerful in detecting these
relationships in comparison to Pearson’s correlation measure. Power in
this context is a statistical measure that quantifies the ability of a test
to accurately find a positive association where one exists. Information-
theoretic models similarly cannot infer causal relationships, they
provide a single measure of similarity between two genes, which does
not distinguish direct from indirect links.

ARACNe was the first method to use information-theoretic metrics
to infer biological networks. This model calculated pairwise values of
mutual information between gene expression from microarray profiles
of human B cells then used the data processing inequality to remove
potentially indirect links [Basso et al., 2005]. This simplified the
resulting network, aided interpretability and allowed greater focus on
direct links or causal links. From this network, the transcription factor
MYC was found within a hub and novel connections to other gene
targets were experimentally validated.

[Carro et al., 2010] used ARACNe on a set of meta-data of gene
expression of grade IIT and IV glioblastoma brain tumours. This
showed how, as well as cell specific models, disease or context specific
models can be inferred and can be effective in identifying master
regulators of transcription. Master regulators are those that are at
the top of the regulatory hierarchy and are therefore not under the
control of any other transcriptional regulators [Kin Chan, 2013]. The
analysis of brain tumour gene expression data identified two novel
master regulators of the disease network, which the authors then
experimentally validated.

MINDy is a method that is used to find post-translational modifiers
of a transcription factor. This demonstrates the utility of correlation
or information theoretic metrics to identify relationships in different
data types. It calculates the conditional mutual information between
the gene expression level of the transcription factor and its targets
given the value of the potential modulators. By conditioning on the
modulators, the statistic can find causal links as opposed to only
numerical relationships. It is cell context specific, and requires many
gene expression profiles as well as input from the user on the list of
transcription factor targets and modulators to be tested [Wang et al.,
2009a). Wang et. al could identify and experimentally validate four
post-translational modifiers of the MYC transcription factor within
Human B-cells.

A
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1.5.4 Bayesian

The correlation or information-theoretic methods are both frequentist
methods. These methods estimate the parameters of interest, 6, from
the observed data. In contrast, Bayesian methods allow for uncertainty
in the data in the form of a prior distribution of the parameters. Prior
distributions can be used to incorporate knowledge of the parameters
into the inference. For example, Bayesian inference of regulatory
networks can use information of known transcription factors and

their regulators. This information is encoded in the prior distribution.
Bayes theorem gives the following relationship between the likelihood
L(X]|6), posterior p(68]X) and prior distribution p(6):

p(61X) o< L(X]0).p(6)

From a statistical perspective, a common method for selecting
models is based on minimising the Bayesian Information Criterion

(BIC) which is defined as:
BIC = —2InL + 2kIn(n)

where L is the likelihood and k the number of parameters estimated
from a dataset with n observations.

The prior distribution on the parameter space may be either infor-
mative or uninformative. The informative prior is taken from known
information on the data. For example, if the network is based on cor-
relations between genes, the prior can support the inclusion of edges
between a transcription factor and its known targets. Alternatively,
an uninformative prior is one which has no basis in the knowledge
of the system for example, a uniform prior which gives equal weights
to all parameter possibilities so we do not bias the inference to any
interactions. In this instance, the purpose of the prior is to allow for
uncertainty or incomplete information in the data. That is, data sets
are samples of the population and do not give complete information
on the system due to the constraints of data collection (not all sce-
narios can be covered with maximal numbers of replicates). It is this
uncertainty in the data the prior is used to model. Informative priors
are taken from experimentally validated interactions. Analysis of this
type has been made increasingly possible through numerous on line
databases. These databases contain information on transcription fac-
tors and their targets, for example TRANSFAC [Matys et al., 2006]
and DBTBS |[Sierro et al., 2008] are databases of transcription factors
in human or mouse and Bacillus subtilis respectively.

A Bayesian framework was first proposed for analysing gene ex-
pression data by Friedman et al [Friedman et al., 2000]. The authors
used a Bayesian graphical approach to analyse time series data for

15
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cell-cycle processes based on measurements of mRNA levels of S. cere-
visiae ORFs. The Bayesian framework covers a wide range of model
formulations that vary in their definition of the likelihood functions
and prior distributions. This means that Bayesian models have been
used in many different applications in biological sciences, for example
in inferring protein signalling networks using single cell data [Sachs
et al., 2005] as well as regulatory networks [Pe’er et al., 2001]. Other
examples include using a Bayesian approach to infer functional net-
works that combined multiple data inputs including mRNA, protein
levels and literature evidence to generate a probability network of the
connections between genes in S. cerevisiae [Lee, 2004].

1.5.5 Dynamic

To model the dynamics of the cell-cycle and identify certain control
mechanisms, time series data are required. Time series data can infer
network dynamics such as feed forward or feed-back loops in networks
that are not identifiable by static data. As well as specifically looking
at gene sets or processes that may vary over time, time series data can
also be used as perturbation data that can be used with many network
inference algorithms.

Ordinary differential equations (ODE) models have been used to
model a number of regulatory networks. These models require a large
amount of prior information that give the network interactions. It is
necessary to know which elements of the regulatory network interact
with each other and to represent these interactions using differential
equations. Solving these ODEs gives kinetic parameters that can
recreate the regulatory networks and the quantitative mRNA and
protein levels. Chen et al. calculated parameters of an ODE model
for the cell cycle of budding yeast, this included around 30 interacting
elements in the network [Chen et al., 2004].

1.6 Differential network methods

IT 1s KNOWN THAT different regulatory networks are active under
different conditions and that these networks may be mis-regulated in
the presence of disease. Therefore, understanding the differences in
these networks between cellular conditions is an active area of research
[Pe’er and Hacohen, 2011]. The methods discussed above have focused
on providing a network under a single experimental condition or a
single cell type. However, it is also possible to consider the similarities
and differences between networks for different experimental conditions,
organisms or cell types. Moving to differential network analysis from

A



differential expression of groups of genes or proteins has several advan-
tages; the network formulation gives a more complete view of the cell
as genes do not act independently as differential expression analysis
assumes.

Gene set enrichment analysis was one of the first methods to ad-
dress the fact that genes act together. GSEA identifies enrichment
of biological processes whose gene sets are ranked highly together.
However, gene set enrichment does not give a network view, in that
group of related genes can be identified but not the hierarchy or struc-
ture of how these genes interact. Moreover, differential expression
is limited in detecting regulatory interactions as often transcription
factors do not show differential expression but are constitutively ex-
pressed when active [Hudson et al., 2012]. Within synthetic biology,
the ability to design new circuits crucially depends on available in-
formation on how the components interact with each other as well as
how function may change under different conditions [Kwok, 2010]. In
parasite host interactions, mechanisms of action of a cell or parasite
can be modelled; understanding how these networks are affected can
help identify therapeutic targets [Pe’er and Hacohen, 2011, Iorio et al.,
2012]. Differential expression analysis is severely limited in answering
these questions, a network view is essential to be able to understand
and modify these networks. Therefore, we were interested in finding
differences in networks between conditions.

Within differential network biology methods have been developed to
analyse differences between networks under different conditions [Ideker
and Krogan, 2012]. These methods infer both the underlying network
as well as identifying changes to the network following perturbation.
Examples include qualitative [Miller et al., 2009a] and quantitative
measures [Bisson et al., 2011] that have been used to detect differences
in protein-protein interaction networks [Ideker and Krogan, 2012].
From a qualitative perspective, manual curation of the literature
has been used to combine known information into a comprehensive
metabolic network for Homo sapiens. This network provided a basis
for comparison of functional units under different conditions [Duarte
and Becker, 2007].

Differential networks have been used to identify regulators and func-
tional units of disease. In one example a protein protein interaction
(PPI) network based on two-hybrid yeast data was mined using the
gene-expression profiles taken from two studies of patients with or
without breast tumour metastasis. The protein-protein network was
searched using genome-wide profiles of disease effects. The genomic
expression data was used to identify subnetworks within the PPI that
were statistically discriminative of metastasis. These subnetworks
of interest were identified according to their activity, defined as the
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Gene set enrichment analysis uses
a non-parametric test to compare the
ranked list of genes (usually according
to their differential expression), to

a list of genes involved in the same
biological or molecular process

Two-hybrid yeast: this system

uses two separately encoded protein
domains which, when physically
nearby, activate the transcription of
a reporter gene. Each of these two
protein domains are attached to a
different protein of interest. If the two
target proteins interact, the separately
encoded protein domains will bind
together and switch on the reporter
gene. [Briickner et al., 2009]
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average normalised expression values of the genes in each network. By
comparing the activity values of the networks across the two groups,
those with and without metastasis, they could determine their discrim-
inatory capability. This was done by calculating mutual information
between gene expression levels and the disease status within the

PPI network and comparing the results to those of random networks
[Chuang et al., 2007]. The authors found that viewing expression
data in a network context and by incorporating information on the
interactions between genes, the statistically significant sub networks,
according to disease status, were better predictors than the individual
component genes.

Gambardella et al curated gene sets from pathway information
in the KEGG database and combined this prior information with a
large set of gene expression profiles obtained from ArrayExpress. They
generated 30 tissue or condition specific correlation based networks
from the expression profiles. Using a score based on the number
of edges in each of the 30 networks between the genes in each set
obtained from KEGG they could determine the differential activity
of pathways between these 30 networks. This approach relied heavily
on both existing knowledge on pathways, from KEGG, and on the
expression data obtained from ArrayExpress [Gambardella et al.,
2013).

Ergun et al. developed an algorithm, the Mode of Network Identifi-
cation (MNI), and used this to identify the AR gene and its associated
pathway as involved in prostate cancer metastasis [Ergiin et al., 2007].
The analysis showed that the network approach could find this re-
sult where differential expression and gene set enrichment was not.
The MNI is a two-stage process. First several expression data sets
were combined for 7 different cancers. The requirement being that
these profiles cause a wide range of perturbations to the cell that will
consequently allow for the modelling of the network. Second, these net-
works were mined using the specific prostate cancer profiles. Networks
were scored according to their inconsistency with the disease profiles,
assuming the disease causes disruption to the normal network.

Recent advances in Gaussian graphical models allow for inference of
networks across experimental conditions [Danaher et al., 2014]. This
Joint Graphical Lasso (JGL) model is applicable for microarray gene
expression data as it is log normally distributed. For RNA-seq data,
the count data can also be approximated by a normal distribution
[Hansen et al., 2012] so Gaussian graphical models can also be ap-
plied. The authors demonstrated the utility of the JGL model on a
meta study of microarray gene expression data for patients’ biopsies
of normal and cancerous cells. The JGL model extends the glasso
model [Friedman et al., 2008] to add a secondary term that penalises

A
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differences across the different experimental conditions.

1.7 Modelling strengths and weaknesses

THERE ARE MANY METHODS for inferring regulatory networks, there
is also interest in comparing and assessing these using a consistent
standardised set of tests. The Dialogue on Reverse Engineering Assess-
ment and Methods (DREAM) consortium was established to provide
a systematic comparison of the available methods. They found that
all methods have their strengths and weaknesses and that error rates
do not tend to be consistent across all methods [Marbach et al., 2012].
Therefore, we can select different models depending on the question to
be answered and the priorities of the analysis. The constraints of the
available data determine which models can be used as the data must
match the assumptions of the model. The analysis from the DREAM
consortium also showed increased accuracy when combining results
from different methods.

The multiple methods of inferring regulatory networks that have
been developed are applicable depending on the available data, such as
genome wide studies or subset analysis and often the type of perturba-
tions. Examples of perturbations include gene knockouts or treatment
with compounds, see [Markowetz, 2010, Pe’er and Hacohen, 2011] for
reviews. In addition, there is a computational and data trade-off be-
tween the detail and scope of the model. Correlation or co-expression
studies do not provide causal relations. In contrast this information
is available from ordinary differential equation (ODE) models as well
as giving quantitative information on the interactions [Lefebvre et al.,
2012]. However, whilst ODE models provide greater detail than corre-
lation or co-expression networks they usually contain smaller numbers
of genes or proteins, whereas correlation or information-theoretic
studies can be performed at a genome-wide level.

Arguably the Gaussian graphical models lie between correlation and
ODE models in terms of complexity and scalability. As these models
use partial correlations to infer conditional independence relations
they consequently provide evidence for causal relations as well as
correlation. For genome-wide data sets, the number of observations
n tends to be much less than number of parameters p (genes), which
we write n < p. Estimates will therefore exhibit high variance and
lack of identifiability. Moreover, standard numerical estimators, such
as maximum likelihood will not give estimates that are exactly zero.
Consequently, shrinkage methods have become increasingly popular to
estimate networks from high dimensional data [Chun et al., 2014, Jung
et al., 2015, Xia et al., 2015, Kling et al., 2015].
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The Joint Graphical Lasso approach is a purely data driven model.
In comparison to literature based methods this offers the ability to
find new links. These two methods are not mutually exclusive however,
and can synergistically behave together to produce a better model.

As an example, the weighted glasso model was developed to combine
the benefits of the shrinkage methodology with prior information by
allowing different penalty terms for different edges based on prior
information about gene interactions. The authors showed improved
inference over glasso on simulated and biological data from Arabidopsis
thaliana when comparing different error rates [Li and Jackson, 2015].
In this work, we used the JGL model to analyse microarray and RNA-
seq data given that it can take input at a genome-wide level and
provide output containing networks that are smaller and consequently
more interpretable.

The rest of the thesis is outlined as follows, the second chapter
discusses the bacterium Bacillus subtilis and its role in synthetic
biology. The third chapter uses the JGL model to analyse the microar-
ray expression data from Nicolas et al to infer regulatory networks
of Bacillus subtilis under different experimental conditions. In the
fourth chapter, we provide an empirical Bayes method for estimating
correlation matrices. The fifth chapter contains analysis of RNA-seq
data for Mouse embryonic fibroblast cells that have been infected with
Tozxoplasma gondii. In the final chapter we develop the results of this
analysis into a publicly available application that can be hosted on-line
as an interactive web resource. Throughout we discuss annotation and
interpretation of these networks from both a biological and mathemat-
ical perspective, as well as developing methods for controlling error
rates and finally identifying novel hypotheses that could be tested ex-
perimentally, with the aim of improving our understanding of Bacillus
subtilis and the parasite Toxoplasma gondii.

A



2
Synthetic Biology

We define synthetic biology as the design and engineering of new
genetic circuits that are used to re-wire or expand the existing cellular
mechanisms within an organism. The aim is to modify the organism to
produce a desired phenotype or product. These methods can be used
in industrial applications including drug discovery and the production
of renewable biofuels and other chemical products [Purnick and Weiss,
2009, Nandagopal and Elowitz, 2011]. In designing these circuits
recent research has focused on characterising and defining elements

that can be used to create genetic circuits. These circuits are designed Genetic circuit a system of biolog-
ical parts designed to provide logic

L. . . K . . control of cellular functions. For ex-
transcriptional, translational or post-translational modifications [Liang ample, activating or repressing gene

et al., 2011]. We first consider the general mechanisms of cellular activity as an on/off model.

regulation, with a focus on prokaryotes/bacteria before discussing

to affect different parts of the cell cycle processes using, for example,

examples of specific synthetic control that have been implemented
within Bacillus subtilis.

At a translational level, early synthetic controls used protein based
methods. For example, identifying proteins that facilitate binding
Ribosome Molecular machinery for
the translation of messenger RNA to
or repress the target’s translation in to protein. However, there has protein. The ribosome recruits tRNAs
to translate the RNA into the correct
amino acid sequence

of the ribosome to an mRNA sequence and using these to activate

been a shift to generating synthetic RNA based modules instead

of proteins to control gene expression. As the understanding of the
RNAs functions increased so did the interest in generating synthetic
versions to be used in genetic circuit design. There are multiple ways
in which RNA can control gene expression [Liang et al., 2011]. From
a structural perspective secondary structures of mRNA, for example
loops and hairpins, can be changed to restrict access to its Ribosome
binding site (RBS) [de Smit and van Duin, 1990]. The ribosome
binding to mRNA is necessary to allow translation of the mRNA
into protein. Consequently, inhibiting this binding activity is one
method for controlling the rate of gene expression into mature protein.
One class of RNAs that control gene expression are catalytic RNAs
or ribozymes. In bacteria examples of cleaving ribozymes are the
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glmS ribozyme and RNase P. The glmS gene produces the coenzyme
GIcN6P [Winkler et al., 2004]. When GlcN6P is present in the cell it
combines with the glmS ribozyme to cleave the mRNA of glmS this
in turn deactivates its expression, therefore providing a mechanism of
self-regulation. RNase P is a ubiquitous cleaving ribozyme that cleaves
sequences of pre-tRNAs to produce tRNAs [Guerrier-Takada et al.,
1983]. Another important class of RNA control mechanisms are RNA
switches. This refers to mRNA sequences that function as riboswitches
which respond to cellular metabolites and co factors by altering their
secondary structures to either allow or restrict access to their RBS and
consequently control their translation [Serganov and Patel, 2007]. This
provides another method for controlling the genes that are responsible
for the breakdown of widely available organic compounds such as
glucose [Henkin, 2008].

Finally, within the prokaryotes there exist transcripts that form
small RNAs that are used in conjunction with RNA binding molecules
to inhibit or promote the translation of their target mRNAs. This is
done by controlling the mechanism that binds the ribosome to the
mRNA and so controlling protein synthesis. Using RNA to control
the cellular response to organic compounds is perhaps most easily
combined with our results as we are categorising the changes and
activation of regulatory networks (or targets) under different condi-
tions including compounds, or co factors, such as glucose and malate
[Cochrane and Strobel, 2008]. Regulatory networks can provide infor-
mation on the genes responsible for the processing of these compounds.
This may provide synthetic biologists with genes to target to influ-
ence an organism’s response to these compounds. Further, by taking
a wider network view it may also help researchers to understand
additional or knock on effects of perturbing one part of the system.
This will help in designing systems with greater efficacy and fewer
unwanted responses.

In prokaryotes, sigma factors regulate transcription. The sequences
of the sigma factors vary and therefore bind to different genes in the
organism to initiate transcription. From a transcriptional perspective,
the gene expression mechanism in bacteria often involves activation
of a promoter by a transcription factor to start transcription. The
transcription factor alters the three-dimensional structure of the DNA
sequence to allow access to the promoter for the complex of sigma
factor and RNA polymerase to bind. Therefore, the transcriptional
process provides synthetic biology with multiple mechanisms to control
the level of mRNA production by altering promoters, transcription fac-
tors, termination sequences or a combination of these. For promoters,
progress has been made to identify different promoters for prokaryotes.

In E. coli for example, promoters in four different categories are

tRINA recognise specific mRNA
sequences and translate them into
amino acid sequences



known, these are either constitutive, activator, repressor or combina-
torial promoters. As their names suggest, constitutive promoters are
always active, that is they do not require additional molecular factors
(either sigma or transcription factors) to allow the RNA polymerase
to bind and bring transcription of the genes under their control. In

E. coli the sigma70 factor, that is always present in the cell combines
with RNA polymerase and transcribes genes that contain constitutive
promoters so that these genes are always being transcribed. Activator
and repressor promoters control gene expression by either activating or
repressing gene transcription following binding by its associated tran-
scription factor [Singh, 2014]. Combinatorial promoters are under the
control of more than one transcription factor and are therefore able
to create a greater dynamic range of transcripts. The identification

of transcription factors and their targets is obviously critical to the
success of understanding and subsequently controlling gene regulatory
networks. Combining transcription factors and their associated pro-
moters allows for the design of synthetic constructs that can control
gene expression.

Once the DNA sequence has been transcribed into mRNA there
are also numerous controls that can affect the rate of translating
mRNA into protein. However, as we are inferring regulatory networks
from transcriptomic data, our results are more useful where synthetic
circuits are using a transcriptional level control which assumes a linear
progression from transcription to translation and protein production.
In addition, being able to see how the regulatory mechanisms change
under different experimental conditions will also have value for the
design of synthetic controls as it has been found that in some bacteria,
the translation of RNA can be controlled by external temperature
[Liang et al., 2011].

To date, synthetic systems have been designed and implemented
that can create numerous effects on the cell. These include, circuits
with logic controls or switches and those that create oscillations in
cell process or simply activate a network. These circuits can help in
the understanding of the cell mechanisms as well as re-programming
them for the optimisation of the yield of new or existing cell products.
However, these synthetic circuits, are designed on a small scale, that is
they usually include only a few genes. In practice, the prokaryotic cells
have more complicated regulatory networks that interact with each
other depending on different external conditions or signals passed to
the cell. Therefore, we view the inference of the regulatory networks at
a genome-wide scale and under multiple conditions to be complemen-
tary to the design of synthetic circuits or regulatory elements.

Bacillus Subtilis (B. subtilis) is a gram positive bacterium capable
of secreting multiple enzymes and proteins, many of which have

SYNTHETIC BIOLOGY
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diverse uses among pharmaceutical and therapeutic industries. It

is used as a system in many synthetic biology approaches due to its
relatively simple structure, ability to produce enzymes with industrial
applications and its lack of toxic byproducts [van Dijl and Hecker,
2013, Jeong et al., 2015]. Consequently there has been an effort to
understand Bacillus subtilis, in order to reverse engineer its system to
produce higher yields with higher specificity.

The B. subtilis genome has been well annotated, and advances have
been made to understand the organism from multiple perspectives
including transcriptomics, proteomics and metabolomics. Integrating
this information in the future will likely benefit the design of synthetic
biology circuits as well, due to the interactions between these different
cellular mechanisms. To design and implement more complex circuits
it is necessary to consider the various levels of control within the cell
and how these interact with each other. So far, the synthetic designs
focus on one area, for example post-translational or transcriptional
but does not combine these concepts. As more information becomes
available from different ‘omics’ resources it would be beneficial to
combine these into a more complete view of the cell and how this can
be harnessed in synthetic biology [Khalil and Collins, 2010].

For Bacillus subtilis, the genome is categorised into groups of genes
called operons. Initially it was thought that all genes within an operon
were under the control of the same regulatory system, leading to
the same levels of gene expression for each gene within the operon
[Ermolaeva et al., 2001]. In this traditional model, each operon is
regulated by a single sigma factor which binds to the promoters to
initiate transcription. However, recently is has been shown that the
system of regulation is more complex. There are also interactions
between termination signals within genes, shRNA and riboswitches,

causing different levels of expression for genes within the same operon.

Additionally, there are combinatorial effects of multiple sigma factors
on the same operon [Giiell et al., 2011]. This means that under dif-
ferent experimental conditions in our model it is possible we may see
different elements of an operon active and interaction between different
regulatory networks.

There currently exist a number of resources that contain infor-
mation on the combined knowledge of regulatory elements within B.
subtilis. These include the database of transcription factors DBTBS
[Sierro et al., 2008], and SubtiWiki [Michna et al., 2013]. BsubCyc
[Caspi et al., 2014] and SynBioMine [Micklem group, unpublished] are
online databases that include information on B. subtilis. The BsubCyc
website database includes known transcriptional units for each gene.
A transcriptional unit is defined as a gene or set of genes under the
control of the same promoter. The transcriptional unit entry for a

Metabolomics is the study of the
metabolic elements and relationships
between the metabolic



transcription factor can have multiple transcriptional units associated
with it. Although the BsubCyc databases contains information on
known transcriptional units and the local context of genes within the
B. subtilis genome, it does not have condition specific or hierarchical
information, on the interactions between them. These are gaps in our
understanding of the regulatory networks that we wanted to address.

By taking a wider view of the networks we may identify combi-
natorial regulatory patterns under specific conditions in addition to
off-target effects of introducing a synthetic system into the cell. That
is, regulatory networks and their biological processes that may also be
induced or repressed due to the synthetic circuits but whose activation
was not part of the initial design specification. Recently Kobayashi et
al took a systematic approach to decouple the functional modules, to
design toggle switch circuits [Kobayashi et al., 2004]. This highlighted
the benefit of being able to categorise functional or regulatory modules
that, ideally, can be independently targeted for design modification.
They made use of two known signalling pathways, including the SOS
signalling pathway, and used an ODE model of the designed circuit to
simulate the parameter values that would give the best efficacy of the
system. In this case, the mathematical modelling was used to optimise
the synthetic circuit. This design required the prior knowledge of the
native pathways that the synthetic circuit interfaced with. In our case,
we use mathematical methods to increase this prior knowledge, cate-
gorising pathways and functional modules in B. subtilis that could be
used in synthetic biology.

Recent advances in understanding the regulatory networks of B.
subtilis have included both genome-wide inference of regulatory net-
works and the integration of multiple data sources to understand
network dynamics. Buescher et al combined information from tran-
scriptomics, proteomics, metabolite levels as well as measuring pro-
moter activity and transcription factor binding through ChIP-chip
data [Buescher et al., 2012]. By combining a wide range of data types,
they could identify novel coding sequences from the mRNA sequencing,
binding regions from the ChIP-chip data and establish potential func-
tional classification of genes through clustering of expression profiles.
They could identify post-transcriptional regulation through compari-
son of mRNA and protein levels and identify transcription factors with
differential activity under changing conditions (either changes in glu-
cose or malate levels in the growth medium). For the transcriptomic
data, the authors generated three replicates per condition. As this
sample size does not provide enough information alone to infer net-
works or dynamic models, prior knowledge of the transcription factors
and their targets was required to infer the changes in their activity.

We were interested in using the publicly available data from Nicolas
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et al that gives three replicates per condition. Despite the small num-
ber of replicates, they have 104 different conditions thereby providing
a rich source of information for network analysis. Arrieta-Ortiz et

al generate an additional 38 microarray experiments and combined
them with the Nicolas et al data set to infer regulatory networks for
B. subtilis [Arrieta-Ortiz et al., 2015]. Again, to infer the networks the
authors combined the transcriptomic data with prior information from
the transcription factor databases. The authors focused on combining
data networks between two different strains and the two different data
sets into one regulatory network model. From here they could identify
and experimentally validate several novel interactions.

Our focus, however, will be on identifying differences between these
networks under different conditions. This will involve the assessment
of the viability of inferring these networks with fewer samples per con-
dition. We split the samples according to their experimental conditions
into multiple groups as opposed to combining them into one group as
with meta studies of the organism. In the next chapter, we select both
the data inputs and parameters of the model and assess the network
output for accuracy and identify potentially novel connections in and
between transcriptional units.



3
Bacillus Subtilis and GGMs

3.1 Results and Discussion

We used an existing microarray data set on Bacillus subtilis that
contains cells under 104 different conditions with three biological
replicates for each condition. The conditions include cells grown in
different mediums or those treated with different carbon sources such
as malate or glucose, as well as drug compounds. Three replicates
are not sufficient for correlation analysis therefore, the hybridisations
were clustered to combine information over conditions. This gave
meta-conditions where each meta-condition contains a set of related
experimental conditions that have similar expression profiles. We as-
sumed a commonality of regulatory networks active under different
experimental conditions and consequently a similarity of gene correla-
tion patterns between them. This assumption is reasonable as many of
the 104 conditions share co factors, such as cells grown with glucose
but harvested at different time points.

Using Euclidean distance and affinity propagation clustering [Frey
and Dueck, 2007], the meta-conditions containing groups of similar
expression profiles were identified. The results of the affinity propaga-
tion clustering are shown in Figure 3.1. The results show clustering
of replicates from the same condition and hybridisations under simi-
lar conditions. A subset of these clusters (initially by trial and error)
were then used as input to JGL, an automated method for selecting
data to input in the model introduced in Section 3.5.4 To do this we
iteratively investigated the clusters with the largest number of observa-
tions in the clusters to give largest potential statistical power in model
inference and used these as input into the JGL algorithm.

From this, three clusters were used as input to the JGL algorithm.
As a pre-processing step the data is standardised to zero mean and
unit variance. This standardisation does not affect the inference of the
JGL model as it is a Gaussian graphical and the Pearson’s correlation
for Gaussian data is scale and location invariant. The JGL model was
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Figure 3.1: Microarray data
run with shrinkage parameters A; = 0.925 and A, = 0.005, throughout are clustered using affinity
the rest of this section this model will be referred to as the inferred propagation clustering. Each

network. Varying the shrinkage parameters are discussed in Section
3.1.1.

of the clusters is based on the
Euclidean distance between all
hybridisations from the Bacillus
subtilis data set. The labels for
each node are the condition of
the hybridisation and the un-
derscore denotes the number of
the biological replicate. Hybridi-
sations cluster by replicate as
well as similar conditions such
as GM+15 and GM+25 repre-
senting malate treatment for 15
and 25 minutes respectively.
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We viewed the correlations between genes in a random order and
after the genes have been ordered and separated into their blocks

using the JGL algorithm. This shows the validity of the block diagonal Block diagonal matrices can be
written as a set of square matrices on

. the diagonal. Off-diagonal elements
The Figures 3.2 a) and 3.2 b) are the heatmaps for the 944 genes that are zero.

were connected in the output of the JGL algorithm that had input

assumption and gives a visual overview of the correlation structure.

shrinkage parameter values A; = 0.925 and A, = 0.005. Figure 3.2 a)
shows the randomly ordered genes and as expected there is no obvious
pattern to the correlations in the heatmap. In contrast, Figure 3.2 b)
shows the genes ordered according to the block they are assigned to by
the JGL algorithm ordered left to right from largest to smallest block.
Here we see there are rectangles or blocks of blue indicating sets of
genes with strong correlations to each other.
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a Figure 3.2: a) These are the
correlations between all the
genes in the network. These

are the genes randomly ordered
and show no obvious pattern. b)
These are the correlations be-
tween the genes where genes are
ordered according to the block
they have been assigned by

the JGL algorithm, this shows

blocks of colour representing

Genes

groups of correlated genes. The
scale for the heatmaps go from
blue to red with strong positive
to negative [1,-1] correlations.
Uncorrelated (zero value) corre-
lated genes in white. There are
patterns of four blocks which
have one diagonal of two blue

or red blocks, the other two are
white blocks. It is this pattern
that enables the separation of

bj

the genes in the two blue or red
rectangles as the off-diagonal,
low correlation, white blocks in-
dicate that the genes in one blue
or red block are not strongly
correlated with those in the
second blue or red block.
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The data input included three different meta-conditions as selected
by the affinity propagation clustering. For each of the three conditions
the resulting network had 1295, 2219, 772, edges that were contained
within 131, 175, 102 subnetworks or blocks for each meta condition
respectively. There were 637 edges that were shared between all three
conditions. We annotated the inferred network to both evaluate the
accuracy of the results and generate hypotheses of novel interactions.
To do this, we used publicly available resources including the ontology
terms of the genes in the network and information on sigma factors
associated with the genes as well as known transcriptional units within
the Bacillus subtilis genome. We created a list of the transcriptional
unit information parsed from BsubCyc.org. This gives the transcrip-
tional unit information for each of the 5873 genes contained in the
BsubCyc online database. As each transcriptional unit may contain
multiple genes, we derived the unique set of 522 transcriptional units
from BsubCyc, the empirical p-values included are for those tran-
scriptional units that have at least one of their genes in the inferred
network, this gave 113 transcriptional units.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Empirical  0.00 0.00 0.00 3.487e-05 0.00 6.000e-04

P-values

Using the transcriptional unit information, we globally compared
the connected components to known transcription information. The
results in Table 3.1 show for each known transcriptional unit the
empirical p-value of the number of known connections found by the
model occurring by chance, see section 3.5 for details. This showed the
number of connections found is highly unlikely to have occurred by
chance giving greater confidence in the model output.

We then looked at the specificity of the inferred network. First,
we compared the proportion of the genes in a transcriptional unit
that are connected in the network result, where the number of genes
from a transcriptional unit is greater than one. We were then able
to establish the proportion of genes in the transcriptional unit that
are in the network result. Second, we calculated how many genes
within a transcriptional unit are connected to a gene not in the same
transcriptional unit. For the first Table 3.2 we have the proportion of
genes in a transcriptional unit in the network result that are connected
to at least one other gene in the transcriptional unit. Again, for the
113 transcriptional units present in the network, 100 percent of the
genes in those transcriptional units are connected to at least one other
member of their transcriptional unit.

For the same 113 transcriptional units, we calculated the proportion

Transcriptional unit is a set of
genes that share a common regulation
mechanism. Usually this includes
shared promoter sequence and pro-
teins that initiate transcription.

Table 3.1: Summary statistics
for the multiple hypothesis
corrected (using Benjamini-
Hochberg) empirical p-values

of the transitional unit infor-
mation. The empirical p-values
were generated by randomly
perturbing the network node
labels, retaining the graph de-
gree structure. The number of
connected components in each of
the transcriptional units was cal-
culated under each permutation
and compared to those found in
the network.
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Min. | Ist Qu. | Median | Mean | 3rd Qu. | Max.
1 1 1 1 1 1

of the transcriptional unit in the inferred network, Table 3.3. Although
there is a low minimum value, 75% of the transcriptional units have
over 60% of their genes connected and the median value shows that
50% of the transcriptional units have at least 80% of their genes

connected
Min. | Ist Qu. | Median | Mean | 3rd Qu. | Max.
0.1818 | 0.6667 | 0.8000 | 0.7760 | 1.0000 | 1.0000

By assigning colours to the annotations of different transcriptional
units we were also able to identify some potentially interesting results.
For example, Figure 3.3 shows two known transcriptional units, de-
noted by green edges, linked by a previously unknown (blue) edge.
This example is useful because the network terminates in a gene
involved in sporulation (dppA). This makes it easier to test experimen-
tally given the explicit phenotype involved in the hypothesis, as we
predict that a difference in sporulation would be observable in the cells
if the upper network (ykfA-D) is perturbed. As well as annotating the
edges in the inferred network we used the Gene Ontology to annotate
the nodes (genes) in the network [Blake et al., 2015]. There are shared
Gene Ontology terms between genes in the same transcriptional unit
and between the two transcriptional units. Genes tend to have more
than one ontology term associated with them, therefore the visuali-
sation does not always capture the shared terms between all nodes.
However, we can still annotate and colour the nodes in the networks
according to the full ontology terms. From a visual perspective, the
transcriptional unit edge information was more useful as each edge
can only be one of three possible values; both genes are in the same
transcriptional unit, the genes are in two different transcriptional units
or one or both genes have no known transcriptional unit information.

As well as the Gene Ontology annotation used in Figure 3.3 we
also have sigma factor information for the genes, Figure 3.4 shows
some examples of the network where nodes are coloured according to
their sigma factors. The information on sigma factors is fairly sparse,
however Figure 3.4 contains a subset of the genes where there is
relatively dense coverage of sigma factor information and suggests that
genes under the same sigma factor have been connected in the network.
Nodes coloured white did not have an associated sigma factor in
the database. Figure 3.4 also demonstrates the utility of annotating
the network with sigma factor information. Where genes without
a known sigma factor are present in a network that contains genes

annotated with sigma factor information it is possible to generate

Table 3.2: Proportion of the
genes in the network that are
connected to at least one other
gene in its transcriptional unit.
This shows clearly that each
gene is connected to at least one
other member of its transcrip-

tional unit.

Table 3.3: Percentage of the
genes in a transcriptional unit
included in the model. This
shows overall a high level of con-
nectivity between genes in the
same transcriptional unit in the
inferred network. The value of
the first quartile shows that 75%
of the transcriptional units have
67% of their genes connected.

The Gene Ontology is a database
of annotations for genes classified

into three groups, biological processes,
molecular functions and cellular
location. The Gene Ontology provides
a common set of annotation terms

for the research community to use
that allows results from multiple
experimental sources to be collated
and compared.
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Figure 3.3: One sub network
of the output that shows two
previously unconnected tran-
scriptional units linked together
(as shown by the blue edge).
The green edges denote con-
nections between genes known
to be in the same transcrip-
tional unit. The nodes are
coloured according to their GO
terms. The red nodes have GO
term, ‘Transport’, blue refers

to ‘Metabolic process’, green
to ‘Cell wall organisation’ and
purple to ‘sporulation resulting

in formation of cellular spore’.
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hypotheses of the sigma factors for genes that are not annotated.
This gives a potential mechanism for gene control that can be tested
experimentally. Additionally, transcriptional units can be controlled
by more than one transcription factor. By combining the experimental
condition information and comparing any connected transcriptional
units, sigma factors can provide information on the likely sigma factor

controlling gene expression under an experimental condition.
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Figure 3.4: For the Bacillus
subtilis data, these are exam-

ples of sub networks where the
genes have known sigma factors.
Nodes are coloured according to
their controlling sigma factors.
A white node indicates that

the sigma factor is currently
unknown. Edges are coloured ac-
cording to known transcriptional
units; green edges for genes in
the same transcriptional unit,
blue for nodes with no known
transcriptional units and red
edges between nodes known to
be in two different transcrip-
tional units. Annotating the
network using the known sigma
factor information can be used
to generate testable hypotheses
on the sigma factors of genes
which are currently unknown.
Knowledge of sigma factors con-
trolling genes and the conditions
they are active in will help in
the design of synthetic biology

circuits.
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3.1.1 Parameter selection

The JGL model has two shrinkage parameters, the first penalises the
size of the model to include only those with highest correlation values,
the second penalises discrepancies between the models for the different
conditions. The results from the previous Sections 3.1 are based on
two shrinkage parameters that were chosen to give a parsimonious
model, in terms of the trade-off between the size of the model and
the time is would take to run the inference. This was a practical
consideration, to allow the evaluation of the potential for using the
JGL model with the selected data set. From a biological perspective,
we may look to find the model that gives the best fit in terms of
sensitivity and specificity to known interactions, or to minimise the
false discovery rate of the interactions. This is particularly relevant for
a biologist who would prefer fewer possible hypotheses to test as these
are both expensive in time and cost.

Statistically, parameter selection would optimise an information
criterion such as Akaikes Information Criterion (AIC) or Bayesian
Information Criterion (BIC). An analytical form of AIC does exist
for the JGL model that in theory can be used to select the two A
shrinkage parameters. For the JGL model where we have a solution
©y, which is the inverse covariance matrix for class k, the AIC is
defined as:

AIC = Y {2log(L(X|®)) — 2px}
k

Where py is the number of non-zero edges in ®;. Using the AIC cri-
terion, the shrinkage parameters would be selected to maximise AIC
value. The initial analysis was run with A = 0.925, and to begin to
investigate the effect of this parameter on the output this was reduced
to Ay = 0.91. The increase in computation time given this shift in
the parameter was substantial. The second computation taking over 4
hours compared to 21 minutes with A; = 0.925. Although a search of
the parameter space could be run using a computer cluster, in addition
to the computational expense the AIC only accounts for the statistical
fit of the model, excluding the biological interpretability in parameter
selection. This is indicated in Figure 3.5 where the change of the pa-
rameter used on a subnetwork of interest did not increase the number
of nodes in the network. The effect of changing the parameter was to
increase the number of significant edges between the nodes instead.
Additionally, Figure 3.5 also shows how the parameter reduction re-
sulted in more edges that are blue connections, that is more edges
between genes not in the same transcriptional unit. We now had 10
blue edges to the single blue edge in the original sub network, Figure
(a). This observation was also shown globally when comparing overall
the number of different edge values based on the transcriptional unit



dppA

(a) One sub network that shows two pre-
viously unconnected transcriptional units
linked together as shown by the blue

edge. Green edges denote connections
between genes known to be in the same
transcriptional unit. The nodes are coloured
according to their GO terms. The red
nodes have GO term Transport, blue refers
to Metabolic Process, green to Cell Wall
Organisation and purple to Sporulation
resulting in formation of cellular spore.

BACILLUS SUBTILIS AND GGMS

(b) Sub network of the output with pa-
rameter Ay = 0.91. We see that we largely
retain the hierarchical structure at the lower
shrinkage level but with more connections,
including full connectivity between ykfDBA
and dppCDE. Again genes in the same
transcriptional unit are connected by green
edges, those in different transcriptional
units by blue edges.

Figure 3.5:

37
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information.

Globally comparing this result with the previous output, with
lambda parameter A; = 0.925 the network contained 944 nodes and
8,821 edges. Moving the parameter to 0.91 we had 2,329 nodes and
32,370 edges, in both cases the second parameter remained the same,
Ay = 0.005. The A, selection was relatively small to allow the JGL
algorithm to find differences between meta-conditions. A zero value for
Ap is equivalent to calculating the networks for each meta-condition
independently. Conversely, a large Ay value would force the networks
to be the same or very similar for each class.

The L1 norm of off-diagonal elements of classes’ Thetas for this
model: 103, 143 and 65, in comparison to 17, 31 and 11 for the pa-
rameter values 0.925 and 0.005, this showed how there is a noticeable
increase in the number of non-zero off diagonal values (edges) due to
changing the parameters. Table 3.4 shows that as well as having more
subnetworks reducing the shrinkage parameter increases the density of
the subnetworks with a greater than two-fold increase in the average
number of edges per subnetwork with a two-fold increase in the num-
ber of genes. This means that in addition to an expected increase in
the number of genes included in the model the networks sparsity is re-
duced for both the initial and additional genes in the network. We also
saw this in the plot of the empirical cumulative distribution function
(ECDF) of the degrees in Figure 3.6. At the lower shrinkage level,
there were a larger range of degree values with a maximum degree of
genes up to 400 connections compared to around 100 for the higher
shrinkage value. The ECDF for A1 = 0.91 was also consistently to the
right of the first curve. This indicated a higher proportion of genes
with larger degree values.

A1 =0925 A =091

Connected Genes 944 1811
Subnetworks 1 131 216
Subnetworks 2 175 247
Subnetworks 3 102 169
Avg. Edges 1 9.88 24.88
Avg. Edges 2 12.68 27.24
Avg. Edges 3 7.57 20.02

To evaluate the information content in the network results we
summarised the number of different edge types according to the tran-
scriptional unit information. Red is an edge between two genes that
are within two different known transcriptional unit. Green are edges
between genes in the same transcriptional unit. Blue edges connect
to a gene that currently has no known transcriptional unit. Table 3.5
shows there are more edges between genes in the same as opposed

ECDF For a set of i.i.d random
variables x1,...,x; with cumulative
distribution function F(m), the ECDF
is an empirical approximation of F(m)
defined as:

A 1
F(m) = E 2 ]lx,'ﬁm
1

Table 3.4: Summary statistics
of the networks for two differ-
ent shrinkage values. For the
inferred network three different
meta-conditions were input
into the JGL model. Overall
the total number of connected
genes shows an increase from
944 to 1811 due to the change
in shrinkage parameters. We
compared the different network
structures for each of the meta-
conditions, which gave a more
detailed view of the network
structure than the combined
network. The values show the
number of subnetworks, for
example 131 subnetworks for
condition 1 with A; = 0.925
and 216 when A; = 0.91 and
the average number of edges
per subnetwork which shows
consistently more edges per
subnetwork for lower shrinkage
parameter.
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ECDF of degree distributions Figure 3 6 Empirical cumula—

S tive distribution functions for
the degree of each of the nodes
2 7 in the two networks with differ-
_z ent shrinkage parameter values.
o | ; The ECDF curve for the lower
= ) shrinkage value is to the right of
s < | j the curve for A = 0.925 indicat-
2 ing a consistently higher degree
. i structure, greater connectivity
° : of nodes, at the lower shrinkage
A o Shrinkage 0.91 value.
& 1T— 4 shrinkage 0.925
(; 1(‘)0 2(;0 3(;0 400 500

Degree

to different transcriptional units and that there are a large number
of genes with still unknown transcriptional units. This gives many
potentially novel interactions to investigate from the results. In terms
of parameter selection Table 3.5 shows the number and percent of
edges in each of the three transcriptional unit classes for two different
Aq values. A reduction of the shrinkage parameter will either make
no difference to the network, result in more genes being included in
the network or more edges in the network, or both. The example sub
network in Figure 3.5 shows an increase in edges but not genes for
this subnetwork. However, this is not necessarily true for all subnet-
works. Hence, we globally compared the number of genes, edges and
the proportion of edge types between the two models. The results
indicate a reduction in specificity of the model with the reduction in
the shrinkage parameters. This is due to the fall in the percentage of
the green (known) edges between genes with a simultaneous increase
in red edges that indicate a connection between genes in different tran-
scriptional units. Ideally, we might expect the network to be highly
connective between genes in the same transcriptional unit but with
minimal connectivity between different transcriptional units. By min-
imal it is important to note that transcriptional units do not always
act independently of all other transcriptional units. Therefore, it is
interesting to see connections between different units particularly un-
der different conditions. However, once two genes in different units are
connected, additional connections between genes in the two different
units do not provide more information on units acting in concert and
lead to a model which is more difficult to interpret. Here we implic-

itly separate those edges that connect two unconnected genes from
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two different transcriptional units to those edges that connect two
genes from different transcriptional units that are already connected
to another member of the second transcriptional unit. For example,

if we had two transcriptional units the first containing three genes
a,b,c and the second f,g,h. If the two genes a,g were not connected

to any other member of the second transcriptional unit, an edge be-
tween them would be informative in connecting the two transcriptional
units. In contrast, if a were connected to g, b connected to f then a
further edge connecting a to f would not be informative, though it
could provide stronger evidence for the two transcriptional units being
functionally related.

Model | Red Green Blue

A =0925 | 227 525 1753

A1 =091 | 1102 949 7557

A1 = 0.925 Percent 9 21 70
A1 = 0.91 Percent 11 10 79

3.1.2  Analysis of effects of data inputs on JGL algorithm

We noticed large differences in running time of different data inputs
within the same cluster of observations that are close in Euclidean
distance (according to affinity propagation clustering). Using the
same shrinkage parameters (A’s), we wanted to identify the main
reasons for the increases in computation time. This could provide a
method for parameter selection, selecting data inputs, or give an a
priori indication of how long the analysis could take to run before
computing it. We found that using all 9 conditions in the cluster
the algorithm had not converged within several hours. This cluster
contains 9 different groups, of these 9 the results showed in previous
sections include group numbers 1, 2 and 7. We used leave-one-out
analysis on this data set of 9 conditions to see if there was one cluster
that was causing the variation in computation times.

The JGL algorithm can be broadly separated into two stages. The
first is the screening of the covariance matrix to determine its block
diagonal structure. The second is to find the inverse of each of the
blocks identified. The system times for the first stage, identifying the
block structure, was 36 seconds for the subset and 219 seconds for all
nine groups in the cluster. This implies the difference in running time
is due to the second stage of the JGL algorithm.

We restricted the number of iterations of the convergence algorithm
(the second stage of the JGL algorithm) to 5 to see if we can identify
the data that is causing the difference in results by comparing compu-
tation time. Figure 3.7 shows the computation time after leave-one-out

Table 3.5: Summary statistics
of the different transcriptional
units for the two different net-
work results under different
shrinkage parameters. The red
edges are those where two genes
are connected that are not in
the same transcriptional unit.
Green edges are for connec-
tions between genes in the same
transcriptional unit and blue
edges denote an edge between
connecting genes where at least
one currently has no known
transcriptional unit listed in

the BsubCyc database. The
absolute number of edges show
that in both cases there are

the most edges with no known
transcriptional unit informa-
tion, though with the smaller
shrinkage parameter there are
now more red than green edges.
This, alongside the percentage
values of the three different edge
values shows that when reducing
the parameter to 0.91 we have a
relative increase in connections
between genes not in the same

transcriptional unit.



BACILLUS SUBTILIS AND GGMS 41

Leave one out computation time for 5 iterations Figure 3.7: The plot shows the

run time (in seconds) for 5 iter-
ations of the algorithm to find
the inverse covariance matrix.
The x-axis denotes which one
out of the 9 data sets was ex-
cluded from the input. There is
very little difference between the

runtime
o

iteration times after removing
one of the classes indicating that
this isn’t the bottleneck in the
algorithm

89.0
|

Dataset

analysis for each data set. There are no obvious differences between
these timings, implying that the difference in input groups will be
shown by the different rates of convergence rather than the time of

a single iteration. That is, the data inputs are more likely to impact
the number of iterations to convergence rather than the time it takes
to complete one iteration of the algorithm to find the inverse of the
covariance matrix. Consequently, we looked instead at the blocks
generated for the different data inputs to try and identify what would
cause different convergence rates.

Figure 3.8 shows the maximum block size after removing each data
input (class) in turn. This shows a large difference in the maximum
block size after removing class 8, whilst leaving data sets 1, 2 and
7 that were used to infer the network from Section 3.1. The two
classes that make a difference to the maximum block size are 2 and
8. When both are included in the model the maximum block size
is close to 400. The removal of class 8 reduces the maximum blocks
size to 100. This makes the computation of the inverse covariance
matrix easily tractable. This shows that the maximum block size may
be a good indicator of how long the JGL algorithm will take to run.
This is understandable as the size of a covariance matrix determines
the number of parameters to be estimated. Figure 3.9 supports this
observation as there is little difference between the overall distribution
of the block sizes with the exception of the maximum block size for
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Leave one out for each dataset and resulting maximum block size

400

Maximum block size
250
!

100
|

Data set

each of the leave-one-out class models.

We may therefore be able to use the maximum block size to select
shrinkage parameter values as well as selecting experimental conditions
to input into the JGL algorithm. It can also be used as a metric to
combine data sets, that is, as an alternative to the euclidean distance
metric that we used initially. We hypothesised that using the block
statistics we may be able to select reasonable shrinkage parameters, or
parameter ranges, prior to running the model. This has the advantage
of being computationally more efficient as well as taking into account
our knowledge of biological networks as sparse networks, in contrast to
the statistical measures AIC and Bayesian information criterion (BIC)
that do not take biological sparsity into account. Although the FDR
methods are a more intuitive and relevant metric they do still require
the estimation of error probabilities which, for regularisation models,
require recalculating the model with multiple shrinkage parameter
values in addition to bootstrap methods for the data. This means that
these measures will be computationally demanding.

From a biological perspective, we assumed that the shrinkage pa-
rameters will result in a sparse network given a high enough shrinkage
value. A more interesting perspective for parameter selection would
be to consider the alternative situation whereby, following the reduc-
tion of the shrinkage parameter the sparsity of the network is reduced
and the signal to noise ratio is decreased. To investigate the signal to

Figure 3.8: The maximum block
size, after finding the block
structure of the covariance ma-
trix is shown after removing
each data set from the input in
turn. The maximum block size
is all those genes for which the
covariance is larger than the
selected shrinkage parameter in
any one of the data sets. There
is a large drop to under 100 for
the maximum block size after
removing data set 8.
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noise ratio in the networks we looked at the behaviour of the block
structure for various shrinkage parameters. Figures 3.10,3.11, 3.12
show the maximum block size, the number of blocks and the change in
the maximum block size for each of the classes individually as well as
combined. These metrics were chosen because we have already shown
that the size of the blocks has the largest impact on the computation
time for the JGL algorithm. Moreover, intuitively we know that the re-
sulting network should be sparse due to the sparse nature of biological
networks. Therefore, a network containing a single large hub would be
expected to contain more noise or false positive results. This situation
can arise since two genes may not be functionally connected, yet their
correlation value is likely not to be exactly zero. The shrinkage pa-
rameter (A1) is therefore useful to shrink those correlations below the
threshold (A1) to zero. We assumed there is a baseline level of correla-
tion in the data that will be observed due to random noise as opposed
to biological signal. By observing the behaviour of the network with
varying shrinkage parameters we aimed to identify this baseline level of
correlation to maximise the signal to noise ratio within the model.

By definition the maximum block size must be strictly decreasing
with increasing shrinkage values, therefore we also looked at the
change in the maximum block size to see if there were significant

BACILLUS SUBTILIS AND GGMS 43

Figure 3.9: The empirical cu-
mulative distribution functions
for the block sizes of the data
set with leave-one-out on each
of the classes. This shows little
difference in the distributions
of the block size except for the
maximum block size for each.
The symbol for 8 where we have
removed sample 8, is shown to
have a lower maximum block
size than after leaving out each
of the other samples, as would
be expected.
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changes when varying the parameter value that could indicate that
the signal/noise barrier has been crossed, Figure 3.12. Arguably
considering only the maximum block size is more of a computational
constraint. On the Figures 3.10,3.11, 3.12 we have added lines for
shrinkage values 0.925 and 0.91. From our previous analysis, we
know that this change in parameters results in a significant increase
in computation time from 21 minutes to over four hours. This is
highlighted by the number of genes in the largest block doubling in
size, Figure 3.10. However, from a biological perspective it may be
more useful to consider the summary of the full network as shown
by Figure 3.11. Here we see a bell shape form for the change in the
number of blocks as the shrinkage parameter varies. The number of
genes or edges included in the model must be strictly increasing as the
parameter value decreases. As the Aq falls below a particular value,
here around 0.9 the sparsity in the network is lost and previous sub
networks are combined resulting in fewer blocks overall. Therefore,
we argue that the Ay value corresponding to the maximum number
of blocks is a useful greatest lower bound for A selection. In our
case, we have used a shrinkage value above this bound. We have also
considered the computational time that would be required to analyse
more of the network. However, this analysis suggests we have more
biological signal than noise in the inferred network and stringency in
our analysis enables us to focus on smaller networks in greater detail
as opposed to doing global analysis on larger networks that is not the
focus of this study.
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3.1.8 Agglomerative clustering for JGL

Following the analysis of the block structure for the JGL method, we
needed a method that allows us to combine data sets which could fur-
ther be used as input into the JGL model and is also able to identify
data sets that will have the greatest impact on the maximum block
size as outliers. We used the data from the previous analysis which
had 9 different experimental groups. Our previous analysis showed
that group 8 gave the largest change, in the maximum block size and
consequently we wanted our clustering method to identify group 8

as an outlier. If we take the median expression value across the clus-
ters to combine into one gene-expression profile for each cluster we
can then use affinity propagation clustering to see how this method
clusters the data sets.

Clusters:
Cluster 1, exemplar 2:

1236738
Cluster 2, exemplar 4:
4

Cluster 3, exemplar 5:
5
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Figure 3.10: The plot shows
the maximum block size, num-
ber of genes, for each of the
three conditions individually

as well as combined. These are
shown for different levels of the
shrinkage parameter lambdal
that controls the significance
level of the correlations. We
have also marked lines for the
two lambdal values used in
the previous analysis at 0.925
and 0.91 as well as maximum
block sizes at 500 and 1000. The
movement from 0.925 to 0.91
results in over twice the genes
in one block and this results in
a large increase in computation
time.
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Cluster 4, exemplar 9:

9

We can see that by using this Euclidean distance-based clustering

between the profiles we are unable to identify group 8 as an outlier.
We developed an agglomerative clustering method for combining

data sets. This used the maximum block size as a measure of distance

between different groups.

1 2 3 4 5 6 7 8 9
1 1 91 16 16 16 16 16 270 16
21 91 191 91 91 91 91 389 91
3 16 91 1 1 1 1 1 269 1
4 16 91 1 1 1 1 1 269 1
5 16 91 1 1 1 1 1 269 1
6 16 91 1 1 1 1 1 269 1
71 16 91 1 1 1 1 1 269 1
81270 389 269 269 269 269 269 1 269
9 16 91 1 1 1 1 1 269 1

Table 3.6 shows the pairwise maximum block sizes for each of the
groups. This shows an increase in the size of each pairwise match with

Figure 3.11: The plot shows the
number of blocks for each of the
conditions individually as well
as combined at different shrink-
age, A1 values. The number

of blocks gives us an overview
of the level of sparsity we can
potentially expect for a given
shrinkage value. For example,
with low numbers of blocks we
have two possibilities, few blocks
with few genes (large shrinkage
parameter, here approximately
0.94) and a few blocks with
many genes (small shrinkage
parameter, in the plot at around
0.85).

Table 3.6: Maximum block sizes
for each pair of data inputs.
These are used for input into
the agglomerative clustering
algorithm.
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Change in maximum block size for shrinkage level Figure 3.12: We plot the change
in maximum block size with

respect to the shrinkage pa-
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group 8 as was expected. With the number of clusters set to 2 we have
the following result. The method uses agglomerative clustering and re
calculates the scores for each group based on the maximum block size
of all conditions in one group after each iteration. To determine the
maximum block size, the two shrinkage parameters of the JGL need
to be selected. In this example we use the same values as our initial
model: A; = 0.925, A, = 0.005.
Cluster 1:

8
Cluster 2:
213456729

The time in seconds for this was 222. The algorithm was also run
with a maximum number of 3 clusters, in this case the computation
time increased to 260 seconds. The result we have when 3 clusters are
allowed is as follows:

Cluster 1:

8

Cluster 2:
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2
Cluster 3:
31456729

We used the agglomerative clustering method with maximum block
size as a measure of distance. Setting the number of clusters to three
we found group 8 to be an outlier as it has separated from all other
conditions, as shown above. The algorithm combines into groups
the data sets closest to each other first. Therefore, the order of data
sets within a group are according to the distances between them. For
example, with 2 clusters the second cluster has the ordering, 2 1 3
456 79. Table 3.6 showed that after data set 8, data set 2 has the
largest distances, this is reflected in its first position in the second
cluster.

3.1.4 Ezploring subnetworks

In the two previous sections, we looked at the effect of changing the
shrinkage parameters on the network. Changing the parameter from
0.925 to 0.91 resulted in an increase in computation time from 21
minutes to around 4 hours. Moreover, this change in parameters

and increase in computation time did not provide additional genes
connected to our example subnetwork. Ideally, we would have liked
to expand the subnetwork to find additional genes or transcriptional
units that are interacting with our network. From our analysis of

the JGL algorithm we also know that the block structure is the main
determinant of computation time as well as determining the possible
genes which could be connected to each other at the completion of
the algorithm; two genes not in the same block cannot be connected
in the resulting network. Consequently, we used the block structure
of the covariance matrix to analyse individual sub networks we were
interested in. Given the example, as shown in Figure 3.3, we can rank
the remaining genes according to their covariance with the nodes in
the sub network and use this to select genes to include in the block of
our subnetwork.

The results in Figure 3.13 show the inference from JGL with the
selected nodes and additionally up to 30 of those closest to the sub
network, giving a maximum of 39 nodes. The shrinkage parameter
input into the model is the greatest lower bound of the lambda param-
eters needed to find a connection between the additional genes and
those in the sub network. In this case, the A1 parameter used is 0.825.
The inference for these 38 nodes took 2 seconds. This shows how, for a
sub network of interest, it is computationally better to analyse the sub
network on its own rather than with the rest of the network. This is

A
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because having shrinkage parameter 0.825 for all sub networks would
result in a network that would take days to infer.

Figure 3.13 displays the expanded subnetwork rendered in Cy-
toscape [Shannon, 2003]. Of the additional genes selected by the
subnetwork algorithm only a fraction of them are connected to the
original sub network. Showing that not all the genes in Figure 3.13
are connected to each other. This shows that although some genes
have high correlation to those in our subnetwork they have lower par-
tial correlation, indicating that there may be an indirect as opposed
to causal link between them. According to the BsubCyc database,
these transcriptional units do share a common sigma factor A, and the
presence or levels of the sigma factor may explain why these are the
strongest 30 in terms of correlation. However, relative to our original
network the shrinkage level is quite low, and we see that the partial
correlation is not high enough to be significant in this network. To-
gether this evidence suggests that these transcriptional units do not
necessarily interact directly with each other but share some common
regulators leading to the correlation of their expression levels. We
would expect to observe these types of relationships, as there are only
10 sigma factors in Bacillus subtilis, that are used to control all tran-
scription in the genome. The regulatory information is summarised in
Table 3.7 The genes that are connected to our initial subnetwork of
interest are ykwB, gabP, S506 (all of which are connected to dppB).

Figure 3.13: Output rendered
using Cytoscape showing the
inference of up to an additional
30 nodes to a previous network
containing 9 nodes. The original
9 nodes are contained within the
largest subnetwork, highlighted
with a black border around their
nodes. Within the expanded
subnetwork there are also nodes
with GO terms for Transport
included the network. GO terms
are used to colour the nodes,
with white nodes having no
known GO terms. Transcrip-
tional unit information is used
to colour the edges. Green edges
between genes in the same tran-
scriptional unit. Orange edge
between genes in different tran-
scriptional units and blue for
genes with no transcriptional
unit annotation.
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UreA, ureB and ureC which are connected to each other and ykfA
from the original network. Both the known transcriptional units of
ure ABC' and ykfA can be inhibited by the regulatory factor codY

and their gene products are located within the cytoplasm. UreABC
can be activated by either sigma factor A or sigma factor H. YkfA

is involved in proteolysis, the breakdown of proteins. One method

for the removal of excess amino acids is ureagenesis. UreABC are all
primarily involved in urease activity therefore both ykfA and ureABC
are involved in related processes. Of those genes connected to dppB
the most annotated is gabP, both genes are inhibited by codY. GabP is
activated by tnrA and both gabP and dppB are activated by Sigma A.
GabP and dppB are both located in the plasma membrane and have
Gene Ontology terms involved in transport processes. The transcrip-
tional unit containing friIMNOD is involved in fructosamine catabolism
and carbohydrate metabolism, that is, the breakdown of sugars for
carbohydrate-based energy.

Table 3.7: Given a sub net-
work of interest containing
ykfABCD and dppABCDE, we
found the 30 most strongly

correlated genes to those in

Genes | Activator Inhibitor Sigma Factors th twork. For th
ykfABCD CodY ? net}vlvog C;}L or delse ge?e& d
dppABCDE AbrB, CodY A ‘:ﬁmg t,el Hiot,e ’ Wet Omlli
e partial correlation network.
ureABC 2 PucR  GInR, CodY AH P W
This inference found further
gabP TnrA CodY A ; b | unit ABC
frIMNOD FrIR, CodY A raf“;‘; 10“3 t“m i dZT,f, :
FufPQN CodY and gabP and two additiona

subnetworks friMNOD and
yufPQN. The table summarises
the transcriptional regulators

of all genes in the sub networks
for those where there are some
known transcriptional regulators
and the network contains at
least 3 genes. This shows some
commonality between the tran-
scription promoters which could
explain the correlation between
the gene expression. However,
no known shared transcription
activators are expected because
there is no significant partial
correlation over all transcrip-
tional units.
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3.2 Decomposing large networks

CELLULAR RESPONSES TO ENDOGENOUS or exogenous stimuli
are complicated and often include the interaction between multiple
transcriptional units. It is therefore common that analysis of gene
expression networks results in highly interconnected networks which
comprise hundreds of genes with thousands of edges between them.
However, transcriptional units usually contain fewer genes, in the
order of tens as opposed to hundreds of genes. We wanted to identify
transcriptional units from the larger networks. This would give infor-
mation on sets of genes that we expect to act together. These gene
sets may combine with other transcriptional or functional units de-
pending on the state of the cell. This is relevant for synthetic biology
where design of circuits is often at a low level, concentrating on the
modification of single transcriptional units or regulatory modules. In
this way, we aimed to identify smaller transcriptional units for design
purposes and how they interact with the rest of the regulatory network
under different conditions. This would then provide information on the
network to be altered and how these modifications would affect the
overall state of the cell.

In addition, genome wide networks are hard to visually explore,
consequently these large networks are often analysed using global
methods such as over representation of ontology terms or known
interactions between transcription factors and their regulons. In this
way information on, for example, master regulators or genes that have
the widest influence on the cell under a given condition, are identified.
This is useful for identifying critical transcription factors. This is
perhaps more important for identifying drug targets where influencing
factors central to the disease phenotype is advantageous. In contrast,
to design synthetic circuits a detailed view of the transcriptional
mechanisms in the cell are required. From an engineering perspective,
detailed information enables the design of circuits constructed from
cellular processes that have well defined inputs and outputs.

Using the JGL model the inferred network is not genome-wide,
however, it still contains close to a thousand genes. The largest sub-
network is shown in Figure 3.14, the edges are coloured according to
the conditions in which the edges are present. This Figure shows that
there are parts of the network that are predominantly one edge colour
indicating that our method for decomposing the network using the
edge information may be effective. From Figure 3.14 we can see that
we may expect one sub network with yellow, one with green and one
connected by red edges. This would be three out of the seven possible
edge values in the inferred network. The input into the JGL for the
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inferred network was three of the meta classes found from the affinity
propagation clustering. The three meta classes are given below along
with the different experimental conditions included within them.

e (lass a: Malate, Glucose, M9 growth medium with glucose at
exponential phase, cells at high temperature.

e Class b: M9 growth medium with glucose at trans phase, M9
medium with LB culture, with different carbon sources, cells at high
temperature, cells grown in SMM, cells before and after addition of
malate, cells after addition of glucose.

e Class c¢: M9 growth with glucose at exponential phase, cells before
and after treatment with glucose with LB and/or M9 medium.

There are seven edge values that that can arise from these three
meta classes, these are:

e Edge value 1: Class a
e Edge value 2: Class b
e Edge value 3: Class a and b
e Edge value 4: Class ¢
e Edge value 5: Class a and ¢
e Edge value 6: Class b and ¢

e Edge value 7: Class a, b and c.

The seven edge values are comprised of three values (1,2,4) for
edges present in only one of the three classes, three edge values (3,5,6)
that are combinations of edges present in two of the three classes and
the final edge value (7) for edges that are present in all three classes.
From a mathematical perspective, standard graphical algorithms exist
to find certain elements of the network. These include, the minimal
paths between two nodes and node(s) that are central hubs in the
network [Langfelder et al., 2013, Managbanag et al., 2008]. These
may be useful in other areas, for example, finding quickest routes in
a transport network but minimal paths which are not as intuitively
useful from a biological perspective. In the context of regulatory net-
works, we wanted to know which transcriptional units are active. The
genes contained within these regulatory networks and ideally the main
regulators of these networks. Causal effects and hierarchical informa-
tion are relevant to regulatory network analysis but the distance the
signals in the cells must pass is not. We investigated several methods

A
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for decomposing networks from the JGL output based on the edge val-
ues. We hypothesised that we might find smaller regulatory modules,
within a larger network. There smaller subnetworks were identified

as nodes connected by edges with the same value. To decompose net-
works based on edges values we made two assumptions 1) that genes
in the same regulatory network are active under the same experimen-
tal conditions and will have the same edge values 2) not all regulatory
networks will be active under all conditions and therefore not all edges
in the regulatory network will have the same edge values.

— a . 5
. b : 4
ab
C
— ac /\/\’
- bEC_ o o /Ig‘igure 3.14: The largest sub-
— ab:c network from the JGL output.

There are three different ex-
perimental classes (a, b and c)
and each edge may appear in
any combination of these three

classes, as shown by the edge
colours. We assume that this
large network is composed of
multiple transcriptional units
and that not all units may be
active under all conditions. This
gives the potential for decompos-
ing and identifying individual
transcriptional units by using

the edge condition information.

¢ We can see potential separate
parts of this network that would
have just yellow, green or red
edges. The value of the condi-
tions each edge corresponds to
are shown in the legend.
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3.2.1 Affinity propagation clustering

This first method uses an existing clustering method to decompose the
network. The affinity propagation method takes as input a similarity
matrix between all the nodes and uses this to determine the number
of clusters and the elements of each cluster. Therefore in order to
decompose a given subnetwork we needed to represent the network

as a similarity matrix, see Section 3.5. Given the similarity based on
the current network we wanted to penalise the connection of two hubs
(transcriptional units) that are present under different combinations of
edge classes. To do this we first identified those nodes that share com-
mon parents but where the edges between the nodes and the parent
are different class combinations. Where the class membership differs
a penalty between the two nodes was added to the similarity matrix,
this penalty is a negative value that can be used as the affinity prop-
agation clustering method will accept negative similarity scores. For
different penalty values, we looked at the number of different classes
in a cluster. We analysed the results of different size penalty values
on the resulting clusters. The clustering varies according to overall
number of clusters as well as the number of conditions within a cluster.
If a cluster contains one condition, all the edges in the cluster are the
same edge type. In our example, with three classes, this edge type can
be any single combination of the classes. For example, a cluster con-
taining all edges as a:b:c, which is present in all three classes, would
have one condition as would a cluster where all edges are in class a
only. Ideally, we would like as few conditions as possible in one cluster.
As the penalty value is designed to penalise multiple conditions in one
cluster, we would expect to see more clusters with one condition as
the penalty increases and fewer with multiple conditions. However,
although there are some falls in the number of clusters for three and
five conditions this is not a linear relationship.

Figure 3.15 doesn’t show a clear pattern in the number of condi-
tions in each cluster as the penalty is varied. Ideally, we hoped to see
a decrease in the larger number of conditions and more clusters with
only one or two conditions as the penalty value increases. The lack
of pattern with the increasing penalty value suggests that the affinity
propagation clustering exemplar selection is having a larger effect than
the penalty metric in determining the clusters.

A
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Figure 3.15: Plots of number of
clusters that have between 1 and
6 different conditions in them,
for different penalty values.
These clusters were calculated
using affinity propagation clus-
tering of the original network.
Penalty values were added to
the similarity matrix when edges
were present in different condi-
tions. One condition can contain
more than one class. That is,
all edges could have edge type
a:b:c, this would be one con-
dition. The plot shows there

is no obvious trend between

the the penalty value and the
number of clusters, for each of
the conditions.
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3.2.2  Deterministic network separation

By using a deterministic algorithm to separate large networks we
know that a constant part of the graph will always separate in the
same way irrespective of whether other parts of the network change.
This in contrast to the affinity propagation method that can alter

in number and categorisation of clusters for all nodes given any one
change in the data input. The first deterministic method we used
starts by identifying, for a pair of nodes, all those nodes they are both
connected to but that are connected under different experimental
classes. Where the number of these nodes exceeds the cutoff selected
by the user all connections between the pair of nodes are removed. By
using a cutoff parameter we allow for noise in the data as it is possible
that we have false positive or negatives in the edges. The results for
decomposing the network method using different cutoff values is shown
in Figure 3.16. The first image with Cutoff 240 is the original network.
As the cutoff value is decreased, the algorithm becomes stricter on the
edge connections, consequently there is also a decrease in the number
of edges in the network.

A
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Cutoff 240 Cutoff 20

(a) Cutoft 240 (b) Cutoff 20

Cutoff 10 Cutoff 2

Figure 3.16: The graph split
with different cutoff values. Cut-
(c) Cutoff 10 (d) Cutoff 2 off 240 indicates no splitting
of the network; the original
network. The deterministic algo-
rithm for splitting the network
removes all edges between two
nodes whose number of edges
to neighbouring nodes with
different class values exceeds the
cutoff value. Reducing the cutoff
value means more edges are re-
moved, this is seen in the Figure
as sparser networks are shown
as the Cutoff value decreases.
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A second deterministic algorithm considered the values of the class
edges. That is, when counting differences in edges between a pair of
nodes and their shared nodes, only edges in classes selected by the user
were counted towards the total number of different edges. For each of
the examples below, 2 differing edges are required to separate nodes.
The varying parameter was those nodes that are counted towards the
cutoff.

Cutoff 2, class 6 Cutoff 2, class 5

Cutoff 2, class 3

(c) Class 3

Figure 3.17: Deterministic split-

To help select which cutoff parameters to use we generated sum- ting of large networks under

mary statistics over the different graphs. This statistic is a weighted cutoff value 2 with different

average of the number of genes in a cluster and number of classes in class conditions. The lower the

the cluster, we added a penalty term to penalise sparseness by adding class value the less stringent the

the number of single nodes to the score. We could then choose the pa- cutoff criteria; Class 3 has sig-
rameter values that minimise this statistic. The values of this statistic nificantly more edges remaining

for different parameters are given in Table 3.8. In this example, the after decomposition than either

Class 5 or 6.



lowest value is for cutoff 2 with the sum of the different class values
being less than 5.

Y Class < 3 4 5 6 7
Cutoff 5 1680 1680 543 322 322
Cutoff 4 1680 1680 186 134 134
Cutoff 3 1680 834 91 77 77
Cutoff 2 1680 319 73 7T 77
Cutoff 1 1668 155 204 228 228

For cutoff value 2 we also plot the graphs under different classes,
Figure 3.17. Again, this shows how the class effects the splitting of the
network. When few edges are defined as different, as shown in class
3, many of the edges remain in the network. In contrast, when the
threshold is increased to 5 or 6, more edges meet the splitting criteria
and this results in more nodes being separated from each other.
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Table 3.8: The network scores
for different parameter values.
The cutoff parameter gives the
number of different valued edges
that need to be present for two
nodes to be separated. For ex-
ample, cutoff 1 means two nodes
connected to a single third node
under two different class values
would be separated. With cutoff
5, two nodes would each have to
be connected to five additional
nodes under different class edges
to be separated. Those edges
that are counted as different are
given by the class parameter.
The class values for the edges
can take values 1 to 7. The
definition we have used is that
the sum of the different edge
values be less than a selected
threshold. In this way, a smaller
value is less stringent as there
are fewer combinations of edges
that would be under this thresh-
old and thus less splitting. For
example, if the threshold (as
shown in the first column of the
table) is 3, the only combination
of edge classes to meet this cri-
teria are for one edge to be class
1 and the other class 2, then the
sum of these differing edges is 3.
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3.2.8 Simulation methods for splitting networks

In the deterministic algorithm, once nodes are separated all shared
nodes are disconnected from both nodes. Arguably we would have
liked these nodes to be separated from only one of the nodes. There-
fore, we developed a simulation-based method for separating large
networks. Under the constraint that each node can only be assigned to
one class, Figure 3.18.

We simulated class assignments for each node and take the graph
that is closest to the original network, see Section 3.5 for details.

The decomposed graph of the largest subnetwork following 50,000
simulations after nodes with differing class edges have been separated
is shown in Figure 3.19.

From the network decomposition, we can visually inspect the
resulting smaller subnetworks. One example of these, identified by Orr
Yarkoni of the Ajioka lab in the Department of Pathology, University
of Cambridge, is Figure 3.20 that shows a potentially novel connection
between spo VIF and the known transcriptional unit between cotVWX.
The literature shows gerE as the regulator of cot VWX [Driks, 1999].
Therefore spo VIF may be required together with gerE to control
cotVWX, or alternatively only one of them is needed to regulate it.
This is something that could be validated experimentally.

b)

O
O

Figure 3.18: Each node in the
decomposition method is as-
signed to one class. a) In the
original network, node G is
connected to 5 other genes, 3
through orange edges, one blue
and one purple. The difference
in edge colours indicates a dif-
ferent set of meta-conditions. b)
Using the simulation method,
node G is assigned to the or-
ange group. Therefore, all edges
apart from the orange edges

are removed in the decomposed
network.



BACILLUS SUBTILIS AND GGMS 61

Figure 3.19: Result of best
fitting graph simulation from

50000 samples. The best fit

I graph is further split by remov-
o e T ing all edges between nodes that
e . I have been given different class
.
.o j\ °e . assignments in the simulation.
—o ° ° . . .
° . . Each class is a combination
. . .
" ? ° R of conditions as shown in the
J o . '
1 A . . legend. This shows how the de-
! .
° Y .
o ? . . composition has resulted in one
° ° . ° ° .
. d « , large network being separated
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1 %>
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@

Our preferred method is to use the Monte Carlo methods. Al-
though this has the drawback of being simulation based rather than
deterministic, given the complexity of the network structure, we have
found this method to be a good trade-off between computational
demands and variation in the predictions. We also considered the
parsimony of the model, both the affinity propagation method and
the deterministic method require the user to select parameter values
that effect the output. In the case of affinity propagation varying the
penalty value leads to changes in the output that are not always intu-
itive. This is due to the interactions between the penalty terms and
the clustering metrics that are optimising two different constraints. In
the deterministic model, the parameters are consistently minimising
the same constraint, namely that we minimise the number of nodes
connected with differing class edges. However, this also requires both
parameter selection as well as resulting in parent nodes being discon-
nected from both child nodes. Ideally, we wanted the parent to be
separated from only one of the children but to do this deterministically
would require propagation of the edge selection throughout the entire
network with each possible combination of assigning each disconnected
node to each of its neighbours separately. Clearly this is computation-
ally very demanding and increasing in complexity with the size of the
network, particularly given that degree structures of networks follow
the power law.

We considered the global impact of the Monte Carlo method on
the network by using this network decomposition on all sub networks
with more than 20 genes. We compared the results of these networks
to the original networks from the JGL output. We used the known
transcriptional unit information from BsubCyc.org to compare the
results before and after decomposition. The network decomposition
resulted overall in a reduction of the number of edges from 750 to
353. Note here that we have used a subset of genes in the output that
have known transcriptional information. Including the genes without
transcriptional unit information would mean that we would be unable
to categorise them as true or false positives or negatives. The true
positive rate falls after the network decomposition as may be expected

Figure 3.20: A subnetwork
found following network decom-
position using edge conditions
and a simulation method for sep-
arating the network. Analysis of
the decomposed network showed
an interesting network between
spo VIF and cotVWX. Connec-
tions between spo VIF and the
cotVWX genes and their tran-
scriptional unit information are
shown, green are known and
blue edges are for those genes
that currently have no transcrip-
tional unit information. Hence
while the interaction between
cotVWX is already known, a
relationship between these genes
and spo VIF has not yet been
shown. Annotations of the tran-
scriptional unit information are
generated automatically and
have been collected from the
BsubCyc website. The genes are
automatically annotated with
gene ontology terms that have
been used to colour the nodes
in this Figure. The green node
of spoVIF has three Biological
Process GO terms associated
with it these are, Transcription,
DNA-templated, Regulation of
transcription, DNA-templated
and Sporulation resulting in
formation of cellular spore. Pur-
ple nodes, cotVIWX all have
one associated GO Biological
Process term that is, sporulation
resulting in formation of cellular
spore.
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since some correctly connected genes in the same transcriptional unit
may be connected under different combinations of experimental classes
due to the noise in the underlying data. However, the precision rose
from 0.7 to 0.78 for the decomposed networks indicating that although
some true positives are removed relatively more false positives are
removed leading to an overall higher precision, or positive predictive
value. Therefore, although there is a trade off in losing some informa-
tion to aid identification and visualisation of networks by decomposing
them, we can see that this decomposition is not arbitrary. That is,
the removed edges overall correspond to connections between genes

in different transcriptional units. Consequently, while we would not
use the decomposed networks as an alternative inference method,
their increased precision and interpretability makes them useful for
interrogating and understanding the networks as a tool to under-
stand the output from the JGL model. In this way, the decomposition
methods are complementary to rather than competing with the JGL
algorithm.

3.8  Future analysis

From the analysis, we have done so far, we can see that there are mul-
tiple networks that could be analysed further. A next step following
identification of interesting networks would be to look at experimen-
tally validating novel connections. Additionally, we have so far only
used a sub section of the data. There may also be scope to run the al-
gorithm on more of the experimental conditions. This depends on the
similarity of the replicates to be combined into one class to give the
required level of similarity and statistical power to infer the networks.

3.3.1 FEzxample networks

In finding potentially interesting results we looked for edges connected
to genes without a transcriptional unit, as well as potentially novel
regulatory mechanisms identified by the model. This may include tran-
scriptional regulators connected to a known transcriptional unit. As
the model calculated the partial correlations we view edges as causal
interactions. We may also identify interactions between more than
one transcriptional unit and the different conditions that a regulatory
process is active under. We have identified examples of these two
situations. In Figure 3.21 we show two example subnetworks where
the edges are coloured according to their transcriptional units. Green
edges indicate that both genes are in the same transcriptional unit.
Red edges are between in two genes in different transcriptional units
and blue edges for genes that have no known transcriptional unit in-
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formation. Using the experimental validation matrix from SubtiWiki
created in the research by [Arrieta-Ortiz et al., 2015] between regu-
lators and targets we also found that yzbB, yzaM and yzbD are all

known targets of abrB, codY. Given the connection to the other tran-

scriptional units that are also under control of either abrB or spo0A,

we would hypothesise from these results that under these experimental

conditions these genes are under the regulation of abrB. Similarly
using the experimental validation dataset, we found that codY is a
regulator of yurJ.

D
H
9

¢

yxaM, asnH, aslA, yxnB, yxbB: Full transcriptional unit

aarr)

factor abrB. abrB is associated with sigma factor A

and sigma factor H
yxbB: Methylation. yxaM: Transport

yxbD: metabolic process

PN
[ mB

Regulated by codY and fIrR and sigma factor A.

(1o
&

yurJ gene ontology terms:
Biological Process:

Molecular Function:
nucleotide binding, ATP binding, hydrolase activity,
hydrolase activity, acting on acid anhydrides,

ATPase activity, nucleoside-triphosphatase activity
Cellular Component:
ATP-binding cassette (ABC) transporter complex

Figure 3.22 shows genes connected under class b. B. subtilis has

as defined on BsubCyc under the control of transcription

yxbD, yxbC: Full transcription unit on bsubcyc under control
of abrB or spo0A. spo0A is associated with sigma factor A

fIrB, frlO, frIN, frIM, frID: known transcription unit with
correct hierarchical structure as defined on BsubCyc.

transport, metabolic process, transmembrane transport

catalyzing transmembrane movement of substances,

Figure 3.21: Two examples of
sub networks that have two
known transcriptional units in
them. In the first network, we
see the full transcriptional unit
connected by green edges. This
transcriptional unit is connected
by red edges to two additional
genes that are also in a tran-
scriptional unit together. For
the second sub network, the
green edged transcriptional
unit is connected to yurJ that
is shown as a gene within its
own transcriptional unit on

BsubCyec.
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four different growth phases. These are, in sequential order, the lag,
exponential, transitional and stationary phases. The stationary phase
is followed by the decline or death of the bacteria. In comparison to
classes a and c, class b includes cells harvested in the transitional
phase as opposed to the earlier exponential phase for classes a and
c. Included in this subnetwork for class b is cotJC' that is involved
in the elimination of superoxide radicals. This could make sense
for the transitional phase that occurs after the exponential phase.
During the exponential phase the cell uses cofactors and responds
to environmental cues, and in doing so creates byproducts including
superoxide radicals. These radicals should be removed before the cell
reaches its final stationary phase. In terms of regulation we also search
the experimentally validated connections from [Arrieta-Ortiz et al.,
2015] et al. Using this information source, we found that yszF, ywdl,
cotJC, cotJA, cotJB, spoVID, usd, prkA, and spolIID (also a regulator
of cotJC) are all regulated by sigE. ComER was not found in the
database.

In contrast, the transport of sugars, that we would expect to be
a more ubiquitous process is found in all three of our experimental
classes as shown in Figure 3.23. The transcriptional unit including
genes levD, levE, levF and levG is involved in reactions for the trans-
port of sugars.
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Figure 3.22: This is an example
of a network where the edges
were found to be present in only
one of the experimental classes,
class b. The transcriptional
unit involving cotJA, cotJB and
cotJC. CotJC is involved in the
pathway for superoxide radicals’
degradation. The experimental
conditions included in class b
involved cells harvested in the
transitional phase. The nodes
are coloured according to their
gene ontologies.



3.3.2  FExperimental conditions

We have used a subset of the original data as input into the network
inference. We then also considered the remaining data clusters of
expression profiles that could be used as input into the JGL model.
To use the JGL algorithm we require a minimum of two classes, in
this case these will be meta classes that cover multiple experimental
conditions. Table 3.9 shows the 58 samples in the previous analysis as

BACILLUS SUBTILIS AND GGMS 67

Figure 3.23: This is an example
of a network where the edges
were found to be present in all
the experimental classes. The
transcriptional unit involving
levDEFG is involved in the
transport of sugars.

well as two additional data inputs each containing 21 samples in total.

The summary results indicate that the network could be informative,
in contrast to a network containing few genes or edges.

Number Number Number Number
classes  samples genes edges
JGL1 3 58 944 3649
JGL2 2 21 1534 4818
JGL3 2 21 943 4338

We looked at the original experimental conditions for the data
for commonalities and differences between replicates for the different
classes. The initial clustering based on euclidean distance was entirely
data driven and therefore did not consider any prior information on
the similarity of the experimental conditions. Being able to make
potential similarities and differences to the edges or genes included
in the network may aid our understanding of the conditions under
which regulatory networks are active. The experimental conditions
included in each of the three groups are outlined below. JGL1 refers

Table 3.9: Numbers of genes and
edges in networks using different
input data and the JGL model.
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to the output that we have analysed in the previous sections. We can
see a commonality in the growth medium and experimental cofactors,
malate and glucose. In JGL2 the perturbations both include drug
treatments to the cells. In summary, the experimental factors are for
JGL3 are the same, though there may be differences in the time points
that could contribute to differences in the networks.

1. JGL1:

e Class a: Malate, Glucose, M9 growth medium with glucose at
exponential phase, cells at high temperature.

e Class b: M9 growth medium with glucose at trans phase, M9
medium with LB culture, with different carbon sources, cells at
high temperature, cells grown in SMM, cells before and after
addition of malate, cells after addition of glucose.

e Class c¢: M9 growth with glucose at exponential phase, cells
before and after treatment with glucose with LB and/or M9

medium.
2. JGL2:

e (Class a: Purified spores, cells LB medium with the herbicide
paraquat or drug H202.

e Class b: Cells with and without glucose in exponential phase,
exponentially growing cultures as controls with or without mito-

mycin
3. JGL3:

e Class a: Cells in CH medium, induced sporulation, cells har-
vested at different time points.

e Class b: Cells in CH medium, induced sporulation, cells har-
vested at different time points.

The overlap of genes in the three different JGL outputs is shown in
the Venn diagram, Figure 3.24. The overlap of genes between the mod-
els is not surprising given that there are commonalities of experimental
conditions between the different datasets. The overall number of genes
covered by the three models is 2,450 or approximately half the genes
in the full data set. This is for an initial set of parameters. It is also
possible to reduce the shrinkage parameters and increase the number

of genes covered by the model output.

A
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3.4 Conclusions

We have shown that we are able to infer regulatory networks within
the bacterium Bacillus subtilis using relatively small sample sizes. Un-
like methods that aim to infer the full genome-wide network through
the use meta-analysis of data under multiple conditions, we restricted
our view to fewer genes and can infer regulatory networks for these
genes using smaller sample sizes. Although we only inferred regulatory
networks for a portion of the genes the JGL model takes as input
genome-wide expression and this consequently removes the need for
any prior knowledge on the regulatory networks that are active under
the condition of interest as we do not have to specify the genes to
measure in advance. Comparing our results to those of a similar study
by Arrieta-Ortiz et al [Arrieta-Ortiz et al., 2015], we see that we are
similarly able to identify known transcriptional unit links. This is
not surprising as we are using a subset of the data included in their
inference. The main difference is that we can infer validated networks
from a small sample size and that these are split according to experi-
mental conditions. We also used the gold standard information from
this paper to validate connections in our example networks that were
not found on the BsubCyc database.

As the data set we used contained only three replicates per con-
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Figure 3.24: Venn diagram of
the genes included in the three
separate JGL models run for
different subsets of the data
provided by Nicolas et al. Each
model has a subset of genes
that are only included in them,
indicating that all three models

may be informative.
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dition we combined perturbations to create three different classes
containing 58 samples in total. Using Euclidean distance and affinity
propagation resulted in clusters containing mainly replicates of the
same conditions as would be expected. In addition, related experimen-
tal conditions, for example the addition of glucose (MG) or malate
(GM) at different concentrations and time points were also found in
the same clusters. We have shown that combining perturbations to be
treated as replicates of the same group increases sample size so that
they can be used in the JGL method and that this produces biologi-
cally meaningful results. Future work could run this analysis on the
remaining data set, where we have shown there may be an additional
two models with two classes each that could result in an informa-

tive model. An alternative approach would be to use the biological
prior knowledge on the experimental conditions to select groups as
opposed to using data driven clustering. This may help to improve the
biological interpretation of the results for example, by combining all
MG concentration perturbations together into one group and all GM
conditions into another.

Using known transcriptional unit information, we could confirm
that these networks performed better than random networks, a pos-
sibility at low sample sizes according to previous simulation-based
analysis [Li et al., 2013a]. There was also a high proportion of the
genes in each of the transcriptional units contained within the same
subnetwork. Using annotations from publicly available resources
means we could identify both known connections and potentially novel
edges in our network.

To control for the possibility of including a large amount of noise
in the network, we considered the behaviour of the structure of the
correlation matrices with varying values of the shrinkage parameters.
We assumed that there is a baseline level of correlation that can occur
between genes that represents noise as opposed to signal between
them. By observing how the correlation structure behaves we can
identify points at which the shrinkage parameter falls below the signal
threshold and results in a proportionally large inclusion of significant
edges. We interpret this change as being a result of including noisy
connections into our model and consequently choose a shrinkage
parameter that is more stringent than this.

While traditional methods for network selection maximise a statis-
tical measure of goodness of fit of the model, these statistical metrics
do not consider the biological interpretability of the model. In terms
of parameter selection, we may be interested in minimising an error
rate, such as the false discovery rate in the network. The false discov-
ery rate is the expected number of type I errors. Type I errors occur
when the null hypothesis is rejected when it is true. That is, a result
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is shown as statistically significant when it is not. The false discovery
rate differs from multiple hypothesis corrections such as the Bonferroni
correction as these adjust individual p-values to control the probability
of at least one false positive rather than the expected number of false
positives [Armstrong, 2014]. Methods for estimating the false discovery
rate (FDR) for graphical models include perturbing the data sets,
using bootstrap samples, to estimate the selection probabilities for
each edge [Li et al., 2013a]. The FDR is estimated by fitting a mixture
model to the selection probabilities. This gives estimates of the pro-
portions of the null and alternative models as well as their densities.
Given the estimation of the FDR, parameters can also be optimised
using the value of the FDR as a constraint. For methodologies that
use a regularization or shrinkage parameter, controlling FDR and
maximising power, allows for the selection of both the regularization
parameter and selection threshold. A main constraint to this analysis
is its computational demands. Not only can a single inference of the
network at a lower shrinkage level take several hours, the bootstrap
methodology means the algorithm would need to be run many times
for a single shrinkage parameter. Further, to use error rates to se-
lect shrinkage parameters these bootstrap estimates will need to be
calculated for a range of shrinkage parameters.

Controlling error rates such as the false discovery rate or family
wise error rate are used for multiple hypothesis corrections. That is,
when there are a many hypotheses, in our case edges between pairs
of genes, to evaluate at once we know that the chance of edges being
found as significant increases with the repeated testing by definition.
This means that these methods are particularly relevant for genome-
wide models where the number of individual hypotheses tested at once
are in the thousands. With smaller models for tens of genes, these
metrics are not usually employed for model selection as the size of
the model is notably smaller. Because of the shrinkage method used
by the JGL model, the output does result in smaller subnetworks of
comparable size. This is because the shrinkage methods inherently
control the false discovery rates through the shrinkage and selection
criteria that result in these sparse networks with subnetwork of small
size. We have taken an alternative approach to selecting parameter
values by heuristically identifying a lower bound on the signal to noise
ratio in the data. By using a shrinkage value above this bound we aim
to control the signal to noise in the network.

It is advantageous to be able to dynamically explore the param-
eter and network space rather than using a fixed shrinkage value in
the analysis. While desirable to control the global amount of noise in
the network using these shrinkage parameters, small changes in these
parameter values can result in large changes to the overall network.
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By allowing for changes to single subnetworks not only is this method
more computationally tractable but it also allows for the possibility
that the same signal to noise ratios may not be present in all tran-
scriptional units under the same experimental conditions. The method
for expanding the subnetworks uses the known network structure

to screen other potential members of the network. The results were
more encouraging for genes that were chosen to have high covariance
with all nodes in the network instead of any single node. This may

be explained as an additional node must be consistently correlated
with the graph structure. This means that we would expect the results
to be further improved by using the logical structure of the network
for selecting nodes to expand the network. We also see that moving
the shrinkage parameters does not lead to a more informative model
as no additional components of the network are found. In addition,
the hierarchy and potential causal links are further obscured by the
additional links added to the output due to the reduction of shrinkage
in the model.

Given our network result, we developed methods for the interro-
gation of this network. We assumed that not all regulatory networks
are active under all experimental conditions and used this to decom-
pose large networks. Our methods for decomposing or expanding sub
networks are used for network exploration as opposed to parameter
selection. The sensitivity and precision comparison of the networks
before and after decomposition indicated that while some true positive
edges are removed, overall the precision is increased meaning there is a
relatively larger increase in the false positive edges removed. Therefore,
while these decomposed networks are not taken as the full or final
inferred network, the level of precision in the edges that remain means
that we can still use the decomposed network to explore interactions
between genes and generate hypotheses for experimental validation.

This approach differs from previous methods that identify hubs
within networks structures as we focus on the edge classifications as
opposed to the number of edges or degree structures within the net-
work [Managbanag et al., 2008, Langfelder et al., 2013]. Particularly
when the network has been inferred from literature or using a meta
study of combined data sources, the resulting hubs can frequently be
broader classifications and lack the scale and specificity of the smaller
transcriptional units identified by our method.

The results supported our hypothesis that different combinations
of transcriptional units will be present in different experimental con-
ditions, and this information is made informative by the JGL for
multiple classes. Therefore, it is not only possible to infer networks
under different conditions but use this information to identify tran-
scriptional units within the larger networks. This is a useful feature
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for the researcher as a network containing hundreds to thousands

of genes cannot be easily interpreted. Usually in these cases, the
approach is to calculate global statistics to identify, for instance, a
master regulator within the network [Kin Chan, 2013, Fujita and
Losick, 2003]. However, we wanted to be able to identify the struc-
ture of the transcriptional units and how they connect to each other
as from a synthetic biology perspective this low-level detail is useful.
When designing constructs for synthetic biology circuits, the scope

of the design is usually within a single operon or transcriptional unit.
Therefore, global regulator identification is less relevant for synthetic
biology, in contrast to, for example, finding regulators that control a
disease response or phenotype. Although we took a lower level view
of the regulatory network than global genome-wide methods, it is
still a broader view than standard synthetic biology models. By using
experimental data taken at a genome-wide level the network has the
potential to capture the full effect of the circuit on the cell as opposed
to those on the circuit alone.

Our results are comparable to the databases of transcriptional units
that exist for B. subtilis, such as those on BsubCyc and DBTBS. The
additional information our model provides is the hierarchical informa-
tion on the direction or flow of the network as well as the condition
information on which experimental conditions edges are present. For
instance, the BsubCyc website provides all known transcriptional
unit information, that we have used to annotate our network, but
this information does not include the hierarchy of the transcriptional
unit or provide information on the conditions in which these tran-
scriptional units are active. The BsubCyc and DBTBS databases
contain experimentally validated connections, while in contrast the
JGL model is also able to identify novel connections inferred from the
input data sets. These connections could be genes that are previously
unknown members of a transcriptional unit or connections between
multiple transcriptional units that work in concert under the given
experimental conditions.

Specific synthetic biology resources exist that have been designed
to create a framework for consistent and modular representation of
the available parts and constructs for synthetic circuits. One main
resource for this is BioBricks, an online database that contains infor-
mation on, for example promoters, repressors and plasmid backbones
for Bacillus subtilis and other organisms. BioBricks contains some
functional annotation of these parts and indicates those constructs
that have been used to create a response such as cell death or motil-
ity in the cell. For Bacillus subtilis there is also a category of parts
that are designed for use with sigma factor A. In the future, we may
expect these lists to increase to include other sigma factors, and this
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also relates to our model output that is annotated with the sigma
factor information. To the designer this gives a link to identify those
transcriptional units under a sigma factor that could be controlled

by the associated parts listed in Biobricks [Knight, 2003]. Currently,
the Biobricks database contains information, in some cases, on the
genes that a part is designed to affect [Nandagopal and Elowitz, 2011].
Parsing and annotating the network with this information could also
provide a useful bridge between the information on the transcriptional
or functional units from the experimental data and the availability of
constructs to manipulate them. Although this engineering approach to
synthetic biology has several intuitive ideas, such as the identification
of parts that can be combined in multiple ways to produce alternative
circuits, biological systems have a number of additional factors that
make this more difficult than for example, an electrical system [Pur-
nick and Weiss, 2009]. Amongst these are the different behaviours of
circuits placed in different cell types or organisms, as well as the noise
in the cell; stochastic variability in levels of gene or protein expression
whilst initially may be considered as noise in data generation or nat-
ural fluctuations, have been shown to be necessary to maintain the
correct balances within the cell. In one example, a synthetic circuit
containing two transcription factors, one activator and one repressor
was shown to function independently in a manner that produced sta-
ble oscillations. Measurement of these oscillations allowed the selection
and optimisation of parameters, however, when the circuit was then
introduced to the cell it was found that these oscillations were tighter,
less noisy, than those observed in vitro. The authors identified a delay
in the cells response mechanism that naturally shortens the time for
these circuits to move from activated to repressed. This time differen-
tial meant that the predictions from the synthetic circuit alone were
not accurate enough to engineer a response from the cell [Nandagopal
and Elowitz, 2011].

Computational models within synthetic biology have focused on
the optimisation of parameters for small networks to aid the design of
synthetic circuits. That is, finding ideal concentrations of transcription
factors or gene connections for a functional unit. The computational
models at this low level require the use of differential equation models
to accurately capture the system dynamics. Therefore, our modelling
approach would be a precursor to this type of analysis. Its aim is to
investigate from experimental data the larger impact of a circuit on
the cell. Current differential equation models are usually applied to a
few (tens) as opposed to thousands of genes and when searching the
parameter space the probability of making a change to the kinetic pa-
rameters of genes currently in the model is chosen to be greater than
the alternative probability of either adding or removing genes from the
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models [Rodrigo et al., 2007]. Another area in which computational
methods have been used in engineering circuits is to quantify the ef-
fects of regulators on their target gene expression. This is aimed at
the design and optimisation of the systems immediate response. One
example categorised over a thousand ‘parts’ or synthetic constructs in
E. Coli according to their ability to specifically effect their target gene
as well as the ‘quality’ of the part which they defined as the variation
in its activity under different conditions [Mutalik et al., 2013]. This
does not however, address the selection of the gene as the mechanism
for producing the desired phenotype, or the optimal experimental
conditions, such as growth media or the time at which to harvest cells.

From a computational perspective, we identified the size of the
blocks in the block diagonal structures as an influential factor in
determining computational demands of the running the JGL inference
for different data inputs. Therefore, we were able to demonstrate its
utility in finding similarities in expression correlation profiles that can
be used to cluster data sets. The metric based on the maximum block
sizes performed better at finding clusters or data sets for input into
the JGL algorithm, in comparison to an alternative method based
on Euclidean distances. This is not surprising as our method uses
the block structure as the specific distance metric, thus tailoring it to
the JGL method and the assumption that the data have correlation
matrices that form block diagonal structures. When the aim is to
infer correlation or partial correlation matrices, we would expect our
method to be particularly useful in clustering data. Computationally
we have seen that for the use of the JGL on a personal computer, the
level of shrinkage needs to be high to get small enough blocks of genes.
It is possible to combine profiles based on their expression similarity
into groups that have similar enough correlation structures to result in
useful models from JGL.

We have identified several networks of interest that contain both
known and unknown connections between genes. These networks make
sense from a biological perspective, in that we can find sensible anno-
tations from ontological information that could explain the connection
between these genes. From a synthetic biology perspective, identifying
hierarchical structures within and between transcriptional units is
useful to the researcher for understanding where a synthetic unit could
be constructed to give greatest efficacy or reduce off-target effects.
There has been a shift in recent years to addressing the difficulties
of engineering circuits within biological systems. This includes the
often-observed unintended effects of a circuit on the cell. For example,
understanding that an upstream regulator of a phenotype of interest
also controls a secondary phenotype that would ideally be left unper-
turbed can help to identify a secondary regulatory that controls only
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the transcriptional unit target intended. One of our examples shows

a possible control mechanism of spo VIF' regulating the sporulation
genes cot VWX. This may be a more targeted control of these genes
when compared to the known regulator gerE that also controls several
other transcriptional units e.g. cgeAB and cgeCDE that control for-
mation of the outer spore layer, and gerP-ABCDE spore germination
genes. CotVWX itself controls spore coat protein genes. Additionally,
we have shown that the condition information can be useful from a
synthetic biology perspective by identifying those networks present in
different conditions. In one example the networks that are active differ
for a subset of the conditions and these conditions contain samples

of cells harvested in different growth phases. This shows how these
methods could be used as an initial step in engineering genetic circuits
as we know that the standardised parts will not behave the same in all
cell types and under all conditions. In the example shown we have a
subnetwork involved in the degradation of superoxide radicals that is
present in the data set containing cells at the transitional phase of the
cell cycle. This is consistent with superoxide radicals being produced
in the proceeding exponential phase [Cabiscol et al., 2010].

Our results show commonality of included genes in the networks in
comparison to those inferred using partial correlation methodology by
Arrieta-Ortiz et al. The authors used the full data set from Nicolas et
al with an additional data set of 403 microarray samples on a separate
strain of Bacillus subtilis under 38 different experimental conditions.
By combining the samples the authors therefore inferred the network
on 671 samples within one model [Arrieta-Ortiz et al., 2015]. Clearly
this is substantially more than we have used for each of our meta-
conditions, however, given that these samples are replicates across a
wide range of conditions these do not necessarily provide increased
correlation signal for genes in the different transcriptional units, as
we would not expect all transcriptional units to be active under all
conditions. Our results support this idea as we could decompose larger
networks using a model with multiple conditions and the fact that not
all transcriptional units are active under all conditions. Therefore, the
standard approach to combine multiple perturbations of a cell type or
organism, while effective, could be made more efficient by selecting the
perturbations more carefully thereby reducing the overall number of
samples required. Previously, models have been developed that use the
inference of regulatory networks to aid experimental design through
selection of the highest value targets to perturb [Barrett and Palsson,
2006]. We have shown that even with lower sample sizes, our network
contains high specificity to the known transcriptional unit information
as well as identifying some potentially novel results.

Other methods for inferring signalling networks have used single

A



BACILLUS SUBTILIS AND GGMS

gene knockouts to infer hierarchy in the network [Markowetz et al.,
2005], or to establish the impact of knocking out genes within a sig-
nalling network on cellular phenotypes [Wang et al., 2007]. In our
analysis, the partial correlation methodology enables inference of

the hierarchical structure, and the perturbations are experimental
conditions as opposed to gene knockouts. Using gene knockouts ar-
guably provides more specific perturbations than using experimental
conditions such as growth factors or drug compounds. Our method
for selecting data inputs is a balance between the large data sets of
multiple, though not necessarily related experimental conditions, and
sets of gene knockouts on groups of functionally or phenotypically
related genes that are usually selected using prior information on the
organism. The specific nature of the experiments means that this data
set can more accurately infer the network of the perturbed genes than
a data set based on general perturbations of the organism. There is
clearly a trade-off between the amount of experimental data and the
scope of the model. Using the JGL model on smaller sample sizes it
can infer hierarchy and causal relations through the use of partial cor-
relations for a subset of the genome. This may be particularly relevant
for the synthetic biologist that is interested in a specific condition
response. By selecting relevant perturbations, smaller data sets can
be used to infer the hierarchical network of the active transcriptional
units.
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3.5 Methods

3.5.1 Mathematical preliminaries

The trace of a matrix A, tr(A), is the sum of the diagonal elements,
Y i Aj; and has the following properties:

tr(AB) = tr(BA)

where AB and BA exist, and

d _ T
= tr(AX) =X

Properties of the determinant (det) of a matrix:

det(AB) = det(A) det(B) = det(A) det(B)

det(l,) =1

where I, is the nxn identity matrix

d o
ﬁlogdet(X) =X

for a matrix X € R"

Result 1 The (i,j)th element of a pXp precision matrix Q) is zero if
and only if x;, x; are conditionally independent given all other variables
z,wherez=1,...,p,z #1i,j.

Proof We consider the standard linear regression model with nor-
mal errors. Given the vector of observations x = xq,... ,Xp We can
regress one variable (x,) on the rest. From standard regression nota-
tion, we denote x), as the regression variable Y. Let z = x1,...,x,-1.
Then the covariance matrix can similarly be decomposed to give

s _ Y7z Zzy
- T
X7y Oyy

The conditional distribution of Y|Z is well known from multivariate
normal theory and is given by:
Y|Z =z~ N(py + (z = #2)277%2v, 0vy — Z7yZ77%7y)

If Y, Z are independent then P(Y|Z) = P(Y) we can see from
inspection this is true when X7y =0
[1o0
oI

Let the precision matrix Q0 = X1 then
Qzz Qzy Yzz Xzy
Qyz  wyy £l ovy
Using the inversion formulae for 2x2 block matrices we can write
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1
Qzy = —wyyZ,,2zy

From this we can see that the Z,Y are conditionally independent if
and only if Qzy =0

3.5.2  Joint graphical lasso

Recently, Danaher et al proposed the fused joint lasso model for k
classes k = 1,...,K [Danaher et al., 2014]. This method extends the
lasso method for Gaussian graphical models [Friedman et al., 2008] to
inference under different experimental conditions, for example between
patients with and without lung cancer. The lasso model constrains the
number of edges included in the model using the maximum likelihood
and a penalty term based on the L1 norm. For Gaussian graphical
models the inverse covariance matrix, estimated by @ is also known
as the precision matrix. It is straightforward to calculate the partial
correlations from the precision matrix. The precision matrix defines
the network structure where an edge exists between two variables for
non-zero elements in the precisions matrix, conversely a zero entry

in the precision matrix means there is no edge between them. The
precision matrix has a zero entry if the two variables are conditionally
independent as shown in the previous section. Similarly the partial
correlations defined as —6;;/,/0;;6;; are zero if and only if variables i, j
are conditionally independent given all other variables.

The Joint Graphical Lasso (JGL) borrows information across ex-
perimental factors as well as identifying differences between regulatory
networks between factors. The JGL model borrows information be-
tween conditions through a penalty term that reduces the likelihood of
an edge if it is not present in all conditions. In this way, the model for-
mulation is such that a common interaction between two genes is more
likely to be found where there is a evidence for it in all conditions.
The model does allow for edges to be present in a subset of conditions:
due to the penalty term however, there must be stronger evidence for
this interaction, with the strength of the correlation required depend-
ing on the size of the penalty term. This also potentially improves the
inference in terms of reducing the number of false positives by requir-
ing more evidence in support of an edge as well as comparing results
across conditions to improve the power of detection. Edges are then
included if there is evidence for them across all conditions or strong
evidence in a subset of conditions. For n; i.i.d observations in group k
with sample covariance matrix s and S¥ = (n — 1)s* the estimation of
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© is as follows:

K
argmax{ ) _ ni(log det®® —tr(sWe®))) — p(@)}
{®} k=1

where

K /
PO) =AY Y16 | +42 ZZIG — 61 |

k=1i#j k<k' i

and A1, Ay are tuning parameters to be selected.

This result follows from a maximum likelihood approach to esti-
mating the precision matrix @. Let x = x1,...,xp be a p x 1 column
matrix from a multivariate normal distribution with positive definite
p X p covariance matrix 2 and mean vector p. Then the probability
density function (pdf) of x is

1 —( =) x —p)
X) ex
F0) s 5 )
In practice the parameter p is unknown and is replaced by the sample
mean X¥. Therefore, the likelihood function for # i.i.d observations is

given by

L 1 —(xi—X)TZfl(xi—x)
[maert 2 )

Then the log likelihood is

—(xi - 0= (x — %)
Z{h‘ det(Z) 2 }
lndet —*Z{(xz_x TZ ( )}

The quantity (x; — %)TZ 71 (x; — %) is a scalar and therefore can be
written as the trace of a 1 x 1 matrix. As tr(AB) = tr(BA) where AB
and BA exist, the log-likelihood becomes

:flndet —thr 2 (x - %)
n 1 1& = NTs—1
= E1r1det(2 )—Eztr(xi—x)(xi—x) z

i=1
As the trace of a matrix is the sum of its diagonal elements:

n

n _ 1 _ AT
zilndet(Z 1)—§{tr2(xi—x)(xi—x)TZ h

i=1

" o1 _
= 5 Indet(Z71) = S{tr(SE 1))

A
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This is the log likelihood for one model, in the JGL there are K classes
with n; observations in each, and the inverse covariance matrix is ok
hence the combined penalised log likelihood for K classes is

K
argmax{ ) _ ny(log deto® —tr(sWe®)) — p(@)}
©} k=1
Danaher et al noted that if the inverse covariance matrix can
be written as a block diagonal matrix, inference on the non-zero
subnetworks individually results in the same network as on the full
matrix. A block diagonal matrix is one that has multiple blocks of
non-zero elements on the diagonal, elements outside these blocks are
zero. For example, writing © in block diagonal form would be:

6, --- 0
ol | : .
0 --- 6
Where we have b blocks for class k, each of these blocks may be of
different dimension containing number of genes g1, ...,y with X;g; =
ny the total number of genes for class k. The shrinkage parameter
is used to set those values below the threshold to zero, this allows
the covariance matrix to be written in block diagonal form. This is
formalised in the following lemma.

Lemma 1 Suppose that the solution to the fused graphical lasso
is block diagonal with known blocks. That is, the estimated inverse
covariance matrix takes the form

o 6. O
0 6
© is a pXp matrix, 6, is an axa matrix, and 6} is a bxb matrix,
where p=a+Db. In this case solving the fused graphical lasso on just the

corresponding subset of features, 6, and 6} is equivalent to solving on
0.

Proof. To show this we partition the full log likelihood into parts
corresponding to elements in the two subsets of @. Since 6},...,6%
and 9;, .. .,9’; have the same dimension for all k it suffices to show the
result for a single class. The full model is

n(logdet® — tr(S®)) — P(©)

we split each component part separately, for nlogdet ® we note
that we can write © as

o_ |0 0 I, 0
0 I 0 0
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and note that det(AB)=det(A)det(B) = det(A)det(B) and det(T)=
So we have det(®)=det(0,;)det(6;) and

nlogdet® = nlogdetf, + nlogdet,

For the second term, let nS® = D then tr(D) = Zle Dj; therefore
tr(D) = D” + Zl ai1 D;; that is tr(S@) = trS,0, + tr 5;0.
Finally, the fused penalty term is:

Alzzw |+, ZZW )|

k=1i#j k<k' i

It can be seen by inspection that this term can be easily split into
each (i,]) element and therefore the separate blocks, as the contribu-
tion of the off diagonal elements are all zero by definition. O

This result means that the inverse of all the blocks can be found
separately, thus reducing the size of the matrices to be inverted when
the covariance matrix is a block diagonal matrix. This has the poten-
tial to greatly improve computational efficiency. In addition, computa-
tional complexity is further reduced by deriving rules, for identifying
zero elements, in terms of the penalty parameters (Aq,As), Sk and the
number of observations n;. These screening rules are a pre-processing
step in the JGL algorithm performed before inverting the covariance
matrix.

The screening rule of the JGL determines the block diagonal struc-
ture of the covariance matrix. The screening rule, for K>2, is a thresh-
olding method that sets those values of 1;,S) above the threshold to 1
and those below to zero. By setting elements of the covariance matrix
to zero it is then possible to rewrite the covariance matrix in block
diagonal form. The thresholding value used in the screening algorithm
is the same as the shrinkage value used to invert the covariance matrix,
Aq1. In practice, a weighted correlation matrix is often used instead of
the covariance matrix as this makes the selection of the thresholding
value, Aq easier as it is constrained between [0,1]. The weighting is
used when there are different sample sizes, 1, for the different classes.

As a preliminary result we first outline the Karush-Kuhn-Tucker
(KKT) criterion that give the necessary and sufficient conditions for a
solution to the JGL model [Boyd and Vandenberghe, 2009]. The KKT
criterion extend Lagrange multipliers to allow for inequality as well as
equality constraints. That is, they provide a set of requirements for
the problem of maximising a function f(x) subject to g;(x) < 0 and
hi(x) = 0. The KKT criterion for a solution x* that maximises f(x)
are:



Vi(x Zluzwz +D Vhi(x")
gi(x")
MHi =
uigi(x*) =0

The penalised likelihood model can be viewed as a constrained
optimisation problem in Lagrangian form as max f(x) — 2;-:1 Ajhj(x)
where A; > 0 are tuning parameters. In the case of the JGL we have
two constraints (j = 2) and two tuning parameters Ay and Ay. In the
paper by Danaher et. al, for K=2 classes the function to maximise is:

K
argmax{ ) _ ny(log deto® —tr(s®e)) — p(@)}
© =

where

P(© ZZ|9 |+AZZZ|6 )|

k=1i#j k<k' i,j

Our parameter of interest is 6 and f(0) is

K
ny(lo det®@® — tr(sP k)
&
k=1

We have two inequality constraints for the JGL model, in equation

above | =2 and h; = ZZ|6 | and hy = Zzwl Z(/)|
k=1i#j k<K' i,j j 4
Then the KKT1 criterion are given by
0= Tll(®(l)>_ - Tlls(l) - /\1F1 - /\zY
0=m(@®) " —15@ — \iTp + A,Y
To Show this we first define the subgradients for the penalty func-
tion |9 | w.r.t G(k).

1if o) >0

~1ifel) <0
o) _

a if 91.]. =0

for some a € [—1,1] and the subgradient of |91-(]-k) - 91-(]-k,)\ w.r.t

(91.(]?‘),91(]?")), k # K is (d, —d) where
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vifo) > o)
d=<-1ife) <o)
aifof =0

for some a € [—1,1]
To find the KKT equations we need the derivatives for the pe-
nalised log-likelihood model.

K
argmax{ ) ni(log det @k ) —tr(sPe®)) - p(@)}
e =1

K
) ni(log det @) — tr(s(k

-l ) - P©)}

From the standard mathematical preliminaries we have:

d .
dglogdet( ) =0

and

—_— g T:
g 1(50) =T =5

The differentials for P(®) are given by the subgradient previously
defined.

Let T; = ):#]d |91] |and Ty = Tigj - o |9 and Y =

/] d9 |9 ] | = Zi,jd ) Then.
1
j=1
so that: )
n1 (®(1))_ - 1’115(1) = M1+ AY
and .
1’12(@(2))_ — 1’125(2) = )\11-'2 — AzY

Therefore we have:

0=mn (@) —nsM — ATy — AyY

0= 112(@(2)) ! — 1’125(2) - )Llrz + )LzY

as required.

The theorem that formalises the screening rules, Figure 3.25, for the
JGL algorithm is given below along with the proof given in [Danaher
et al., 2014, included for completeness.

Block diagonal
structure

Figure 3.25: Screening rules
are used to identify the block
diagonal structure. Dark blue
squares represent correlations
passing the shrinkage parameter
thresholds. This stylistic repre-
sentation shows the combining
of block diagonal structure
using the JGL screening for
two classes. The block diag-
onal structure is determined
for each class separately and
then combined to form a single
block diagonal structure, with
significant correlations in dark
blue.
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Theorem 1

For the case K = 2. The necessary and sufficient requirements for ©
to be the solution to the JGL model are given by the KKT criterion
as:

0=m(@M) " —n;sM — ATy — A,Y

0=m(@®) " — 5@ — A5 + ApY

We consider the partition Cq, C; of the covariance matrix into non
overlapping sets, so that the covariance matrix has block diagonal
form
o 0 go_(@® o )

0 @2(1) ¢ 0 e,

We can show that the two following criteria (a) and (b) are equiva-
lent:

(a) To meet criteria above for alli € Cq,j € Cp there exists
rlri]‘, F2,ij, Yl’]‘ S [—1, 1] such that:

—m1 8 — ATy =AY =0

*1’[251']'(2) — /\1F2,1-]- + /\ZYI‘]‘ =0

(b) [mS1]| S A+ Az,  [m2S2] < A+ Az and [n151 +mpSz| < 24

This result means that the screening rules in (b) can be used to
partition the covariance matrix into non-overlapping sets. This gives a
covariance matrix with block diagonal form. From the previous results
this means that each non-overlapping set (or block) determined by the
rules in (b) can be inverted separately.

Proof. Without loss of generality, assume that n1S7 > ny5;. First
show that (b) = (a). The proof is split into two cases.

Case 1:

nlsl - 1’1252 < 2)\2
Case 2:

1181 — 1253 > 24,
Case 1:

First, note that by (b), we know that |#1S1 + 12S2| < 2A1. There-
fore, I'1, I € [—1, 1] .

Second, note that Case 1’s assumption that 1157 — 15, < 2A,
implies that Y € [—1,1].

Finally, we see by inspection that —n1S7 — A1 — A, Y = 0, and

—125, — AT + A Y =0.
Case 2:
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Let T = %1“2 T, = %{M and Y = —1. Then, by
inspection, —n1S1 — AI'1 — A Y =0, and —nySy; — A + ALY = 0.

It remains to show that I';, I, Y € [—1,1]. Trivially, Y = —1 €
—1,1].

From our assumption that |[n151] < A1 + Ag, we know that —1 <
I'1. Moreover, by the assumptions that n1S1 — 1S, > 2, and
|11S1 4+ 12S2| < 2A1, we have that

n151—nSy
[ — —mSithy —mS1+Ag(F5 )
1 M - M

Therefore Ty € [—1,1].

By the assumption that |12S] < A1 + Ay, we know that T =
—mSH-M ~q

Aq —

From the assumptions that

n1S1 — 12582 > 2A; and 1151 + n2S,| < 244, we have that

n151—nSy
[, — —mS=A > 7n252+A2(W)
2 M = M

_ mS1—mS;
— nSmS: <1

_ mS1—mS;
= 5% > 1

Therefore T, € [—1,1].

For the second half of the proof it remains to show (a) = (b).
This result follows from inspection of 0 = —n151 — A7 — AJY, as
I'1,T2,Y € [~1,1] then we must have [1n1S1| < Ay + Ag and similarly
|n2Ss| < Ap + /\g.

Finally, adding the two equations gives 0 = —(1n1S1 + 1252) —
(A1 4 Agln) and similarly as T';,I', € [—1,1] we therefore have
1151 +1252] < Ay + As. O

Lemma 2 For K>2 the necessary condition for all the elements i €
C; to be completely separated from j € Cp with i # j is I SO < A4
for all k.

Proof. When K>2 we note that, in the KKT equations, for the second
part of the penalty term involving A, these terms will cancel in the
summation as for each pair (k,k’) k # k' we have d — d = 0. Therefore,
the KKT criteria is

0= 2{—les(k) - Alrk}
k

Where Ty € [—1,1] for all k

From the above we can see that to satisfy the KKT criterion we
must have |1,S%)| < A4.

Conversely if [1,S®)| < A; for all k. Let Ty = —1,S®) /A1 then

Ay S

0= —nkS(k) — ( 2
1

)

and since |1, S| < A then T € [—1,1] O
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3.5.8  Subnetwork analysis

The lasso approach means that the resulting network inference is likely
to produce disjoint sub graphs as it shrinks edges below the threshold
to be exactly zero. This threshold is user-selected and consequently
after identifying a subnetwork of interest we may want to reduce this
a priori cutoff value. This would allow for the inclusion of additional
genes that are correlated with the original subnetwork. Biologically we
expected that the correlation between genes within a transcriptional
unit would be higher than with those in a second interacting tran-
scriptional unit, and that the strength of these connections between
different transcriptional units will vary, particularly when averaged
over different experimental conditions. We assumed that transcrip-
tional units interacting with each other would be included at a lower
shrinkage level. Relaxing the shrinkage penalty may therefore reveal
interactions between transcriptional units. The original network of
944 genes is unlikely to include all relevant genes active under a given
experimental condition. However, as there were multiple biological
processes active using initially a stringent shrinkage parameter made
it easier to identify these different processes (as subnetworks). These
subnetworks were then expanded for an area of the network that we
were interested in. Computationally it helps to focus the network
on a subset of genes as opposed to allowing for a smaller shrinkage
parameter at a genome-wide level. In this way, our network result is
a starting point for further investigations computationally as well as
experimentally, and value found in iteratively identifying and narrow-
ing focus to networks of interest. The value of the initial network is to
remove the necessity of prior information on active genes, networks or
pathways.

The elements to be included in each subnetwork are determined
by the block diagonal structure of the covariance matrix and inver-
sion of these disjoint covariance matrices then determine the graph
structure. We therefore explored a subnetwork of the output using
the screening rule of the JGL algorithm through varying the shrinkage
parameters, A. For a set of nodes in the subnetwork the remaining
genes are searched and a user specified number of genes with the high-
est covariance to all those in the network are returned. That is, given
an initial sample covariance matrices S(k),k =1,...,K and shrinkage
parameter A7 a block diagonal matrix ® used as input into the fused
JGL model with K > 2 is calculated as follows:

1if 3 kst |mSi,)0| >N

0 otherwise

P =

Where the conditions for ¢; ;) to have block diagonal form are as
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outlined in Lemma 2 above. In practice, the sample correlation matrix
is used for S®) and where the sample sizes 1y are equal for each k, the
selection of the threshold (Aq/ny) is easier as it is constrained between
0 and 1. Then we write ® in block diagonal form, with b blocks:

¢p1 - 0

0 - ¢

The inverse of ® is the same as calculating the inverse of each ¢;
i = 1,...,b individually. Therefore for a subnetwork of interest ¢;,
we developed a method for expanding this network by altering the
shrinkage parameter Aq. For a user-selected number of additional
genes (G), denote initial set of genes in ¢; as P, and s as the number of
additional genes to be added to the network, the algorithm is:

Result: Identifying additional genes to include in a subnetwork
expansion

Input :Nonnegative double €
Input :subnetwork adjacency matrix ¢;
Input :Nonnegative integer G
Output : New shrinkage parameterA™
Output : New genes added to subnetwork, p
while s<G do

A=A —¢

Select gene(s) p such that

Pmlp, P] > A

s=s+|p|
end

Algorithm 1: Subnetwork Expansion

Where ¢ is the maximum of [mS®) |, k =1,...,K, and € > 0 is a
user specified value by which the value of A, the shrinkage parameter
is decreased on each iteration.

Because an additional gene must pass a threshold value of cor-
relation to all genes in the subnetwork they are more likely to be
connected in the expanded subnetwork. The additional selected genes
along with the genes in the existing network are input into the JGL
algorithm. This allows inference of only the selected expanded subnet-
work, which dramatically reduces computation time.

8.5.4 Clustering for JGL

To select conditions as input into the JGL model, for a given number
of clusters we group conditions that give the smallest upper bound
on the block size of the covariance matrix. That is, conditions are
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combined according to the similarity of the block diagonal covariance
matrix after the shrinkage condition has been applied. To do this we
use agglomerative clustering where the score between a new data point
and existing cluster is updated at each iteration of the algorithm to
allow for the change in the cluster and what would therefore be the
maximum block size if these data points were included in the same
JGL inference. This is for a fixed number of clusters.

3.5.5 Network annotation and evaluation

Given a network we then annotated the nodes and edges using various
resources. These included adding gene ontology (GO) terms to each of
the nodes, which can be used to colour the nodes in Cytoscape [Smoot
et al., 2011], and were taken from the ENSEMBL database using
BioMart [Kasprzyk, 2011]. Using the BsubCyc website [Karp et al.,
2005] we were also able to gather sets of known transcriptional units.
This information was then mapped onto the edges of the network,
which can be used to visually identify new links within the network.
We also added sigma factor information from the DBTBS [Sierro et al.,
2008] and SubtiWiki websites [Michna et al., 2013]. The sigma factors
are proteins that enable binding of RNA polymerase to gene promot-
ers. As different sigma factors are active under different experimental
conditions, such as heat, knowledge of the controlling sigma factor is
useful in designing experiments for modifying or activating pathways.
RCytoscape [Shannon et al., 2013] was used to visualise the results
from the JGL algorithm.

To evaluate the result global analysis of the network was performed.
To see if the number of known connections found between genes (ac-
cording to the transcriptional unit information) was likely to have oc-
curred by chance, the nodes of the network were randomly perturbed
ten thousand times. This maintains the degree structure of the net-
work. Empirical p-values for the observed number of connections for
each transcriptional unit were then calculated and multiple-hypothesis
corrected using Benjamini-Hochberg [Benjamini and Hochberg, 1995].

3.5.6  Decomposing large networks

Even with the shrinkage methods, the output from the JGL model
can still contain large networks. For the Bactllus subtilis data set and
JGL parameters used in the previous sections the largest subnetwork
contained 240 genes. These networks are still difficult to visually
interrogate. Therefore, we considered several different methods that
can be used to decompose large networks based on edge values. These
methods all assume that the edge values are qualitative variables

that represent different experimental conditions or combination of
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conditions an edge is present in. The idea being that we may find
separate regulatory modules within a larger regulatory network that
are identified by nodes connected by edges under the same conditions
and that not all regulatory modules will be active under all conditions.

3.5.6.1 Using Clustering methods

The affinity propagation clustering method [Frey and Dueck, 2007]
uses a similarity matrix and message passing to determine the number
of clusters and the elements within those clusters. We used the num-
ber of conditions each edge is present in to create a similarity matrix.
For example, with 3 conditions an edge appearing in any one condition
would have similarity value 1/3, 2 conditions 2/3 and in all three 1.
This does not however consider that, for example, a node may have
similarity 1/3 with two other nodes but these edges may be present in
two different groups. Therefore, we identified where two nodes share
an edge between any other node and if those edges are in different
conditions a penalty is imposed, that is a negative value. Affinity
propagation clustering selects exemplars of clusters and members of
clusters using the similarity scores between nodes. This is done by
simultaneously calculating availabilities and responsibilities for and
between nodes. The availabilities refer to the availability of a node
to be an exemplar and the responsibility its connection to the other
nodes as assigned to exemplars. Hence, there are two factors first, the
relative suitability of each node being an exemplar for node i. This
is the responsibility (i, k) and is a conditional score for k being the
exemplar for i given all other possible exemplars. This is calculated as
the maximum availability and similarity for another node k’ being the
exemplar. In this way, the scoring compares the similarity of node i to
candidate k and to all other nodes that includes the score of k’ being
an exemplar and that it should be the exemplar to node i. Second, the
algorithm considers the situation that i should choose k as its exem-
plar given the support k must be an exemplar from the other nodes.
As the algorithm iterates, the availability for some nodes will fall to
zero as there is relatively little evidence that they should be exemplars.
Intuitively the availability determines which nodes are exemplars and
the responsibility assigns nodes to exemplars.

The availability for node i to choose node k as its exemplar is a(i, k)
and is initialised at zero.

a(i,k) =0

a(i, k) = min{0, r(k, k) + T4 max{O r(i,k)}}
a(k, k) = Xy max{0,r(i'k)},s.t, i’ £k
r(i,k) = s(i, k) — maxp {a(i, k') +s(i, k') },s.t.k" #k
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3.5.6.2  Deterministic split of the Network

We may split the network deterministically by separating all nodes
that do not have the same conditions connecting them to a third (par-
ent) node. Where the number of parent nodes in differing conditions
exceeds a user selected threshold the two nodes are separated from
all common parent nodes. However, this means that the parent nodes
are no longer connected to either of the nodes. Algorithm 2 outlines
the method used to deterministically separate the network. Where the
inputs into the algorithm are defined as follows:

©®* is the adjacency matrix across all classes. There are ZkZ(k_l)
combinations of the k classes. 6;; is the edge value between nodes 1, j,
0;; € [1,Zk2(k71)} where k = 1, ..., K and K are the number of classes.
I'; is the I-th adjacency matrix 7;; is the edge value 0 or 1 between
nodes 7,j where 1 denotes an edge between nodes 7,j in class 1 and 0

no edge.
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Result: Deterministically split network
Input: Optional: class level i
Input: The edge value matrix, ©*
Input: Individual class matrices, I';, I=1,... K
Output: Decomposed Adjacency matrix, I'*
1if ® >0
0 otherwise

for for each node (gene) i in ©® (i=1,...,n) do
find all nodes also connected to node i:

a=0l[,]*x0

Find all entries that have a different value to node i:
d=0*"—-0*,]

P=d#0

find those with different values that are also connected to the
same node, this will be our checking matrix ® that contains
those edges to be removed:
O =1(Pxa#0)
if split by class too, then
remove those edges with a combined class level below 7,
this prioritises edges with differential values and fewer
classes rather than edges with different values and a high
number of class combinations within them :
I' =y, 1T > 0)
C=T"+T,]
D, = ]l(C < 17)
Update check matrix so that those with different edge
value and edge value less than # are known:
b = D x (132
end

Find the number of shared connections with node j that have
different edge values to node i:

NP = Zi:l,...,ncD[r i]

Find the nodes to separate based on the number of shared
connections with different edge values being greater than w:

sel =which(|NP|> w)

for each node j in sel do
Remove all edges shared with it, node i and a third node

nodes =1(®[, sel[j]] # 0)

Initialise final separated adjacency matrix I'*:
=T

I'*[i,nodes]|=0
I'*[nodes,i]=0
I*[sel[j],nodes|=
I [nodes,sel[j]]=
end

0
0

end
Algorithm 2: Deterministic algorithm for splitting Large Networks
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3.5.6.3 Simulation methods

Figure 3.26 shows a stylistic example of how the network decompo-
sition is calculated. Figure 3.26 a) shows an example network where
the nodes are connected under different experimental conditions as

denoted by the colour of the edges between them.

Figure 3.26: The Figure shows
a stylistic example of how the

I simulation based network de-

A S| 25 | s composition is performed. a) An
z ? (I) z example network, where nodes
D 1/5 0 4/5 are connected under different

E 0 0 ' example conditions as shown

2 |12 I:' l(/)4 by the different colour edges,

H 12 0 12 we use this information to de-

compose the network. b) As a
first step, multinomial proba-
bilities are calculated for each

@ node based on the frequency of
the edge conditions as shown
in. ¢) By sampling from these
@ probabilities for each node in-
@ dependently we can assign a
single class to each node. The
@ score to select the best fit graph
is according to its similarity
to the original network. The
graph is further decomposed by
separating nodes that have been
assigned to different classes.

Multinomial probabilities of class assignment for each node are
calculated based on the class value of the edges connected to it, Figure
3.26 a). We denote the probabilities for a single node (gene) in the
network as P; i = 1,...,p. Then for each P; where we have ¢ =
1,.. .,ZkZ(kfl) possible classes we calculate the probability of P; being
in class ¢ as P(; ),

X =c) ., .
P(z,c) Z(G(i,j) 7& 0 1 7é J
For each node independently, the class assignment is randomly
generated using these probabilities as in Figure 3.26 b). We denote
Ciy) as the class assignment of node 7 in simulation /. A new adja-
cency matrix, @*, is calculated where only edges for the selected class
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assignment for each node are included.

91‘,]' if 9,'/]‘:(:1',1 or 0

0 otherwise

=

% - i,j jl

Bin =

A second optional step has been performed whereby two nodes are
separated if they are connected to other nodes in different classes.

A similarity score between this and the original matrix is then
calculated, the adjacency matrix that has the greatest similarity to the
original matrix is selected as shown in Figure 3.26 c). That is, we aim
to find the set of class assignments C; for each node to maximise the
proportion of edges in the network:

0% ., #0

arg max = Z G 7 -
1 26(1’]) 7é 0

A
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Empirical Bayes method for estimating covariances

IN THE MAJORITY OF EXPERIMENTS the number of replicates,
due to time and monetary constraints, is relatively low. In differential
expression studies using microarray or RNA-seq, methods have been
developed that use empirical Bayes (EB) approaches to borrow infor-
mation from across genes (which, by contrast to sample size, are large
in number) to improve estimates. These methods have been shown to
reduce the false discovery rate in differential expression analysis.

We are interested in reducing the false discovery rate for corre-
lations between genes. As with differential expression studies, we
expect the number of biological replicates to be small (< 20) however,
the dimension of the correlation or covariance matrix will be large,
with thousands of genes. Previous work using correlation matrices
has largely focused on interpreting relationships between genes di-
rectly from the correlation matrix. As discussed in previous chapters,
shrinkage methods have been used which create a sparser correlation
structure making it easier to identify significant relationships.

However, we are also interested in whether we can improve the
initial estimates of the correlation matrices. In our analysis, this would
be a pre-processing step where these correlation matrices would then
be used as input into the JGL algorithm. They could also be used
in stand-alone analysis of correlations or input into other algorithms
that require covariance or correlation matrices. One method, named
Corpcor was introduced to improve the estimates of correlation ma-
trices [Schéfer and Strimmer, 2005]. This method was motivated by
the small n large p problem as observed in genome-wide expression
problems. Analogous to the JGL model, Corpcor takes a shrinkage ap-
proach to improving the estimate over the standard sample covariance
matrices that suffer when n < p. The Corpcor method uses a mixture
model to combine high variance unconstrained estimates with low
variance high bias constrained estimates. The mixture proportions are
determined by a shrinkage parameter that is calculated analytically
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based on minimising a risk function of the model.

4.1  Ezploratory data analysis

AS INITIAL EXPLORATORY DATA ANALYSIS we looked at an existing
data set available from ArrayExpress. This enabled us to assess the
sample correlations for different samples sizes and whether we may

be able to leverage information from across each of the correlation
pairs to give a more robust estimate of the full correlation matrix. The
CEL data for the experiment E-GEOD-24594 was downloaded from
ArrayExpress and loaded into R [Fujiwara et al., 2011]. The data for
two of the conditions was used: these were factors with E2F1 Null and
E2F2 Null, these being different genotypes of the E2F transcription
factors. These E2F transcription factors are known to be important
regulators of the cell cycle. The expression data were normalised using
Robust Multi-Array Average (rma) and standardised to zero mean
and unit variance [Irizarry et al., 2003]. The data were filtered to
include those probes in the top fifty percent of genes according to their
variance [Bourgon et al., 2010].

The data set contains 20 replicates for each condition. This is a
relatively large number of replicates for a gene expression study and
we used this to compare the effect of smaller sample sizes, between 5
and 15 replicates to the full data set. We first looked at the correla-
tions between the sample sizes using their ECDFs. Figure 4.1 shows
the ECDFs for the Pearson correlations of the samples, for the full
sample size of 20 and random subsets of the data containing 5,10 and
15 replicates.

Figure 4.1 shows a general reduction in the correlation values for 10
and 15 samples in comparison to 20 replicates, but the ECDFs show
similar distribution properties between these three sample sizes. For
the smallest sample size of 5 replicates, however, there is a noticeable
difference between the ECDF's indicating that there is potentially more
noise and error introduced at this level of replication in comparison
to the larger sample sizes that maintain the correlation structure but
with different nominal values.

A
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Figure 4.1: The lines are the
ECDFs of the Pearsons corre-
lations. The full data set com-

1.0

prising 20 replicates is shown
in black. The ECDFs of the
correlations for random subsets

of the data are also shown for 5,

0.5

10 and 15 replicates. This shows
how the overall pattern to the
distribution of the correlations is

correlation

similar for 10 and 15 replicates
but there is a large difference for

0.0

5 replicates indicating that this
is too few samples to estimate
correlations with.

0.2 0.4 0.6 0.8 1.0

quantile

As we wanted to estimate correlation matrices to be used with the
JGL algorithm it was also interesting to see how these correlations
behave within the block diagonal assumption of the JGL framework.
To do this we fitted the JGL model to the full data set and looked at
the rank correlation values for each gene pair. For all pairs at different
sample sizes the correlation ranks are plotted in Figure 4.2 a). For all
gene pairs, there was quite a lot of variability in their ranks between
the different sample sizes.

As we expected that many of these correlations are not significant
we further compared the ranks of the correlations that were found as
significant in the JGL model. We defined significance as those genes
contained within one block. Figure 4.2 b) shows the rank correla-
tions for gene pairs in one block. It can clearly be seen that there is
much less variation in the rank values for the different sample sizes in
comparison to the full data set.

To check that this is not due to the fact that we are looking at
genes that have been included in a block (and so may have higher
correlation values without meaningful structure) we also considered
the correlations between randomly selected genes in different blocks,
this is shown in Figure 4.2 ¢). Here we can see that there is greater
variation between genes in different blocks compared to genes within
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a)

b)

Plot of random correlations with different sample sizes

Figure 4.2: a) Randomly se-

g a2 o n el
T e e "':‘. ‘{ e lected correlation pairs for
z SRR . /"{ . different sample sizes. There is
1 &0 A clear variation, without obvious
P - - 1_"'..-:' fr). pattern, between the correla-
1 s - tions for each of the different
£ _jﬁ o ' sample sizes. b) After fitting
s — the JGL model to the data and

T T T T
o 20 40 60 80 100
gene pair

Correlations within one block

[ 10 20 30 40

gene pair

Random correlations within different blocks

gene pair

selecting a single block found by
the algorithm, the plot shows
correlations of genes inside this
block only for different sam-

ple sizes. The model was run
with Ay = 0.85 and A, = 0.05.
For correlations within a block
there is close agreement be-
tween the correlation ranks

for each sample size. However,
there is slightly more variation
with sample size 10 than 15.

¢) The JGL algorithm found
multiple blocks (of significantly
correlation genes) at the same
threshold level of Ay = 0.85.
The correlations between genes
within blocks show less variation
over different sample sizes as
opposed to those for all genes
(including those outside blocks).

the same block. This indicates that the block diagonal structure
creates groups of genes with strong correlation patterns as opposed to
simply higher than average correlations.

In combination, these results indicate that we may be able to share
information across correlation pairs to improve the estimation of
the correlation matrices. Before we introduce the empirical Bayes’
model used to estimate the correlation matrices we begin with a few
mathematical preliminaries.
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4.2 Mathematical preliminaries

Definition 1

A symmetric nxn matrix X is positive definite if for all nonzero
vectors a € Ry, a’ Xa is > 0

Definition 2

A nxn matrix X is positive semi definite if for all nonzero vectors
a€R,, alXais >0

Result 1

The covariance matrix ¥ of real random vectors (x) is positive semi
definite. By definition

% = E[(x — E(x))(x — E(x))7]

so for non zero vector a € R,

a’a = E[a" (x — E(x))(x — E(x))T4]
=E[ssT] >0 ,where s=a’(x—E(x))

This is > 0 as it is the square of two real vectors.

Result 2

A block diagonal matrix is positive definite if and only if (iff) each
of its block are positive definite.

Proof. Write a matrix X in block diagonal form:

B 0
0 C

Then for any non-zero column vector a € Ry,

X:

B 0

T
Xa =
a' Xa=[m aZ][O c

a1
az

For aTXa > 0 we have to have alTBal > 0 and a%Caz > 0 which
means that B and C have to be positive definite by definition given

a’Xa = a] Bay + a} Ca,

that aq,ap are both non zero real vectors. Conversely if B and C are
both positive definite then alTBal + azTCaz > 0 meaning a’ Xa > 0 and
therefore X is positive definite. O

Result 3
The sum of a positive definite matrix (z) and a positive semi defi-
nite matrix (S) is itself positive definite

Proof. If X is positive definite and Y is positive semi definite then for

any nonzero vectors a € R,
al'(X+Y)a=a"Xa+a"Ya>0asa’Xa>0and a’Ya >0 O

99
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4.8  Emprical Bayes model

WE USED AN EMPIRICAL BAYES APPROACH to infer covariances and
by simple extension correlations. The theoretical basis of this, using
conjugate priors is derived in [Champion, 2003]. In this paper, the
authors used either an independence prior or a flat prior with constant
correlation. Using a correlation based prior makes it easier to calculate
a combined value to give the value of the flat prior for the off diagonal
values of the matrix as they are standardised values. The adjusted
correlation matrix is later converted to a covariance matrix using the
estimated variances.

The model assumes that the data are from a multivariate normal
distribution. The theoretical covariance matrix for a multivariate nor-
mal distribution, X is positive definite, where the sample covariance
matrix is positive semi definite. These sample matrices are the approx-
imations of the theoretical matrices that are used in modelling and
parameter estimation.

Bayes theorem relates the posterior distribution of the parameters
given the data p(®|X) to the likelihood of the data p(X|©) and the
prior distribution of the parameters p(®)

p(O]X) « p(X|@)p(©)

If we assume the data X are multivariate normal data with sample
size n, covariance matrix X, mean y and number of variables (genes) p,

then the likelihood is proportional to

pX|O) o |2~ E exp{—2 (x — )5 (x — )

which we showed in section 3.5.2, for n i.i.d observations, can be
written as

p(X|0) o |5~ exp{— 5 (527}

Where S = Y7 (x; — ) (x; — )7, x; is the sample data and we
assume that the mean y is known. We wish to obtain a Bayesian
estimate for covariance matrix ¥ which we denote, 7. The conjugate
prior for estimating a covariance matrix (1) is an inverse Wishart
distribution with parameters (Az, A). The pdf for the inverse Wishart
is proportional to

p(©) ox [y (272 2 expl -~ tr(Azy )}

Where |7| is the determinant of the matrix 7. The mean is given by

% = z and the parameter A is related to the degrees of freedom v

by A = v — p — 1 [Champion, 2003]. To obtain the joint posterior
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distribution we multiply the likelihood p(X|®), by the prior p(@®).
Then the joint posterior distribution p(©|X) is proportional to

_ 1o _ 1,
p(OIX) o |~ exp{—5 tr(Sy ) LIy =D R exp{— 5 tr(y ' Az)}

P(OIX) ox [y 2P 2 exp [ tr(y (A2 4:5))

which is an inverse Wishart distribution with parameters (Az + S, A + n)
we then estimate 77, by 170 the expected value (mean) of the distribu-
tion

o Az+S
 A+n

As noted previously the sum of a positive definite matrix (z) and a

positive semi definite matrix (S) is itself positive definite. Therefore,
ideally z would be positive definite.

For z we use a block diagonal prior that is a combination of the in-
dependence and flat priors used by Champion et. al. Given a selected
user input correlation level (this is analogous to the shrinkage param-
eter in the JGL model), we set all elements below this threshold to
zero and use only the non-zero elements to estimate the constant value
of the correlations. This means the method will either shrink correla-
tions to zero or to the common mean value of all non-zero correlations.
This is consistent with the block diagonal structure assumed in the
JGL model and with our observation that we have multiple regulatory
processes that contain a subset of the genes.

4.8.1 Calculating hyperparameters

In empirical Bayes methods, we estimate both the hyperparameters A
and z from the data. This means the parameters are estimated using
the data rather than using a hierarchical model and assigning a prior
distribution to each of the parameters or by having to choose the
parameter values where little prior knowledge is available. In choosing
the matrix z we are looking for an appropriate prior matrix for the
covariance matrix 7.

Shrinkage methods are commonly used for improving the estimates
of covariance or correlation matrices. Particularly in cases where
n K p as is common in gene expression analysis, the sample sizes do
not meet the assumed n large condition. They also aid interpretation
by simplifying the model. For our purposes, we used the shrinkage
method to generate a block diagonal form for the correlation matrix,
consistent with the block diagonal assumption of the JGL model
[Danaher et al., 2014]. The correlation matrix is used to determine

101
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the elements in each block (before estimating the covariances for
these). This is simply for ease of selecting the shrinkage parameters in
[0,1]. First the sample correlation matrix is written in block diagonal
form for a given level of shrinkage. For data X let Ay be the sample
correlation matrix then for shrinkage level 6 we set all values of Ay <
0 = 0 and write Ay as:

556 0 0 0 O
0 6 0 0 0
0 0 6 0 0
0 0 0 4 O
0 0 0 0 &s

For each J block at a given level of 6 we extract the same elements
of the shrinkage sample covariance matrix. These will be a mixture of
zero elements (from the shrinkage) and the sample values. In this case,
we would use a mixture prior, so z has either value 7y or zero:

R e I e R R
o o ==
=
2 = oo
—_=2 =2 o=

7 is calculated from the average of the non-zero sample correlation
values. One potential disadvantage of this is that we cannot guaran-
tee that the prior matrix will be positive definite. This will depend
upon the exact form the matrix takes. Often in bioinformatic appli-
cations, informative priors are generated based on the knowledge of,
for example, transcription factors and their targets [Mukherjee and
Speed, 2008]. Although these priors usually improve the accuracy of
the inference, particularly in high dimension, they are similarly not
guaranteed to be positive definite. Therefore, these priors are usually
used with an MCMC algorithm, which does not specify a posterior
distribution that can be evaluated analytically and, therefore, does
not impose the positive definite constraint on the prior matrix that
using the conjugate inverse Wishart prior does. We therefore use
an alternative formulation where we assume a flat prior within each
block. This is likely to have the advantage of being a positive definite
matrix assuming there are no linear dependencies that would arise if,
for example, all the sample variances are equal, with perfect positive
correlation between them. For the flat prior z would take the form:

A
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L O A I
Yy 1 v v
Yy v 1 v o
O G G S
Yy v v v 1

Where 7 is a constant positive correlation; we perform the proce-
dure on the magnitude of the correlations, ignoring the sign of the
correlation. We assume that the true covariance matrix is block diag-
onal and our prior z as constructed above will also be block diagonal.
To meet the criteria that the prior matrix z is positive definite we note
that a block diagonal matrix is positive definite if and only if (iff) all
the blocks are positive definite. Therefore, by construction using the
flat prior within each block we create a positive definite block diag-
onal prior. In the above we have used a single and fixed and known
shrinkage level, 0. This is an equivalent assumption to the JGL model
and therefore this empirical Bayes method is consistent with the JGL
model, making it a suitable pre-processing step for the data that are
then used as input into the JGL model.

Given the current estimate of z we then calculate A using the
following approximation suggested by [Champion, 2003]:

.. [~12)2
E((pytn) — oyl =~ T 2

where p;j[y7] is the correlation based on 7. We approximate p;;[1] by
the sample correlations, and p;j[z] are the correlations based on z for
the selected value of 7. This result follows from the distribution of
the sample correlations pj; [7]. We now give details of the derivation of
this marginal distribution, the outline of which is given in [Champion,
2003]

Theorem 2 The marginal distribution of p;;[7] when 5 ~ IW(z, A)
is a Normal correlation (NC) distribution with parameters (p(z], A + 3).

Proof. The authors limit their attention to 2x2 matrices, as any
diagonal submatrix is similarly distributed. Therefore, the single
correlation po1[#] is abbreviated to p[y]. The pdf of 7 can be written
as:

‘/\Z| (A+3)/2)

_ AT (A+6) /2 1 1
P = ey exp{— trAzy~"}

First a change of variables 8 = 57!, the Jacobian for this is given as
18] ~3 therefore we have

|/\Z| (A+3)/2)

_ AT (A6 2 1 -3
p(0) 4711“(/\—0—2)'9‘ exp{ 2trAz€}.|9|
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which gives

|)tz](/\+3)/2)

1
=l 7 T pg|A/2 _ -
p(6) = 4nr(/\+2)|9| exp{ 2“)‘7‘9}

A second change of variables is used 6y; = —p[7]v/Bp0b11 with an
expansion of 0 to get the pdf in terms of p[y].

|0] = 600611 — 03, = Ooob11 — Boob11p[7]?

and

trAz0 = A(zpoboo + 211611 + 2201601) and the scaling change of
variables is v/0ppf11

this gives

\/\Z| (A+3)/2)

1
IAT(A 1 2) (00611 (1 — p[y]*)]"? exp{— 5 (Azooboo +Az11611 —2Azgp[17] V/000611) }-(v/Boob11)

Collecting terms so that we can separate out p[]

Az|(A+3)/2) 1 1
47r1|“()\ +2) o " exp{- 5A200900}98+1)/2 exp{—5Az11611} (1~ o) 2 exp{Azo10[17] /000611 }

To get the marginal distribution of p[y] integrate out 8pp and 617
using the power series representation of the exponentials, and gamma

functions F(n) = (1’1 — 1)!. Power series representation for an
Integrating w.r.t 6o first note that exponential is:
X = xi
. (Azo1p[1]v/Bo0b11)’ =L
exp{Azoip[n] /000611 } = ) ( P[’ﬂi' ) =0
i=0 :

Collecting terms only involving 69 and integrating we have

: 1
/ foo M2 exp{— 52\200900}11900

To evaluate this integral, we use a change of variables u = Azyy60gg

that gives dfyy = %Oodu, and note that if x ~ x2(k) then, f(x) =

1

mx(k/z)*le’x/z. Therefore we can write:

Atit1 1
/900 2 eXP{—E/\ZOOGOO}dGOO

1
exp{— 5/\200900}01900

: Atit1
2 F(W)/ (Az00000)
2A+21+31_,(/\+2i+3)

1
exp{— 5/\200900}01900

Substitute u = Azgg0oo, d0g0 = %Oodu:
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Atitl

(u) i exp{—%u}du

s
(/\ZOO) A+2i+1 /\ZOO 2)\+21+3 F( %)

And the term inside the integral is recognisable as the pdf of a
x2(k) distribution with k = A +i + 3 and therefore integrates to 1.
After the same calculation for integrating w.r.t 611

A+i43
2

: i A+3

- 5 soplu 2 PP el (0 ply2
+i+

— (AZZOOle) 2 47Tr(/\+2)

Collecting terms and rearranging:

o . A+3 .
_ 2T A—pln VR @Azopln)' M A+it3,
A+3 2

(A +2) =0 (A2200211) 7! (A2200711) 7

Recall that by definition p;;[1] = 1;;/\/Tiilj;> and z is a 2x2 matrix
with only one partial correlation ppp[z]. Further note that [Az| =
Az00z11 — /\22%1 then we have

_ 2 ply) 0 )T Coleloln)’ A +i+3

AT(A +2) L {( ¥

which is a normal correlation (NC) distribution NC(p[z], A + 3).
O

For a NC distribution » ~ NC(p, n). We note that
(n)(r —p) asymptotically distributed N(0, (1 — p?)?)
[Olkin and Pratt, 1958]. Therefore we have:
1-p[z]*)?
ot
((oln] = pl2])7) 113

this is the equation used to estimate A.

4.8.2  Simulated data

As mentioned above in comparison to the independence and flat prior
used by Champion et. al we used a block diagonal prior. Using this
form of prior we expect to improve the estimates as the prior better
matches the data set and we denote this model as EB. The work of
[Champion, 2003] used an independent prior that we label Indepen-
dent and the constant non-zero prior, Flat. We compared our results
with two other methods, one the Sample correlation matrix calculated
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as the Pearson’s correlation matrix, and the method of Schifer et al,
Corpcor. For the simulated data, we used the method of Hardin to
generate block diagonal matrices [Hardin et al., 2013]. We generated
100 samples for 50 genes with 5 different blocks. Correlations within
blocks are set to 0.85, this is a choice motivated by the observed cor-
relations in the previous chapter for the Bacillus subtilis data, that
showed fairly high correlation values as shown by our choice of shrink-
age value being above 0.9. We did this for three different sample sizes
of 10, 15 and 20. We estimated the correlation matrices and calculated
the average false and true positive rates and their standard deviations
over 100 simulations. All this is done for the EB method with four
different A values, including a very small A = 0.05 value that approx-
imates a Flat prior and A = 1 that is equivalent to an Independent
prior. The other two methods are the Pearson’s (Sample) correlation
matrix and the Corpcor method.

4.4 Results and Discussion

WITH SIMULATED DATA, the EB method had a lower false discovery
rate compared to the Pearson correlation and Corpcor methods. Fur-
ther, the standard deviation of the false discovery rate over different
simulations was similar or lower for the EB method, indicating an esti-
mation method that was at least as stable as the Pearson and Corpcor
estimates. Table 4.1 shows there are similar FDR across all sample
sizes: the largest differences are for the True positive rate (TPR) with
consistently higher TPR as the sample sizes increase. We can see that
using the block diagonal priors gives better result than the Flat or
Independent prior as would be expected given that we have simulated
block diagonal covariance matrices. The Corpcor method, which uses
a common correlation structure across all pairs, with relatively large
TPR rates, also results in a larger number of false positives. For all
but the Flat and Independent priors, the block diagonal and Corpcor
methods have the same TPR standard deviation (sd) that could be in-
dicative of the variability in the sample data as opposed to variability
in the estimation. Encouragingly however, the EB method has consis-
tently lower FDR rates than the Pearsons (Sample) matrix and the
same or lower sd, meaning that the use of the EB method has reduced
error rates and provides more stable estimates.

The results show that the block diagonal prior performs better
than the sample covariance matrix and the Corpcor method. Using
the block diagonal prior results in better estimates than the Flat
or Independent prior as would be expected. These results indicate
that we can improve both the false positive and true positive rate of

A
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A1 =08 A1 =005 A3 =1 Ay =0.8 Pearsons Corpcor
Flat Indep

n=10
FDR mean 0.04 0.05 0.03 0.04 0.07 0.26
FDR sd 0.04 0.05 0.03 0.05 0.05 0.12
TPR mean 0.88 0.82 0.80 0.89 0.89 0.89
TPR sd 0.11 0.23 0.16 0.11 0.11 0.11

n=15
FDR mean 0.05 0.06 0.05 0.06 0.08 0.34
FDR sd 0.05 0.06 0.05 0.05 0.06 0.16
TPR mean 0.97 0.92 0.95 0.98 0.97 0.97
TPR sd 0.10 0.24 0.16 0.10 0.10 0.10

n=20
FDR mean 0.06 0.07 0.05 0.06 0.08 0.33
FDR sd 0.05 0.05 0.04 0.05 0.05 0.14
TPR mean 0.99 0.97 0.98 0.99 0.99 0.98
TPR sd 0.11 0.20 0.19 0.11 0.11 0.11

estimating correlations that can then be used in downstream graphical

analysis. This is particularly important where the sample size is low as

may be expected in many experiments. Further, controlling the false

discovery rate is particularly useful when the network inferences are

used to drive experimental hypotheses, as we are interested in testing

only the links with highest possible value.

4.5 Implementation

The algorithm for the EB method has been written in the R program-
ming language and is available from the Bioconductor repository. The
algorithm described above is for the EBsingle function within the
covEB package:

http://bioconductor.org/packages/covEB/.
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Table 4.1: Simulation results
for the empirical Bayes method
with four different parameter
settings, compared to the Pear-
sons correlation matrix and
existing method Corpcor. The
values in the Table are the aver-
age false discovery rate (FDR),
true positive rate(TPR) over 100
simulations and the standard
deviation of these, for 50 genes
with three different sample
(replicate) sizes, 10, 15 and 20.
The EB method shows consis-
tently and significantly lower
FDR over the other methods
and overlapping TPR rates to
the Pearson and Corpcor meth-
ods. This indicates the increased
ability of this method to iden-
tify blocks or regulatory units
without artificially increasing
off-diagonal (or spurious) cor-
relations between unconnected
genes.
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Result: An empirical Bayes estimated covariance matrix, using
block diagonal prior

Input: Covariance Matrix, %

Input: Shrinkage threshold, 5

Input: Sample size, n

Output: Covariance matrix, EBcov

From the input covariance matrix (£) calculate the correlation
matrix (p)

Set all entries below input threshold (%) to zero

Calculate the block diagonal matrix

for Each block do
Calculate the average of the sample correlation in the block to

give the estimate of 7
end
Combine each of the flat block matrices together to create one
block diagonal prior
Calculate zcov, the prior covariance matrix using the prior
correlation matrix z and the sample variances
Estimate hyperparameter A, first calculate

Al —p::[21)2
= Bl el)?) 1 g A -

(1—p;jlz]?)? A+ G

n o if k2<0

Then we set A =
kl—z — 3 otherwise

if A <1 then

I A=1
end
Calculate the EB covariance matrix, EBcov= Mf\ciw

Algorithm 3: EB covariance matrix estimation
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Toxoplasma gondii and GGMs

5.1 Introduction

Toxoplasma gondii (T. gondii), a protozoan from the Apicomplexan
group, infects nearly a quarter of the adults world-wide causing birth
defects and perinatal deaths. It is an opportunistic pathogen which
infects hosts with compromised immune systems and caused 15%

of deaths in the AIDS epidemic. There are four different strains of
Tozoplasma gondii, types 1, II, ITI and type 12. Type I is most virulent
in mice, whilst type II mainly affects humans, type III livestock and
type 12 wild-animals. These different strains have different levels of
geographical prevalence and motility within the host. For example,
the type I strain has shown increased motility in comparison to type
IT under laboratory conditions [Harker et al., 2015]. T. gondii can
infect all warm-blooded animals through ingestion of cysts that are
shed from the definitive feline host. Once ingested the parasite can
travel to multiple tissues in the host creating a secondary infection.
Initially this means the parasite must pass through the intestinal wall
however, it is possible that the parasite has different mechanisms that
enable it to pass through different areas of the host to infect the blood,
brain and other tissues. The transmission to other areas of the host
causes a strong inflammatory response which influences the ability of
the parasite to infect the host [Harker et al., 2015].

The parasite exists in one of three stages, the cysts from the feline
host contain the sporozoite form of the parasite which are ingested
by the intermediate host. Once in the intestine they form cysts which
contain bradyzoites which in turn convert to tachyzoites that can
move between host barriers and infecting different tissues within the
host. Once the tachyzoite has migrated to a different tissue, they
convert back to bradiozytes. Therefore, the tachyzoite can be viewed
as the mobile version of the parasite that moves through the organism
to spread the infection and the bradyzoites within the tissues represent

Motility here refers to the ability of
the parasite to spread to and infect
other areas of the host.



110 INFERRING CONDITION-SPECIFIC REGULATORY NETWORKS WITH SMALL SAMPLE SIZES:

CASE STUDY IN BACILLUS SUBTILIS AND MUS MUSCULUS INFECTION BY THE PARASITE
TOXOPLASMA GONDII.

the chronic infection of the parasite [Dubey et al., 1998].

After invading the host cell the toxoplasma parasite forms a para-
sitophorous vacuole (PV) that surrounds and protects the parasite and
a PV membrane (PVM) that acts as a transport mechanism between
the parasites and the host cell [Muniz-Feliciano et al., 2013]. This
enables the parasite to gain essential nutrients for its survival from the
host[Laliberte and Carruthers, 2008]. A central mechanism by which
the T. gondii parasite effects the host signalling pathways are through
rhoptry proteins (ROP). Rhoptry proteins are secreted from the PV
and act as pseudokinases. The ROP proteins can subvert normal cellu-
lar signalling pathways[Kim and Weiss, 2008]. This is critical for the
parasite to be able to, for example, activate anti-apoptotic pathways
that could otherwise lead to cell (and thus parasite) death, or deacti-
vate pathways involved in the host’s inflammatory response [Hunter
and Sibley, 2012].

Analysis of T. gondii data has included the identification of dif-
ferentially expressed genes and proteins. One of the first papers to
elucidate the response of the host to toxoplasma ME49 was a genome-
wide microarray analysis over different time points between 1 and 24
hours after infection. This paper outlined the immediate inflamma-
tory response of the host and the later occurring changes to biological
processes including metabolism, transcriptional regulation and cell
signalling [Blader et al., 2001]. The activation of host metabolism has
been speculated to be essential for the survival of the parasite as it
ensures the survival of the host [Blader and Saeij, 2009].

Recently, Gene Set Enrichment Analysis (GSEA) has been ex-
panded to create specific gene sets on T. gondii for functional units
and processes within the cell cycle and the developmental program of
the toxoplasma parasite [Croken et al., 2014]. The authors combined
known gene set and annotations from sources such as KEGG and the
Gene ontology with analysis of existing microarray expression data
at, for example, different parts of the cell cycle. Together these data
sources were combined into gene sets annotated according to the dif-
ferent parts of the parasites cell cycle and developmental program. In
an example analysis, these gene sets were then used to identify the dif-
ferent processes present when comparing expression data for wild-type
and mutant parasites.

Ontological and pathway analysis has similarly been used to identify
differences between different strains of 7. gondii. Using differential
expression analysis of neuroepithelial cells infected with three different
strains of T. gondii, type I, IT and III, significant gene sets were
compared to existing ontologies and pathways. This analysis showed
different processes and pathways active for the different strains of T.
gondii. This is consistent with the observed difference in virulence
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between strains, showing different mechanisms by which the parasites
invade the host [Xiao et al., 2011]. Of the three strains, Type I strain
showed the most differential expression followed by Type III, with
the least change in Type II. The differentially expressed genes were
enriched in the central nervous system in the type I strain, nucleotide
metabolism for type III whilst they found no consistent results for
type II strain.

Advances have been made to infer regulatory networks in the para-
site based on microRNA (miRNA). Through computational analysis,
candidate miRNAs were established by comparison to the miRNAs
of other organisms, human and rodent. The candidate miRNAs were
further filtered by whether they were expressed in the parasite. The
hypothesis was that T. gondii may transport some of their miRNAs
into the host as part of the mechanism by which the parasite takes
over host function. This is due to the similarity of the hypothesised
miRNAs in the T. gondii and human and rodent hosts. It may also
give some indication of the effects of the transcriptional networks in
the host affected by the miRNAs assuming the targets of the miRNAs
in the host are known [Sagar et al., 2014]. Beyond this, little progress
has been made to create models of signalling and regulatory networks
for hosts infected with toxoplasma.

It is known that the immune or inflammatory response triggered
by the parasite invasion is like those caused by tumours. Arguably
investigation into how the parasite subverts host response may provide
insight into cancers[Lun et al., 2015]. To test this hypothesis, we used
RNA-seq data from mouse embryonic fibroblast cells infected with two
strains of toxoplasma. If the parasite caused responses in the host that
are also seen in cancer cells we expect to see commonality between the
biological processes active in parasite infected cells and cancer cells.

5.2  The Hallmarks of Cancer

In a landmark paper, Hanahan and Weinburg defined the hallmarks of
cancer as the physiological traits of cancers that subvert the defence
mechanisms of normal cells. These six hallmarks are 1) tissue invasion
or metastasis, 2) angiogenesis 3) limitless replication potential, 4) pro-
tection against cell death, 5) provision of growth signals and 6) evasion
of anti-growth signals [Hanahan and Weinberg, 2000]. The hallmarks
define the multiple mechanisms through which a single mutated cell
becomes cancer; the single cell typically divides and proliferates to
multiple cells that together form a tumour. This tumour may metasta-
sise or break through the basal membrane and form tumours in other
parts of the organism. To facilitate an increase in tumour mass and

the migration to different tissues within the organism, many tumours
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induce angiogenesis. Angiogenesis is the formation of blood vessels
which provides both oxygen and nutrients to support growth and
migration [Nishida et al., 2006]. To be able to continually divide and
replicate the cancer must have a mechanism for corrupting normal cell
cycle control, that is cell division, proliferation and death. Though
there are numerous ways in which cancers can subvert the normally
tight regulatory mechanisms, they are also finite in number, and this
has allowed the identification of important genes and pathways that
influence cancer progression.

If we first consider the cell cycle of a normal cell it is possible to
identify the ways in which cancer cells subvert the normal cell cy-
cle. Normal cells have limited replication potential: there are a finite
number of times that each may divide to produce further cells. In
addition, they respond to cues that tell them to replicate or induce
their own cell death. These three factors together control cell prolifer-
ation. Consequently, for cancer cells to grow to tumour masses, they
must be able to subvert the normal cell processes [Lun et al., 2015].
They can do this in multiple ways but common between all tumours is
that they divide continuously without the limitations of normal cells.
Additionally, they subvert the usual signalling mechanisms that direct
cell growth and death and so ensure their continued survival.

One mechanism of subversion is by the over-expression of oncogenes.
These (proto) oncogenes are capable of binding to growth receptors
that in turn initiate cell growth and do so independently of the normal
growth factors [Polsky and Cordon-Cardo, 2003]. This means the
cancer can activate cell growth without requiring the growth signals
from the healthy or normal cellular environment. In conjunction with
this the cancer must override the anti-proliferation signals from the
normal cell and the cell death signals to allow for their continued
division. Since the hallmarks of cancer were outlined in 2000 subse-
quent research has also identified extensive changes to metabolism that
occurs during tumourigenesis [Jose et al., 2011]. As a result, it has
been suggested that the six hallmarks of cancer should be extended to

include metabolic reprogramming.

5.8  Cancer metabolism

Metabolic pathways describe the organisation of the chemical pro-
cesses responsible for cellular respiration. Cellular respiration converts
carbon sources from food such as glucose and glutamine into Adeno-
sine triphosphate (ATP), the energy source for the cell. The overall
conversion of glucose to ATP is comprised of multiple chemical reac-
tions facilitated by different enzymes. Each of these chemical reactions
gives rise to intermediary molecules and by-products. Central to these
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metabolic processes are the gain and loss of electrons. The gain of
electrons (reduction) and the loss of electrons (oxidation) occurs over
multiple chemical reactions. For example, the oxidation of glucose
releases electrons that are passed to NAD™ converting it to NADH.
NAD™ and NADH are the oxidised and reduced forms of NAD respec-
tively. The conversion of NADH to O; through loss of electrons, in the
electron transport chain, results in energy release in the form of ATP.
NADH is one of the by-products of cellular respiration. As well as con-
tinuing the reaction to form ATP these intermediaries and by-products
can alternatively be used for biosynthesis; the conversion of energy
into amino-acids, fatty acids, glycerol and sugars all of which provide
the biomass required to create new cells. Therefore, the metabolic
processes can be either catabolic (breaking down food to ATP) or
anabolic (creating new biomass).

There are three metabolic pathways responsible for cellular respi-
ration, these are glycolysis, the tricarboxylic acid (TCA) cycle and
oxidative phosphorylation (OXPHOS). Metabolism of food for en-
ergy begins with glycolysis; the conversion of glucose to pyruvate that
also produces 2 molecules of ATP and 2 NADH. Glycolysis is a 10-
step chemical process that begins with the adding of a phosphate to
glucose by a Hexokinase. The end-product of glycolysis is Pyruvate,

a metabolic intermediary that in vertebrates can either be further
oxidised to acetyl-CoA through a pyruvate dehydrogenase (PDH)
complex or converted to lactate. The latter process does not require
oxygen, and is referred to as anaerobic metabolism. In contrast, the
oxidisation of pyruvate to acetyl-CoA is the linking step between
glycolysis and the TCA cycle. Acetyl-CoA is the input required to
the TCA and oxidative phosphorylation pathways which occur in the
mitochondria to produce ATP, this is referred to as aerobic respiration
[Tzameli, 2012].

In normal cells the selection of either aerobic or anaerobic metabolism
is determined by the presence of oxygen. Mitochondria are the pri-
mary area of energy production for normal non-proliferating cells in
the presence of oxygen as they are the most efficient at producing
ATP. Aerobic respiration produces up to 36 molecules of ATP com-
pared to the 2 molecules of ATP produced by anaerobic glycolysis. In
1923 Warburg found that in contrast to normal cells, cancer cells used
the less efficient glycolysis for generating energy even when oxygen was
present in the cell. Due to the presence of oxygen, the Warburg effect
is also known as ‘aerobic glycolysis’ [Koppenol et al., 2011]. Figure 5.1.

There is growing evidence that the Warburg effect may be caused
by tumour cells requiring biomass for cell proliferation. By comparing
the intermediaries and by-products of ‘aerobic glycolysis’ and the TCA
cycle and oxidative phosphorylation the commitment of glucose solely
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to ATP production runs counter to the needs of the cell to produce
lipids, amino acids and nucleotides for proliferation [Vander Heiden
et al., 2009]. For example, whilst OXPHOS can produce 36 molecules
of ATP to the 2 produced by glycolysis. Glycolysis produces more
carbon and NADH than OXPHOS, both of which are required for
biosynthesis.

An intermediary of the TCA cycle, citrate, can be oxidised for ATP
production in the mitochondria or transported out to the cytoplasm.
In the cytoplasm, citrate can be converted to acetyl-CoA and used for
lipid synthesis. The conversion of citrate to acetyl-CoA is through the
enzyme ATP-citrate lyase. In tumour cells, knockdown of ATP-citrate
lyase resulted in a reduction of cell proliferation. This effect occurred
in a glucose dependent manner; tumours with high levels of glucose
metabolism showed reduced proliferation following knockdown whilst
those with low levels of glucose metabolism were largely unaffected
[Hatzivassiliou et al., 2005]. These examples provide evidence that the
Warburg effect is the result of tumours cells manipulating metabolism
to support cell proliferation. Further, there are now numerous results
showing that the balance of aerobic glycolysis and oxidative phos-
phorylation depends on the properties of the tumour. Larger more
established tumours exhibited a relatively smaller utilisation of anaero-
bic glycolysis and an increase in oxidative phosphorylation [Jose et al.,
2011].

However, given that tumour cells have functioning mitochondria
and a dependence on the mitochondria for protein synthesis, it is
unlikely the sole reason for the Warburg effect is biosynthesis [De-
Berardinis et al., 2007]. A second, though not mutually exclusive
explanation for the Warburg effect is the regulation of reactive oxygen
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species (ROS) by aerobic glycolysis [Liberti and Locasale, 2016]. ROS
are produced in the mitochondria by the electron transport chain dur-
ing the conversion of intermediaries such as NADH to produce ATP
[Li et al., 2013b, Turrens, 2009]. An increase in glycolysis causes a de-
crease in the redox ratio of NADT /NADH. In normal cells, balance in
the redox ratio is restored by the mitochondria, a process that also re-
sults in ROS production [Chiarugi et al., 2012]. A high NAD"/NADH
ratio provides multiple benefits to the cell including promotion of DNA
repair, survival and biosynthesis. In tumour cells, increased rates of
glycolysis increase NADH levels and maintain glycolysis; influx of
NADH into the cytosol ultimately changes levels of ROS production
[Locasale and Cantley, 2011]. Maintaining the correct level of ROS in
the cell is critical for cell survival; ROS can promote cell proliferation
but excessive levels can cause cell death [Liou and Storz, 2010].

The Warburg effect can be viewed in part as a mechanism for
controlling the redox potential of the cell. The conversion of pyruvate
to lactate through lactate dehydrogenase (LDH) is an alternative
mechanism for converting NADH to NAD™ to redress the redox ratio.
This mechanism is used when the mitochondria is unable to maintain
the redox ratio in the cell which occurs at increased levels of NADH
from a higher rate of glycolysis in tumour cells. As well regulating
cellular metabolism, both NAD and ROS can also influence signalling
pathways through interaction with signalling proteins. Conversely,
many oncogenes and tumour suppressors that influence cell cycle
and cell death also influence metabolism and ROS levels in the cell
[Lévy and Bartosch, 2016]. Oncogenes including Akt and the tumour
suppressor p53 can interact with the mitochondrial membrane to
influence mitochondrial ATP and ROS production [Herrera-Cruz
and Simmen, 2017]. PI3K/AKT and its dependent MTOR pathway
have been shown to influence glycolysis and glutamine metabolism
[Csibi et al., 2013]. Master regulators of transcription HIF1 and Myc
regulate metabolic pathways [DeBerardinis et al., 2008], whilst HIF1
itself is activated by ROS. Whilst the metabolic state of the host is
critical for the survival of Tozoplasma gondii the metabolism of the
parasite is also important.

5.4 Metabolism in Tozxoplasma gondii

The metabolic properties of the parasite are important for survival dif-
ferences in the metabolic process of the parasites can explain, at least
in part, the differences in their virulence. Song et. al noted that whilst
the different strains of toxoplasma share common genome sequence
and predicted function the strains may differ in the pathways or ways
in which these metabolic enzymes are used [Song et al., 2013]. They
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predicted models for parasite metabolism and compared mRNA ex-
pression of metabolic enzymes between the ME49 and RH strains. The
results showed an up-regulation of enzymes involved in the TCA cycle,
glycolytic and pentose phosphate pathways in RH strain compared to
ME49. The metabolic models predicted increase growth for the more
virulent RH strain with a corresponding increase in ATP production.
This increase in ATP production may be explained by the increased
activity of the metabolic enzymes in RH compared to the ME49 strain.
Similarly, it has been shown that the parasite expresses two different
forms of lactate dehydrogenase (LDH) that convert pyruvate to lac-
tate. LDH isoforms varied according to differentiation state suggesting
different metabolic requirements of tacyhzoites and bradyzoites [Yang
and Parmley, 1997].

Human foreskin fibroblasts infected with ME49 showed differen-
tial gene expression analysis enriched for glycolysis but not TCA or
oxidative phosphorylation. The changes in gene expression required
the presence of the parasite in the host - secreted parasitic enzymes
were not sufficient to induce changes to host gene expression. The
results showed increased expression of the lactate dehydrogenase that
converts pyruvate to lactate during glycolysis, but no change in genes
involved in the TCA cycle or pentose phosphate pathway. Taken to-
gether these results showed that the ME49 parasite induces glycolysis
in the host [Blader et al., 2001]. It has also been shown that several
important nutrients including glucose and purine nucleotides, part of
the building blocks of nucleotide bases, cannot be synthesized by the
parasite and must be acquired from the host. Therefore, as well as
host survival and growth, the parasite may subvert host metabolism to
gain nutrients for proliferation [Blader and Saeij, 2009].

The parasite tachyzoites have similar metabolic mechanisms to their
mammalian hosts [Kloehn et al., 2016]. This includes enzymes that
catalyse glucose and glutamine in an internal TCA cycle within the
parasite. The existence of a TCA cycle in the toxoplasma parasite was
a surprising result because the parasite does not have the PDH com-
plex which is required to convert pyruvate to acetyl-CoA, the starting
point of the TCA cycle. However, studies identified an enzyme within
the parasite, branched chain alpha-keto amino acid dehydrogenase
(BCKDH) that takes the role of PDH in the parasite TCA cycle. The
inhibition of BCKDH or other TCA cycle enzymes resulted in a loss
of proliferation of the tachyzoites. Thus, highlighting the importance
of metabolism and the parasitic TCA cycle in the survival of T. gondii
[Kloehn et al., 2016].

The ability of toxoplasma to metabolise both glucose and glutamine
from its host helps to ensure its survival. The depletion of either
glucose or glutamine did not affect parasite growth or survival. Indi-
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cating that the parasite can switch from metabolising either source
in response to its availability in the host cell [Nitzsche et al., 2016].
Further, depletion of both glucose and glutamine resulted in only a
partial reduction of parasite growth suggesting that the parasite is
also able to metabolise amino acids or the less utilised carbon sources
such as acetate or fatty acids, for energy. Consistent with this it was
shown that the parasites’ sole glucose transporter TgGT1 is dispens-
able in RH tachyzoites. Loss of glucose in the host was compensated
for by an increase in glutamine uptake to ensure survival in the host,
though some growth defects are observed in TgGT1 knockout para-
sites. Motility was restored after supplementing growth media with
glutamine but not pyruvate, indicating a dependence on glycolysis but
not TCA cycle [Blume et al., 2009]. However, in later work Blume
et. al showed the toxoplasma enzyme FBPase2 (TgFBP2) is essen-
tial for parasite survival in the host. It was required in both glucose
replete and depleted states indicating it may also be involved in the
switching of metabolism to accommodate the availability of differ-
ent carbon sources. As a mechanism of action, it was proposed that
this enzyme may control the activity of parasite metabolic pathways
without requiring changes in transcriptional regulation [Blume et al.,
2015).

T. gondii has several advantages as a model system both within
the Apicomplexan group and in comparison, to other systems for mod-
elling intracellular parasitism and cancers. Of the parasites within the
Apicomplexan group, T. gondii has the highest transfection efficacy,
that is the introduction of the parasite or foreign DNA to eukaryotic
cells. It is also amenable to the addition of reporter constructs and
tags that are useful in experimentally probing and manipulating the
parasite and its interaction with the host [Kim and Weiss, 2004]. Re-
porter constructs can be used to follow the activity of, for example, a
gene in the parasite and how it interacts with the host.

We used the JGL model to analyse the regulatory networks of T.
gondii infected host cells. By using the JGL model we negated the
necessity of prior knowledge for inferring regulatory networks. We
inferred the regulatory network of the hosts infected with different
strains of the parasite. In this way, our focus was on the regulatory
networks impacted by the parasites and the differences between the
networks across two strains: ME49 (Type II) and RH (Type I). We
used the empirical Bayes method outlined in the previous chapter to
improve the estimates of the correlation matrices used as input to
the JGL model. By annotating the network using multiple existing
functional and disease ontologies we identified interesting connections
in our network and evaluated these interactions using existing publicly
available gene knockout genome wide expression data, where available.
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5.5 Results and Discussion

5.5.1 Ezxperimental data

THE RNA-SEQ DATA set contains samples from host mouse embry-
onic fibroblast (MEF) cells infected with two different Tozoplasma
gondii strains harvested at different time points, as well as control
samples of uninfected MEF cells harvested at the same time points.
The two strains used were RH, a type I strain and ME49 a type II
strain. These data were generated by Lalitha Sundaram a member of
the Ajioka lab in the Department of Pathology at the University of
Cambridge.

The data contains three biological replicates per condition, this
is not enough for input into the JGL algorithm. However, as the
samples are over multiple conditions for different strains, we can
combine conditions over each strain to give up to 12 replicates for
each of the ME49 and RH strains and 9 for the controls. There are
two experimental factors for each set of infected samples. The first
is multiplicity of infection (MOI) taking values of either 1.3 or 3.

The second factor is time, with cells harvested at either 24 or 43
hours, after infection. Three replicates at each of these four factor
combinations gives the 12 samples per strain. The control samples
are uninfected cells at 0, 24 and 43 hours with three replicates at each
time point.

By combining data to create three classes, ME49, RH and control,
we have multiple perturbations of the system and potentially enough
replicates to infer cell specific regulatory networks for mouse embry-
onic fibroblasts infected with different strains of Tozoplasma gondii.
Although combining samples results in less specific classes, that is, the
network results cannot be decomposed according to the time factors,
critically these three classes from combined experimental samples
can be input into the JGL algorithm. Using a joint model with this
data set is an appealing modelling choice here as it has the potential
to identify differences in the transcriptional response of the host to
different strains of Tozoplasma gondis.

5.5.2 Aligning RNA-seq reads

RNA-seq reads were aligned using STAR with the current mouse
annotation: the GRCm38/mm10 assembly of the mouse genome down-
loaded from http://hgdownload.cse.ucsc.edu/goldenPath/mm10/bigZips/.
As the data set for infected cells contains RNA from both the MEF
cells and the Tozoplasma gondii parasite we would like to account for
this in the alignment. There is a possibility that toxoplasma RNA-seq

Multiplicity of infection is the
ratio of Tozoplasma gondii parasites
to uninfected MEF cells.


http://hgdownload.cse.ucsc.edu/goldenPath/mm10/bigZips/

TOXOPLASMA GONDII AND GGMS

reads could align to the mouse genome or vice versa if they are aligned
to each genome separately. By creating a mock genome, comprising
both the mouse and T. gondii genomes, the alignment algorithm

can find the best single location for each read across both genomes.
For the ME49 strains the data were aligned to such a composite
genome containing both the mouse and ME49 strain Tozoplasma
gondii genome. The RH genome was used in conjunction with the
mouse genome but the annotation is currently incomplete and contains
annotations for only a very small number of genes. Meaning that there
were a greater number of unmapped reads for the RH data. There
were also potentially false positive matches for the mouse matches

if some of the RH Tozoplasma gondii reads mapped to the mouse
genome.

Currently the RH annotation on toxo.db contains fewer than 200
genes. Therefore, for comparison purposes we also aligned the RH
infected cells to a combined genome of Mus musculus and the GT1
strain of T. gondii. GT1 and RH are both type I strains of T. gondiz,
and the difference in the sequences of these two strains have been
analysed. Research identified 1,394 differences in the full genomic
sequence between RH and GT1 [Yang et al., 2013]. Although this
research sequenced the full genome for the RH strain, RNA-seq align-
ment requires for these genome sequences to be annotated with the
exon/gene information before they can be used in alignment programs.
The differences between these two genomes take the form of either
single nucleotide polymorphisms (SNPs) or insertions/deletions be-
tween the sequences, see Section 5.7.1. From an alignment perspective,
there are frequently mismatches between the RNA sequences and the
genome alignment and the alignment software is designed to allow
for a certain number of mismatches between the reads and target se-
quences. This makes it possible to use the GT1 genome in place of
RH despite the variation between them. Further, RNA-seq protocols
provide reads that are most often partial sequences of the full exonic
or gene sequences, with reads in the datasets here being 101 bases in
length. The nature of the fractional input reads is also accounted for
in alignment algorithms.

Altogether the above means that we expected appropriate align-
ment algorithms to be able to accommodate the single base pair
differences between the GT1 and RH genomes when aligning reads.
We used the STAR algorithm to align the RNA-seq reads to the joint
genomes using their respective annotations [Dobin et al., 2013]. The
STAR algorithm outputs read counts for the transcripts given in the
annotation file. These transcripts are exons for the mouse genome.
Therefore, we used the featureCounts functions in the R package Rsub-
read to combine the exon counts to counts for genes [Liao et al., 2014].
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We assessed the combined genome and mouse only genome testing
with the mouse only controls. The alignment of mouse only RNA
to the mouse genome and the combined mouse GT1 mock genome
showed good agreement, see Methods section 5.7 for more detailed
analysis.

5.5.8 Pre-processing the data

From the raw counts, there are multiple steps through which the data
are corrected for technical factors and transformed onto the continuous
scale so that it is suitable for input into the JGL model. The methods
for doing this are outlined in the next sections.

5.5.8.1 Selecting input genes through expression and variance fil-
ters

The total number of genes in the ENSEMBL annotation for Mus mus-
culus is over forty thousand, including protein genes, non-coding genes
and pseudogenes. In any one cell type such as embryonic fibroblasts, it
is expected that only a portion of these genes will be expressed. As a
result, it is common to filter datasets to exclude those that are unex-
pressed. We filtered the data to remove low counts per million (cpm)
per gene, leaving us with 13,279 genes. This also helped to reduce the
dimension of the space (size of p) that would otherwise be likely to
be prohibitive in calculating the inverse correlation matrix in the JGL
algorithm.

Following this we filtered the remaining genes according to the
overall variance of each of the genes. Using independent filtering can
increase the power of detection of following statistical tests [Bourgon
et al., 2010]. We removed those genes with low variance; the combi-
nation of low variance and high correlation between two genes is not
likely to be an informative relationship. We retained the top 60th
quantile of expressed genes according to their variance, this is consis-
tent with the suggestion in [Falcon and Gentleman, 2007] for using a
variance filter. Overall, we used stringent filtering of the data that left
5,312 genes for input into the JGL algorithm.

5.5.3.2  Positive semi definiteness of sample covariance matrices

One assumption of the JGL model is that the covariance matrix
should be positive semi definite. Because we are approximating the
covariance matrix by the sample covariances we may have a sampling
error that results in a matrix that is not positive semi definite [An-
derson and Gerbing, 1984, Knol and ten Berge, 1989]. To evaluate
whether the sample covariance matrix is positive definite or not we
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calculated the eigenvalues of the sample correlation matrices for the
ME49 and RH samples and the uninfected samples. We calculated
the correlation matrices as these were the input into the JGL model

- this standardisation of the covariance matrices will have no impact
on whether the eigenvalues are negative or not. The summary results
for these matrices are shown in Table 5.1. We can see that the mini-
mum value for the eigenvalues are negative, and technically this means
that these are not positive semi definite. However, we also note that
these are very small (close to zero values) and zero eigenvalues are
allowed in positive semi definite values. We could correct these eigen-

values to be zero[Vershynin, 2012, Higham, 2002, Bates and Maechler,

2017], however, this would have no impact on the output of the JGL
algorithm as the small eigenvalues are rounded out to zero in the
downstream calculations.

Strain Min. Mean | Max
ME49 -6.96e-12 1 2647
RH -8.35e-12 1 2666
Uninfected | -8.50e-12 1 2538

5.5.4  Initial Data analysis, parameter selection

For initial data analysis, we have shown in the previous Bacillus
subtilis analysis that the block structure of the correlation matrices
provides a lot of information on the computational tractability and
sparsity of the resulting networks. For example, since the algorithm
performs matrix inversion on each block separately, the maximum
block size (or number of genes in one block), acts as an upper bound
on the number of genes in one subnetwork. Similarly the summary

statistics of the block structure give the potential scope of the network;

the number of blocks tells us the number of potential subnetworks,
and the size of each of these gives the maximum number of genes
that can be connected in a subnetwork. Based on the analysis of the
block structure and shrinkage parameters, the values A1 = 0.905 and
Ay = 0.005 were selected, see Section 5.7.6 for details.

5.5.5 Network annotation analysis

FROM A BIOLOGICAL PERSPECTIVE we began by searching PubMed
for terms we expect to be associated with the genes in the network to

get an overview of the accuracy of the connections within the network.

As we know that the Tozoplasma gondii parasite can subvert the host
through similar methods to tumours, we searched for our genes and

Table 5.1: The eigenvalues for
the sample covariance matrices
are shown for the two different
strains. Although negative val-
ues are present these are very
small negative values, and such
close-to-zero valued eigenvalues
could be allowed in positive semi
definite matrices.

PubMed is an online database of
published peer reviewed articles.

The database can be searched using
keywords and phrases. Advanced
queries can also be made by searching
for terms in particular fields of the
database such as Author or Year as
well as combining search statements
using logical operators such as AND
or NOT.
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‘toxoplasma’ search term, and also the combination of gene name and
keyword ‘tumour’ as we expect this to be a more prevalent keyword in
PubMed due to a larger amount of research being conducted on cancer
as opposed to toxoplasma.

Gene names were used in a search on PubMed with the other
terms of interest. Searching for gene names and toxoplasma gave 61
out of 735 genes with more than one paper found on PubMed. The
maximum number of papers found for a single gene was 125 for the
dihydrofolate reductase gene (Dhfr). A search requiring a match to
both a gene name and tumour gave 619 out of 735 genes showing at
least one paper. Amongst the genes showing the highest number of
results were the oncogenes Jun and Vegfa, transcription factor Myc
as well as Hifla. This indicates that the results could be meaningful,
as the network contains genes previously associated with toxoplasma
and/or tumours in the literature.

The PubMed search treats all genes in the network individually. For
the network to be informative however the connections between the
genes must also be biologically meaningful. Although a lot of work has
been done to understand regulatory networks in mice, there is still no
resource that easily stores the experimentally validated transcriptional
links. The MGI database does however provide micro RNA (miRNA)
information for genes [Eppig et al., 2015]. By identifying genes that
are regulated by the same miRNA we can identify genes that may
be present in the same functional regulatory units. Although this
does not prove that two genes are in the same transcriptional unit,
it does provide evidence that supports the network result from a
biological perspective. Using the data on miRNA targets available
from MGI (the mouse genome informatics resource) we created an
interaction matrix that adds one to the edge score between two genes
each time two genes are found to be targets of the same miRNA.
Edges are given a weight according to the number of miRNAs they
share, consequently the network can be coloured with miRNA target
information. Although we found connections between genes with
shared miRNA regulators, the coverage of the miRNA is not complete
and is therefore limited in its ability to validate the network output.

Figure 5.2 shows the results of annotating the edges according to
their miRNA score. As expected there are large areas of orange edges
that represent zero miRNAs in common but also hubs of coloured
edges. This is a result we would expect to see as we know that miR-
NAs do not have single targets and genes acting under the same
regulators, either as transcription factors or miRNA should have sim-
ilar correlation profiles and potentially significant partial correlations
meaning that they would be connected in a JGL output.
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Figure 5.2: Overview of orig-
inal network with the edges

coloured according to the num-

Edgi :;ma ber of miRNA targets, taken
from MGI, in common between
w0 the two genes, as shown in
= the legend. Orange edges in-
30 dicate there are no miRNAs
10 in common. We see one large

subnetwork with hubs of colour
indicating we may have function-
ally related genes connected in

the network.
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5.5.6  Empirical Bayes, aiding interpretability

With a small number of replicates, we were interested in reducing

the number of false positives in the model. The empirical Bayes (EB)
method introduced in the previous chapter is used to calculate a
modified correlation matrix. The empirical Bayes method outputs a
correlation matrix that is passed into a modified version of the JGL
model. The empirical Bayes method similarly takes as input a shrink-
age parameter and we used the same value in the JGL model above,
that is, Ay = 0.905. This makes the results of the JGL algorithm with
the EB matrix comparable to those of the previous section as we used
the same initial shrinkage parameter to define the signal threshold in
the data.

5.5.6.1 Assessing the positive definiteness of the output matriz

The original covariance matrices for each experimental factor individu-
ally gave several small but negative eigenvalues. There were 2625, 2560
and 2617 small negative eigenvalues for ME49, RH and Uninfected
respectively. After recalculating the correlation matrices using the
empirical Bayes method, the ME49 matrix is positive definite, with no
zero values. The RH matrix has 38 negative values, the uninfected ma-
trix however, still has 2063. This could be another indication that the
initial correlation matrices for the uninfected samples are less reliable
than the infected samples. However, we still had confidence in using
the RH correlation matrix.

5.5.6.2 Comparing the original and EB JGL model output

The JGL model was run on the empirical Bayes estimated correlation
matrices for the ME49 and RH strains only. The empirical Bayes
method uses the same shrinkage value of A; = 0.905 as in the previous
section to define significant shrinkage values. Because the diagonal
prior has impacted the values of the correlations both within and
outside the defined blocks, the shrinkage parameters are altered ac-
cordingly to Ay = 0.895. The results found 791 genes as opposed

to 735 previously. We also note that of these 791 using the Feature
Type annotation from MGI we found 17 which had an annotation
other than protein coding gene and 2 were annotated as small non-
coding RNAs that could be miRNAs. We searched PubMed for these
791 genes and found 63 regarding ‘toxoplasma’ and 644 with search
term ‘tumour’. This suggests that the additional genes included in
the model using the EB matrices may be informative as opposed to
false positives as we retained similar percentages of genes around 8%
finding results with ‘Toxoplasma’ and 80% connecting with ‘tumour’.

A
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There was a reduction to 2252 from 2757 edges for the RH data
and this indicated a potential reduction in false positives: the network
contains more genes with fewer edges, the EB matrix has not reduced
the number of connected genes but has resulted in greater sparsity
between the nodes as there are overall fewer edges between genes. This
sparser network will be easier to navigate as there are fewer connec-
tions between genes. It may also help us to resolve the hierarchical
structure of the network and identify causal or direct links by remov-
ing false positive edges from our network. For example, a subnetwork
where we have an edge between each pair of genes cannot be written
as a hierarchical or causal network as all genes would be affecting each
other.

In contrast, the ME49 had a large increase in the number of edges
from 549 to 2431 which is a comparable number to those seen for
the RH strain. This suggests that there was a greater variability of
correlation values within the block structures for the ME49 strain com-
pared to the RH strain at the same shrinkage level and that using the
EB procedure has moved the smaller correlations towards an overall
mean that has resulted in more edges found in the model. Because
we changed the shrinkage level to 0.89 from 0.905 for use with the EB
correlation matrices, it is possible that this reduction in the shrinkage
parameter also increased the number of edges found for the ME49
strain. However, the maximum block size plots (Figure 5.27) for the
original data set support the argument that the highest correlations
have reduced variability for the EB estimates. This is because if we
had just reduced the shrinkage level to 0.89 using the original data
we would also have a maximum block size containing over 2000 genes
which is not the case using the EB matrix and shrinkage level 0.89.

The miRNA target information was also used to evaluate the
edges included in the EB model Figure 5.3, the network had non-
zero edges for 28 percent of the edges compared to 29 percent in
the original model. Given the increase in the number of genes and
large increase in the total number of edges this showed that the EB
method can identify additional interactions at a comparable level of
specificity. In comparison to Figure 5.2, the empirical Bayes method
in Figure 5.3 shows a second network of results with similar levels of
non-zero miRNA target edges. We also randomly perturbed the node
names in our network and calculated the number of genes sharing
miRNAs in these random networks with the same degree structure
as our network. We found the empirical p-values of observing the
number of edges between genes with shared miRNAs in our network or
more, by chance, was three percent. This indicates that the network
has a statistically significant number of genes with shared miRNAs
connected to each other.
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Since the empirical Bayes adjustment alters the correlation values
it does not make sense to compare the results with and without the
correction at the same shrinkage value. However, for both models
there were a similar number of total genes included in the model with
similar levels of information, as summarised by the PubMed searches
and miRNA interactions. Moreover, we can see that the EB model has
had the desired effect of enhancing the block diagonal structure of the
input correlation matrices. This is because on a comparable network
scale we now have two clear subnetworks (or blocks) from the EB
estimate as shown in Figure 5.3, where the original network Figure 5.2,
has one large block. Using the EB correlation matrices has resulted in
a sparser network that is easier to visually interpret.

We also compared the effect of the A1 values used in each case that
determine the block diagonal structure. This enabled us to assess the
false positive rates of the input correlation matrices, although not
the edges in the network output as these were the partial correlations
calculated by the JGL algorithm. To do this we calculated p-values
for the correlations and multiple hypothesis corrected them for each
of the four matrices (ME49 and RH with and without the empirical
Bayes correction). In this way we were able to establish a minimum
correlation (A7) or critical value that would give an FDR of 5%. These
values were, 0.73 for the original ME49 matrix, 0.69 for RH, 0.72 for
the EB ME49 matrix and 0.77 for the EB RH matrix. The increased
critical value for the RH strain from 0.69 to 0.77 showed that the EB
covariance matrix now has a higher proportion of values in the null
distribution. This implied a potential reduction in false positives when
the shrinkage values are greater than the critical values, as they were
in the parameter values we selected. Furthermore, our selection of A
values can be seen as prudent in all cases for determining the block
diagonal form of the correlation matrices, as they were all larger than
the critical values.

We also observed the impact of the EB estimates on the distribu-
tion of the p-values. The distribution of p-values arises from the same
hypothesis test being performed multiple times. We have performed
multiple hypothesis tests here for each correlation value between pairs
of genes. The distribution of p-values from multiple hypothesis testing
results in a mixture of values from the null and alternative distribu-
tions. In this case, the null hypothesis is that the correlations are not
significantly different from zero. The theoretical distribution of the
null p-values is Uniform [0,1]. Correlations that are significantly differ-
ent from zero are from the alternative distribution have low p-values.
This gives the peak at the left-hand side of the p-value histogram. The
proportion of the null to alternative distributions can be used to multi-
ple hypothesis correct the p-values [Pounds and Morris, 2003, Storey,
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2003].

We used these plots as a diagnostic to visualise the impact of the
EB estimates on the p-value distributions. The increased proportion
of the ME49 null distribution means that we expected a reduced false
positive rate. This is shown by the plots of the p-values for the ME49
distribution where Figure 5.4 clearly shows an increase in proportion
of p-values in the null distribution following the EB correction. A
similar though not as large effect is seen for the RH strain in Figure
5.5. The significance of these correlations determines the construction
of the block diagonal form. There is partial overlap between the
gene sets before and after the EB correction: 578 of the original 735
genes are also included in the 791 genes used by the JGL algorithm
for the EB correlation matrices. Following this, though the total
number of genes were comparable (735 vs 791), the JGL inference
found significantly more edges between the genes for the ME49 strain
using the EB input. This showed that the genes selected for the EB
estimates show more conditional dependence, and more likely causal
relationships. This is a stronger statement than being correlated. A
significant correlation between genes meant they were input into the
model. However, the small number of edges in the model showed that
many of these correlations did not also result in a causal relationship,
as the partial correlations calculated by the JGL model were not
significant.

A
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Figure 5.4: P-value plots for
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5.5.7 Evaluating the network

In the previous section analysis of the p-values for gene correlations
input into the JGL model showed a high level of significance. For the
model output we would also like to have a measure of the accuracy of
the network results. In comparison to the Bacillus subtilis analysis we
do not have the same transcriptional unit databases that can be used
to evaluate the network edges. Therefore, the selection frequencies

of the edges are used to provide an estimate of the accuracy of the
networks. These selection frequencies are calculated by inferring the
JGL network for each of the bootstrap samples using leave-one-out to
subset the data.

The selection frequencies for the edges in our network after boot-
strap sampling and for each of the strains individually are shown in
Figure 5.6. We see high selection frequencies for most of the edges for
the ME49 strain as indicated by the peak at the right end of the plot.
The RH network shows a more diverse distribution though there is still
a large proportion of maximal selection frequencies for the edges in the
network.
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(b) Selection frequencies for RH bootstrap
samples

Bootstrap samples are used to
estimate the robustness of estimated
parameters. The data set used to infer
the parameters are sub-setted and the
parameters re-estimated based on a
subset of data. This gives a confidence
interval for the parameter values.

Leave-one-out method for a data
set with n samples; each sample is
removed once and the estimate is
re-calculated using the remaining n-1
samples.

Figure 5.6: Selection frequencies
for the ME49 and RH bootstrap
samples for the edges in the

EB network. These sparse his-
tograms show that the number
of samples we have is likely

too small to fit a distribution
too. The distribution of these
bootstrap selection frequen-

cies should theoretically be a
U-shaped distribution.
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These plots are for the edges in our EB model only, and used the
same shrinkage parameter as the model based on the full data set.

As mentioned in earlier chapters bootstrap analysis may suffer from
the low sample sizes. In this network analysis, we had a maximum of
11 samples for the ME49 network and 12 for the RH network. The
Bootstrap Inference for Network COnstruction (BINCO) method uses
bootstrap samples and varying shrinkage parameters to calculate FDR
and select shrinkage parameters to maximise power [Li et al., 2013a].
However, this method only considers shrinkage parameters that result
in a reasonable mixture of edges from both the null (insignificant)
and significant set of edges. These shrinkage parameters are chosen as
those that result in a U-shaped distribution of selection frequencies.
This U-shape arises as a mixture of null edges that have a peak around
zero and rapidly decrease to 1, while conversely significant edges will
result in a peak around 1 and a left-tail of decreasing proportions
towards zero. Because we had used a stringent shrinkage parameter,
Figure 5.6 shows that, particularly for the ME49 strain we do not have
a U-shaped distribution and that most of these edges would be classed
as significant by this method.

To test this the shrinkage parameter was reduced to 0.88 from 0.895.
Figure 5.7 shows the selection frequencies with the smaller shrinkage
parameter in black points and those for the edges included in the
EB model with A; = 0.895 shown as purple points. For both strains
the proportion of edges with selection frequency 1 is larger for the
edges included in the EB model. In the work by Li et. al they found
a significant reduction in FDR using a threshold method to include
those edges with selection frequencies of at least 0.5. For the larger
bootstrap network with shrinkage parameter 0.88 the proportion of
the edges from our EB network that have a selection frequency of at
least 0.5 was 0.99 for both the RH and ME49 network. Increasing this
threshold to 0.8 the proportion of edges is 0.98 for the RH and 0.92 for
the ME49 strain. Taken together these results indicated a robustness
for the edges in our network. The same bootstrap analysis was also
run with the Pearson’s correlation matrix, in this case using the
original shrinkage parameter A; = 0.905 none of the edges found for
the full data set were found in any of the bootstrap samples. Further,
reducing the parameter value to A; = 0.89 no edges were found for
the RH strain and only one with selection frequency 0.45 for the
MEA49 strain. This showed how, with these low sample sizes, the
EB procedure resulted in more stable correlation matrix estimates
and leveraging the information from across the gene pairs enabled
us to identify patterns of correlations in the data. We did not use
the fitted models from the BINCO procedure as these continuous
approximations did not work well with our data set: the BINCO
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Figure 5.7: Selection frequen-
cies of edges in a model with
shrinkage parameter Ay = 0.88
for the ME49 and RH bootstrap
samples. The subset of edges

in the EB network. This shows
a large proportion of edges in-
cluded in the EB model for both
strains had a selection frequency
of 1. This indicates robustness
in the selection of edges in the
EB model.
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5.5.8 Annotating the network

TAKING THE JGL MODEL OUTPUT using the EB correlation
matrices as input we use a combination of known ontologies and
supporting experimental data to evaluate the network. From a global
perspective, we look for overrepresented biological ontologies in the
genes included in our network. For the edges between the nodes we
use publicly available experimental knockout (KO) data to provide
additional evidence to support, where possible, the interactions in
our network. In gene knockout experiments the organism is altered
so that the target gene is rendered inactive. In knockout experiments
the output for the knockout is compared to the output from a wild-
type. The wild-type is a control sample where the target gene is
unaltered and active as normal. By comparing, for example, genome-
wide expression for wild-type and knockout samples, it is possible to
identify the effect of the target gene and often form hypotheses about
its function. This is done by identifying those genes (with known
function) that show differential expression between the wild-type and
knockout samples. Where we have experimental data in MEF cells we
take this as stronger evidence than the global miRNA analysis from
the previous section. The coverage for the KO analysis was limited as
we required both KO experiments for genes in our network and, for
the knockout to have been performed within MEF cells.

5.5.8.1 Qwverrepresented terms

We took a systems biology approach, and integrate information from
additional sources to annotate the results. This gives us a wider un-
derstanding of results as well as giving a method to validate the model
and further highlight potentially novel results. Annotations were taken
from several different sources and for functional information we use
any Gene Ontology annotation available for each gene. From a vi-
sual perspective, it is difficult to identify areas of the network sharing
common ontology terms. This is because each gene will often have
multiple ontologies associated with it and therefore, while there may
be shared ontology terms between two genes, unless two genes share
the same Gene Ontology terms they will be coloured differently. A
better method to summarise the gene ontology information within
the network is to perform statistical tests to determine if there is an
overrepresentation of gene terms within the set of genes in the network.
This is analogous to testing for overrepresentation of Gene Ontology
terms within a list of differentially expressed genes.

Table 5.2 gives those GO terms that were found as being overrepre-
sented for the full network. There are many terms found, these include

A



cell adhesion

cell division
enzyme binding
lipid particle

lyase activity
protein complex
Golgi apparatus
plasma membrane
ligase activity
GTPase activity
histone binding
mRNA processing
ATPase activity
kinase activity
protein folding
nuclear envelope
catabolic process
protein targeting
nuclease activity
helicase activity
response to stress
embryo development
cell morphogenesis
peptidase activity
nuclear chromosome
isomerase activity
cell proliferation
vacuolar transport
protein maturation
signal transduction
cell-cell signaling

homeostatic process
ribosome biogenesis
extracellular space

cell differentiation
extracellular region
biosynthetic process
phosphatase activity
endoplasmic reticulum
immune system process
membrane organization
DNA metabolic process
chromosome segregation
tRNA metabolic process
oxidoreductase activity
transmembrane transport
lipid metabolic process
chromosome organization
developmental maturation
protein complex assembly
mitotic nuclear division
unfolded protein binding
enzyme regulator activity
cytoskeleton organization
mitochondrion organization
signal transducer activity
circulatory system process
vesicle-mediated transport
methyltransferase activity
cofactor metabolic process

cellular component assembly
nucleocytoplasmic transport
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Table 5.2: Table containing all
the significantly over represented
multiple hypothesis corrected
gene ontology terms at five per-
cent significance. These are for
a JGL network output with two
classes, the ME49 and RH Tox-
oplasma gondii infected samples
and empirical Bayes matrices.
Continued on next page.
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cell neurological system process

aging cytoskeletal protein binding

growth transcription factor binding

nucleus structural molecule activity

cytosol protein transporter activity

vacuole microtubule organizing center
endosome ubiquitin-like protein binding
lysosome carbohydrate metabolic process
ribosome macromolecular complex assembly
cytoplasm nucleotidyltransferase activity
organelle anatomical structure development
transport small molecule metabolic process
autophagy external encapsulating structure
nucleolus sulfur compound metabolic process
locomotion transmembrane transporter activity
cell death structural constituent of ribosome
cell cycle ribonucleoprotein complex assembly
chromosome cytoplasmic membrane-bounded vesicle

ion binding
nucleoplasm
DNA binding
RNA binding

cellular protein modification process

cellular amino acid metabolic process

cellular nitrogen compound metabolic process
hydrolase activity, acting on glycosyl bonds

translation protein binding transcription factor activity
cytoskeleton transferase activity, transferring acyl groups
reproduction generation of precursor metabolites and energy

mRNA binding
rRNA binding
intracellular
mitochondrion
cell motility
lipid binding

nucleobase-containing compound catabolic process

nucleic acid binding transcription factor activity

transferase activity, transferring glycosyl groups

symbiosis, encompassing mutualism through parasitism

anatomical structure formation involved in morphogenesis

hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds
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multiple cellular locations and different metabolic processes.

One very prevalent term we found is ‘cellular nitrogen compound
metabolic process’; involving 202 genes out of 791 in the network.
At over twenty percent of all the genes in our network this indicates
that nitrogen processes are an integral part of the host response to
parasite infection. This observation is supported by experimental
results on Type II parasite mutants that identified genes necessary
for the parasite to counteract the host production of reactive nitrogen
intermediaries, a process that is essential to enable the parasite to
replicate [Skariah et al., 2012].

Another valuable resource for globally assessing a network are
the KEGG pathway databases [Kanehisa et al., 2016]. Using this
information we tested for overrepresented pathways in the KEGG
database within our network. After testing using the hypergeometric
test and multiple hypothesis correction using Benjamini Hochberg we
found 11 pathways significantly over represented at the 5% significance
level, Table 5.3.
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KEGG Pathway (Reference Number) Adjusted p-value o
Glycolysis / Gluconeogenesis (00010) 0.02 Table 5.3: .Slgmﬁcant KEGG
Galactose metabolism (00052) 0.02 pathways in the network, ref-
Oxidative phosphorylation (00190) 0.01 erence number o.n the KEGG
Caffeine metabolism (00232) 0.00 database ShOWI.l in brackets.
Starch and sucrose metabolism (00500) 0.00 Ther.e are multiple Pathways
Butirosin and neomycin biosynthesis (00524) 0.00 relating to metabolism as may
Metabolic pathways (01100) 0.00 be expect'ed beczjmuse the para’srce
Ribosome biogenesis in eukaryotes (03008) 0.04 has to gain nutrients for survival
Spliceosome (03040) 0.04 from the host.
Parkinson’s disease (05012) 0.01
Huntington’s disease (05016) 0.02

From the KEGG analysis we found multiple pathways in metabolism,
including the general result for Metabolic pathways. The parasite-host
interaction involves interplay between the metabolic processes, en-
zymes and regulatory factors in both. The KEGG pathways include
Glycolysis/Gluconeogenesis and Oxidative phosphorylation, for the
host. These results showed consistency with the parasite metabolic
pathways identified from analysis of different toxoplasma strains [Song
et al., 2013] which included different strain metabolic responses in
both Glycolysis and Oxidative Phosphorylation. The results showed a
higher presence for genes in the OXPHOS pathways for the RH strain.
Regulation of OXPHOS is important for parasite survival; OXPHOS
produces ROS [Ray et al., 2012] and increased ROS in mice resulted in
complete resistance to toxoplasma infection [Arsenijevic et al., 2000].
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Figure 5.8: Enzymes involved

in the 10 steps of glycolysis
Glucose that were found in our network
are shown. The circles around
each gene indicate the strains
they were connected in and

the thickness of the line ins

proportional to the degree of
connectivity. Reaction that cre-
ates the by-product NADH are
shown.
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Figure 5.8 shows the genes involved in glycolysis reactions that were
present in our network. Of the 10 reactions in the glycolysis pathway
most of the genes encoding the enzymes for these reactions were in our
network. The rectangles around the gene show the strain each gene is
in. The thickness of the lines is proportional to the degree of the gene
in the network. The Hexokinases 1 and 2 were both highly connected
for both strains as was Enolase 2 (Eno2). Hk1 is strongly connected
in the network with edges present for both strains. Hk2 has more
connections than HkI. These include a mixture of edges assigned to
only one or both strains. Due to the high connectivity of Hk2 in our
network, connections to this gene are shown in two of our subnetworks
of interest shown later in Figures 5.9 and 5.13.

There are differences between the genes associated with glycoly-
sis for the two strains. The Pgm1 and Pgm2 are two enzymes that
catalyse one of the chemical reactions in the glycolysis pathway (from
3-phosphoglycerate to 2-phosphoglycerate). Pgm1 is connected in the
RH network and is more centrally connected with degree 4 connected
to both Myc and Jun. The connection between Jun and Myc for the
RH strain is shown in Figure 5.13. Pgm2 is in a small subnetwork of 4
genes (with P4ha2, Epm2a and Ugdh) for ME49 strain. Three of the
four are genes in are also involved in metabolism. The network con-
nections showed high level of glycolysis activity though the connection
of oxidative phosphorylation is less clear. We did not see a significant
result for the TCA cycle. However, given the significance of OXPHOS
for the RH strain this indicates regulation of aerobic respiration occurs
in the host infected with the RH strain.

Normal non-proliferating cells utilise aerobic respiration of glucose
or glutamine as their primary mechanism for ATP production. Our
results showed that the infection of the host by Toxoplasma may
induce additional metabolic pathways; the glycolysis/glucogenesis
genes Hk1, Hk2, Pgm1 and Pgm2 were also included in the starch and
sucrose metabolism. Further enrichment for the starch and sucrose
metabolism is shown by the inclusion of genes Gsub, Gys1, Gbel
in our network. It may be expected that these genes play a role in
regulating host metabolism in response to the parasite. The lactate
dehydrogenase (Ldhb) was present in the RH network but no Ldh
gene was found in the ME49 network. Ldhb is one of two isoforms
that encode lactate dehydrogenase which converts pyruvate to lactate.
There are five forms of the LDH proteins that consist of different
combination of the LDH-M and LDH-H subunits. The two genes
Ldha and Ldhb encode these two subunits. Of the five LDH forms
only one is comprised entirely of the LDH-H subunit, LDH-1. Though
all five LDH proteins have similar enzymatic activity, they differ in
their distribution within the organism. In humans, LDH-1 is primarily
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located in the heart and brain.

5.5.8.2  Supporting experimental evidence

Searching through the ArrayExpress database [Rustici et al., 2013]
for knockout (KO) experiments in the MEF cell line resulted in 24
experiments that were either microarray or RNA-seq datasets. One of
these was a knockout of the zinc finger protein Zfp36 that is present in
our network. This dataset (ArrayExpress accession number GSE5324)
compared wild-type (WT) and KO data at different time points after
treatment with actinomycin D with 5 biological replicates for each.
Differential expression analysis was used to investigate supporting
evidence to the interactions in our network. The strongest binding re-
action found in the paper published by the authors that generated the
data set, was with the Immediate Early Response 3 gene (Ierd) that
is also present in our network and connected to Zfp36 through the
genes Rhbdd1, Bhihe40, Nars, Gjal and Maff [Lai et al., 2006]. The
differential expression data was calculated using the Geo2R analysis
tool [Barrett et al., 2013b] to compare the wild-type and knockout
data at 120 minutes as this is the longest time point available and
therefore most comparable with our dataset.

The differential expression data were searched for those genes
connected to Zfp36 in the network as well as those connected to
Ier3. We found multiple connections in our network that were also
significantly differentially expressed in the Zfp36 KO data in MEF
cells. Plotting those genes connected to either Zfp36 or Ier3 with
nodes sized according to their adjusted p-values, shown in Figure 5.9.
In total 21 out of the 42 genes connected to either Zfp36 or Ier3 are
significantly differentially expressed. Figure 5.9 shows two coloured
hubs from Zfp36 and Ier3 as expected. Those nodes coloured green
are significantly differentially expressed at the 5% level. The top
10 genes by differential expression to Zfp36 directly connected in
our network are Ptgs2, Rbbp8, 3110043021Rik, Rndl, Rusc2, Gjal,
Herpudl, Nars, Maff and Ghitm.

The combination of the knockout information with the conditional
dependencies found in our network together gives a strong indication
that these connections are direct regulatory interactions. The graphi-
cal results showed that the correlation between those genes connected
to Zfp36 and Ier3 cannot be explained by any other gene included in
our network. As we only included a subset of the genes in our network
the KO data for Zfp36 shows that there is also a direct connection
between the activity of Zfp36 and those significantly differentially
expressed genes connected to it.
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Figure 5.9: The green nodes
show multiple genes that are
connected to either Zfp36 or
Ier3 in our network and that
were also found as differen-

tially expressed in the Zfp36
KO experiment. Nodes are

sized according to the adjusted
-log(p-value) of the differential
expression, therefore the larger
the node the more significant
the differential expression.
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5.5.9 Functional and disease Networks

The question remains how to generate testable hypotheses from our
data set. Although we are globally able to identify known interactions
and overrepresented functional terms, this does little to direct the re-
searcher to the higher value targets or potentially interesting and novel
connections. It is possible to visually interrogate the full network,
though the complexity of the model makes this difficult. Therefore, we
aimed to identify first sub networks of interest that can be reasonably
assessed by a researcher.

5.5.9.1 Functional networks

The hypergeometric tests used to identify overrepresented terms in
the previous section are calculated based on those genes present in
the network but this does not account for the structure of the net-
work. Therefore we combined the results from the hypergeometric
tests summarised in Table 5.2 with the network results from the JGL
algorithm. In this way, we moved from topological to functional or
disease networks by extracting subnetworks of genes sharing ontologi-
cal terms. This may also help to identify differences between the two
T. gondii strains as we focus on subsets of the network. Visually the
network output is still difficult to interpret with hundreds of genes in
the largest of these. However, this approach allowed us easily to see
any smaller networks of functional units and differences between the
ME49 and RH strains. We only considered genes that are connected
in a subnetwork containing at least three genes, to ensure that we
used the information given by the network structure, which we did not
have for unconnected nodes. In the following outputs, pink edges are
for those edges present in the RH strain, turquoise in ME49 and blue
edges for those present in both strains. As there are many significant
ontology terms found in the network, over one hundred, we focused
on those terms that are classified as biological processes as opposed to
cellular locations or molecular functions.

We found that there were connected nodes under the two different
conditions that are all ribosome biogenesis genes. These are not all
the genes that are associated with this term but we focused on those
that are connected as these give us potential functional networks (of
connected nodes with a shared functional annotation) as opposed to
single unconnected genes. For Ribosome biogenesis, Figure 5.10 there
are multiple nucleolar protein (nol, nop) genes. These are connected in
many cases for both strains of toxoplasma.

A
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Figure 5.10: Ribosome Biogene-
sis subnetwork, that shows that
genes with this Gene Ontology
are present in both the ME49
(turquoise), RH strain (pink)
and multiple genes connected
under both strains (blue).

Figure 5.11: Cell Motility net-
(JX works that are present for both

the ME49 and RH strain. This
shows higher connectivity for
Vegfa in the RH strain and for
Fyn in the MEA49 strain.

hactrd
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As we know that an important part of the toxoplasma pathology
is its ability to cross multiple cell and tissue barriers we looked at
the Cell motility ontology network, Figure 5.11. There are several
genes whose importance in 7. gondii infection is well documented,
these include Vegfa and Hifla which are connected in both the ME49
and RH strains. Though we note that the Vegfa gene has higher
connectivity for the RH strain and the proto-oncogene Fyn is similarly
more connected in the ME49 cell motility network.

5.5.9.2 Disease networks

We similarly annotated the results with information from the Dis-
ease Ontology (DO) [Schriml et al., 2012]. As the disease ontology

is based on human diseases and genes, here we assumed a certain
level of homology of function between the same gene in different
organisms and that these functions may be dis-regulated by the dis-
ease with which they are associated. The Disease Ontology uses
geneRIF annotations to derive the mapping between genes and dis-
eases http://www.ncbi.nlm.nih.gov/gene/about-generif. By annotat-
ing the network with the DO we are able to identify genes that have
been associated with a disease. The coverage of the DO is not com-
plete across the genome for our 791 genes: 200 genes have at least one
disease associated with them, and many of them have more than one.
There were 292 disease terms found within the genes of our network
in total. From this information, we identified those disease terms that
were attached to at least 10 genes in our network. This gave 16 dis-
eases as shown in Table 5.4, which also shows there are substantially
more genes associated with Cancer and its specialised subsets than the
other diseases.

Given the relatively large number of annotation with Cancer term
shown in Table 5.4 we focus on annotating the network according
to this ontology term. As an overview, we first considered the full
network of 791 genes. From this we saw that the network hubs contain
the majority of the genes associated with cancer: these are nodes that
are coloured green Figure 5.12. From here we extracted the 63 genes
that are associated with cancer and those edges between them.

We created subnetworks associated with the cancer terms by ex-
tracting the inferred network from the JGL algorithm for only those
genes annotated with the selected cancer term. Creating subnetworks
of these cancer term genes we saw that there were three connected sub-
networks within the larger hubs, Figure 5.13. Two of the genes within
these subnetworks are known master regulators Myc [Dang, 2013]
and Ras Homolog Family Member C (Rhoc) [Rajalingam et al., 2007]
which are at the top of the hierarchical subnetworks. This is consistent

geneRIF: a concise annotation
associating a gene with a function.
geneRIF entries are required to

be short and with an associated
publication that details the functional
annotation, thus ensuring the quality
of the disease relationship.
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Disease Number genes

Table 5.4: Disease terms present

Atherosclerosis 16
Breast cancer 30 in the Toxoplasma gondii net-
Cancer 63 work, showing the number of
Colon cancer 15 genes associated with each term.
Diabetes mellitus 20 This is shown for only those
Embryoma 16 disease terms with at least 10
Endometriosis 11 genes associated with them.
Heart failure 11
Leukemia 15
Liver cancer 12
Lung cancer 12
Obesity 11
Polyarthritis 13
Prostate cancer 17
Rheumatoid arthritis 19
Schizophrenia 10

with these genes having a higher degree (number of connections) to
other genes, being central to the regulatory response of the host to
toxoplasma infection. We also saw ligands to well-known inflammatory
pathways: EGFR, ereg, and members of the Akt pathway, Akt3 as
well as previously noted genes, transcription factor Jun, growth factor
Vegfa and signalling kinase Jak2.
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To highlight the benefit of network inference over differential ex-
pression analysis, we identified interesting genes from our highly
interconnected Cancer network Figure 5.13. The network view allowed
us to select central nodes that are shown by the inference to be inte-
gral parts of the host response. These central genes have high edge
degree and in contrast to the many other genes that are connected on
the periphery of the network. Central genes are expected to have a
more influential role the host response. The second advantage of the
network view is that we could identify pathway mechanisms. Pathways
can be represented by identified edges between genes and therefore
cannot be identified through lists of differential expressions alone.
Similarly, novel pathway connections cannot be hypothesised from
ontological over representation of known gene sets.

5.5.9.8  Tribbles pseudokinase-3 (Trib3), a tumour repressor

From Figure 5.13 we can clearly see that Trib3 is highly connected
particularly for the ME49 strain, this makes it a potentially interesting
gene within this subnetwork as it may provide insight into the different
mechanisms between the parasite strains. Although Trib3 does not
appear to have been researched with respect to toxoplasma it has
been associated with malaria infection [Albuquerque et al., 2009].
Interestingly although 7rib3 was consistently shown as differentially
expressed over multiple time points of infection, the authors note

Figure 5.12: The EB network
with edges coloured according to
the classes they are present in.
The size and colour of the nodes
is also mapped according to
whether or not the genes is one
of the 63 genes associated with
cancer in the disease ontology.
These 63 genes are shown as
larger green nodes.
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Figure 5.13: Subnetwork con-
taining of genes associated with
cancer. Turquoise for edges only
in the ME49 strain, pink for
edges only in the RH strain and
blue for edges found in both
strains.
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that they were not able to identify a pathway mechanism from the
list of differentially expressed genes. This highlights the difficultly in
generating hypotheses of novel pathways from lists of differentially
expressed genes.

Analysis of Trib3 Knockouts in mice has shown that Trib3 acts as
a tumour repressor through AKT and the inactivation of the FOX03
transcription factor [Salazar et al., 2015]. The paper by Salazar et. al
included microarray analysis comparing wild type (WT) and Trib3
Knockouts in MEF cells. As the cell type is the same as for our
dataset we looked for supporting differential expression data for the
connections found in our network. The paper identified the importance
of Trib3, Akt and Foxo3 therefore, we concentrated on these three
genes and those genes that are connected to them in our network. The
available data in ArrayExpress contains expression for 20,883 Illumina
probes. When converting to gene names not all our genes were present
in the data downloaded from ArrayExpress. Of those that were, 34
connections were significantly differentially expressed between the
wild-type and Trib3 KO at the 5% level and 17 were not. We show
the network for Trib3, Akt3 and Fozo8 (highlighted as yellow nodes)
and all genes connected directly to them in Figure 5.14. We sized
the nodes in the network according to the adjusted p-value of their
differential expression between Trib3 Knockout (KO) and WT MEF
cells. The nodes are also coloured in either purple or green, those
with adjusted p-values below 5% are green, those above in purple. In
this case, we do not use the hierarchical layout for the graph because
with a large number of nodes the network image physically takes up
more space and makes it hard to read, whereas a dynamic network in
Cytoscape can be interactively navigated.

The direct edge between Trib3 and Akt3 and many of the connec-
tions around Trib3 and Akt3 in Figure 5.13 are turquoise: this shows
that these edges were found in the ME49 network alone. As we showed
earlier, using the EB method had the most noticeable effect on the
summary results of the network. We therefore checked the connection
of these genes in the network model using the original correlation
matrix. Without using the EB correction 7rib3 is only connected to
two genes in the whole network (Pomgntl and Relll) whilst Akt3 is
only connected to Nifk, Rbms1 and Fndc3a. This shows that the EB
method has enabled us to find interesting connections not identified
from the original analysis.
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Figure 5.14: Example subnet-

work of genes connected to
Trib3, Akt3 or Foxo3. Node size
is determined by the adjusted

p-value of the nodes differential
expression in WT and Trib3 KO
MEF cells. The nodes are also
coloured according to whether
or not their differential expres-
sion is significant at the five

percent level. Nodes that are sig-
nificantly differentially expressed
are coloured green those that
are not are coloured purple.
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5.5.9.4 C(Cdknla

As well as Trib3, Figure 5.13 shows a relatively high number of connec-
tions in the network for gene CdkIna. This gene codes the protein P21,
a known inhibitor of cyclin-dependent kinases (CDK) 1 and 2. P21 is
a regulator of the cell cycle, and can restrict cell growth [Abbas and
Dutta, 2009]. Whilst its activity is well known to be regulated by the
tumour suppressor P53 [Anttila et al., 1999], it is also present in other
signalling pathways including the ERBB signalling pathway. Figure
5.15 shows part of this pathway from KEGG with a part of it selected
and enlarged as shown by the blue box. In this highlighted section, we
see P21, as well as PI3BK-AKT signalling [Lu et al., 2006], and consis-
tent with this, in our network CdkIna is connected to Akt3. Further,
the protein encoded by ereg in our network is a ligand to the EGFR
and ERBB4 receptor, the latter of these being another member of the
highlighted ERBB signalling pathway. The part of the KEGG pathway
including ERBB4 is similarly activated by ERBB2, a close homolog
of ereg. Further in the second KEGG pathway we have highlighted
we can see that Myc another gene in the connected cancer term sub-
network can also be regulated by ERBB2. Although we were unable
to identify suitable knockout experiments to verify these connections,
taken together the gene descriptors and pathways information from
KEGG provided some insight into the potential activity of the ERBB
signalling pathway in the host response to toxoplasma. A subsequent
literature search confirmed that the closely related EGF pathway has
been shown to be recruited and activated by the parasite to prevent
its relocation to the lysosome where the parasite can be destroyed
[Muniz-Feliciano et al., 2013].

A
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5.5.9.5 G protein coupled receptor, Class ¢, 5a, (Gpreba): a role
in T. gondii infection?

At the other end of the network we see Gprcda, shown in Figure 5.13,
connected in this sub network to Cdknia. Gprcba has recently been
associated with multiple diseases including carcinomas in several
different tissues and chronic obstructive pulmonary disease, though
its mechanisms are relatively unknown [Zhou and Rigoutsos, 2014].
The paper by Zhou et. al reported potential transcription factor
binding sites for Gprcda identified by the ENCODE project using

the recognition sequence for Gprcba compared to the transcription
factor database predictions of JASPAR. Sites were identified for the
following genes: Jun/Fos, Bracl, Jun, Myc/Maz, p53, Crebl, Fos and
Rar/RzR with multiple potential binding sites for some of these genes.
We identified those genes connected directly to Gprcda in our network,
Figure 5.16. By comparing our network result to the known binding
sites, we saw a connection to one of the four members of the Fos
family, Fosll. A search of the remaining network for Fos found that it
is also connected to Gprcda through Aldh1l2. Fosb also shares edges
with Gpreba between 8 genes, (Rhbddl1, Setx, Tuftl, Ghitm, Socs3,
Maff, Cdknla, Hbegf). This suggests that response to toxoplasma
infection in MEF cells may involve activation of Gprcda through Fos
binding. This is highlighted by the increased connectivity between
Gpreba and the Fos family of genes in our network in comparison to,
for example, Myc and Jun that are also both present in the network.
Previous research has also shown that Gprcda knockout mice results
in Stat3 activation, and GprcSa knockout mice are more resistant to
apoptosis, consistent with Gprcda having a role in tumour suppression
[Deng et al., 2010]. Furthermore it has been shown that the tumour
suppressor effects of Gpresa are due to Stat3 repression, which is
modulated through Socs3 [Chen et al., 2010]. Consistent with this,
we found (Figure 5.16) that Gprcba is directly connected to Socs3

in our network. We can also see from Figure 5.16 that the interplay
between these genes, and all those directly connected to Gprcda are
present in the RH strain. There are a few blue edges that indicate
the interaction is present in both the ME49 and RH networks but the
Gpreba subnetwork seems to be a host response primarily to the RH
strain.

A
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Figure 5.16: Example subnet-
work containing genes connected
to Gprc5a a G protein receptor
associated with cancer. Interest-
ing connections are to Fosll a
member of the Fos family and
Socs3. The pink edges indicate
an interaction following infection
by the RH strain. Blue edges
represent a few connections

Sic20a ”‘ /‘j‘ﬁ"‘ i‘ozé‘a‘i present for both the ME49 and
i§g"'/y/’§§g RH strains.

5.6 Conclusions

The genes found in our networks show enrichment for biological pro-
cesses relating to the six hallmarks of cancer, supporting our hypoth-
esis that the T. gondii parasite behaves as tumour cells [Lun et al.,
2015]. By combining existing annotations with the data driven JGL
analysis we could identify known and novel genes and functions. From
the Disease Ontology, we found significant over representation for
cancer disease within our network. Given that cancer is widely studied,
more so than toxoplasma it is not surprising there are more anno-
tations for cancer than toxoplasma. We used existing knowledge on
tumour progression to find supporting evidence for our hypothesis that
the parasite behaves as a cancer in our network. Further prior knowl-
edge on the physical interaction of proteins in other model systems can
be used as supporting evidence for the connections in our network.

We found multiple significant Gene Ontology terms relating to
the cell cycle, including cell proliferation and cell differentiation,
consistent with the six hallmarks of cancer. From our list of significant
Gene Ontology terms there are cellular components, mitochondrion
and ribosome with associated biological processes mitochondrion
organization, ribosome biogenesis and ribonucleoprotein complex
assembly. It is known that, as well as disrupting the normal cell cycle
regulation, oncogenes also increase ribosome biogenesis [van Sluis and



154 INFERRING CONDITION-SPECIFIC REGULATORY NETWORKS WITH SMALL SAMPLE SIZES:

CASE STUDY IN BACILLUS SUBTILIS AND MUS MUSCULUS INFECTION BY THE PARASITE
TOXOPLASMA GONDII.

McStay, 2014]. Ribosome biogenesis refers to the biological process of
creating ribosomes, the machinery responsible for translating mRNA
into protein. Therefore, ribosome biogenesis is strongly linked to

cell cycle processes, without ribosomes to translate mRNA, proteins
would not be produced and cell division would not be possible. The
increased transcription of ribosome DNA (rDNA) in the nucleoli,
results in structurally modified nucleoli, and these visual differences
between normal and cancer cells have been used to predict clinical
outcomes in cancer patients. Moreover, the discovery that existing
cancer drugs can inhibit ribosome biogenesis, though this was not
their original purpose, has led to the specific development of cancer
therapies designed to down-regulate ribosome biogenesis. Some of
these studies have shown promising results, being able to selectively
target TDNA while restricting off-target DNA damage [van Sluis and
McStay, 2014]. Associated with this, we observe significant Gene
Ontology terms for genes involved in anatomical structure formation
involved in morphogenesis, the determination of shape.

From the network results, Vegfa (vascular endothelial growth factor-
a) a pro-angiogenic factor is shown as a centrally connected gene
in the cell motility subnetwork extracted from our network. This
would be expected given its importance in angiogenesis, a hallmark of
cancer, and the well-documented role of VEGFa in T. gondii infection.
In terms of pathways we saw enrichment for multiple inflammatory
pathways which would be expected as we know toxoplasma causes a
strong inflammatory response in the host [Miller et al., 2009b].

Nitrogen metabolic processes that produce ROS also appeared in
the gene ontology of multiple genes in the network. Previous work
has identified proteins within the parasite that enable T. gondii to
subvert the reactive nitrogen intermediates produced by the host in
response to infection [Skariah et al., 2012] that can otherwise kill
the tachyzoite form of the parasite by restricting the availability of
mitochondrial and nuclear enzymes that are essential to the parasite.
The difference between correlation and causation for ROS is however
currently unclear [Gasparre et al., 2013, Chatterjee et al., 2011]. Nitric
oxide a prevalent reactive nitrogen species intermediary acts together
with ROS to damage cells. Nitric oxide can activate Hypoxia Inducible
Factor 1a (HIF1a) under normal oxygen conditions. The increased
accumulation of HIF1a resulted in an increase in expression of HIF1«
targets [Spear et al., 2006].

HIF1a is a well-known regulator of the inflammatory response,
particularly the stress response to reduced oxygen in the cells. It is
also a known contributor both to cancer and toxoplasma progression
it was present in our network and has appeared in many of the se-
lected subnetworks indicating its importance in the host response

A
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to toxoplasma infection [Nizet and Johnson, 2009]. As a transcrip-
tional regulator, pathways involved in the HIF1a response include
metabolism [Vander Heiden et al., 2009], cell differentiation and cell
death [Nizet and Johnson, 2009]. Therefore, the presence of Hifla
in our network presents several potential mechanisms of action in 7.
gondii infection.

The analysis of KEGG pathways in our network showed a clear
enrichment of metabolic processes including glycolysis and oxidative
phosphorylation. Therefore, where transcriptional regulators such
as HIF1a are associated with multiple pathways, our results suggest
that its role in 7. gondii infection is metabolic. There were both
commonalities and differences in the metabolic genes present for
the two strains, RH and ME49. In many cases, these genes have a
documented function in both cancer and 7. gondii infection. The
same mechanisms of action of these genes in the two phenotypes,
cancer and 7. gondii infection, would support our hypothesis that the
parasite subverts host function as tumorigenesis does.

For Toxoplasma gondii, two models have been proposed to explain
the dependence of parasite survival on HIF1 activation. These two
models are not necessarily mutually exclusive. In the first model,
the use of oxygen by the parasite leads to hypoxic conditions that
result in HIF1a expression. In the second, reactive oxygen species
produced by the parasite that can induce HIF1a are responsible.

In either case, the parasite was shown to be dependent on HIF 1«
activation to survive in low oxygen conditions. Both the parasite

and host are capable of producing ROS intermediaries. As ROS is
produced during oxygen consumption is it possible that the first model
in fact links to the second [Spear et al., 2006]. Regulating ROS is
important for parasite survival. Mice with increased ROS production
were completely resistant to infection by toxoplasma [Arsenijevic et al.,
2000].

The mechanisms by which HIF1a influences 7. gondii survival
mirrors results found in cancerous cells. In cancer cells HIF1 has also
been shown to act co-operatively with dysregulated MYC, and is
known to repress the function of MYC during hypoxia (low oxygen).
MYC is responsible for driving cell proliferation and growth. MYC
and HIF1 were found to increase anaerobic metabolism in cancer cells
through activation of Hk2, a HIF1 target, and activating VEGF. This
resulted in energy and lactate production [Kim et al., 2007]. HK2
is responsible for the first reaction in converting glucose to energy
through glycolysis. Therefore, its activation is synonymous with
activation of glycolysis.

In T. gondii infection siRNA knockout of HK2 resulted in further
reduction in parasite growth and low oxygen levels <3% compared to
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oxygen at 21% [Menendez et al., 2015]. HK2 expression and relocation
to the host cytoplasm was identified as an important mechanism for
growth and survival of the toxoplasma parasite using the RH strain,
thus further supporting the high degree of connectivity of Hk2 in our
network. As HEk2 is similarly highly connected for the ME49 strain it
is possible this mechanism of survival is important for both strains.

Akt3 and Myc are two other known oncogenes that influence
metabolism found in our cancer sub network. AKT has been shown to
induce aerobic glycolysis in leukaemia and glioblastoma cell lines, but
not increase oxidative phosphorylation thereby providing further evi-
dence of the Warburg effect [Elstrom et al., 2004]. Interestingly, Akt2
overexpression resulted in a switch in established glioblastoma cells to
aerobic glycolysis and glucose dependence but showed no effects on cell
proliferation. These results suggest that in cancer cells AKT2 mainly
functions to alter metabolic pathways rather than its ability to impact
host cell growth or proliferation [Cheng et al., 1997].

Akt3 was connected multiple genes for both parasite strains includ-
ing Eno2 and Cdknla, with several additional connections only in the
MEA49 strain. The connection of Akt3 to glycolysis pathway gene Eno2
and the enrichment of metabolic pathways in our network similarly
suggests that in T. gondii infection the mechanism of action of Akt3
is through metabolic pathways with downstream effects on survival
and differentiation. AKT has been shown to impact the ability of
toxoplasma to differentiate from tachyzoites to bradyzoites. Infection
of different cells by the type II Pru strain showed different levels of dif-
ferentiation. Lactate levels were found to be a discriminatory factor in
cells being either resistant or permissive to conversion to bradyzoites.
Further, it was shown that altering levels of lactate through increased
AKT expression altered the state of the cells, converting from a per-
missive to resistant state. The production of lactate was necessary
to alter differentiation state; anaerobic glycolysis was required as an
increase of glucose alone did not change differentiation ability [Weil-
hammer et al., 2012]. This is consistent with results in tumour cells
where knockdown of LDH-A the lactate dehydrogenase, resulted in
increased mitochondrial respiration and inhibited cell proliferation un-
der hypoxic conditions. In our network the only lactate dehydrogenase
was connected in the RH strain. If we consider the tachzyoite stage of
the parasite as being analogous to proliferating tumour cells, then we
might expect the RH strain to show higher levels of cell proliferation;
the RH strain is more virulent than ME49 and is unable to convert
to the slower replicating bradyzoite stage of the parasite [Liou and
Storz, 2010]. From this perspective, inhibited cell proliferation follow-
ing LDH-A knockdown in tumour cells would seem consistent with
AKT expression and lactate levels causing resistance to conversion to
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bradyzoites [Fantin et al., 2006]. Therefore, the connection of the RH
strain only to LDH would suggest a mechanism by which tachyzoite
conversion is inhibited for the type I strains in comparison to the type
IT strains.

Whilst our results show changes in host metabolism for both strains
they also highlight differences in the mechanisms through which
metabolism is affected [Molestina et al., 2008]. Previous work showed
that parasite metabolism is different between the ME49 and RH strain;
ME49 relying on glycolysis whilst RH utilised both glycolysis and
oxidative phosphorylation. Our results similarly showed changes in
glycolysis for the host cells infected with ME49 strain whilst the net-
work for the RH strain included genes involved in both glycolysis and
oxidative phosphorylation. This suggests that the parasite infection
subverts the host metabolic pathways in a manner consistent with
its own metabolism. The network structure of our results provides
further information on the differences between the strains impact on
metabolism. The connectivity of the RH strain is more profound as
illustrated by the greater number of genes and connections for the
RH network. For the RH strain only, Myc and Jun were connected to
glycolysis gene (pgm1).

From a metabolic perspective, the connection of Myc and Jun to
metabolism genes in our network suggests a potential mechanism
through which the RH strain utilises host glutamine metabolism. Both
Myc and Jun have been shown to affect glutamine metabolism in
tumours [Lukey et al., 2016, Gao, 2009], whilst glutamine metabolism
ensured the survival of RH tachyzoites when glucose was unavailable
[Blume et al., 2009]. The oncogene Myc has been found active in all
three strains Toxoplasma. The authors attributed Myc expression
to its roles in cell survival rather than metabolism. In contrast, our
results suggest an influence on metabolism given its connections pgm1.
Notably, we do not see a connection for Myc in the ME49 strain. This
could be due to differences in the analysis methods as well as the
different time points used. However, consistent with our results it
has been shown that MYC is induced by tachyzoites and the authors
suggested this affect may be mediated through ¢-JUN [Franco et al.,
2014].

While experiments using the RH strain support results from our
RH network they cannot be used to validate the lack of these connec-
tions for the ME49 strain. However, overall the results for both the
ME49 and RH strains we have outlined here give multiple instances
of regulatory mechanisms consistent with the parasite subverting host
function through signalling proteins, metabolism and ROS production
as seen in cancerous cells. Moreover, many new genes were found in

our network that have no previous connection to toxoplasma so provid-
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ing new avenues to investigate further. This helps to direct research in
a cost-effective method, narrowing potential gene targets without the
expense of multiple experiments.

By annotating the network results using Disease Ontology terms
we could identify connections within the larger networks that could be
interesting for further analysis. These included the Trib3 and Gprcda
subnetworks that were identified by their association with cancer
processes. For the Gpresa subnetwork we found a stronger connection
between Gprcba and Socs3, the STAT3 mediator, for the RH as
opposed to the ME49 strain. This is consistent with the observation
that the rhoptry protein ROP16 can activate STAT3 for both the type
I and type II strains but the continued phosphorylation is only present
for the type I ROP16. This may explain why we observed a few edges
in this network for both strains but considerably more for the RH
(type I) strain [Hunter and Sibley, 2012].

The network contained multiple genes that share miRNA targets,
lending greater confidence to the interactions identified between them.
We were also able to find publicly available gene expression data of
knockout experiments in MEF cells. We found such an experiment for
the gene Zfp36 in our network and we used this to provide additional
support for the interactions found in our network. Combining differ-
ential expression under knockout experiments with the conditional
dependence interactions between genes provided evidence of both
direct and causal relationships between genes. The knockout data is
more relevant for our network as opposed to a global network as we
have included only a subset of the genes. This means that we have not
included all possible explanatory factors, though our filtering means
we have selected the most likely according to their expression and
variability in the observed data.

The supporting differential expression analysis was restricted ac-
cording to the amount of experimental data that was available. The
focus of the analysis has been largely to introduce a pipeline that can
be used to take a relatively small set of replicates, infer networks and
extract useful subnetworks that can be used to drive experimental
hypotheses. As we have specifically selected very stringent model se-
lection criteria, we have not performed global network analysis as we
have a relatively small network size. Similarly, while we have identified
biological interesting results, the mechanisms by which the parasite
subverts the host cell are complex involving multiple processes and
pathways. We have focused on a subset of these processes that were
highly connected within our network. The results we have shown are
not exhaustive of our network or indeed the effect of T. gondii infec-
tion but have provided transcriptional connections such as for the
Zfp36 network, and hypotheses that could be experimentally tested, as
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with Gpreda.

As previously discussed, time and monetary constraints mean that
most experiments have relatively small sample sizes. Whilst technolo-
gies such as gene expression microarrays and RNA-seq can measure
expression on a genome-wide scale, to produce statistically significant
interactions hundreds of samples are required for the thousands of
genes. This is usually performed using meta-analysis, combining in-
formation from different samples and experiments. Conversely, small
scale models that focus on a few (tens of genes) usually take samples
from a single, smaller-scale experiment. Table 5.6 shows examples of
previous work according to the size of networks (genes), number of
samples, and whether or not this study was a meta-analysis.
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No. No. No. Meta-analysis Ref
. Table 5.5: Table of different
samples | genes | Interactions
386 11.032 107 157 Vos Hu. 2013 methods and sample sizes used
177 177899 1557818 No Bae7 92013 to infer regulatory networks.
91 79 473 No Banss;l 2006 This shows that networks with

large numbers of genes and in-

teractions require large sample

From a mathematical perspective one of the main results has sizes.
been our ability to infer and validate regulatory networks where

only a relatively small number of replicates have been used. To date,

inference of networks at a genome-wide scale meta-analysis combining

hundreds of samples from different experiments have been used. In

contrast, we have reduced the parameter space and used empirical

Bayes method to infer networks with small sample sizes.

It is not reasonable to expect to infer a genome-wide regulatory net-
work from a smaller number of replicates in contrast to meta-analysis.
However, we have shown that smaller relevant networks can be in-
ferred. Moreover due to the data driven nature of the model, the genes
included in the final network do not need to be known a priori, mean-
ing there are no constraints on the elements that can be potentially
included in the model. It was initially assumed that to run these JGL
models targeting only a subset of the genes, many replicates would
be required. Although this would increase the power of the model our
results suggest that the number of replicates required is potentially
fewer than initially thought with previous analysis suggesting small
sample sizes (<15) can lack accuracy in network inference [Steele and
Tucker, 2008]. The paper introducing the JGL model, had close to
90 replicates, where we had less than half that. However, it must be
noted that their analysis used data from individual patients with tu-
mours. These data sets would be expected to be more heterogeneous
than cell-line laboratory replicates. By using biological replicates from
cell cultures the data set we have used here provides a middle ground
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combining the increased variation and interpretability of the biological
replicates with the decreased variability and confounding factors in
comparison to in vivo studies.

Methods that use meta-analysis include more genes and regulatory
interactions over more conditions than our methods. We expect that
contained within these networks, only some of the regulatory inter-
actions will only be present in a subset of the conditions. Therefore,
there is a contribution of noise where the networks are not active in
those conditions plus signal where they are active. In comparison,
our approach can be viewed as taking a subset of these conditions,
and only inferring regulatory interactions active in these conditions.
This results in a smaller number of genes, hundreds as opposed to
thousands, in the model. The success of network inference on small
samples sizes will critically rely on good experimental design to se-
lect comparable yet variable replicates. In our case using time series
and varying the multiplicity of infection were intuitively compatible
experimental factors to use with graphical inference.

As biological networks are scale-free, for any single condition or
small number of closely related conditions, we expected that our net-
work would show a few sparse networks. This was verified by our block
analysis showing how the density of the network varies with differ-
ent shrinkage parameters. This is also central to the empirical Bayes
method that we used to pre-process the data. Bayesian formulations
of the JGL model have also been developed that provides a Bayesian
method for inferring the network structure or precision matrix as op-
posed to the correlation matrix. That means that the incorporation of
the prior is based on the network structure. This allows for informa-
tive priors that are based on biological knowledge and support edges
between known interactors. One example of this approach was used
to infer metabolic networks involving 17 metabolites [Peterson et al.,
2013] with 24 samples in total. The Bayesian formulation is likely to
be considerably more computationally demanding. This is partially
reflected in the smaller scale of this model. Further, to make use of an
informative prior, arguably the scope of the model is reduced because
biological knowledge to inform the pairwise interactions between all
nodes, metabolites in this case, is a more detailed model formulation
compared to a frequentist approach.

Although we were able to infer networks from this relatively small
data set, we arguably required more pre-processing of the data in
comparison to, for example, a large meta-study analysis. This in-
cluded using existing methods to account for technical factors such
as GC content. Further, we used filtering methods to select candi-
date genes for input into the JGL model. As well as an expression
filter that is standard practice in all RNA-seq analysis, we further
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selected those genes with highest variance across all samples. This

is particularly important for an experiment with small sample sizes

in comparison to a meta study as we would expect fewer genes to
show an activation/inhibition pattern due to the reduced number and
range of perturbations. As a final pre-processing step, we used the
empirical Bayes method outlined previously to generate the correlation
matrices for each of the strains separately. This is used to control the
false discovery rate and is particularly applicable given the number of
replicates we had for each condition. We found multiple connections
between Trib3 and other genes using the EB correlations that were
not found using the Pearson correlation matrix. Given that we also
found experimental and literature support for the connections to 77rib3,
this indicates that the EB correlation matrix enables us to find biolog-
ically meaningful connections not present using the sample Pearsons
correlation matrix.

We have also seen that the control data in this experiment was not
useful for inferring networks. Although there is correlation between
genes in the control network, it is not specific. That is, there is no
gradual level of significant correlations as with the infected cells. For a
chosen level of significance, the model would either include or exclude
all of the genes. Therefore, to include an uninfected network, there are
two possible options. The first is to add the control data for only those
genes included in the model, potentially for each strain separately to
ensure that only those genes relevant to the strain data are inferred, as
opposed to all genes that pass the filter step.

A second possible option would be to perturb the system to activate
it, this also requires prior knowledge either before the strain inference
or by using the first set of networks to drive the experimental design.
For example, cytokines activate inflammatory pathways, including
IFN-v that is central to the host response to infection by 7. gondii.
In a previous study IFN-v responses for infected and uninfected cells
have been compared through differential expression analysis that
identified interference with STAT1 as an explanatory variable for the
observed responses [Laliberte and Carruthers, 2008]. Using a similar
approach with differential network analysis would give a more specific
control, which has the advantage of potentially being more informative
on the activated pathway, but loses the scope of the uninfected cell.
From an experimental design perspective, it may be sensible in future
experiments to include controls that are wild type cells but under
some stimulation to activate pathways. This would have two potential
benefits: first, the analysis may provide further understanding of
pathway hierarchies and elements within them; second, comparing a
control network of this nature to one with an invading host parasite
may also identify differences in the networks. Conclusions from this
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type of experiment could potentially indicate not only those pathways
that are activated by the invading parasite but any other ways in
which they are altered by the parasite. This is potentially particularly
applicable to T. gondii infection as one class of rhoptries secreted by
the parasite are kinases or pseudokinases that can interact with the
signalling proteins in the hosts immune response [Hunter and Sibley,
2012).

After the EB procedure we had two networks, one for each of the
strains, that had similar levels of connectivity and scope. There were
approximately half the edges shared by both networks. This amount
of overlap suggests there are different mechanisms or dynamics by
which these two strains of toxoplasma infect and subvert the host
cells. Using differential expression analysis and testing for overrep-
resented pathway gene sets led to the observation of considerably
fewer significantly differential expressed genes and pathways for the
Type II compared to Type I strains [Xiao et al., 2011]. This is broadly
consistent with our results showing sparser networks for the Type
IT ME49 network in comparison to the Type I RH strain. However,
in comparison our analysis could identify novel connections and was
not constrained by the pre-defined pathways. We also used partial
correlation as opposed to differential expression to classify the network
results. This allowed us to identify causal interactions between genes,
and this arguably gives stronger support than finding differentially ex-
pressed genes contained within the same genes sets because differential
expression analysis is performed for each gene independently.

In comparison to the multiple cofactor experiment conditions used
with the Bacillus subtilis data set, it can be argued that these condi-
tions are more readily interpreted once combined because depending
on the stage of the toxoplasma infection, there could be consistent
effects on a transcriptional unit. For example, for a process that de-
velops over time we would expect to see a positive correlation of the
genes involved across the time series. That is, we may expect more
homogenity in the time series samples of infection for Tozoplasma
compared to the Bacillus subtilis data set in which the cells were
perturbed under multiple different and, in particular, unrelated con-
ditions. Note that both VEG and ME49 strains are likely to only see
the sporozoite and tachyzoite form of the parasite within the 43 hours
duration of this data set [Jerome et al., 1998, Skariah and Mordue,
2012]. This makes the RH data set more comparable over these time
points as the RH strain lacks the ability to convert from tachyzoite to
the chronically infectious bradyzoite form [Lun et al., 2015].
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5.7 Methods

5.7.1 Aligning reads

Reads were aligned using STAR on default settings. There are many
sequence alignment tools available, with Tophat being popular [Trap-
nell et al., 2009]. We investigated the use of Tophat to align our
reads, however, the current version of Tophat was not able to pro-
cess the larger combined annotation files that would be needed. The
reference genomes for Mus musculus (mouse) and the Tozoplasma
gondii strain were combined using STAR. For the RH strain, we used
the available RH genome from toxo.db as well as the GT1 genome
also from toxo.db. The RH and GT1 strains are both type I, and
comparison of their full genomes revealed 1,394 single nucleotide poly-
morphisms (SNPs) or insertions/deletions. SNPs are as their name
suggest, changes to the genome sequence at one single position, where
the sequence could in principal vary to any other the other nucleotide
base. In practice one observes that most common SNPs have two al-
leles - i.e. out of the four possible bases ACGT, two possibilities are
observed when sequences from different strains are compared. Inser-
tions/deletions are defined where the sequences match save for a single
additional base (insertion) or a missing base in the sequence (deletion)
as illustrated in the stylistic Figure 5.17. Figure 5.17 gives an example
sequence, sequence 1, and shows example deletion, insertions and a
SNP as highlighted in red.
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ACCGTTAAGA Sequence 1 Figure 5.17: Stylistic example
. of the insertion, deletion and
AC_GTTAAGA Deletion .
polymorphism events that can
ACCGTTAATGA Insertion occur with RNA-seq reads and
AACGTTAAGA SNP must be allowed for in sequence

alignment programs.

5.7.2 Converting from reads to counts

The output from STAR is a SAM file that can be converted to a BAM
file using SAMtools. These BAM files are input into RsubRead this
combined the counts for the exons output from STAR into genes
counts. The annotation file was created using Cuffcompare from the
Cufflinks package. The annotation file contained the exon read se-
quences for both the mouse and toxoplasma strains where relevant.
These sequences were matched to their transcripts from the anno-
tations on toxo.db or ENSEMBL for mouse. There can be multiple
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transcripts that map to genes in the organisms. RsubRead combines
at the transcript not gene level as this is the information passed to it
from the annotation files.

5.7.8 Comparing the mouse genome to joint mouse and Toxoplasma
genomes

Using an uninfected sample the results were compared by using only
the mouse genome and the combined mouse and toxoplasma GT1
genome. This is to assess the accuracy of the combined genome and
the combined annotation file that is used to help the alignment al-
gorithm map reads that may cover multiple exons. These genome
directories are generated by STAR using the FASTA format of the
genome sequences and the annotation file associated GTF annotation
files. We expected that, by chance, a few reads, which were unmatched
to the mouse genome may map to the GT1 genome. Indeed, we saw
a small increase of mapped reads from 64.6% to 64.8%. The reads
that were aligned to exons by STAR were then summarised to give
gene counts using the featureCounts function in the Rsubread pack-
age. These counts were summarised for all reads that had a minimum
mapping quality score at the default value of zero. This is a relaxed
quality score, meaning that for some reads with low quality scores,
mapping to multiple transcripts is allowed in the summarisation step.
In the Rsubread package we do not count any reads that are mapped
to more than one feature (gene). However, we allowed reads mapping
to multiple transcripts within the same gene to contribute towards the
final count for that gene.

We extracted the read counts for the expressed mouse genes: we
defined expressed genes as those that have at least 10 matching reads
per million total reads in at least one of the samples, and this gave
10,482 genes. We plotted the raw read counts for these 10,482 using
each of the two genomes, Figure 5.7.3. This showed a high level of
similarity between the read counts given for the two genomes as would
be expected.
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5.7.4 Comparing the RH and GT1 strains

Although we were interested in modelling the reads from Mus mus-
culus in the JGL model, because the infected samples also contained
RNA from toxoplasma we wanted to be assured that no reads from
toxoplasma have been mapped to the mouse genome. We had good
coverage of the annotation for the ME49 strain, however the RH an-
notation is currently far from complete. Therefore, we used the GT1
strain to assess the accuracy of the mouse reads aligned for the RH
strain. We anticipated that in using the GT1 alignment there will
be an increase in the number of reads mapped but that these mainly
will be previously unmapped reads (from the parasite) mapping to
the GT1 genome. When summarising the counts for exon transcripts
to give overall gene counts we increased the minimum read mapping
quality score to 20 from the default value of zero in the Rsubread
package. This had the effect of removing some reads that may have
mapped to multiple exons in the same gene, by requiring a greater
level of specificity through the higher mapping quality score.

Figure 5.19 shows the alignment counts for each of the RH infected
samples where each sample has been mapped to a combined anno-
tation of mouse with the RH strain and mouse with the GT1 strain.

Figure 5.18: Plot comparing
the raw read counts for an un-
infected sample using just the
Mouse genome and the Mouse
GT1 combined genome. These
are for genes that we defined
as being expressed in the sam-
ple. This shows a good level
of agreement between the two
alignments.
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Each of the bars is split according to the number of reads mapped to
either the mouse genome or the relevant toxoplasma genome. As an
overview of total reads mapped, Figure 5.19 shows no obvious differ-
ence in mappings to the mouse genome using either of the toxoplasma
strains. There are, as would be expected, more reads mapped to the
GT1 strain than the RH strain given the larger coverage of the GT1
strain in comparison to the RH strain. The count matrices from Rsub-
read contain an additional 436 genes for the RH strain and 8136 for
the GT1 strain.

The previous analysis considered the total read count across all
genes. It is possible that the total read count for all genes is the same
but varies for the individual genes. Therefore, using the mouse only
data, we extracted those genes from Mus musculus genome using the
read counts for the infected RH samples, this gives 45,309 genes. We
used the RH data to select a subset of expressed genes for comparison
purposes. Expressed was defined as having more than 10 reads per
million in at least two of the samples and 13,195 genes passed this
filtering step. For these genes, we plotted the raw read counts for each
gene separately for the two different genomes, RH and GT1, for each
sample. The results in Figure 5.20 showed that for each sample there
is good agreement for the mouse genes using either the RH or the GT1
genome. There is a slight trend for higher read counts to the mouse
genome for the RH strain compared to the GT1 strain (mainly evident
from the higher values on the RH x-axis). This may be expected
and suggested that, given the lack of a complete RH genome, some
parasite RNA has mapped to the mouse genome as the best available
alternative. Therefore, as we expected better accuracy from the GT1
genome, we continued the analysis using the GT1 mapping.
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5.7.5 Comparing read counts to technical or biological factors

Before analysing the data further, we checked that there were no com-
pounding technical or biological factors that needed to be accounted
for in our model that would explain the different library sizes across
the samples.

We plotted the number of reads for each sample according to the
four experimental factors; Time, Strain, MOI and Lane, Figure 5.7.5.
Comparing the different factors to the read count, plotted on the y-
axis, there was no obvious pattern between the read counts for the
samples and any of the biological (MOI, Time,Strain) or technical
factors (Lane). The index in these plots is a naming convention used
to label the different samples.

5.7.5.1 GC content and read length bias

Plotting the summary counts for each of the samples mapping to the
mouse genome, we noticed that there are a relatively wide range of
library sizes between samples, Figure 5.22. Relatively low coverage
samples were seen across all three conditions, ME49 infected, RH
infected and the uninfected samples, indicating this was not a result
of experimental conditions or the sequence alignment. This could be

Figure 5.19: The Figures show
the total read count for each of
the 12 samples infected with RH
strain. There are two alignments
for each sample according to
whether the alignment used the
mouse combined with either the
RH or GT1 strain. There is no
obvious overall difference in the
total number of reads mapped
to the mouse genome under the
two different annotations.
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Figure 5.20: Total read count
for each of the samples infected
with RH strain according to
their alignment; each RH in-
fected sample has been mapped
to either RH, or GT1 and com-
bined mouse annotation. There
is no obvious overall difference
in the total number of reads
mapped to the mouse genome
under the two different annota-

tions.
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due to a variety of technical factors, for instance, limited material or
decreased Polymerase chain reaction (PCR) amplification for those
samples. PCR is used to increase the amount of material available so
that there is enough for sequencing. PCR involves multiple rounds

of heating and cooling a preparation of DNA template, thermostable
DNA polymerase and primers. In the first stage the preparation

is heated to a temperature that separates the DNA strands. Once
separated the preparation is cooled to a temperature that enables the
primers and DNA polymerase to anneal to the separate DNA strands.
The final stage of a PCR cycle involves heating the preparation to an
intermediate temperature, which is optimal for the DNA polymerase
and begins to create a copy of the DNA strands. These cycles are
repeated allowing exponential amplification of the template DNA
region flanked by primers.

It has been shown that RNA-seq counts can be biased due to the
differing GC contents of genes [Benjamini and Speed, 2012]. GC con-
tent of genes is known to affect the PCR amplification rates [Mamedov
et al., 2008]: for high GC content a higher temperature is needed to
denature the DNA strands due to the increased thermostability of
high GC content regions. There are three hydrogen bonds between a
GC base pair in comparison to two for an AT pair. This additional
hydrogen bond increases the stability of the gene and means higher
temperatures are required to break these bonds. Low content GC
content can also be biased in RNA-seq read counts due to the PCR
amplification step. In this case, it is difficult for the low GC content
genes to anneal to the PCR primers at higher temperatures. These
PCR amplification biases are carried over to the read counts generated
by alignment algorithms for RNA-seq experiments. The quality control
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files, generated by fastqc, for each of the samples included plots of
the theoretical and actual distribution of GC content across all reads.
There were warnings of the differences between these distributions for
all the samples. We used the pre-processing method of conditional
quantile normalisation (cqn) to account for the impact of the GC
content on the read counts [Hansen et al., 2012].

The cqn method estimates the effect of GC content on read counts
using the GC content of the sequence as a covariate. This method
also has the advantage of quantile normalising the overall library
sizes. Using a quantile normalisation as opposed to a linear scaling
of the different library sizes means that this method also considers
differences in the shape of distribution of reads as well as the overall
number of reads between samples. The output is expression values
on a log base 2 scale which gives continuous, approximately normally
distributed data that can be used as input to the JGL algorithm. The
total read counts per gene output from the alignment algorithms are
understandably effected by the length of the genes given the fixed
length of the sequencing reads, in our case, 101bp. A common method
for correcting this bias is to convert the reads per million to reads
per kilobase per million mapped read (RPKM). However, we do not
make this adjustment as the cqn method also takes gene lengths as a

Figure 5.22: The Figures show
the total read count distribution
for the individual samples. This
histogram shows no clear trend
for the read counts to be split
according to the different sam-
ples. That is, there are a similar
range of read counts seen for the
MEF infected with ME49 strain,
RH strain and the uninfected
cells (Mouse). The histograms
for each Mouse, ME49 and RH
strain overlap. Therefore, in
some cases the colours in the
histogram are the combined
colour of those shown in the
legend.
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covariate into the model and adjusts the final read counts for different
gene lengths whilst also correcting for GC bias. The GC content and
gene length covariates are calculated directly from the FASTA and
Gene Transfer Format (GTF) annotation files.

We looked at the effects of the cqn correction by comparing the MA
plots for the samples before and after the normalisation. MA plots
are the average expression over replicates plotted on the x-axis against
the average log fold change between two groups on the y-axis. The
standard RKPM values are shown on the left hand plots, for the ME49
strain (Figure 5.23) and RH strain (Figure 5.24). These plots show
that there is a baseline level of expression for the standard read counts
and this can overestimate significant differences (large absolute M
values) that would lead to false positives in downstream differential
expression analysis. In comparison, the cqn MA plots on the right
show an elliptical shape that is common with Gaussian variables. The
MA plots are calculated for the ME49 compared to uninfected and RH
strain compared to uninfected cells.

Standard RPKM, ME49 CQN normalised RPKM, ME49

(a) MA plot for standard RPKM for the (b) MA plot for cqn RPKM for the ME49

MEA49 strain strain

Figure 5.23: MA plots for ME49
strain before and after cqn. The
cqn has removed the truncated
low expression values. The dis-
tribution of the RPKM now

has a central mass with a more
symmetric distribution of read
counts around it.
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Standard RPKM, RH CQN normalised RPKM, RH

(a) MA plot for standard RPKM for the RH
strain

(b) MA plot for cqn normalised RPKM for
the RH strain

We also compared MA plots for a subset of genes that are at the
extremes of the GC content distribution. This showed the impact of
the cqn normalisation on correction for GC bias in the expression
values. Low GC content genes are shown in yellow with high GC

INFERRING CONDITION-SPECIFIC REGULATORY NETWORKS WITH SMALL SAMPLE SIZES:

A

Figure 5.24: MA plots for RH
strain before and after cqn.
The cqn procedure removes
the heavy tailed truncated dis-

tribution of read counts and

content genes in blue. The pre-normalisation MA plot clearly shows a
split between the low and high GC content genes for both the RH and

results in a more symmetric

distribution of read counts.

MEA49 strains that is removed following the cqn normalisation shown
in the right hand plots, Figures 5.25,5.26.

Standard RPKM, ME49 CQN normalised ME49

(a) MA plot for standard RPKM for the
MEA49 strain, yellow low GC content, blue
high GC content

(b) MA plot for cqn RPKM for the ME49
strain yellow low GC content, blue high GC
content

Figure 5.25: MA plots for ME49
strain before and after cqn. The

cqn procedure removes the split

of counts according to their GC

content.
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Standard RPKM, RH CQN normalised RPKM, RH

(a) MA plot for standard RPKM for the RH (b) MA plot for cqn for the RH strain
strain yellow low GC content, blue high GC yellow low GC content, blue high GC

content content
Figure 5.26: MA plots for
RH strain before and after
5.7.6  Analysis of block size cqn. Again the cqn procedure

For initial exploratory data analysis, we plotted the maximum block remOV(?s the sph.t of counts
sizes for different shrinkage values for the three classes (ME49, RH and according to their GC content.
uninfected) individually and combined. To do this we iteratively used
the first part of the JGL algorithm to calculate the block diagonal
form of the covariance matrices. From these matrices, we were able

to calculate the standard statistics of number of blocks and maximum
block size. We calculated the block diagonal matrices for the data
under different parameter values. The maximum block size is a use-
ful tool for parameter selection particularly as it is used before the
model is run. This gave us a method for model selection that does
not require the time and computational expense of the suggested AIC
statistic, or methods that calculate potential false positive rates on the
edges, as we did not need to run the full model.

For the three classes of ME49 infected, RH infected and uninfected
cells, we looked at the maximum block size under different parameters.
We plotted the maximum block size for all three classes individually
and combined over A shrinkage values 0.7 — 0.95: Figure 5.27 shows
that there are similar profiles for the RH and ME49 strains although
they occur at different shrinkage levels. It is also clear from Figure
5.27 that whilst the infected cells have gone from a maximum block
size of zero to including almost half the genes (at shrinkage value 0.9),
for 0.9 and above, none of the correlations for the uninfected cells
are significant, as the maximum block size is zero. The A; shrinkage
parameter selected was 0.91. Although 721 genes passed the screening
process, the JGL algorithm found no significant partial correlations
meaning there were no edges found between the genes in any of the
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Figure 5.27: We use the maxi-
mum block size as a heuristic to
select the shrinkage parameter
values used with the JGL algo-
rithm. This shows a maximum
upper bound on the shrinkage
value of around 0.92 above
which we would not expect

and genes to be included in

the network. It also shows we
would expect large, computa-
tionally demanding networks if
the shrinkage parameter A1 was
reduced much below 0.875.

Figure 5.28: In conjunction
with the maximum block size,
the number of blocks gives an
overview of the correlation struc-
ture for the different classes
individually and combined. This
information is used to inform a
choice of shrinkage parameter to
be used in the JGL model.
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three classes. This would likely be explained as all three conditions
were included in the model and no significant edges are found because
values of the correlations for the uninfected are notably smaller than
those for the infected cells.

To see if the uninfected cells were adversely affecting the network
inference, we re-ran the JGL for only the ME49 and RH conditions,
with Ay = 0.91 and A, = 0.005, this resulted in a very small number of
connections between 25 genes, with 2 edges for ME39 and 14 for the
RH strain. We therefore reduced the shrinkage parameter to A; = 0.9.
The number of connected nodes found in the screening process is 1,394;
the resulting JGL output gives 680 edges for the ME49 strain, 95 for
the RH strain with 30 common edges between the two. For over a
thousand genes and an inference that took over four hours to run, the
small number of edges found in the model is potentially indicative
of noise in the model. This could mean that by chance, expression
profiles of different genes are able to partially ‘explain’ the correlations
between two other genes thus reducing the partial correlations to
under the threshold level of significance.

To further understand the model output we calculated the maxi-
mum block size and number of blocks over the range Aq € (0.9,0.91)
with a smaller step in values, giving a greater level of detail on the
correlation structure over different shrinkage parameters. From these
plots (Figures 5.29,5.30 we selected A1 = 0.905, the resulting JGL
model contained 735 genes with 549 edges for the ME49 strain and
2757 for the RH strain. This increase in edges at a higher shrinkage
value could also support the previous observation of noise in the data
set when allowing more genes into the inference.

Maximum block size for shrinkage level

1500
|

1000
|

Maximum block size

500
|

T T T T T T
0.900 0.902 0.904 0.906 0.908 0.910

lambdal

we may choose a value below

175

Figure 5.29: To iteratively se-
lect the parameter values, from
the overview of the maximum
block size we choose a subset of
shrinkage values to evaluate in
more detail. As the maximum
block sizes for the ME49 strain
is lower than for the RH strain

0.906 to allow significant genes
to be included for both strains.
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Although we have significant edges in both conditions, there are
substantially more for RH network in our final example. This dif-
ference in results for the two strains could be due to, differences in
infection dynamics, different levels of correlation and sample sizes
or differences in the accuracy of the alignments though if this was a
factor we may expect more edges for the ME49 network than the RH
network.

5.7.7 GO analysis of networks

We tested for over representation of Gene Ontology terms using the
hypergeometric distribution. The hypergeometric distribution gave
the theoretical distribution when drawing without replacement from
a population of two classes. This gave the probability of drawing

the observed number from one class (in our case a class is one Gene
Ontology term) given the total size of the population, the total size
of the class and the total number drawn. We tested all terms that are
associated with at least one gene and calculate p-values for each term.
These p-values are multiple hypothesis corrected using the method of
Benjamini-Hochberg [Benjamini and Hochberg, 1995].

5.7.8 P-value analysis

To calculate a p-value for the correlations between genes we per-
formed a hypothesis test. The null hypothesis is that the correlation
value equals zero, that is the two genes are independent. The null
distribution is a t-distribution and we calculate the p-value for each
correlation pair. The p-value gives the probability of observing a value

Figure 5.30: To iteratively se-
lect the parameter values, in
conjunction with the maximum
block size we evaluate the corre-
lation structure in more detail
for a subset of the parameter
values. Although the RH strain
shows a fairly steady increase
over this parameter range, the
MEA49 strain shows a noticeable
shift below 0.906, indicating
shrinkage parameters below

this level may result in a more
informative model for this strain

in particular.
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as extreme or more extreme than the observed value assuming the
correlation is not significantly different from zero.
Hy:r=0H;:r#0
To test the sample correlation r, we used the standard correlation
test statistic:

vVn—2
i-r

which has a t-distribution on n — 2 degrees of freedom under the

t=r

null hypothesis Hy, with sample size n. To see this we started with
the definition of the t-distribution. The test statistic T = \/%/v where
U is N(0,1), V is chi-squared with v degrees of freedom, U and V are
independent then T has a t-distribution on v degrees of freedom. In
a standard linear regression we have Y = BX + € where € is N(0,1)
and we have pairs of observations (X;,Y;) i = 1...n, with mean

X=1y" X and Y =1Y" .Y, then the standard MLE of B is

i1 D (X = X) (¥ = ¥)
77 L (X = X)?

In regression analysis, the test statistic

B=

A

. B
VMSE/ Li(X; — X)?
has a t-distribution on n — 2 degrees of freedom under the null hypothe-
sis that B = 0 and is used to test significance of f. Where MSE is the
mean square error between the observed (Y;) and fitted values (Y;):
MSE — Z?(:i_—zYi)z
We define Sxy = 7Ly i(X; — X) (Y = V) Sx = /374y Zi(X; — X2,

the correlation ¥ = <X¥_. Then
S¢Sy

§ Sxr | rSiSy sy
S%  SxSx  Sx
YUY — Vi) Y- (Y + S;%(Xi - X))J?
n—2 n—2
(Y- ¥) - (% - TP
- n—2

MSE =

L[ = V)? = 288 (Y = V)(Xi = X) + S (X - X)2)
n—2
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(n—1)[(Sy)? — D]

5%
n—2

5252
(n—=1D)[(Sy)* — H&"]
Y-X
n—2

(n—=1D)[(5v)*(1 — )]
n—2
Substituting these results into test statistic t, we have:

as required.



6
Web Application

A central part of any research community is the provision of access

to information, analysis tools, results and data. In bioinformatics,
advanced software packages are required for many work pipelines

and sharing these tools is a common part of publication. A major
example of this is the R Bioconductor repository where researchers
deposit R software packages and biological data as R objects that
have an application to the bioinformatics community. In terms of
gene expression data two of the most commonly used resources are
ArrayExpress and the Gene Expression Omnibus (GEQO). These
databases allow researchers to upload data from their publications. It
is often a requirement of publication to make the data used in analysis
publicly available for verification purposes, and these databases also
provide standardised formatting and quality control for datasets. The
above databases include microarray and RNA-seq data. They are
available online and provide tools to access the databases, that allow
searching and download of data. ArrayExpress have developed cloud
computing facilities and R packages for the analysis of data from
ArrayExpress. GEO has an online tool for performing differential
expression analysis through GEO2R using R and provides the R script
used to perform the analysis.

As well as experimental data, another important area is sequence
annotation data. At the simplest level this can include information
such as gene names, descriptions and the sequence data itself. The
Gene Ontology is the main resource used for annotations of gene func-
tion. It contains three separate ontology terms, Biological Processes,
Molecular Function and Cellular Components. These ontologies have
been used extensively to annotate genes in genome sequences and
to identify commonalities between sets of genes - often those which
have been found as differentially expressed as experimental conditions
are varied. Gene set enrichment analysis (GSEA) is a closely related
concept [Subramanian et al., 2005]. GSEA includes both a database
of gene sets and a method for finding significantly enriched gene sets
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within a list of genes. In the example above, these gene sets are cate-
gorised into eight different groups, genes that share common functions,
positional genes that are closely located in the genome, those based
on literature mining, genes that share regulatory motifs, computation-
ally derived sets from cancer microarray data, Gene Ontology sets,
oncogenic gene sets and immunological sets.

Closely related to gene sets are databases of known interactions
between genes. These include, pathway descriptions, transcriptional
units, and miRNAs and their targets. KEGG [Kanehisa et al., 2016]
and Reactome [Milacic et al., 2012] are two databases containing path-
way data for multiple organisms. KEGG includes pathways covering
cellular processes and metabolism as well as pathways relevant to
human diseases and drug categorisations. Reactome contains pathway
information for multiple organisms but this does not currently include
Bacillus subtilis. InterMine is a framework for combining various data
sets into one database and providing multiple methods for accessing
data in different computational languages [Smith et al., 2012]. There
is a synthetic biology specific instance of InterMine, SynBioMine [un-
published, www.synbiomine.org] that includes information on Bacillus
subtilis. BsubCyc [Caspi et al., 2014] is another Bacillus subtilis on-
line resource that, similar to SynBioMine contains transcriptional
unit information from DBTBS [Sierro et al., 2008]. Databases such as
DBTBS provide information primarily on the transcription factors for
Bacillus subtilis.

Using the DBTBS database, additional work has been done to add
in silico predictions to experimentally validated transcription factors.
The authors combined motif analysis with expression data to infer
regulatory networks [Fadda et al., 2009]. To infer the networks, a
co-expression method was used to find similarly expressed genes. The
scope of this model was also limited by the amount of known regula-
tory information, and the available expression data - covering 1153
genes, or approximately one sixth of the Bacillus subtilis genome. As
the authors comment, future work can expand on our knowledge of
the regulatory network as more experimental data becomes available.
However, this is a common constraint of methods that use prior in-
formation such as databases on regulatory motifs. The output from
this method included heatmaps of the networks, and results containing
interactions between the regulators but not their targets. Moreover,
this information is not easily accessible. The resulting networks are
presented in summary as figures in the paper, this means they are not
easily interrogated by the researcher. Without access to the full net-
work, and phenotypic or ontological information it is harder to design
experiments to validate the model or any regulatory modules that may
be of interest.

A
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There are however, examples of analysis that have been made
available online in a interactive and user friendly format. One of these
is CoryneRegNet [Baumbach et al., 2009] this integrates inference
of regulatory networks for E. coli and Mycobacterium tuberculosis
with an online workflow that is designed to allow the user to query
regulatory networks and predict their interspecies transfer. This is
combined with functionality to integrate expression data and web
based visualisation of results.

As an addition to ArrayExpress, the Expression Atlas was devel-
oped to provide differential expression data on individual genes, gene
sets or cell or tissue types [Petryszak et al., 2014]. One significant
part of this resource is the manual curation of the data which provides
consistent experimental factor annotation across experiments and
allows the combination of information from multiple experiments. The
Expression Atlas does however focus on differential expression rather
than differential networks or condition specific regulatory networks.
Therefore, although they do include gene sets these do not give hierar-
chical information, or the potential differences in structures between
different conditions. The Expression Atlas also does not include Bacil-
lus subtilis as one of the organisms included in the curated data set.
The initial data set includes Homo sapien and Mus musculus and
though these sets have now been expanded to incorporate 31 different
organisms in total, it does not as yet include Bacillus subtilis.

We similarly aimed to provide the output of the JGL model on
Bacillus subtilis data in an interactive online resource. In addition to
the example hypotheses that have been described in previous chapters,
the scope of the output from the JGL algorithm and annotations mean
that there are many other possible interactions that may be interesting
to researchers. The analysis is designed to provide insight into regula-
tory networks that can then be used to further our understanding of
the system and particularly on how altering parts of the cell or includ-
ing circuits and inserts may impact the cell’s phenotype. Consequently,
we looked to implement a resource that can help in the design of syn-
thetic circuits or provide new hypotheses on the regulatory networks.
The resulting online resource we named Bacillus subtilis Networks
(BSN).

The JGL analysis is a data driven method that can be applied
to genome-wide data sets. As a result, the model can potentially
include all genes in the genome and does so without any restriction
on the interactions between genes, meaning it is able to find novel
connections. To identify novel interactions for experimental validation,
we annotated the results to indicate whether an edge between two
genes is known or not in the DBTBS database. Given an edge not
in the transcriptional database, the Gene Ontology information can
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be used to give an idea of the functional connections between the
genes. Understanding the function of transcriptional units as well as
connections between them is valuable when designing experiments to
validate novel edges.

The BsubCyc website enables users to navigate the known tran-
scriptional units referenced in the database. This does not include any
potentially novel interactions that require the use of network inference.
Similarly, this method does not show interactions between different
transcriptional units, or any condition-specific information as is given
by definition in the JGL model. We planned to give the user the abil-
ity to upload their own expression data to map onto the networks as
with BsubCyc. The software described here also provides unknown
interactions and different combinations of networks and interactions
under different experimental conditions. To facilitate the design of
synthetic circuits or hypotheses to be tested experimentally we also
provide PubMed searches and links, for user search terms and the
genes in the networks.

STRING is an online network resource that includes protein-protein
information on Bacillus subtilis [Szklarczyk et al., 2015]. STRING
combines data using experimental evidence, text mining and compu-
tational inference to derive links between genes and allows the user
to search for genes and visualise these interactions in a network view.
Our analysis is based on gene expression data as opposed to protein-
protein interactions this means the methodologies may give different
interactions due to the different activities of genes and the correspond-
ing protein. Additionally, BSN differs from the STRING web resource
in that we can provide experimental condition information and addi-
tional tools such as network expansion and decomposition based on
computational inference.

In designing BSN, we first considered those tools currently available
which could be used to implement it. Our requirements were that the
language or environment we used to write BSN could be hosted online,
provide interactive network visualisation and can interface easily with
R because the functionality we have developed is written in R.

One of the most common tools for visualising biological networks
is Cytoscape [Shannon, 2003]. Cytoscape has a large set of built in
functions for displaying, navigating and annotating networks. In this
work, Cytoscape has been used extensively for visualising network
output from the JGL network. This is possible due to the RCytoscape
package which has been developed to allow Cytoscape to be controlled
from R [Shannon et al., 2013]. This means that R users unfamiliar
with Cytoscape can still easily use it for their end visualisation while
R is used for its powerful data analysis capabilities. Cytoscape does
allow for third parties to design ‘plugins’ that can be used to provide

A
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additional functionality to Cytoscape. These plugins must be written
in Java and therefore are only a viable option for those with appropri-
ate java programming experience. Cytoscape does offer a web plugin
that can be used by those with basic understanding of HTML. How-
ever, also using the functionality of R would require use of the Rserve
plugins . Here again, this requires advanced programming experience
and is not in general, accessible to the average R user.

In contrast, Shiny has an inbuilt Graphical User Interface (GUI)
and is written in Javascript; a commonly used language for creating
dynamic webpages. Javascript can be used on all computer platforms.
However, coding in Shiny requires no javascript knowledge. Shiny
can be used by beginner R programmers to develop web pages that
have access to all the functionality of R analysis software. The Shiny
framework provides a method for publishing R packages and functions
onto the web. Therefore, a web user can access and use R functions
without needing expertise in R. Shiny provides the basic GUI that can
be accessed from R . The Shiny developers have focused on providing
interactive plots. This meant that we could plot the network output
from the JGL analysis and provide functionality to explore the net-
works interactively from a web page. Whilst the Shiny plot features
are not as extensive as those in Cytoscape, we were able to provide
a set of plots in our Shiny app that met all our requirements. These
requirements were, the ability to select and zoom onto nodes, to view
node information and to annotate networks with users uploaded data.
We used Shiny to write BSN which can be hosted online to visualize
and investigate the results of the JGL algorithm for three different
meta-conditions of microarray gene expression data for Bacillus sub-
tilis. BSN is also be hosted online using their standard free hosting
service https://jglnetworks.shinyapps.io/BacillusApp/.

6.1 Overview of BSN

The design of BSN includes multiple tabs on the webpage which the
user can utilise to select a function or type of analysis that they would
like to use. There are four of these different sections outlined below:

Network Analysis: Search for genes, view information on transcrip-
tional unit information and GO with links out to PubMed, Bsub-
Cyc.org and SynBioMine. The original dataset can be searched for
genes strongly correlated to a selected subset of genes and the JGL
algorithm re-run with these genes.

Differential Expression: Upload files containing (differential) expres-
sion values to be overlayed onto the networks.

Large Network Decomposition: The algorithm runs simulations to find
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the closest network that separates genes according to the classes
edges appear in.

Analyse New Data: Uploaded gene expression data that have been
mean and variance standardised can be analysed with the reference
data set. This provides additional data used to infer the network.

In designing the application, we would like to be able to integrate
as many useful sources of information as possible. One way we have
done this is to link to existing online databases of information, that is
SynBioMine and BsubCyc. These two Bacillus subtilis relevant sites
collate a large amount of the information available on Bacillus subtilis
and currently are updated frequently. By using these resources, we
do not duplicate the databases that already exist, and remove the
need to manually update the annotation data for BSN. One exception
to this is that currently the transcriptional unit information must
be manually updated by the maintainer of BSN. This is because the
transcriptional unit information must be parsed from the individual
BsubCyc webpages for each gene and then converted into a matrix of
edge annotations for use with the adjacency matrix which contains
the JGL network result. BSN has also been designed to allow users to
upload and analyse their own data. This allows for greater coverage
and specificity of data to be integrated with the existing model, which
can improve the network inference.

The list below summarises the information integrated into the

resource:

Partial requlatory networks based on a subset of expression data from
Nicolas et al. These are inferred using the JGL model of Danaher et
al, under multiple conditions.

Transcription unit information from BsubCyc.org, this is obtained
from DBTBS, which currently has 831 regulated operons. The
scope for this information is over ten percent of the genome.

Sigma Factor data from DBTBS and SubtiWiki. There are 18 sigma
factors currently listed on DBTBS. Across the 18 sigma factors,
there are in total 778 genes listed that are regulated by these sigma
factors in the B. subtilis genome.

Gene Ontology summary information from ENSEMBL
Links out to Gene Ontology information from SynBioMine

Links out to BsubCyc.org page for each gene that gives information

on:

Gene local context: the location of the gene and surrounding genes
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Transcriptional unit: experimentally validated regulatory sets

Gene Ontology terms: information on molecular function and
biological processes associated with the gene

Regulation Summary Diagram: this shows the general RNA poly-
merase, and where known, the associated sigma factor. The
diagram outlines the process of DNA transcription to RNA and
translation of RNA to protein. Where the protein is known to
undergo post-translation modifications this is shown as a final
stage.
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6.1.1 FEzamples of network analysis

Gene Search:

The network can be searched for a gene using the text box. If the
gene is in the networks the gene is highlighted using a grey box, Fig-
ure 6.1. The mouse can also be used to select part of the network
using a click and drag. For the genes within the selected area a sec-
ondary plot showing a zoom of the network is displayed below the
full network, Figure 6.2. The network is annotated with the transcrip-
tional unit information, green to indicate a known transcriptional unit
connection, blue for a gene with no known transcriptional unit and
red to indicate that though transcriptional unit information is known
about these genes so far, they have not been shown to be in the same
unit. There are also table outputs for the selected genes. The table
containing information on genes provides the gene name, short descrip-
tion as well as links to Gene Ontology information on SynBioMine and
the appropriate BsubCyc page.

Gene Search

Search for genes inthe
network, type the name in
the box below. If the gene
is present in the network
it will be highlighted by a
grey box on the plot
opposite,

Search for a gene on plot

Figure 6.1: Search for gene yhjr
PubMed Search: in text box, result is highlighted

When a search term is entered (e.g. Chemotaxis) into the query box on the network by a grey box.
The grey box highlights the

area of the gene of interest, the

two searches are performed for each gene on PubMed, Figure 6.3. The
first is for the gene name, for each search we also combined gene name
and the organism Bacillus subtilis (as the same gene names are often mouse cursor can then be used
used across different organisms) to give the number of paper results to select the gene.

for that gene/Bacillus subtilis combination in the gene counts column.

The second search additionally has the user input search term (e.g.

Chemotaxis), again a link to the PubMed results is provided along

with the number of papers found on PubMed, for this combination of

search term, gene name and Bacillus subtilis. This is useful to allow



PubMed for the gene and
the search term and the
gene alone.

Search term in Pubmed:

Selecting Genes

Use the mouse to select
genes in the plot opposite.
Information on their gene
ontologies and sigma
factors will be displayed in
the table below the plot.
Additionally using the
check baxes a group of
genes can be selectedas a
sub network to expand
using the button Expand
Subnetwork below.
Select genes to include in
Subnetwork:
% fiM @ fiiy @ fiZ

¥ flhe & flhA & flhF

% ybH @ cheB

% cheA @ cheW

% cheC
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The edges in the plot are coloured according to the transcriptional information
available on bsubCyc.org. Green edges are genes that are in the same known
transcriptiona units. Blue edges denote two genes with no known transcriptional
unit information. Where two genes are connected by a red edge, either or both
of the genes have known transcriptional unit information, but these two genes
are not currently known to be in the same transcriptional unit.

Figure 6.2: Selecting a set of
genes on the network using the
mouse cursor. A second image
is displayed of just the selected
genes. The check boxes allow
the user to select any of these
genes to be included in a sub
network. These sub networks
can then be expanded with up
to 30 additional genes.
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the user to see if there are any hits before moving to PubMed. It also
gives an indication of how likely it is that the gene is connected to
the search term through comparison of the number of hits with the
gene name and the search term in comparison to the gene name alone.
That is, if the number in each column is very similar, then nearly all
papers mentioning the gene also mention the search term and the user
can be more confident that the two are connected.

A



GOTerm 4%

Sigma.Factor § Go_SynBioMine §  Link_Bsubeyc &

phosphorelay SigD ched ched chef,

signal
transduction
system
[GOADO,
GOAD1)
GO:0006928

phosphorelay
signal
transduction
system
[GOAD1]
GO:0006355

chemotaxis
[GOAD0]

chemotaxis
[GOADO,
GOAD1)
GO:0007165
dliary or
flagellar
motility
[GOADO,
GOAD1)
GO:0006935

Expand Subnetwork:

The user can select a subset of genes in the network, this is by
means of a set of checkboxes that automatically update with the
names of those genes selected in the network. Given the selection,
an example of which is shown in Figure 6.4, this function finds up to
the 30 genes with the highest correlation to the set of selected genes.
Taking the selected genes and the additional genes (which do not
have to be in the original network), the function recalculates the JGL
output just for these genes. BSN displays the networks before and
after the sub network expansion, Figure 6.5.

6.1.2 Differential expression network

This function allows the user to upload their own differential expres-
sion data which is then mapped onto the network. This means that
users can see, for a set of differential expression values, whether the
network or set of genes is up or down regulated for the uploaded con-
ditions. Given differential expression data the researcher often wants
to gain an overview of how these genes interact with each other. This

Link_PubMed §
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PubMed_Gene Gene_only

a8 44

Figure 6.3: After searching for
selected genes in PubMed using
the search term Chemotaxis.

In addition to the standard
gene links to SynBioMine and
BsubCyec there is also a link out
to the PubMed search page for
the Bacillus subtilis gene and
the search term (Chemotaxis).
There are also summary counts
on the results in the last two
columns. These give the number
of results on PubMed for the
gene and search term and the
gene alone. This is useful for
two main reasons. The first

is that is gives an idea of how
likely the gene is to be related
to the search term - that is, if
the two columns have similar
counts. Second, it will indicate
if there are no search results,
this is a useful tool for the re-
searcher as they will not spend
time searching PubMed for an
uninformative result.
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Figure 6.4: Sub network selected
from the larger network for
expansion. The gene names

are shown along with the con-
nections between them. These
edges are coloured according

to the information on tran-
scriptional units taken from
BsubCyc.org. Green edges are
between two genes in the same
transcriptional units. Blue edges
are for a gene with no known
transcriptional unit. Finally,
red edges indicate that the two
genes have not been linked in
the same transcriptional unit
but that both are connected to
at least one transcriptional unit.

Figure 6.5: Selected sub network
from Figure 6.4 after expansion.
The sub network is expanded
by including up to an addi-
tional 30 genes. These genes
are selected as those with the
highest Pearson’s correlation
value to all nodes in the sub
network. This shows how the
expansion algorithm can be used
to investigate the subnetworks
individually and in a computa-
tionally tractable way. Further,
it can find genes that have sig-
nificant interaction in the JGL
model. This is because the addi-
tional 30 genes are connected to
the original sub network rather
than appearing as a separate
sub network or as disjoint single
nodes.
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can be done in several different ways, for example, using gene set en-
richment analysis to find functional terms common to the differentially
expressed genes. Or by testing for over representation of a pathway
in the set. BSN gives an alternative visual method of doing this. By
mapping differential expression onto the network, users can easily iden-
tify areas of the network that are differentially expressed. This gives
information not only on the regulatory networks present in the list of
differentially expressed genes but also the hierarchy and network view
of those genes see Figure 6.6 as an example. The legend provides in-
formation on the differential expression colour scale. From this visual
perspective, it is easy to see clusters of genes with similar differential
expression profiles.

The format of the file should have genes in the rows and different
conditions in the columns. The file can contain multiple contrasts,
that is, differential expression between multiple pairs of conditions.

In this case, the column headers will be used as identifiers for each
contrast: after the data are loaded, the column headers will appear
as the names of the radio buttons which are used to select which of
the conditions to be mapped onto the network. In this way the user is
able to toggle between conditions. The example in Figure 6.6 shows
that there were two columns in the dataset uploaded to BSN, these
are here named Test]l and Test2. The user can select either of these
and then update the network by pressing the Overlay Differential
Expression button.

Select a file to upload containing differential expression

- values for genes in the network. The data will be used to
= - .
- ¥ : o = - - colour the nodes in the network. The first column should
- - -
% - Y A . e - ot contain the gene names and the second the data values,
e Ty T a—"; - without column headings
L =@ - L e -
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Figure 6.6: Overlaying uploaded
differential expression data onto
the BSN network.
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6.1.3 Large network decomposition

We have implemented the Monte Carlo method for decomposing large
networks as outlined in Section 3.5.6. This allows the user to select an
area of interest from the network using the mouse as in Figure 6.7. It
is also possible to search for a gene in the text box which, if present in
the network, will be highlighted with a grey box. Once an area of the
network is selected BSN will list all clusters which have at least one
gene in the selected area, these appear as radio buttons to the left of
the network. In our example this includes clusters 15, 22 and 176. For
the cluster selected, 15, BSN lists all genes in this cluster in the table
below the network. The table gives the links out to the Gene Ontology
information on SynBioMine and the genes page on bsubcyc.org.

Search for genes inthe
network, type the name in
the box below. If the gene is
present in the network it will
be highlighted by a grey box
on the plot opposite.

Search for a gene on plot

Below are the possible
clusters that can be
decomposed from your
current selection.
Information on all genes in
the selected cluster are
shown in the table below. To
run hairball decomposition
on this cluster click on the
Decompose Network button
below.

Select Cluster to Analyse:

215 @22 @ 176 golntermine

The resulting network decomposition is shown below the origi- Figure 6.7: Showing the selec-

nal network in Figure 6.8. The decomposition is run once the user tion of an area of the network

presses the Network Decomposition button. This means that BSN is from which a single sub net-

not slowed down during the selection of the cluster or sub network work or cluster can be chosen

to analyse as would happen if the decomposition was run automati- for decomposition using sim-
ulation methods based on the
edge values of the sub network.
The clusters contained within
the highlighted portion of the
network can be selected using
the radio buttons at the bottom

left of the screen.



cally according to the cluster currently selected by the radio buttons.
Figure 6.8 shows that for this particular example sub network there
were a lot of different edge conditions connecting these genes. This is
because most of the genes have been separated from all other genes,
meaning that connected nodes have been assigned to different edge

classes.
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6.1.4 Analyse new data

BSN allows the user to upload their own data on Bacillus subtilis for
integration with the results already available. As shown in Figure

6.9 the file format is uploaded from the user’s personal computer

and, consistent with the differential expression data upload, must be
separated by either comma, semicolon or tab. The format of the file
should have genes in the rows and different conditions in the columns.
From here BSN will find all those genes in the dataset that match
those in the current network. The JGL algorithm is then run on

the intersection of the genes present in both the BSN network and
the uploaded dataset. This means that BSN is currently useful for
identifying differences in the network structures between different
conditions, however it has not as yet been extended to allow inclusion
of all available genes in the uploaded data set, see Section 6.3 for

further discussion.
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Figure 6.8: The selected region
from Figure 6.7 after using the
Monte Carlo method to split a
cluster that was previously one
network.
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Upload New Data

Browse...

Separator

o Comma

. Semicolon
. Tab

Value for Lambda 1

Value for Lambda 2

0.005

Calculate JGL

Figure 6.9: BSN allows the user
to upload their own data to be
added to the network. This file
can be comma, tab or semicolon
separated. The user can also
select the two shrinkage param-
eters to be used with the JGL
algorithm.



6.1.5 Ezporting data

On the Network Analysis tab the button ‘Generate Report’ writes
the results contained within the summary table to a csv file that

is downloaded to the user’s computer. All the images generated by
BSN can be downloaded to the user’s computer by right clicking and
selecting ‘Save Image As’. This opens the standard ‘Save File’ dialog
that allows the user to give a filename and location to the image, as
default all these images are saved as png files.

6.2 Code outline

An overview of BSN is shown in Figure 6.10. The main data is the
JGL gene network which was the output from the JGL model we
derived earlier based on the Bacillus subtilis data. BSN allows user
input, in the form of gene or sub network selection or as data uploads
to BSN. There are three main algorithms made available through BSN,
these are the sub network expansion, network decomposition and the
original JGL R package. These are all shown in Figure 6.10 under
App Function, the output is either another graphical network of gene
interactions or a table containing the gene names and information such

as Gene Ontology terms.
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JGL |
l Gene Network
User Input JL

User Upload

Expression data

App Function
JGL Algorithm

Gene(s) selection 3 User Input
2 User Upload Sub Kk
App Function u net\{vor
DE data selection
Subnetwork Expansion
Optional Input
PubMed search term L App Function
Output ”
Output =———=——- | Network Decomposition
Network Image
Output Network Image JL
Gene name
GO terms Output
PubMed Link Network Image
BsubCyc Link
SynBioMine Link

Output

Network Image

Figure 6.10: An overview of
BSN. The main data is the JGL
gene network. There are also
user inputs within BSN, User
Input as well as data uploads:
User upload. The functionality
available within BSN is outlined
as are the outputs. The output
is either tables of information
on the genes or network views
of the interactions between the
genes.
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6.3 Future developments

There are different ways in which BSN can be developed in the future.
These include increasing the data that have been analysed and adding
in more condition-specific information. Analysis of the Bacillus subtilis
data set from Nicolas et. al in Section 3.3.2 showed that there were
potentially another two JGL networks, based on different samples that
could be added to BSN. This would allow a larger proportion of the
genome to be available to the user for analytical purposes.

Another option would be to add additional options for the analysis
of user uploaded data specifically to enable them to select appropriate
shrinkage parameters therefore making the analysis more tractable.
This would be beneficial because it is difficult to know without prior
knowledge or previous experience of the JGL model what shrinkage pa-
rameters to use. For instance, it would be possible to add an overview
of the block sizes at different shrinkage levels as with the Toxoplasma
gondii analysis. This could also be extended to provide summary
statistics of the block sizes, that is the number of blocks, and their
average size in addition to the maximum block size. It may also be
possible to give an indication of how long the analysis would take,
but this, is not solely determined by the maximum block size, it also
depends on how quickly the inverse is found - the speed of convergence
will depend on the sparsity of the individual blocks and whether they
have an easily inverted form.

BSN could also be extended to use the empirical Bayes method
for estimating the correlations. Again, this method would be most
useful with guidance on the shrinkage parameters to use, and this
could be provided by the analysis of the block sizes at given levels
of shrinkage which can also be performed on the empirical Bayes
correlation matrices. Analogous to the baseline expression in the
Expression Atlas, it would also be useful to have baseline networks
for different cell or tissue types. As a standard, the data used in our
analysis is filtered to include only those genes which we think are
expressed before any correlations are calculated. As seen with the
Toxoplasma analysis, the untreated cells for the filtered data set show
similar correlations across all the expressed genes. Obviously, the
subset of genes that passes the filter will be different for different cell
types. It may be possible to generate the larger networks, with block
sizes covering thousands of genes, to infer the baseline networks. This
would also allow for comparison of different networks, for instance
between an untreated or healthy cell populations and a condition or
perturbation of interest.

There is potential to include additional annotation resources, for
example in our gene table we could add a link from assigned Sigma
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factors to their corresponding page on DBTBS, which would give in-
formation on all known regulons of the Sigma factor. We could also
develop BSN to check for multiple Sigma factors being assigned to the
same gene and display all possible Sigma factors rather than just the
first. We could also add functionality which allows the user to select
the edge annotation: this is standard functionality in Cytoscape and
would be useful to add into BSN. For example, in the differential ex-
pression mapping the user may want to switch between transcriptional
unit information on the edges and condition information. This would
then provide an easy way to see the up or down regulation of known
regulatory units and then change the annotation view to see the con-
ditions in which this is true according to the output from the JGL
model. Ideally an algorithm for allowing a hierarchical representation
of the network in R would be beneficial. Unlike Cytoscape, currently
these algorithms are not present in R and so we are not able to make
use of this layout in the network output.
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Figure 6.11: An example of

Gene Ontology information is a valuable resource however, one cur- the graph structure for Gene

rent area of research is how to summarise or simplify the ontological Ontology terms. Terms can

information. This is because the ontologies are in network form them- be parents or children of other

selves: this means there are general parent terms with more specific ontology terms.

child terms and a gene may be associated with either just a parent
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term or a parent and multiple child terms. An example of the directed
acyclic graph structure of the Gene Ontologies is shown in the Figure
6.11, it can be seen that the term ‘Signal Transduction’ is a child term
that is part of ‘cellular response to stimulus’, ‘cell communication’ and
‘single organism signaling’. When comparing ontologies across sets of
genes, it is usual to search for overrepresented terms. This gives an
overview of common terms and indicates, cellular components, biologi-
cal processes and molecular functions that are unexpectedly prevalent
in the gene sets.

From a network perspective however, it is still difficult to sum-
marise the ontological information. We used the GO slim terms that
aim to simplify the gene ontologies [Blake et al., 2015]. However, when
colouring nodes according to their GO slim terms, Cytoscape is not
able to find commonalities between the different annotations. The
colouring methods available in Cytoscapes vizmapper (visualisation
mapper) are either randomised or rainbow scale. Using the rainbow
scale the colours will be according to the sorted terms which means
that the colour is essentially according to the first few terms within
the GO slim set. This means that whilst there may be common terms
between two connected genes, they may have very different node
colours if the common terms are not at the beginning of the anno-
tation. Therefore, we could also develop the functional and disease
analysis methods used with the Toxoplasma gondii experiment into
extra annotation methods in BSN. This would mean changing the
annotation colouring according to a single term of interest. Two useful
options would be to give a search box where the user can input any on-
tological term, and the second that would give a list of terms to choose
from all of which have been found to be statistically overrepresented in
the network.
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