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We reformulate the projected imaginary-time evolution of the full configuration interaction quantum
Monte Carlo method in terms of a Lagrangian minimization. This naturally leads to the admission of
polynomial complex wave function parametrizations, circumventing the exponential scaling of the
approach. While previously these functions have traditionally inhabited the domain of variational
Monte Carlo approaches, we consider recent developments for the identification of deep-learning neural
networks to optimize this Lagrangian, which can be written as a modification of the propagator for the wave
function dynamics. We demonstrate this approach with a form of tensor network state, and use it to find
solutions to the strongly correlated Hubbard model, as well as its application to a fully periodic ab initio
graphene sheet. The number of variables which can be simultaneously optimized greatly exceeds
alternative formulations of variational Monte Carlo methods, allowing for systematic improvability of
the wave function flexibility towards exactness for a number of different forms, while blurring the line
between traditional variational and projector quantum Monte Carlo approaches.
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The description of quantummany-body states in strongly
correlated systems is central to understanding a wealth of
complex emergent phenomena in condensed matter physics
and quantum chemistry. The problem is well defined; the
Hamiltonian is known, and the solution is a linear super-
position of all possible classical configurations of particles.
However, this conceals exponential complexity in the wave
function, which in general prohibits both storage and
manipulation of these linear coefficients.
To deal with this exponentially large Hilbert space, one

approach is to sample the space stochastically. For studies
of the ground state of quantum systems, this is broadly
split into two separate categories, projector (PMC) and
variational Monte Carlo (VMC) methods [1,2]. In PMC,
a decaying function of the Hamiltonian is continually
applied to a stochastic representation of the full wave
function. This projects out the higher-energy components,
leaving a stochastic sampling of the dominant (generally
ground-state) eigenfunction. By contrast, in VMC a
polynomial-complex approximate wave function Ansatz
is imposed, generally with a small number of variational
parameters. State-of-the-art methods to optimize this
wave function then involve sampling the gradient and
Hessian of the energy with respect to the parameters in
the tangent space of the current wave function. This is
done by projecting into and sampling from the exponen-
tial configurational space. Once a stochastic representa-
tion of these quantities is obtained, updates to the wave
function parameters are found by a variety of iterative

techniques until convergence of this nonlinear paramet-
rization is achieved.
One promising emerging technique is the full configura-

tion interaction quantumMonte Carlo (FCIQMC) approach,
a projector quantumMonte Carlo method that stochastically
samples both the wave function and the propagator in Fock
space [3,4]. By exploiting sparsity inherent in the wave
function of many representations of quantum systems,
essentially exact results can be obtained with only small
fractions of the Hilbert space simultaneously occupied.
However, despite often admitting highly accurate solutions
for systems far out of reach of many alternative approaches,
the method is formally exponentially scaling with system
size, albeit often weakly. In order to advance to larger and
condensed phase systems, one approach is to exploit the fact
that electron correlation is, in general, inherently local. Two-
point correlation functions (away from criticality) will decay
exponentially with distance, while the screening of the
Coulomb interaction in bulk systems will result in local
entanglement of nearby electrons, with distant electrons
behaving increasingly independently [5].
Following the success of the FCIQMC approach for finite

systems, we aim to exploit this locality, to formally contain
the scaling to polynomial cost. This is done by imposing a
nonlinear, yet systematically improvable, Ansatz of the form
of a correlator product state (CPS), which explicitly corre-
lates plaquettes of locally neighboring degrees of freedom
[6,7]. Related wave functions have also been called
entangled plaquette states or complete graph tensor networks
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to stress their connection to tensor network states [8–11]. In
formulating this, we develop connections between projector
and variational quantum Monte Carlo approaches, and
propose new methodology for the optimization of arbitrary
nonlinear wave function parametrizations. This approach is
shown to confer a number of benefits compared to state-of-
the-art wave function optimization [12–16]. The number of
parameters that can be handled even brings into scope more
sophisticatedwave functions, including other tensor network
parametrizations [17,18]. We apply this approach to a
number of model and ab initio systems, showing that
systematic improvability and exceedingly large parameter
spaces can be handled within these complex optimization
problems.
The CPS wave function defines “correlators” as diagonal

operators (to optimize) which directly encode the entan-
glement within sets of single-particle states (which in this
work are exclusively neighboring), as Ĉλ ¼

P
nλ
Cnλ

P̂nλ
,

where P̂nλ
¼ jnλihnλj is the projection operator for the set

of all many-body Fock states nλ in the correlator λ, with
adjustable amplitudes Cnλ

. The CPS is then written as a
multilinear product of correlators acting on a chosen
reference state jΦi. In this work, this reference state is a
single Slater determinant (which can also be variationally
optimized), but other reference states are possible [19,20].
The final CPS wave function is, therefore, represented as
jΨCPSi ¼

Q
λĈλjΦi. It can be shown that a number of

different phases and wave functions can be expressed in
this form, including resonanting valence bond (RVB) and
Laughlin wave functions [6]. As the number of degrees of
freedom in the system grows, the complexity of the wave
function grows only linearly. Additionally, this choice of
low-rank factorization of the wave function is systemati-
cally improvable with increasing correlator size as it
recovers longer-ranged entanglement effects, but this
admits many variables to optimize. VMC techniques have
been used previously for similar tensor network forms, but
the growth of parameters has led to limited success in
recovering long-range entanglement or thermodynamic
limit results [17,18]. We now consider a new, efficient
approach to handle these many parameters, derived in part
from the FCIQMC approach, which can be considered as
the limit of a single large correlator.
Combining PMC and VMC approaches.—The FCIQMC

(and some other PMC [21]) methods are simulated through
stochastic dynamics given by

jΨ0i ¼ lim
k→∞

½1 − τðĤ − ÎE0Þ�kjψ ð0Þi; ð1Þ

with τ chosen to be sufficiently small, where Ψ0 is the
ground state of the system and E0 is the self-consistently
obtained ground-state energy [3]. This can be considered
both as a first-order approximation to imaginary time
dynamics as e−βĤjψ ð0Þi and as a power method to project

out the dominant, lowest-energy eigenvector of Ĥ [22].
Alternatively, a VMC perspective considers finding the
variational minimum of the Ritz functional hΨjĤjΨi=
hΨjΨi through optimization of the wave function
parameters.
These approaches can be shown to be analogous by

considering the minimization of a positive-definite
Lagrangian,

L½ΨðZσÞ� ¼ hΨjĤjΨi − E0ðhΨjÎjΨi − AÞ; ð2Þ

where normalization (A) is enforced by a Lagrange
multiplier, which at convergence is given by E0. It is
simple to show that the minimum of this functional is the
same as that given by the Ritz functional. We can consider a
simple gradient descent minimization of all variational
parameters, fZσg in Eq. (2), with step size τk, as

Zðkþ1Þ
σ ¼ ZðkÞ

σ − τk
∂L½ΨðkÞ�
∂Zσ

: ð3Þ

Projecting the equations into the full Hilbert space of
configurations fjmig, we obtain

Zðkþ1Þ
σ ¼ ZðkÞ

σ − τk
X
nm

�∂ΨðkÞ

∂Zσ

����m
�

× ðHmn − EðkÞδmnÞhnjΨðkÞi: ð4Þ

If the chosen wave function is an expansion of linearly
independent configurations, then this will return exactly the
“imaginary-time” dynamics of Eq. (1) and the FCIQMC
master equations, demonstrating the deep connection
between imaginary-time propagation, gradient descent,
and the power method [23].
However, here we aim to go beyond this. In keeping with

the FCIQMC approach, the summations are replaced by
random samples of both the wave function and Hamiltonian
connections. The sum over fng is stochastically sampled
via a Metropolis Markov chain, to evaluate a stochastic
representation of the wave function [22,24–27]. Each
iteration consists of 100 000–200 000 random samples
of the wave function. For each, a small selection of
configurations fmg are sampled from the set of nonzero
connections via Hmn in the manner of the FCIQMC
approach, while appropriately unbiasing for the probability
of this selection [28,29]. Furthermore, the derivatives
hð∂ΨðkÞ=∂ZσÞjmi can be efficiently evaluated from the
respective wave function amplitudes hΨðkÞjmi. Technical
details on the sampling of this gradient can be found in the
Supplemental Material [30].
This stochastic gradient descent (SGD) of the

Lagrangian results in an iteration cost that is independent
of the size of the Hilbert space and thus renders this
methods inherently suitable for large scale systems. It also
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admits a number of advantages over state-of-the-art VMC
optimization [12–14], such as the avoidance of the con-
struction of matrices in the tangent space, whose sampling
and manipulation becomes a bottleneck for large numbers
of parameters. While Krylov subspace techniques have
been proposed to circumvent this by projecting down to
more manageable spaces [15], ill conditioning can limit the
efficiency of this approach [16]. Furthermore, diagonaliza-
tion of the randomly sampled matrices required in some
optimizations can lead to biases in the final parameters
[31,32]. Our approach also bears similarities with stochas-
tic reconfiguration [13,14], which can also be considered an
imaginary time propagation that differs from SGD in its
definition of the metric for the updates [33]. Because of
this, stochastic reconfiguration also requires projection of
the equations into the tangent space of the current wave
function and stabilization of the resultant matrix equations
[14]. However, the proposed matrix-free stochastic appli-
cation of Eq. (3) describes a quasicontinuous optimization,
where the error bar at convergence represents both the
stochastic error in the sampling and fluctuations in the wave
function. In addition, the dynamic also provides a straight-
forward route to unbiased computation of the two-body
reduced density matrix [34,35], Γpq;rs ¼ hΨja†pa†qasarjΨi.
By evaluating hQi ¼ Tr½ΓQ̂�, arbitrary one- and two-body
static properties can be found. This includes the energy,
spin, and magnetic properties which here are computed
from the density matrix, rather than from the local energy as
is common in VMC calculations.
However, similar SGD approaches have been considered

before with little success for large numbers of variables, due
to the slow convergence of the parameters as O½ð1=kÞ þ
ðσ= ffiffiffi

k
p Þ�, where σ is the variance in the gradient [36,37].

Improving on this involves advances in SGD methods, used
in the field of deep-learning algorithms of neural networks
[38,39]. Analogously, these networks represent a flexible
nonlinear function with parameters to be optimized via
minimization of a cost function, often achieved via SGD
schemes similar to the one in Eq. (3) [40,41].
The convergence can be accelerated via the addition of a

“momentum,” whereby the update retains a memory of the
previous updates. Propagation then results in the accumu-
lation of velocity in the direction of persistent decrease in
energy, thereby accelerating the update in directions of low
curvature over multiple iterations [42], formally accelerating
the convergence rate to a second-orderO½ð1=k2Þ þ ðσ= ffiffiffi

k
p Þ�.

Mathematically, the stochastic projection is given by amonic
polynomial of the propagator, such thatΨðkÞ ¼ pk

AðAÞΨð0Þ.
In the SGD scheme of Eq. (1), this is akin to the power
method. However, the optimal projection will be a poly-
nomial approximation to a function whose value at the
desired eigenvalue of the propagator is one, and whose
maximum absolute value in the range of the rest of the
spectrum is minimized. This is best represented by using a
shifted and scaled Chebyshev polynomial approximation to

the projection. The success of the Lanczos approach as a
second-order optimization, as well as other deterministic
projections, can also be rationalized in this fashion [43,44].
An optimal version of this projector can be formulated as

Nesterov’s accelerated approach [45], whereby the sequence

λ0 ¼ 0, λk ¼ 1
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ2k−1

q
, γk ¼ ð1 − λkÞ=λkþ1 is

defined, and starting at an initial point Zð1Þ
σ ¼ Yð1Þ

σ , the
algorithm stochastically iterates the equations [46]

Yðkþ1Þ
σ ¼ ZðkÞ

σ − τk
∂L½ΨðkÞ�
∂Zσ

; ð5Þ

Zðkþ1Þ
σ ¼ ð1 − γkÞYðkþ1Þ

σ þ γkY
ðkÞ
σ ; ð6Þ

for k ≥ 1. While an optimal projection overall, this is no
longer a gradient descent scheme, and as such there is no
requirement that each iteration will decrease the energy, and
instabilities can be observed [47,48]. To mitigate this
behavior, we have found it beneficial to include a damping
for the momentum d as γk → γke−ð1=dÞðk−1Þ [47,49]. With a
suitably chosen damping parameter the rate of convergence
of the optimization should not be hindered, since this is
dominated in the latter stages by the σ=

ffiffiffi
k

p
term for both

accelerated and conventional gradient descent [50].
The remaining arbitrariness concerns the step size (or

learning rate) τk. While decreasing the step size generally
improves robustness, it slows convergence and increases
autocorrelation time [40,41].We found optimal convergence
and accuracy achieved with a deep-learning technique
denoted RMSprop [51], an adaptive step size method which

dynamically estimates an independent τðkÞZσ
for each param-

eter. This gives τðkÞZσ
¼ ηðRMS½gZσ

�ðkÞÞ−1, where η is a global
parameter for all variables and RMS½gZσ

�ðkÞ represents the
root mean square of previous gradients for the variable up to

the current iteration, RMS½gZσ
�ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½g2Zσ

� þ ϵ
q

, evaluated

by accumulating an exponentially decaying average of
the squared gradients of the Lagrangian g: E½g2Zσ

�ðkÞ ¼
ρE½g2Zσ

�ðk−1Þ þ ð1 − ρÞg2Zσ
. The small constant ϵ is added

to better condition the denominator and ρ is the decay
constant. This dynamically adaptive, parameter-specific step
size actsmuch like a preconditioner for the system, and allows
the optimization to take larger steps for those parameters with
small and consistent gradients, and vice versa. This ensures
robustness of the algorithm to large changes in gradients due
to the stochastic nature of the gradient evaluation.
Results.—The demonstration of the ability of the algo-

rithm to converge wave functions with many parameters is
shown in Fig. 1, which considers a 98-site 2D Hubbard
model at half filling, with U=t ¼ 8. In this study, inde-
pendent, overlapping five-site correlators centered on every
site in the lattice were chosen to correlate with nearest
neighbors, allowing up to ten-electron short-ranged
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correlation to be directly captured, as well as long-range
correlation and symmetry breaking through coupling
between the overlapping correlators and the optimization
of the Slater determinant. The lattice and tiling of these
correlator plaquettes is depicted in the Supplemental
Material [30]. Accurate results for this system are given
by the Green’s-function Monte Carlo technique [52].
Our CPS captures 97.9% of this correlation energy, with
the remaining likely to be due to the lack of direct long-
range two-body correlation. However, this parametrization
still requires the simultaneous optimization of over 105

parameters, beyond the capabilities of most VMC imple-
mentations, and demonstrates a striking advance in the rate
of convergence afforded by the accelerated algorithm.
To consider the systematic improvability of the CPS

Ansätze, we consider the 1D, 22-site Hubbard model, such
that benchmark data can be found from the density matrix
renormalization group (DMRG),which can bemade numeri-
cally exact for this 1D system [53]. Results at half filling and
U ¼ 4t are shown in Fig. 2. For a wave function of three-site
overlapping correlators and a fixed, noninteracting reference,
we find a variationally lower result than previously published
for an identical parametrization via linear method optimiza-
tion [12,53]. This could be due to the bias from the nonlinear
operations (diagonalization) of random variables present in
these alternate algorithms [31,32]. We also investigate how
increasing the size of the correlators in order to directly
capture longer-ranged many-body correlation, as well as
optimizing “unrestricted” spin-polarized (ΦUHF) or “gener-
alized” noncollinear (ΦGHF) Slater determinants rather than a
paramagnetic orbital component (ΦRHF), affects the quality
of the wave function. The increased flexibility of this

democratic wave function gives rise to systematic conver-
gence towards DMRG with very small error bars, despite
requiring over 250 000 variables.
Ab initio systems can also bewell treated in the same vein,

stochastically sampling from both the configuration space of
the wave function and from its O½N4� connected configura-
tions in Eq. (4), which are now far larger than found in the
Hubbard model due to long-range interactions. In Fig. 3, we
consider the symmetric dissociation of H50, a molecular
model for strongly correlated systems and a nontrivial
benchmark system [54]. This system has been treated not
only with conventional quantum chemistry methods such as
coupled cluster (which fail to converge at stretched bond

FIG. 2. Convergence of energy for a range of ΨCPS for 1 × 22
Hubbard model. VMC linear method and DMRG energies are
taken from Ref. [53]. Error bars are too small to be visible.

FIG. 1. Convergence of CPS with O½105� parameters for
SGD and accelerated scheme with RMSProp algorithm for the
98-site (tilted) 2D Hubbard model at U ¼ 8t. Green’s-function
Monte Carlo (GFMC) energy is taken from Ref. [52], while the
wavefunction is initialized at the restricted Hartree-Fock (RHF)
solution, as given above. Inset shows fluctuations both in the
statistical sampling of expectation values and in the variation of
the parameters.

FIG. 3. Percentage of DMRG correlation energy captured by
ΨCPS for the symmetric dissociation of a linear chain of 50 hydro-
gen atoms in a STO-6G basis. Numerically exact DMRG, as well
as high-level correlated quantum chemical methods of Møller-
Plesset perturbation theory (MP2), coupled cluster up to double
excitations (CCSD) and with perturbative triple excitations
[CCSD(T)] are included, with values taken from Ref. [55].
The largest deviation in the total energy compared to DMRG
across all bond lengths shown is 1.1 kcal=mol per atom.
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lengths beyond 2.0a0)[55], but also strongly correlated
approaches including dynamical mean-field theory and other
embedding methods [56–58], due to the availability of
numerically exact DMRG values for comparison [55]. We
parametrize our CPSwith five-atom overlapping correlators,
and both a fixed unpolarized reference and a stochastically
optimized unrestricted reference determinant. At stretched
bond lengths, nearly all of the DMRG correlation energy
is captured, as the correlation length spans few atoms, and
on-site repulsion dominates. However, as the bond length
decreases, a successively smaller percentage of the DMRG
correlation energy is captured, as the entanglement of the
electrons spans larger numbers of atoms, as can also be seen
in the larger bond dimension required of DMRG at these
geometries [55]. Despite this, the correlation energy is so
small at these lengths that the maximum error in the total
energy is only 1.1 kcal=mol per atom, achieving chemical
accuracy for the stretching of this system.
Fully periodic localized orbitals can also be used to

construct a Fock space in which to form a CPS, and here we
consider an infinitely periodic graphene sheet with 4 × 4 k-
point sampling [59]. From a double-zeta periodic Gaussian
basis, we choose one localized, translationally invariant 2pz
orbital centered on each carbon atom. Overlapping corre-
lators consisting of the atoms on each hexagonal six-
membered ring can then be constructed and the full
Hamiltonian projected into this low-energy space, includ-
ing a potential from the core electrons at the Hartree-Fock
level [60]. A generalized reference determinant is then
stochastically optimized along with the correlators, giving a
wave function parametrization of 67,584 parameters—we
believe the largest number of nonlinear parameters for an
ab initio system to date. This is equivalent to a quantum
chemical calculation of a complete active space of 32
orbitals, which is beyond that which could be treated by
conventional techniques. This spans the dominant strong
correlation effects, but precludes high-energy many-body
dynamic correlation and screening.
From the sampled density matrix, we can construct the

spin correlation function to analyze the extent to which spin
fluctuations among the π=π� bands around the Fermi level
affect the magnetic order of the system. The spin corre-
lation functions are constructed from two-point functions,
rather than from symmetry breaking in the wave function,

and show a rapid decay of antiferromagnetic correlations
which only substantially affect nearest neighbors (Fig. 4).
Conclusions.—In this work we have presented a novel

approach to sample and optimize arbitrary nonlinear wave
functions of many-body quantum systems. The optimiza-
tion is written as an accelerated propagator inspired by
ideas from developments in deep-learning algorithms and
the FCIQMC approach. This allows for large numbers of
parameters to be handled, and systematically improvable
Fock-space wave functions to be used in both lattice and
ab initio systems.
The calculations made extensive use of computing

facilities of the Rechenzentrum Garching of the Max
Planck Society with calculation data available from
Ref. [62].
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