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Abstract 

Purpose of review: this historical perspective reviews how work of Eric H. Davidson was a 

catalyst and exemplar for explaining hematopoietic cell fate determination through gene 

regulation.  

Recent findings: Researchers studying blood and immune cells pioneered many of the early 

mechanistic investigations of mammalian gene regulatory processes. These efforts included 

the characterisation of complex gene regulatory sequences exemplified by the globin and 

T/B cell receptor gene loci, as well as the identification of many key regulatory transcription 

factors through the fine mapping of chromosome translocation breakpoints in leukaemia 

patients. As the repertoire of known regulators expanded, assembly into gene regulatory 

network models became increasingly important, not only to account for the truism that 

regulatory genes do not function in isolation, but also to devise new ways of extracting 

biologically meaningful insights from ever more complex information. Here we explore how 

Eric H. Davidson’s pioneering studies of gene regulatory network control in non-vertebrate 

model organisms have had an important and lasting impact on research into blood and 

immune cell development.  

Summary: The intellectual framework developed by Davidson continues to contribute to 

hematopoietic research, and his insistence on demonstrating logic and causality still 

challenges the frontier of research today. 
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Introduction 

Cellular decision making underpins early development and adult haematopoiesis 

The haematopoietic system has long served as a paradigm of how a hierarchically organised 

differentiation system might mediate the long-term maintenance of adult tissues that are 

characterized by a high turn-over. Haematopoietic stem cells (HSCs) at the top of this 

hierarchy serve as an emergency reservoir as well as making a small but steady contribution 

to the more rapidly proliferating downstream progenitor populations. At the molecular 

level, this hierarchy is underpinned by cellular decision making processes, which are 

balanced to ensure that multipotent progenitors give rise to the appropriate numbers of 

downstream mature cells (for review see [1]).  

 

Cellular decision making also lies at the heart of early development, where, following 

fertilization of the egg, cellular diversity is rapidly generated through a process of rapid cell 

division accompanied by the establishment of distinct gene expression programs. Such 

alterations in gene expression critically depend on the deployment of lineage-specific 

transcription factors (TFs), or more typically small combinations of such TFs. Of note, TFs of, 

for example, the Gata, Ets and bHLH families play important roles in early development as 

well as adult haematopoiesis [2,3]. It is important however to recognize that there are 

important differences between early embryonic development and adult tissue maintenance. 

For example, multipotent cells in the embryo such as epiblast or neuromesodermal 

progenitors only exist for a specified time window, after which they will have turned over 
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into downstream progeny. In contrast, adult stem cells self-renew as well as generate 

differentiated derivatives. 

 

The building blocks for regulatory network models 

A network model may be defined simply as a model of a set of data, whereby the network 

model provides a flexible way of representing the individual objects as well as their 

relationships. The objects in such models are commonly referred to as nodes, and their 

relationships as edges. Network models are commonly used to interpret and simulate highly 

complex systems. The question therefore arises what specific entities could form the nodes 

for network models that would prove useful to advance our understanding of biology. 

Together with Roy Britten, Eric H. Davidson published a visionary paper in 1969, presenting 

a theoretical framework for how distinct sequences in the genome may communicate with 

each other through sequence-specific trans-acting regulators, then envisioned as mobile 

RNA molecules [4]. The interactions (or edges in network terminology) between the DNA 

sequences and mobile regulators would thus define the inner workings of a network capable 

of decoding the regulatory blueprint present within the genome, and thus ensure cell type 

and condition-specific gene expression programs. As emphasized by Davidson over the 

following decades, this kind of gene regulatory network model did not simply aim to 

represent correlations, but rather was intended to show causal mechanisms that either 

drive system state change or maintain system stability [5,6]. 
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Following on from the 1969 theory paper, research across many laboratories identified 

DNA-binding proteins as key mediators of converting DNA-encoded regulatory information 

into cell type-specific gene expression programs. Many of these so-called transcription 

factor (TF) proteins were first identified by haematopoiesis researchers, either by mapping 

the breakpoints of recurrent chromosome translocations in leukemia patients, or through 

biochemical fractionation of proteins binding to regulatory sequences of the haemoglobin 

or immunoglobulin genes (e.g. [7-9]).  

 

While the identification of each of these individual TFs undoubtedly represented a major 

advance, another step-change was needed to integrate DNA regulatory sequences and TF 

proteins into regulatory network models. At a practical level, this required the vision to 

embrace long-term experiments to systematically analyse all the individual components of 

the machinery that drive expression of individual genes. Here again, Eric Davidson and co-

workers led the way, using sea urchin development as an experimentally tractable model 

system, with the overall goal of decoding the hardwiring of metazoan development through 

comprehensive characterisation of the organization and function of genomic regulatory 

systems [10-12]. Below we outline some of the broadly relevant messages that came from 

these pioneering studies.  

 

Insights from regulatory network models of sea urchin development: the sea urchin 

system 
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Davidson developed gene regulatory network models aiming for full explanation of the 

highly ordered process, reproducible in space and time, through which a complex embryo 

develops from a single fertilized egg [11,13,14].  The sea urchin embryo was a particularly 

clear system in which to attempt this, because future tissue “territories” of the free-living 

larva become distinct within the first 6 cell divisions, prior to any cell migration. The embryo 

partitions into ≥10 different territories before gastrulation [15,16], each distinguished by 

different combinations of newly-expressed TFs. Thus, in this system, the entire 

diversification of embryonic regions can be transformed into the question of how regulatory 

genes get activated in the correct combinations, in the correct places, times, and orders.  

 

The gene regulatory network models developed by Davidson and colleagues explained how 

genomically encoded regulatory systems could:  create multiple cell types from one cell; 

produce complex tissues in an invariant geometry from a single cell; and convert transient 

signals into more lasting stable states with predictable timing, entirely through the ability of 

TFs to regulate each other’s expression. The foundation for this analysis was the nature of 

cis-regulatory elements that control gene expression. Network explanations were made 

possible by the fact that key genes in most systems are regulated simultaneously by multiple 

“upstream” factors, often with distinct positive or negative roles (early examples: [17,18]).  

Rule sets for expression of a given gene in some domain are physically embodied in genomic 

cis-regulatory sequences that comprise enhancers, i.e., clustered, specific binding sites for 

the factors that need to work coordinately, while the same gene may be expressed under 

different conditions by using a different cis-regulatory element. The sea urchin system is an 

exceptionally tractable one for molecular embryology, and this enabled the Davidson team 
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to isolate cis-regulatory elements linked to specific network genes, demonstrating that they 

drive reporter gene expression in specific spatial and temporal patterns in the whole 

embryo, and proving that their activities depend on direct DNA binding from multiple TFs 

[17,19,20].  

 

Network logic embodied in molecular biology 

Combinatoriality: Because cis-regulation responds to multiple inputs, any given gene in the 

network can respond to logical combinations (AND, OR, ANDNOT) of existing TFs [21,22]. 

This logic is crucial for explaining how complexity increases as cells divide in an embryo. For 

example, it means that a gene may require both an inherited factor, which defines its 

“lineage” criterion for expression, and an independent signal-dependent factor that is 

activated only if the cell is adjacent to a particular neighbour. As embryonic cells divide in a 

stereotyped pattern, this causes predictable divergence of the gene expression and fate of 

one daughter cell from the other.  

 

Distinct rules mediated by distinct cis-regulatory elements: The same gene can be regulated 

by different cis-regulatory elements, not only to enable expression in different cell types 

under different control, but also enabling the gene to be activated initially by one set of 

conditions and then maintained in the same cell lineage by different conditions. Specific 

early examples came from the sea urchin system [23,24], as well as from Drosophila 

blastoderm and wing discs [25,26]. For example, a cis-element switch enabled a gene first 

activated by a transient signal to be maintained afterwards, independent of the initial signal, 
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by direct or indirect positive autoregulatory feedback. Therefore, not only mapping of factor 

binding sites in one “minimal” regulatory element, but rather defining the whole system of 

regulatory elements for a gene, is needed to account for that gene’s developmental 

domain(s) of expression. 

 

Robustness, not parsimony: Certain sets of regulatory genes are co-expressed in a sustained 

way in the sea urchin embryo to stabilize a developmental state [27,28]. Factors reinforce 

each other’s expression by direct positive cross-regulation, using redundant “additive OR” 

logic. This cross-regulation was shown to have a deep evolutionary history [27,28]. Although 

certain individual connections were direct in one species but indirect in another, the gene 

set as a whole remained positively cross-regulating across long evolutionary times [29]. 

These gene network circuits decisively refute the idea that evolution selects mainly for 

parsimony. Instead, these recursive, redundant system architectures for locking down 

developmental states are selected for highly reproducible performance and avoidance of 

failure [30].  

 

Repression: A dominant feature of the embryonic gene network model in the sea urchin was 

the prominence of transcriptional repression, which was recognized early as the central 

mechanism for setting boundaries between programs active in different territories [24]. 

Davidson and colleagues identified multiple examples of sequence-specific, regulated 

repression, sometimes under switch-like modulation by signalling pathways [11,15,16]. To 

date, evidence from the sea urchin and Drosophila embryo systems still provides clearer 
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insights into the molecular basis of gene-specific repression than most available mammalian 

data. 

 

Network architecture, not master regulators: Importantly, gene regulatory network 

architecture can cause a factor’s regulatory impact to appear to be the reverse of its 

biochemical activity. The sea urchin system illustrated that repression relationships could be 

nested to create a “double negative gate”. This circuit enables a ubiquitous activator to turn 

on a complex program only in one embryonic cell lineage [31,32].  Whereas this program is 

silenced in most of the embryo by a first repressor, within the selected region a second 

repressor blocks expression of the first repressor, allowing the ubiquitous activator to 

trigger the program (Fig. 1A). Thus, through the double-negative gate, network architecture 

can produce a pattern of gene expression that does not match the expression patterns of 

any of its direct activators. This is a caveat for purely correlation-based network inference.   

 

Information processing by the regulatory genome in hematopoiesis 

It became clear from the 1990’s that hematopoiesis could only be explained by the actions 

of hematopoietic TFs if one could account for the orderly developmental control of 

expression of the factors themselves. Davidson (Fig. 1B) strongly encouraged the enterprise 

of mapping the regulatory sequences that controlled the genes encoding these factors.  

Successful research in several groups, prior to whole-genome mapping, identified stem and 

progenitor-cell associated regulatory elements for SCL (Tal1) [33-36], Gfi1 [37], Gata2 [38-

42], Runx1 [43] and Lmo2 [44], regulatory elements with erythroid-associated activity for 
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Gata1 [45], and elements important for regulation of PU.1 (Spi1) in distinct myeloid and 

lymphoid contexts [46-55]. Each of these genes was shown to respond to inputs delivered 

via distinct cis-regulatory elements in different developmental contexts, confirming the 

generality of rules previously established in the invertebrate embryos.  While these mapping 

studies based on classic, functionally-monitored methods may not have been 

comprehensive, they yielded strong insights about the regulatory switches that determine 

expression patterns for pivotal genes. 

 

Examples of regulatory models of haematopoiesis inspired by Eric Davidson 

Because of the rapid progress characterising key hematopoietic TFs, it became clear early 

that hematopoietic programmes must be determined by regulators combinatorially [56]. 

Very few hematopoietic TFs are strictly lineage-specific in expression; almost all play roles in 

multiple hematopoietic lineages. Furthermore, while different cell lineages may express 

different members of a given TF family, family members generally share DNA-binding 

specificity. Thus, from the “viewpoint” of the DNA sequence, an isolated GATA site might 

equally mediate control by GATA1 in erythroid or mast cells, by GATA2 in stem cells, or by 

GATA3 in T cells. In reality, lineage specificity must emerge from the unique combinations of 

TFs expressed in different cell types. The mobilization and impacts of these different 

combinations require explanation by a gene regulatory network.  

 

The Davidson group itself focused primarily on logic models of gene regulatory networks, 

with implicit [11], or explicit timing [13]. The most directly comparable hematopoietic 
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regulatory network models may well be a series of models developed by Roger Patient’s 

group, with the overall aim of encapsulating key processes that regulate early 

developmental haematopoiesis in Xenopus (summarized in [57]). Starting from a gene 

regulatory network logic model relating the known regulators of erythroid development 

[58], the Patient group collected and integrated spatiotemporal expression and signalling 

data coupled with comprehensive perturbation screens in Xenopus embryos. The resulting 

models do not reach the same degree of temporal or whole organism coverage achieved 

with the sea urchin work, and direct cis-regulatory information did not constitute a major 

component of the Xenopus work. Nevertheless, interesting parallels emerged including early 

repression and stepwise cascades of combinatorial TF interplay during the process of 

establishing and then stabilising cell fates [57].  

 

Differentiation of hematopoietic progenitors from an embryonic hemangioblast or 

hemogenic endothelium must begin with a robust regulatory “launching pad”.  Pimanda et 

al. recognized that in early multipotent hematopoietic progenitors, the cis-regulatory 

elements of several of the key regulatory genes share target sequences for the TFs encoded 

by the other genes in the set [38]. In a mutually supportive triad, GATA2, SCL, and Fli1 

maintained each other’s expression through direct positive cross-regulation.  Further work 

revealed that this triad was at the core of a larger network, also including Lmo2, Lyl1, Runx1, 

and Erg, in a core heptad, and three other factors. These frequently bound together to the 

same regulatory elements, including those controlling their own expression [59,60], in a 

mechanism strongly evocative of the densely interconnected cross-regulatory circuits seen 

in certain conserved embryonic gene regulatory networks [28]. A comprehensive model of 
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this network was established, anchored in molecular biology, by testing each factor-bound 

cis-regulatory element for functional hematopoietic activity, determining the roles of 

binding sites within those elements by mutation, and then using the results to construct a 

dynamic Bayesian network model to account for the cells’ regulatory state [60](Fig. 1C). The 

strong performance of this model in predicting experimental observations showed the 

feasibility of predictive gene network modelling in this system, and also revealed substantial 

robustness to withstand single factor perturbations reminiscent of the robustness of sea 

urchin regulatory networks. 

 

The Graf and Thieffry groups extended a related approach to pathways for hematopoietic 

cell identity change, using TF binding maps in B and myeloid cells and regulatory 

perturbation effects on B-cell and myeloid transcriptomes to explore these divergent 

developmental pathways. They constructed an asynchronous Boolean regulatory network 

model, which performed well in accounting for cytokine-driven lymphomyeloid 

differentiation, requirements for different TFs in setting distinct fates, and the ability of 

C/EBP family TFs to transdifferentiate B lineage cells to myeloid fates [61].  

 

Component subcircuits in hematopoietic differentiation 

Many gene regulatory network-centered analyses of hematopoiesis have focused on 

identifying roles of particular network subcircuits, rather than seeking comprehensive 

predictiveness. For example, driving the transitions in several lineages are feed-forward 

circuits, which are used in many biological contexts [62] besides developmental gene 
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regulatory networks.  Examples are the E2A-EBF1-Pax5 circuitry promoting B-cell 

specification (rev. by [63]); the GATA1-FOG1 (Zfpm1) and GATA1-KLF1-FLI1 circuitry that 

operate during megakaryocyte-erythroid differentiation [64-66]; and the Notch signalling-

TCF1-GATA-3-Bcl11b cascade driving early T-cell lineage commitment (rev. by [67,68])(Fig. 

1D). Notably, in these developmental contexts, feed-forward circuits have also generally 

been found to drive an output repressing a lineage alternative as well as an output 

activating the favoured programme.  

 

Hematopoietic lineage choice by bipotent precursors is often described as an example of 

bistable switch architecture based on balanced mutual repression, and driven to 

irreversibility by the positive autoregulation of each of the “contestants”. This simple 

choice-making circuit architecture promotes dichotomous irreversible outcomes, with 

stochastic timing, based on equilibrium solutions to simple ordinary differential equations 

with very few variables. Thus, such a model has been popular to explain the instability of 

bipotent developmental intermediates and to explain how the fate decisions of single cells 

become irreversible. Mutual repression-based switches have been invoked for the PU.1-

GATA1 opposition in myeloid vs. erythroid lineage choice [69-71](Fig. 1E), and for a Gfi1-

Egr/Nab opposition circuit that converts modestly different PU.1 and C/EBPα ratios into 

dichotomous granulocyte vs. macrophage outcomes [72]. More recently, using single-cell 

transcriptome analysis, fluorescent TF expression reporters, and regulatory gene 

perturbation, mutual Gfi1-Irf8 opposition has been shown to be perhaps even more central 

for the granulocyte-macrophage lineage choice [73].   
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The prevalence of mutual repression subcircuit models for hematopoietic lineage choice 

contrasts with the circuits described by Davidson in sea urchin embryos, where such 

subcircuits were rare. If this difference is real, it could reflect a difference between the 

deterministic timeclock of a developing embryo and the stochasticity of choices governed by 

bistable mutual repression. Interestingly, on closer inspection, the mutual repression-based 

switch models are simpler than the hematopoietic reality.  For example, if the PU.1-GATA1 

antagonism were absolute, mast cells, basophils, and eosinophils would not exist. Indeed, 

several lines of evidence increasingly indicate more conditionality, and thus more regulatory 

participants, in the PU.1—GATA1 relationship than a simple stochastic winner-take-all 

opposition [74-77], reflecting the fact that even single cells in hematopoiesis face more than 

two potential choices.  

 

Competing feed-forward mechanisms are often embedded within a more complex 

architecture together with bistable switch circuits, as proposed in the Gfi1/Egr-Nab based 

granulocyte-macrophage choice model [72]. For example, in later T lymphocyte 

development, cells use embedded feed-forward and cross-inhibition circuit motifs for the 

CD4+ helper vs. CD8+ killer decision within the thymus and the TH1 vs. TH2 effector subtype 

decision in the periphery [78-81]. These are irreversible but non-deterministically 

programmed developmental choices regulated by environmental signals, which are clearly 

advantageous for hematopoietic functions in adult organisms. 

 

Challenges and caveats: the importance of underlying biological differences 
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Despite the powerful influence of Davidson’s approaches, there are differences between the 

network models needed to account for non-vertebrate embryogenesis and for 

hematopoietic systems in postnatal mammals. These are noted briefly here; for a more 

detailed review, see [82]. Key differences concern dose dependence and timing.   

 

As Davidson’s group built increasingly complete models of the sea urchin embryo 

developmental gene regulatory network, their theoretical work increasingly stressed the 

Boolean (digital) quality of the network behaviour. A temporally synchronized Boolean 

model by Peter et al., modeling regulatory genes simply as being “off” or “on”, already 

seemingly approached a complete, temporally accurate account of the generation and 

patterning of both mesoderm and endoderm in sea urchin embryos [13]. However, the 

underlying set of assumptions was problematic for parallels with hematopoiesis, since 

hematopoietic TFs have repeatedly been found to work on their targets in level-sensitive 

ways.  

 

The developmental genetics field has long exploited the near-equivalence between 

heterozygous mutant embryos and wildtype control embryos, but in mammalian 

hematopoiesis many regulatory loci are haploinsufficient, e.g. [83-86]. Such twofold gene 

dosage differences affect the distribution of fate decisions among nominally equivalent 

starting cells or the kinetics of progression from progenitor to differentiated state.  PU.1, 

although required in myeloid and lymphoid programmes alike, has strongly differential 

effects on these programmes depending on its expression level [87-89]. Furthermore, 

elevated expression of transcription factors in hematopoiesis does not simply flip a 
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physiological bistable switch. Some TF gain-of-function perturbations drive cells into an 

unanticipated alternative fate: e.g., overly high levels of the T-cell TF, GATA-3, drive T-cell 

precursors to generate mast cells instead [90].  These relationships are understandable 

based on incoherent (self-antagonizing) feedforward circuits, common in systems biology 

[62], but are not readily represented in classic topological gene network models (for a 

workaround applicable to some cases, see [91]). 

 

Step timing in embryonic networks, which change state as soon as new TFs or signal-

dependent modifications of TFs appear [13,92], seems very different from that in networks 

governing hematopoietic differentiation, which drive programmes that change slowly over 

many days. In postnatal hematopoietic precursors, even after experimental introduction or 

knockout of a TF, it often takes more than a day for changes in specific target gene 

expression to become measurable. This makes direct, indirect, and feed-forward dependent 

effects hard to disentangle. The slow response may be due in part to epigenetic state 

inertia, as discussed elsewhere [82,93]. However, it is also possible that hematopoietic gene 

regulatory networks themselves are more highly buffered against state changes. For 

example, in mutual repression-based hematopoietic choices, cells take days to select their 

fate [72], a marked contrast from the embryonic boundaries that are established by 

repression within minutes or hours.   

 

Conclusions 
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In haematopoiesis research as well as many other fields, the use of the term “regulatory 

network” far exceeds the actual number of studies that include genuine experiments and/or 

analyses that would be required to gain new insights at the regulatory network scale. At 

least two relevant take-home messages seem to follow from this observation. Firstly, there 

is broad recognition that regulatory network analysis is a powerful approach to advance 

from a descriptive to a mechanistic understanding of biological processes. Secondly, actual 

regulatory network studies are not a small add-on to an existing body of work, but instead 

represent a substantial undertaking that is not for the faint-hearted.  

 

Notably, many of the principles that underlie cellular decision making processes apply 

broadly across biological systems. Hematopoiesis researchers therefore have been able to 

benefit from pioneering studies such as the work by Davidson and co-workers on regulatory 

network control of sea urchin development. Against the backdrop of a scientific 

environment characterized by increasing specialization, there is an important lesson here on 

the enormous benefits that come from cross-fertilization and crossing artificial boundaries 

between diverse fields, with important implications for researchers as well as research 

funders, across all fields of hematopoiesis research and beyond.  
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FIGURE LEGEND 

Figure 1. Gene regulatory network circuits in context. (A) Double negative gate, used for sea 

urchin embryonic skeleton specification [31]. Skel: in skeletogenic precursors. Non-Skel: in 
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rest of embryo. Horizontal lines with bent arrows: genes. Arrows: positive regulation. Bar-

end lines: negative regulation. Grayed out: inactive/non-expressed. (B) Eric Davidson, 2010, 

in Berlin. (C) Core regulatory network for hematopoietic stem and progenitor cells [60], with 

inputs to genes transduced via discrete cis-regulatory elements (rectangles). Note dense 

positive cross-regulation. (D) Feed-forward circuit, example from pro-T cell lineage 

commitment [68]. (E) Mutual repression-based bistable circuit, GATA1 vs. PU.1 [69]. 


