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Abstract

Improving Attention-based Sequence-to-sequence Models
Qingyun Dou

Attention-based models have achieved state-of-the-art performance in various sequence-
to-sequence tasks, including Neural Machine Translation (NMT), Automatic Speech
Recognition (ASR) and speech synthesis, also known as Text-To-Speech (TTS). These
models are often autoregressive, which leads to high modeling capacity, but also
makes training difficult. The standard training approach, teacher forcing, suffers from
exposure bias: during training the model is guided with the reference output, but the
generated output must be used at inference stage. To address this issue, scheduled
sampling and professor forcing guide a model with both the reference and the generated
output history. To facilitate convergence, they depend on a heuristic schedule or an
auxiliary classifier, which can be difficult to tune. Alternatively, sequence-level training
approaches guide the model with the generated output history, and optimize a sequence-
level criterion. However, many tasks, such as TTS, do not have a well-established
sequence-level criterion. In addition, the generation process is often sequential, which
is undesirable for parallelizable models such as Transformer.

This thesis introduces attention forcing and deliberation networks to improve attention-
based sequence-to-sequence models. Attention forcing guides a model with the generated
output history and reference attention. The training criterion is a combination of
maximum log-likelihood and the KL-divergence between the reference attention and
the generated attention. This approach does not rely on a heuristic schedule or a
classifier, and does not require a sequence-level criterion. Variations of attention forcing
are proposed for more challenging application scenarios. For tasks such as NMT, the
output space is multi-modal in the sense that the given an input, the distribution of
the corresponding output can be multi-modal. So a selection scheme is introduced to
automatically turn attention forcing on and off depending on the mode of attention.



vi

For parallelizable models, an approximation scheme is proposed to run attention forcing
in parallel across time.

Deliberation networks consist of multiple attention-based models. The output is
generated in multiple passes, each one conditioned on the initial input and the free
running output of the previous pass. This thesis shows that deliberation networks can
address exposure bias, which is essential for performance gains. In addition, various
training approaches are discussed, and a separate training approach is proposed for
its synergy with parallelizable models. Finally, for tasks where the output space is
continuous, such as TTS, deliberation networks tend to ignore the free running outputs,
thus losing its benefits. To address this issue, a guided attention loss is proposed to
regularize the corresponding attention, encouraging the use of the free running outputs.

TTS and NMT are investigated as example sequence-to-sequence tasks, and task-
specific techniques are proposed, such as neural vocoder adaption using attention
forcing. The experiments demonstrate that attention forcing improves the overall
performance and diversity. It is also demonstrated that deliberation networks improve
the overall performance, and reduce the chances of attention failure.
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Chapter 1

Introduction

Converting one sequence to another is a common goal of a wide range of tasks, including
Neural Machine Translation (NMT) [168, 6], Automatic Speech Recognition (ASR)
[21, 53] and Text-To-Speech (TTS) [158, 195], also known as speech synthesis. These
tasks can be referred to as sequence-to-sequence tasks, and the corresponding models
sequence-to-sequence models. A challenge here is that the input and output do not
necessarily have the same length. Attention-based models are good at connecting
sequences of different length, and have achieved state-of-the-art performance, in various
sequence-to-sequence tasks [175, 103, 172]. Here the term performance refers to the
overall quality of the output sequences, e.g. word error rate in ASR.

Despite their modeling capacity, attention-based sequence-to-sequence models can be
difficult to train [9, 148]. The models are usually implemented as relatively complicated
neural networks with tens of thousands of parameters, which makes optimization
challenging [168, 51]. From a probabilistic perspective, sequence-to-sequence models
estimate the probability of the output sequence conditioned on the input sequence.
This probability is often factorized across time, each token conditioned on its previous
tokens. To achieve more accurate estimation, sequence-to-sequence models are usually
autoregressive [24].

For autoregressive models, a standard approach is teacher forcing, which guides a model
with reference output history during training. This makes the model unlikely to recover
from its mistakes during inference, where the model operates in free running mode,
and the reference output is replaced by the generated output. This problem is referred
to as exposure bias [9]. Many approaches have been introduced to tackle exposure bias,
and there are mainly two lines of research. Scheduled sampling [9, 43] and professor
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forcing [97] are prominent examples along the first line. These approaches guide a
model with both the reference and the generated output history, and the goal is to learn
the data distribution via maximizing the likelihood of the training data. To facilitate
convergence, they often depend on a heuristic schedule or an auxiliary classifier, which
can be difficult to design and tune [9, 60]. The second line is a series of sequence-level
training approaches, leveraging reinforcement learning [148], minimum risk training
[159] or generative adversarial training [197]. Theses approaches guide a model with the
generated output history. During training, the model operates in free running mode,
and the goal is not to generate the reference output, but to optimize a sequence-level
loss. However, many tasks do not have well established sequence-level objective metrics.
Examples include speech synthesis, voice conversion, machine translation and text
summarization [172]. Both lines of research require generating output sequences, and
this process is sequential for autoregressive models. In recent years, models based on
the Transformer [175] have been widely used, and a key advantage is that when teacher
forcing is used, training can be run in parallel across time. To efficiently generate
output sequences from Transformer-based models, an approximation scheme [43] has
been proposed to parallelize scheduled sampling.

This thesis aims to improve attention-based sequence-to-sequence models, and follows
the first line of research described above. The main ideas introduced are attention
forcing and deliberation networks. Attention forcing guides the model with the
generated output history and reference attention. This approach does not rely on
a heuristic schedule or an auxiliary classifier, which makes it simpler to tune than
scheduled sampling and professor forcing. Variations of attention forcing are proposed
for more challenging application scenarios. For tasks such as machine translation and
text summarization, the output space is discrete and multi-modal. To make sure that
the training criterion is sensible, a selection scheme can be adopted to automatically
turn attention forcing on and off depending on the mode of attention. For parallelizable
models such as convolutional models and Transformer-based models, parallel training
across time is a major advantage. Here the approximation scheme [43] previously
mentioned can be adopted to parallelize attention forcing.

Deliberation networks consist of multiple attention-based models. Here the output is
generated in multiple passes, each one conditioned on the initial input and the free
running output of the previous pass. Deliberation networks were originally proposed
as deeper networks that leverage additional attention mechanisms to access both past
and future context when decoding [187]. In this thesis, it is argued and empirically
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demonstrated that deliberation networks address exposure bias, and that this is essential
for performance gains. In addition, various training approaches are discussed, and
a separate training approach is proposed for its synergy with parallelizable models.
Finally, for tasks where the output space is continuous, such as speech synthesis and
voice conversion, it is difficult to train the additional attention over the free running
output. Here it is proposed to regularize the attention with a guided attention loss
[169], encouraging the attention to be monotonic.

The structure of the thesis is as follows. Chapter 2 reviews the fundamentals of deep
learning, covering commonly used building blocks and general training techniques.
Chapter 3 describes sequence-to-sequence models that adopt the encoder-attention-
decoder architecture. In particular, various training approaches are analyzed, moti-
vating later discussions. Chapter 4 introduces attention forcing, covering the general
framework and application considerations. Chapter 5 adopts the same structure to
introduce deliberation networks. Experiments are conducted to demonstrate the effec-
tiveness of the novel ideas, taking speech synthesis and machine translation as example
tasks. Chapter 6 investigates speech synthesis, describing the general pipeline and
analyzing the experimental results. Chapter 7 adopts the same structure to investigate
machine translation. Chapter 8 summarizes the thesis and discusses future work.





Chapter 2

Fundamentals of Deep Learning

Deep learning refers to a family of machine learning methods based on deep neural
networks, which can approximate complicated mappings. Models based on deep
learning have been successfully applied to various sequence-to-sequence tasks, including
speech recognition [66], speech synthesis [203] and machine translation [171].

Neural networks approximate mappings by a series of relatively simple linear and
nonlinear mappings. Typically there are multiple layers in a network, and each layer
realizes a simple mapping. The architecture of a neural network, including the nature
of each layer and how they are connected, determines what tasks the neural network is
more suitable for. While there is an infinite number of possible architectures, most
neural networks can be viewed as a combination of many basic building blocks. For
sequence-to-sequence tasks, the most commonly used building blocks are Deep Neural
Networks (DNNs) [10, 66], Convolutional Neural Networks (CNNs) [101] and Recurrent
Neural Networks (RNNs) [154]. Attention mechanisms [6, 117] and Transformer blocks
[175] are more advanced modules, but are becoming standard building blocks in recent
years.

2.1 Basic Building Blocks

2.1.1 Deep Neural Networks

A DNN, also known as a Fully connected Feedforward Neural Network (FFNN), is a
neural network composed of multiple fully connected feedforward layers [66]. Each
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Fig. 2.1 Illustration of a DNN with K hidden layers; the arrows connecting two vectors
indicate that each unit in one vector is connected to all units in another.

layer can be viewed as a function, which performs a linear mapping followed by a
nonlinear mapping. The output of each hidden layer is the input of the next layer.
For each layer, as well as the entire neural network, the output and input are vectors,
and they are not necessarily of the same size. The term “fully connected” means that
each unit in the output vector depends on all units in the input vector. The term
“feedforward” means that information flows from the input, through the intermediate
computations, to the output. There are no feedback connections in which the output
of a layer is fed back into itself. Such feedback connections are extensively used in
RNNs, which will be described in section 2.1.3.

Figure 2.1 illustrates the structure of a DNN with K hidden layers. This can be
formulated as:

h(k) = f (k)(W (k)h(k−1) + b(k)); 1 < k < K + 1 (2.1)
h(1) = f (1)(W (1)x+ b(1)) (2.2)
y = f (K+1)(W (K+1)h(K) + b(K+1)) (2.3)

the superscript (k), where 1 ≤ k ≤ K + 1, denotes the layer index; x, y and h denote
input, output and hidden vectors; W and b denote weight matrix and bias vector of
a linear mapping; f denotes a non-linear function, also referred to as an activation
function. Typically an activation function operates independently on each element,
i.e. unit, of its input vector. Section 2.1.4 will describe a range of standard activation
functions.
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In general, feedforward networks with one or more hidden layers are able to approximate
any function [51, 68, 69].1 However, there are several practical issues: 1) the hidden
layers may need to be infeasibly large; 2) the training algorithm may fail to find the
correct parameters; 3) there may not be enough training data. In many circumstances,
using deeper models can reduce the number of units required to represent the desired
function and can reduce the amount of generalization error [51].

2.1.2 Convolutional Neural Networks

For DNNs, the input is a vector of a fixed size, which results in two limitations. First,
the network is not flexible for inputs of a varying size. Second, flattening the input
into a vector ignores some structures in the data. However, many natural signals have
compositional structures, in which higher-level features are obtained by composing
lower-level ones [100]. For example, in images, local combinations of edges form motifs,
motifs assemble into parts, and parts form objects. Similarly, in text, characters form
words, words assemble into phrases, and phrases form sentences. These limitations
motivate the use of CNNs [101], which can take as input a multi-dimensional matrix of
a varying size.

A CNN is a neural network that use convolution in place of general matrix multiplication
in at least one of its layers [51]. Most standard CNNs have multiple convolutional layers
and pooling layers, followed by some fully connected layers [100]. The intuition for
this architecture is twofold. First, in array data such as images, local groups of values
are often highly correlated, forming distinctive local motifs that are easily detected.
Second, the local statistics of images and other signals are invariant to location. In
other words, if a motif can appear in one part of the image, it could appear anywhere,
hence the idea of units at different locations sharing the same weights and detecting
the same pattern in different parts of the array.

1The universal approximation theorem [68] states that a feedforward network with a linear output
layer and at least one hidden layer with any “squashing” activation function, which saturates for
very negative or very positive arguments, can approximate any Borel measurable function from one
finite-dimensional space to another with any desired non-zero amount of error, provided that the
network is given enough hidden units. The derivatives of the feedforward network can also approximate
the derivatives of the function arbitrarily well [69]. The concept of Borel measurability is beyond the
scope of this thesis. Here the key is that any continuous function on a closed and bounded subset of
RD, where RD denotes the finite(D)-dimensional space of real numbers, is Borel measurable. The
universal approximation theorem has also been extended to finite-dimensional discrete spaces, and to
a wider class of activation functions [51], including the now commonly used rectified linear unit [122],
which will be described in section 2.1.4.
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Fig. 2.2 Illustration of a 2D convolution and a corresponding matrix multiplication;
the parallelograms are matrices, and the rectangles are vectors; the computation for
the first output unit is shown, and the rest are analogous.

Convolution

In the context of neural networks, convolution is a special linear operation. It connects
the output and input in such a way that it scales more efficiently w.r.t. the size of the
input. A convolutional layer realizes such an operation. It is feedforward, but is not
fully connected. In addition, many parameters, i.e. weights, in the layer are shared.
Figure 2.2 illustrates a 2D convolution and a corresponding matrix multiplication. The
left side is a convolution mapping a 2 × 3 matrix X to a 1 × 2 matrix Y , using a
sliding filter represented as a 2× 2 matrix W . The convolution can be formulated as

X =
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3


Y =

[
y1,1 y1,2

]
W =

w1,1 w1,2

w2,1 w2,2


yi,j =

2∑
m=1

2∑
n=1

wm,nxi+m−1,j+n−1; i = 1; j = 1, 2

where i and j denote the indices of the input and output, and m and n denote the
indices of the filter. The right side of figure 2.2 is a matrix multiplication that yields
the same result. The input and output are flattened as vectors x and y; the filter is
used to construct a sparse weight matrix with tied weights W̃ . This can be formulated
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as

x =
[
x1,1 x1,2 x1,3 x2,1 x2,2 x2,3

]⊤

y =
[
y1,1 y1,2

]⊤
= W̃x

W̃ =
w1,1 w1,2 0 w2,1 w2,2 0

0 w1,1 w1,2 0 w2,1 w2,2



In general, convolutions are agnostic to the size of the input. They can be applied
at any dimensionality, but 1D [174, 126] and 2D [92, 162, 64] are the most standard
forms. The first successful applications of CNNs were in the field of computer vision,
where the 2D convolutions are usually used [51]. For a 2D convolutional layer, the
most general input is a 3D matrix, where the third dimension is for the channels; a
group of 3D filters are used, each producing a 2D matrix, also called a feature map;
the output is the stack of these feature maps, also a 3D matrix.

Generally speaking, the role of the convolutional layer is to detect local conjunctions
of features from the previous layer. Units in a convolutional layer are organized in
feature maps, within which each unit is connected to local patches in the feature maps
of the previous layer through a set of weights called a filter. The result of this local
weighted sum is then passed through an activation function. All units in a feature
map share the same filter, while different feature maps in a layer use different filters.
Three hyperparameters control the size of the output feature maps: the size, stride and
zero-padding. Stride determines the distance the filter slides each time; zero-padding
determines whether and how to pad the input with zeros around the border. Dilation
[196] has been introduced more recently. It inserts masked spaces into the receptive
field of a filter, making it more efficient for modeling longer-range dependencies [174].

Pooling

The role of the pooling layer is to merge semantically similar features into one. Because
the relative positions of the features forming a motif can vary somewhat, reliably
detecting the motif can be done by coarse-graining the position of each feature. A
typical pooling unit computes the maximum of a local patch of units in one feature
map or in a few feature maps. Neighboring pooling units take input from patches that
are shifted by more than one row or column, thereby reducing the dimension of the
representation and creating an invariance to small shifts and distortions. The pooling
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Fig. 2.3 Illustration of a unidirectional RNN with one hidden layer.

layer allows representations to change very little when elements in the previous layer
change in position and appearance [100].

Standard pooling layers operate on each feature map independently of other maps,
yielding a stack as deep as the input. For pooling layers, it is not common to pad
the input using zero-padding. Hence the size of the output feature maps are usually
controlled by the pooling window size and stride. A range of pooling functions have
been proposed, such as maxout, soft-maxout and Lp-norm. These functions are pre-
determined, so the pooling layers do not need to learn any parameters. Without loss
of generality, for a pooling window of size M ×N , maxout, soft-maxout and p-norm
pooling can be written respectively as equations 2.4 to 2.6.

zi,j = maxm,n(yi,j, ..., yi+M−1,j+N−1) (2.4)

zi,j = log(
M∑
m=1

N∑
n=1

exp(yi+m−1,j+n−1)) (2.5)

zi,j = (
M∑
m=1

N∑
n=1
|yi+m−1,j+n−1|p)1/p (2.6)

The computation is shown for position i, j of the output feature map Z. The input
feature map is Y , but the pooling window only covers a part of it: Yi:i+M−1,j:j+N−1.
To simplify the notation, it is assumed that the stride of the pooling layer is one in
both dimensions.

2.1.3 Recurrent Neural Networks

A RNN can be viewed as a time series of DNNs that share wights. RNNs process
an input sequence one element at a time, maintaining in their hidden units a history
vector, also referred to as a state vector. This vector implicitly contains information
about the history of all the past elements of the sequence. Hence for tasks that involve
sequential inputs, such as speech and text, it is often better to use RNNs [100]. Figure
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Fig. 2.4 Illustration of a bidirectional RNN with one hidden layer.

2.3 illustrates the structure of a unidirectional RNN. At each time step, the current
history vector is updated as a function of the current input vector and the previous
history vector, and the current output is a function of the current history vector. A
RNN can be formulated as

ht = fh(W f
h xt +W r

hht−1 + bh) (2.7)
yt = fy(Wyht + by) (2.8)

x1:T , y1:T and h1:T denote the input, output and history vectors; T is the length of
the sequences; W and b denote weight matrix and bias vector of a linear mapping; f

denotes an activation function.

Unidirectional RNNs are good at capturing information from the past time steps,
but not the future. To capture information from the entire input sequence, a pair
of unidirectional RNNs running in reverse directions can be combined to form a
bidirectional RNN. Figure 2.4 illustrates the structure of a bidirectional RNN. At each
time step t, the history vector ht combines the forward and backword history vectors
−→
h t and ←−h t, usually by concatenation. This can be formulated as

−→
h t = −→f h(

−→
W f

hxt +−→W r
h

−→
h t−1 +−→b h) (2.9)

←−
h t =←−f h(

←−
W f

hxt +←−W r
h

←−
h t+1 +←−b h) (2.10)

ht = [−→h t;
←−
h t] (2.11)

where [; ] denotes the concatenation of two column vectors.

When unfolded in time, RNNs can be seen as very deep feedforward neural networks.
Although their main purpose is to learn long-term dependencies, training them has
proved to be problematic because the gradients either grow or shrink at each time
step, so over many time steps they often explode or vanish. Theoretical and empirical



12 Fundamentals of Deep Learning

evidence shows that it is difficult for vanilla RNNs to learn to store information for very
long [131]. To solve this problem, many variations have been proposed. Two popular
proposals are the Gated Recurrent Unit (GRU) [30] and Long Short-Term Memory
(LSTM). They still keep the structure in time; meanwhile, the simple activation function
in equation 2.7 is extended to enhance memory. Detailed discussions on the GRU and
LSTM can be found in appendix A.

2.1.4 Activation Functions

Commonly used activation functions include softmax function, sigmoid function, hy-
perbolic tan (tanh) function, Rectified Linear Units (ReLU) and some of its variations.
Softmax function can be wirtten as:

f(xi) = exp(xi)∑I
i′=1 exp(xi′)

; 0 ≤ f(xi) ≤ 1;
I∑
i=1

f(xi) = 1 (2.12)

Each element of the output vector is between 0 and 1, and all elements sum to 1. Hence
the softmax function is often used in the output layer of a neural network designed for
classification tasks.

Sigmoid function and tanh function are respectively shown in equations 2.13 and 2.14.

f(xi) = 1
1 + exp(−xi)

; 0 ≤ f(xi) ≤ 1 (2.13)

f(xi) = exp(xi)− exp(−xi)
exp(xi) + exp(−xi)

; −1 ≤ f(xi) ≤ 1 (2.14)

Both of them can keep a layer from outputting extremely large or small numbers,
and are often used in hidden layers. A problem of sigmoid and tanh is that they are
relatively easy to saturate, which results in slow convergence when using gradient-based
optimization methods.

ReLU can be used to solve this problem. Equation 2.15 shows the expression of ReLU.

f(xi) = max(0, xi); 0 ≤ f(xi) (2.15)

It is very efficient as there is no exponential function or division. Figure 2.5 compares
ReLU with sigmoid and tanh; it can be seen that ReLU does not saturate for positive
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Fig. 2.5 Activation functions.

inputs. Experiments in previous research have shown that ReLU leads to rapid
convergence in training [122].

2.2 Attention Mechanisms

2.2.1 Framework

Conceptually, an attention mechanism connects two sequences.2 It generates a time-
dependent context vector ct, which summarizes an input sequence x1:L according to an
output sequence y1:T . In other words, it maps x1:L to a context vector sequence c1:T ,
which is aligned with y1:T . For each output token yt, the attention mechanism produces
a context vector ct, by performing a weighted sum of the input sequence. The input
and output sequences are typically embedded by hidden sequences, where each token
has some information about the sequence. Let h1:L embed the input sequence, and
s1:T the output sequence. At each time step t, the weights are packed into an attention
vector αt = [αt,1, ..., αt,L]⊤, and are computed based on one output embedding st, and
the sequence of input embeddings h1:L. This process can be formulated as follows.

ct =
L∑
l=1

αt,lhl (2.16)

αt,l = exp(f(st,hl;θα))∑L
l′=1 exp(f(st,hl′ ;θα))

(2.17)

2More generally, an attention mechanism can be applied to non-sequential data, which is beyond
the scope of this thesis.
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where θα denotes the attention mechanism, and f(st,hl;θα) denotes a score function
computing unnormalized weights. The weights, i.e. the entries of an attention vector,
indicate the focus on the input tokens. The sequence of attention vectors α1:T form an
attention map, which is a T × L matrix.

The score function f(st,hl;θα) is central to the attention mechanism, and can take
various forms. The initial work proposing attention mechanism [6] adopted the additive
score function:

f(st,hl;θα) = v⊤
α tanh(Wα[st;hl]) (2.18)

where vα and Wα are weight matrices to be learned, and [; ] denotes concatenation.
The attention mechanism is parametrized by a feedforward network with a single
hidden layer, using tanh as the activation function. The network is jointly trained as
part of a sequence-to-sequence model.

In reference [6], the embedding sequences h1:L and s1:T are respectively produced by
an encoder θh and a decoder θs. Figure 2.6 illustrates this attention-based sequence-
to-sequence model. The encoder is a bidirectional RNN, which has a forward state
and a backward state for each encoder time step. The encoder output h1:L is the
concatenation of the two states. The decoder’s time steps are aligned with the output
y1:T . At each step, its state is updated as st = f(st−1,yt−1, ct−1;θs).3 In sequence-to-
sequence generation, it is common that the encoder is bidirectional, while the decoder
is unidirectional. The reason is that at inference stage, the model does not have access
to future tokens. There are alternative ways to build the encoder and the decoder,
which will be described in section 3.1.

Following the success of the additive attention, various forms of attention have been
investigated [17, 117, 175]. Table 2.1 lists several popular attention mechanisms
and their corresponding score functions. β denotes a hyper-parameter, and Dh the
dimension of the encoder output.

3In reference [6], the state update equation is st = f(st−1,yt−1, ct;θs); the context vector ct is
computed with the state at the previous time step st−1. This indexing is equivalent to the one adopted
in this thesis, but is less readable as the subscript t−1, instead of t, will show up in the score functions.
It is easier to see the equivalence, when the computation of ct and st is expanded, starting from the
beginning of the sequence, where t = 0.
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Fig. 2.6 Illustration of an encoder-decoder model with attention [6], at time step t;
each circle depicts a vector.

Table 2.1 Popular attention mechanisms and their corresponding score functions.

Name f(st,hl;θα) Reference
Cosine β(s⊤

t hl)/(∥st∥∥hl∥) [54]
Additive v⊤

α tanh(Wα[st;hl]) [6]
General s⊤

t Wαhl [117]
Dot-product s⊤

t hl [117]
Scaled dot-product s⊤

t hl/
√

Dh [175]
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Incorporating Prior Knowledge

In theory, the most powerful attention mechanisms are the ones that make few assump-
tions about the alignment between the input and output, such as the general attention
[117]. Incorporating prior knowledge induces some bias, but can make the model
considerably more efficient, given that the corresponding assumptions are sensible.
Here the term efficient means that the model requires relatively fewer parameters to
achieve a certain level performance.

For example, by limiting the attention to parts of the input sequence [189, 117], both
training and inference are more efficient. This can be crucial when the input is large.
Another example is the location-sensitive attention [28], which extends the additive
attention mechanism [6] by considering attention weights from previous decoder time
steps. The score function is:

f(st,hl;θα) = v⊤
α tanh(Wα[st;hl;βl]); β1:L = Wβ ∗αt−1 (2.19)

where Wβ denotes a stack of 1D filters and ∗ denotes convolution; β1:L denotes the
result of the convolution. This encourages the model to move forward consistently
through the input, mitigating potential failure modes where some subsequences are
repeated or ignored by the decoder. For tasks where the alignment should be monotonic,
such as ASR and TTS, it is very beneficial to use location-sensitive attention [28, 158].
In contrast, for tasks where the alignment is not necessarily monotonic, such as NMT,
it is more sensible to use a more general type of attention.

2.2.2 Self-attention

So far the attention mechanisms have been used to connect two sequences. In this
case, a cross-sequence attention mechanism produces a time-dependent summary of the
input sequence, for each time step of the output sequence. Self-attention [25, 130, 134]
is an attention mechanism relating different tokens of a single sequence in order to
compute a representation of the same sequence. It can be interpreted as special usage
of attention, where the two sequences to be connected are the same. Here the context
sequence c1:L has the same length as the sequence of input embeddings h1:L, and can
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be viewed as a better representation of the input. Equations 2.16 and 2.17 become

cl =
L∑
l′=1

αl,l′hl′ (2.20)

αl,l′ = exp(f(hl,hl′ ;θα))∑L
l′′=1 exp(f(hl,hl′′ ;θα))

(2.21)

Similar to the case of connecting two different sequences, the score function can take
various forms. The scaled dot-product attention [175] is a common choice, which
allows parallel computation across time. As a representation learning model, self-
attention does not make assumptions about its input sequence. In contrast, both CNNs
and RNNs implicitly assume that the embedding of one token depends more on its
neighboring tokens. Such assumptions can make the model more efficient, but only
when they are sensible [51].

In some recent litterateur [175], where both self-attention and cross-sequence attention
are used, an alternative description of attention is often adopted. Here an attention
mechanism is described as mapping a query and a sequence of key-value pairs to a
context vector. The context vector is computed as a weighted sum of the values, where
the weight assigned to each value is computed by a score function of the query and the
corresponding key. The process involves three sequences: a query sequence q1:T , a key
sequence k1:L and a value sequence v1:L. This can be formulated as

c1:T = f(q1:T ,k1:L,v1:L;θα) (2.22)

at the sequence-level, and

ct =
L∑
l=1

αt,lvl (2.23)

αt,l = exp(f(qt,kl;θα))∑L
l′=1 exp(f(qt,kl′ ;θα))

(2.24)

at time step t of the query sequence. This formulation is equivalent to cross-sequence
attention, shown in equations 2.16 and 2.17, when

q1:T = s1:T (2.25)
k1:L = v1:L = h1:L (2.26)
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It is equivalent to self-attention, when all three sequences are the same:

q1:T = k1:L = v1:L = h1:L; T = L (2.27)

In this thesis, the key and value sequences are the same, except when Transformer
blocks are used. Therefore the query-key-value description is not the default description.
When the query-key-value description is adopted, it will be assumed that the query
sequence has a different length to the key and value sequences.

2.2.3 Multi-head Attention

Multi-head attention [175] is the combination of a group of attention mechanisms. The
heads, i.e. members of the group, have the same structure, but different parameters.
The computation of multiple attention mechanisms can be done in parallel. Figure
2.7 illustrates the structure of multi-head attention. For each head, the query, key
and value sequences are first linearly projected to a different space. Let H denote
the number of heads, h the head index, and c(h)

1:T the sequence of context vectors
produced by head h, W (h)

q , W (h)
k and W (h)

v the linear projection matrices. This can
be formulated as

c
(h)
1:T = f(W (h)

q q1:T ,W
(h)
k k1:L,W (h)

v v1:L;θα) (2.28)

At each time step of the query sequence, each head produces a context vector; these
vectors are then concatenated and linearly projected to have a reduced dimension.
Let Wc denote the projection matrix. At time step t, multi-head attention can be
formulated as

ct = Wc[c(1)
t ; c(2)

t ; ...c
(H)
t ] (2.29)

Intuitively, multi-head attention expands the model’s ability to focus on different posi-
tions. From a different perspective, it gives the attention layer multiple representation
spaces [175].

For multi-head attention, when the score function does not have any parameters, e.g.
scaled dot-product attention [175] and cosine attention [54], it is essential to map the
input sequences to different spaces for each head [175]. Without these linear mappings,
the attention heads will be identical, losing the benefits of using multiple heads.
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Fig. 2.7 Illustration of multi-head attention [175].

2.3 Transformer Blocks

A Transformer block [175], also referred to as a Transformer layer, is a combination of
many basic modules. There are two types of Transformer blocks: Transformer encoder
blocks, which encode a sequence, and Transformer decoder blocks, which connect two
sequences. Figure 2.8 illustrates both types of Transformer blocks, as well as how they
are combined to form an encoder-decoder model, which will be described in chapter 3.

A Transformer encoder block has two main modules: a multi-head self-attention
followed by a feedforward network. Each sub-layer is followed by a residual connection
and then layer normalization. The multi-head self-attention adopts scaled dot-product
attention, described in Table 2.1. The feedforward network consists of two linear
transformations with a ReLU activation in between. It is applied to each position
separately and identically.

A Transformer decoder block has an extra main module, a multi-head cross-sequence
attention, which is inserted between the multi-head self-attention and the feedforward
network described above. For the cross-sequence attention, the query sequence is the
output of the self-attention, and the key and value sequences are the usually the output
of a Transformer encoder block. In the decoder block, the self-attention is often masked
in such a way that prevents positions from attending to subsequent positions.
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Fig. 2.8 Illustration of Transformer blocks [175]; the dashed rectangle in the left is a
Transformer encoder block; the dashed rectangle in the right is a Transformer decoder
block.
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Residual Connection and Layer Normalization

For the main modules in Transformer blocks, residual connections [64] and layer
normalization [4] are applied. The residual connections add the input of a module to its
output, which creates an additional path to facilitate training [64]. Layer normalization
adjusts the mean and standard deviation of the output of a layer, which can reduce
the training time [4]. The original output vector is first normalized, over its elements,
so that the mean is zero and the standard deviation is one; then the normalized vector
is scaled and shifted element-wise. The scaling and shifting vectors are learnable
parameters. Layer normalization can be formulated as

ȳ = g ⊙ y − µ

σ
+ b; µ = 1

D

D∑
d=1

yd; σ = ( 1
D

D∑
d=1

(yd − µ)2) 1
2 (2.30)

where y is the original output vector of size D; d is the element index; µ and σ are its
mean and standard deviation; g and b are the scaling and shifting vectors; ⊙ denotes
element-wise multiplication.

Positional Encoding

Unlike CNNs and RNNs, Transformer blocks are not sensitive to the order of the
sequence. Hence positional encodings are added to the input and output embeddings.
The positional encodings have the information about the relative or absolute position
of the tokens in the sequence, and have the same size as the original embeddings.
There are many choices of positional encodings, learned and fixed [49]. The standard
Transformer blocks use sine and cosine functions of different frequencies [175]:

el,d =

sin(l/10000d/D) if d is even
cos(l/10000d/D) if d is odd

(2.31)

where el,d is its d-th element of el, the encoding at position l; D denotes its size. The
notation D is slightly abused here to improve readability. The sinusoidal encodings
allow the model to extrapolate to sequence lengths longer than the ones encountered
during training [175].
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2.4 Training

In general, a neural network is trained through optimizing a loss is as a function of
parameters:

θ∗ = argmin
θ
L(θ) (2.32)

θ denotes parameters, and θ∗ the optimal model; L(θ) denotes loss. This section takes
supervised learning, the most common form of machine learning [100], as an example
to elaborate on the basics of neural network training.

2.4.1 Training Criteria

The loss functions, i.e. the training criteria, are usually selected based on the nature
of tasks. This section describes some simple loss functions for non-sequential tasks.
Without loss of generality, it is assumed that the input and output are both vectors.
More complicated training criteria will be described in section 3.3, in the context of
sequence-to-sequence models.

For classification tasks, cross-entropy is a commonly used loss. Let {y(n),x(n)}N1 denote
N training examples; x(n) denotes an input; y(n) denotes the true one-hot class label,
a D-dimensional discrete vector where all the elements are zero except for the one
associated with the true class; ŷ(n) denotes the corresponding output of a neural
network.4 Cross-entropy loss can be written as:

L(θ) = − 1
N

N∑
n=1

D∑
d=1

y
(n)
d log(ŷ(n)

d ); ŷ(n) = f(x(n);θ) (2.33)

For regression tasks, Lp loss is a common training criterion. Taking L2 (least square
error) as an example, this can be formulated as follows, where y(n) and ŷ(n) are
continuous vectors.

L(θ) = 1
N

N∑
n=1
||ŷ(n) − y(n)||22; ŷ(n) = f(x(n);θ) (2.34)

4In this section, it is assumed that both the input and the output are represented by a single vector.
The discussion can be extended to more complex structures such as a sequence of vectors. Section 3.3
will give a more detailed description of training approaches, in the context of sequence-to-sequence
modeling.
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2.4.2 Optimization

For the optimization problem in equation 2.32, there is usually no closed-form solution,
and gradient descent [153] is used to solve the problem numerically. This can be
formulated as

θ[τ + 1] = θ[τ ]−∆θ[τ ] = θ[τ ]− η
∂L
∂θ
|θ[τ ] (2.35)

where τ denotes an iteration, i.e. a time step in the optimization process, and η

denotes the step size, i.e. the learning rate. The loss function can be seen as a kind of
hilly landscape in the high-dimensional space of weight values. The negative gradient
vector indicates the direction of steepest descent in this landscape, taking it closer
to a minimum, where the output error is low on average [100]. To obtain a good
solution, several questions should be considered: how to get the gradient for all model
parameters, how to avoid local minima degrading performance, and how to set the step
size. Here the term performance refers to the overall quality of the output sequences,
e.g. word error rate in ASR.

For each training example, the gradient is computed using backpropagation, which
is a practical application of the chain rule for derivatives. The key insight is that
the gradient of the loss with respect to the input of a module can be computed by
working backwards from the gradient with respect to the output of that module, or
the input of the subsequent module. The backpropagation procedure can be applied
repeatedly to propagate gradients through all modules, starting from the output all the
way to back to where the input is fed in. Once these gradients have been computed,
it is straightforward to compute the gradients with respect to the weights of each
module [100]. Backpropagation can be formulated as the following equations, where
θ = {W (1), ...,W (K+1)}; z(k) = W (k)x(k) is the input vector to the activation function;
y(k) = f(z(k)) = x(k+1) is the output vector.

∂L(θ)
∂W (k) = ∂L(θ)

∂z(k)
∂z(k)

∂W (k) = ∂L(θ)
∂z(k) x

(k)⊤ (2.36)

∂L(θ)
∂z(k) = ∂L(θ)

∂z(k+1)
∂z(k+1)

∂y(k)
∂y(k)

∂z(k) = ∂y(k)

∂z(k)W
(k+1)⊤ ∂L(θ)

∂z(k+1) (2.37)

While the loss function is originally defined over all the training examples, the gradient
can be efficiently computed over a random batch of training examples. The method is
called Stochastic Gradient Descent (SGD) [15]. This consists of feeding in the input
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vector for a few examples, computing the outputs and the errors, computing the average
gradient for those examples, and adjusting the weights accordingly. The process is
repeated for many small sets of examples from the training set until the average of
the loss function stops decreasing. It is called stochastic because each small set of
examples gives a noisy estimate of the average gradient over all examples. This simple
procedure usually finds a good set of weights quickly when compared with far more
elaborate optimization techniques [100, 16]. The batch size usually requires tunning to
be reasonable. If it is too small, the gradient estimate will be too noisy; if it is too
large, estimating each gradient may take too long due to memory constraints.

The parameter update ∆θ[τ ] can be improved to avoid local minima degrading the
performance, as well as to increase convergence speed. One type of improvement is to
consider momentum when making a gradient-based update. An update considering
momentum can be written as:

∆θ[τ ] = η
∂L(θ)

∂θ
|θ[τ ] + α∆θ[τ − 1] = η∇(L(θ[τ ])) + α∆θ[τ − 1] (2.38)

∇(L(θ[τ ])) is a compact notation, and α is an additional tunable parameter. When
momentum is considered, parameter changes over iterations are smoother.

Another type of improvement is to use an adaptive learning rate η[τ ] instead of a fixed
learning rate η. In general, a learning rate too small leads to slow convergence, and a
learning rate too large leads to divergence. A range of approaches have been proposed.
Nesterov [123] is shown in equation 2.39.

∆θ[τ ] = η∇(L(θ[τ ]− α∆θ[τ − 1])) + α∆θ[τ − 1] (2.39)

This approach introduces a look ahead: the gradient is evaluated after updating the
parameters with momentum. Adagrad [42] is shown in equation 2.40, where ϵ is a
small number ensuring positivity.

∆θ[τ ] = ηβτ ⊙∇(L(θ[τ ])); βτ,i = 1/

√√√√ϵ +
τ∑
t=1
∇2
i (L(θ[t])) (2.40)

This approach adapts the learning rate for each parameter separately, but always decays
the learning rate, which results in early stopping. Adam [86] is shown in equation 2.41,
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where β1 and β2 are additional tunable parameters.

∆θi[τ ] = η√
σ2
τi + ϵ

µτi;

µτi = β1µ(τ−1)i + (1− β1)∇i(L(θ[τ ]))
σ2
τi = β2σ

2
(τ−1)i + (1− β2)∇2

i (L(θ[τ ]))
(2.41)

This approach combines Adagrad and momentum; µτi is the decaying sum over
gradients, which is more stable than a single gradient; σ2

τi decays the learning rate in
the same way as Adagrad.

Pre-training techniques can also be used to avoid local minima and to increase conver-
gence speed. Unsupervised learning procedures [35, 193] can create layers of feature
detectors without requiring labeled data. The objective in learning each layer of feature
detectors is to be able to reconstruct or model the activities of feature detectors or raw
inputs in the layer below. By pre-training several layers of progressively more complex
feature detectors using this reconstruction objective, the weights of a deep network
could be initialized to more sensible values. A final layer of output units could then be
added to the top of the network and the whole deep system could be finetuned using
standard backpropagation [100, 11].

2.5 Chapter Summary

This chapter described the fundamentals of deep learning. Section 2.1 reviewed the
basic building blocks, namely fully connected feedforward neural networks, convolu-
tional neural networks and recurrent neural networks. Activation functions are then
reviewed, covering sigmoid, tanh, ReLU, and softmax. Section 2.2 described attention
mechanisms, including the general framework, self-attention and multi-head attention.
Next, section 2.3 described Transformer blocks, which make extensive use of attention
mechanisms. General training techniques were described in section 2.4, covering basic
training criteria and gradient-based optimization. More advanced training techniques
will be described in section 3.3, in the context of sequence-to-sequence modeling.





Chapter 3

Attention-based
Sequence-to-sequence Models

Sequence-to-sequence (seq2seq) generation can be defined as the task of mapping an
input sequence x1:L to an output sequence y1:T [9]. The two sequences do not need
to be aligned or have the same length. Example tasks include Automatic Speech
Recognition (ASR), Text-To-Speech (TTS) and Neural Machine Translation (NMT).
From a probabilistic perspective, a model θ estimates the distribution of y1:T given
x1:L. This can be formulated as

p(y1:T |x1:L;θ) =
T∏
t=1

p(yt|y1:t−1,x1:L;θ) (3.1)

for autoregressive models, and

p(y1:T |x1:L;θ) ≈
T∏
t=1

p(yt|x1:L;θ) (3.2)

for non-autoregressive models.

This work mainly investigates autoregressive models, which are more general. When
the back-history y1:t−1 does not contribute to the output, autoregressive models can
be expected to produce the same output as their non-autoregressive counterparts, i.e.
the two types of models can have the same performance in terms of the quality of
the output. For non-autoregressive models, it is assumed that the output tokens are
conditionally independent, which allows inference to be done in parallel across time.
The assumption can be too strong and degrade the performance in many, although
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Table 3.1 Default and alternative terms.

Default term Alternative term(s) Notation
input source x1:L
reference output target y1:T
generated output prediction, hypothesis ŷ1:T

not all, cases [57, 105]. To achieve similar performance to autoregressive models, non-
autoregressive models often require more complicated training approaches [126, 135],
which can be worth the effort considering the efficiency during inference.

Generally speaking, there are three fundamental questions: modeling, inference and
training. How to model the conditional distribution p(y1:T |x1:L;θ)? Given an input
sequence, how to generate an output sequence from the model? Given some data, how
to train the model? While all these aspects will be discussed, training is the focus of
this chapter.

In the literature, there are alternative terms to refer to the input x1:L, the reference
output y1:T and the generated output ŷ1:T . Table 3.1 lists the most common alternative
terms. In this work, the alternative terms are occasionally used to avoid frequent
repetition. To improve readability, when there is no need to distinguish the reference
output and the generated output, the term “output” is used, and the notation is
y1:T . For example, when elaborating the structure of the model θ, p(y1:T |x1:L;θ) and
p(ŷ1:T |x1:L;θ) are computed with the same operations. Hence it is stated that the
model estimates the distribution of the output conditioned on the input.

3.1 Encoder-attention-decoder Architecture

3.1.1 Motivation

Sequence-to-sequence models usually consist of an encoder and a decoder. The encoder
processes the input sequence, producing context vector(s) of a fixed size. The decoder
takes the context vector(s) and generates the output sequence. For the first generation
of sequence-to-sequence models [168], the encoder and the decoder are connected by a
single context vector. Figure 3.1 illustrates such a sequence-to-sequence model. Let
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Fig. 3.1 Illustration of an encoder-decoder model without attention [168]. <BOS> and
<EOS> are special tokens for the beginning and the end of the sequence.

h1:L denote the encoder states, and s1:T the decoder states. At decoding time step t1,
this model can be formulated as

h1:L = f(x1:L;θh) (3.3)
s0 = hL; st = f(s0,y1:t−1;θs) = f(st−1,yt−1;θs) (3.4)

ŷt ∼ p(·|st;θy) (3.5)

This model θ is split into three parts: {θy,θs,θh}; θh is the encoder; θy and θs form
the decoder. The encoder and decoder are both based on RNNs, described in section
2.1.3. The encoder is a bidirectional RNN, and equation 3.3 is equivalent to equations
2.9 to 2.11. The decoder is a unidirectional RNN, and its state update equation is
equivalent to equation 2.7. The last state of the encoder is used as the context vector
summarizing the entire input sequence. The context vector is passed to the decoder as
its initial state.

A major disadvantage of using a single context vector is the incapability of memorizing
long sequences [131]. Attention mechanisms [6, 54, 117] were introduced to address
this issue. Rather than using the encoder’s last hidden state as the fixed context
vector, attention mechanisms create connections between a varying context vector
and the entire input sequence. The weights of these connections are different for each
output token, and can be interpreted as the alignment between the input and output.
With attention mechanisms, the dependencies between input and output tokens can
be modeled with much more precision. Note that there are alternative approaches
to aligning two sequences. For example, duration models [149, 195, 39] can be used
to replace attention mechanisms in speech synthesis, which will be discussed in more
details in section 6.1.2.

1In this work, t denotes decoding time steps, and l denotes encoding time steps.
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Attention mechanisms have been described in section 2.2.1. Figure 2.6 shows an
attention-based encoder-decoder model. The key difference between this model and the
one shown in figure 3.1 is that it connects the encoder and decoder with an attention
mechanism. In this case, equation 3.4 becomes

st = f(st−1,yt−1, ct;θs) (3.6)

where ct is the time-dependent context vector produced by the attention mechanism, as
shown in equations 2.16 and 2.17. s0 is initialized independently of the input sequence.

3.1.2 Framework

The previous section briefly described an example attention-based sequence-to-sequence
model. This section formulates this type of models in a more general fashion. Recall that
this thesis focuses on autoregressive models that adopt the encoder-attention-decoder
architecture. For these models, it is central to estimate p(yt|y1:t−1,x1:L;θ):

p(yt|y1:t−1,x1:L;θ) ≈ p(yt|y1:t−1,αt,x1:L;θ)
≈ p(yt|st, ct;θy)

(3.7)

θ = {θy,θs,θα,θh}. αt is an alignment vector, i.e. a set of attention weights. st
is a state vector representing the output history y1:t−1, and ct is a context vector
summarizing x1:L for time step t.

Figure 3.2 shows a general encoder-attention-decoder model. This can be viewed as
a generalized version of figure 2.6, where there is no assumption about the building
blocks. The following equations give more details about how αt, st and ct can be
computed:

h1:L = f(x1:L;θh) (3.8)
st = f(y1:t−1;θs) (3.9)

αt = f(st,h1:L;θα) ct =
L∑
l=1

αt,lhl (3.10)

ŷt ∼ p(·|st, ct;θy) (3.11)

The encoder maps x1:L to h1:L, considering information from the entire input sequence;
st summarizes y1:t−1, considering only the past. The corresponding equations are
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Fig. 3.2 Illustration of a general attention-based encoder-decoder model, operating
in teacher forcing mode; a circle depicts a token, and a rounded square depicts a
distribution.

3.8 and 3.9, which are applicable to various types of building blocks introduced in
chapter 2. With h1:L and st, the attention mechanism computes αt, and then ct. The
corresponding equation is 3.10, which is a compact version of equations 2.16 and 2.17,
and covers various forms of attention. Finally, the decoder estimates a distribution
based on st and ct, and optionally generates an output token ŷt.2

3.1.3 Design Considerations

The encoder, attention and decoder can be built with the building blocks described
in chapter 2, namely feedforward layers, recurrent layers, convolutional layers and
Transformer layers. The choice of the building blocks largely determines the model’s
capacity and efficiency. In sequence-to-sequence models, feedforward layers are usually
combined with other types of building blocks, and operate independently at different
positions of a sequence [2, 182, 175]. This subsection will first discuss the general
pros and cons of different building blocks, and then describe how they can be used to
construct the encoder, attention and decoder.

In theory, recurrent layers (RNNs) have an infinite receptive field, and belong to the
most expressive members of the neural network family [161]. They excel at modeling
sequential data [46, 55], and generalize relatively well [34]. In practice, their receptive
field is limited by the vanishing / exploding gradient problem [12]. The most successful
RNN-based models use LSTMs [67] or GRUs [27] to address this problem [170]. In
addition, residual [63] or highway [166] connections are often used to facilitate training.
The recurrent connections in RNNs make them unsuitable for parallel training across
time. On the other hand, these connections reduce the amount of computation needed

2When computing the decoder state, the context vector can be optionally considered: st =
f(y1:t−1, ct−1;θs). For the discussions in this chapter, it is not crucial whether the context vector is
included.
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to model a sequence. This makes RNNs memory efficient [24], and fast at inference
stage [70], where the reference output is not available.

Convolutional layers (CNNs) have a finite receptive field, and are adept at capturing
local correlations [100]. For each layer, the receptive field is fixed and is relatively small.
This problem can be addressed by using dilated convolution [174]. Stacking many
convolutional layers also alleviates this problem, at the expense of making training
more difficult. For CNNs, it is also common to use residual [63] or highway [166]
connections. For purely CNN-based models, a major advantage is parallel training [49].
When the reference output sequence is shifted and fed into the model, there are no
recurrent connections and training can be run in parallel across time.

Similar to CNNs, Transformer layers have no recurrent connections, and can be trained
in parallel. The issue of limited receptive field is addressed by the self-attention
networks, which allows each position in the current layer to have access to information
from all other positions in the previous layer. Due to the absence of recurrence,
positional encodings are added to the input and output embeddings. Similar to the
time step in a recurrent layer, the positional encodings inform the Transformer layers of
the order of input and output tokens. Compared with RNNs and CNNs, a down-side of
Transformer layers is their ability to scale w.r.t. the length of the input. The memory
and computational complexity required to compute the attention matrix is quadratic
in the input sequence length [172]. Several approaches have been proposed to address
this issue, such as fixed patterns [145] and low-rank methods [181].

Encoder

The encoder can be built with all types of building blocks previously described.
Compared with the decoder case to be discussed, there are few restrictions. The
recurrent layers can be either unidirectional or bidirectional, and the convolutional
layers are not required to be causal. As described in section 2.3, there are two types of
Transformer layers, designed respectively for encoders and decoders [175]. Here the
Transformer encoder layers should be used. These layers each have two main sub-layers:
multi-head self-attention, followed by a feedforward network.
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Attention

How to construct the encoder-decoder attention depends largely on the score function,
described in section 2.2.1. RNNs are essential for the attention mechanisms whose
score function is recurrent, e.g. location-sensitive attention [28]. In contrast, it is
less common to use CNNs in attention mechanisms, as most score functions do not
involve convolution, but there are exceptions [28], such as the score function in equation
2.19. For Transformer-based models, the encoder-decoder attention is merged into
the decoder. There are multiple attention mechanisms. To allow parallel training,
these attention mechanisms are normally feedforward. A standard choice is the scaled
dot-product attention, shown in table 2.1.

Decoder

The decoder can be built with the same types of building blocks as the encoder. For
autoregressive models, the decoding process normally follows a predetermined order,
e.g. left-to-right. Therefore, the recurrent layers should be unidirectional, and the
convolutional layers should be causal. When using Transformer decoder layers, the
self-attention should be masked, to prevent attending to subsequent positions. Recall
that compared with the Transformer encoder layer, the Transformer decoder layer has
an extra cross attention in the middle, which is free from this restriction. For both
the encoder and the decoder, it is common to stack multiple Transformer layers[175].
Typically, the layers have the same structure but different parameters, although there
are exceptions, where the layers are tied to help the model generalize [34].

3.1.4 Application Considerations

When applying sequence-to-sequence models to a specific task, it is important to adapt
the models to the nature of the task. On the embedding side, it is common to embed
the input and output tokens as vectors of continuous elements [182, 21, 186]. If an
input or output sequence is continuous, such as spectrogram, the raw tokens already
meet the requirement. If the sequence is discrete, such as text, the raw tokens are
one-hot vectors. A learnable embedding matrix is often used to map these tokens to
continuous vectors [182, 186].
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On the output prediction side, the distribution to use also depends on the continuity
of the output sequence. For discrete outputs, the distribution of a token is usually
modeled by a categorical distribution. The output layer is hence a linear layer, which
controls the dimensionality, followed by a softmax function. For continuous outputs, the
output layer is usually a fully connected feedforward layer, which estimates the mean
of a continuous distribution, such as Gaussian or Laplace distribution. The log of the
probability of a token, shown in equation 3.7, is proportional to some distance between
the reference and the predicted mean, e.g. L2 distance for Gaussian distribution and
L1 distance for Laplace distribution.

3.2 Inference

During inference, given an input x1:L, the output ŷ1:T can be obtained from the
distribution estimated by the model θ:

ŷ1:T = argmax
y1:T

p(y1:T |x1:L;θ) (3.12)

The exact search is often too expensive and is often approximated by greedy search for
continuous output, or beam search for discrete output [9]. Greedy search is done by
generating the full sequence one token at a time, conditioned on previously generated
tokens:

ŷt = argmax
yt

p(yt|ŷ1:t−1,x1:L;θ); t ≥ 1 (3.13)

ŷ0 is a fixed special token <BOS>, which is the beginning of the sequence but is often
removed in the final output. The inference process stops when an <EOS> token is
generated.

Beam search explores the output space more thoroughly, and yields B “best” sequences.
This is done by maintaining a beam of B best candidate sequences. At each time
step new candidates are generated by extending each candidate by one token and
adding them to the beam. At the end of the step, the beam is re-pruned to only
keep B candidates. The search is truncated when no new sequences are added, and B

sequences are returned.

Greedy search is suitable for both continuous output, such as speech, and discrete
output, such as text. Beam search is harder to use for continuous output, since the
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number of candidates that can be kept is extremely small compared with the search
space [9]. For both approaches, the deterministic selection of the most likely token can
be replaced by sampling, or combined with random noise.

3.3 Training

Ideally, the model is trained through minimizing the KL-divergence between the true
distribution p(y1:T |x1:L) and the estimated distribution p(y1:T |x1:L;θ):

L(θ) = E
x1:L ∼ p(x1:L)

KL
(
p(y1:T |x1:L)||p(y1:T |x1:L;θ)

)
(3.14)

where L(θ) denotes the loss. In practice, this is approximated by minimizing the
Negative Log-Likelihood (NLL) over some training data {y(n)

1:T ,x
(n)
1:L}N1 , sampled from

the true distribution:

L(θ) ∝ −
N∑
n=1

log p(y(n)
1:T |x

(n)
1:L;θ) (3.15)

N denotes the size of the training dataset; n denotes the data index. To simplify the
notation, the data index is omitted for the length of the sequences, although they also
vary with the index. In the following sections, the sum over the training set ∑N

n=1 will
also be omitted.

3.3.1 Teacher Forcing

Recall that this thesis focuses on autoregressive models, and the sequence distribution
p(y1:T |x1:L;θ) is factorized across time, as shown in equation 3.1. A key question then,
is how to compute the token distribution p(yt|y1:t−1,x1:L;θ). For teacher forcing, at
each time step t, the token distribution is computed with the correct output history
y1:t−1. In this case, the loss can be written as:

LT
y(θ) = − log p(y1:T |x1:L;θ) = −

T∑
t=1

log p(yt|y1:t−1,x1:L;θ) (3.16)

From a theoretical point of view, this approach yields the correct model (zero KL-
divergence) if the following assumptions hold: 1) the model is powerful enough ; 2)
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the model is optimized correctly; 3) there is enough training data to approximate the
expectation shown in equation 3.14. In practice, these assumptions are often not true,
hence the model is prone to mistakes. To illustrate the problem, suppose there is a
reference output y∗

1:T for the test input x∗
1:L. Due to data sparsity in high-dimensional

space, x∗
1:L is likely to be unseen during training. If at time step t, the probability

p(y∗
t |y∗

1:t−1,x
∗
1:L;θ) is wrongly estimated to be small, the probability of the reference

output sequence p(y∗
1:T |x∗

1:L;θ) will also be small, i.e. it will be unlikely for the model
to generate y∗

1:T .

From a different perspective, teacher forcing suffers from exposure bias [148], which
refers to the following problem. During training, the model is guided by the reference
output history. At inference stage, however, the generated output history must be used.
As previously analyzed, the model is often unable to recover the data distribution.
Hence there is a train-inference mismatch, and the errors accumulate along the inference
process [148].

3.3.2 Scheduled Sampling and Professor Forcing

To address exposure bias, the model could be trained in free running mode, where
the generated output history ŷ1:t−1 is used, in instead of the reference output history
y1:t−1. The corresponding loss function is

LF
y(θ) = −

T∑
t=1

log p(yt|ŷ1:t−1,x1:L;θ) (3.17)

This can be interpreted as using a noisy back-history to approximately estimate the
token distribution:

p(yt|y1:t−1,x1:L;θ) ≈ p(yt|ŷ1:t−1,x1:L;θ) (3.18)

The problem with this approach is that training often struggles to converge [9]. The
approximation is often not good enough, due to the model distribution being too
different from the data distribution, especially at the early iterations. Intuitively, the
back-history is too noisy for the model to learn to predict the next token. Therefore,
several approaches, namely scheduled sampling and professor forcing, are proposed to
train the model in a mode between teacher forcing and free running.
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Scheduled sampling [9] randomly decides, for each time step, whether the reference or
generated output token is added to the output history ỹ1:t−1. For this approach, the
loss function is

LS
y(θ) = −

T∑
t=1

log p(yt|ỹ1:t−1,x1:L;θ) (3.19)

ỹt =

yt with probability ϵ

ŷt with probability 1− ϵ
(3.20)

ϵ gradually decays from 1 to 0 with a heuristic schedule. Considering that during
training, ỹ1:t−1 is mostly an inconsistent mixture of the reference output and the
generated output, a natural variation is sequence-level scheduled sampling [9], where
the decision is made for each sequence instead of token:

ỹ1:t−1 =

y1:t−1 with probability ϵ

ŷ1:t−1 with probability 1− ϵ
(3.21)

In terms of performance boost, token-level scheduled sampling is more consistent
than sequence-level scheduled sampling [9]. However, even for token-level scheduled
sampling, both positive [9] and negative [182] results have been reported. One concern
is that the decay schedule does not fit the learning pace of the model.

Professor forcing [97] is a bundle of teacher forcing and generative adversarial training
[52]. During training, the model θ is viewed as a generator, which generates two
output sequences for each input sequence, respectively in teacher forcing mode and
free running mode3. For the training example {y1:T ,x1:L}, let y̌1:T denote the output
generated in teacher forcing mode, and ŷ1:T the output generated in free running mode,
this can be expressed as:

∀t y̌t ∼ p(yt|y1:t−1,x1:L;θ) (3.22)
∀t ŷt ∼ p(yt|ŷ1:t−1,x1:L;θ) (3.23)

In addition to the final output, some intermediate output sequences are saved. Let
ž1:T and ẑ1:T denote the intermediate output sequences generated respectively in

3The term “teacher forcing”, as well as “attention forcing”, can refer to either an operation mode,
or the approach to train a model in that operation mode. An operation mode can be used not only to
train a model, but also to generate from it. For example, in teacher forcing mode, given the reference
output y1:T , a model can generate a guided output y̌1:T , without evaluating the loss. y̌1:T is likely to
be different but similar to y1:T , and can be useful for training the discriminator.
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Fig. 3.3 Illustration of free running; a token is generated from the model distribution
and fed back into the model; the dashed arrow indicates indirect connection and time
delay.

Fig. 3.4 Illustration of scheduled sampling / professor forcing; either the generated
token or the reference token is fed into the model.

teacher forcing and free running mode. These generated sequences form a dataset
{y̌1:T , ž1:T , ŷ1:T , ẑ1:T}N1 that is used to train a discriminator ψ. ψ is trained to predict
the probability that a group of sequences is generated in teacher forcing mode, and the
loss function is:

Lψ(ψ|θ) = −
(

log
(
f(y̌1:T , ž1:T ;ψ)

)
+ log

(
1− f(ŷ1:T , ẑ1:T ;ψ)

))
(3.24)

While this loss function is optimized w.r.t. ψ, it depends on θ, hence the notation ψ|θ.
For the generator θ, there are three training objectives. The first one is the standard
likelihood shown in equation 3.16. The second one is to fool the discriminator in free
running mode:

LF
θ(θ|ψ) = − log

(
f(ŷ1:T , ẑ1:T ;ψ)

)
(3.25)

The third one, which is optional, is to fool the discriminator in teacher forcing mode:

LT
θ(θ|ψ) = − log

(
1− f(y̌1:T , ž1:T ;ψ)

)
(3.26)

This approach makes the distribution p(yt|ŷ1:t−1,x1:L;θ) estimated in free running
mode similar to the corresponding distribution p(yt|y1:t−1,x1:L;θ) estimated in teacher
forcing mode. In addition, it regularizes some hidden layers, encouraging them to
behave as if in teacher forcing mode. The disadvantage is that it requires designing
and training the discriminator.
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Intuitively, scheduled sampling and professor forcing are in the middle of teacher forcing
and free running. To illustrate the intuition, recall that figure 3.2 shows teacher forcing.
In a similar fashion, figure 3.3 shows free running; figure 3.4 shows scheduled sampling
/ professor forcing. Although the discussions in this section apply to all autoregressive
models, the example model is attention-based. This is to facilitate the comparison
with the approaches to be introduced in the following chapters.

3.3.3 Sequence-level Training

For the above training approaches, the model is trained at the token-level, i.e. the loss
is computed for each token and summed across time. An alternative way of addressing
exposure bias is to train the model at the sequence-level. Here the loss is computed for
sequences instead of tokens, and the model sees not only the reference output during
training. This type of approaches can be described in the framework of Minimum Bayes
Risk (MBR) training. Assume that there is a distance metric D(y1:T ,y1:T ) between
the reference output y1:T and a random output y1:T , whose probability is estimated
with the model θ. D is minimal when the two sequences are equal. MBR training
minimizes its expected value:

LB
y(θ) =

∑
y1:T ∈Y

p(y1:T |x1:L;θ)D(y1:T ,y1:T ) (3.27)

where Y is the entire output space. Intuitively, MBR training considers not just the
reference output, but all possible outputs, although the range is often reduced in
practice. In contrast, teacher forcing only considers the reference output; its loss,
shown in equation 3.16, is equivalent to equation 3.27 if the distance metric D is the
following:

D(y1:T ,y1:T ) =

−1 if y1:T = y1:T

0 otherwise
(3.28)

For sequence-to-sequence tasks, the number of correct outputs can be one, finitely many
or infinitely many. For example, in ASR, there is usually one correct transcription; in
NMT, there are often multiple valid translations; in TTS, there are infinitely many
valid audio samples for the same text. Therefore, it can often be beneficial to consider
non-reference outputs during training.
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MBR training allows directly optimizing any distance metric D [148, 5]. D can be
non-differentiable, and can be at sequence-level, i.e. y1:T and y1:T do not need to be
aligned.4 Typically, D is proportional to the evaluation metric [159]. Examples include
word error rate for ASR, and BLEU [129] and ROUGE [107] for NMT.

Choosing an appropriate distance metric can be challenging, for tasks where the
performance is not objective. For example, NMT models trained with one metric
may not perform equally well in other metrics [148]. For TTS, the choice is even
more complicated, as there is no well-established objective metric [179]. Generative
adversarial training [197, 185] can be used to tackle this issue. Here the distance metric
is learned by a discriminator, which is potentially better than hand-crafted metrics.

Another major challenge of MBR training is how to optimize the loss LB
y(θ) shown

in equation 3.27. The expectation is often impossible to compute, due to the output
space being too large. Approximations are often applied to the loss [148, 159] or the
gradients w.r.t. the model parameters [187]. In reference [159], the distribution is
approximated by considering a subset of the output space:

LB
y(θ) ≈

∑
y1:T ∈Ỹ

p̃(y1:T |x1:L;θ)D(y1:T ,y1:T ) (3.29)

Ỹ denotes the sub-space, constructed by using beam search or a noisy version of greedy
search multiple times [142]; p̃ denotes the approximate distribution, defined as

p̃(y1:T |x1:L;θ) =
p(y1:T |x1:L;θ)γ∑

y′
1:T ∈Ỹ p(y′

1:T |x1:L;θ)γ (3.30)

where γ is a hyperparameter that controls the sharpness of the approximate distribution.
This approach is relatively simple to implement, but introduces an extra hyperparameter.
Empirically, it requires generating more samples than the following Monte Carlo
approach [159, 148, 187].

4In this work, the convention is to omit the accents of the superscripts and subscripts. For example,
y1:T denotes the reference output, whose length is T . ŷ1:T̂ denotes the generated output, whose length
is T̂ , but the accent is omitted by default, so the notation becomes ŷ1:T . In y1:T , which denotes the
random output to be averaged, the accent of the subscript is not omitted, in order to emphasize that
the distance metric D is between two unaligned sequences of different length.
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Using Monte Carlo methods, the loss shown in equation 3.27 can also be approximated
as:

LB
y(θ) ≈ 1

M

M∑
m=1
D(y1:T , ŷ

(m)
1:T ) (3.31)

where ŷ(m)
1:T is sampled from the distribution estimated by the model, and M is the

number of samples. Each sample has its own length, but the accent is omitted to
simplify the notation. The sampling process is usually approximated by either greedy
search or beam search [148]. If the approximate loss is differentiable w.r.t the samples,
it can be optimized using reparameterization tricks, such as the Gumbel softmax [78].
For more general cases, where the loss is not necessarily differentiable, Reinforcement
Learning (RL) [148, 197] can be used. Here the model is viewed as an agent; its
parameters define a policy; its action refers to predicting the next token; the reward
is the negative of the distance metric, observed at the end of the sequence. A major
drawback with reinforcement learning is the large action space, where it is extremely
hard for a random policy to improve in any reasonable amount of time [148]. A common
remedy is to initialize the policy with a well-performing model, e.g. a model trained
with teacher forcing.

Alternatively, Monte Carlo methods can be applied to the gradients. The exact
gradients of LB

y(θ) can be derived as:

▽θLB
y(θ) =

∑
y1:T ∈Y

p(y1:T |x1:L;θ)▽θ log p(y1:T |x1:L;θ)D(y1:T ,y1:T ) (3.32)

The derivation uses the identity ▽θf(θ) = f(θ)▽θ log f(θ). The Monte Carlo approxi-
mate gradients are

▽θLB
y(θ) ≈ 1

M

M∑
m=1

▽θ log p(ŷ(m)
1:T |x1:L;θ)D(y1:T , ŷ

(m)
1:T ) (3.33)

This approach does not make assumptions about the output space, and does not
require optimization tricks such as reparameterization [187] or the use of reinforcement
learning.
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3.3.4 Parallel Training

Despite suffering from exposure bias, teacher forcing has a major advantage: it allows
parallel training across time [51, 175], when there are no recurrent connections in the
model. Models based on CNNs or Transformers meet this condition, and often leverage
the efficiency of teacher forcing to train on large amounts of data [174, 103].

For scheduled sampling and professor forcing, parallel training is not possible without
approximations [43]. This is because the model needs to generate a hypothesis sequence
during training, and the generation process is sequential. For sequence-level training
approaches, this issue is even more severe, as the model is expected to generate several
hypotheses, in order to approximate the loss or the gradients.

3.4 Chapter Summary

This chapter described autoregressive sequence-to-sequence models that adopt the
encoder-attention-decoder architecture. Section 3.1 described the motivation behind
such models and their general framework. Application considerations are then described,
covering the embedding and output layers to use for different tasks. Section 3.2 described
commonly used inference approaches, namely greedy search and beam search. Section
3.3 explored various training approaches, paving the way for the novel ideas to be
introduced in the following chapters.

For autoregressive models, teacher forcing is a standard training approach, especially
for parallelizable models such as Transformer. This approach suffers from exposure bias:
during training the model is guided with the reference output, but the generated output
must be used at inference stage. Exposure bias can be addressed by two lines of research.
Along the first line, scheduled sampling and professor forcing guide a model with both
the reference and the generated output history. To stabilize training, they depend on a
heuristic schedule or an auxiliary classifier, which can be difficult to tune. The second
line is a series of sequence-level training approaches, leveraging reinforcement learning,
minimum risk training or generative adversarial training. Theses approaches guide a
model with the generated output history, and optimizes a sequence-level criterion. The
generation process is often sequential, which is undesirable for parallelizable models
such as Transformer. Another downside is that many tasks, such as speech synthesis
and voice conversion, do not have a well-established sequence-level criterion.



Chapter 4

Attention Forcing

The previous chapter described attention-based sequence-to-sequence models. In
particular, various training approaches were explored. The standard approach, teacher
forcing, suffers from exposure bias: during training the model is guided with the
reference output, but the generated output must be used at inference stage. Scheduled
sampling and professor forcing address this issue by using both the reference and the
generated output history. However, they require a heuristic schedule or an auxiliary
classifier, which can be difficult to tune. Sequence-level training is an alternative line
of research, where the model is guided with the generated output, and a sequence-level
criterion is optimized. The downside is that sequential decoding is often performed
during training, which is inefficient for parallelizable models. Additionally, many tasks
do not have a well-established sequence-level criterion.

This chapter introduces attention forcing, which guides the model with the generated
output history and reference attention. This approach reduces the training-inference
mismatch without the need for a heuristic schedule or a classifier. In addition, it does
not require the sequence-to-sequence task to have a well-established sequence-level
criterion. The following variations of attention forcing are introduced. (1) Scheduled
attention forcing automatically selects a suitable training mode for each input-output
pair. This is essential for tasks such as machine translation, where the output space is
discrete and multi-modal in the sense that the given an input, the distribution of the
corresponding output can be multi-modal. (2) Parallel attention forcing approximates
the sequential generation of the output history with a parallel generation process. This
facilitates applying attention forcing to models that can be trained in parallel across
time, such as convolutional and Transformer-based models.
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Fig. 4.1 General illustration of attention forcing; following the convention of section
3.1.2, the encoder, attention and decoder are packed as a single block; the shaded
blocks form the attention forcing model; the dashed arrow indicates indirect connection
and time delay.

4.1 Framework

The basic idea of attention forcing is to use the reference attention and generated
output to guide the model during training. In attention forcing mode, the model does
not need to learn to simultaneously infer the output and align it with the input. As the
reference alignment is known, the decoder can focus on inferring the output, and the
attention mechanism can focus on generating the correct alignment. From a different
perspective, guiding the model with the generated output, instead of the reference
output, helps addressing the exposure bias.

Let θ denote a standard attention-based sequence-to-sequence model1 , trained with
teacher forcing. Let θ̂ denote a model with the same structure, but trained with
attention forcing, and later used for inference. Figure 4.1 illustrates attention forcing
at a high level, following the convention of section 3.1.2. In attention forcing mode,
the probability p(yt|y1:t−1,x1:L; θ̂) is estimated with the generated output ŷ1:t−1 and
the reference alignment αt:

p(yt|y1:t−1,x1:L; θ̂) ≈ p(yt|ŷ1:t−1,αt,x1:L; θ̂)
≈ p(yt|ŝt, ĉt; θ̂y)

(4.1)

1In this thesis, the convention of notation is that a bold Greek letter without subscript denotes
all the parameters of a model. The corresponding letters with subscripts denote a subset of the
parameters. For example, θ = {θy,θs,θα,θh}. θy and θs form the decoder; θα is the attention; θh is
the encoder.
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Fig. 4.2 Detailed illustration of attention forcing; the attention mechanism is unpacked.

ŝt and ĉt denote the state vector and context vector generated by θ̂. Details of attention
forcing are illustrated by figure 4.2, as well as the following equations:

h1:L = f(x1:L;θh) ĥ1:L = f(x1:L; θ̂h) (4.2)
st = f(y1:t−1;θs) ŝt = f(ŷ1:t−1; θ̂s) (4.3)
αt = f(st,h1:L;θα) α̂t = f(ŝt, ĥ1:L; θ̂α) (4.4)

ĉt = ∑L
l=1 αt,lĥl (4.5)

ŷt ∼ p(·|ŝt, ĉt; θ̂y) (4.6)

The right side of the equations 4.2 to 4.4, as well as equations 4.5 and 4.6, show how
the attention forcing model θ̂ operates. The decoder state ŝt is computed with ŷ1:t−1.
While an alignment α̂t is generated by θ̂, it is not used by the decoder, because the
context ĉt is computed with the reference alignment αt. In most cases, αt is not
available. One option of obtaining it is shown by the left side of equations 4.2 to
4.4: to generate αt from a teacher forcing model θ. θ is trained in teacher forcing
mode, and generates αt, also in teacher forcing mode. Although the reference output
is used to compute the reference attention, it is not directly fed into the model, hence
the model is unlikely to rely too much on the back-history. For example, when the
output sequence is strongly correlated in time, attention forcing prevents the model
from copying the back-history. Sections 6.4 and 7.3 will respectively demonstrate the
effectiveness of attention forcing in speech synthesis and machine translation.
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At inference stage, the attention forcing model operates in free running mode, as
described in section 3.2. In this case, equation 4.5 becomes ĉt = ∑L

l=1 α̂t,lĥl. The
decoder is guided by α̂t, instead of αt.

4.2 Training

During training, there are two objectives: to infer the reference output and to imitate
the reference alignment. This can be formulated as:2

Ly,α(θ̂) = Ly(θ̂) + γLα(θ̂) (4.7)
Ly(θ̂) = −∑T

t=1 log p(yt|ŷ1:t−1,αt,x1:L; θ̂) (4.8)

Lα(θ̂) = ∑T
t=1KL(αt||α̂t) =

T∑
t=1

L∑
l=1

αt,l log αt,l
α̂t,l

(4.9)

where Ly and Lα respectively denote the loss over the output and the attention; γ is a
scaling factor, set according to the dynamic range of the two losses. As an alignment
corresponds to a categorical distribution, KL-divergence is a natural difference metric.
Our default optimization option is as follows. θ is trained in teacher forcing mode,
and then fixed to generate the reference attention. θ̂ is trained with the joint loss Ly,α.
This option makes training more stable, in the sense that training converges more
often, most probably because the reference attention is the same in each epoch. An
alternative is to train θ and θ̂ simultaneously to save time. Another is to tie (parts of)
θ and θ̂ to save memory.

An empirical issue is that as training progresses, most elements in the alignment vectors
will be close to 0. So the KL attention loss, which involves the log of the elements,
might be unstable. To improve numerical stability, a trick is to smooth all alignment
vectors with a uniform distribution u. For example, KL(αt||α̂t; θ̂) can be smoothed as
KL((1− ϵ)αt + ϵu||(1− ϵ)α̂t + ϵu; θ̂). ϵ is a small constant balancing the stability and
accuracy of training; its default value is e−10 in our experiments.

The form of attention forcing described so far has two main problems. First, it may
degrade the performance in tasks such as NMT, where output sequences can take

2In the previous chapter, a superscript, such as T and F, is added to the notation of the loss, in
order to differentiate various training approaches. If this convention were followed, the losses for
attention forcing would be denoted as LA

y and LA
α. This chapter focuses on attention forcing, so the

superscripts are omitted to simplify the notation.
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Fig. 4.3 Illustration of scheduled attention forcing. Passes A and B share the same
model parameters.

multiple valid orderings and mistakes are more likely to be grave. Detailed analysis will
be given in section 4.3. Second, it requires the model to generate sequentially during
training, which is undesirable for Transformer-style models. The following sub-sections
will introduce two variants of attention forcing to address these problems respectively.

4.2.1 Scheduled Attention Forcing

Scheduled attention forcing is proposed for applications where attention forcing, also
referred to as “vanilla attention forcing”, may result in an inappropriate loss. The
basic idea is to automatically decide, for each input-output pair in the training data,
whether vanilla attention forcing will be used. This is realized by tracking the alignment
between the reference and the generated output. If they are relatively well-aligned,
vanilla attention forcing will be used, otherwise a more stable training mode will be
used.

Figure 4.3 illustrates scheduled attention forcing. For each input sequence, the attention
forcing model θ̂ takes two forward passes. Pass A is guided by the generated output
history ŷ1:t−1, which is the same as vanilla attention forcing. Pass B is guided by the
reference output history y1:t−1. The reference attention is always used, so the context
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vector ĉt is the same in both passes. If memory permits, the two forward passes can
be completed in parallel, resulting in no extra time. This can be formulated as follows.
For vectors produced in pass A, the notation has the hatˆaccent; the equivalent for
pass B is the checkˇaccent.

h1:L = f(x1:L;θh) ĥ1:L = f(x1:L; θ̂h) (4.10)

st = f(y1:t−1;θs)
ŝt = f(ŷ1:t−1; θ̂s)
št = f(y1:t−1; θ̂s)

(4.11)

αt = f(st,h1:L;θα) α̂t = f(ŝt, ĥ1:L; θ̂α)
α̌t = f(št, ĥ1:L; θ̂α)

(4.12)

ĉt = ∑L
l=1 αt,lĥl (4.13)

ŷt ∼ p(·|ŝt, ĉt; θ̂y)
y̌t ∼ p(·|št, ĉt; θ̂y)

(4.14)

Next, the choice of training mode is made at the sequence level, which ensures
the consistency of the output history. If ∑T

t=1 KL(αt||α̂t; θ̂) < λ
∑T
t=1 KL(αt||α̌t; θ̂),

meaning that ŷ1:T is well aligned with y1:T , forward pass A will be used in the back-
propagation. The loss is the same as in vanilla attention forcing:

Ly,α(θ̂) =
T∑
t=1

log p(yt|x1:L, ŷ1:t−1,αt; θ̂) + γ
T∑
t=1

KL(αt||α̂t; θ̂) (4.15)

Otherwise forward pass B will be used:

Ly,α(θ̂) =
T∑
t=1

log p(yt|x1:L,y1:t−1,αt; θ̂) + γ
T∑
t=1

KL(αt||α̌t; θ̂) (4.16)

The KL attention loss is used to determine if the alignment is good enough between
the reference output y1:T and the free running output ŷ1:T . As both αt and α̌t are
computed using y1:t−1, they are expected to be similar, yielding a relatively small
KL(αt||α̌t; θ̂). In contrast, α̂t is computed using ŷ1:t−1, and KL(αt||α̂t; θ̂) is expected
to be larger. λ is a hyper-parameter controlling how much out-of-alignment ŷ1:T and
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y1:T can be. If λ → +∞, scheduled attention forcing will be the same as vanilla
attention forcing.

For each pair of training data, scheduled attention forcing makes a choice whether to
guide the model with the reference output history or the generated output history.
This approach is named “scheduled attention forcing”, because scheduled sampling
also selectively uses the generated output history. For scheduled attention forcing, the
selection is not random, but determined by the alignment of the two types of history.
For scheduled sampling, the selection is random, as described in section 3.3.

4.2.2 Parallel Attention Forcing

Transformer-style models have achieved state-of-the-art performance in various tasks
including NMT and TTS. For such models which have a large number of parameters,
parallel training is essential. It is significantly more efficient than sequential training,
and reduces the training time to a practical level. When teacher forcing is used, there
are no recurrent connections in the model, and training can be done in parallel across
the length T of the output y1:T . This is more obvious when teacher forcing is rewritten
as follows:

αt = f(y1:t−1,x1:L;θ) (4.17)
ŷt ∼ p(·|y1:t−1,αt,x1:L;θ) (4.18)

Note that the reference output history y1:t−1 is available for any t, so ŷ1:T can be
computed in parallel. Attention forcing can be rewritten in a similar fashion:

α̂t = f(ŷ1:t−1,x1:L; θ̂) (4.19)
ŷt ∼ p(·|ŷ1:t−1,αt,x1:L; θ̂) (4.20)

The model is guided with generated output history ŷ1:t−1. ŷ1:T is not available
beforehand, and is generated sequentially, i.e. ŷt must be generated after ŷt−1. So
when applying attention forcing to Transformer-style models, training is no longer
parallel. This sub-section introduces parallel attention forcing, an approximation of
attention forcing that allows parallel training.3

3Transformer-style models have multiple encoder-decoder attention mechanisms. So when applied
to these models, attention forcing involves a group of the reference attention α(1:N,1:H)

t and generated
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Fig. 4.4 Illustration of parallel attention forcing, at forward pass k.

Parallel attention forcing is inspired by parallel scheduled sampling [43]. The core idea
is to approximate the sequential generation of ŷ1:T with a parallelizable process. For
parallel attention forcing, as well as parallel scheduled sampling, the output history
ŷK1:T is generated iteratively in K forward passes. For each forward pass, the complete
output history is available beforehand, so training can be run in parallel across time
t = 1 : T . This can be illustrated by figure 4.4.

For the first pass, the output history is the reference y1:T . For the following passes,
the output history is the output of the previous pass ŷk−1

1:T .

ŷ0
1:T = y1:T (4.21)

α̂kt = f(ŷk−1
1:t−1,x1:L; θ̂) (4.22)

ŷkt

= ŷk−1
t if t < k

∼ p(·|ŷk−1
1:t−1,αt,x1:L; θ̂) if t ≥ k

(4.23)

Similar to scheduled attention forcing, multiple forward passes can be taken for
each pair of training data. The loss function is selected based on the alignment
between the reference and generated output sequences. If ∑T

t=1 KL(αt||α̂Kt ; θ̂) <

λ
∑T
t=1 KL(αt||α̂1

t ; θ̂), it will be assumed that ŷK1:T is well aligned with y1:T , and the

attention α̂(1:N,1:H)
t , where N is the number of decoder layers, and H the number of heads in each

layer. These superscripts are omitted, to simplify the notation and to facilitate comparison with other
forms of attention forcing.
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Fig. 4.5 Illustration of iterative parallel generation; the dark blue circles are the
reference tokens, and the rest are generated tokens; the light blue circles are influenced
by the reference, and the white circles are not; the solid arrows represent copying, the
dashed arrows represent dependency.

K-th forward pass will be used in the back-propagation:

Ly,α(θ̂) = −
T∑
t=1

log p(yt|ŷK1:t−1,αt,x1:L; θ̂) + γ
T∑
t=1

KL(αt||α̂Kt ; θ̂) (4.24)

Otherwise the first pass will be used:

Ly,α(θ̂) = −
T∑
t=1

log p(yt|ŷ1
1:t−1,αt,x1:L; θ̂) + γ

T∑
t=1

KL(αt||α̂1
t ; θ̂) (4.25)

Figure 4.5 illustrates how the iterative parallel generation approximates sequential
generation. It can be proved that when K = T , ŷK1:T is independent of the reference
back-history, and is equivalent to an output sequentially generated [43]. Empirically,
K could be much smaller than T , while still addressing the exposure bias [43]. So
although parallel attention forcing requires more computation than vanilla attention
forcing, it is more efficient thanks to parallel training.
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4.3 Application Considerations

4.3.1 Sequence-to-sequence Task

When applying attention forcing to a specific sequence-to-sequence task, it is important
to consider the nature of the attention mechanism connecting the input and output,
and select the appropriate implementation of attention forcing. For some tasks, the
attention is monotonic, and there is only one type of valid attention maps, where
the important positions form an approximately diagonal line. In other words, the
focus of the decoder either stays on the same input token or moves forward, with
the possibility of skipping input tokens. Example tasks include ASR, TTS and voice
conversion. For some other tasks, the attention is not necessarily monotonic. More
importantly, and there may be multiple valid modes of attention: the ordering of tokens
can be changed while the output sequence remains correct. Example tasks include
NMT, grammatical error correction and text summarization. If the model takes an
ordering that is different from the reference output, the token-level losses will mislead
both the output and the attention. To illustrate the problem, consider the following
NMT example. For the input “je suis rentrée chez moi hier”, the reference output is
“I went home yesterday” ; the alignment αt is shown in the left of figure 4.6. When
using attention forcing, the model is guided by the generated back-history and outputs
“yesterday I went home” ; the alignment α̂t is shown in the right of figure 4.6. It can be
observed that the alignment αt is not a sensible target for α̂t.

Furthermore, even if the model happens to follow the reference ordering, there might
be other issues such as grave mistakes. For tasks where the output is continuous,4 such
as TTS and voice conversion, a small deviation from the reference output is usually
not a serious problem. However, this is more serious for tasks where the output is
discrete, such as NMT and text summarization. During training, errors in the output
history can be so serious that the token-level target is not appropriate, often due to
misalignment between the generated output and the reference output. To illustrate
the problem, suppose the reference output is “thank you for listening”, and the model
predicts “thanks” at the first time step. In this case, the next output should not be
“you”, and “for” would be a more sensible target.

4The meaning of “continuous” comes in two folds. First, natural speech is continuous in time,
although it is often sampled as a discrete-time sequence. For a speech sequence, the correlation
between tokens is much stronger than that in a text sequence. Second, a speech token follows a
continuous distribution. In contrast, a text token follows a discrete distribution, and can only take
values in the vocabulary.
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Fig. 4.6 Alignments between: left) the input and the reference output; right) the input
and the generated output

Considering the above analysis, for tasks with monotonic attention and continuous
outputs, such as TTS and voice conversion, it is recommended to use the default form
of attention forcing, introduced in section 4.1. For tasks with non-monotonic attention
and discrete outputs such as NMT and text summarization, it is recommended to use
scheduled attention forcing, which automatically decides whether attention forcing
should be switched on or off. In this thesis, TTS and NMT are used as example tasks
to test the effectiveness of the proposed approaches, respectively in chapters 6 and 7.

4.3.2 Down-stream Task

Attention forcing has a feature that is desirable for many down-stream tasks: when
the reference alignment is given, the generated output is very likely to be aligned with
the reference. Recall that sequence-to-sequence tasks aim to map an input sequence
x1:L to an output sequence y1:T , where the two sequences are not necessarily aligned
or equal in length. The down-stream tasks aim to further process y1:T , and produce
a final output sequence z1:J . The key difference is that models in the down-stream
tasks require aligned input and output sequences. For example, in spoken disfluency
detection, a sequence-to-sequence model maps speech x1:L to text y1:T , and a down-
stream disfluency detection model maps y1:T to a label sequence z1:J=T . The label
sequence and the text sequence are equally long, and each word in the text corresponds
to one label. TTS is another example: the sequence-to-sequence model maps text
x1:L to acoustic features y1:T , and a down-stream vocoder maps y1:T to a waveform
sequence z1:J=RT , where R is the upsampling rate of the vocoder. Each acoustic feature
corresponds to a window of waveform samples, sliding in time at a constant rate.

Let θ denote the sequence-to-sequence model; let ϕ denote the down-stream model; let
Dθ and Dϕ denote the data used respectively to train the sequence-to-sequence model
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and the down-stream model:

Dθ = {x(n)
1:L,y

(n)
1:T}N1 (4.26)

Dϕ = {y(n)
1:T , z

(n)
1:J}N1 (4.27)

where N is the number of training data sequences and (n) the data index. To simplify the
notation, the data index is omitted for the length of the sequences, although they also
vary with the index. If the sequence-to-sequence model can generate outputs aligned
with the references, there will be a half-generated dataset D̂ϕ for the down-stream
model:

D̂ϕ = {ŷ(n)
1:T , z

(n)
1:J}N1 (4.28)

where ŷ(n)
1:T denotes a generated output, aligned with y(n)

1:T . Training with the half-
generated dataset D̂ϕ allows ϕ to fix some mistakes made by θ, but this is only possible
when ŷ(n)

1:T is aligned with z(n)
1:J . To ensure the alignment, the standard approach is to

train θ in teacher forcing mode, and then generate from it in the same mode. This
work proposes an alternative approach: to use attention forcing instead of teacher
forcing. Training θ with attention forcing is expected to improve its performance; the
intuition has been described in section 4.1, and the effect will be demonstrated by the
experiments in section 6.4. Furthermore, in attention forcing mode, each output is
predicted based on generated back-history, and is more likely than in teacher forcing
mode to contain errors that θ makes at inference stage.

4.3.3 Over Regularization

Attention forcing has a regularizing effect, in the sense that it encourages the model to
behave in a presumably sensible way. During training, the attention mechanism(s) of
the attention forcing model is regularized to mimic the teacher forcing model. Hence
there is the risk of over regularization, in which case the attention forcing model
converges to the teacher forcing model, losing the benefits of attention forcing. For
example, when applying attention forcing to Transformer-based models, the default
option is to force all the attention maps connecting the encoder and the decoder.
However, in a Transformer-based model, there are usually dozens of such attention
maps. The exact number is equal to the number of decoder layers times the number of
attention heads in each layer. In contrast, in a model based on RNN or CNN, there
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is only one attention map. As a result, this form of attention forcing tends to over
regularize Transformer-based models.

This problem can be addressed by forcing selected attention heads only. For the
selected attention heads, the reference attention is given to the following layer, and
an alignment loss is computed between the reference and the predicted attention. For
the other attention heads, the predicted attention is given to the following layer as
usual. For Transformer-based models, different attention heads have different functions
[178, 176]. For example, attention heads in the deepest layers of the model capture
the most distant relationships [176]. In this thesis, the selection is mainly based on
the layer. Figure 4.7 illustrates the idea of forcing selected attention heads. Parallel
attention forcing is applied to a Transformer with two decoder layers, but only forcing
the attention heads in the second layer. Here the Transformer model is simplified; the
detailed model structure is shown in figure 2.8.

4.4 Related Work

Intuitively, attention forcing, as well as scheduled sampling and professor forcing, is
between teacher forcing and free running. An advantage of attention forcing is that it
does not require a heuristic schedule or a discriminator, which can be difficult to tune.
Variations of scheduled sampling have been applied to NMT [204, 43]; while [204] finds
it helpful, [43] reports slightly worse performance. Similarly, in TTS, both positive
[110] and negative [60] results have been reported, showing that the schedule can be
hard to tune. In terms of regularization, attention forcing is similar to professor forcing.
For attention forcing, the output layer of the attention mechanism is regularized, and
the KL-divergence is a well-established difference metric. [60] and [110] also perform
hidden layer regularization, and both regularize the decoder states, for which there
is not a natural difference metric. To address this issue, [60] introduces a specific
discriminator, and [110] experiments with L1 loss.

The effect of regularization on attention mechanisms has been studied in previous
work [198, 109, 7], where alternative approaches of obtaining reference attention are
introduced. [7] and [198] require collecting extra data for reference attention, and [109]
uses a statistical machine translation model to estimate them. In contrast, we propose
to generate the reference attention with a teacher forcing model, which can be trained
simultaneously with the attention forcing model.
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Fig. 4.7 Illustration of parallel attention forcing, applied to a Transformer with two
encoder layers and two decoder layers; the attention heads in the second decoder layer
are forced.
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Compared with sequence-level training approaches, described in section 3.3.3, attention
forcing is more efficient, in the sense that it does not require generating multiple
output sequences during training. Reference [159] applied Minimum Bayes Risk (MBR)
training to NMT, and approximates the expectation of the risk by sampling and
renormalizing the probability of the samples. References [148, 5] approximate the
same loss with Monte Carlo sampling, and optimizes the loss using Reinforcement
Learning (RL). Empirically, this approach requires fewer samples to surpass the baseline
performance [148]. A problem for RL is that it struggles when the search space is large
[148], and a common remedy is to pretrain the model with teacher forcing. For tasks
where the output is discrete, such as NMT and text summarization, the search space
is finite given the length of the output. However as the length increases, the search
space becomes prohibitively large. For tasks where the output is continuous, such as
TTS and voice conversion, the search space is infinite, and is even more challenging.

For sequence-level training, another general concern is the choice of the distance metric,
i.e. the risk. As discussed previously, many tasks, including NMT and TTS, do not
have a gold-standard objective metric. Empirically, models trained with one metric
may not perform equally well when assessed using another metric [148]. To tackle
this issue, adversarial training [197, 185] can be used: a discriminator learns a loss
function, which is potentially better than standard metrics. The difficulty here is that
the discriminator itself can be difficult to train [205]. While attention forcing does not
directly optimize a sequence-level loss, it can indirectly reduce the loss by training
the model to recover from errors. This is because sequence-level metrics are usually
computed by comparing units of the sequences. Examples include word error rate for
ASR, and BLEU [129] and ROUGE [107] for NMT. BLEU is essentially a geometric
mean over n-gram precision scores as well as a brevity penalty, and ROUGE is recall
over bi-grams [148]. If models can go back, from previous errors, to producing the
reference output, the sequence-level loss can be reduced.

It can be challenging to apply attention forcing to sequence-to-sequence tasks where the
attention is complicated, e.g. multi-modal attention in NMT. In this case, scheduled
attention forcing can be used, and there is an extra hyper-parameter λ controlling
the tendency to guide the model with the generated output history. The difference
from scheduled sampling is that λ is not annealed with a heuristic schedule, and is
often easier to tune, which will be demonstrated by the experiments in section 6.4.
In addition, whether to use the the generated output history is not random, but
determined by the alignment between the reference and generated output.
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Although not trivial, the concept of attention forcing can be applied to models without
an attention mechanism, where it is essential to find something analogous to attention.
For convolutional neural networks, for example, attention maps can be defined based
on the activation or gradient [199]. Some recent work on TTS [149, 195, 39, 44] uses
a duration model instead of attention. Here duration can be forced in the place of
attention [149, 195]. Alternatively, one-hot alignment vectors can be defined according
to the duration of input tokens.

4.5 Chapter Summary

This chapter introduced attention forcing. Section 4.1 introduced the general idea:
guiding an attention-based sequence-to-sequence model with the generated output
history and reference attention. Section 4.2 introduced some variations of attention
forcing, namely scheduled attention forcing and parallel attention forcing, for the
challenging application scenarios described in section 4.3. The discussion will be
recapitulated in the next paragraph. Section 4.4 compared attention forcing with the
training approaches described in section 3.3 of the previous chapter.

When the output space is continuous and the attention is monotonic, such as in speech
synthesis and voice conversion, it is suggested to use the default form of attention
forcing. When the output space is discrete and multi-modal, such as in machine
translation and text summarization, scheduled attention forcing should be adopted.
Here a selection scheme automatically turns attention forcing on and off depending on
the mode of attention, making sure that the training criterion is sensible. When the
sequence-to-sequence model is parallelizable, e.g. Transformer, parallel attention forcing
can be used. Here the sequential generation is approximated by parallel generation.
When using Transformer-based models, a lot of information is available in the attention
maps. To avoid over regularization, it is important to limit the information passed
from the reference attention.

Section 4.3 also introduced how attention forcing can be combined with down-stream
tasks, such as training neural vocoders. In attention forcing mode, the generated
outputs are aligned with their references. These generated outputs can be used to train
the down-stream models to correct the mistakes made by the sequence-to-sequence
model.



Chapter 5

Deliberation Networks

Chapter 3 introduced attention-based sequence-to-sequence models. As described in
section 3.3, these models are usually trained with teacher forcing, where the reference
output history is used to predict the next token. This makes training efficient, but
limits the performance, because during inference the generated output history must
be used. The problem is often referred to as exposure bias. Scheduled sampling and
professor forcing address this issue by selectively using the generated output history.
To make training stable, they leverage a heuristic schedule or an auxiliary classifier,
which can be difficult to tune. Sequence-level training is an alternative option, where
the model is guided with the generated output history, and a sequence-level criterion is
optimized. The downside is that the generation is often sequential, which is inefficient
for parallelizable models such as Transformers. Additionally, many tasks, such as
speech synthesis and voice conversion, do not have a well-established sequence-level
criterion.

Chapter 4 introduced attention forcing, which addresses exposure bias by guiding the
model with the generated output history and reference attention. This approach does
not require a heuristic schedule or a classifier, and does not require the sequence-to-
sequence task to have a well-established sequence-level criterion. As discussed in section
4.4, it is more efficient than most sequence-level training approaches, because it does
not require generating multiple output sequences for each input sequence. However,
it still requires one sequential generation. Section 4.2.2 introduced parallel attention
forcing to approximately generate the output history in parallel across time. This
significantly improves efficiency, but potentially loses some benefits of non-parallel
attention forcing.
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This chapter introduces deliberation networks, an alternative approach that is more
suitable for parallelizable models. Here the output sequence is generated in multiple
passes, each one conditioned on the initial input and the free-running output of the
previous pass. This approach has been successful in sequence-to-sequence tasks where
the output is discrete and relatively short, such as NMT [187]. However, it is challenging
to apply this approach to tasks where the output is continuous and relatively long,
such as TTS. Here the multi-pass model tends to converge to the standard single-pass
model, ignoring the previous output. To tackle this issue, a guided attention loss is
proposed, encouraging more extensive use of the free-running output.

The novelties of this chapter are as follows. First, section 5.1 describes the framework
from a probabilistic perspective, and section 5.2 investigates a range of training
approaches. In contrast, previous work [187, 72, 71] takes a deterministic perspective,
and describes the one or two training approaches adopted in the experiments. Second,
section 5.2 draws the connection between the training of deliberation networks and
Minimum Bayes Risk (MBR) training, described in section 3.3.3. Leveraging the
connection, the end of section 5.2.1 introduces a novel training approach, which
approximates the loss, unlike previous work [187] approximating the gradients. The
separate training approach described in section 5.2.2 is not novel, but its synergy with
parallel training is pointed out for the first time. Finally, section 5.3 proposes the
guided attention loss, facilitating the application of deliberation networks to tasks
where the output is continuous and relatively long.

5.1 Framework

Deliberation networks are inspired by a common human behavior: when producing a
sequence, be it text or speech, we often revise the initial output to improve its quality.
For example, to write a good article, we usually first create a draft and then polish it.
To record a section of an audio book, the readers often record several times until the
quality is good enough.

A deliberation network consists of multiple models. Its output is generated in multiple
passes, each one conditioned on the initial input and the previous free-running output.
With the iterative refinement, the final output is expected to be better than the
previous ones. For deliberation networks, an essential element is to condition all but
the first model on its previous free-running output. This allows the later models to
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Fig. 5.1 Illustration of a two-pass deliberation network; the clear blocks depict the
first pass, operating in free running mode; the shaded blocks depict the second pass,
operating in teacher forcing mode.

learn to correct the free-running output, alleviating exposure bias. Without loss of
generality, this section describes a two-pass deliberation network, shown in figure 5.1.

In terms of notation, x1:L and y1:T denote the input and reference output; θI and θII

denote the first-pass and second-pass models; yI
1:T I denotes an intermediate output

sequence. The deliberation network models p(y1:T |x1:L) as

p(y1:T |x1:L;θI,θII) =
∑

yI
1:T I ∈Y

p(yI
1:T I|x1:L;θI)p(y1:T |yI

1:T I ,x1:L;θII) (5.1)

if yI
1:T I is discrete, and

p(y1:T |x1:L;θI,θII) =
∫
yI

1:T I ∈Y
p(yI

1:T I|x1:L;θI)p(y1:T |yI
1:T I ,x1:L;θII)dyI

1:T I (5.2)

if yI
1:T I is continuous. The summation/integration is over Y , the entire space of yI

1:T I .
p(yI

1:T I|x1:L;θI) is computed by θI, a standard single-pass model. p(y1:T |yI
1:T I ,x1:L;θII)

is computed by θII, a model with an additional attention mechanism over yI
1:T I . θI

and θII have different time steps. At time t, assuming yI
1:T I is available, θII operates
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as follows.

st = f(y1:t−1;θII
s ) (5.3)

hx,1:L = f(x1:L;θII
h,x) (5.4)

hy,1:T I = f(yI
1:T I ;θII

h,y) (5.5)
αx,t = f(st,hx,1:L;θII

α,x) cx,t = ∑L
l=1 αx,t,lhx,l (5.6)

αy,t = f(st,hy,1:T I ;θII
α,y) cy,t = ∑T I

l=1 αy,t,lhy,l (5.7)
ŷII
t ∼ p(·|st, cx,t, cy,t;θII

y ) (5.8)

θII is built upon θI, and has an additional encoder-attention pair. One pair {θII
h,x,θ

II
α,x}

is for the initial input x1:L; the additional pair {θII
h,y,θ

II
α,y} is for the intermediate output

yI
1:T I . The encoder for x1:L shares the same parameters as that of θI, i.e. θII

h,x = θI
h.

The probability of yt depends on st, cx,t and cy,t. st is the state vector tracking the
output history, and is used by both attention mechanisms. cx,t and cy,t summarize
x1:L and yI

1:T I respectively. In this work, cx,t and cy,t are concatenated to form a
new context vector. The intermediate output of θI, such as sI

1:T I and cI
1:T I , can be

combined with the yI
1:T I as the input to θII

h,y. This extra connection speeds up training,
but requires more parameters.

During inference, the generated output history replaces the reference, and equation 5.3
becomes st = f(ŷII

1:t−1;θII
s ). The decoding of θII begins when that of θI is complete.

By default, the rest of this chapter assumes that yI
1:T I is discrete, and most discussions

are agnostic to the continuity of yI
1:T I . When the continuity does make a difference,

the discrete and continuous cases will be discussed separately.

5.2 Training

5.2.1 Joint Training

In theory, θI and θII can be trained by directly maximizing the log of the likelihood
in equation 5.1, and the loss function Ľy is

Ľy(θI,θII) = − log
∑

yI
1:T I ∈Y

p(yI
1:T I|x1:L;θI)p(y1:T |yI

1:T I ,x1:L;θII) (5.9)
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As discussed in section 3.3, if Ľy were fully optimized, the KL-divergence between the
model distribution p(y1:T |x1:L;θI,θII) and the true distribution p(y1:T |x1:L) would be
zero. In general, the actual divergence is limited by the model, data and optimization
process. In particular, for deliberation networks, the sum over yI

1:T I is intractable due
to the prohibitively large space of yI

1:T I . A Monte Carlo estimator is often used to
approximate either the loss or the gradients. The gradients of Ľy w.r.t the model
parameters θI and θII are

▽θIĽy(θI,θII) = −
∑
yI

1:T I ∈Yp(y1:T |yI
1:T I ,x1:L;θII)▽θIp(yI

1:T I|x1:L;θI)∑
yI

1:T I ∈Yp(y1:T |yI
1:T I ,x1:L;θII)p(yI

1:T I|x1:L;θI) (5.10)

▽θIIĽy(θI,θII) = −
∑
yI

1:T I ∈Yp(yI
1:T I|x1:L;θI)▽θIIp(y1:T |yI

1:T I ,x1:L;θII)∑
yI

1:T I ∈Yp(y1:T |yI
1:T I ,x1:L;θII)p(yI

1:T I|x1:L;θI) (5.11)

The sum over the output space appears twice in equations 5.10 and 5.11, which makes
the gradient computation more difficult than necessary. A commonly used technique is
to instead minimize an upper bound Ly [187]:

Ly(θI,θII) = −
∑

yI
1:T I ∈Y

p(yI
1:T I|x1:L;θI) log p(y1:T |yI

1:T I ,x1:L;θII) (5.12)

Ľy(θI,θII) = − log
∑

yI
1:T I ∈Y

p(yI
1:T I|x1:L;θI)p(y1:T |yI

1:T I ,x1:L;θII) ≤ Ly(θI,θII)

The upper bound is derived with the concavity of the log function and the fact that∑
yI

1:T I ∈Y p(yI
1:T I|x1:L;θI) = 1. The gradients of Ly w.r.t. θI and θII are

▽θILy(θI,θII) = (5.13)
−

∑
yI

1:T I ∈Y
p(yI

1:T I|x1:L;θI) log p(y1:T |yI
1:T I ,x1:L;θII)▽θI log p(yI

1:T I|x1:L;θI)

▽θIILy(θI,θII) = −
∑

yI
1:T I ∈Y

p(yI
1:T I|x1:L;θI)▽θII log p(y1:T |yI

1:T I ,x1:L;θII) (5.14)

Equation 5.13 is derived using the identity ▽θf(θ) = f(θ)▽θ log f(θ). Compared with
the previous gradients shown in equations 5.10 and 5.11, the new gradients, ▽θILy and
▽θIILy, are simpler in the sense that the summation over the output space appears
only once.
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Comparing equations 5.12 and 3.27, it can be seen that for θI, the loss fits into the
framework of Minimum Bayes Risk (MBR) training, described in section 3.3.3. Here the
risk is defined as − log p(y1:T |yI

1:T I ,x1:L;θII). The following subsections will describe
two ways of using Monte Carlo approximation, in order to approximate the summation
over the output space. They differ in whether to approximate the loss or the gradient,
but they can adopt the same sampling process.

Approximating Gradients

Applying Monte Carlo approximation, the gradients ▽θILy and ▽θIILy are estimated
as

▽θILy(θI,θII) ≈ (5.15)

− 1
M

M∑
m=1

log p(y1:T |ŷI(m)
1:T I(m) ,x1:L;θII)▽θI log p(ŷI(m)

1:T I(m)|x1:L;θI)

▽θIILy(θI,θII) ≈ − 1
M

M∑
m=1

▽θII log p(y1:T |ŷI(m)
1:T I(m) ,x1:L;θII) (5.16)

{ŷI(1)
1:T I(1) , ..., ŷ

I(M)
1:T I(M)} are M i.i.d. samples drawn from the distribution p(yI

1:T I|x1:L;θI).
The Monte Carlo estimator is unbiased, and its variance is proportional to 1

M
. There

is a trade-off between the variance and the computational cost: fewer samples results
in higher variance, but lower cost. For SGD-based optimization, noisy estimates of the
gradients are used, and this variance adds another level of noise.

The sampling process is often realized by beam search or (a noisy version of) greedy
search [142], as described in section 3.2. Once the sampling process is complete, it is
straight-forward to to compute ▽θILy and ▽θIILy. For θI, the training is equivalent
to MBR training. For θII, the training can be viewed as teacher forcing, because to
compute the conditional probability of the reference output, the reference back-history
is used.
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Approximating Loss

Alternatively, Monte Carlo approximation can be applied to the loss Ly shown in
equation 5.12, before deriving the gradients. Let L̄y1 denote the approximation:

Ly(θI,θII) ≈ L̄y(θI,θII) = − 1
M

M∑
m=1

log p(y1:T |ŷI(m)
1:T I(m) ,x1:L;θII) (5.17)

It is simple to compute ▽θIIL̄y. However, computing ▽θIL̄y is not trivial, because it
requires differentiating through ŷI(m)

1:T I(m) , a random sample drawn from a distribution.
The sampling process can be formulated as a deterministic function of θI, using
reparameterization tricks, such as using Gumbel softmax [78]. In general, suppose
yI

1:T I can be viewed as a function of a random variable z, and drawing samples from
its distribution p(z) is practical. Then instead of drawing {ŷI(1)

1:T I(1) , ..., ŷ
I(M)
1:T I(M)} from

p(yI
1:T I|x1:L;θI), we can draw {ẑ(1), ..., ẑ(M)} from p(z):

ẑ(m) ∼ p(z); ŷ
I(m)
1:T I(m) = f(ẑ(m),x1:L;θI)

L̄y(θI,θII) = − 1
M

M∑
m=1

log p(y1:T |f(ẑ(m),x1:L;θI),x1:L;θII) (5.18)

The gradients for θI and θII are

▽θIL̄y(θI,θII) ≈ (5.19)

− 1
M

M∑
m=1

▽
ŷ

I(m)
1:T I(m)

[log p(y1:T |ŷI(m)
1:T I(m) ,x1:L;θII)]▽θI [f(ẑ(m),x1:L;θI)]

▽θIIL̄y(θI,θII) ≈ − 1
M

M∑
m=1

▽θII log p(y1:T |ŷI(m)
1:T I(m) ,x1:L;θII) (5.20)

Note that yI
1:T I is independent of θI, and the summation in equation 5.9 is over the

entire space of yI
1:T I . Hence ▽θIp(y1:T |yI

1:T I ,x1:L;θII) = 0, and equations 5.13 and 5.15
hold. In contrast, ŷI(m)

1:T I(m) depends on θI, and the summation in equation 5.17 is over a
set depending on θI. As described previously, ŷI(m)

1:T I(m) can be viewed as a deterministic
function of θI. Hence ▽θIp(y1:T |ŷI(m)

1:T I(m) ,x1:L;θII) ̸= 0, and equation 5.19 holds.
1After approximating the loss, a bar is added to the symbols, in order to facilitate comparison

with the previous option, where Monte Carlo approximation is applied to the gradients.
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For the second-pass model θII, given the same group of samples, the gradients remain
the same, i.e. ▽θIILy = ▽θIIL̄y, whether Monte Carlo approximation is applied to the
loss or the gradients. For the first-pass model θI, unless M → +∞, the gradients
▽θILy and ▽θIL̄y are usually different. It is not trivial to mathematically characterize
the difference. However, from a practical point of view, it is simpler to apply Monte
Carlo approximation to the gradients, which does not require any reparameterization
trick. This is probably why applying Monte Carlo approximation to the gradients is
more common in previous research [187].

5.2.2 Separate Training

The joint training scheme has several drawbacks. As there is no loss over the interme-
diate output ŷI(m)

1:T I(m) , it is likely to deviate from valid target sequences. This makes it
difficult to analyze the system. More importantly, if θI is randomly initialized, the
intermediate output will be close to random noise, making it difficult for θII to learn
to refine the intermediate output. In practice, it is common to pretrain θI with teacher
forcing, in order to address these problems [72].

In terms of efficiency, one important problem is that the sampling process is very
often auto-regressive, in which case joint training cannot be run in parallel. Recently,
Transformer-style models are widely used in various tasks including NMT and TTS.
One of their main advantages is parallel training. If teacher forcing is used, there is
no recurrent connection in the model, and training can be done in parallel across the
length T of the output y1:T , because the reference output history y1:t−1 is available for
any t. However, if sampling is required, these models must operate sequentially, because
the generated output history ŷ1:t−1 must be used, which is not available beforehand.

In this work, we propose to train the two models separately. This is a simple alternative
to the joint training scheme previously described. For the proposed approach, θI is
trained as a standard sequence-to-sequence model with teacher forcing:

Ly(θI) = − log p(y1:T |x1:L;θI) (5.21)

Then it is fixed to generate samples {ŷI(1)
1:T I(1) , ..., ŷ

I(M)
1:T I(M)} for each input x1:L, using

beam search or (a noisy version of) greedy search. Next, θII is again trained with
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teacher forcing:

Ly(θII) = − log 1
M

M∑
m=1

p(y1:T |ŷI(m)
1:T I(m) ,x1:L;θII) (5.22)

The gradients for θI and θI are

▽θILy(θI) = −▽θI log p(y1:T |x1:L;θI) (5.23)

▽θIILy(θII) = − 1
M

M∑
m=1

▽θII log p(y1:T |ŷI(m)
1:T I(m) ,x1:L;θII) (5.24)

For θII, the gradient is the same for separate training and joint training, given the
same group of samples. This can be seen by comparing equations 5.16 and 5.24. For
θI, however, there is a major difference. As described in the previous subsection, joint
training uses a noisy Monte Carlo estimator for either the loss or the gradient, and
is empirically found to be unstable [187]. In contrast, for separate training, θI is
trained with teacher forcing, and is free from the above problem. This can be seen by
comparing equation 5.23 to equations 5.15 and 5.19.

In terms of efficiency, the separate training approach has the advantage that it allows
parallel training. As θI is fixed, the sample ŷI

1:T I can be generated and stored beforehand.
So that when predicting yt, all the required information is available, including x1:L,
y1:t−1 and ŷI

1:T I . Therefore, the experiments in this thesis only investigate separate
training. Following previous research [148, 187], this work adopts greedy search as the
sampling scheme, and generates only one sample for each input.

5.3 Application Considerations

5.3.1 Sequence-to-sequence Task

For some sequence-to-sequence tasks, the input and output have the same continuity,
and can be embedded in the same way. Examples include NMT and voice conversion.
More precisely speaking, the initial input x1:L and the first-pass output yI

1:T I are
either both continuous or both discrete. Hence the additional encoder and attention
mechanism for the first-pass output, θII

h,y and θII
α,y, can have exactly the same structure

as those for the initial input, θII
h,x and θII

α,x. When the input and output are different
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in terms of continuity, the additional encoder needs to be modified. For example, for
TTS, x1:L is a discrete text sequence, and yI

1:T I is a continuous speech sequence.2 In
this work, the text embedding layer in θII

h,x is replaced by the linear layer in θII
h,y.

It is also important to consider the length of the first-pass output yI
1:T I , which is often

coupled with its continuity. Continuous outputs, such as audio, are usually longer than
discrete outputs, such as text. In general, longer sequences are harder for the attention
mechanism, and reducing the time resolution alleviates the problem. For example, a
pyramid encoder is often used in attention-based ASR models [21]. In this work, when
dealing with audio sequences, adjacent frames in yI

1:T I are stacked in groups of four,
forming a shorter sequence, before being fed into the encoder.

With two sources of information, the second pass-model sometimes converges to the
standard single-pass model, ignoring one of the sources. In this case, the attention
over the corresponding input sequence does not produce any meaningful alignment.
To tackle this issue, the attention can be regularized. This is relatively simple when
the attention is expected to be monotonic. For example, when applying deliberation
networks to TTS, this work proposes using a guided attention loss [169]:

Lα(θII) =
T∑
t=1

T I∑
l=1

[αy,t,lwt,l]

wt,l = 1− exp (−(t/T − l/T I)/2g2)
(5.25)

where g is a hyperparameter controlling the sharpness, and αy,t,l is an element of the
attention map αy,1:T .3 In this work, the guided attention loss is only applied to the
attention over the first-pass output yI

1:T I , as it is a long continuous sequence. This
encourages αy,1:T to be diagonal, enabling θII to make more extensive use of yI

1:T I . For
θII, the complete loss is

Ly,α(θII) = Ly(θII) + γLα(θII) (5.26)

where γ is a scaling factor. When Lα is used, it is important to monitor αy,1:T and the
inference performance on a validation set via objective metrics such as Global Variance
(GV). When αy,1:T is sharply diagonal, Lα is low, but the inference performance may
degrade. In this work, early stopping is used when the GV drops considerably below
the baseline.

2In most cases yI
1:T I is a feature sequence, and a neural vocoder maps it to a waveform.

3In the subscripts of αy,t,l and αy,1:T , y indicates that the attention is over the first-pass output
yI

1:T I , and t,l is the position in the map.
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5.4 Related Work

In previous research [187, 72], the success of deliberation networks is mainly explained
by the improved modeling capacity: the second-pass model can attend to the complete
output sequence of the first-pass, in addition to its output history. In this work, it is
argued that deliberation networks can address exposure bias, which is essential to their
success. It is very important to train the second-pass model to fix the free-running
output of the first-pass model, instead of the teacher forcing output. In other words,
the secret ingredient of success is to not only use powerful models, but also train them
to address exposure bias. This will be demonstrated by the experiments in sections
6.4.5 and 7.3.5.

This work investigates several approaches to train deliberation networks, including
ones that are not discussed in previous research. It is pointed out that the training of
the first-pass model resembles MBR training, described in section 3.3, when the joint
training scheme is adopted. Here the first-pass model is required to generate output
sequences sequentially during training, which can be too expensive for Transformer-
based models. Therefore, this work proposes the use of the separate training scheme.
If efficiency is important, the sequential generation can be done in an offline fashion, so
that both the first-pass and second-pass models can be trained in parallel across time.

On a historical note, deliberation networks were first introduced for sequence-to-
sequences tasks where both the input and output are text, such as NMT [187]. Their
application was later extended to ASR, where the input is audio and the output is
text. For these tasks, the additional attention connects two text sequences, which are
relatively short and uncorrelated in time. Hence it is easier for the additional attention
to learn [24] to align the sequences. However, for tasks such as TTS, where the output
is audio, the application is more challenging due to audio sequences being long and
strongly correlated in time. As a remedy, this work proposes using the guided attention
loss to regularize the attention over the first-pass audio sequence. Some recent works
on TTS [150, 149, 195, 39] use a duration model instead of attention. The idea of
deliberation is compatible with such models: the extra attention connecting two speech
sequences can either be kept or replaced by a duration model.

When it comes to ASR, streaming is an increasingly important demand [72, 71, 118].
Typically, the first-pass model is a streaming model such as RNN-Transducer (RNN-T)
[65], and the RNN-T loss [65] for the first-pass model is combined with the likelihood
loss for the second-pass model, described in section 5.2. In some cases, MBR training is
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also applied to the second-pass model, directly optimizing the word error rate [72, 71].
To improve the streaming outputs, the second-pass model often adopts more powerful
building blocks, such as Transformer blocks. The most common training scheme is
separate training followed by joint training. During joint training, the first-pass model
generates samples sequentially, but this is less problematic than the other application
cases, thanks to the efficiency of the first-pass model.

5.5 Chapter Summary

This chapter introduced deliberation networks as an alternative approach to addressing
exposure bias. Section 5.1 described the general framework: the output sequence is
generated in multiple passes, each one conditioned on the initial input and the free-
running output of the previous pass. Section 5.2 explored several training approaches,
and proposed a separate training scheme, which is more suitable for parallelizable
models such as Transformers. Here the multiple passes are trained in turn with teacher
forcing. For all passes but the last, the model is fixed, after training, to generate free
running outputs, which will be stored for the training of the next pass. Section 5.3
described the application considerations, and proposed a training technique. For tasks
such as speech synthesis and voice conversion, the output sequences are relatively long.
As a result, the multi-pass model tends to converge to the standard single-pass model,
ignoring the previous output. To tackle this issue, a guided attention loss can be added,
enabling the system to make more extensive use of the free-running output. Section
5.4 compared deliberation networks with related approaches.

The key novelties of this chapter are as follows. First, section 5.1 described the
framework from a probabilistic perspective, instead of the deterministic perspective
commonly seen in the literature [187]. Second, section 5.2 investigated a range of
training approaches, and drew the connection between the training of deliberation
networks and MBR training. While equations 5.9 to 5.16 can be found in the literature,
equations 5.17 to 5.20 are newly derived. Furthermore, section 5.2.2 pointed out the
synergy between the proposed separate training approach and parallelizable models.
Finally, section 5.3 proposed the guided attention loss, facilitating the application of
deliberation networks to tasks where the output is continuous and relatively long.



Chapter 6

Text-to-speech Synthesis

This chapter investigates speech synthesis as an example sequence-to-sequence task, in
order to validate the effectiveness of attention forcing and deliberation networks. For
speech synthesis, the output space is inherently continuous; the attention between the
input and output is expected to be monotonic, in the sense that as the output step
increases, the input step(s) in focus either increases or stays the same. Similar tasks
include voice conversion and hand writing trace generation. To begin with, section
6.1 describes the speech synthesis pipeline, including text analysis, acoustic modeling
and vocoder synthesis. Next, section 6.2 describes the acoustic models used in the
experiments. In addition, the impact of frame rate is investigated, which helps adapting
various training approaches. Section 6.3 takes the same structure to describe neural
vocoders, and introduces two novel training techniques: pretraining with unlabeled
speech and adaptation using attention forcing, which can generate outputs aligned
with the references. Section 6.4 reports and analyzes the experimental results.

6.1 Pipeline

Text-To-Speech (TTS) synthesis is the task of generating speech from text. Over the
years there have been many different approaches. The most prominent approaches
are concatenative synthesis [73] and parametric synthesis [202, 108]. Concatenative
synthesis is based on concatenating units of recorded speech. In contrast, parametric
synthesis relies on modeling the probability of speech conditioned on text. Parametric
synthesis has various advantages over concatenative synthesis, including robustness
and flexibility (to change its voice characteristics) [202]. Conventionally, parametric
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Fig. 6.1 Illustration of a text-to-speech pipeline.

synthesis depends on decision tree-clustered context-dependent Hidden Markov Models
(HMMs) [194]. The performance of such systems is not as good as concatenative
synthesis, and the main reasons include vocoding, accuracy of acoustic models, and
over-smoothing [203]. This work focuses on the next generation of parametric synthesis,
which is centered around deep learning. These new parametric systems [202, 174, 182]
can address the above issues and have dramatically improved the state-of-the-art
performance in TTS.

In general, parametric synthesis involves three stages: text analysis, acoustic modeling
and vocoder synthesis. Text analysis maps raw text to a sequence of linguistic features,
optionally with the help of a duration model; an acoustic model maps the linguistic
feature sequence to an acoustic feature sequence; a vocoder maps the acoustic feature
sequence to a waveform. These stages are illustrated by figure 6.1, and will be discussed
with more detail in the following subsections.

6.1.1 Text Analysis

Text analysis is the process of mapping raw text to a linguistic feature sequence. In
this thesis, raw text refers to normalized text, where the numbers are verbalized; the
tokens, i.e. units, of a text sequence are characters. Conventionally, linguistic features
are vectors containing contextual and linguistic information such as the identities of the
phoneme to be articulated and the neighboring phonemes [202]. The mapping usually
leverages linguistic knowledge such as a pronunciation lexicon, and can be rule-based.
During training, the natural duration obtained from forced-alignment is fed into the
pipeline, to ensure that the linguistic feature sequence is aligned with the acoustic
feature sequence. Let fd and fl respectively denote the duration and linguistic feature
extraction processes, which usually have no parameters to train. Let x1:L denote the
text sequence, d1:L the duration of each token, x̃1:T the linguistic feature sequence,
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and y1:T the acoustic feature sequence. Text analysis can be formulated as

d1:L = fd(x1:L,y1:T ) (6.1)
x̃1:T = fl(x1:L,d1:L) (6.2)

The natural duration is also used as the reference to train a duration model ψ. At the
inference stage, the duration model predicts the duration d̂1:L of each token:

d̂1:L = f(x1:L;ψ) (6.3)
x̃1:T̂ = fl(x1:L, d̂1:L) (6.4)

For conventional text analysis, a linguistic feature sequence can be viewed as a
knowledge-based representation of text, which is context-aware but has some loss
of information. For recent TTS systems based on deep learning, text analysis can
be merged with acoustic modeling. Here the acoustic models can directly map a
character sequence to an acoustic feature sequence [182], or even a waveform [184].
The context-aware representation of text is implicitly learned, which simplifies the TTS
pipeline [182]. With enough data and modeling capacity, the learned representation can
be more effective than conventional knowledge-based representation [35]. In particular,
using self-supervised training techniques, powerful language models can be trained with
massive amounts of unlabeled text data [35, 98], and then integrated with acoustic
models as feature extractors [61].

With the development of multi-lingual TTS, phone-based systems [191, 23] have gained
increasing attention. Here the text analysis stage is reduced to mapping character
sequences to phone sequences. This is often done using external Grapheme-To-Phoneme
(G2P) [167] systems. The accuracy of G2P systems limits the final TTS performance,
but also reduces the need for powerful acoustic models. In particular, for multi-lingual
TTS, phone-based systems often make more efficient use of data. Languages that do
not have the same alphabet often have many common phones, which can facilitate
the learning of multiple languages. This work focuses on mono-lingual TTS. In the
experiments, unless otherwise stated, character sequences are directly fed into acoustic
models.
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6.1.2 Acoustic Modeling

Strictly speaking, an acoustic model takes as input a linguistic feature sequence, and
outputs an acoustic feature sequence. This definition can be extended: the input
can be any form of text representation, and the output can be any form of waveform
representation. From a probabilistic perspective, the model estimates the distribution
of the output sequence conditioned on the input sequence. As previously stated, this
work focuses on acoustic models based on deep learning. For the early generation of
such models, the input and output sequences are aligned and have the same length.
Let θ denote an acoustic model; let x̃1:T , h1:T and y1:T denote the input, hidden and
output sequences, which have the same length T . The acoustic modeling process can
be formulated as

p(y1:T |x̃1:T ;θ) =
T∏
t=1

p(yt|y1:t−1, x̃1:T ;θ) ≈
T∏
t=1

p(yt|ht;θ) (6.5)

The acoustic model θ can be built with various building blocks described in chapter 2.
For example, for models based on bidirectional RNNs, which have been successful in
TTS [47], h1:T can be computed as shown in equations 2.9 to 2.11.

This work uses sequence-to-sequence acoustic models that adopt the encoder-attention-
decoder architecture. The term “sequence-to-sequence” is used to exclusively refer to
the models whose output and input sequences are not aligned or equally long. For
these models, equation 6.5 is replaced by

p(y1:T |x1:L;θ) =
T∏
t=1

p(yt|y1:t−1,x1:L;θ) ≈
T∏
t=1

p(yt|st, ct;θ) (6.6)

This is a compact equivalence of equations 3.1 and 3.7. st and ct are vectors respectively
summarizing the output history and the input. The output is not aligned with the
input, which is of length L. Attention mechanisms are used to handle the alignment.
There are alternative forms of sequence-to-sequence acoustic models. For example,
some recent works on TTS [150, 149, 195, 39] use duration models to replace the
attention mechanism. Here each input token is upsampled based on its duration. As a
result, monotonic alignment is guaranteed, but the application is limited to tasks such
as TTS, where the alignment is expected to be monotonic. In contrast, attention-based
models are more flexible in the sense that they can be applied to other tasks such as
ASR and NMT. The downside is that sometimes task-specific training techniques are
essential, e.g. a guided attention loss [169] encouraging monotonic attention. Generally
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speaking, there is a design choice of whether to express prior knowledge in the model
or in the training algorithm. When applying a flexible model to a specific task, prior
knowledge can be leveraged during training.

Details on attention mechanisms are available in chapter 2, and details on the encoder-
attention-decoder architecture are available in chapter 3. Chapters 4 and 5 introduced
novel training approaches, and compared them with more standard approaches described
in section 3.3. Section 6.2 will elaborate on some typical models, which are used in the
experiments.

6.1.3 Vocoder Synthesis

Conventional vocoders, e.g. STRAIGHT [84] and PML [32], have two parts. The
vocoders can map audio to acoustic features, which are used as the reference for
training acoustic models. This process is referred to as vocoder analysis. Acoustic
features are also referred to as vocoder features. Each acoustic feature vector includes
information such as the mel-spectrum, band aperiodicity, and fundamental frequency.
At the inference stage, the vocoders map acoustic features, generated by the acoustic
models, to audio. This process is referred to as vocoder synthesis. For conventional
vocoders, both analysis and synthesis are based on signal processing techniques, and
do not require training. During vocoder analysis, there is some loss of information,
which cannot be fully recovered by conventional vocoder synthesis. This is a major
limit for the final TTS performance [174].

Neural vocoders leverage the capacity of neural networks to address the above issue.
The neural vocoders are trained to map acoustic features to audio, and they replace
conventional vocoders at the synthesis stage. From a probabilistic perspective, they
model the distribution of a waveform sequence conditioned on an acoustic feature
sequence. Typically, this distribution is factorized across time:

p(z1:J |y1:T ;ϕ) =
J∏
j=1

p(zj|z1:j−1,y1:T ;ϕ) (6.7)

where z1:J denotes a waveform sequence, and ϕ denotes a neural vocoder. Equation 6.7
looks similar to equation 6.6, which formulates acoustic modeling. However, there are
fundamental differences. First, for neural vocoders, the input and output sequences are
aligned, so each input token is upsampled and corresponds to a fixed number of output
tokens. In this regard, neural vocoders can be viewed as special sequence-to-sequence
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models, where the output and input sequences are aligned. Second, the waveform is
usually orders of magnitude longer than the corresponding text or acoustic feature
sequence. It can be very challenging to model such a long sequence: for standard
RNNs and CNNs, the receptive field is not enough [174].

Various neural vocoders have been proposed to address this challenge. They differ in
the estimation of p(zj|z1:j−1,y1:T ;ϕ), and keep a balance between audio quality and
efficiency. Section 6.3 will review a range of neural vocoders, and then elaborate on
some typical neural vocoders, which will be used in the experiments.

6.2 Acoustic Models

This section reviews a range of acoustic models, and then elaborates on the models
that will be used in the experiments. Inference and training tricks will be discussed at
the end of the section.

6.2.1 General Review

Recall that this work focuses on models that adopt the encoder-attention-decoder
architecture. Section 3.1.3 generally discussed the pros and cons of various building
blocks, which are described in chapter 2. Briefly speaking, RNNs are powerful [161] but
can be difficult to train [12]. In particular, due to the recurrent connections, training
cannot be run in parallel across time. CNNs have a finite receptive field and are adept
at capturing local correlations. When teacher forcing is used, there are no recurrent
connections and training can be run in parallel across time. Transformer blocks are
also suitable for parallel training. Compared with CNNs, they have longer receptive
fields, and are better at modeling global correlations.

Tacotron [182] was the first sequence-to-sequence model achieving state-of-the-art
performance in TTS. This model is based on RNNs. Its output is linear-spectrogram,
which is converted to a waveform using the Griffin-Lim algorithm. Tacotron 2 [158]
improves Tacotron by removing excessive model parameters. It uses mel-spectrograms
as the output, and leverages the modeling power of a neural vocoder to generate
waveforms. Several works improve Tacotron from different aspects. For example,
Ref-Tacotron [163] and GST-Tacotron [183] extend the architecture with prosody and
more general style embedding. Wave-Tacotron [184] integrates the neural vocoder,
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and directly generates waveforms. Parallel Tacotron [45, 44] is the non-autoregressive
version of Tacotron, which significantly improves the inference speed. DurIAN [195]
replaces the attention mechanism with a duration model, which is a TTS-specific
approach.

The DeepVoice series [2, 50, 138] are based on CNNs. Similar to the Tacotron series,
each generation improves the modeling power, and makes the model more suitable
for multi-speaker TTS. The training and the model itself are also simplified over time
[170]. DeepVoice 2 [50] extends DeepVoice [2] with speaker embedding. DeepVoice 3
[138] is a more compact model, and can scale up to real-word multi-speaker datasets.
Several works follow this CNN line of research. For example, ClariNet [137] generates
waveforms from text in a fully end-to-end fashion. ParaNet [135] is a non-autoregressive
model, which speeds up inference while maintaining good speech quality.

Transformer TTS [104] was the first application of Transformers to TTS, which generates
mel-spectrograms from phonemes. This model absorbs some designs from Tacotron 2
such as pre-net, post-net and stop token prediction. It achieves similar voice quality
as Tacotron 2 but has faster training speed thanks to parallel training. In TTS, the
attention connecting the input and output should be monotonic [169]. For RNN-
based models, this can be realized with location-sensitive attention, which requires
recurrent connections. For Transformer TTS, however, this conflicts with parallel
training. As a result, the cross attention mechanisms in Transformer TTS are less
robust. Several follow-up works aim to address this issue. For example, MultiSpeech
[23] uses techniques such as encoder normalization, decoder bottleneck, and diagonal
attention constraint.

6.2.2 Tacotron

Tacotron [182] is sequence-to-sequence model that takes a character sequence as input
and outputs the corresponding spectrogram. It adopts the encoder-attention-decoder
architecture described in section 3.1. Figure 6.2 depicts the model, which includes an
encoder, an attention mechanism, a decoder, and a post-processing network.

CBHG Module Tacotron extensively uses a module called CBHG, which is a
powerful module for extracting representations from sequences [182]. It consists of
several basic building blocks described in chapter 2: a bank of 1D convolutional filters,
followed by highway networks [166] and a bidirectional GRU [30]. The input sequence
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Fig. 6.2 Illustration of Tacotron [182].

Fig. 6.3 Illustration of a CBHG module [182].
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is first convolved with G sets of 1D convolutional filters, where the g-th set contains Cg

filters of width g. These filters explicitly model dependencies at different scales, which
is similar to modeling unigrams, bigrams, up to G-grams. The outputs are stacked
together and further max pooled along time to increase local invariances. The max
pooling is followed by a few fixed-width 1D convolutions, whose outputs are added
with the original input sequence via residual connections [64]. For all convolutional
layers, batch normalization [76] is used, and the stride is one, in order to preserve the
original time resolution. The convolution outputs are fed into a multi-layer highway
network to extract high-level features. Finally, a bidirectional GRU extracts sequential
features, considering both forward and backward context.

Encoder The goal of the encoder is to extract representations of text sequences.
The input to the encoder is a character sequence, where each character is represented
as a one-hot vector and embedded into a continuous vector. A bottleneck layer with
dropout, collectively called a “pre-net”, is applied to each embedding. This helps
convergence and improves generalization [182]. A CBHG module transforms the pre-net
outputs into the final encodings.

Attention The attention mechanism connecting the encoder and the decoder is
additive attention [6]. As described in section 2.2.1, this is a content-based attention
mechanism. An attention RNN, which is part of the decoder, produces the attention
query at each decoder time step.

Decoder The decoder consists of a pre-net, an attention RNN and an decoding RNN.
The first decoder step is conditioned on an all-zero frame (a token), which represents
the beginning of decoding. After that, there is a train-inference mismatch, which
is referred to as exposure bias and is described in section 3.3. During training, the
decoder operates in teacher forcing mode, where every step is conditioned on the last
reference frame. During inference, the decoder operates in free running mode, and
the last generated frame is used instead. The conditioning frames are processed by
a pre-net, as is done in the encoder. The pre-net outputs are fed into the attention
RNN, which produces state vectors. At each decoding step, the attention mechanism
takes a state vector, and summarizes the encoder outputs with a context vector. The
context vector and the state vector are concatenated and fed into the decoding RNN.
The RNNs are unidirectional GRUs with residual connections [186]. The target of the
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decoder is a 80-band mel-spectrogram. At each time step, a fully-connected output
layer maps the output of the decoding RNN to multiple frames, instead of just one.
This reduces the number of decoder time steps, and makes it easier for the attention
mechanism to learn meaningful alignments [182]. As section 6.2.4 will explain, this
also addresses exposure bias.

Post-processing Network Finally, a CBHG module acts as a post-processing
network, and maps the generated mel-spectrograms to linear-spectrograms, which can
be converted to waveforms using the Griffin-Lim algorithm [56]. The post-processing
network sees the entire mel-spectrogram sequence, which mitigates the limitations of
the unidirectional decoding process. The Griffin-Lim algorithm was originally used for
its simplicity [182], and will be replaced by vocoders in this work.

6.2.3 Tacotron 2

Tacotron 2 [158] can be viewed as the compact version of Tacotron. It keeps the encoder-
attention-decoder architecture, but removes some excessive model parameters. Tacotron
2 uses standard LSTM and convolutional layers in the encoder and decoder instead of
CBHG modules and GRU layers. At each decoding step, a single spectrogram frame
is predicted, instead of many. The convolutional layers in Tacotron 2 are regularized
using dropout [165], and LSTM layers are regularized using zoneout [93]. In order to
introduce output variation at inference time, dropout is also applied to the pre-net of
the decoder.

Encoder The encoder converts a character sequence into a hidden sequence. The
character embeddings are passed through a stack of three convolutional layers, followed
by batch normalization [76] and ReLU activations. The output of the final convolutional
layer is passed into a single bidirectional LSTM layer to generate the hidden sequence.

Attention The attention mechanism is location-sensitive attention [28], described in
section 2.2.1. It extends additive attention [6], which is used in Tacotron, by considering
attention weights from previous decoder time steps. This encourages the model to
move forward consistently through the input, leveraging the monotonic nature of the
attention in TTS [158]. Attention weights are computed after projecting inputs and
location features to hidden representations. Location features are computed using 1D
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convolution filters. Note that the use of location-sensitive attention is an example of
expressing prior knowledge in the model, a design choice discussed in section 6.1.2.

Decoder The decoder consists of two pre-net layers, two LSTM layers, and a linear
projection layer. The prediction from the previous time step is first passed through
the pre-net, which contains two fully connected layers with ReLU units. The pre-net
output and attention context vector are concatenated and passed through a stack of
two unidirectional LSTM layers. The concatenation of the LSTM output and the
attention context vector is then projected through a linear transform to produce a
prediction of the target spectrogram frame.

In parallel to spectrogram frame prediction, the concatenation of decoder LSTM output
and the attention context is projected down to a scalar and passed through a sigmoid
activation to predict the probability that the output sequence has completed. This stop
token prediction is used during inference to allow the model to dynamically determine
when to terminate generation instead of always generating for a fixed duration [158].

Post-processing Network The post-processing network is a CNN, which predicts
a residual to add to the initial prediction to improve the overall reconstruction. Each
post-net layer uses batch normalization, followed by tanh activation for all but the
final layer.

6.2.4 Inference and Training

Section 3.2 generally described the inference process for sequence-to-sequence models.
For acoustic models, the output is continuous, hence greedy search is used during
inference. The models stop when the output meets a certain condition, e.g. when the L1

distance between the output and the padding token are small enough. Tacotron adopts
this approach, and does not mask the zero-paddings during training. Alternatively,
the model can make an additional binary decision about whether to stop, as is done
in Tacotron 2. Here a cross-entropy loss is combined with the loss over the acoustic
features.

Section 3.3 generally described a range of training approaches for sequence-to-sequence
models. To the author’s knowledge, teacher forcing is the standard training approach
for TTS. The loss is shown in equation 3.16. As described in section 3.1.4, this loss is



82 Text-to-speech Synthesis

equivalent to the average distance between the generated tokens and their references.
Tacotron assumes a Laplace distribution, and uses a L1 distance; Tacotron 2 assumes
a Gaussian distribution, and uses a L2 distance. In these two cases, the distance is
measured using the outputs of both the decoder and the post-processing network, and
combined with equal weights.

To address exposure bias, recent research has investigated scheduled sampling and
variations of professor forcing. References [60] and [110] both regularize the decoder
states. As there is no standard distance metric, reference [60] designs a discriminator
and uses the hinge version of adversarial loss, and reference [110] uses a L1 distance.
Reference [110] finds scheduled sampling beneficial, while reference [60] finds the
opposite, showing that the schedule can be hard to tune. For TTS, there is not a
well-established objective metric, and sequence-level training is not often adopted for
reasons described in section 3.3.

Frame Rate For acoustic models, the output is a continuous sequence, and the
frames are highly correlated in time. This makes exposure bias more severe: models
trained with teacher forcing tend to copy from the output history. In this case, it is
essential to reduce the frame rate. Recall that acoustic features are extracted from
waveforms, using a sliding window. The sampling rate of the waveform and the hopping
length of the window determines the frame rate of the acoustic feature sequence. The
sampling rate equals the number of waveform samples in one second of speech, usually
above ten thousand [174]1; the frame rate equals the number of feature vectors in
the corresponding acoustic feature sequence, usually hundreds [182]. In conventional
parametric TTS, the standard frame rate is 200 Hz [201, 200]. For more recent TTS
models, which have more memorizing capacity, this frame rate is reduced to 80 Hz
[182, 158].

Chapter 4 and chapter 5 respectively introduced attention forcing and deliberation
networks. When these approaches are applied to TTS, reducing the frame rate is no
longer essential. For attention forcing, the reference output is not fed into the model;
for deliberation networks, the second-pass models are trained to fix the errors in the
free-running output from the first-pass models. As described in section 5.3, the length
of the output sequence makes it difficult for attention mechanisms to find the right
focus. Hence when applying deliberation networks to TTS, it is important to regularize

1For good quality speech data is often sampled at 16 KHz or 22.05 KHz [174, 77].
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the attention over the acoustic feature sequence, leveraging the monotonic nature of
the task.

6.3 Neural Vocoders

This section reviews a range of neural vocoders, describes some distributions for
waveform modeling, and then discusses the neural vocoders that will be used in the
experiments, namely SampleRNN and WaveRNN. Inference and training techniques
will be discussed at the end of the section.

6.3.1 General Review

WaveNet [174] was the first neural vocoder to achieve state-of-the-art performance.
It leverages dilated CNNs to model long-range dependency. SampleRNN [120] is an
alternative introduced at about the same time. It leverages hierarchical RNNs to
reach similar performance as WaveNet. Initially, WaveNet and SampleRNN are not
investigated as neural vocoders. WaveNet is originally conditional on conventional
linguistic features, and then adapted to linear-spectrograms [182] and mel-spectrograms
[158]. SampleRNN was developed for unconditional waveform generation, and later
works [164, 41]2 demonstrated its neural vocoding capacity.

A common problem for the first generation of neural vocoders is inference speed. The
models have a large number of parameters, many of which can be pruned. More
importantly, the autoregressive generation of audio is very time consuming due to
the length the output sequence. A lot of works have investigated lightweight and fast
vocoders. WaveRNN [81] is a prominent example. This model is still autoregressive,
but is built on a standard RNN. To increase the inference speed, several techniques
are adopted, including a dual softmax layer, weight pruning, and subscale sampling.
Some later works [115, 133, 79] further improved the robustness.

LPCNet [173] is another efficient neural vocoder. It incorporates prior knowledge
about vocal tract into neural networks, and uses linear prediction coefficients to
compute the next waveform point while leveraging a lightweight RNN to compute

2Reference [41] was written by the author of this thesis during the PhD course. It compared
two ways of using SampleRNN (as a neural vocoder or a combination of acoustic model and neural
vocoder), and proposed training techniques such as tier-wise training.



84 Text-to-speech Synthesis

the residual. LPCNet is initially conditioned on Bark-Frequency Cepstral Coefficients
(BFCC), but can be easily adapted for mel-spectrograms [170]. Some later works
further improved LPCNet from different perspectives, such as reducing complexity for
speedup [177, 140, 83], and improving stability for better quality [75].

Normalizing flow [36, 37] is a kind of generative model. It transforms a probability
density with a sequence of invertible mappings [151] to another probability density.
During training, a standard/normalized probability distribution (e.g., Gaussian) is
obtained through the sequence of invertible mappings based on the change-of-variables
rules. At the inference stage, it generates data from a standard probability distri-
bution through the inverse of these transforms. Flow-based neural vocoders can be
divided into two categories, according to the the type of mapping [128]: autoregressive
transforms [88] (e.g., inverse autoregressive flow used in Parallel WaveNet [126]), and
bipartite transforms (e.g., Glow [87] used in WaveGlow [143], and RealNVP [37] used
in FloWaveNet [85]). Both autoregressive and bipartite transforms have their pros
and cons. Autoregressive transforms are more expressive than bipartite transforms by
modeling dependency between data distribution and standard probability distribution,
but require more complicated training such as teacher-student training. Bipartite
transforms enjoy a much simpler training pipeline, but usually require a larger number
of parameters to reach comparable performance. WaveFlow [139] introduces a unified
view of these models to explicitly trade inference parallelism for model capacity [170].

Generative Adversarial Networks (GANs) [52] have been widely used in generative
tasks, such as image generation [52], text generation [197], and audio generation [38].
GANs consist of a pair of neural networks: a generator for data generation, and a
discriminator to tell generated data from true data. Here the generator is equivalent
to the neural vocoders described above. The discriminator effectively learns a loss
function, and is not used during inference. Popular GAN-based neural vocoders include
WaveGAN [38], GAN-TTS [13], MelGAN [96], Parallel WaveGAN [190], and HiFi-
GAN [91]. For the generators, modeling long-range dependency is still a key challenge.
Most models use dilated convolution to increase the receptive field, and transposed
convolution to upsample the conditioning vectors (e.g. mel-spectrograms) to match the
length of waveform [170]. As for the discriminators, the key question is how to capture
the characteristics of waveform. Typically, multiple discriminators are adopted, each
one focusing on the dependency of a particular time scale. Other regular GAN losses
such as the hinge-loss [106], waveform-specific losses such as STFT loss [3] and feature
matching loss [99] have been introduced to train GAN-based neural vocoders. These
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additional losses can improve the stability and efficiency of adversarial training [190],
and improve the perceptual audio quality [170].

6.3.2 Waveform Distributions

Categorical Distributions

To model a waveform sample, it is most common to use a mixture model or categorical
distribution [126, 174]. In general, categorical distributions are more flexible than
mixture models. Although a mixture model could approximate any distribution given
an infinite number of components, in practice the number of components is limited by
data and training. Waveform samples are typically quantized as 8-bit integers, and
µ-law is used to reduce quantization errors. This quantization approach is a trade-off
between accuracy and model size, and is empirically validated in [174]. Let z denote
such an integer, following a categorical distribution represented by q, the probability
of z can be written as

p(z|q) = q[z] (6.8)

The downside of using a standard categorical distribution is that, to increase the
encoding resolution, the number of model parameters must increase accordingly. For
example, to increase the encoding resolution from 8-bit to 16-bit, the number of the
parameters in the output layer must increase by 255 times. To deal with this issue,
dual categorical distribution can be applied. As the name indicates, it uses two softmax
output layers to model an individual waveform sample. The first layer represents
the coarse bits, and conditions the second layer, which represents the fine bits. For
example, achieving 16-bit resolution requires two output layers each having 256 nodes,
instead of a single output layer with 65536 nodes. This can be formulated as

p(z|qc, qf ) = p(zc|qc)p(zf |qf , zc) = qc[zc]qf [zf ] (6.9)

where zc and zf denote the coarse and fine parts of a 16-bit integer; qc and qf denote
the coarse and fine parts of its distribution. This idea can easily be extended to using
more than two softmax output layers.
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Discretized Mixture of Logistics

Discretized Mixture of Logistics (MoL) is a typical mixture model approach for wave-
form representation. Empirically, it achieves comparable performance to categorical
distributions [126]. A single logistic distribution L can be defined as:

L(u; µ, λ) = exp((u− µ)/λ)
λ(1 + exp((u− µ)/λ))2 (6.10)

u is a continuous random variable, µ is the mean of the distribution, and λ > 0 is the
scale parameter. Its Cumulative Distribution Function (CDF) is a sigmoid function:

∫ a

−∞
L(u; µ, λ)du = σ(a− µ

λ
) (6.11)

σ(u) = 1
1 + exp(−u) ; dσ(u)

du
= σ(u)(1− σ(u))

A mixture of logistics can be defined as:

p(u|π,µ,λ) =
M∑
m=1

πmL(u|µm, λm) (6.12)

π denotes the weights of the M mixture components. In this approach, it is assumed
that there is a latent waveform sample u with a continuous distribution, which is then
rounded to its nearest discrete representation to give the observed waveform sample z

[126]. Taking 8-bit encoding as an example, the probability of the observed discretized
value z can be computed as:

p(z|π,µ,λ) =
M∑
m=1

πm[σ(z + 0.5− µm
λm

)− σ(z − 0.5− µm
λm

)] (6.13)

For the edge case of 0, z − 0.5 is replaced by −∞; for the edge case of 255, z + 0.5 is
replaced by ∞. The advantage of this approach is that it is computationally efficient
[155]. In addition, it penalizes classification errors differently depending on the distance
between the reference bin and the predicted bin. Previous experiments have shown
that only a relatively small number of mixture components is needed [155].
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Fig. 6.4 Illustration of a hierarchical RNN [120] with 3 tiers; yt is a frame of acoustic
feature; zj is a discretized waveform sample, whose distribution is estimated.

6.3.3 SampleRNN

Recall that neural vocoders model the distribution of a waveform sequence conditioned
on an acoustic feature sequence, as shown in equation 6.7. It is essential to estimate
p(zj|z1:j−1,y1:T ;ϕ), which is challenging due to waveform sequences being very long.
Here z1:J denotes a sequence of discretized waveform samples.

SampleRNNs [81], also referred to as hierarchical RNNs, take into account that
waveform samples contain structures at different time scales. It is assumed that the
conditional distribution of each waveform sample is a categorical distribution, described
in section 6.3.2. To model long-term dependencies, SampleRNNs use a hierarchy of
tiers, each operating at a different frequency. Figure 6.4 illustrates the model structure;
a 3-tier model is shown but the configuration can be tuned for different tasks. The
lowest tier operates at waveform-level frequency, and outputs distributions of waveform
samples. Each preceding tier operates at a lower frequency, and supervises the tier
following it.
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Frame-level Tier(s)

Except the lowest tier, all tiers operate below waveform-level frequency. These tiers
are RNNs operating on non-overlapping frames of waveform samples, hence they are
also referred to as frame-level tiers. Each frame-level tier summarizes the history of
its inputs into a supervising vector for the next tier downward. These tiers can be
formulated as

e
(k)
j(k) =

 [c(k)
j(k) ; f (k)

j(k) ] if k = K

[c(k)
j(k) ; f (k)

j(k) ; s(k+1)
j(k) ] if 0 < k < K

(6.14)

h
(k)
j(k) = f(h(k)

j(k)−1, e
(k)
j(k) ;ϕh) (6.15)

s
(k)
(j(k)−1)R(k):j(k)R(k) = f(h(k)

j(k) , R(k);ϕs) (6.16)

K + 1 is the number of tiers and k the tier index. [; ] denotes concatenation. ϕh and
ϕs are parts of of neural vocoder ϕ. In this section, the convention is that c, f , s and
W denote the conditioning vector, frame vector, supervising vector and weight matrix;
e and h denote the input and history vector of the RNN. The letters c and s have
been used when describing attention-based sequence-to-sequence models in section 3.1.
They are reused here because in both cases, c contains information about the input,
and s contains information about the output history.

A frame vector f (k)
j(k) includes F (k) previous waveform samples. F (k) is the frame size,

and is equal to the number of waveform samples covered by a frame in tier k. At each
time step j(k), the RNN makes a history update as a function of the previous history
h

(k)
j(k)−1 and the current input e(k)

j(k) , as shown in equation 6.15. For the top tier (k = K),
the current input is a linear combination of a frame f (k)

j(k) and a conditioning vector
c

(k)
j(k) . For intermediate tiers (0 < k < K), it also includes a supervising vector s(k+1)

j(k)

from the next tier upward.

To condition the next tier downward, the history vector is upsampled into R(k) super-
vising vectors, where R(k) is the ratio between the frame sizes of the two tiers. If k = 0,
R(k) = F (k); otherwise R(k) = F (k)/F (k−1). This upsampling is realized by a set of R(k)

different linear mappings, hence equation 6.16 can be written as:

s
(k)
(j(k)−1)R(k):j(k)R(k) = W (k)

r h
(k)
j(k) ; 1 ≤ r ≤ R(k) (6.17)
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Table 6.1 Relation of time steps at different tiers, taking the configuration shown in
figure 6.4 as an example; F and R denote the frame size and upsampling ratio of a tier.

tier F R time step
2 80 4 1
1 20 20 1 2 3 4
0 20 N/A 1 | ... | 20 21 | ... | 40 41 | ... | 60 61 | ... | 80

As described in section 6.1.3, each input token is upsampled and corresponds to a
fixed number of output tokens. In this work, the conditioning vectors are upsampled
from the acoustic features y1:T using linear interpolation, and there are no learnable
parameters:

c
(k)
1:J(k) = f(y1:T , F (k)) (6.18)

The upsampling rate depends on the frame size, the number of waveform samples
covered by a frame in tier k, and the number of waveform samples covered by an
acoustic feature vector.

For each tier, the time step j(k) is related to a different frequency. Each time step j(k)

at tier k corresponds to R(k) time steps in tier k − 1. Table 6.1 illustrates how time
steps at different tiers are related, taking the configuration shown in figure 6.4 as an
example.

Waveform-level Tier

The last tier operates at waveform-level frequency, i.e. the waveform sampling frequency;
hence it is referred to as waveform-level tier. Unlike other tiers, this tier uses a DNN
with a softmax output layer, denoted by ϕz:

e
(0)
j(0) = [f (0)

j(0) ; s(1)
j(0) ] (6.19)

ẑj(0) ∼ p(·|e(0)
j(0) ;ϕz) (6.20)

At each time step, the input e(0)
j(0) is a linear combination of the supervising vector from

tier 1 and an overlapping frame including F (0) previous waveform samples; the output
is a vector corresponding to a categorical distribution. ẑj(0) is a waveform sample
drawn from the categorical distribution. For this tier, the time step is the same as the
waveform z1:J .
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Fig. 6.5 Illustration of WaveRNN [81]; yt is a frame of acoustic features; zcj and zfj
are the coarse and fine bits of a discretized waveform sample, whose distribution is
estimated.

6.3.4 WaveRNN

WaveRNN [81] is a light-weight RNN for audio generation that is designed to efficiently
predict 16-bit audio samples. Recall that neural vocoders model the distribution of a
waveform sequence conditioned on an acoustic feature sequence, as shown in equation
6.7. At each time step of the waveform, the model estimates the distribution of a
waveform sample p(zj|z1:j−1,y1:T ;ϕ).

As described in section 6.1.3, a neural vocoder does not handle the alignment between
the output and input sequences. For WaveRNN, a conditioning network upsamples
the acoustic feature sequence, and produces a conditioning sequence with the same
frequency as the waveform:

c1:J = f(y1:T ;ψ) (6.21)

This conditioning network is trained as part of the neural vocoder. In the original
paper introducing WaveRNN [81], the conditioning network is not described. This
section will later describe a CNN-based option, which is used in the experiments.

The left side of figure 6.5 depicts a WaveRNN. it has two RNN layers, followed by
DNN layers. Each 16-bit audio sample is split into two 8-bit integers, respectively
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coding the coarse and fine parts of the audio sample. The distribution of the audio
sample can be factorized into two parts:

p(zj|z1:j−1,y1:T ;ϕ) ≈ p(zj|z1:j−1, c1:J ;ϕ) (6.22)
= p(zcj , zfj |zc1:j−1, zf1:j−1, c1:J ;ϕ) (6.23)
= p(zcj |zc1:j−1, zf1:j−1, c1:J ;ϕ) p(zfj |zc1:j, zf1:j−1, c1:J ;ϕ) (6.24)

The two parts are respectively modeled by two RNNs, both using GRU cells. For the
RNN modeling the coarse part, the history vector tracks the conditioning vector, and
the coarse and fine parts of the previous sample:

p(zcj |zc1:j−1, zf1:j−1, c1:J ;ϕ) = f(zcj ,hcj;ϕ) (6.25)
hcj = f([hcj−1;h

f
j−1], [zcj−1; zfj−1], cj;ϕ) (6.26)

ẑcj ∼ p(·|hcj;ϕ) (6.27)

For the RNN modeling the fine part, the history vector also tracks the coarse part of
the current sample:

p(zfj |zc1:j, zf1:j−1, c1:J ;ϕ) = f(zfj ,hfj ;ϕ) (6.28)
hfj = f([hcj−1;h

f
j−1], [zcj ; zcj−1; zfj−1], cj;ϕ) (6.29)

ẑfj ∼ p(·|hfj ;ϕ) (6.30)

It is assumed that both the coarse and fine parts follow a categorical distribution. Each
RNN hidden state is fed into a DNN, which has two layers. The activation functions
are respectively ReLU and softmax. During training, the reference output sequence is
available, so the two recurrent layers can be run in parallel. At the inference stage,
however, this is not the case. At each time step, the coarse part must be generated
before the fine part.

Alternative Version

The original DeepMind version of WaveRNN is an existence proof that a light-weight
RNN can achieve high-quality efficient waveform synthesis [81]. Following this line
of research, there are several alternative versions. To further improve the synthesis
speed, reference [81] introduced sparse WaveRNN and subscale WaveRNN, respectively
leveraging weight pruning and subscale sampling techniques. This thesis uses the
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ResembleAI/Fatchord [119] version of WaveRNN, which does not depend on the weight
pruning or subscale sampling.

The right side of figure 6.5 depicts the Fatchord version of WaveRNN. Similar to the
original DeepMind version, it has two recurrent layers with GRU cells, followed by some
feedforward layers. At each time step, the input is the concatenation of the previous
audio sample, the current conditioning vector and the augmentation vector, which can
be viewed as additional conditioning. This input is processed by a linear layer, to adjust
its dimensionality. The first recurrent layer takes the processed input, and updates its
history vector. This history vector is concatenated with the conditioning vector, and
fed into the second recurrent layer. The second history vector is then processed by three
feedforward layers to generate the final output. The first two feedforward layers use
ReLU activations, and concatenates the input with the conditioning vector. The last
feedforward layer is linear, and does not use any activation function or concatenation.
Residual connections are applied to the two recurrent layers, and the first feedforward
layer, linking the pre-concatenation inputs to the outputs.

A key difference between this version and the original DeepMind version is that the
output of this model corresponds to a discretized MoL distribution, instead of a dual
categorical distribution. The output vector can be split into three parts: [π;µ;λ]. As
shown in equation 6.13, these three parts respectively correspond to the weight, mean
and scale of the mixture.

Conditioning Networks

The goal of a conditioning network is to upsample the acoustic feature sequence,
producing a conditioning sequence with the same frequency as the waveform. For
WaveRNN, the conditioning network is based on CNNs, and is depicted in figure 6.6.
It has several blocks of 1D convolutions followed by a repetition operation, which
performs the upsampling. The first block consists of a 1D convolution followed by batch
normalization and ReLU activation; the last block is just a 1D convolution. The blocks
in between have the same residual network [64] structure: two 1D convolutions, each
followed by batch normalization; ReLU is applied after the first batch normalization;
the input is added to the output via a residual connection. All the 1D convolutions
are along the time axis; the stride is 1 so the time resolution is maintained.

In addition, another network produces a sequence of augmentation vectors, which are
used as part of the input to the neural vocoder. As shown in the right side of figure



6.3 Neural Vocoders 93

Fig. 6.6 Illustration of conditioning networks; yt is a frame of acoustic features; cj is
a conditioning vector.

6.6, this network performs the repetition operation in multiple stages, instead of at
once. The number of stages and the upsampling factors are hyperparameters. After
each repetition, there is a 2D convolution. The filter size along the time axis is one
plus twice the upsampling factor, and padding is used so that the time resolution
is maintained. The filter size along the acoustic feature axis is set to one, so each
dimension of the acoustic feature is processed independently of the others.

6.3.5 Inference and Training

As described in section 6.1.3, neural vocoders can be viewed as special sequence-to-
sequence models, where the output and input sequences are aligned. During inference,
greedy search or beam search can be used, as described in section 3.2. The models
run in an autoregressive fashion: the sampled output at one time step will be included
in the input at future time steps. The training approaches described in section 3.3
can also be applied to neural vocoders. Similar to the case of acoustic models, teacher
forcing is typically used during training [174, 120, 126, 81], leveraging the reference
output history to make training stable.
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A standard TTS dataset contains pairs of text and waveform:

D = {x(n)
1:L, z

(n)
1:J}N1 (6.31)

where D denotes the dataset of size N ; n is the data index; x(n)
1:L and z(n)

1:J respectively
denote a text sequence and a waveform sequence. To simplify the notation, the data
index is omitted for the length of the sequences, although they also vary with the index.
As described in section 6.7, for each reference waveform z

(n)
1:J , a sequence of reference

vocoder features y(n)
1:T can be extracted, using a conventional vocoder. Iterating through

all the waveform sequences yields the dataset Dϕ, which is commonly used to train the
neural vocoder ϕ [115]:

Dϕ = {y(n)
1:T , z

(n)
1:J}N1 (6.32)

Pretraining

Conceptually, a neural vocoder should be able to map any sequence of vocoder features
to a waveform. It does not even matter if the waveform is speech or other types of
audio such as singing. Therefore, this work proposes a pretraining approach, leveraging
unlabeled data. Using a conventional vocoder, vocoder features can be extracted
for large amounts of unlabeled speech {z(n)

1:J}
N+Q
N+1 , where Q ≫ N . This yields a new

dataset:

DQ
ϕ = {y(n)

1:T , z
(n)
1:J}

N+Q
N+1 (6.33)

Here the unlabeled speech is not necessarily in-domain: factors such as speaker,
speaking style and recording environment can be different from the speech in the target
dataset Dϕ. The neural vocoder can be pretrained with DQ

ϕ , and then trained with Dϕ.
Empirically, we found that this pretraining approach significantly reduces the need for
in-domain data [41]. The corresponding experiments are described in appendix B. The
pretraining approach is original, and was developed around the same time as reference
[115], which found that while the amount of pretraining data matters, the diversity of
the data is also important.
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Adaptation

The TTS pipeline consists of a sequence-to-sequence acoustic model θ, followed by a
neural vocoder ϕ, which does not handle the alignment between its input and output.
This perfectly matches the scenario described in section 4.3.2. Once the acoustic model
is trained, the neural vocoder can be adapted to it. This is done by training the neural
vocoder with acoustic features generated from the acoustic model.

For each input text sequence x(n)
1:L, a vocoder feature sequence ŷ(n)

1:T̂ can be generated.
The length of ŷ(n)

1:T̂ is usually from different from that of the reference sequence y(n)
1:T .

Here T̂ denotes the length of the generated sequence, and T the reference sequence. In
most parts of this thesis, the hat is omitted because the length is not essential to the
discussion. More importantly, ŷ(n)

1:T̂ is not aligned with y(n)
1:T and z(n)

1:J . Therefore, it is
unsuitable for training the neural vocoder. However, if ŷ(n)

1:T̂ is generated under teacher
forcing mode or attention forcing mode, it will have the same length as the reference,
i.e. T̂ = T . The two output sequences will also be aligned. This forms a new dataset
D̂ϕ:

D̂ϕ = {ŷ(n)
1:T , z

(n)
1:J}N1 (6.34)

From this point on, the length of the generated sequence will be denoted by T . D̂ϕ can
be used to train the neural vocoder. In addition, it allows the neural vocoder to fix
some mistakes made by the acoustic model.

Conventionally, ŷ1:T is generated in teacher forcing mode. This thesis proposes an
alternative approach: to use attention forcing instead of teacher forcing. Training the
acoustic model with attention forcing has the potential to improve its performance,
which is analyzed in section 4.1, and will be empirically demonstrated in section 6.4.3.
Furthermore, in attention forcing mode, each output is predicted based on generated
back-history, and is more likely than in teacher forcing mode to contain errors made at
the inference stage.

6.4 Experiments

The experiments in this chapter investigate attention forcing and deliberation networks
in the context of TTS. Sections 6.4.1 and 6.4.2 respectively describe the data and
evaluation in general. Each of the following sections focuses on one line of experiments,
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describing the setup, results and analysis. Section 6.4.3 investigates attention forcing,
introduced in chapter 4. The TTS system used in this line was developed before
2018, so section 6.4.4 shifts to a stronger system, which is comparable to state-of-the-
art performance in 2021. Section 6.4.5 leverages the new system, and investigates
deliberation networks, introduced in chapter 5. The source code and speech samples
are available online.3

6.4.1 Data

The TTS experiments are conducted on the LJ dataset [77]. This is a public domain
speech dataset consisting of 13,100 short audio clips of a single speaker reading passages
from 7 non-fiction books. A transcription is provided for each clip. Clips vary in length
from 1 to 10 seconds and have a total length of approximately 24 hours. The original
sampling rate is 22050 Hz with 16 bits per sample.

The raw text, which is already normalized by the data provider, is split into a character
sequence, and embedded as integers ranging from zero to the number of different
characters minus one. The text normalization involves converting special symbols and
numbers to their verbal form. Three types of acoustic features are extracted from
waveforms: PML vocoder features, linear spectrograms, and mel spectrograms. For
PML vocoder features, the features are 163D vectors, and the default frequency is
200 Hz, which may be decreased in some experiments. The linear spectrograms are
computed through a Short-Time Fourier transform (STFT) using 50 ms frame size,
12.5 ms frame hop, and Hann window function. These features are 1024D vectors, and
the frequency is 80 Hz. The linear spectrograms are transformed to the mel-scale using
an 80 channel mel filterbank spanning 125 Hz to 7.6 KHz, followed by log dynamic
range compression. Prior to log compression, the filterbank output magnitudes are
stabilized to a floor of 0.01 in order to limit dynamic range in the logarithmic domain.
To train neural vocoders, the waveform samples are discretized into 8-bit integers,
following WaveNet [174].

3 The following web page is made for the experiments in this thesis. Please feel free to contact the
author if the page cannot be accessed. http://mi.eng.cam.ac.uk/~qd212/phdthesis
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6.4.2 Performance Metrics

For TTS, subjective metrics are the gold-standard for overall speech quality, but
objective metrics can still indicate speech quality in various ways [179]. This work uses
two types of subjective metrics: Mean Opinion Score (MOS) tests and AB preference
tests. For both types, a group of participants, also referred to as workers, evaluate
speech samples from one or multiple TTS systems. In a MOS test, each worker rates
the overall quality of audio samples on the 5-point scale. In a AB preference test,
each worker listens to pairs of samples, and indicates which has better overall quality
or give no preference. The samples are randomly selected from the test data. The
MOS tests measure the overall quality of the TTS models, and helps benchmarking
the performance. The AB preference tests show a more direct comparison between two
systems. In this work, the MOS tests and AB preference tests are conducted using
Amazon Mechanical Turk. Each type of test is taken by at least 30 workers based in
the US. Example listening test pages are shown in section B.2 of appendix B.

To objectively measure the overall speech quality, Dynamic Time Warpped (DTW) L1

distance between the reference and the generated feature sequences is computed. The
distance is normalized by the length of the reference and is averaged over the test set
and feature dimensions. In addition, Global Variance (GV) is computed and averaged
over the test set and feature dimensions. GV reflects the dynamic range of feature
trajectories, and roughly indicates the expressiveness [125] of speech. High-quality
samples should have low DTW distance and high GV.

6.4.3 Attention Forcing - Initial Development System

The experiments in this section investigate attention forcing, introduced in chapter 4.
The following points are empirically tested. First, recall that section 6.2.4 described
general training considerations for acoustic models. In particular, exposure bias is
more severe due to the high frame rate of the acoustic feature sequence. Hence for
teacher forcing, it is essential to use a reduced frame rate. In contrast, attention
forcing addresses exposure bias, and allows the use of a higher frame rate. Second, as
introduced in section 4.1, attention forcing has the potential to improve the performance
of sequence-to-sequence models, i.e. acoustic models in the context of TTS. Finally,
section 4.3 introduced how to leverage attention forcing to help down-stream tasks.
Section 6.3.5 elaborates on this idea, applying it to neural vocoder adaptation. The
corresponding experiments will be described at the end of this section.
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Experimental Setup

The experiments are conducted on the LJ dataset [77], introduced in section 6.4.1.
The training-validation-test split is 13000-50-50, and the data is shuffled before being
split. The speech is down-sampled to 16 KHz, following WaveNet [174]. This sampling
rate is a trade-off between accuracy and sequence length, and is empirically validated
in [174]. The reference vocoder features are extracted with a PML vocoder [33], as a
study comparing various vocoders shows that PML has the best overall performance
[1]. Each feature vector has 163 elements. The default frame rate is 200 Hz, which is
common for TTS, and is sometimes reduced to 100 Hz for comparison.

As described in section 6.1, the TTS pipeline includes an acoustic model and a neural
vocoder. Here the acoustic model is based on Tacotron[182], described in section
6.2.2. Table 6.2 lists its hyperparameters. There are a few differences from the original
Tacotron model. First, both the decoder and the post-net predict PML features.
Second, the reduction factor is 5 instead of 2, i.e. each decoding step predicts 5 frames.
Finally, the attention mechanism is the location-sensitive attention [28], described in
section 2.2.1, which is the same as in Tacotron 2 [158]. The attention scores of all past
steps are accumulated, convolved with 32 filters of size 31, and then used by the score
function.

The neural vocoder is based on SampleRNN [120], described in section 6.3.3. Table
6.3 lists its hyperparameters. Compared with the model used in our previous work
[41] investigating SampleRNN as a neural vocoder, the main differences are as follows.
First, the Gated Recurrent Unit (GRU) [30] dimension is 512. Second, tiers 1 to 3 each
have one layer, instead of two. Finally, the frequencies for tiers 0 to 3 are respectively
16, 8, 2 and 0.4 KHz.

The acoustic models are trained with Teacher Forcing (TF) or Attention Forcing (AF).
L1 loss is used for both the decoder output and the post-net output. The scaling
factor γ for the attention loss is 50. The neural vocoders are trained with TF. During
training, Adam optimizer [86] is used. β1 = 0.9, β2 = 0.999, ϵ = 10−8. By default, for
the acoustic models, the batch size is 32; the learning rate is 0.001 and is respectively
reduced to 0.0005, 0.0003, and 0.0001 after 500K, 1M and 2M steps. For the neural
vocoders, the batch size is 40, and the learning rate is 0.001. As described in section
6.3.5, the neural vocoders are pretrained with reference vocoder features, and then
finetuned with generated vocoder features from a TF or AF acoustic model. During
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Table 6.2 Hyperparameters of the Tacotron acoustic model. “conv-g-c-ReLU” denotes
convolution with width g and c output channels with ReLU activation. “FC” stands
for “fully connected”.

Character embedding 256D

Encoder CBHG

Conv1D: g=1...16, conv-g-128-ReLU
Max pooling: stride=1, width=2
Conv1D: conv-3-128-ReLU → conv-3-128-Linear
Highway net: 4 layers of FC-128-ReLU
Bidirectional GRU: 128 units

Encoder pre-net FC-256-ReLU → Dropout(0.5) →
FC-128-ReLU → Dropout(0.5)

Decoder pre-net FC-256-ReLU → Dropout(0.5)→
FC-128-ReLU → Dropout(0.5)

Decoder RNN 2-layer residual GRU (256 units)
Attention RNN 1-layer GRU (256 units)
Attention CNN Conv1D: conv-31-32-Linear

Post-net CBHG

Conv1D: g=1...8, conv-g-128-ReLU
Max pooling: stride=1, width=2
Conv1D: conv-3-256-ReLU → conv-3-80-Linear
Highway net: 4 layers of FC-128-ReLU
Bidirectional GRU: 128 units

Reduction factor 5

Table 6.3 Hyperparameters of SampleRNN neural vocoder. “FC” stands for “fully
connected”.

Tier Frequency
3 400 Hz 1-layer GRU (512 units)
2 2000 Hz 1-layer GRU (512 units)
1 8000 Hz 1-layer GRU (512 units)

0 16000 Hz FC-1024-ReLU → FC-1024-ReLU →
FC-256-ReLU → FC-256-Softmax
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(a)

(b)

Fig. 6.7 Listening tests comparing 100 Hz and 200 Hz models; acoustic models trained
with (a) teacher forcing, (b) attention forcing; waveform generated using a PML
vocoder; each number indicates a percentage of preference.

inference, all the models operate in free running mode. The acoustic models adopt
greedy search, and the neural vocoders draw samples from the estimated distributions.

The models are compared in AB preference tests, described in section 6.4.2. Over 30
workers from Amazon Mechanical Turk took part in each comparison, which includes
five pairs of utterances from the test set. So the test set, which has 50 utterances, is
subjectively evaluated about three times. In addition, global variance is computed for
each model, to objectively measure the expressiveness [125]; it is averaged over the test
set and feature dimensions.

Results and Analysis

To see the impact of AF on frame rate, two pairs of sequence-to-sequence models are
trained. The first pair (TF-100Hz, TF-200Hz) is trained with TF; TF-100Hz and
TF-200Hz operate at 100 Hz and 200 Hz respectively. The second pair (AF-100Hz,
AF-200Hz) has the same frame rates, but is trained with AF. PML vocoders map the
features to speech. Figure 6.7 (a) shows the result of the listening test comparing
TF-100Hz and TF-200Hz, and figure 6.7 (b) is the equivalence for AF-100Hz and
AF-200Hz. Each number indicates a percentage of preference. The results show that
reducing the frame rate is beneficial for TF, despite the introduction of some noise. In
contrast, AF allows the use of a higher frame rate, which improves the speech quality.

To see the impact of AF on sequence-to-sequence models, the best TF model (TF-
100Hz) is compared with the best AF model (AF-200Hz). Figure 6.8 (a) shows the
result: AF yields better performance. As for expressiveness, table 6.4 shows the global
variances of all the models. It can be seen that AF yields more expressiveness than
TF. Doubling the frame rate results in less expressiveness for TF, but not for AF. One
likely reason is that AF prevents the model from copying the output history. Note
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(a)

(b)

(c)

Fig. 6.8 Listening tests comparing teacher forcing and attention forcing; waveform
generated using (a) PML vocoder (b,c) neural vocoder; each number indicates a
percentage of preference.

the consistency between table 6.4 and figure 6.7, i.e. expressiveness and preference,
indicating that expressiveness is important for overall quality. While speed is not the
focus of this work, it can be important for TTS, and is reported here for information.
For the 200 Hz models, one iteration takes about 3.0s with TF, and 2.6s with AF;
generating one second of feature sequence takes about 0.64s. For the 100 Hz models,
the time is halved thanks to shorter sequences.

Next, completely neural TTS systems are built, to investigate the synergy between
AF and neural vocoders. For a TF system (TF-100Hz-NV or TF-200Hz-NV), a neural
vocoder is trained with the vocoder features generated by a TF acoustic model in
TF mode. For an AF system (AF-100Hz-NV or AF-200Hz-NV) , a neural vocoder is
trained with the vocoder features generated by an AF acoustic model in AF mode.
Figure 6.8 (a) and (b) show that AF works better with neural vocoders: when PML
vocoders are replaced by neural vocoders, the AF system outperforms the TF system
even further. Figure 6.8 (b) and (c) show that AF results in the best neural TTS
system. An extra finding is that for TF systems, neural vocoders can fix issues caused
by high frame rate. While figure 6.7 (a) shows that TF-100Hz outperforms TF-200Hz
when using PML vocoders, figure 6.8 (b) and (c) show that a neural vocoder can help
TF-200Hz surpass TF-100Hz. One likely reason is that the neural vocoder alleviates
the loss of expressiveness caused by the high frame rate.

6.4.4 Attention Forcing

Since the implementation of the above Tacotron + SampleRNN system, significant
progress has been made in the field of TTS. The performance has improved greatly



102 Text-to-speech Synthesis

Table 6.4 Global variance of vocoder features generated by different models, computed
over the test set, averaged over all sequences and dimensions; the first row correspond
to TF-200Hz and TF-100Hz, and the second row AF-200Hz and AF-100Hz.

Global variance
Training 200 Hz 100 Hz
Teacher Forcing (TF) 0.39 0.54
Attention Forcing (AF) 0.71 0.70

in audio quality [158, 183, 195] and efficiency [81, 45]. An increasing number of third-
party implementations [119, 62] of Tacotron are reaching comparable performance to
that reported by Google.4 Therefore, the rest of the experiments in this chapter are
conducted with a new TTS system, based on the open-source project by ResembleAI
[119], which is among the first to reach the reported performance of Tacotron. The
approaches introduced in this thesis are implemented on top of that, and compared
with a state-of-the-art system in ESPnet[62], an open-source project that implements
more up-to-date systems.

This section describes the new TTS system, and conducts further experiments on
attention forcing. First, attention forcing is compared to teacher forcing, as a sanity
check. Second, scheduled sampling is added to the comparison. Finally, comparisons
are made to a system which achieves state-of-the-art performance in 2021. The link to
the source code of the new system and its speech samples is given in footnote 3, at the
beginning of section 6.4.

Experimental Setup

The data used here is still the LJ dataset, but the pre-processing is different. The
previous system uses 163D PML vocoder features as the output of the acoustic model,
and the frame rate is 100 Hz or 200 Hz. For the new system, data processing is the
same as Tacotron [182]: 80D mel spectrograms and 1024D linear spectrograms are
extracted at a frame rate of 80 Hz. Following ESPnet [62], the training-validation-test
split is 12600-250-250, and the data is not shuffled before being split.

4The official implementation of Tacotron is not publicly available, and it was difficult for third-
party implementations to reach the performance reported by Google at https://google.github.io/
tacotron/publications/tacotron/index.html

https://google.github.io/tacotron/publications/tacotron/index.html
https://google.github.io/tacotron/publications/tacotron/index.html
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The differences between the previous system and the new system are as follows. First,
the Tacotron-based [182] acoustic model is implemented differently, and adopts more
design considerations from Tacotron 2 [158]. To be specific, the decoder RNN uses
LSTM cells, and has 512 units. The output of the decoder is 80D mel spectrogram,
and that of the post-net is 1024D linear spectrogram. The rest of the hyperparameters
are the same as listed in table 6.2. On top of that, the neural vocoder is WaveRNN
[81], which is more efficient than SampleRNN [41]. This work adopts the ResembleAI
version of WaveRNN and the networks upsampling the acoustic features, described in
section 6.3.4. Table 6.5 lists their hyperparameters.

The training and inference setup is very similar to the previous experiments, and the
differences are as follows. For both the acoustic model and the neural vocoder, the
batch size is increased to 100, and the models are initialized with the parameters from
the ResembleAI implementation. This is found to greatly speed up convergence without
degrading the final performance. For the acoustic model, the learning rate is 10−3

for the first 40K iterations, and 10−4 afterwards. In addition to teacher forcing and
attention forcing, scheduled sampling is investigated. The neural vocoder is trained
with teacher forcing, and the learning rate is 10−4. Unlike in the previous experiments,
only one neural vocoder is used in this section, in order to save the time of building
multiple neural vocoders. This neural vocoder is trained with the vocoder features
generated from the baseline acoustic model, which is trained with teacher forcing. With
the upgraded TTS system, this neural vocoder is enough for generating high quality
speech. Although the baseline has an advantage from neural vocoder adaptation, the
novel approaches are able to outperform it, as the following experiments will show.

As is done in the previous experiments, the expressiveness of audio samples is objectively
measured by global variance [125]. In addition, Mean Opinion Score (MOS) tests
and AB preference tests are conducted. Each type of test is taken by 54 Amazon
Mechanical Turk workers based in the US. In the MOS test, each worker rates, for each
system, the overall quality of 5 audio samples, randomly selected from the test set for
that worker. In the AB preference test, each worker listens to 10 pairs of samples, and
indicates which has better overall quality. Following ESPnet [62], for each worker, the
samples are randomly selected from the first 100 test sentences. The objective metrics
are used over all 250 test sentences.
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Table 6.5 Hyperparameters of WaveRNN neural vocoder and upsampling networks.
“conv-g-c-ReLU” denotes convolution with width g and c output channels with ReLU
activation. “FC” stands for “fully connected”. Both the augmentation network and the
conditioning network upsample the acoustic features to audio frequency.

WaveRNN

2-layer residual GRU (512 units) →
FC-512-ReLU →
FC-512-ReLU →
FC-30-Linear

Augmentation
network

Upsample via repetition: 5 times
Conv2D: (1× 11)-1-Linear
Upsample via repetition: 5 times
Conv2D: (1× 11)-1-Linear
Upsample via repetition: 11 times
Conv2D: (1× 23)-1-Linear

Conditioning
network

Conv1D: conv-5-128-Linear
10 Residual blocks: conv-1-128-ReLU → conv-1-128-Linear
Conv1D: conv-5-128-Linear
Upsample via repetition: 275 times

Results and Analysis

Before moving on to the key experiments, table 6.6 shows the performance gap between
the upgraded system and the initial development system, described in section 6.4.3. The
two systems use different acoustic features, so the global variance is not comparable.
For each system, the performance is measured by the baseline MOS; the acoustic
model is trained with teacher forcing, which does not introduce any hyperparameters;
the neural vocoder generates the audio samples. The upgraded system adopts the
train-validation-test data split of ESPnet[62], and is thus trained with slightly less data:
about 97% that of the initial development system. However, its MOS is significantly
higher, demonstrating the effect of the system upgrade. Following recent TTS literature
[149, 45], the MOS is reported with 95% confidence intervals. Note that this only a
convention of the TTS community, and the MOS scores do not necessarily follow a
normal distribution.

As is done in section 6.4.3, teacher forcing is compared with attention forcing. A
standard baseline model is trained with teacher forcing. A group of attention forcing
models are trained. The performance is robust to the scale of the attention loss γ

(equation 4.7) being 1, 2 or 4. The model with γ = 1 is selected for comparison with
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Table 6.6 Baseline MOS of the upgraded system and the initial development system.

MOS↑
Initial Development System 2.87±0.17

Upgraded System 3.67±0.11

Table 6.7 MOS and global variance of various approaches; upgraded system.

MOS↑ GV↑
Reference 4.42±0.09 0.0235
Teacher Forcing (TF) 3.67±0.11 0.0171
Scheduled Sampling (SS) 3.70±0.12 0.0167
Attention Forcing (AF) 3.89±0.10 0.0219

other approaches. Table 6.7 shows the MOS and the global variances of the models.
As observed in the previous experiments: attention forcing yields performance gains in
overall quality and expressiveness, on top of the upgraded baseline.

In this section, attention forcing is also compared with scheduled sampling. As analyzed
in section 4.4, both approaches address exposure bias, and are between teacher forcing
and free running. In previous research applying scheduled sampling to TTS, both
positive [110] and negative [60] results have been reported. In this work, a group of
acoustic models are trained with scheduled sampling, using different schedules. Based
on informal listening tests, the best model is obtained with a linear schedule with ϵ

(equation 3.20) decaying from 1 to 0.8 in 20K steps. We found that an ϵ below 0.7
yields noisy speech. The result is shown in table 6.7. While scheduled sampling yields
slightly better performance than teacher forcing, it is considerably below attention
forcing in both MOS and global variance.

MOS tests depend largely on the design of the test: the platform, the payment, the
number of utterances in a test, etc. Therefore AB preference tests are used for more
direct comparisons. To demonstrate this point, figure 6.9 shows the AB preference test
comparing teacher forcing and attention forcing. While the gap in MOS may not seem
significant, attention forcing is strongly preferred over teacher forcing.

Finally, the attention forcing system shown in table 6.7 is compared with a more
advanced system. Considering the above analysis, an AB preference test is conducted.
The system selected for this comparison is implemented in ESPNet. The acoustic
model is based on the Conformer [58] and FastSpeech 2 [149], and the neural vocoder
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Fig. 6.9 Listening tests comparing Teacher Forcing (TF) and Attention Forcing (AF);
upgraded system; each number indicates a percentage of preference.

Fig. 6.10 Listening tests comparing a relatively simple system (Tacotron-WaveRNN),
which leverages attention forcing, and a state-of-the-art system (ConformerFS2-PWG)
in ESPnet; each number indicates a percentage of preference.

is Parallel WaveGAN [190]. The reported MOS for the system is 4.16± 0.09, which
is at the same level with state-of-the-art in 2021. Figure 6.10 shows the result of
the AB preference test. With attention forcing, our relatively simple model achieved
comparable performance to a much more complicated model.

6.4.5 Deliberation Networks

The experiments in this section investigate deliberation networks, introduced in chapter
5. The following points are empirically tested. First, as introduced in section 5.1,
deliberation networks improve the performance of sequence-to-sequence modeling.
Second, addressing exposure bias is an essential element of deliberation networks. This
is why all the training approaches in section 5.2 train the second-pass model to correct
the free running output from the first-pass model. Finally, recall that section 6.2.4
described general training considerations for acoustic models. In particular, exposure
bias is more severe due to the high frame rate of the acoustic feature sequence. Hence
for teacher forcing, it is essential to use a reduced frame rate. In contrast, attention
forcing and deliberation networks address exposure bias, enabling the use of a higher
frame rate. The link to the source code and speech samples is given in footnote 3, at
the beginning of section 6.4.
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Experimental Setup

The experimental setup is same as described in section 6.4.4. The data is LJ [77],
described in section 6.4.1; the acoustic model is based on Tacotron [182], and the
neural vocoder is based on WaveRNN [81].

In terms of whether the acoustic features are generated in multiple passes, two types
of acoustic models are used: the standard models described in section 6.2 and the
corresponding deliberation networks built as introduced in sections 5.1 and 5.3. They
will be respectively referred to as single-pass and multi-pass models. The single-pass
models and their training are the same as described in section 6.4.4. Teacher forcing,
scheduled sampling and attention forcing are respectively used to train the models.

For the multi-pass system, the first-pass model is the standard single-pass baseline.
The second-pass model is as introduced in sections 5.1 and 5.3. Its additional encoder,
attention mechanism, and the first layer of decoder are randomly initialized, and the
rest are initialized with the baseline. The attention RNN state is concatenated with the
first-pass output, forming the input to the additional encoder. The separate training
approach, introduced in section 5.2.2, is adopted. For the guided attention loss Lα
(equation 5.26), the scale γ is 10, and the sharpness coefficient g (equation 5.25) is 0.4.
With these techniques, the second-pass model can be trained in less than 4K steps.
During inference, all the models operate in free running mode.

MOS tests and AB preference tests are conducted as described in section 6.4.4. The
MOS tests measure the overall quality of the TTS models, and helps benchmarking
the performance. The AB preference tests show a more direct comparison between
two systems. The expressiveness of audio samples is measured by Global Variance
(GV) [125]. In this section, the Dynamic Time Warpped (DTW) L1 distance between
the reference and the generated feature sequences is also computed. The distance is
normalized by the length of the reference and is averaged over the test set and feature
dimensions. High-quality samples should have low DTW distance and high GV.

Results and analysis

Table 6.8 shows the MOS, GV and DTW L1 distance of various TTS systems. In
terms of MOS, SS is marginally better than TF, and AF outperforms SS. The proposed
multi-pass system (FR-TF) outperforms all single-pass systems. Figure 6.11 shows
some more direct AB preference comparisons. It is clear that both AF and FR-TF
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(a)

(b)

(c)

Fig. 6.11 AB preference tests comparing Teacher Forcing (TF), Attention Forcing (AF)
and Deliberation Networks (FR-TF); each number indicates a percentage of preference.

Table 6.8 MOS, GV and DTW L1 distance of various approaches.

MOS↑ GV↑ DTW↓
Reference 4.42±0.09 0.0235 0
Teacher Forcing (TF) 3.67±0.11 0.0171 6.29
Scheduled Sampling (SS) 3.70±0.12 0.0167 6.02
Attention Forcing (AF) 3.89±0.10 0.0219 5.59
FR-TF 4.03±0.10 0.0223 5.64
TF-TF — 0.0136 6.73
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outperform TF, and that FR-TF is slightly better than AF. The objective metrics
show similar trends, meaning that they can be good indicators of human perception.
In terms of expressiveness, FR-TF achieves slightly higher GV than AF, although the
difference is less obvious in the samples. In general, we find FR-TF less expressive than
AF, but more stable. For AF and FR-TF, the empirical frequency of attention failure
is respectively 4% and 2%, while the frequency for TF is 1%. Most of the attention
failures are due to wrong End-Of-Sequence (EOS) prediction, which is likely to be
addressed by introducing a binary EOS predictor [158].

To see what contributes more to the success of the multi-pass system, the training or
the deeper model, we run a control experiment, denoted as TF-TF. During training,
the first-pass model runs in TF, instead of FR mode. The performance of TF-TF is
not nearly as good as FR-TF in GV and DTW. This shows that the performance gain
of FR-TF results from fixing errors of the FR output. In other words, it is not enough
to simply use a multiple-pass acoustic model, which is deeper and more powerful.
Considering its objective performance, TF-TF is excluded in the subjective tests.

An interesting finding was that for the second pass, the initial input seems to be more
important than the previous FR output. In an additional experiment, the input text is
masked out, and only the FR output is given to the second-pass model. Here the GV
and DTW distance are 0.0130 and 7.46, much worse than the baseline. This shows
that mapping FR speech to its reference is more difficult than mapping text to the
reference speech. In other words, the initial input is more important for the second
pass model. This is consistent with the observation that the second-pass model tends
to ignore the FR output when no guided attention loss is used.

Following the investigation on frame rate, in sections 6.2.4 and 6.4.3, a TF baseline
and a FR-TF system are trained at 200 Hz, where the exposure bias is more severe.
While the GV and DTW distance of TF degrade considerably to 0.012 and 7.42, those
of FR-TF remain at a similar level (0.2117 and 5.768). This further demonstrates the
ability of FR-TF to address the issue.

6.5 Chapter Summary

This chapter investigated speech synthesis as an example sequence-to-sequence task,
in order to validate the effectiveness of attention forcing and deliberation networks.
Section 6.1 described the speech synthesis pipeline, including text analysis, acoustic
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modeling and vocoder synthesis. The advantages of state-of-the-art TTS systems,
consisting of a sequence-to-sequence acoustic model and a neural vocoder, were analyzed.
Section 6.2 reviewed a range of acoustic models, and described in detail the models
used in the experiments. In particular, the impact of frame rate was investigated.
While it is essential to reduce the frame rate when using teacher forcing, attention
forcing and deliberation networks do not have such requirements. Section 6.3 took the
same structure to describe neural vocoders. An adaptation technique was proposed,
leveraging attention forcing to generate outputs aligned with the references. Section
6.4 reported and analyzed the experimental results. The key findings are as follows.
Attention forcing outperforms scheduled sampling and teacher forcing, yielding more
natural and expressive speech. Deliberation networks, trained with the proposed
separate training approach, outperform the standard single-pass models, including the
ones trained with attention forcing. The performance increases result from addressing
exposure bias, instead of the models being deeper. In tasks like speech synthesis, the
output space is continuous and the attention is monotonic. As a result, applying
attention forcing is simpler than applying deliberation networks, where a guided
attention loss is required. This can be better demonstrated by comparing to the
machine translation experiments in the next chapter. In the future, it would be
interesting to extend attention forcing and deliberation networks to duration-based
acoustic models, where the attention mechanisms are replaced by duration-based
aligners.



Chapter 7

Neural Machine Translation

This chapter investigates machine translation as an example sequence-to-sequence task,
in order to validate the effectiveness of attention forcing and deliberation networks.
For machine translation, the output space is discrete and multi-modal in the sense
that the given an input, the distribution of the corresponding output can be multi-
modal. Similar tasks include grammatical error correction and text summarization.
The structure of this chapter follows the previous chapter. Section 7.1 describes the
machine translation pipeline, including text segmentation, translation and language
model rescoring. Section 7.2 reviews a range of translation models, and describes in
more depth the models used in the experiments, namely Google’s RNN-based model
and Transformer. Section 7.3 reports and analyzes the experimental results.

7.1 Pipeline

The aim of machine translation is to convert text in one language to that in another.
This can be modeled at different levels, such as document-level, paragraph-level, or
sentence-level. This work focuses on sentence-level translation, and view the input
and output sentences as sequences. The early machine translation systems are mainly
based on hand-crafted translation rules and linguistic knowledge [74]. The pipeline
can be viewed as a hand-crafted function that maps an input sequence to an output
sequence. Due to the complexity of natural languages, it is difficult to cover all language
irregularities with manual translation rules [171]. This work takes a probabilistic
approach to machine translation, centering it around the sequence-to-sequence task
described at the beginning of chapter 3. As shown in figure 7.1, the pipeline consists of
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Fig. 7.1 Illustration of a neural machine translation pipeline.

text segmentation, translation, and optionally language model rescoring. The following
subsections will respectively discuss each of these elements.

7.1.1 Text Segmentation

Text Segmentation, also referred to as vocabularization, mainly involves splitting text
sequences in the training data, and using the obtained tokens to build a vocabulary. Its
counterpart in TTS is text analysis, which embeds raw text and optionally leverages
other sources of information such as duration models and lexicons, as described in
section 6.1.1. In NMT, the output tokens are modeled by discrete distributions. So it
is important to define a vocabulary, although translation is fundamentally an open
vocabulary problem (names, numbers, dates etc.) [186]. A key challenge then is how
to handle out-of-vocabulary words. In this regard, there are three types of approaches:
word-level, character-level and sub-word level.

A straight-forward approach is to use a word-level vocabulary, where each token
corresponds to a word, space or punctuation. Initially, most NMT models adopted
this approach. Despite promising results, these models typically operate with a fixed
vocabulary, and have problems handling rare words [188]. Due to practical reasons such
as memory constraints, the vocabulary size often ranges from 30k to 50k [171]. The
limited size results in a large number of unknown words. Therefore, word-level NMT
is unable to translate these words and performs poorly in open-vocabulary settings
[168, 6].

Character-level NMT [29, 102, 132] does not have this problem. By splitting words into
characters, the vocabulary size is much smaller and every rare word can be represented.
On the other hand, splitting words into characters results in longer sequences in which
each symbol contains less information. This creates both modeling and computational
challenges [26].
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Other than word-level and character-level vocabularies, subword-level vocabulary is
an option that keeps a balance between vocabulary size and sequence length. Byte-
Pair-Encoding (BPE) [157] is a commonly used subword-level approach. The general
idea is to merge pairs of frequent character sequences to create sub-word units. BPE
makes the NMT model capable of open-vocabulary translation by encoding rare and
unknown words as sequences of subword units. This approach consistently achieves
better performance over word-level and character-level approaches [171]. Compared
to word-level vocabularies, it is more capable of handling rare words. Compared
to character-level vocabularies, it has shorter sentence lengths. Moreover, it is an
unsupervised approach with few hyperparameters. Several extensions have been
proposed to further improve BPE, such as subword regularization [94], BPE-dropout
[144] and SentencePiece [95].

7.1.2 Translation

As previously described, the early machine translation systems are mainly rule-based.
Such systems can be viewed as a function that maps an input sequence x1:L to an
output sequence y1:T : y1:T = f(x1:L). The function is pre-defined and there are no
parameters to train. Due to the complexity of natural languages, it is difficult to cover
all language irregularities with manual translation rules [171].

With the availability of large-scale parallel corpora, Statistical Machine Translation
(SMT) [90] has gained increasing attention. SMT is based on a probabilistic model,
which estimates the conditional probability p(y1:T |x1:L;θ). θ denotes the parameters
to be learned. This fits the sequence-to-sequence framework described in chapter 3.
During training, θ is updated to optimize a loss function. At inference stage, θ is
fixed, x1:L is given, and y1:T is generated based on its conditional probability. Example
models include N-gram models [114] and log-linear models [152]. In general, SMT
struggles to model long-range dependencies, which limits its performance [124].

With the development of deep learning, Neural Machine Translation (NMT) [81, 6, 27]
has emerged as a new paradigm and quickly replaced SMT as the mainstream approach
to machine translation [171]. NMT adopts the same probabilistic model as SMT,
but has some fundamental differences. On the one hand, NMT employs continuous
representations instead of discrete symbolic representations in SMT. On the other
hand, NMT uses a single large neural network to model the entire translation process,
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freeing the need for excessive feature engineering. Besides its simplicity, NMT has
achieved state-of-the-art performance on various language pairs [171, 175].

7.1.3 Language Model Rescoring

A language model estimates the distribution of a sequence, which could be in either the
source or the target language. More formally, let ϕx and ϕy denote language models
for the source and the target, they respectively estimate p(x1:L;ϕx) and p(y1:T ;ϕy).
While a translation model is usually trained with labeled data, a language model can
be trained with unlabeled data, which are much easier to obtain.

There are several ways to integrate a language model into a neural machine translation
pipeline. For example, the model can rescore a group of candidates generated by a
translation model, e.g. using beam search [113]. The rescoring process can also be
fused with the translation. At each decoding step, the probability predicted by the
language model and the translation model can be combined, which is referred to as
shallow fusion. In contrast, deep fusion concatenates the hidden states of the two
models, and fine tunes the down-stream parameters. This approach is more flexible,
and gating can be used to decide which model contributes more, depending on the
state of the language model [59].

Apart from rescoring, language models are often used in the pretrain-finetune framework,
which has improved the performance of a variety of tasks, including machine translation,
text summarization, and question answering [146]. Here a language model leverages
large amounts of unlabeled data, and serves as a good starting point for another model.
Examples include the Generative PreTraining (GPT) series of models [147, 18], which
can be used to initialize a decoder generating text.

The pretraining criterion can be extended beyond language modeling, i.e. learning
the distribution of sentences. For machine translation, commonly used pretraining
criteria include masked language modeling and denoising. Masked language models,
e.g. Bidirectional Encoder Representations from Transformers (BERT) [35, 112], are
trained to recover masked tokens in text, and can be used as text encoders. Denoising
auto-encoders, e.g. Bidirectional and Auto-Regressive Transformers (BART) [103, 111],
are trained to recover corrupted text and can be used to initialize a complete translation
model [111].
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7.2 Translation Models

This thesis does not leverage language models to boost the performance, and focuses
on translation models adopting the encoder-attention-decoder architecture described
in chapter 3. This section reviews a range of translation models, and then elaborates
on the models that will be used in the experiments. Inference and training techniques
will be discussed at the end of the section.

7.2.1 General Review

Section 3.1.3 generally discussed the pros and cons of various building blocks. The
discussion applies to models used in NMT, and has been recapitulated in section 6.2.1.
The first NMT model [168] that achieves comparable performance to SMT is based
on RNNs. It consists of an encoder and a decoder, but no attention mechanism, as
described in section 3.1.1. More recent RNN-based models adopt attention mechanisms,
and achieve significantly better performance. Google’s NMT (GNMT) model [186]
is a prominent example. Its encoder has both bidirectional and unidirectional RNN
layers; its decoder only uses unidirectional RNN layers. Section 7.2.2 will describe this
model in detail. RNMT+ [24] adopt GNMT as the starting point, and introduces the
following changes to boost the performance. First, RNMT+ makes more extensive use
of bidirectional RNN layers, instead of unidirectional RNN layers, trading efficiency
for performance. Second, inspired by Transformer [175], RNMT+ uses multi-head
attention and layer normalization. To improve convergence speed, a synchronous
training strategy [22] is adopted.

Convolutional Sequence-to-Sequence (ConvS2S) is a typical CNN-based translation
model [49], achieving similar performance as RNN-based model at that time [192].
Here both the encoder and decoder are constructed by stacking multiple convolutional
layers, each layer followed by Gated Linear Units (GLU) [31]. ByteNet [82] is another
CNN-based model, where the decoder is dynamically unfolded over the encoder outputs,
and dilation is used to increase the receptive field. This model achieved state-of-the-art
performance in character-level translation but failed at word-level translation. Hybrid
models [80, 27], which use both recurrent and convolutional layers, have also been
investigated, but did not outperform fully recurrent or convolutional models.

The original Transformer model achieved state-of-the-art NMT performance at the time
[175], and a lot of works follow this line of research. For example, transparent attention
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[8] has been introduced to facilitate the training of deeper Transformer models. This
attention extended its connection to all encoder layers, which allows the model to
flexibly adjust the gradient flow to different layers of the encoder. Universal Transformer
[34] uses an adaptive, instead of constant, number of blocks, which helps the model
generalize. Semi-autoregressive Transformer [180] produces several consecutive words
per time step, in order to improve the translation speed without considerable quality
degradation. In terms of training, it is shown that reduced precision and large batch
training can speedup training by nearly five times [127]. Section 7.2.3 will describe
the Transformer model used in the experiments in this thesis, and section 7.2.4 will
describe reduced precision training.

7.2.2 GNMT

GNMT [186] is Google’s RNN-based NMT model, which adopts the encoder-attention-
decoder architecture described in section 3.1. This thesis uses GNMT in several
experiments, considering its high performance across many datasets [24]. Figure 7.2
depicts GNMT. The encoder consists of one bidirectional LSTM layer, followed by
seven unidirectional LSTM layers. The decoder has eight unidirectional LSTM layers.
Both the encoder and the decoder use residual connections between consecutive layers.
The attention mechanism is the additive attention [6], described in section 2.2.1, and
is realized with a feed forward network with one hidden layer. It connects the bottom
layer of the decoder and the top layer of the encoder.

The design considerations are as follows. Empirically, it is found that both the encoder
and decoder RNNs have to be deep enough to capture subtle irregularities in the source
and target languages [186]. However, simply stacking more layers of LSTM works
only to a certain number of layers [186]. Therefore residual connections are adopted.
The decoding process is autoregressive, so the decoder only uses unidirectional layers.
Although bidirectional layers can help the encoder extract contextual information
related to any position in the input sequence, only the first encoder layer is bidirectional,
and the rest are unidirectional. This helps parallelization across depth: the computation
for the unidirectional encoder layers can be parallelized after the first few time steps.
Only using the bottom decoder layer to compute the attention helps parallelizing the
decoder. If the top decoder layer were used, the lower layers would not be able to
proceed until the top layer state is updated. In reference [186], the encoder and decoder
are partitioned along the depth dimension and are placed on multiple GPUs.
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Fig. 7.2 Illustration of GNMT [186], Google’s RNN-based NMT model.

7.2.3 Transformer

For Transformer models, [175], the encoder and decoder are construted by stacking
multiple Transformer blocks, described in section 2.3. Figure 7.3 depicts the model
structure. Each encoder block contains a multi-head self-attention layer, followed
by two fully connected feedforward layers with a ReLU activation between them.
Each decoder block masks the self-attention to prevent positions from attending
to subsequent positions, and inserts a multi-head cross attention after it. In other
words, the encoder output is connected with all the decoder layers by a group of
cross attentions, integrated into the decoder. All the attention layers adopt scaled
dot-product attention, and details about these layers are in sections 2.2.2 and 2.2.3.
The attention and feedforward layers are each followed by dropout [165], residual
connections [63] and layer normalization [4].

There are no recurrent connections in Transformer during training, hence the model
can be trained in parallel across time. The self-attention allows each position in the
current layer to access information from all other positions in the previous layer. To
compensate for the absence of recurrence, positional encoding is added to the input
and output embeddings.
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Fig. 7.3 Illustration of Transformer [175], used as a translation model.

7.2.4 Inference and Training

Section 3.2 generally described the inference process for sequence-to-sequence models.
For translation models, the output tokens follow discrete distributions, hence both
greedy search and beam search can be used during inference. The translation stops
when the a special ending token is generated.

Section 3.3 generally described a range of training approaches for sequence-to-sequence
models. To the author’s knowledge, teacher forcing is the standard training approach for
NMT. Sometimes the approaches addressing exposure bias are used to finetune models
trained with teacher forcing. In reference [186], GNMT is finetuned with reinforcement
learning. However, this requires running the model sequentially during training, which
is very expensive for Transformer. Reference [43] applied parallel scheduled sampling
to Transformer, but did not observe performance improvements in NMT. To address
exposure bias, this thesis adopts attention forcing or deliberation networks, and the
application considerations for NMT are respectively introduced in sections 4.3 and
5.3. In this section, we describe reduced precision training, and discuss its impact
on attention forcing. Although not specific to NMT, reduced precision training is
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described in this chapter, because it was originally proposed for Transformer-based
NMT [127].

Reduced Precision Training

NVIDIA Volta GPUs enable efficient half precision Floating Point (FP) computations
that are several times faster than full precision operations. However, half precision
drastically reduces the range of floating point values, which can lead to numerical
underflows and overflows [121]. Reference [127] introduced scaling techniques to
mitigate this issue. Here all forward-backward computations are performed in FP16.
The model weights are available in both FP16 and FP32. The loss is computed in
FP32, and then scaled to fit into the FP16 range before the backward pass. The
gradients are converted into FP32 before updating the weights. In addition, the loss is
automatically scaled down when overflow is detected, and up if no overflows have been
detected over many (e.g. 2000) updates.

This thesis adopts half precision training when using Transformer models. In this case,
if attention forcing is adopted, the KL loss (equation 4.9) between two attention maps
will be replaced by an averaged L2 loss to improve numerical stability. The reason
is as follows. The KL loss may involve taking the log of small numbers, and is more
sensitive than L2 to precision reduction. In addition, Transformer models have multiple
attention maps, which makes numerical instability more likely to occur.

7.3 Experiments

The experiments in this chapter investigate attention forcing and deliberation networks
in the context of NMT. Sections 6.4.1 and 6.4.2 respectively describe the data and
performance metrics. Each of the following sections focuses on one line of experiments,
describing the setup, results and analysis. Section 7.3.3 mainly investigates scheduled
attention forcing, introduced in chapter 4. The NMT system is based on GNMT,
described in section 7.2.2. Using the same system, section 7.3.5 investigates deliberation
networks, introduced in chapter 5. Section 7.3.4 investigates parallel attention forcing,
introduced in chapter 4, with a different NMT system. The system is based on
Transformer, described in section 7.2.3. The source code is available online.1

1 The following web page is made for the experiments in this thesis. Please feel free to contact the
author if the page cannot be accessed. http://mi.eng.cam.ac.uk/~qd212/phdthesis
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Table 7.1 Data used in the machine translation experiments.

Number of sentence pairs
Languages Training Validation Test

IWSLT’15 En→Fr 208K 1026 1305
En→Vi 133K 1553 1268

WMT’16 En→De 4.5M 3000 3003

7.3.1 Data

Table 7.1 lists the information about the datasets used in this thesis. There are
two sources of data: IWSLT’15 [19, 20] and WMT’16 [14]. For all the NMT data
used in this work, only one reference output is provided for each input. The IWSLT
datasets correspond to subtitle translation tasks, where the sentences are from TED
talks. Two translation directions are investigated: English-to-French (EnFr) and
English-to-Vietnamese (EnVi). These datasets are relatively small, and are used to
train RNN-based models. For EnFr, the training set contains 208K sentence pairs.
The validation set (tst2013) and test set (tst2014) respectively contain 1026 and 1305
sentence pairs. For EnVi, the training set contains 133K sentence pairs. The validation
set (tst2012) and test set (tst2013) respectively contain 1553 and 1268 sentence pairs.
The data preprocessing follows reference [116]. The vocabularies are at the word-level,
i.e. the units are words. For EnFr, both English and French vocabularies are limited
to 50K. For EnVi, the vocabulary sizes are 17K and 7.7K for English and Vietnamese.

The WMT datasets correspond to news translation tasks, where the sentences are
from newspaper articles. Here English-to-German (EnDe) translation is investigated.
The dataset is considerably bigger, and is used to train Transformer-based models.
The training set contains 4.5M sentence pairs. The validation set (newstest13) and
test set (newstest14) respectively contain 3000 and 3003 sentence pairs. The data
preprocessing follows reference [127]. A joint source and target sub-word vocabulary is
built using byte pair encoding, as described in section 7.1.1. The vocabulary is 32K
BPE tokens. For all the translation directions, the Moses tokenizer [89] is adopted,
and the translations are detokenized before evaluation. The checkpoints are selected
based on the validation set, and the results are compared on the test set.
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7.3.2 Performance Metrics

The overall translation quality is measured by BLEU [129]. The average of 1-to-4
gram BLEU scores are computed and a 0.6 brevity penalty is applied. Higher BLEU
indicates higher quality. For IWSLT and WMT data, the BLEU score is computed
using the Moses toolkit [89] and the SacreBLEU toolkit [141], respectively.

In NMT, there can be multiple valid output sequences for a single input sequence.
Under the condition that the overall translation quality is the same, it is desirable for
an NMT model output to be diverse, i.e. different, translations for the same input.
This work measures the diversity of the candidate translations by pairwise BLEU [160]
and entropy. For a translation model θ, we use sampling search M times with different
random seeds, obtaining a group of translations {ŷ(m)}Mm=1. ŷ(m) denotes all the output
sentences in the dev or test set. Then we compute the average BLEU between all pairs:

1
M(M−1)

∑M
n=1

∑M
m=1 BLEU(ŷ(n), ŷ(m))n̸=m. In our experiments, M is set to 5. The more

diverse the translations, the lower the pairwise BLEU. In addition to pairwise BLEU,
we use greedy search and save the entropy et of the output token’s distribution at each
time step. Let e1:T cover all the model output steps, we compute the average value:
e = 1

T

∑T
t=1 et. Higher entropy means that the model is less certain, and thus more

likely to produce diverse outputs. This process is deterministic, and is not repeated
with different random seeds.

7.3.3 Scheduled Attention Forcing

The experiments in this section investigate attention forcing. First, attention forcing is
applied to machine translation. As analyzed in section 4.3, this is more challenging than
applying attention forcing to speech synthesis. Therefore, scheduled attention forcing,
introduced in section 4.2.1, is adopted. Furthermore, for speech synthesis, attention
forcing is observed to increase the variance of the generated samples, as evidenced
by the experimental results in section 6.4.3. Therefore, the translation diversity is
investigated, in addition to the overall translation quality. The link to the source code
is given in footnote 1, at the beginning of section 7.3.



122 Neural Machine Translation

Table 7.2 Hyperparameters of the RNN-based translation model [186].

Word embedding 200D
Encoder 2-layer bidirectional LSTM (200 units)
Attention General dot-product attention [117]
Decoder 4-layer unibidirectional LSTM (200 units)

Experimental Setup

The experiments are conducted with English-to-French (EnFr) and English-to-Vietnamese
(EnVi) data in IWSLT’15, described in section 7.3.1. As described in section 7.3.2,
the overall translation quality is measured by BLEU, and the diversity is measured by
pairwise BLEU and entropy.

The model is based on GNMT [186], described in section 7.2.2. The differences are
as follows. The model is simplified with a smaller number of LSTM layers due to the
small scale of data: the encoder has 2 layers of bidirectional LSTM and the decoder has
4 layers of unidirectional LSTM; the attention mechanism is the general form of dot-
product attention [117] described in section 2.2.1; both English and Vietnamese word
embeddings have 200 dimensions and are randomly initialized. Table 7.2 summarizes
the hyperparameters.

The Adam optimiser is used with a learning rate of 0.002; β1 = 0.9, β2 = 0.999, ϵ = 10−8.
The maximum gradient norm is set to be 1. If there is a finetuning phase, the learning
rate will be halved. The batch size is 50. Dropout is used with a probability of 0.2.
By default, the baseline models are trained with Teacher Forcing (TF) for 60 epochs.
Starting from the baseline, models are finetuned with Attention Forcing (AF) for 30
epochs. For AF, the scale γ, introduced in section 4.2, of the attention loss is 10.
The default inference approach is greedy search, in order to reduce the turnaround
time. When investigating diversity, sampling search is also adopted, which replaces the
argmax operation by sampling. The checkpoints are selected based on the validation
BLEU. For all the training approaches, the effective number of epochs is smaller than
the maximum, i.e. training goes on until convergence.
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Task Training λ BLEU ↑
EnFr TF - 30.70

AF - 22.93
SAF 2.5 31.44
SAF 3.0 31.66
SAF 3.5 31.34

EnVi TF - 25.57
AF - 18.27
SAF 2.5 26.02
SAF 3.0 25.71
SAF 3.5 26.72

Table 7.3 BLEU of Teacher Forcing (TF), Attention Forcing (AF) and Scheduled
Attention Forcing (SAF) with different values of λ; the higher λ is, the more likely the
generated output history is used; the models are based on GNMT, and trained with
data from IWSLT’15.

Results and Analysis

Overall Performance First, we compare Teacher Forcing (TF) and the default form
of Attention Forcing (AF). The preliminary experiments show that when starting from
scratch, the TF model performs much better than the AF model. When pretraining
with TF is adopted, the BLEU of AF increases from 21.77 to 22.93 for EnFr, and from
13.92 to 18.27 for EnVi. However, it does not outperform TF, as shown by the first
two rows in each section of table 7.3. In addition, we observed that AF decreases the
BLEU of the pretrained TF model. This result is expected, considering the discrete
and multi-modal nature of the NMT output space, analyzed in section 4.3.

Next, TF is compared with Scheduled Attention Forcing (SAF). To speed up conver-
gence, pretraining is used by default. The hyper parameter λ, introduced in section
4.2.1, controls the tendency to use generated outputs. The higher λ is, the more
likely the generated output history is used. Table 7.3 shows the BLEU scores of SAF,
resulting from different values of λ. With very limited tuning, SAF outperforms TF.
The performance is robust in a certain range of λ. In the following experiments, λ is
set to 3.0 for EnFr and 3.5 for EnVi.

To reduce the randomness of the experiments, both TF and SAF are run R = 5
times with different random seeds. Let {θ(r)}Rr=1 denote the group of TF models, and
{θ̂(r)}Rr=1 the SAF models. For both groups, the BLEU’s mean ± standard deviation
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Task Training BLEU↑
EnFr TF 31.10 ± 0.27

SAF 31.54 ± 0.14
EnVi TF 25.86 ± 0.44

SAF 26.41 ± 0.33
Table 7.4 BLEU of Teacher Forcing (TF) and Scheduled Attention Forcing (SAF);
each approach is run 5 times, and the mean ± std is shown; the models are based on
GNMT, and trained with data from IWSLT’15.

Task Training Entropy↑ Pairwise BLEU↓
EnFr TF 1.060 ± 0.047 27.43 ± 0.75

SAF 1.034 ± 0.013 27.82 ± 0.67
EnVi TF 1.508 ± 0.012 22.11 ± 0.34

SAF 1.582 ± 0.017 20.75 ± 0.29
Table 7.5 Diversity of Teacher Forcing (TF) and Scheduled Attention Forcing (SAF);
each approach is run 5 times, and the mean ± std is shown; the models are based on
GNMT, and trained with data from IWSLT’15.

is computed. Table 7.4 shows the results. In terms of mean BLEU, SAF yields a 0.44
gain for EnFr, and a 0.55 gain for EnVi.

Diversity To measure the diversity among the translations, the entropy and pairwise
BLEU are computed for {θ(r)}Rr=1 and {θ̂(r)}Rr=1. The results are shown in table 7.5.
Focusing on the entropy column, SAF leads to higher entropy for EnVi, which indicates
higher diversity. For EnFr, SAF and TF lead to similar levels of diversity, especially
when the standard deviation is considered. We believe that the difference is due to the
nature of the tasks. While English and French have similar syntax and lexicon, English
and Vietnamese are more different. When trained with SAF, the EnVi model benefits
more from using generated back-history, which is more likely to be different from the
reference back-history. The pairwise BLEU shows similar trends. For EnVi, SAF leads
to lower pairwise BLEU, i.e. higher diversity. For EnFr, the difference between SAF
and TF is negligible.
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7.3.4 Parallel Attention Forcing

The experiments in this section continue to investigate attention forcing, using a NMT
system based on Transformer, instead of RNN. For this system, parallel training is
essential. Therefore, parallel attention forcing, introduced in section 4.2.2, is adopted.
As analyzed in section 4.3.3, attention forcing may over regularize Transformer-based
models, which have multiple attention mechanisms. Hence the remedy of only forcing
selected attention heads is investigated. In this section, parallel attention forcing is
compared with both teacher forcing and parallel scheduled sampling. The link to the
source code is given in footnote 1, at the beginning of section 7.3.

Experimental Setup

The experiments in this section are conducted with WMT’16 English-to-German (EnDe)
data, described in section 7.3.1. Compared with the IWSLT data used in section 7.3.3,
the WMT data is more suitable, in terms of the amount of data, for Transformer-based
models, which usually have many more parameters than RNN-based models. The
overall translation quality is measured by BLEU, and the diversity is measured by
pairwise BLEU, as described in section 7.3.2.

The translation models have the same structure as the “big” Transformer in reference
[175]. Table 7.6 shows the hyperparameters. The models are optimized with Adam
using β1 = 0.9, β2 = 0.98, and ϵ = 1e−8. Following reference [127], large batches are
built to have a maximum of 3584 tokens. The learning rate increases linearly for 4,000
steps to 5e−4, after which it is decayed proportionally to the inverse square root of the
number of steps. Label smoothing [136] is applied with 0.1 weight for the uniform prior
distribution over the vocabulary. Dropout is applied with probability 0.3 after each
attention or feedforward module. Half precision optimization techniques, described in
section 7.2.4, are adopted to speed up training.

The baseline models are trained with Teacher Forcing (TF). Starting from the baseline,
other models are finetuned respectively with sequence-level Scheduled Sampling (SS)
and Attention Forcing (AF). To keep the benefit of parallel training across time, SS
and AF are approximated by their parallel version, as described in section 4.2.2 and
reference [43]. The number of iterations is two. The first iteration is conditioned on
the reference output, and generates a complete output history, which is then used to
condition the second iteration. For SS, the probability of using the reference output
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Table 7.6 Hyperparameters of the Transformer-based translation model [175]; “FC”
stands for “fully connected”.

Sub-word embedding 1024D

Encoder (Multi-head self-attention →
Feedforward) × 6

Decoder
(Multi-head self-attention →
Multi-head cross attention →
Feedforward) × 6

Multi-head attention 16 heads × (64D query / key / value) → 1024D output
Scaled dot-product attention [175]

Feedforward FC-4096-ReLU → FC-1024-Linear

decreases linearly from 1 to 0.7; more aggressive schedules are found to degrade the
performance. For AF, the scale γ (equation 4.7) of the attention loss is 1000. The
default inference approach is beam search with beam size 4. The validation BLEU is
monitored to select checkpoints and to stop training when no performance increased is
observed after 10 epochs.

Results and Analysis

Table 7.7 lists some preliminary results of TF, parallel SS and parallel AF. Here all
the attention heads are constantly forced, regardless of the alignment between the
reference and generated output history. Recall that the hyper parameter λ, introduced
in section 4.2.1, controls the tendency to use the generated output history. The higher
λ is, the more likely the generated output history is used. Compared with TF, parallel
SS yields lower BLEU as well as pairwise BLEU. It is difficult to conclude whether the
decrease in pairwise BLEU results from higher diversity or lower translation quality.
In its parallel version, AF performs similarly to TF. This is probably because the
back-history is generated in TF mode. In contrast, when the sequential version of AF
is applied, as described in section 7.3.3, the performance is considerably lower than TF.

As analyzed in section 4.2.1, when applying AF to NMT, it is important to turn AF
on and off based on the alignment between the reference and the generated outputs.
Hence unless otherwise mentioned, a schedule is added to parallel AF in the following
experiments. Table 7.8 lists the performance of parallel AF, where the hyperparameter
λ of the schedule is tuned. It can be seen that the BLEU remains at the same level.
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Table 7.7 Preliminary results comparing Teacher Forcing (TF), Parallel Scheduled
Sampling (PSS) and Parallel Attention Forcing (PAF) without a schedule; the models
are based on Transformer, trained with WMT’16 EnDe, tested on newstest14.

λ BLEU↑ Pairwise BLEU↓
TF - 28.68 31.12
PSS - 28.19 30.17
PAF +∞ 28.74 31.90

Table 7.8 BLEU and Pairwise BLEU of Teacher Forcing (TF), Parallel Scheduled
Sampling (PSS) and Parallel Attention Forcing (PAF); higher λ means higher tendency
to use AF; the models are based on Transformer, trained with WMT’16 EnDe, tested
on newstest14; the bold numbers correspond to the hyperparameter selected (λ = 1.2),
based on the overall performance, for further experiments.

λ BLEU↑ Pairwise BLEU↓
TF - 28.68 31.12
PSS - 28.19 30.17
PAF 1.1 28.75 31.60
PAF 1.2 28.57 30.62
PAF 1.3 28.48 31.89
PAF 1.4 28.56 31.99
PAF 1.5 28.47 32.06

However, the pairwise BLEU decreases when the percentage of AF decreases, signaling
that AF regularizes the translation model to operate in a safe zone.

Recall that the translation model is a big Transformer. As analyzed in section 4.3.3,
the encoder and decoder are connected by multiple attention mechanisms, instead of
just one. It is likely that too much information is passed from the TF baseline to
the AF model. Therefore, to reduce this information, we only force selected attention
heads. To be specific, the first two decoder layers are selected, and reason will be
discussed in the next paragraph. In each layer, the number of heads forced are 8, 12
or 16 out of 16. Table 7.9 lists the results of these experiments. It can be seen that
when only two layers are forced, the performance of parallel AF surpasses TF in both
BLEU and pairwise BLEU. The best performance (first row) is achieved when 8 heads
are forced in each layer. To reduce the randomness of hyperparameter tuning, we run
another experiment where the other 8 heads are forced, and the result (second row) is
comparable to the best performance.
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Table 7.9 BLEU and Pairwise BLEU of Teacher Forcing (TF), Parallel Scheduled
Sampling (PSS) and Parallel Attention Forcing (PAF), where only selected attention
heads are forced; the models are based on Transformer, trained with WMT’16 EnDe,
tested on newstest14.

λ Layers Heads BLEU↑ Pairwise BLEU↓
TF - - - 28.68 31.12
PSS - - - 28.19 30.17
PAF 1.2 1-2 1-8 29.04 30.47
PAF 1.2 1-2 9-16 28.91 30.05
PAF 1.2 1-2 1-12 28.86 30.87
PAF 1.2 1-2 1-16 28.64 30.79

Table 7.10 Ablation study on forcing selected attention heads; BLEU and Pairwise
BLEU of Teacher Forcing (TF), Parallel Scheduled Sampling (PSS) and Parallel
Attention Forcing (PAF) without a schedule; the models are based on Transformer,
trained with WMT’16 EnDe, tested on newstest14.

λ Layers Heads BLEU↑ Pairwise BLEU↓
TF - - - 28.68 31.12
PSS - - - 28.19 30.17
PAF +∞ 1-2 1-4 28.38 31.43
PAF +∞ 1-2 1-8 28.53 31.28
PAF +∞ 1-2 1-12 28.80 31.85
PAF +∞ 1-2 1-16 28.74 31.31
PAF +∞ 3-4 1-16 27.94 31.61
PAF +∞ 5-6 1-16 27.46 32.29

Table 7.8 has shown that adding a schedule itself is not enough for parallel AF to
surpass TF. Another series of experiments show that limiting the information passed
from the TF baseline is also not enough. In other words, the two techniques must
be combined. Table 7.10 shows the results of forcing selected heads, without using a
schedule. As analyzed in section 4.3.3, different layers in a Transformer model perform
different roles. The last three rows show that forcing layers 1 and 2 yields the best
performance. The first four rows show that once the layers are selected, forcing more
than four heads generally leads to better performance in BLEU and pairwise BLEU.
This is the motivation behind the setup of the experiments described in the previous
paragraph.



7.3 Experiments 129

7.3.5 Deliberation Networks

The experiments in this section investigate deliberation networks, introduced in chapter
5. The following points are empirically tested. First, as introduced in section 5.1,
deliberation networks improve the performance of sequence-to-sequence modeling.
Second, addressing exposure bias is an essential element of deliberation networks. In
other words, the performance increases come not from using deeper models, but training
the second-pass model to correct the free running output from the first-pass model, as
is done by all the training approaches in section 5.2. Finally, various NMT systems are
compared, including the teacher forcing baseline, scheduled sampling, attention forcing
and deliberation networks. The link to the source code is given in footnote 1, at the
beginning of section 7.3.

Experimental Setup

The experiments are conducted with the English-to-French data in IWSLT [19] 2015.
BLEU [129] is used to measure the overall translation quality. Each model is trained
five times with different random seeds and the mean ± standard deviation is reported.

Regarding whether the final output is generated in multiple passes, two types of
models are trained: the standard models described in section 7.2 and the corresponding
deliberation networks built as described in section 5.3. They will be respectively
referred to as single-pass and multi-pass models. The single-pass baseline model is
based on GNMT, and is the same as in section 7.3.3. This model is trained with
Teacher Forcing (TF). Starting from the baseline, two stronger single-pass models are
finetuned respectively with sequence-level Scheduled Sampling (SS) and Attention
Forcing (AF). For SS, the probability of using the reference output decreases linearly
from 1 to 0.9 during training; more aggressive schedules are found to degrade the
performance. For AF, the scale γ, introduced in section 4.2, of the attention loss is 10.
Details about the training of the single-pass models are described in section 7.3.3.

As for the multi-pass system, the first-pass model is the same as the baseline, trained
with TF and then used to generate a Free Running (FR) output. The second-pass
model is constructed on top of the first-pass model, by adding an additional encoder
and attention over the free running output. The dimension of the decoder’s input
layer is increased by 400, because an extra context vector is taken. The second-pass
model is randomly initialized and trained with TF for 50 epochs. For all the models,



130 Neural Machine Translation

the inference approach is greedy search. The checkpoints are selected based on the
validation BLEU. For all the training approaches, the effective number of epochs is
smaller than the maximum, i.e. training goes on until convergence.

Results and Analysis

Table 7.11 shows the BLEU scores of various translation systems. TF, SS and AF
denote single-pass models trained with different approaches. SS and AF outperform
TF in BLEU, as they address the exposure bias. SS yields slightly higher translation
diversity than AF, as indicated by the pairwise BLEU. FR-TF denotes the proposed
multi-pass system. It outperforms all of the above in both BLEU and pairwise BLEU.
To see if this results from fixing the errors in the free running output, instead of using
a bigger model, an extra experiment is run. TF-TF denotes this experiment, where the
first-pass output is generated in TF instead of FR mode. TF-TF has the same number
of parameters as FR-TF, but its BLEU score is considerably lower. This indicates that
the performance gain of FR-TF mainly results from fixing the errors in the free running
output. It can be observed that the multi-pass systems have considerably higher
translation diversity than the single-pass systems. This is to some extent because the
multi-pass systems has two stages of decoding, where the output tokens are sampled
from their distributions. In terms of pairwise BLEU, FR-TF outperforms TF-TF,
indicating that addressing exposure bias improves translation diversity. Similar results
have been observed in the speech synthesis experiments in section 6.4.5.

Compared with AF, FR-TF yields slightly higher BLEU, and considerably lower
pairwise BLEU, i.e. higher diversity. While both approaches outperform the TF
baseline, FR-TF is easier than AF to apply to the RNN-based machine translation
model. As analyzed in section 4.3, it is challenging to apply AF to tasks where the
output space is discrete and multi-modal. Recall from section 7.3.3 that the basic
form of AF does not outperform TF, and it is essential to use the selection scheme
introduced in section 4.2.1. The speech synthesis experiments in section 6.4.5 tell a
slightly different story. When applied to the RNN-based speech synthesis model, both
AF and FR-TF outperform TF. However, here the basic form of AF is enough, while
FR-TF requires the guided attention loss introduced in section 5.3. This is because
FR-TF tends to ignore the additional input sequence when it is long and continuous.

An interesting finding was that for the second pass, the initial input seems to be more
important than the previous free running output. In an additional experiment, the
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Table 7.11 Performance of various translation systems; the single-pass models are based
on GNMT; the multi-pass models are the corresponding deliberation networks; all the
models are trained with IWSLT’15 EnFr, tested on tst14.

Training BLEU↑ Pairwise BLEU↓
Single-pass Teacher Forcing (TF) 31.10 ± 0.27 27.43 ± 0.75

Scheduled Sampling (SS) 31.45 ± 0.45 27.16 ± 0.60
Attention Forcing (AF) 31.54 ± 0.14 27.82 ± 0.67

Multi-pass FR-TF 31.74 ± 0.27 23.66 ± 0.57
TF-TF 31.29 ± 0.05 25.59 ± 0.90

input text is masked, and only the free running output is given to the second-pass
model. The BLEU dropped to 29.31, even lower than the baseline number 31.10. This
indicates that mapping French text with errors to its clean version is more difficult
than mapping English to French. Similar results have also been observed in the speech
synthesis experiments in section 6.4.5: learning to refine generated speech is more
difficult than learning to generate speech from text.

The differences between the experiments in machine translation and speech synthesis
are also interesting. In the speech synthesis experiments, it is essential to initialize
the second-pass models from their corresponding first-pass models. The additional
attention over the generated speech is randomly initialized, but is regularized with the
guided attention loss proposed in section 5.3. In contrast, in the machine translation
experiments, the second-pass models are randomly initialized, and the additional
attention over the generated text is not regularized. This confirms the analysis in
section 5.3 that it is more difficult to learn the attention over longer sequences.

7.4 Chapter Summary

This chapter investigated machine translation as an example sequence-to-sequence task,
in order to validate the effectiveness of attention forcing and deliberation networks.
Section 7.1 described the machine translation pipeline, including text segmentation,
translation and language model rescoring. Section 7.2 reviewed a range of translation
models, and described in more depth the models used in the experiments, namely
GNMT and Transformer. Half precision training techniques were described, and
an alternative alignment loss was proposed to address the numerical issues in half
precision attention forcing. Section 7.3 reported and analyzed the experimental results.
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The key findings are as follows. Briefly speaking, applying deliberation networks
to machine translation is simpler than applying attention forcing, which requires
techniques such as the selection scheme. For GNMT, attention forcing and scheduled
sampling yield similar performance, and both of them outperform the teacher forcing
baseline. Deliberation networks, trained with the proposed separate training approach,
outperform the standard single-pass models. The performance increases result from
addressing exposure bias, instead of the models being deeper. For Transformer, parallel
scheduled sampling has similar translation quality but higher diversity than teacher
forcing. Parallel attention forcing outperforms parallel scheduled sampling in translation
quality, while maintaining the level of diversity. In the future, it would be interesting to
apply deliberation networks to Transformer-based models, leveraging parallel training.
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Conclusions

This thesis investigated attention-based sequence-to-sequence models, with a focus on
training approaches. Attention forcing and deliberation networks were introduced to
improve the performance of sequence-to-sequence modeling. Attention forcing trains a
model with the reference attention and the generated output history, so that the model
learns to recover from its mistakes. Deliberation networks use multiple sequence-to-
sequence models to generate the final output through multiple stages of refinement.
Each stage learns to refine the erroneous output of the preceding stage.

When applying the novel approaches to specific sequence-to-sequence tasks, it is
essential to address the application-specific challenges. Therefore, several extensions
were introduced to attention forcing and deliberation networks. In this thesis, speech
synthesis and machine translation were investigated as example tasks. Speech synthesis
represents tasks where the output space is continuous and the attention is monotonic.
Machine translation represents tasks where the output space is discrete and the attention
is more complicated.

In terms of thesis structure, chapter 2 reviewed the fundamentals of deep learning,
covering commonly used building blocks and general training techniques. Chapter
3 described sequence-to-sequence models that adopt the encoder-attention-decoder
architecture. In particular, a range of existing training approaches were analyzed.
Chapter 4 introduced attention forcing, covering the general framework and application
considerations. Chapter 5 adopted the same structure to introduce deliberation
networks. Chapter 6 investigated speech synthesis, describing the pipeline and analyzing
the experimental results. In a similar fashion, chapter 7 investigated machine translation.
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The rest of this chapter will recapitulate the major contributions of this work in more
depth, and introduce several directions for future work.

8.1 Review of Contributions

Attention forcing, introduced in chapter 4, is a novel training approach, which guides the
sequence-to-sequence model with the generated output history and reference attention.
The training criterion is a combination of the log-likelihood of the reference output
and the KL-divergence between the reference attention and the generated attention.
An advantage of this approach is that it does not rely on a heuristic schedule or a
classifier to stabilize training. In addition, it does not require the sequence-to-sequence
task to have a well-established sequence-level criterion. In contrast, the standard
training approach, teacher forcing suffers from exposure bias: during training the
model is guided with the reference output, but the generated output must be used at
inference stage. To address exposure bias, scheduled sampling and professor forcing
guide a model with both the reference and the generated output history. However, they
depend on a heuristic schedule or an auxiliary classifier, which can be difficult to tune.
Alternatively, sequence-level training guides a model with the generated output history,
and optimizes a sequence-level criterion. The generation process is often sequential,
which is undesirable for parallelizable models.

The speech synthesis experiments in section 6.4.3 demonstrate that attention forcing
outperforms both teacher forcing and scheduled sampling. It improves both the overall
quality and the expressiveness of speech. However, the machine translation experiments
in section 7.3.3 indicate that additional techniques are needed when the output space
is discrete and multi-modal. This problem is analyzed in section 4.3, and scheduled
attention forcing is introduced in section 4.2 to address the problem. Here a selection
scheme automatically turns attention forcing on and off depending on the mode of
attention, making sure that the training criterion is sensible.

Parallel attention forcing, also introduced in section 4.2, is another extension, which
approximates the sequential generation of the output history with a parallel generation
process. This facilitates applying attention forcing to models that can be trained in
parallel across time, such as the Transformer. When using Transformer-based models,
a lot of information is available in the attention maps. To avoid over regularization, it
is important to limit the information passed to the attention forcing model. Therefore,
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section 4.3 introduced the trick of only forcing selected attention heads. The experiments
in section 7.3.4 demonstrate that parallel attention forcing, combined with the previously
mentioned selection scheme, improves the overall quality and translation diversity in
Transformer-based machine translation.

As discussed in sections 4.3, and 6.3.5, attention forcing can be used to generate outputs
aligned with their references, which can be helpful for down-stream tasks, such as
neural vocoder adaptation. In addition, a pretraining technique is introduced for neural
vocoders in section 6.3.5. A conventional neural vocoder is used to extract vocoder
features from large amounts of unlabeled speech. The corresponding experiments are
described in appendix B.

Deliberation networks, introduced in chapter 5, involve novel ideas about modeling
and training. Here the output sequence is generated in multiple passes, each one
conditioned on the initial input and the free running output of the previous pass. As
analyzed in section 5.2, the models can be trained either jointly or separately. This
work proposes the separate training approach, which is more suitable for parallelizable
models. Here the multiple passes are trained in turn with teacher forcing. For all passes
but the last, the model is fixed, after training, to generate free running outputs, which
will be stored for the training of the next pass. Deliberation networks were originally
proposed as deeper networks that leverage additional attention mechanisms to access
both past and future context when decoding [187]. In this thesis, it is argued that
deliberation networks address exposure bias, which is essential for performance gains.
This analysis and the effectiveness of the separate training approach, are empirically
demonstrated by both the machine translation experiments in section 7.3.5 and the
speech synthesis experiments in section 6.4.5.

As described in section 5.3, for tasks such as speech synthesis and voice conversion,
the output sequences are relatively long. As a result, the multi-pass model tends to
converge to the standard single-pass model, ignoring the previous output. To tackle
this issue, a guided attention loss is proposed to encourage more extensive use of the
free running output. The speech synthesis experiments in section 6.4.5 demonstrate
the issue and the effectiveness of the guided attention loss.
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8.2 Future work

As discussed in section 4.4, attention forcing can be extended to sequence-to-sequence
models that do not have attention mechanisms. For convolutional neural networks, for
example, attention maps can be defined based on the activation or gradient [199]. Some
recent work on TTS [150, 149, 195, 39] uses a duration model instead of attention. In
this case, the duration can be forced in the place of attention. During training, the
reference duration can be obtained from a external aligner and given to the decoder.
The duration model is trained to predict the reference duration, and the predicted
duration will be given to the decoder at inference stage.

In terms of application, parallel attention forcing has been applied to Transformer-based
models in the machine translation experiments. It is natural to conduct correspond-
ing experiments in speech synthesis. Deliberation networks can also be applied to
Transformer-based models, which can leverage the efficiency of the proposed separate
training approach.

For deliberation networks, the various training approaches explored in section 5.2 can
be further investigated. The investigation can follow the research on minimum risk
training, discussed in section 3.3. In particular, it would be helpful to mathematically
characterize different ways to approximate the expected risk.

For both attention forcing and deliberation networks, it would be interesting to see
how they interact with pretrained models. In other words, it is unknown whether these
approaches can improve the sequence-to-sequence models initialized with pretrained
models, which leverage large amounts of unlabeled data. Finally, as general approaches
introduced for sequence-to-sequence tasks, attention forcing and deliberation networks
can be applied to more tasks such as voice conversion, speech recognition, and text
summarization.
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Appendix A

Supplementary Material on Deep
Learning

A.1 Cells for Recurrent Neural Networks

A.1.1 Gated Recurrent Units

Figure A.1 illustrates the structure of vanilla RNN, focusing on the activation function
f . Figure A.2 illustrates the structure of Gated Recurrent Units (GRU), which uses
gating to improve the network’s memory. Gating can be viewed as an extension to
activation function. The standard form is sigmoid function, in which case a gating
function outputs a vector that acts as a probabilistic gate on network values. Each
element of the vector is between 0 and 1. Intuitively, 0 means to remember nothing,
and 1 means to remember everything. GRU can be formulated as equations A.1 to
A.4.

Fig. A.1 Vanilla recurrent unit [48]
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Fig. A.2 Gated recurrent unit [48]

if = σ(W f
f xt +W r

f ht−1 + bf ) (A.1)
io = σ(W f

o xt +W r
oht−1 + bo) (A.2)

yt = f(W f
y xt +W r

y (if ⊙ ht−1) + by) (A.3)
ht = io ⊙ ht−1 + (1− io ⊙ yt) (A.4)

σ denotes sigmoid function; ⊙ denotes element-wise multiplication; if and io denote
forget and output gates. Suppose the output gate io has the value 1 for all dimensions,
then there is a direct link between ht and ht−1. In contrast, for vanilla RNN the
activation function f is always between ht and ht−1.

A.1.2 Long Short-Term Memory

A Long Short-Term Memory (LSTM) network uses special hidden units, the natural
behavior of which is to remember inputs for a long time, to augment the network with
an explicit memory [67]. A special unit called the memory cell acts like an accumulator
or a gated leaky neuron: it has a connection to itself at the next time step that has
a weight of one, so it copies its own real-valued state and accumulates the external
signal, but this self-connection is multiplicatively gated by another unit that learns
to decide when to clear the content of the memory [100]. Figure A.3 illustrates the
structure of LSTM, which can be formulated as equations A.5 to A.9.
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Fig. A.3 Long short-term memory [48]

if = σ(W f
f xt +W r

f ht−1 + bf +Wm
f ct−1) (A.5)

ii = σ(W f
i xt +W r

i ht−1 + bi +Wm
i ct−1) (A.6)

io = σ(W f
o xt +W r

oht−1 + bo +Wm
o ct) (A.7)

ct = if ⊙ ct−1 + ii ⊙ fm(W f
c xt +W r

c ht−1 + bc) (A.8)
ht = io ⊙ fh(ct) (A.9)

ct denotes the memory cell; if , ii, io denote the forget, input and output gates. Suppose
the forget gate io has the value 1 for all dimensions, and the input gate ii has the value
0 for all dimensions, the current memory cell will be exactly the same as the one at
the previous time step, which helps memorizing history.
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Supplementary Material on
Text-to-speech Synthesis

B.1 Additional Experiments

Section 6.3.5 proposed a pretraining approach for neural vocoders, which leverages large
amounts of unlabeled data. The idea is to use a conventional vocoder to extract features
from large amounts of unlabeled speech, and then train the the neural vocoder to map
the features back to speech. The section describes the corresponding experiments.

B.1.1 Data

The experiments are performed on two datasets with different size, namely Nick and
Nancy. Nick dataset contains 2396 utterances from a male British speaker; each
utterance is about 2 seconds so there is about 3 hours’ speech in total. Nancy dataset
contains 12095 utterances from a female American speaker; each utterance is about
5 seconds so there is about 15 hours’ speech in total. Regardless of the dataset,
50 utterances are for validation, another 50 utterances are for testing, and the rest
utterances are for training.

For waveforms, the sampling frequency is 16kHz, and the samples are quantized into
256 integer values. For conditioning vectors, both linguistic features and vocoder
features have a frequency of 200Hz; when necessary they are upsampled using linear
interpolation. The linguistic features are 601-dimensional vectors extracted from text;
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the first 592 dimensions are binary and the other dimensions are continuous. The
vocoder features are 163-dimensional vectors; all dimensions are continuous. Depending
on the goal of the experiment, either reference vocoder features or generated vocoder
features are used. The reference vocoder features are extracted from waveforms with a
PML vocoder. The generated vocoder features are from a conventional acoustic model.
As described in section 6.1.2, this model only handles aligned input and output. Here
the linguistic features are force-aligned with the corresponding waveform.

B.1.2 Performance Metrics

In this work, both objective and subjective performance metrics are used. When
developing a speech synthesis system, we evaluate it with objective metrics, which
are free and fast to use. When the system has a reasonable quality, we evaluate it
with subjective listening tests. Each listening test compares two systems, and is taken
by more than 30 workers from Amazon Mechanical Turk. Participants are instructed
to listen to pairs of sentences, and indicate which one they prefer in terms of overall
quality. Each comparison includes 5 pairs of utterances randomly selected among all
the test utterances.

For objective metrics, vocoder features are extracted from reference and generated
waveforms, and root-mean-square error (RMSE) is computed between the feature
trajectories. Since the natural duration is always used, the trajectories are synchronized.
For PML vocoder, the dimensions of a vocoder feature vector can be separated into
three streams: noise mask (NM), MCEP and log(F0). RMSE are computed separately
for each stream. Within each stream, the RMSE of all dimensions are added. Although
the energy level for each dimension is different, adding them up is sensible because the
dimensions with higher energy are more important for the quality of generated speech.

B.1.3 Neural Vocoder Pretraining

Experimental Setup

The data and performance metrics are described in the previous sections. A conventional
acoustic model is used to map a linguistic feature sequence to a vocoder feature sequence.
θBLSTM denotes its parameters. The model has three bidirectional LSTM (BLSTM)
layers, and the dimension of each layer is 1024 for Nick dataset, and 512 for Nancy
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dataset. The acoustic model is trained with linguistic features and reference acoustic
features extracted from waveform. After training, this model can be used to generate
vocoder features for all utterances of the two datasets, and these generated vocoder
features can be used as conditioning vectors for neural vocoders.

For waveform-level synthesis, the model is based on SampleRNN, also referred to as
hierarchical RNN (HRNN), and is described in section 6.3.3. Here a 4-tier HRNN
is used to map a conditioning vector sequence to speech. There are three types of
conditioning vectors: linguistic feature, acoustic feature extracted from waveform, and
acoustic feature generated from the acoustic model. θHRNN denotes the model parameters.
Tier 0 is a 4-layer DNN, including three fully connected layers with ReLU activation
and a softmax output layer; the dimension is 1024 for the first two fully connected
layers, and is 256 for the other two layers. The other tiers are all 2-layer RNNs;
GRU is used and the dimension is 1024 for all layers. The frequencies for tiers 0 to 3
are respectively 16000Hz, 3200Hz, 800Hz and 200Hz. The reason to use this HRNN
configuration is as follows. In general, using many tiers operating at diverse frequencies
leads to good performance. From experience, the effective history length of GRU is
about 100 time steps. For tier 3, each time step corresponds to 5ms, so the effective
history length is 500ms, which is at word-level. Similarly, for tier 2, the effective history
length is 125ms, which is at phoneme-level. For tier 1, the effective history length is
31.25ms, which is at sub-phoneme-level and keeps the generated waveform from being
too smooth. For each RNN tier, the number of layers to use should be consistent with
its upsampling rate R(k). A tier with higher upsampling rate outputs more supervising
vectors, and should have more layers [40]. In the above configuration, R(3) = R(2) = 4
and R(1) = 5, therefore all RNN tiers have two layers.

During training, SGD is used to minimize the negative log-likelihood. Gradients are
hard-clipped to remain in the range (−1, 1). The Adam optimizer [86] with an initial
learning rate of 0.001 (β1 = 0.9, β2 = 0.999, and ϵ = 1e−8) is used. The initial RNN
state of all the RNN-based models is learnable. Weight normalization [156] is used for
all the linear layers to accelerate training. Truncated back propagation through time is
also used to accelerate training. Orthogonal weight matrices are used for initializing
hidden-to-hidden connections and other weight matrices are initialized in a similar way
to the way proposed by He et al. [63].
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Fig. B.1 Result of the listening test comparing linguistic features and vocoder features;
Nick test set

Table B.1 Added RMSE for different conditioning vectors; PML vocoder analysis; Nick
test set

Conditioning MCEP NM log(F0)
Acoustic features 7.60 8.15 0.39
Linguistic features 8.14 8.61 0.40

Results and Analysis

Investigation on conditioning vectors As a preliminary experiment, linguistic
features and acoustic features are compared as conditioning vectors. Two HRNNs
are trained with Nick dataset, using linguistic features and vocoder features respec-
tively. The vocoder features are generated from the acoustic model. It is expected
that conditioning on vocoder features yields better performance, because the mapping
requires less data and modeling power. Figure B.1 shows the result of the listening
test comparing linguistic features and vocoder features. Each number indicates the
percentage of participants with a certain preference. It can be seen that most partici-
pants prefer conditioning on vocoder features. Table B.1 compares linguistic features
and vocoder features using objective metrics. It shows the added RMSE for MCEP,
NM and log(F0). The vocoder analysis is performed with a PML vocoder. It can be
seen that when conditioning on vocoder features, the model has better performance in
all three aspects. This motivates using acoustic features as conditioning vectors in the
other experiments in this work.

Investigation on pretraining To investigate the effect of pretraining, three neural
vocoders are built: HRNN, HRNNFT10% and HRNNFT100%. The acoustic model
θBLSTM is shared. It is trained with all the Nick training data. For HRNN, the neural
vocoder θHRNN is trained with all the Nick training data. The vocoder features used to
pretrain θHRNN are generated from θBLSTM. In contrast, HRNNFT10% and HRNNFT100%
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Fig. B.2 Results of the listening tests comparing HRNN, HRNNFT100% and HRN-
NFT10%; Nick test set

are built as follows. First, the neural vocoder θHRNN is pretrained with all the Nancy
training data. The vocoder features are extracted with a PML vocoder, so no label
is required. Next, the pretrained neural vocoder is finetuned with different amounts
of Nick data. Here the vocoder features are generated from the acoustic model θBLSTM.
HRNNFT10% and HRNNFT100% respectively use 10% and 100% of the generated
data to finetune the neural vocoder.

As expected, pretraining the neural vocoder is very effective. Figure B.2 shows the
results of listening tests comparing the three systems. It can be seen that HRNN and
HRNNFT100% have very similar quality. More importantly, 10% of Nick training data,
which is about 10 minutes, is enough to finetune the model to be comparable with the
counterpart finetuned with 100% of Nick training data. In fact, even when the neural
vocoder pretrained with Nancy data (female, American) is not finetuned, it can map a
sequence of vocoder features from Nick data (male, British) to speech that sounds like
a British male.

B.2 Listening Tests

Section 6.4.2 described the subjective listening tests conducted in this work. The
following are some example web pages made for these tests, including a cover page, an
AB preference test and a Mean-Opinion-Score test.



Preamble
Participation criteria
Please check absolutely that the following criteria are met.
ATTENTION: If ANY of these criteria is not met, your assignment will be
rejected.

You can participate in this test ONLY ONCE.
Only NATIVE ENGLISH speakers can take this test (all regional accents are accepted).
Take the time to listen! You have to spend AT LEAST 4 MINUTES on this test.
You MUST absolutely use headphones  or earphones

Anonymity
Your participation in this test is anonymous. The data the researchers will work on will not identify you in any manner.
If the data
of each participant is published for reasons of Open Access the data will still be anonymous.
Similarly, any published aggregated
results (statistics, histograms, etc.) will not identify any participants.
In addition to the assessment of the speech, you will be asked for some information to facilitate analysis of the results (mother
tongue, age, gender). This data will also be processed anonymously.
Your data will not be forwarded to any third-party.

Retraction right
Within a week, you have the possibility to withdraw the data you supply. If you want to assert this right, please leave us a message
providing your Assignment ID (See below) and see the section Contact below.
If you do not withdraw your data within a week, you authorize us to publish the data or statistics of the data aggregated with other
participants' data, as detailed above.

Contact
If you are Amazon Mechanical Turk Worker, please use AMTurk messaging service.
Otherwise please send us an e-mail.
To avoid any
possible identification, please avoid mentioning any personnal contact information in your message.

Purpose
The resulting data will be used for the following research projects:

HQSTS Project
NST Project

Authors
This listening test is carried out by the Speech Group of The Machine Intelligence Laboratory, Engineering Department, Cambridge
University, UK.

Related regulations
This Listening Test complies with EU and UK regulations:

EU Directive 95/46/EC
UK Data Protection Act (DPA)




Page loaded on Friday 22nd of October 2021 20:45:14. Test: LJ_TacoWrnn_TF80_AF80_NV

Assignment ID: C41D1677594114E4FF437E21066F3452A83BCD7C


Before pressing any button below, please keep a copy of this page (print me!)

I agree.

Show me the test !

I disagree.

Finally, I'll not take this test.










Evaluation of preferences

Please carefully read the following information, even if you are used to doing these type of listening tests.

Instructions

Do the test in a quiet place.
Verify that the sound level is loud enough to hear the sound details properly.
If there are any technical problems with one of the recordings, select "Prob" to indicate a problem.
If you perceive a difference of loudness so that you can't properly evaluate a pair of sounds also select "Prob".
Do not try to find a pattern among the samples' order. There is none.
There is no "correct" answer. It is about your subjective preference, but try to be consistent in your choices.

For each pair of recordings below (each line) select one button depending on your preference for the two samples in terms of their
overall quality.

If the right recording is much better than the left one, select the furthest right button (+3)
If the right recording is better than the left one, select the second button (+2)
If the right recording is slightly better than the left one, select the third button (+1)
If the two recordings sound the same, or, they have differences which are NOT related to the overall quality, select the middle
button (0)

... and the same on the other way.

If you feel that these instructions lack of clarity, please do not take this listening test.

The test

Pair File1 -3 -2 -1 0 +1 +2 +3 File2 Prob

1

Pair File1 -3 -2 -1 0 +1 +2 +3 File2 Prob

2

Pair File1 -3 -2 -1 0 +1 +2 +3 File2 Prob

3

Pair File1 -3 -2 -1 0 +1 +2 +3 File2 Prob

4

Pair File1 -3 -2 -1 0 +1 +2 +3 File2 Prob

5

Pair File1 -3 -2 -1 0 +1 +2 +3 File2 Prob

6

Pair File1 -3 -2 -1 0 +1 +2 +3 File2 Prob

7

Pair File1 -3 -2 -1 0 +1 +2 +3 File2 Prob

8

Pair File1 -3 -2 -1 0 +1 +2 +3 File2 Prob

9

Pair File1 -3 -2 -1 0 +1 +2 +3 File2 Prob

10

Once finished, you can reassess the comparisons as many times as you want.




Some information about you

0:000:00 / 0:04/ 0:04 0:000:00 / 0:04/ 0:04

0:000:00 / 0:05/ 0:05 0:000:00 / 0:06/ 0:06

0:000:00 / 0:06/ 0:06 0:000:00 / 0:04/ 0:04

0:000:00 / 0:05/ 0:05 0:000:00 / 0:05/ 0:05

0:000:00 / 0:02/ 0:02 0:000:00 / 0:02/ 0:02

0:000:00 / 0:05/ 0:05 0:000:00 / 0:05/ 0:05

0:000:00 / 0:03/ 0:03 0:000:00 / 0:03/ 0:03

0:000:00 / 0:04/ 0:04 0:000:00 / 0:04/ 0:04

0:000:00 / 0:04/ 0:04 0:000:00 / 0:04/ 0:04

0:000:00 / 0:04/ 0:04 0:000:00 / 0:04/ 0:04



What's your mother tongue ?

(Select English if English is among your mother tongues)

Please select

Are you Female Male Other
Your Age

How did you listen to the sounds ?
Headphones Earphones Loudspeakers

Please, check that all pairs are evaluated, then
 send the answers !

The sounds used on this page are under Copyright © 2015 Machine Intelligence Lab, Engineering Dept, Univ Cambridge, UK



Evaluation of preferences

Please carefully read the following information, even if you are used to doing these type of listening tests.

Instructions

Do the test in a quiet place.
Verify that the sound level is loud enough to hear the sound details properly.
If there are any technical problems with one of the recordings, select "Prob" to indicate a problem.
If you perceive a difference of loudness so that you can't properly evaluate a pair of sounds also select "Prob".
Do not try to find a pattern among the samples' order. There is none.
There is no "correct" answer. It is about your subjective preference, but try to be consistent in your choices.

For each recording below (each line) select one button depending on your evaluation of their overall quality.

The recordings are grouped by their corresponding text.
Please feel free to adjust your evaluation after listening to the whole group.

If you feel that these instructions lack of clarity, please do not take this listening test.

The test

Sounds to assess Bad(1) Poor(2) Fair(3) Good(4) Excellent(5) Prob

1

2

3

Sounds to assess Bad(1) Poor(2) Fair(3) Good(4) Excellent(5) Prob

4

5

6

Sounds to assess Bad(1) Poor(2) Fair(3) Good(4) Excellent(5) Prob

7

8

9

Sounds to assess Bad(1) Poor(2) Fair(3) Good(4) Excellent(5) Prob

10

11

12

Sounds to assess Bad(1) Poor(2) Fair(3) Good(4) Excellent(5) Prob
13

0:000:00 / 0:03/ 0:03

0:000:00 / 0:03/ 0:03

0:000:00 / 0:03/ 0:03

0:000:00 / 0:04/ 0:04

0:000:00 / 0:04/ 0:04

0:000:00 / 0:05/ 0:05

0:000:00 / 0:04/ 0:04

0:000:00 / 0:04/ 0:04

0:000:00 / 0:04/ 0:04

0:000:00 / 0:05/ 0:05

0:000:00 / 0:07/ 0:07

0:000:00 / 0:05/ 0:05



14

15

Once finished, you can reassess the comparisons as many times as you want.




Some information about you

What's your mother tongue ?

(Select English if English is among your mother tongues)

Please select

Are you Female Male Other
Your Age

How did you listen to the sounds ?
Headphones Earphones Loudspeakers

Please, check that all pairs are evaluated, then
 send the answers !

The sounds used on this page are under Copyright © 2015 Machine Intelligence Lab, Engineering Dept, Univ Cambridge, UK

0:000:00 / 0:06/ 0:06

0:000:00 / 0:05/ 0:05

0:000:00 / 0:07/ 0:07
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