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Abstract

Two graphs are cospectral if their respective adjacency matrices have the same
multi-set of eigenvalues. A graph is said to be determined by its spectrum if
all graphs that are cospectral with it are isomorphic to it. We consider these
properties in relation to logical definability. We show that any pair of graphs
that are elementarily equivalent with respect to the three-variable counting first-
order logic C3 are cospectral, and this is not the case with C2, nor with any
number of variables if we exclude counting quantifiers. We also show that the
class of graphs that are determined by their spectra is definable in partial fixed-
point logic with counting. We relate these properties to other algebraic and
combinatorial problems.
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1. Introduction

The spectrum of a graph G is the multi-set of eigenvalues of its adjacency
matrix. Even though it is defined in terms of the adjacency matrix of G, the
spectrum does not, in fact, depend on the order in which the vertices of G are
listed. In other words, isomorphic graphs have the same spectrum. The converse5

is false: two graphs may have the same spectrum without being isomorphic. We
say that two graphs are cospectral if they have the same spectrum.

The spectrum of graphs is a graph invariant and forms the basis for some
approaches to testing graph isomorphism. There are polynomial time tests that
will distinguish graphs that are not cospectral. And cospectral, non-isomorphic10

graphs tend to be harder to distinguish—the best graph isomorphism testing al-
gorithms tend to perform poorly on these. Attempts have been made to extend
the techniques by considering the spectra of matrices other than the adjacency
matrix, associated with graphs. So far, none of these provide a complete iso-
morphism test.15

∗Corresponding author
Email address: ocbzapata@gmail.com (Octavio Zapata)

Preprint submitted to Annals of Pure and Applied Logic March 2, 2018



Our aim in this paper is to study the relationship of cospectrality as an
equivalence relation on graphs in relation to a number of other approximations of
isomorphism coming from logic, combinatorics and algebra. We also investigate
the definability of cospectrality and related notions in logic.

Specifically, we show that for any graph G, we can construct a formula φG20

of first-order logic with counting, using only three variables (i.e. the logic C3)
so that H |= φG only if H is cospectral with G. From this, it follows that
elementary equivalence in C3 refines cospectrality, a result that also follows
from [1]. In contrast, we show that cospectrality is incomparable with elemen-
tary equivalence in C2, or with elementary equivalence in Lk (first-order logic25

with k variables but without counting quantifiers) for any k. We show that on
strongly regular graphs, cospectrality exactly coincides with C3-equivalence.

For definability results, we show that cospectrality of a pair of graphs is
definable in fpc, inflationary fixed-point logic with counting. We also consider
the property of a graph G to be determined by its spectrum, meaning that all30

graphs cospectral with G are isomorphic with G. We establish that this property
is definable in partial fixed-point logic with counting (pfpc).

In section 2, we say some words motivating this work and construct some
basic first-order formulas that we use to prove various results later, and we also
review some well-known facts in the study of graph spectra. In section 3, we35

make explicit the connection between the spectrum of a graph and the total
number of closed walks on it. Then we discuss aspects of the class of graphs
that are uniquely determined by their spectra. Also, we show a lower bound for
the distinguishability of graph spectra in the finite-variable logic.

In section 4, we give an overview of a combinatorial algorithm for distin-40

guishing between non-isomorphic graphs, and study the relationship with other
algorithms of algebraic and combinatorial nature. We note that something
expected happens for strongly regular graphs, which are graphs with high com-
binatorial regularity. In section 5, we establish some results about the logical
definability of cospectrality and of the property of being a graph determined by45

its spectrum. We end by making some concluding remarks in section 6.

2. Preliminaries

Our motivation comes from spectral graph theory:

Conjecture 1 ([2]). Almost every graph is determined by its spectrum.

Background material on this conjecture can be found in [2, 3, 4, 5] and50

the reference contained therein. In this document, we will consider graphs de-
termined by their spectra in relation to logical definability. We would like to
approach the above conjecture via logical definability. As we shall see in Propo-
sition 2, graphs elementary equivalent with respect to the counting logic C3 are
necessarily cospectral. Indeed their complements are as well cospectral (Corol-55

lary 1). This just follows from the fact that if a C3-formula distinguishes G
from H, then the same formula with ¬E replacing E separates the complement
of G from the complement of H.
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We shall consider the first-order language of signature σ = {E}, where E is
a binary relation symbol interpreted as an irreflexive symmetric binary relation
called adjacency. Then a σ-structure G = (VG, EG) is called a simple undirected
graph. The universe VG of G is called the vertex set and its elements are called
vertices. The unordered pairs of vertices in the interpretation EG of E are called
edges. Formally, a graph is an element of the elementary class axiomatised by
the first-order σ-sentence:

∀x∀y(¬E(x, x) ∧ (E(x, y)→ E(y, x))).

The adjacency matrix of an n-vertex graph G with vertices v1, . . . , vn is the
n × n matrix AG with entry (AG)ij = 1 if vertex vi is adjacent to vertex vj ,60

and (AG)ij = 0 otherwise. By definition, every adjacency matrix is real and
symmetric with diagonal elements all equal to zero. A permutation matrix P is
a binary matrix with a unique 1 in each row and column. Permutation matrices
are orthogonal matrices so the inverse P−1 of P is equal to its transpose PT .
Two graphs G and H are isomorphic if there is a bijection h from VG to VH that65

preserves adjacency. The existence of such a map is denoted by G ∼= H. From
this definition it is not difficult to see that two graphs G and H are isomorphic
if, and only if, there exists a permutation matrix P such that PTAGP = AH .

The characteristic polynomial of an n-vertex graph G is a polynomial in a
single variable λ defined as pG(λ) := det(λI−AG), where det(·) is the operation70

of computing the determinant of the matrix inside the parentheses, and I is the
identity matrix of the same order as AG. The spectrum of G is the multi-set
sp(G) := {λ : pG(λ) = 0}, where each root of pG(λ) is considered according to
its multiplicity. If λ ∈ sp(G) then λI −AG is not invertible, and so there exists
a nonzero vector u such that AGu = λu. A vector like u is called an eigenvector75

of G corresponding to λ. The elements in sp(G) are called the eigenvalues of
G. Two graphs are called cospectral if they have the same spectrum.

The trace of a matrix is the sum of all its diagonal elements. By the definition
of matrix multiplication, for any two matrices A,B we have tr(AB) = tr(BA),
where tr(·) is the operation of computing the trace of the matrix inside the
parentheses. Therefore, if G and H are two isomorphic graphs then

tr(AH) = tr(PTAGP )

= tr(AGPP
T )

= tr(AG)

and so, tr(AkG) = tr(AkH) for any k ≥ 0.
Suppose that A is an n × n matrix with (possibly repeated) eigenvalues

λ1, . . . , λn. For each 0 ≤ d ≤ n, the elementary symmetric polynomial ed in
the eigenvalues of A is defined as the sum of all distinct products of d distinct
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eigenvalues of A:

e0(λ1, . . . , λn) := 1;

e1(λ1, . . . , λn) :=

n∑
i=1

λi;

ed(λ1, . . . , λn) :=
∑

1≤i1<···<id≤n

λi1 · · ·λid for 1 < d ≤ n.

For 1 ≤ k ≤ n, if sk(λ1, . . . , λn) :=
∑n
i=1 λ

k
i then the equation

ek(λ1, . . . , λn) =
1

k

k∑
j=1

(−1)j−1ek−j(λ1, . . . , λn)sk(λ1, . . . , λn)

is called the k-th Newton’s identity.
The next result establishes the connection to be explored in the next section,80

between computing the spectrum of a graph and counting the number of closed
walks that it contains.

Proposition 1. For n-vertex graphs G and H, the following are equivalent:

1. G and H are cospectral;

2. G and H have the same characteristic polynomial;85

3. tr(AkG) = tr(AkH) for 1 ≤ k ≤ n.

Proof. By the spectral decomposition theorem, computing the trace of the k-th
powers of a real symmetric matrix A will give the sum of the k-th powers of
the eigenvalues of A. It is well-known that the elementary symmetric polyno-
mials e0, e1, . . . , en evaluated in the eigenvalues of A are the coefficients of the
characteristic polynomial of A modulo a 1 or −1 factor. That is,

det(λI −A) =

n∏
i=1

(λ− λi)

= λn − e1(λ1, . . . , λn)λn−1 + · · ·+ (−1)nen(λ1, . . . , λn)

=

n∑
d=0

(−1)n+den−d(λ1, . . . , λn)λd.

So if we know
∑n
i=1 λ

k
i = tr(AkG) = tr(AkH) for 1 ≤ k ≤ n, then using New-

ton’s identities we can obtain all the symmetric polynomials in the eigenvalues,
and so we can reconstruct the characteristic polynomial of A. Hence (3) implies
(2). That (2) implies (1) is obvious, and (1) implies (3) is trivial.90

3. Spectra and Walks

Given a graph G and a positive integer l, a walk of length l in G is a sequence
v0, v1, . . . , vl of vertices of G, such that consecutive vertices are adjacent in G.
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Formally, v0, v1, . . . , vl is a walk of length l in G if, and only if, {vi−1, vi} ∈ EG
for 1 ≤ i ≤ l. We say that the walk v0, v1, . . . , vl starts at v0 and ends at vl. A95

walk of length l is said to be closed (or l-closed, for short) if it starts and ends
in the same vertex, i.e., v0 = vl.

Since the ij-th entry of AlG is precisely the number of walks of length l in
G starting at vi and ending at vj , by Proposition 1, we have that the spectrum
of G is completely determined if we know the total number of closed walks for100

each length up to the number of vertices in G. Thus, two graphs G and H are
cospectral if, and only if, the total number of l-closed walks in G is equal to the
total number of l-closed walks in H for all l ≥ 0.

For an example of cospectral non-isomorphic graphs, let G = C4 + K1 be
the disjoint union of the 4-vertex cycle with a vertex, and H = K1,4 the (1, 4)-105

complete bipartite graph. The spectrum of both G and H is the multi-set
{−2, 0, 0, 0, 2}. However, G contains an isolated vertex while H is a connected
graph.

3.1. Finite Variable Logics with Counting

For each positive integer k, let Ck denote the fragment of first-order logic in110

which only k distinct variables can be used but we allow counting quantifiers:
so for each i ≥ 1 we have a quantifier ∃i whose semantics is defined so that
∃ixφ is true in a structure if there are at least i distinct elements that can be
substituted for x to make φ true. We use the abbreviation ∃=ixφ for the formula
∃ixφ∧¬∃i+1xφ that asserts the existence of exactly i elements satisfying φ. We115

write G ≡Ck

H to denote that the graphs G and H are not distinguished by
any formula of Ck. Note that Ck-equivalence is the usual first-order elementary
equivalence relation restricted to formulas using at most k distinct variables and
possibly using counting quantifiers.

We show that for integers k, l, with k ≥ 0 and l ≥ 1, there is a formula120

ψlk(x, y) of C3 so that for any graph G and vertices v, u ∈ VG, G |= ψlk[v, u] if,
and only if, there are exactly k walks of length l in G that start at v and end at u.
We define this formula by induction on l. Note that in the inductive definition,
we refer to a formula ψlk(z, y). This is to be read as the formula ψlk(x, y) with
all occurrences of x and z (free or bound) interchanged. In particular, the free125

variables of ψlk(x, y) are exactly x, y and those of ψlk(z, y) are exactly z, y.
For l = 1, the formulas are defined as follows:

ψ1
0(x, y) := ¬E(x, y); ψ1

1(x, y) := E(x, y);

and ψ1
k(x, y) := false for k > 1.

For the inductive case, we first introduce some notation. We say that a
collection (i1, k1), . . . , (ir, kr) of pairs of integers, with ij , kj ≥ 1 is an indexed
partition of k if the k1, . . . , kr are pairwise distinct and k =

∑r
j=1 ijkj . Let K

denote the set of all indexed partitions of k and note that this is a finite set.130

Now, assume we have defined the formulas ψlk(x, y) for all values of k ≥ 0.
We proceed to define them for l + 1:

ψl+1
0 (x, y) := ∀z(E(x, z)→ ψl0(z, y))
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ψl+1
k (x, y) :=

∨
(i1,k1),...,(ir,kr)∈K

(( r∧
j=1

∃=ijz ψlkj (z, y)
)
∧ ∃dz E(x, z)

)
,

where d =
∑r
j=1 ij . We have used ij to denote the number of neighbours of x

for which there are exactly kj walks of length l from each of them to y. Note
that without allowing counting quantification it would be necessary to use many
more distinct variables to rewrite the last formula.

Given an n-vertex graph G, as noted before (AlG)ij is equal to the number135

of walks of length l in G from vertex vi to vertex vj , so (AlG)ij = k if, and only
if, G |= ψlk(vi, vj). Once again, let K denote the set of indexed partitions of k.
For each integer k ≥ 0 and l ≥ 0, we define the sentence

φlk :=
∨

(i1,k1),...,(ir,kr)∈K

( r∧
j=1

∃=ijx∃y
(
x = y ∧ ψlk(x, y)

))
. (1)

Then we have G |= φlk if, and only if, the total number of closed walks of length
l in G is exactly k. Hence G |= φlk if, and only if, tr(AlG) = k. Thus, we have140

the following proposition.

Proposition 2. If G ≡C3

H then G and H are cospectral.

Proof. Suppose G and H are two non-cospectral graphs. Then there must be
some positive integer l, such that tr(AlG) 6= tr(AlH). Hence the total number of
closed walks of length l in G is different from the total number of closed walks145

of length l in H (see Proposition 1). If k is the total number of closed walks of
length l in G, then G |= φlk and H 6|= φlk with φlk defined as (1). Since φlk is a

sentence of C3, we conclude that G 6≡C3

H and the proposition follows.

For any n-vertex graph G and l ≥ 1, there exists a positive integer kl such
that tr(AlG) = kl. Since having the traces of powers of the adjacency matrix of150

G up to the number of vertices is equivalent to having the spectrum of G, we
can define a sentence

φG :=

n∧
l=1

φlkl (2)

of C3 such that for any graph H, we have H |= φG if, and only if, sp(G) = sp(H).
The complement Ḡ of a graph G is defined as the graph with vertex set VG and
adjacency matrix J − I − AG, where J denotes the all-ones matrix. Thus, we155

can define a sentence φḠ of C3 with ¬E replacing E in φG so that H̄ |= φḠ if,
and only if, sp(Ḡ) = sp(H̄).

Corollary 1. Graphs that are elementary equivalent with respect to the counting
logic C3 are cospectral with cospectral complements.

3.2. Graphs Determined by Their Spectra160

The goal of this subsection and later of section 5 is to generalise in a syntac-
tical way the property of being a graph uniquely determined by its spectrum.
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We say that a graph G is determined by its spectrum (for short, DS) when for
any graph H, if sp(G) = sp(H) then G ∼= H. In words, a graph is determined
by its spectrum when it is the only graph up to isomorphism with a certain165

spectrum. In Proposition 2 we saw that C3-equivalent graphs are necessarily
cospectral. That is, if two graphs G and H are C3-equivalent then G and H
must have the same spectrum.

In general, determining whether a graph has the DS property (i.e., the equiv-
alence class induced by having the same spectrum coincides with its isomorphism170

class) is an open problem in spectral graph theory (see, e.g. [2]). Given a graph
G and a positive integer k, we say that the logic Ck identifies G when for all

graphs H, if G ≡Ck

H then G ∼= H. Let Ckn be the class of all n-vertex graphs
that are identified by Ck. Since C2-equivalence corresponds to indistinguisha-
bility by the 1-dimensional Weisfeiler-Lehman algorithm [6], from a classical175

result of Babai, Erdős and Selkow [7], it follows that C2
n contains almost all

n-vertex graphs. Let DSn be the class of all DS n-vertex graphs.
The 1-dimensional Weisfeiler-Lehman algorithm (see Section 4) does not dis-

tinguish any pair of non-isomorphic regular graphs of the same degree with the
same number of vertices. Hence, if a regular graph is not determined up to180

isomorphism by its number of vertices and its degree, then it is not in C2
n. How-

ever, there are regular graphs that are determined by their number of vertices
and their degree. For instance, the complete graph on n vertices, which gives
an example of a graph in DSn ∩ C2

n.
Let T be a tree on n vertices. By a well-known result from Schwenk [8], with185

probability one there exists another tree T ′ such that T and T ′ are cospectral
but not isomorphic. From a result of Immerman and Lander [6] we know that
all trees are identified by C2. Hence T is an example of a graph in C2

n and
not in DS. On the other hand, the disjoint union of two complete graphs with
the same number of vertices is a graph which is determined by its spectrum.190

That is, Km +Km is DS (see [2, Section 6.1]). For each m > 2 it is possible to
construct a connected regular graph G2m with the same number of vertices and
the same degree as Km+Km. Hence G2m and Km+Km are not distinguishable
in C2 and clearly not isomorphic. This shows that cospectrality and elementary
equivalence with respect to the two-variable counting logic is incomparable.195

From a result of Babai and Kučera [9], we know that a graph randomly
selected from the uniform distribution over the class of all unlabeled n-vertex
graphs (which has size equal to 2n(n−1)/2) is not identified by C2 with probability
equal to (o(1))n. Moreover, in [10] Kučera presented an efficient algorithm for
labelling the vertices of random regular graphs from which it follows that the200

fraction of regular graphs which are not identified by C3 tends to 0 as the number
of vertices tends to infinity. Therefore, almost all regular n-vertex graphs are in
C3
n. Summarising, DSn and C2

n overlap and both are contained in C3
n.

3.3. Lower Bounds

Having established that C3-equivalence is a refinement of cospectrality, we205

now look at the relationship of the latter with equivalence in finite variable
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logics without counting quantifiers. First of all, we note that some cospectral
graphs can be distinguished by a formula using just two variables and no count-
ing quantifiers. Next, we show that counting quantifiers are essential to the
argument from the previous section in that cospectrality is not subsumed by210

equivalence in any finite-variable fragment of first-order logic in the absence of
such quantifiers.

Let Lk denote the fragment of first-order logic in which each formula has at
most k distinct variables.

Proposition 3. There exists a pair of cospectral graphs that can be distinguished215

in L2.

Proof. Let us consider the following two-variable first-order sentence:

ψ := ∃x∀y ¬E(x, y).

For any graph G we have that G |= ψ if, and only if, there is an isolated

vertex in G. Hence C4 +K1 |= ψ and K1,4 6|= ψ. Therefore, C4 +K1 6≡L
2

K1,4.
On the other hand, as noted at the beginning of this section, these two graphs
are cospectral.220

For each r, s ≥ 0, the extension axiom ηr,s is the first-order sentence

∀x1 . . . ∀xr+s

((∧
i 6=j

xi 6= xj

)
→ ∃y

(∧
i≤r

E(xi, y) ∧
∧
i>r

¬E(xi, y) ∧ xi 6= y

))
.

A graph G satisfies the k-extension property if G |= ηr,s for all r + s = k.
In [11] Kolaitis and Vardi proved that if two graphs G and H both satisfy the
k-extension property, then there is no formula of Lk that can distinguish them.

If this happens, we write G ≡Lk

H. Fagin [12] proved that for each k ≥ 0,
almost all graphs satisfy the k-extension property. Hence almost all graphs are225

not distinguished by any formula of Lk.
Let q be a prime power such that q ≡ 1 (mod 4). The Paley graph of order

q is the graph P (q) with vertex set Fq, the finite field of order q, where two
vertices i and j are adjacent if there is a positive integer x such that x2 ≡ (i−j)
(mod q). Since q ≡ 1 (mod 4) if, and only if, x2 ≡ −1 (mod q) is solvable, we230

have that −1 is a square in Fq and so, (j − i) is a square if and only if −(i− j)
is a square. Therefore, adjacency in a Paley graph is a symmetric relation and
so, P (q) is undirected. Blass, Exoo and Harary [13] proved that if q is greater
than k224k, then P (q) satisfies the k-extension property.

Now, let q = pr with p an odd prime, r a positive integer, and q ≡ 1 (mod235

3). The cubic Paley graph P 3(q) is the graph whose vertices are elements of
the finite field Fq, where two vertices i, j ∈ Fq are adjacent if and only if their
difference is a cubic residue, i.e., vertex i is adjacent to vertex j if, and only
if, i − j = x3 for some x ∈ Fq. Note that −1 is a cube in Fq because q ≡ 1
(mod 3) is a prime power, so i is adjacent to j if, and only if, j is adjacent to240
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i. In [14] it has been proved that P 3(q) has the k-extension property whenever
q ≥ k224k−2.

The degree of vertex v in a graph G is the number d(v) := |{{v, u} ∈ E :
u ∈ VG}| of vertices that are adjacent to v. A graph G is regular of degree
d if every vertex is adjacent to exactly d other vertices, i.e., d(v) = d for all245

v ∈ VG. So, G is regular of degree d if, and only if, each row of its adjacency
matrix adds up to d. It is known that the Paley graph P (q) is regular of degree
(q − 1)/2 [15]. Moreover, it has been proved that the cubic Paley graph P 3(q)
is regular of degree (q − 1)/3 [16].

In proving our next result we shall use two lemmas, one is well-known in the250

literature and other follows from the first. We state them here without proof:

Lemma 1. Let G be a regular graph of degree d. Then, d ∈ sp(G) and for each
λ ∈ sp(G) the absolute value of λ is at most d.

Lemma 2. Let G and H be regular graphs of distinct degrees. Then G and H
do not have the same spectrum.255

The following result establishes the complete incomparability between cospec-
trality and elementary equivalence in any finite-variable logic Lk.

Proposition 4. For each k ≥ 1, there exists a pair Gk, Hk of non-cospectral
graphs such that Gk, Hk are not distinguished by any formula of Lk.

Proof. For any positive integer r we have that 13r ≡ 1 (mod 3) and 13r ≡ 1260

(mod 4). For each k ≥ 1, let rk be the smallest integer greater than 2(k log(4)+
log(k))/ log(13), and let qk = 13rk . Hence qk > k224k. Now, let Gk = P (qk)
and Hk = P 3(qk). Then Gk and Hk both satisfy the k-extension property, and

so Gk ≡L
k

Hk. Since the degree of Gk is (13rk − 1)/2 and the degree of Hk is
(13rk − 1)/3, by Lemma 2 we conclude that sp(Gk) 6= sp(Hk).265

Therefore, having the same spectrum is a property of graphs that does not
follow from any finite collection of extension axioms, or equivalently, from any
first-order sentence with asymptotic probability 1. This is because any first-
order sentence that has asymptotic probability 1 is a logical consequence of a
finite collection of extension axioms [17].270

Now, let Ckm denote the set of first order formulas using at most k ≥ 1
variables and having quantifier rank at most m ≥ 0. Cai, Fürer and Immer-
man in [18, Theorem 5.2] proved that given G and H non-isomorphic graphs,

G ≡Ck+1
m H if and only if m iterations of the k-dimensional Weisfeiler-Leman

method are not sufficient for distinguishing G and H. Since the first step of the275

1-dimensional Weisfeiler-Leman method gives us the degree sequence of both
graphs, one iteration is needed for distinguishing graphs with distinct degree
sequences. Let G ∼=d H denote that G and H have the same degree sequence.
Then, G ≡C2

1 H if and only if G ∼=d H. This notation allows us to establish the
following:280

Proposition 5. There are no k > 1 and m > 0 such that for G and H graphs,

if sp(G) = sp(H) then G ≡Ck
m H.
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Proof. For a contradiction, suppose there were k > 1 and m > 0 such that

sp(G) 6= sp(H) if G 6≡Ck
m H. Then,

sp(G) = sp(H) ⇒ G ≡C
k
m H ⇒ G ≡C

2
1 H ⇒ G ∼=d H.

Let G = C4 ∪K1 and H = K1,4. By computing the spectrum of G and H, we285

have that sp(G) = sp(H) = {−2, 0, 0, 0, 2}. However, the degree sequence of G
is (2, 2, 2, 2, 0) and the degree sequence of H is (4, 1, 1, 1, 1). Contradiction.

In other words, for two graphs, cospectrality does not imply equality of their
Ckm-theories for any k > 1 and m > 0. Therefore, there is no counting logic that
completely captures cospectrality.290

4. Isomorphism Approximations

In this section we review some other approximations of graph isomorphism
coming from algebra and combinatorics, and relate them to cospectrality. For a
certain class of graphs with high combinatorial regularity, we note that cospec-
trality coincides with C3-equivalence.295

4.1. Cellular Algebras

The automorphism group Aut(G) of G acts naturally on the set V kG of all
k-tuples of vertices of G, and the set of orbits of k-tuples under the action of
Aut(G) form a corresponding partition of V kG . The k-dimensional Weisfeiler-
Leman algorithm is a combinatorial method that tries to approximate the par-300

tition induced by the orbits of Aut(G) by labelling the k-tuples of vertices of
G. Originally, Weisfeiler and Leman [19] presented their algorithm in terms of
algebras of complex matrices. Given two matrices A and B of the same order,
their Schur product A ◦ B is defined by (A ◦ B)ij := AijBij . For a complex
matrix A, let A∗ denote the adjoint (or conjugate-transpose) of A. A cellular305

algebra W is an algebra (with matrix multiplication) of square complex matrices
that contains the identity matrix I, the all-ones matrix J , and is closed under
adjoints and Schur multiplication. Thus, every cellular algebra has a unique
basis {A1, . . . , Am} of binary matrices which is closed under adjoints and such
that

∑
iAi = J .310

The smallest cellular algebra is the one generated by the span of I and J .
The cellular algebra of an n-vertex graph G is the smallest cellular algebra WG

that contains AG. Two cellular algebras W and W ′ are isomorphic if there
is an algebra isomorphism h : W → W ′, such that h(A ◦ B) = h(A) ◦ h(B),
h(A)∗ = h(A∗) and h(J) = J . Given an isomorphism h : W → W ′ of cellular315

algebras, for all A ∈W we have that A and h(A) are cospectral (see Lemma 3.4
in [20]). So the next result is immediate.

Proposition 6. Two graphs G and H are cospectral if there is an isomorphism
of WG and WH that maps AG to AH .
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In general, the converse of Proposition 6 is not true. That is, there are320

known pairs of cospectral graphs whose corresponding cellular algebras are non-
isomorphic (see, e.g. [21]). The elements of the standard basis of a cellular
algebra correspond to the “adjacency matrices” of a corresponding coherent
configuration. Coherent configurations where introduced by Higman in [22] to
study finite permutation groups. Coherent configurations are stable under the325

2-dimensional Weisfeiler-Leman algorithm. Hence two graphs G and H are 2-
WL equivalent if, and only if, there is an isomorphism of WG and WH that
maps AG to AH :

Proposition 7. Given graphs G and H with cellular algebras WG and WH ,
G ≡C3

H if, and only if, there is an isomorphism of WG and WH that maps330

AG to AH .

4.2. Strongly Regular Graphs

A strongly regular graph srg(n, r, λ, µ) is a regular n-vertex graph of degree r
such that each pair of adjacent vertices has λ common neighbours, and each pair
of nonadjacent vertices has µ common neighbours. The numbers n, r, λ, µ are335

called the parameters of srg(n, r, λ, µ). It can be shown that the spectrum of a
strongly regular graph is determined by its parameters [15]. The complement of
a strongly regular graph is strongly regular. Moreover, cospectral strongly reg-
ular graphs have cospectral complements. That is, two strongly regular graphs
having the same parameters are cospectral. Recall J is the all-ones matrix.340

Lemma 3. If G is a strongly regular graph then {I, AG, (J− I−AG)} form the
basis for its corresponding cellular algebra WG.

Proof. By definition, WG has a unique basis A of binary matrices closed under
adjoints and so that ∑

A∈A
A = J.

Notice that I, AG and J−I−AG are binary matrices such that I∗ = I, A∗G = AG345

and (J − I −AG)∗ = J − I −AG. Furthermore,

I +AG + (J − I −AG) = J

so {I,AG, (J − I −AG)} is a basis for WG indeed.

There are known pairs of non-isomorphic strongly regular graphs with the
same parameters (see, e.g. [23]). These graphs are not distinguished by the 2-
dimensional Weisfeiler-Leman algorithm since there is an algebra isomorphism350

that maps the adjacency matrix of one to the adjacency matrix of the other.
Thus, for strongly regular graphs the converse of Proposition 6 holds.

Lemma 4. If G and H are two cospectral strongly regular graphs, then there
exists an isomorphism of WG and WH that maps AG to AH .
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Proof. The cellular algebras WG and WH of G and H have standard basis355

{I, AG, (J − I −AG)} and {I, AH , (J − I −AH)}, respectively. Since G and H
are cospectral, there exist an orthogonal matrix Q such that QAGQ

T = AH and
Q(J−I−AG)QT = (J−I−AH). In [20], Friedland has shown that two cellular
algebras with standard bases {A1, . . . , Am} and {B1, . . . , Bm} are isomorphic
if, and only if, there is an invertible matrix M such that MAiM

−1 = Bi for360

1 ≤ i ≤ m. As every orthogonal matrix is invertible, we can conclude that there
exists an isomorphism of WG and WH that maps AG to AH .

Proposition 8. Given two strongly regular graphs G and H, the following
statements are equivalent:

1. G ≡C3

H;365

2. G and H are cospectral;

3. there is an isomorphism of WG and WH that maps AG to AH .

Proof. Proposition 2 says that for all graphs (1) implies (2). From Proposition 7,
we have (1) if, and only if, (3). By Lemma 4, if (2) then (3).

5. Definability in Fixed Point Logic with Counting370

In this section, we consider the definability of cospectrality and the property
DS in fixed-point logics with counting. To be precise, we show that cospec-
trality is definable in inflationary fixed-point logic with counting (fpc) and the
class of graphs that are DS is definable in partial fixed-point logic with counting
(pfpc). It follows that both of these are also definable in the infinitary logic375

with counting, with a bounded number of variables (see [24, Prop. 8.4.18]). Note
that it is known that fpc can express any polynomial-time decidable property
of ordered structures and similarly pfpc can express all polynomial-space de-
cidable properties of ordered structures. It is easy to show that cospectrality is
decidable in polynomial time and DS is in PSpace. For the latter, note that380

DS can easily be expressed by a Π2 formula of second-order logic and therefore
the problem is in the second-level of the polynomial hierarchy. However, in the
absence of a linear order fpc and pfpc are strictly weaker than the complexity
classes P and PSpace respectively. Indeed, there are problems in P that are
not even expressible in the infinitary logic with counting. Nonetheless, it is in385

this context without order that we establish the definability results below.
We begin with a brief definition of the logics in question, to fix the notation

we use. For a more detailed definition, we refer the reader to [17, 24].
fpc is an extension of inflationary fixed-point logic with the ability to express

the cardinality of definable sets. The logic has two sorts of first-order variables:390

element variables, which range over elements of the structure on which a formula
is interpreted in the usual way, and number variables, which range over some
initial segment of the natural numbers. We usually write element variables
with lower-case Latin letters x, y, . . . and use lower-case Greek letters µ, η, . . .
to denote number variables. In addition, we have relational variables, each of395

which has an arity m and an associated type from {elem,num}m. pfpc is
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similarly obtained by allowing the partial fixed point operator in place of the
inflationary fixed-point operator.

For a fixed signature σ, the atomic formulas of fpc[σ] of pfpc[σ] are all
formulas of the form µ = η or µ ≤ η, where µ, η are number variables; s = t400

where s, t are element variables or constant symbols from σ; and R(t1, . . . , tm),
where R is a relation symbol (i.e. either a symbol from σ or a relational vari-
able) of arity m and each ti is a term of the appropriate type (either elem or
num, as determined by the type of R). The set fpc[σ] of fpc formulas over
σ is built up from the atomic formulas by applying an inflationary fixed-point405

operator [ifpR,~xφ](~t); forming counting terms #xφ, where φ is a formula and
x an element variable; forming formulas of the kind s = t and s ≤ t where
s, t are number variables or counting terms; as well as the standard first-order
operations of negation, conjunction, disjunction, universal and existential quan-
tification. Collectively, we refer to element variables and constant symbols as410

element terms, and to number variables and counting terms as number terms.
The formulas of pfpc[σ] are defined analogously, but we replace the fixed-point
operator rule by the partial fixed-point: [pfpR,~xφ](~t).

For the semantics, number terms take values in {0, . . . , n}, where n is the size
of the structure in which they are interpreted. The semantics of atomic formulas,415

fixed-points and first-order operations are defined as usual (c.f., e.g., [24] for
details), with comparison of number terms µ ≤ η interpreted by comparing the
corresponding integers in {0, . . . , n}. Finally, consider a counting term of the
form #xφ, where φ is a formula and x an element variable. Here the intended
semantics is that #xφ denotes the number (i.e. the element of {0, . . . , n}) of420

elements that satisfy the formula φ.
Note that, since an inflationary fixed-point is easily expressed as a partial

fixed-point, every formula of fpc can also be expressed as a formula of pfpc.
In the construction of formulas of these logics below, we freely use arithmetic
expressions on number variables as the relations defined by such expressions can425

easily be defined by formulas of fpc.

5.1. Cospectrality in fpc

In Section 3 we constructed sentences φlk of C3 which are satisfied in a graph
G if, and only if, the number of closed walks in G of length l is exactly k. Our
first aim is to construct a single formula of fpc that expresses this for all l and k.430

Ideally, we would have the numbers as parameters to the formula but it should
be noted that, while the length l of walks we consider is bounded by the number
n of vertices of G, the number of closed walks of length l is not bounded by any
polynomial in n. Indeed, it can be as large as nn. Thus, we cannot represent the
value of k by a single number variable, or even a fixed-length tuple of number435

variables. Instead, we represent k as a binary relation K on the number domain.
The order on the number domain induces a lexicographical order on pairs of
numbers, which is a way of encoding numbers in the range 0, . . . , n2. Let us
write [i, j] to denote the number coded by the pair (i, j). Then, a binary relation

K can be used to represent a number k up to 2n
2

by its binary encoding. To440
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be precise, K contains all pairs (i, j) such that bit position [i, j] in the binary
encoding of k is 1. It is easy to define formulas of fpc to express arithmetic
operations on numbers represented in this way.

Thus, we aim to construct a single formula φ(λ, κ1, κ2) of fpc, with three
free number variables such that G |= φ[l, i, j] if, and only if, the number of closed445

walks in G of length l is k and position [i, j] in the binary expansion of k is 1. To
do this, we first define a formula ψ(λ, κ1, κ2, x, y) with free number variables λ,
κ1 and κ2 and free element variables x and y that, when interpreted in G defines
the set of tuples (l, i, j, v, u) such that if there are exactly k walks of length l
starting at v and ending at u, then position [i, j] in the binary expansion of k450

is 1. This can be defined by taking the inductive definition of ψlk we gave in
Section 3 and making the induction part of the formula.

We set out the definition below.

ψ(λ, κ1, κ2, x, y) := ifpW,λ,κ1,κ2,x,y[(λ = 1 ∧ κ1 = 0 ∧ κ2 = 1 ∧ E(x, y))∨
∃λ′(λ = λ′ + 1 ∧ sum(λ′, κ1, κ2, x, y))]

where W is a relation variable of type (num,num,num, elem, elem) and the
formula sum expresses that there is a 1 in the bit position encoded by (κ1, κ2) in
the binary expansion of k =

∑
z:E(x,z) kλ′,z,y, where kλ′,z,y denotes the number455

coded by the binary relation {(i, j) : W (λ′, i, j, z, y)}. We will not write out
the formula sum in full. Rather we note that it is easy to define inductively
the sum of a set of numbers given in binary notation, by defining a sum and
carry bit. In our case, the set of numbers is given by a ternary relation of
type (elem,num,num) where fixing the first component to a particular value z460

yields a binary relation coding a number. A similar application of induction to
sum a set of numbers then allows us to define the formula φ(λ, κ1, κ2) which
expresses that the bit position indexed by (κ1, κ2) is 1 in the binary expansion
of k =

∑
x∈V kx where kx denotes the number coded by {(i, j) : ψ[λ, i, j, x, x]}.

To define cospectrality in fpc means that we can write a formula cospec in a
vocabulary with two binary relations E and E′ such that a structure (V,E,E′)
satisfies this formula if, and only if, the graphs (V,E) and (V,E′) are cospectral.
Such a formula is now easily derived from φ. Let φ′ be the formula obtained
from φ by replacing all occurrences of E by E′, then we can define:

cospec := ∀λ, κ1, κ2 φ⇔ φ′.

5.2. DS in pfpc465

Now, in order to give a definition in pfpc of the class of graphs that are
DS, we need two variations of the formula cospec. This is because we want to
universally quantify over graphs E′ and say that if E and E′ are cospectral,
then they are isomorphic. However, we can not universally quantify over sets of
edges (i.e. binary relations on the element sort), nor can we express isomorphism470

between E and E′ in partial fixed-point logic. Therefore we transfer the graph
on E to a number relation R, because here both are possible.

First, let R be a relation symbol of type (num,num). Note that the number
sort has one more element than the element sort, but we can get around this by
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ignoring the zero. We write φ(R) for the formula obtained from φ by replacing
the symbol E with the relation variable R, and suitably replacing number vari-
ables with element variables. So, φ(R, λ, κ1, κ2) defines, in the graph defined by
the relation R on the number domain, the number of closed walks of length λ.
We write cospecR for the formula

∀λ, κ1, κ2 φ(R)⇔ φ,

which is a formula with a free relational variable R which, when interpreted in
a graph G asserts that the graph defined by R is cospectral with G. Similarly,
we define the formula with two free second-order variables R and R′

cospecR,R′ := ∀λ, κ1, κ2 φ(R)⇔ φ(R′).

Clearly, this is true of a pair of relations iff the graphs they define are cospectral.
Furthermore, it is not difficult to define a formula isom(R,R′) of pfpc with

two free relation symbols of type (num,num) that asserts that the two graphs
defined by R and R′ are isomorphic. Indeed, the number domain is ordered and
any property in PSpace over an ordered domain is definable in pfpc, so such
a formula must exist. Given these, the property of a graph being DS is given
by the following formula with second-order quantifiers:

∀R(cospecR ⇒ ∀R′(cospecR,R′ ⇒ isom(R,R′))).

To convert this into a formula of pfpc, we note that second-order quantification
over the number domain can be expressed in pfpc. That is, if we have a formula475

θ(R) of pfpc in which R is a free second-order variable of type (num,num), then
we can define a pfpc formula that is equivalent to ∀Rθ. We do this by means
of an induction that loops through all binary relations on the number domain
in lexicographical order and stops if for one of them θ does not hold.

First, define the formula lex(µ, ν, µ′, ν′) to be the following formula which
defines the lexicographical ordering of pairs of numbers:

lex(µ, ν, µ′, ν′) := (µ < µ′) ∨ (µ = µ′ ∧ ν < ν′).

We use this to define a formula next(R,µ, ν) which, given a binary relation
R of type (num,num), defines the set of pairs (µ, ν) occurring in the relation
that is lexicographically immediately after R.

next(R,µ, ν) := R(µ, ν) ∧ ∃µ′ν′(lex(µ′, ν′, µ, ν) ∧ ¬R(µ′, ν′))∨
∨¬R(µ, ν) ∧ ∀µ′ν′(lex(µ′, ν′, µ, ν)⇒ R(µ′, ν′)).

We now use this to simulate, in pfpc, second-order quantification over the
number domain. Let R̄ be a new relation variable of type (num,num,num) and
we define the following formula

∀α∀βpfpR̄,µ,ν,κ[(∀µνR̄(µ, ν, 0)) ∧ θ(R̄) ∧ κ = 0∨
∨¬θ(R̄) ∧ κ 6= 0∨
∨θ(R̄) ∧ next(R̄, µ, ν) ∧ κ = 0](α, β, 0).

It can be checked that this formula is equivalent to ∀Rθ.480
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5.3. Lower Bounds

We have seen above that cospectrality is definable in fpc and the property
DS in pfpc. The use of counting seems essential to these constructions and it is
natural to ask whether the properties might be definable in the logics without
counting, i.e. inflationary fixed-point logic fp and partial fixed-point logic pfp485

respectively. Or, more plausibly, can we show that this is impossible? Here, we
show that it is a consequence of Proposition 4 that cospectrality is not definable
in fp.

Proposition 9. There is no formula of fp that defines cospectrality.

Proof. Suppose, for contradiction, that there was such a formula φ. Then, by490

standard results on fp, there is a k such that if G ≡k H, then G |= φ if, and
only if, H |= φ. Let Gk and Hk be graphs, as in Proposition 4 that are not
cospectral, but ≡k-equivalent. Now, consider the structures ḠHk and ḠGk in
the vocabulary with two edge relations E1 and E2 defined as follows. Recall
that Gk and Hk have the same number of vertices, and let this number be n.495

Then ḠHk is defined to be a structure on 2n vertices interpreting E1 as the
edges of the graph Gk on the first n vertices and E2 as the edges of the Hk

on the last n vertices. On the other hand, ḠGk is defined to be a structure on
2n vertices interpreting E1 as the edges of the graph Gk on the first n vertices
and E2 again as the edges of Gk on the last n vertices. It is easily seen that500

ḠGk |= φ while ḠHk 6|= φ. A simple pebble game argument shows however that
ḠHk ≡k ḠGk yielding the desired contradiction.

We conjecture that a similar argument would also yield that the property
DS is not definable in pfp.

6. Conclusion505

Cospectrality is an equivalence relation on graphs with many interesting
facets. While not every graph is determined up to isomorphism by its spectrum,
it is a long-standing conjecture (see [2]), still open, that almost all graphs are
DS. That is to say that the proportion of n-vertex graphs that are DS tends to
1 as n grows. We have established a number of results relating graph spectra to510

definability in logic and it is instructive to put them in the perspective of this
open question. It is an easy consequence of the results in [11] that the proportion
of graphs that are determined up to isomorphism by their Lk theory tends to 0.
On the other hand, it is known that almost all graphs are determined by their
C2 theory (see [25]) and a fortiori by their C3 theory. We have established that515

cospectrality is incomparable with Lk-equivalence for any k; is incomparable
with C2 equivalence; and is subsumed by C3 equivalence. Thus, our results are
compatible with either answer to the open question of whether almost all graphs
are DS. It would be interesting to explore further whether logical definability
can cast light on this question.520

Now, one could ask what is the complexity of graph isomorphism on graphs
that have the same spectrum. Maybe this can be shown to be in the complexity
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class P. Unfortunately it looks like cospectral graphs tend to be harder to
distinguish. An example: all strongly regular graphs with the same parameter
set are cospectral. The best algorithm for graph isomorphism of these performs525

quite badly. From our knowledge, the literature does not contain any specific
attempt to graph isomorphism of cospectral graphs apart from the strongly
regular ones.

We know no other explicit connection between spectra of other matrices as-
sociated with graphs (e.g. Laplacian matrices, distance matrices, etc.) and some530

property of graphs expressible in full first-order logic. We have used the equiv-
alence between cospectrality and satisfying certain structural property, namely
having the same total number of closed walks, to capture the spectrum of a
graph by writing a logical sentence that counts the number of closed walks.
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