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Abstract

Precision QCD and effective field theories with machine learning
Shayan Iranipour

The Standard Model (SM) serves as one the best descriptions of fundamental physics
we have and the quest for its falsification has led to it being tested to an unprecedented
degree. Despite its flawless performance, there are many theoretical and phenomeno-
logical indications that the SM cannot be a complete description of nature; though, so
far, no direct evidence for new physics at the TeV scale has been gathered at colliders.
Far from being discouraging, the precision level reached by current experiments gives
us the unique opportunity to investigate the effects of new particles whose masses are
far above the TeV scale, but still produce observable effects at the scales within the
direct kinematical reach of the Large Hadron Collider (LHC). Unlike for direct searches,
which are limited by the energy reach of the collider, indirect searches are limited only
by the theoretical and experimental control over the processes under inspection.

A robust understanding of Quantum Chromodynamics (QCD) is crucial in order to
achieve precision theoretical predictions in the era of initial state hadron colliders such
as the LHC. An important ingredient therein are the parton distribution functions
(PDFs) which parameterize the proton structure in terms of its elementary quark and
gluon constituents. These quantities are non-perturbative and obtained from data
using a global QCD analysis. In tandem, Effective Field Theories (EFTs), provide a
convenient framework to capture the indirect effects of possible BSM resonances in
low energy observables. Constraints on the EFT then translate to constraints on the
nature of BSM physics.

This manuscript serves to marry these two endeavours. We present machine
learning-based approaches to PDF determination and specifically highlight how deep
learning algorithms form ideal candidates to parameterize the PDFs in an unbiased
fashion. We present the NNPDF4.0 PDF set which serves as the latest and most precise
determination of proton structure delivered by such a methodology. We show how a
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precise determination of the PDFs has important consequences on LHC phenomenology
by presenting a precision determination of the strange content of the proton and a
number of key phenomenological applications.

We then discuss the interplay between EFT dynamics and the PDFs; analysing
the extent to which the fit of PDFs may absorb possible BSM signals and assess the
implications a consistent treatment of PDFs in EFT fits has on phenomenological
studies. For this, we use legacy deep inelastic scattering data from HERA and later
some more modern measurements from high-mass Drell-Yan observables at the Large
Hadron Collider (LHC) to investigate the back-reaction of EFT dynamics on the PDFs.

The considerations presented in the above study then act as an impetus to develop a
methodology that is capable of simultaneously determining proton structure alongside
BSM dynamics in a consistent framework. We present a novel methodology, SIMUnet,
which delivers a robust and accurate determination of PDFs and general theory
parameters, of which BSM dynamics are a subset. We show how this state-of-the-art
methodology can, for the first time, extract and disentangle the PDFs from BSM
dynamics from a global dataset paving the way for a truly global and simultaneous
interpretation of indirect searches in the context of precision physics.
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Chapter 1

Introduction

The Standard Model (SM) [7–13] serves as the crowning achievement of modern
scientific endeavour. Its ability to explain such a vast range of phenomena,

such as the prediction of the Higgs boson [14–16] and precision measurements of the
electron anomalous magnetic moment [17–19], has been unsurpassed by any other
theory and has therefore planted itself as one of the best successes in our fundamental
understanding of nature. Despite its copious and broad range of triumphs, we know as
a matter of fact that it cannot be the whole story: there are simply too many known
unknowns. For example, and perhaps most glaringly, one of the four fundamental
forces of nature, gravity, eludes description by the Standard Model [20]; not to mention
the neutrino oscillations [21, 22] or the lack of a dark matter sector [23].

Research is therefore not only rife in trying to extend and thus complete this already
successful theory, but also to seek its falsification. Despite the battery of precision tests
from the likes of the Large Electron-Positron collider (LEP), Tevatron, and the Large
Hadron Collider (LHC), the SM remains resilient in defeat; with experiment yielding
no direct evidence of a resonance on top of the SM background. This is not to say,
however, that signs of new physics beyond the Standard Model (BSM) are non-existent.
For example, strong evidence for lepton flavour universality violation exists in rare
B-meson decays [24–26] or in measurements of the muon anomalous magnetic moment,
(g− 2)µ, [27–31]. It is not unreasonable, therefore, to suppose some BSM resonance lies
slightly beyond the direct kinematic reach of our experimental apparatus, the effects
of whom we will be indirectly sensitive to in the tails of some differential distributions.

In the strive to make the most of such indirect searches, precision, both experimental
and theoretical, is above all else one of the key ingredients in the drive for BSM searches.
A strong grasp of all sources of uncertainty, whether from detector design or missing
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higher orders in the perturbative expansion, is tantamount if a genuine deviation from
the SM can be attributed to new physics rather than simply statistical fluctuations or
an imperfect formulation of SM predictions. Thanks to the enhanced luminosity and
kinematic reach of the LHC, incredibly precise measurements of exotic processes can be
made with high statistics. This can only be made better by the upcoming LHC run III
and the subsequent High-Luminosity (HL-LHC) upgrade. Theoretical precision is also
making similarly impressive progress with state-of-the-art observables, computed within
the context of Quantum Chromodynamics (QCD), being calculated to unprecedented
accuracy, in some cases accounting for several orders in perturbation theory [32–34].
However, perseverance in the perturbative expansion alone is not enough to constitute
a precision theoretical prediction in the era of hadron colliders. Non-perturbative
objects, known as parton distribution functions (PDFs) [1, 35–37], are also an essential
component of the phenomenology program. Such quantities encode the inner structure
of the proton and other hadronic initial states, but, unlike the hard cross sections,
are not computable from first principles within perturbation theory, being instead
extracted from experimental measurements. As such, accompanied with the PDF is
another source of theoretical uncertainty associated with the finite resolution in the
experimental measurements that they are fit to. These so-called PDF uncertainties
are in fact one of the dominant sources of theoretical uncertainty in key theoretical
predictions that enable a precise characterization of the Higgs boson or other SM
background processes. It is clear then that if indirect searches are to be fruitful, these
PDF uncertainties must be tamed as much as possible.

A convenient way to parameterize the effects of new physics in the infrared (IR)
is through the use of Effective Field Theories (EFTs). Schematically, these are QFTs
which we acknowledge are valid only up to a certain energy scale, beyond which the
resolution of our theory becomes too coarse and we become sensitive to ultraviolet (UV)
effects, for example the dynamics of the heavy modes. The IR theory is constructed
from the UV using Wilsonian renormalization, whereby the heavy degrees of freedom
are integrated out from the path integral, the effect of which is to introduce novel
interactions between the light particles. Experimental measurements can then be used
to place constraints on these new interactions [4, 5, 38–46] which in turn restrict the
possible space of UV theories [47].

There is, however, a source of inconsistency with this approach. The PDFs are
fitted to data assuming the validity of the SM at all scales, indeed the hard cross
section being computed assuming the SM matter content and interactions. However, if
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we are to believe that embedded within the data are signals of BSM physics, then it is
entirely likely that the PDFs absorb these effects in order to obtain an adequate fit
quality of the high-energy data that enter the fits. The astute physicist is then forced
to exclude these BSM sensitive datasets from the PDF fit when performing an EFT
study. However, doing so sacrifices constraining power on these reduced PDFs and
thereby increases the PDF uncertainty which, as mentioned above, was paramount to
reduce.

This apparent dichotomy is the concern of this manuscript. In what follows,
chapter 2 provides an overview of the theoretical background needed for some of the
ensuing discussion. We outline the theory of strong interactions: QCD, discussing its
lagrangian and asymptotically free nature, before introducing PDFs by considering
deep inelastic scattering experiments. Included in this chapter is also an overview of
effective field theories and importantly the Standard Model Effective Field Theory
(SMEFT) which is the EFT of choice for much of the later analysis. In chapter
3, we present the neural network approach to PDF fitting. An overview of deep
learning is given, before we discuss how this important class of machine learning
algorithm can be deployed to understand the structure of the proton, highlighting
important methodological improvements in the latest NNPDF4.0 [1, 2] release and its
phenomenological implications. The importance of precision PDFs is highlighted in
chapter 4. Here, a precise determination of the strange quark content of the proton is
provided, using some of the latest strange-sensitive measurements available [3]. We
again show how an enhanced precision in the strange PDF has important consequence
for phenomenology at the LHC. Chapter 5 then addresses the issue of the interplay
between BSM dynamics and the PDFs. We use deep inelastic scattering data [4],
and later high-mass Drell-Yan measurements from the LHC [5], to consider to what
degree this interplay has implications on bounds one obtains on Wilson coefficients
in the IR and to what extent the neural network determination of proton structure is
susceptible to fitting away these BSM signals. We see that the effect is mild, though if
the High-Luminosity LHC data is to be used, then one is at great peril from possible
BSM contamination. In turn, this motivates chapter 6, which addresses the issue of
a simultaneous determination of PDFs and EFT parameters [6]. For the first time,
we present PDFs that have been fitted, simultaneously, alongside EFT coefficients,
with no compromises on dataset selection. This new generation of fitting methodology,
dubbed SIMUnet, provides a robust and accurate method to fit an arbitrary number
of external theory parameters alongside PDFs, free from the worry that one may be
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fitting away BSM signals or compromising constraining power due to a reduced dataset.
Concluding remarks and future directions of the work considered in this text are then
given in chapter 7.



Chapter 2

Theoretical overview

We begin the discussion of this manuscript by outlining a review of the various
theoretical concepts which will prove relevant for subsequent discussions. We

begin by providing an overview of Quantum Chromodynamics (QCD) which is an
example of a non-abelian gauge theory describing the strong interactions. Hidden
within a seemingly simple lagrangian is a wealth of emergent phenomena, but we
shall concern ourselves in particular with an important class of non-perturbative
objects known as parton distribution functions (PDFs). These quantities describe the
momentum distribution of the constituents of the proton and we show how they arise
naturally within the parton model. Moreover, we show that if one considers QCD
corrections to the parton model, then the PDFs obtain an anomalous dimension using
renormalization group methods and hence evolve with the energy scale. We then go on
to discuss the fact that PDFs are process independent quantities and thus characterize
the long distance (low energy) phenomena, with the hard cross section computable
within the framework of perturbation theory. As such the PDFs are said to factorize
the non-perturbative physics: a result that has been proven across a broad range of
processes, known as the factorization theorems.

The second important topic to discuss is that of effective field theories (EFTs). These
quantum field theories are valid up to some energy scale Λ beyond which we acknowledge
the theory to no longer be valid. As such, requirements such as renormalizability may
be abandoned with reasonable predictions being made by generally non-renormalizable
theories. We shall provide a toy example which shows how such a theory can arise as
the low energy IR limit of a UV complete theory by integrating out a heavy mass mode
from the partition function. We show how the two theories give equivalent predictions
in low energy regimes, so long as heavy modes resides only in the internal legs of
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scattering graphs in the UV theory. Finally, we introduce an important example of
an EFT known as the Standard Model Effective Field Theory (SMEFT). We specify
its lagrangian and show how we may use it to obtain convenient handles on heavy
resonances beyond the direct kinematic reach of modern colliders, but whose effects we
may be indirectly sensitive to.

2.1 Review of Quantum Chromodynamics

We start by providing an overview of QCD. We shall present the classical level lagrangian
which is a locally SU(3) gauge invariant field theory with fermionic matter content. The
gauge group is famously non-abelian which presents various nuances upon quantization.
We shall discuss these and specifically how ghost particles are required in order to
remove non-physical degrees of freedom from the theory.

At 1-loop and beyond, ultraviolet divergences arise due to momentum integrals
and we show how the renormalization process then necessitates a running of the QCD
coupling. This leads to a phenomenon known as asymptotic freedom which forms the
fundamental basis for much of the discussion that is to come.

2.1.1 The QCD lagrangian

The theory of strong interactions, QCD, is the SU(3) gauge theory where the matter
content is minimally coupled through the use of the gauge covariant derivative. The
matter content are spin-1/2 particles, which we shall refer to as quarks [11–13] and
transform in the fundamental representation under the action of the gauge group.
These particles come in Nf different flavours each with mass mf . The matter content
are thus Nf copies of Dirac spinor-valued SU(3) triplets:

ψf =


ψf

red

ψf
green

ψf
blue

 . (2.1)

The subscript red, green, and blue, denote the colour charge under SU(3). These
spinors transform as vectors under the action of the Spin(1, 3) group 1. Despite the
fundamental degrees of freedom of QCD being quarks and gluons, they are never
observed as free particles, but rather as colourless (colour singlet) bound states known

1The universal covering of the Lorentz group [48].
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as hadrons. Conceivable ways of forming hadrons is by having quark-antiquark bound
states (such that the colours cancel, for example, red and anti-red) which form mesons
or an odd number of valence quarks which form baryons, common examples of these
are protons and neutrons (collectively nucleons) which form colour singlets by red,
green, and blue forming a colourless state (akin to modular arithmetic).

The fact that the fundamentally realised units of nature at low energies are gapped
hadronic bound states is known as confinement and stands as an open problem in
fundamental physics at the time of writing. Though one can show analytically [49]
confinement to be emergent in 4d N = 2 supersymmetric [50] Yang-Mills models it is
not clear how it can be done for QCD. Additionally, the low energy dynamics of hadron
physics can be modelled directly using the framework of chiral perturbation theory
(XPT) [51] using light scalar pions as fundamental degrees of freedom. Though a vast
number of phenomena can be explained using this framework a direct construction of
XPT from QCD using renormalization based techniques remains an open problem.

At the classical level, the dynamics of QCD is governed by the lagrangian:

L =
Nf∑
f=1

ψ̄f
i (i /D −mf )ijψ

f
j −

1
4F

a
µνF

µνa (2.2)

where f = 1, . . . , Nf is the flavour index, i, j are colour indices and run over the
fundamental representation space, and a (summation implied) enumerates Lie algebra
indices. We employ the slashed notation: /D = γµDµ and Greek indices µ, ν enumerate
spacetime coordinates. The γ matrices satisfy the Clifford algebra:

{γµ, γν} ≡ γµγν + γνγµ = 2ηµν (2.3)

and provides a construction for the spin group. The metric ηµν = diag(1,−1,−1,−1)
is the metric on Minkowski spacetime. The gauge covariant derivative, Dµ is defined in
order to preserve local SU(3) gauge invariance and couples the quarks with the gluons.
Suppressing colour indices the gauge covariant derivative is given by:

Dµ = ∂µ + igAa
µ(x)ta (2.4)

with an implied summation on a. Here g is the coupling to the gauge fields and Aa
µ

is a Lorentz vector valued function of spacetime and is interpreted as the gluon field.
The ta are the Lie algebra generators in the fundamental representation of the su(3)
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Figure 2.1: The 3-point (left) and 4-point (right) gluon Feynman diagrams in QCD.

Lie algebra which are given by
ta = λa/2 (2.5)

where λa are the 8, 3×3 Gell-Mann matrices. Since dim(su(3)) = 8 we have a = 1, . . . , 8
and correspondingly 8 independent gluons. In order to preserve local gauge invariance
we require that the gauge fields transform under the adjoint representation. The Lie
algebra generators satisfy:

[ta, tb] ≡ tatb − tbta = ifabctc (2.6)

Tr(tatb) = 1
2δ

ab (2.7)

where fabc are the structure constants of the Lie algebra. The gauge kinetic term
of equation 2.2 comes from standard massless Yang-Mills theory [52]. For QCD the
Killing form reduces to give the kinetic term as a simple sum in colour space. The field
strength tensor is given by

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν . (2.8)

The fact that SU(3) is non-Abelian implies the structure constants are non-vanishing.
Thus the final term in equation 2.8 gives rises to gluon-gluon self-interaction Feynman
diagrams shown in figure 2.1. Unlike the photon of Quantum Electrodynamics (QED),
the gluon is thus charged under its own gauge symmetry and carries colour charge in a
way that charge is preserved at every interaction vertex.

The quantization of a gauge theory, however, introduces subtleties. These generally
stem from the fact that the gauge symmetry is in fact more of a redundancy in our
lagrangian: in much the same way that the 4-potential of classical electromagnetism
is not the measurable field, but rather the electromagnetic fields that arise from it.
The gauge configurations must then be thought of as elements of an equivalence class,
identifying all gauge fields related to each other by a gauge transformation. This is
equivalent to imposing a gauge fixing condition F (A) = 0 at the level of the path
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Figure 2.2: The new Feynman rule introduced by ghosts (left) shown by the dotted lines.
However, ghosts can only be used as internal legs, since they do not correspond to physical
states, and so can contribute to the gluon self-energy at 1-loop (right).

integral (for some gauge fixing function F ) with the use of a delta function δ(F (a)) 2.
This follows the Faddeev-Popov prescription [54] where the Jacobian arising from the
δ-function gives rise to a ghost lagrangian [55]. A common choice for F is the Rξ class
of gauges, which amounts to the addition of:

− 1
2ξ (∂µAa

µ)2 (2.9)

to the lagrangian. To fully pick a gauge we must also specify ξ. Common choices are
the Landau gauge (ξ → 0), Feynman-’t Hooft gauge (ξ = 1), or the unitary gauge
(ξ →∞), though the result of any physically observable calculation should of course
not depend on ξ. Accounting for the ghost lagrangian, the QCD lagrangian now reads:

L =
Nf∑
f=1

ψ̄f
i (i /D −mf )ijψ

f
j−

1
4F

a
µνF

µνa

− 1
2ξ (∂µAa

µ)2 + ∂µc̄
a ∂µca + gfabc(∂µc̄a)Ab

µc
c,

(2.10)

where ca are anti-commuting, Grassmann valued, Lorentz scalar (spin-0) fields known
as ghosts. They thus violate the spin-statistics theorem, but are required as internal
lines in order to remove unphysical gluon degrees of freedom: the longitudinal and
timelike components. The Feynman rules they introduce are shown in the left panel
of figure 2.2, but their unphysical nature restricts them to internal legs and so they
contribute to the gluon self energy at 1-loop, shown in the right of the same figure.
The abelian nature of U(1) (the gauge group of QED) means the structure constants
vanish and thus ghosts are not required for the quantization of electrodynamics.

2The Gauge slice corresponding to the solution to F (A) = 0 in general can intersect the Gauge
orbits more than once and thus admits multiple solutions (representatives) for a given orbit. This
problem is known as the Gribov ambiguity [53].
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2.1.2 Renormalization and asymptotic freedom

When computing a scattering graph containing loops, the resulting amplitude are often
divergent quantities. These infinities, called ultraviolet divergences, can be traced back
to the undetermined loop momenta which must be integrated over. To handle these
divergences, a regulator is required. Several choices of regulators exist [56, 57], but a
popular one which we shall consider is dimensional regularization which analytically
continues the spacetime dimension to d = 4 − 2ϵ [58, 59]. In doing so, the precise
nature and form of the divergences can be isolated (for example often appearing as 1/ϵ
poles in the contribution to the scattering graph).

One then treats the original lagrangian (such as equation 2.2) as a bare lagrangian
where the bare parameters are treated as formally infinite. To this bare lagrangian
one then adds counter terms, whose coupling are set to cancel the divergences leaving
behind a purely finite part. In this way, one then relates the parameters of the theory
to physically observable quantities such as cross sections or decay rates. This process of
relating to physical observables is known as renormalization and is a scheme dependent
process (to which exact physical observable the parameters have been related to). For
example, the on-shell renormalization scheme relates the mass parameter mf of the
lagrangian in equation 2.2 to the physical mass defined by the poles in the propagator.
Alternatives are devised by theorists to help simplify calculations such as the minimal
subtraction scheme which removes the divergence and nothing else; equivalently, the
counter term has no finite part. The more popular modified minimal subtraction
scheme (MS) removes the divergence as well as the Euler-Mascheroni constant, γ, and
log 4π.

By construction then, the resulting observables are finite quantities. However,
remnant from the renormalization process are artifacts of the regulator used. For
example, in dimensional regularization, a mass parameter, µ, is introduced in order
to ensure the coupling constant g remains dimensionless when going to d = 4 − 2ϵ
dimensions. The dependence on the renormalization scale, µ, is of course arbitrary,
since it did not exist when we defined our theory, and no physical quantity can therefore
depend on it. However, owing to the fact that we work to a finite order in perturbation
theory, dependence on this mass scale remains. We remove the dependence on µ by
requiring that any physical quantity, R, cannot depend on this, arbitrary, parameter:

µ2 dR

dµ2 = 0. (2.11)
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In much the same way in QCD the strong coupling defined as

αs = g2

4π (2.12)

gains a scale dependence on the energy scale, µ, due to the physicality constraint
of equations similar to equation 2.11. This then gives a running coupling via the
Renormalization Group Equation:

µ2∂αs(µ2)
∂µ2 = β

(
αs(µ2)

)
. (2.13)

The β-function 3 admits a power expansion in αs:

β(αs(µ2)) = −α2
s(µ2)

(
β0 + β1αs(µ2) + · · ·

)
(2.15)

which has been computed up to 5 loops [60–64]. At leading order:

β0 = 33− 2Nf

12π (2.16)

which means that the β function is negative at 1-loop if Nf < 17. For QCD, the
number of flavours is Nf = 6 and so the QCD coupling gets smaller with increasing
energy scale. To see this, we solve explicitly the resulting Renormalization Group
equation to relate αs at energy scale µ with αs at µ0:

αs(µ2) = αs(µ2
0)

1 + β0αs(µ2
0) ln µ2

µ2
0

. (2.17)

Thus we see that with β0 > 0 the strong coupling asymptotically flows to a free theory.
This property is known as asymptotic freedom [65, 66] and so QCD is said to be
asymptotically free. Though µ is arbitrary and by construction we can set it to be
whatever value we like, for use in calculations it is reasonable to set it around the
energy scale of the process in question, Q. The reason for this is that one in general
has terms of the form lnµ/Q which systematically appear as factors in front of αs

3In the case of renormalizing an operator in the lagrangian, such as the mass term mψ̄ψ, one
would have an anomalous dimension instead of a β-function:

µ2 ∂m

∂µ2 = −γm(µ2)m (2.14)

so-named because it alters the naive classical scaling dimension.
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order-by-order in perturbation theory. These so-called large-logarithms can be made
arbitrarily large and can thus spoil the validity of truncating the perturbative series.
In setting µ ∼ Q, one may resum these large logs thereby preserving the perturbative
approximation.

Note further that there is an intrinsic scale at which the strong coupling diverges,
the so-called Landau pole:

ln ΛQCD = lnµ2
0 −

1
β0αs(µ2

0)
. (2.18)

The scale ΛQCD ∼ 200− 500 MeV separates the energy scale between perturbative and
non-perturbative QCD. This characteristic energy scale has appeared after quantization
without any dependence on the quark masses; indeed in the massless theory this energy
scale would still emerge, a phenomenon known as dimensional transmutation. The
asymptotic freedom of QCD plays a key role for phenomenology at particle accelerators:
with energy scales far surpassing ΛQCD one is able to make perturbative calculations
at kinematic regions of phase space that may otherwise not have been possible.

2.2 Collinear factorization theorem

Asymptotic freedom implies that perturbative QCD calculations are only valid at high
energies well beyond the Landau pole ΛQCD. Otherwise a truncation of the perturbative
expansion is not valid since the subsequent terms will not necessarily be subleading.
The coupling constant is therefore not a valid expansion parameter in such regimes and
for low energy objects, such as for example the internal structure of hadronic bound
states, a perturbative understanding proves difficult; though work has been done for
an expansion in the number of flavours [67, 68].

The factorization theorems, however, provide an incredibly important and powerful
result for physics involving long distance quantities, such as scattering amplitudes
involving initial state hadrons. They state that a general observable decomposes into a
long distance part and a short distance part. The short distance part is computable
using perturbative QCD (pQCD) while the long distance component is parameterized
into what are known as parton distribution functions (PDFs). These PDFs are universal
and process independent and as such can be obtained from data using a global QCD
analysis.
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e− e−

H X

k k′

q γ

P PX

Figure 2.3: The Born level diagram for deep inelastic scattering of an electron and hadron
mediated by virtual photon exchange.

In this section we consider how PDFs arise naturally in the parton model when
considering lepton-hadron scattering experiments. We shall also show how their running
with scale arises at next-to-leading order in QCD: a result that forms a major triumph
for the theory.

2.2.1 Deep inelastic scattering

To motivate the factorization theorems, we begin by considering one of the simplest
processes in QCD: deep inelastic scattering (DIS). For this observable, protons are
collided with leptons (for simplicity suppose electrons) where we assume a kinematic
regime at sufficiently high energies such that the proton fragments into some final state
products X (which differentiates DIS from elastic compton scattering e−p+ → e−p+).
The Born level diagram is shown in figure 2.3 for photon mediated DIS; the only
diagram that contributes at this order being the t-channel exchange. We label the
initial (final) state electron to have 4-momentum k (k′), while the initial state proton
(final state hadrons) has 4-momentum P (PX). The amplitude for this process can be
computed in the Feynman gauge to be:

iM = (−ie)ū(k′)γµu(k)
(
−iηµν

q2

)
⟨X|jν

h(0)|H⟩ (2.19)

where e is the electron electric charge, u (ū) are the positive (negative) frequency
Dirac spinor solutions and jν

h is the hadronic electromagnetic current. We do however
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quickly reach an impasse when trying to compute this amplitude. The matrix element
⟨X|jν

h(0)|H⟩ contains hadronic states |H⟩ and |X⟩ as initial and final states which
have been known to be composite bound states much before deep inelastic experiments.
In the language of the second quantization, these are to be understood as the creation
operators of many matter and gauge fields acting on the vacuum to create a non-
perturbative bound state. Our ignorance lies in our inability to write down an expression
for these Hilbert space elements. Perturbation theory calculations of S-matrix elements
rely on the initial and final states of the scattering experiments at times ±∞ be pure
states in the Fock space, such that one may then use Wick’s theorem to eventually
annihilate the vacuum. Clearly we cannot do this unless we have a firm understanding
on the precise nature of the hadronic state.

We can, however, still make good progress by computing the squared matrix element.
Using the fact that our experiment is unpolarized (insensitive to spin alignments) and
so our matrix element lives inside a spin sum average as well as a phase space integral:

|M|2 = e2

4q4

∑
spins

∑
X,PX

[
ū(k′)γµu(k) ū(k)γνu(k′)

]
·

[
⟨X|jµ

h (0)|H⟩ ⟨H|jν†
h (0)|X⟩

]
(2π)4δ(4)(PX − P − q). (2.20)

We now define the leptonic tensor which may be calculated straight forwardly:

Lµν = 1
2
∑
spins

ū(k′)γµu(k) ū(k)γνu(k′)

= 1
2Tr

(
/k

′
γµ/kγν

)
= 2

(
kµk

′
ν + kνk

′
µ − ηµνk · k′

)
. (2.21)

The hadronic tensor, however, encapsulates the hadronic interaction:

W µν = 1
2
∑

X,PX

⟨X|jµ
h (0)|H⟩ ⟨H|jν†

h (0)|X⟩ (2π)4δ(4)(PX − P − q) (2.22)

such that the matrix element for the entire process is given by contracting the two
tensors LµνW

µν . At this point, it is worth defining some Lorentz invariant kinematical
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quantities that are ubiquitous in DIS discussions:

Q2 = −q2 = −(k − k′)2 (2.23)

x = Q2

2P · q (2.24)

y = (q · P )/(k · P ). (2.25)

The quantity Q2 is understood as the exchanged momentum from the lepton to the
proton, Bjorken-x has the interpretation of being the fraction of proton momentum
carried by a struck constituent (this interpretation is not obvious and follows after
manipulating the 4-momentum conserving δ-function of equation 2.29 with the parton
model described below) and y is the inelasticity. We can use these quantities to
parameterize the Lorentz structure of the hadronic tensor. We note that the Ward
identity requires qµW

µν = qνW
µν = 0 and that the only 4-vectors which we can use are

P and q since the others are integrated over in the phase space integral. Furthermore,
the hadronic tensor is symmetric in its Lorentz indices and so we may write:

W µν =
(
−ηµν + qµqν

q2

)
F1(x,Q2) + 1

P · q

(
P µ − P · q

q2 qµ

)(
P ν − P · q

q2 qν

)
F2(x,Q2)

(2.26)
where F1 and F2 are known as the structure functions. In the case of the full neutral
current contribution where there is a Z-boson mediated diagram, there will also be a
parity-violating structure function F3. It is useful to define the longitudinal structure
function:

FL(x,Q2) = F2(x,Q2)− 2xF1(x,Q2) (2.27)

which has the interpretation of parameterizing the proton’s ability to interact with a
virtual photon whose polarization is longitudinal with respect to the beam axis.

2.2.2 The parton model

To proceed further we use the parton model [69, 70] first introduced by Feynman to be
able to elucidate the surprising results of early DIS experiments. The principal assump-
tion here is that the proton is a bound state of essentially free partons. Accompanying
each such parton is a parton distribution function (PDF) fi(ξ), which has the classical
interpretation of being the number density for partons of species i carrying a fraction
ξ of the total hadron momentum. With the success of the quark model in explaining
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e− e−
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k k′

q γ∗

ξP

ξP + q

P

PX

Figure 2.4: Born level diagram for deep inelastic scattering in the parton model. The gauge
boson interacts with one constituent parton in proton.

hadron properties, such as the eightfold way [71] and the asymptotic freedom of QCD,
the partons quickly became identified with the quarks and gluons of QCD, as well as
more formally any other SM particle [72–75].

The justification for the parton model is that for DIS experiments Q≫ ΛQCD while
the typical time scale of momentum transfer between partons within the proton is
Λ−1

QCD. This time scale is much slower than the time scale probed by the gauge boson
and so, in effect, the proton appears frozen at the instant of the interaction, the gauge
boson striking, therefore, only one constituent.

Nowadays the PDFs can be defined in a quantum field theoretic way using the
operator product expansion [76–78] which we present for completeness. The quark
PDF may be expressed as the matrix element of the quark number operator on proton
states 4:

fi(ξ) =
∫ dy−

4π e−iξP +y− ⟨P |ψ̄(0, y−,0T )W [y, 0]γ+ψi(0)|P ⟩ (2.28)

where the superscript + and − refer to light-cone coordinates, ψ is the (renormalized)
quark fields, and W [y, 0] is a Wilson line (path ordered exponential of the gluon field)
along the light-like straight line from the point 0 to (0, y−,0T ). Such a definition is
useful for formal proofs of the factorization theorems, of which the parton model is
a leading order approximation, however, this formal definition will not be of further
interest or use for our discussion.

4The gluon PDF can also be expressed by a similar expression.
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The born level diagram for DIS under the parton model is shown in figure 2.4,
whereby one constituent parton has interacted with the gauge boson. With the help of
the parton model we can complete the calculation of the full DIS cross section, σ. We
do so by computing a partonic cross section, σ̂(e−pi → e−X) 5 , for a parton pi having
4-momentum ξP µ. The electron-hadron cross section is then given by averaging over
parton momenta and flavours:

σ(e−P → e−X) =
∑

i

∫ 1

0
dξ fi(ξ)σ̂(e−pi → e−X). (2.29)

A formal proof of equation 2.29 is possible [79], with higher order corrections, known
as higher twists, being found to be suppressed by powers of Q. Though proofs exist for
DIS and other processes such as Drell-Yan, a process-independent proof of the so-called
collinear factorization theorem does not exist, though is often simply assumed with
resounding success.

The proton PDFs must satisfy the following sum rules. The first is the valence sum
rule and states that up-valence distribution must integrate to 2, while the down-valence
distribution must integrate to unity and the valence strange distribution to zero in
order to satisfy the proton quantum numbers:

∫ 1

0
dξ (fu(ξ)− fū(ξ)) = 2, (2.30)∫ 1

0
dξ (fd(ξ)− fd̄(ξ)) = 1, (2.31)∫ 1

0
dξ (fs(ξ)− fs̄(ξ)) = 0, (2.32)

as well as the fact that the constituent momenta must integrate to give the parent
hadron momenta giving the so-called momentum sum rule:

∫ 1

0
dξ
∑

i

ξfi(ξ) = 1, (2.33)

where we highlight that the summation is over quarks, anti-quarks, as well as gluons.
As a final remark before continuing the main discussion, we note that the approximate
SU(2) isospin symmetry relates the neutron PDFs to the proton PDFs: fn

u = fd and
fn

d = fu.
5By convention quantities with a hat are partonic.
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Inspired by the parton model, we can attempt to compute the DIS process for
the partonic case, which we then relate to the full hadron-lepton scattering through
equation 2.29. Indeed, asymptotic freedom tells us that at the high energies of DIS,
the coupling will be small and thus perturbation theory holds true for the hard matrix
element calculation. Doing so, and after a lengthy computation, one arrives at the
equations for the DIS structure functions:

F1(x,Q2) = 1
2
∑

i

e2
i fi(x) (2.34)

F2(x,Q2) =
∑

i

xe2
i fi(x). (2.35)

We see that at leading order:

FL = F2 − 2xF1 = 0 (2.36)

which is the Callan-Gross equation [80] and confirms that the partons are spin-1/2
particles. The equivalent relation, had they been Lorentz scalars instead, would be
F2(x,Q2) = 0. Importantly, note that the structure functions of equations 2.34 and
2.35, though able to depend on Q, in fact do not. This property is known as Bjorken
scaling, the breaking of which has been both observed by experiments and predicted
by QCD.

Finally, we conclude by introducing the Mellin convolution, which for arbitrary
functions, f and g, is given by:

(f ⊗ g)(x) =
∫ 1

x

dy

y
f(y)g

(
x

y

)
. (2.37)

The Mellin convolution is used to relate partonic quantities (such as the hadronic
tensor, Ŵ µν , or structure functions, F̂ ) with the full hadronic quantity. For example,
the partonic structure functions Ci (often referred to as coefficient functions) can be
computed within pQCD and are related to the full F2 structure function by convolving
with the PDFs:

F2(x,Q2) =
∑

i

fi ⊗ Ci +O
(

Λ2
QCD

Q2

)
, (2.38)

where the higher-twists are suppressed by inverse powers of Q2 and we assume to be
probing a kinematical regime where Q≫ ΛQCD.
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Figure 2.5: Next-to-leading order in αs contributions to DIS. From left to right we have:
virtual emission, real emission as initial state radiation, final state radiation, and gluon-boson
fusion.

2.2.3 QCD corrections to the parton model

With the remarkable ability of the parton model to explain the early DIS measurements,
one is naturally led to ask whether this behaviour is true for higher values of Q and to
what extent does the picture change once next-to-leading order (NLO) QCD corrections
are applied. At NLO in QCD 4 additional diagrams must be accounted for as shown in
figure 2.5. These correspond to virtual emission, whereby the initial state quark emits
a gluon that is absorbed by the final state quark; initial (final) state radiation by real
gluon emission from the initial (final) state quark; and gluon-boson fusion whereby the
splitting process g → qq̄ results in one of the quarks interacting with the mediating
boson. Note that since we are considering fully inclusive DIS whereby we integrate over
the phase space of all possible final products, final state radiation is a valid diagram to
consider. We mention here that, at the squared amplitude level, the virtual emission
graph must be paired with the Born graph, while the others can pair with each other
to give a correction of O(α2

s) to the cross section.
Each diagram possesses divergences of different flavours. The virtual emission

results in UV divergences owing to divergent momenta contained within the loop.
Moreover, IR divergences occur due to soft and collinear emission of quarks and gluons;
that is, gluons that have zero transverse momentum relative to the parent particle, and
soft divergences owing to the massless nature of gluons. Isolating these divergences
requires the use of a regulator such as dimensional regularization.

The UV divergence can be handled using renormalization techniques, for example,
using the MS subtraction scheme. The IR divergences, however, require more care.
The Kinoshita-Lee-Nauenberg (KLN) theorem [81, 82] (as well as the related Bloch-
Nordsieck theorem [83] though violated by QCD [84]) state that so long as the phase
space integral over all degenerate final (and initial) states is performed, then the
infrared divergences cancel, so long as one is computing an infrared safe quantity,
after summing all the Feynman diagrams at a given perturbative order. An n-particle
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quantity is infrared safe if the observable is equal to the analogous (n − 1)-particle
quantity when any pair of particles become collinear (have parallel momenta). For deep
inelastic scattering, however, we do not sum over all degenerate initial states, instead
isolating a particular proton state of definite momentum. As such the cancellation of
the collinear singularities is not protected by the KLN theorem and in fact persists
after all the diagrams of figure 2.5 are added together.

This remnant collinear singularity is an incredibly important result. In fact, once
the dust has settled (and for now omitting the gluon-boson fusion diagram):

F1(x,Q2) = 1
2
∑

i

e2
i

∫ 1

x

dy

y
fi(y)

[
δ

(
1− x

y

)

−αs

2π

(
Pqq

(
x

y

)(
1
ϵ

+ log 4π − γ + log µ
2

Q2

)
+Rqq

(
x

y

))]
(2.39)

where Pqq is known as the quark-quark splitting function (given below), γ is the Euler-
Mascheroni constant, Rqq is the process dependent quark-quark remainder function,
and µ is the arbitrary mass parameter first introduced in dimensional regularization
to maintain that the coupling is dimensionless. The 1/ϵ pole is the aforementioned
collinear singularity, isolated using dimensional regularization and its removal is done
by analogy to the renormalization group. We note the left hand side of equation
2.39 is a measurable physical quantity which should thus be finite. The right hand
side, however, has a divergent pole upon taking ϵ→ 0. The PDF, however, is not a
measurable quantity, fundamentally defined by the matrix element of equation 2.28
which in the framework of QFT is no more measurable than the couplings are: only
cross section and decay rates are measurable entities. We thus treat the PDFs in
equation 2.39 as bare PDFs, with the MS renormalized PDFs (referred to henceforth
as simply PDFs) defined by a collinear subtraction:

fMS
i (x, µF ) =

∫ 1

x

dy

y
fi(y)

[
δ

(
1− x

y

)
− αs

2πPqq

(
x

y

)(
1
ϵ
− log µ2

µ2
F

− γ + log 4π
)]
(2.40)

where µF is an arbitrary mass (or energy scale) parameter called the factorization
scale and plays the same role as the renormalization scale for the strong coupling
running. Its value too is arbitrary and can be set to anything independently of the
renormalization scale, though again it is beneficial to set it equal to the typical energy
scale of the process in question: µF ≈ Q. The resulting structure function thus reads
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(dropping the MS superscript):

F1(x,Q2) = 1
2
∑

i

e2
i

∫ 1

x

dy

y
fi(x, µF )

[
δ

(
1− x

y

)
+ αs

2πPqq

(
x

y

)
log Q

2

µ2
F

]
(2.41)

and is a perfectly finite quantity. The µF dependence drops out of this expression due
to the PDF evolution discussed below and the logarithm in Q is responsible for the
Bjorken scaling violation.

By differentiating equation 2.40, the µF dependence of the PDFs is then given by
the Dokshitzer-Lipatov-Gribov-Altarelli-Parisi (DGLAP) integro-differential equation
[85–87]:

µF
d

dµF

fi(x, µF ) = αs

π

∫ 1

x

dy

y
fi(y, µF )Pqq

(
x

y

)
+O(α2

s) (2.42)

which, after reintroducing the gluon-boson fusion diagram, causes quark-gluon mixing
upon DGLAP evolution by the matrix equation:

µF
d

dµF

fi(x, µF )
fg(x, µF )

 = αs

π

∑
j

∫ 1

x

dy

y

Pqiqj
Pqig

Pgqj
Pgg

fj(y, µF )
fg(y, µF )

+O(α2
s). (2.43)

The splitting functions (or Altarelli-Parisi kernels) P , are known up to NNLO [88, 89].
Under the assumption of SU(Nf ) isospin symmetry and charge conjugation invariance
they do not depend on quark flavour and are the same for both quarks and anti-quarks
[90]. At LO they read [91]:

Pqq(z) = 4
3

[
1 + z2

(1− z)+
+ 3

2δ(1− z)
]
, (2.44)

Pqg(z) = 4
3

[
1 + (1− z)2

z

]
, (2.45)

Pgq(z) = 1
2
[
z2 + (1− z)2

]
, (2.46)

Pgg(z) = 6
[

1− z
z

+ z

(1− z)+
+ z(1− z) +

(11
12 −

Nf

18

)
δ(1− z)

]
(2.47)

where the plus distribution is defined by its behaviour within an integral. For two
functions f and g:

∫ 1

0
dz[g(z)]+f(z) =

∫ 1

0
dz g(z) (f(z)− f(1)) . (2.48)
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In order to solve the DGLAP evolution equations one works in the maximally diagonal
basis known as the evolution basis. First we define:

f±
i = fi ± f̄i (2.49)

which defines the valence distributions:

Vi = f−
i i = 1, . . . , Nf (2.50)

and the triplet distributions:

T3 = u+ − d+ (2.51)
T8 = u+ + d+ − 2s+ (2.52)
T15 = u+ + d+ + s+ − 3c+ (2.53)
T24 = u+ + d+ + s+ + c+ − 4b+ (2.54)
T35 = u+ + d+ + s+ + c+ + b+ − 5t+. (2.55)

Together the valence and the triplet distributions form what is known as the non-singlet
sector and each evolve independently of the other according to equation 2.42. The
singlet distribution:

Σ =
Nf∑
i=1

f+
i , (2.56)

however, evolves according to the coupled DGLAP evolution of equation 2.43 and
couples with the gluon.

Thus far we have been discussing the DGLAP evolution equations in the so-
called x-space. It is, however, not obvious how to go about solving these rather
complicated systems of equations. We do note that throughout this discussion, the
Mellin convolution of equation 2.37 has been used throughout, though not been made
explicit: the non-singlet evolution of equation 2.42 is nothing but the convolution of the
PDF with the splitting functions. However, by performing the Mellin transformation:

fi(N,µF ) =
∫ 1

0
dx xN−1fi(x, µF ), (2.57)

whereby the difference between Mellin-space and x-space objects is manifest only in
terms of their arguments, the convolution can be made into a simple product. For
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example, in the case of non-singlet evolution at leading order in QCD:

µF
d

dµF

fNS(N,µF ) = αs(µF )
π

γNS
qq (N)fNS(N,µF ), (2.58)

where the Mellin transform of the non-singlet splitting function (often referred to as
the anomalous dimension) is given by the quantity γNS

qq by convention. We choose
µR = µF = Q in order to resum large logarithms. The Mellin-space evolution is more
easily solved analytically with the inverse transformation being much more amenable
to numerical evaluation than solving the x-space evolution directly.

Finally, we mention that the Callan-Gross equation of equation 2.36 is violated at
NLO in QCD [90] with the non-zero nature being a measured phenomenon at HERA
[92].

2.2.4 Universality of parton distributions

H1

H2

X1

X2

l

l̄

q

q̄

γ∗

Figure 2.6: The tree level diagram for the Drell-Yan process involving two initial state
hadrons. Under factorization, two partons are ejected from the hadrons which annihilate to
a virtual photon which decays further into a dilepton pair. The hadron fragments, X1 and
X2 are integrated over in the phase space integral and are treated as beam remnants.

So far we have motivated the parton model by considering lepton-hadronic scattering
in the context of DIS. In this section we extend the discussion to the scenario where
two hadrons are present in the initial state for example at the Tevatron or the LHC
in fixed-target or collider hadron-hadron experiments. A ubiquitous process at such
experiments is Drell-Yan (DY) shown schematically at Born level in figure 2.6. In
this process, under factorization, two partons, ejected from the hadrons, interact by
annihilating to a virtual photon which then decays into an on-shell dilepton pair. The
obvious extension of equation 2.29 is thus to simply include two parton distribution
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functions in the convolution, one for each initial state hadron:

σ
(
H1H2 → ll̄ +X1X2

)
=
∑
ij

∫ 1

0

∫ 1

0
dξ1dξ2 f

H1
i (ξ1, µ

2
F )fH2

j (ξ2, µ
2
F ) σ̂(pipj → ll̄)

+O
(

Λ2
QCD

M2

)
. (2.59)

which again can be more rigorously proven using field theoretic arguments with the
collinear factorization theorem of DY processes [93–95]. To this end it is useful to
define the parton luminosity:

Lij = fi ⊗ fj (2.60)

such that the cross sections are given by convolving the luminosity with the process
dependent coefficient functions, Cij, for partonic channels i and j:

σ =
∑
ij

Lij ⊗ Cij. (2.61)

We emphasize here that the PDFs in equation 2.59 are precisely the same as those of
equation 2.40 which we used when considering deep inelastic scattering (so long as
the initial state hadrons are the same e.g protons). In this way PDFs are universal
objects, parameterizing the long distance physics of the proton structure, while the
process dependent hard cross section is computed in pQCD for any observable we wish
to construct. While the scale dependence of PDFs are determined by the DGLAP
evolution equations, the Bjorken-x dependence cannot be computed perturbatively
and so must be fitted to experimental data using a global QCD analysis. This shall
be discussed further in chapter 3, but for now we remark that the power of PDF
universality is used to employ data from a host of various processes to constrain the
parton distributions.

2.3 Effective field theories

We now turn our attention to discuss the second important theoretical framework
relevant for this text: the notion of effective field theories [51, 96, 97]. A remarkable
fact of nature is that its phenomena disassociate from one another at varying length
(energy) scales. Indeed, it is quite peculiar that few is the scholarly correspondence
between the particle physicist and, for example, the biologist; the latter of whom has
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little concern for the precise nature of fundamental particles and their interactions,
despite the fact that their field of study is emergent from precisely these fundamental
building blocks.

Such a fact can be understood through the lense of effective field theory (EFT).
An effective field theory is a quantum field theory which we maintain is valid only to a
certain energy scale, beyond which its reliability falls apart. We shall see how we can
construct such a theory in the IR by integrating out heavy modes from an UV theory.
The IR and UV theory both agree on low energy phenomena, far below the heavy mass
scale, despite the IR theory having no heavy mode explicit in its lagrangian. Such a
construction is thus top down whereby the UV completion is known (or assumed) and
the IR is constructed from it.

We then see how this naturally leads us to consider all possible UV completions that
flow to the Standard Model under Wilsonian renormalization group flow. This allows
us to construct the Standard Model Effective Field Theory, a bottom up approach
where by the UV completion is not known, but the effects of which manifest in the IR
through the presence of higher dimensional operators.

2.3.1 The Wilsonian effective action

To motivate the concept of effective field theory, we start with a pedagogical example.
Consider a scalar field, ϕ with mass m and a vastly heavier scalar field, Φ which has
mass M ≫ m. We assume this is the field content of the UV theory LUV which is
able to resolve phenomena at all scales. However, if our experimental apparatus has a
resolution comparable to m, then the precise nature of the interactions between ϕ and
Φ is irrelevant, since Φ will in general be very off-shell and thus very short lived.

If one considers the generating functional, Z[Jϕ, JΦ], for the UV theory

ZUV[Jϕ, JΦ] =
∫
DϕDΦ e(iS+i

∫
d4x(Jϕϕ+JΦΦ)) (2.62)

then we can construct the dynamics of the IR theory, by integrating out the heavy field
Φ. Since we are not interested in the dynamics of the heavy field, but rather processes
involving only correlation functions of the light scalar, we set the associated current,
JΦ, to 0 without loss of generality. By formally performing the integration over the
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heavy scalar first:

Z[Jϕ, JΦ = 0] =
∫
Dϕe

∫
d4xJϕϕ

(∫
DΦ eiS

)
(2.63)

≡
∫
Dϕe

∫
d4xJϕϕeiSIR (2.64)

we can define the Wilsonian effective action, SIR, which governs the dynamics of the IR.
By performing the integration in this way, we capture entirely all diagrams containing
the heavy field as internal legs of Feynman diagrams. The effective action admits a
perturbative expansion in powers of ℏ

SIR = S
(0)
IR + ℏS(1)

IR +O(ℏ2), (2.65)

with higher order quantum corrections arising from heavy scalar loops.
The quantity SIR is then the Wilsonian effective action, a coarse grained, less

detailed, description of the UV theory, but more appropriate for use in the computation
of physical observables at the light scale, m. The tree-level contribution, S(0)

IR , describes
all tree-level amplitudes involving external light scalars, while the NLO term S

(1)
IR ,

describes all amplitudes containing 1-loop corrections and so on.
To compute the effective action, we expand the integral of equation 2.64 using the

saddle point approximation. By Wick rotating, the exponential is well peaked at the
classical field configuration allowing for a perturbative expansion to be made. Letting
Φc denote the classical equation of motion satisfying the functional derivative equation:

δS

δΦ

∣∣∣∣∣
Φc

= 0 (2.66)

the saddle point approximation decomposes the heavy field to be Φ = Φc + η where η
are the quantum fluctuations that we force to vanish at the boundaries. The integral
of equation 2.64 expands to read:

eiSIR = eiS[Φc]
∫
Dη e

i
2 η δ2S

δη2

∣∣∣
Φc

η
(2.67)

which can be evaluated using standard Gaussian integral results to give:

eiSIR = C · eiS[Φc] det
(
−δ

2S

δη2

)∣∣∣∣∣
Φc

+ . . . (2.68)
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where the ellipses refer to higher loop corrections and C is a constant which does
not affect the physical dynamics. Simplifying this expression gives us the IR effective
action at 1-loop:

SIR = S[Φc] + i

2Tr log
(
−δ

2S

δη2

)
(2.69)

where the functional trace is taken over the space of field configurations as well as any
internal indices, such as spin or colour, that the quantum field being integrated over
possesses.

We see then that the task of computing the tree-level effective action is as simple
as substituting the classical equation of motion into the UV action. The one-loop
matching and above requires the non-trivial task of computing the functional trace
which we shall not burden ourselves with but merely acknowledge that it can be done
with some computational effort [98].

2.3.2 Tree level matching

As a pedagogical example, consider the UV theory governed by the lagrangian:

LUV = 1
2∂

µϕ∂µϕ−
1
2m

2Φ2 + 1
2∂

µΦ∂µΦ− 1
2M

2ϕ2 − λ0

4! ϕ
4 − λ1

2 Mϕ2Φ (2.70)

where as before the scalar fields ϕ and Φ have masses m and M with the latter being
considered heavy (M ≫ m). We construct the IR theory related to this UV theory by
integrating out the heavy degree of freedom at tree-level. What will happen, as should
be relatively self-evident, is that the IR lagrangian will contain within it novel light
scalar interactions that were not present in the full UV theory. This can be thought of
as point like interactions whereby all heavy scalar propagators are infinitely short lived.

The classical equation of motion for the heavy scalar field Φ satisfies:

(
□ +M2

)
Φc = −λ1

2 Mϕ2 (2.71)

where we follow the notation that the d’Alembert operator, □, denotes the contraction
of the derivative with itself: □ = ∂µ∂µ. The subscript, Φc, denotes that this is the
solution of the classical equations of motion and is to be understood as a function of
the light scalar field.
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We can formally invert the Klein-Gordon operator to obtain the solution for the
classical field:

Φc(ϕ) = −λ1

2 M
(
□ +M2

)−1
ϕ2. (2.72)

Following the result from the saddle-point approximation, the tree-level effective
action is given by simply substituting the classical solution into the UV Lagrangian:

L(0)
IR = LUV(ϕ,Φc(ϕ)) = 1

2∂
µϕ∂µϕ−

1
2m

2ϕ2 − λ0

4! ϕ
4 − λ1

2 Mϕ2Φc(ϕ)

= 1
2∂

µϕ∂µϕ−
1
2m

2ϕ2 − λ0

4! ϕ
4 − λ2

1
4 M

2ϕ2
(
□ +M2

)−1
ϕ2.

(2.73)

The step that follows is the one that one would naively expect; namely expanding
non-local (□ +M2)−1 operator according to its Taylor expansion. We can justify this
with the argument that the □ operator will lead to terms proportional to the squared
4-momenta of the light scalar field, which we assume to be far smaller than the heavy
mass, M . A more rigorous derivation follows the covariant derivative expansion (CDE)
[98]. Thus to leading order in the inverse mass expansion, the IR theory reads 6

L(0)
IR = 1

2∂
µϕ∂µϕ−

1
2m

2ϕ2 − 1
4!
(
λ0 − 3λ2

1

)
ϕ4 − λ2

1
6M2ϕ

3□ϕ+O(M−4). (2.74)

We see that in the low energy limit, not only has the ϕ4 coupling been corrected by
the vertex coupling the light and heavy degrees of freedom, but a new interaction
altogether, pertaining to the dimension 6 operator ϕ3□ϕ, has been generated as a
result of integrating out the heavy scalar. This lagrangian can by simplified further
using the equations of motion for the ϕ field 7. Indeed, shifting the lagrangian by a
term proportional to the classical equations of motion has been shown to not change
the S-matrix, even at the loop level [99]. The dynamics of the lagrangian above is

6We have used integration by parts to obtain ϕ2□ϕ2 = 4
3ϕ

3□ϕ.
7Which gives the identity

1
M2ϕ

3□ϕ = −m
2

M2ϕ
4 −

(
λ0 − 3λ2

1
6M2

)
ϕ6 +O(M−4).
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Figure 2.7: The diagrams contributing to 2-to-2 scattering at tree-level for ϕϕ→ ϕϕ. In
order: the 4-point interaction is shown along with the s, t and u channel exchange of the
heavy scalar field. For the IR theory, only the 4-point diagram contributes.

therefore completely identical to the lagrangian:

L(0)
IR = 1

2∂
µϕ∂µϕ−

1
2m

2ϕ2

− 1
4!

(
λ0 − 3λ2

1 − 4λ2
1
m2

M2

)
ϕ4

− 1
6!

(
20λ2

1(3λ2
1 − λ0)

M2

)
ϕ6 +O(M−4).

(2.75)

Computing observables

We are now in a position to showcase the ability of effective field theory. Consider
the 2-to-2 scattering ϕϕ → ϕϕ of the light scalar field. For the full UV theory, the
diagrams that contribute at tree-level are the 4-point contact interaction vertex and
the s, t and u channel exchange of the heavy scalar field. The diagrams are shown in
figure 2.7. Using the corresponding Mandelstam variables, the UV amplitude reads:

AUV = −λ0 − λ2
1M

2
[ 1
s−M2 + 1

t−M2 + 1
u−M2

]
(2.76)

= −λ0 + 3λ2
1 + 4λ2

1
m2

M2 +O(M−4), (2.77)

where we use the well known property that by 4-momentum conservation the Mandel-
stam variables sum to give four times the particle invariant mass.
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We now compute the same process using our EFT lagrangian equation 2.75. The
only diagram that contributes is the first diagram of figure 2.7. Our lagrangian
of equation 2.75 promises to reproduce all tree-level diagrams involving the light
scalar as external legs, thus we are limited to tree-level amplitudes in our calculation.
Calculations involving loops requires the computation of the 1-loop matching of the
UV with the IR. At tree-level in the IR the calculation is far simpler:

AIR = −
(
λ0 − 3λ2

1 − 4λ2
1
m2

M2

)
+O(M−4) (2.78)

precisely the same solution as that obtained with Taylor expanding the prediction from
the UV. In this way we can significantly simplify all tree-level n-point amplitudes, so
long as we restrict the region of phase space to be far below the heavy mass scale M .

2.3.3 Non-renormalizable quantum field theories

When obtaining the infrared lagrangian of equation 2.75, the process of integrating out
the heavy degrees of freedom generated new interactions such as a new ϕ6 interaction
for the light scalar field. Such behaviour is typical in the context of effective field
theories and so we write the general IR lagrangian as

LIR = Ld≤4 + L5

Λ + L6

Λ2 + · · · (2.79)

where Λ is the characteristic energy scale of new physics which was taken as the
heavy field mass in the above example. The subscripts denote the mass dimensions
of the operators present for each lagrangian, for example, L5 contains operators of
mass dimension exactly 5. By dividing by increasing powers of Λ we ensure the
lagrangians have the canonical mass dimension of 4 and the operator couplings can
remain dimensionless. If we consider constructing an amplitude A with a single
insertion of an operator of dimension d, then, by dimensional grounds this part of the
scattering graph must contribute to the overall amplitude as

A ∼
(
p

Λ

)d−4
(2.80)

where p is obtained from the various kinematic variables of the process such as the
external momenta. This simple power counting argument leads to a rather profound
result. We see that as we flow deeper into the IR and p gets smaller: operators with
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dimension less than 4 begin to contribute more while those with dimension greater than 4
have less and less importance. As such, operators with dimension < 4 are called relevant
while those with dimension > 4 are called irrelevant. Operators with d = 4 are neither
and are called marginal with the behaviour often being determined by considering
quantum effects to the scaling behaviour (the so-called anomalous dimension). This
important scaling behaviour illustrates the fact that lower dimensional operators, such
as the mass, are important for macroscopic long-distance physics while the finer details
are resolved with the addition of higher and higher dimensional operators.

However, the introduction of such irrelevant operators poses a risk to the pre-
dictability of our QFT. Generally speaking, the UV divergences arising from divergent
loop momenta are regulated by the addition of counter terms. We treat the bare
couplings of the original lagrangian as formally infinite and add counter terms to the
lagrangian which cancel these infinities under some renormalization scheme, such as
MS dimensional regularization 8. For lagrangians possessing operators of dimension
≤ 4 the renormalization of the bare couplings can be done using a finite number of
counter terms: requiring operators already present within the theory. However, for
irrelevant operators, an infinite number of counter terms is required to regulate the UV
divergences. To see this consider inserting a collection of operators with dimensions di,
for example when renormalizing some interaction vertex, to generalize the result of
equation 2.80 to:

A ∼
(
p

Λ

)∑
i

(di−4)
. (2.81)

Using as example a scattering graph involving two insertions of a dimension 5 operator,
we see then that the amplitude scales as (p/Λ)2 and thus the counter term required
will be of mass dimension 6. This procedure continues infinitely, with the addition of
each counter term requiring the addition of an additional counter term, but of higher
dimension. Including each such counter term introduces a new unknown parameter
into our lagrangian that must be determined by experimental measurement. As such,
our EFT has infinitely many parameters, thus requiring infinitely many experimental
measurements before any prediction can be made: a theory like this is certainly no
scientific theory.

8A mass-independent regulator is in fact an important property for any regulator in order to
preserve the power counting behaviour. Dimensional regularization thus forms the ideal candidate as
opposed to a momentum cut-off regulator which has cut-off scale comparable to the new physics scale.
The independence on regularization scheme between these two procedures can, however, be recovered
using resummation techniques [100].
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This apparent problem is resolved by accepting a finite accuracy in our predictions.
By truncating the expansion at some finite order in the power counting parameter,
p/Λ, we can obtain finite results from our non-renormalizable theory; even at the loop
level. Indeed, note that our calculation in equation 2.78 is truncated at quadratic
level in the power counting parameter. Moreover, we ubiquitously quote cross sections
computed to some finite order in the strong coupling, αs, or to a finite number of loops
thereby truncating in powers of the reduced Plank’s constant, ℏ. Thus truncating
in the power counting perturbative is a natural thing to do and crucially allows for
non-renormalizable EFTs to retain their predictive power.

2.3.4 The Standard Model as an EFT

Despite the vast repertoire of successful phenomena explained by the Standard Model,
large gaps of unexplained details remain: neutrino masses [101], dark matter [102], and
gravity, to name but a few. In this light, one is forced to set aside their hubris and
resign to the fact that the Standard Model is an approximation (albeit an incredibly
good one) of some more, as yet unknown, fundamental theory.

We can thus treat the Standard Model as the IR limit of some UV completion in
precisely the same way that the lagrangian of equation 2.75 was obtained from the
UV complete theory of equation 2.70. In doing so, we should thus allow for higher
dimensional operators than those presently found in the Standard Model. We saw this
happen in the example above, whereby integrating out the heavy scalar field led to
operators involving the light scalar field of mass dimension 6.

The lagrangian obtained in this way leads to the Standard Model Effective Field
Theory (SMEFT) [103]:

LSMEFT = LSM +
∞∑

d=5

Nd∑
i=1

c
(d)
i

Λd−4O
(d)
i (2.82)

where for each mass dimension, d, we allow for the existence of all operators, O(d),
constructed from the Standard Model matter content 9 and abiding by the SU(3)c ×
SU(2)L × U(1)Y gauge symmetry, we generically assume there are Nd non-redundant
operators which contribute non-trivially to the S-matrix. The coefficients c(d)

i are
9Models in which the Higgs is no longer an SU(2) doublet are not captured by the SMEFT, instead

being the realm of the Higgs Effective Field Theory (HEFT) [104]. Such EFTs can have composite
Higgs UV completions [105, 106] as a possible mechanism for electroweak spontaneous symmetry
breaking.



2.3 Effective field theories 33

dimensionless parameters known as Wilson coefficients and parameterize the couplings
of the operators and Λ is the typical energy scale of new, beyond the Standard Model
(BSM), physics assumed to be well above the electroweak scale.

The first contribution to the SMEFT is at dimension 5 and was shown [107] that
at this dimension the only operator that contributes (up to hermitian conjugate) is

O(5)
5 = ϵijϵklH

iHk(ljp)TC llq (2.83)

where i, j, k, l are SU(2) indices while p and q are flavour indices. The term ϵij is
the totally anti-symmetric tensor with ϵ12 = 1, H and l are the Higgs and lepton
SU(2) doublets respectively and C is the charge conjugation matrix which in the Dirac
representation reads C = iγ2γ0. This operator violates lepton number conservation;
though such accidental symmetries of the SM are not required to be preserved by the
SMEFT, they are nevertheless heavily constrained, so in the remainder of this text we
shall consider dimension 6 operators in the SMEFT expansion. The complete minimal
basis for dim-6 operators (known as the Warsaw basis) has been tabulated, whereby no
operator from the basis can be removed using field redefinitions and integration by parts
[108]. Under flavour universality, there are 59 such non-redundant operators, extending
to 2499 after relaxing this flavour universality condition. Recently the complete set of
non-redundant dimension 8 operators have also been tabulated [109, 110].

In the same way that the Wilson coefficients of the example EFT from equation
2.75 contains useful information regarding the UV completion: bounds on the Wilson
coefficients of the SMEFT can give useful insights into possible UV completions of the
Standard Model. Thanks to its model independent parameterization of BSM effects,
the SMEFT will be our choice of EFT in order to parameterize new physics resonances
using high-energy observables.





Chapter 3

The neural network determination
of proton structure

In the context of the factorization theorems, the short distance, high energy, compo-
nent of a scattering process can be computed with the tools of perturbative QCD.

The component of the matrix element pertaining to the hadronic states, however, is
non-perturbative and is captured by the PDFs which cannot be computed perturba-
tively. While the Q dependence of the PDF is described by the DGLAP evolution
equations [85–87], the Bjorken-x dependence must be ascertained by comparing to
experimental measurements in a global QCD analysis. Such problems of function
fitting to data are the domain of machine learning [111], with a particularly important
and powerful class of algorithm being the deep learning approach to function fitting
[112].

The NNPDF approach to the determination of proton structure employs artificial
neural networks to parameterize the PDFs. Such an approach enjoys the lack of bias
introduced by choosing a particular functional form as well as the flexibility to mimic
any sufficiently well behaved function. However, these virtues come at the price of
possibly overlearning the training data and fitting the measurement noise rather than
the underlying law.

The focus of the present section is to provide a brief overview of the salient concepts
of machine learning and specifically the artificial neural network approach to function
modelling. After having defined the feed-forward, fully connected, neural network, we
explain how gradient descent based, supervised learning algorithms can be used to
train the model by minimizing a loss function computed to a set of training data, while
being conscious of the perils of overfitting.
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The NNPDF4.0 approach is then outlined with detailed discussion on novel imple-
mentations of the Monte Carlo approach to ensemble learning and covariance matrix
generation. We discuss how these two ingredients can be used to train a neural network
to parameterize parton distribution functions, which abide by stringent positivity
constraints and the various sum rules. The problem of PDF fitting is an inverse
problem, whereby we attempt to discern the form of an underlying function, related to
the observed measurement by a non-trivial forward map. We explain how the forward
map can be achieved using the so-called Fast-Kernel method. Much of the discussion of
the aforementioned points will be pertinent to later chapters and so detail is provided
where necessary.

We shall also present the new parser implemented for NNPDF4.0 to implement
data cuts in a declarative and human-readable way as well as the phenomenological
implications the precision NNPDF4.0 PDF sets have at the LHC.

3.1 Artificial neural networks as unbiased
parametrizations

The field of machine learning aims to deduce the functional dependence of some
parameter, Y (the dependent variable), on some collection of independent variables
(or covariates) X by means of statistical inference on measurements of Y . Often such
approaches rely on vast datasets, on the order of several thousand measurements, in
order to achieve statistically sound results. In general, we assume Y ∈ Rn to be some
real-valued random n-vector denoting the output variable which is assumed to be a
function of the input features X ∈ Rp where p is the number of covariates.

We assume the two are linked by a continuous function f : Rp → Rn, through:

Y = f(X) + ϵ (3.1)

where ϵ is a random n-vector with zero mean and finite variance which encapsulates
the inherent statistical fluctuations in the measurement. The principal issue is that
the function f is not a known function, but rather must be inferred through its effect
on the output variable upon changes to the input. Such is the domain of machine
learning, and numerous techniques exist to approximate f , all with varying levels of
prior knowledge on the form of f [111].



3.1 Artificial neural networks as unbiased parametrizations 37

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Output
layer

Figure 3.1: An example of a feedforward, fully connected, deep neural network with three
hidden layers. The input layers are shown in green, with the hidden layers in blue. The
output layer is shown in red. Each constituent node in the graph denotes a neuron while each
directed edge has a weight associated to it. The architecture of the network refers to the
number of neurons in each layer and so this example is dubbed a 4-6-8-6-2 neural network.

However, in sufficiently complex scenarios, where knowledge of the underlying
function is essentially non-existent, one may appeal to the use of artificial neural
networks [112, 113] in order to parameterize f . The field of non-perturbative QCD
forms one such arena and provides a natural use-case for artificial neural networks since
there is an extremely limited level of prior knowledge on the PDFs. Artificial neural
networks form a class of powerful machine learning algorithms inspired by biological
neural networks such as the brain. Such algorithms exist in many guises each adapted
to a particular field such as natural language processing [114] (using recurrent neural
networks) or image classification [115] (using convolutional neural networks), but we
restrict our interest to the ubiquitous feedforward, fully connected, deep neural network
architecture. In what follows, unless specified, we shall refer to this particular class of
deep learning algorithm as simply neural networks. We can mathematically define a
neural network using a sequence of definitions
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Table 3.1: Popular choices of activation function for artificial neural networks. The input
vector is x ∈ Rp and it is to be understood that the output is obtained by applying the
activation function elementwise.

Activation Function σ(x)
ReLU (rectified linear unit) max(0, x)

Leaky ReLU max(0, x) + αmin(0, x)
sigmoid 1

1+e−x

tanh tanh x
linear x

Definition 3.1 (Activation function) An activation function is a function σ : Rp →
Rp which applies a (generally) non-linear transformation, g : R → R, to the input
vector x elementwise:

σ(x) =
(
g(x1), g(x2), · · · , g(xp)

)T
. (3.2)

Popular choices of activation function are tabulated in table 3.1.

Definition 3.2 (Artificial neuron) A neuron with label i is a function ai : Rp → R
defined by weights {wij ∈ R : j = 1, . . . , p} and a bias bi ∈ R along with an activation
function, σ. The activation of a neuron is given by:

ai(x) = σ

 p∑
j=1

wijxj + bi

 (3.3)

Definition 3.3 (Dense layer) A dense layer of size m is a set of m neurons; for
the k’th dense layer we have the collection of neurons {a(k)

i : i = 1, . . . ,m} where it is
to be understood that each neuron in the set has the same domain. The activation of
layer k, A(k) : Rp → Rm, is given by:

A(k)(x) =
(
a

(k)
1 (x), a

(k)
2 (x), · · · , a(k)

m (x)
)T

(3.4)

The activation of a dense layer can be understood more easily as a linear algebra
operation and indeed, owing to the efficiency of matrix multiplication, this is how
modern deep learning libraries implement dense layers.

Definition 3.4 (Kernel) The kernel of a dense layer of size m is a matrix of weights
w ∈ Rm×p, where the i’th row is formed by the weights of the i’th neuron in the layer.
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Similarly the bias extends to a vector of biases, b ∈ Rm, formed from the individual
biases of the neurons.

The activation of the layer now reads:

A(k)(x) = σ(w · x+ b) (3.5)

and in this way we can see the action of a dense layer is a linear transformation followed
by some non-linear mapping determined by the activation function.

Definition 3.5 (Neural network) A neural network of depth d is a set of d dense
layers that forms a map f : Rp → Rn defined by the action f : x 7→ f(x) where

f(x) = A(d) ◦ A(d−1) ◦ · · · ◦ A(2) ◦ A(1)(x) (3.6)

where ◦ denotes functional composition. The codomain of any layer, A(i), must be
identical to the next layer’s (A(i+1)) domain (that is if A(i) : Ra → Rb then it must be
the case that A(i+1) : Rb → Rc).

Such neural networks can be represented using directed acyclic graphs as depicted
in figure 3.1. Each neuron is depicted as a node in the graph and each edge is a
connection between two neurons. For each such edge there is a scalar weight value
corresponding to an entry in the kernel of that particular layer. Note that each neuron
is connected to every neuron in the preceding layer, and as such the layer is known
to be dense and since the neural network is constructed of such dense layers, it is an
example of a fully connected network. Moreover, the directed acyclic nature of the
graph gives the network its feedforward attribute. While recurrent neural networks,
which use later layers to feed back into earlier layers, can be used, they are more adept
to time series or natural language processing tasks. Passing an input vector through
the network in order to obtain an output value is known as a forward pass of the
network. In the literature, the first layer, A(1), is often referred to as the input layer
and is mathematically equivalent to the identity map. The last layer, A(d), is the output
layer and any intermediary layers are hidden layers. If the number of hidden layers is
greater than one then the network is a deep network otherwise it is shallow.

The architecture of a neural network is the size of each layer that constitutes the
network design. In practice, there is no clear prescription for choosing the architecture,
nor the activation function for that matter. These parameters, as well as others which
determine the design of the model (such as the optimizer, or the initialization of the
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weights and biases) are examples of hyperparameters and are discussed in section 3.2.2,
but in practice there are two guiding principles. The first concerns the number of
parameters in the model. In general the weights and biases of the model are to be
tuned by some optimization algorithm to best fit the available data, the precise nature
of this process is discussed in section 3.1.1. The general mantra in machine learning is
that the number of data points must far exceed the number of model parameters in
order to avoid overfitting the data and learning the statistical fluctuations as opposed
to any underlying pattern. Note that a neural network with depth d and layers of size
{Ni : i = 1, . . . , d} will have

d∑
i=2

(Ni−1 ·Ni +Ni) (3.7)

independent parameters to be fitted. This number can in general grow very quickly
and so the desire to achieve parsimony is particularly strong when using deep learning
techniques in that the model should be as complex as needed and no more. Generically
speaking, models that have too few parameters are prone to not having enough degrees
of freedom to learn the data, and as such perform poorly in mimicking f (have a
high bias), but this behaviour would be true of any training dataset and so they are
said to have low variance. Conversely, models with too many parameters are prone
to overlearning the data and thus have a low bias, but then they have learned that
particular training data too well and so perform poorly on new, unseen, data and
thus have a high variance. In this view, the model architecture should be selected to
optimize for this bias-variance tradeoff [111]. This key machine learning concept is
illustrated by figure 3.2 whereby 10 data points have been generated according to the
rule y = 2x + ϵ where ϵ is homoscedastic standard normal noise1. To this data two
models have been fitted, the first is a simple linear fit and the second is a degree 9
polynomial. The loss function is the usual ordinary least squares loss. We note that
the degree 9 polynomial can fit the data exactly, since there is an equal number of
data points and fit parameters, thus in principle it performs better than the linear fit
when considering purely the goodness of fit metric given by the residual sum of squares
(RSS). However, in this special scenario, where the underlying function, f is known
to be linear, the best fit is then surely the linear fit, despite the poorer RSS. Indeed,
this is made concrete by considering the generalization error of both parameterizations.
When faced with a new data point, the high complexity polynomial fit will in general
give a higher error than the linear fit and thus has high variance.

1Noise is referred to as homoscedastic if all random variables have the same, finite, variance.
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Figure 3.2: Ten evenly separated data points generated according to the rule y = 2x+ ϵ
where ϵ are independent samples from a standard normal distribution, shown by the black
dots. To this data we perform a linear regression fit (green) and a polynomial of degree 9 fit
(orange).

The use of activation function is particularly key in order to give the neural network
approach its flexibility. Their non-linear nature is what allows the network to capture
a wide spectrum of functional forms. Activation functions should generally be easily
computed using mathematical primitives (such as max, exponentiation etc.) and their
derivative should also be easily obtained for reasons which will become apparent in
section 3.1.1. Note that, for example, the vastly popular rectified linear unit (ReLU)
activation function has the Heaviside step function as its derivative which additionally
helps avoid the so-called vanishing gradient problem [116, 117].

The neural network is a powerful parameterization of the underlying function f

thanks to the following theorem [118]:

Theorem 3.1 (Universal Approximation Theorem for Width-Bounded ReLU Net-
works) For any Lebesgue-integrable function2 f : Rn → R and arbitrary ϵ > 0, there
exists a full-connected neural network with ReLU activation functions and with width

2Those satisfying
∫
Rn |f(x)| dx <∞.
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w ≤ n+ 4, such that the output of this network, n(x), satisfies
∫
Rn
|f(x)− n(x)| dx < ϵ. (3.8)

The width of a neural network is simply the size of the largest layer. There exists an
analogous theorem for a neural network of one hidden layer, but with arbitrary width
[119]. This important theorem highlights the expressive power of neural networks.
A sufficiently deep (or wide) network can be used as an unbiased estimator for any
sufficiently well-behaved function.

3.1.1 Supervised learning and training a neural network

The neural network model can now be used to map an input feature to an output
vector, however, for now the model will possess little predictive power owing to the
fact that the weights and biases have not been tuned properly. The weights and biases
form the parameter set, {θ}, of the model and together are referred to as trainable
or learnable parameters. They will be adjusted during optimization to best fit the
available training dataset and the precise nature of this process is the principle concern
of the present section.

The parameters generally are initialized randomly, however, it is well known [120]
that this initialization procedure is a rather important step to allow the neural network
to converge both quickly and also towards the true global minimum. Various techniques
[121] exist that automate the initialization procedure and are readily available in
standard machine learning libraries and we shall not concern ourselves with the
particular nature of this process.

The training of a neural network model is an example of a supervised learning task.
We assume we have a training dataset which consists of tuples of input data and the
correct output data which we attempt to learn. The input features are then said to be
labelled and we wish to train the model on the training set such that it can generalize
and perform well on unseen data.

The first ingredient we require is a quantitative measure of the model’s performance,
called a figure of merit. Mathematically, we define a loss function, J(θ), which will
quantify how well the model is performing in a given configuration of its parameters.
By convention the loss function is something we wish to minimize, so smaller losses
are better than larger ones. Various choices exist for the loss function, but the one
we shall use henceforth is the χ2 figure of merit, which is interpreted as the (negative)
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log-likelihood of a multivariate normal distribution, ignoring constant terms. In this
way, the trained neural network will be interpreted as the maximum likelihood estimator
for the underlying function, f . We restrict our attention to the case of a single scalar
output, y(i) and a single input variable, x(i).

Letting

y =


y(1)

y(2)

...
y(n)

 (3.9)

be the vector of n observed values and

t(θ) =


f(x(1); θ)
f(x(2); θ)

...
f(x(n); θ)

 (3.10)

be the corresponding vector of neural network predictions when the network is configured
to have parameters θ, then the loss function is defined as

χ2(θ) = (d− t(θ))TC−1(d− t(θ)) (3.11)

where C is the symmetric, positive semi-definite covariance matrix which encapsulates
the uncertainty in the observed values and also the correlation between them. The
optimal choice of weights and biases we seek, θ̂, is then given by:

θ̂ = arg min
θ

χ2(θ). (3.12)

The minimum of the loss function is obtained using gradient descent based op-
timization techniques [122]. The most basic form is simply stepping in a direction
antiparallel to the gradient of the loss function

θ ← θ − η · ∇θJ(θ) (3.13)

where η is the learning rate (another example of a hyperparameter) which controls
the step size. For reference, the value of the learning rate is typically in the unit
interval and is the same for all parameters in the model. This approach is dubbed
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batch gradient descent and requires that the entire dataset is passed through the
network in its entirety before computing the gradient of the loss. This has the practical
drawback that the entire training dataset must be loaded into computer memory before
evaluating the model. Such a task may be infeasible for sufficiently large datasets since
the memory requirement may exceed what is available. An alternative is to pass the
dataset through the network one datapoint at a time and compute the gradient after
each forward pass. This has the advantage of requiring much less available memory,
but the drawback is that the descent on the loss surface occurs in a sporadic way, since
data points which strongly affect the model occur in a random order. As such this
approach is dubbed stochastic gradient descent. The best-of-both-worlds approach is
to pass the dataset through the model in batches and compute the gradient after each
batch. This is called mini-batch gradient descent and the size of the batch is called the
batch size, again, another hyperparameter to be considered. As a terminology note,
the number of times the full dataset is passed through the model before convergence is
achieved is known as the number of epochs.

However, the above vanilla gradient descent approaches suffer from a number of
drawbacks. For one, the learning rate, η, is set at the beginning of training by the user
and left fixed throughout the learning process. As such a small learning rate will cause
the model’s convergence to be too slow and possibly will lead to the global minimum
not being found before the final epoch is reached. On the contrary, if the learning rate
is too large then the gradient descent algorithm will overshoot the true minimum and
oscillate around the it, or worse: diverge entirely. Moreover, in the large dimensional
parameter space of neural networks, the existence of false minima become more scarce.
This reason for this can be seen by considering the fact that a false minimum requires
each direction to be increasing about a stationary point, which becomes less likely as
the number of independent directions increases. As such, saddle points become far
more frequent which becomes the principle problem of convex optimization [123]. The
solution to the above two problems are given by adaptive learning rate optimizers (such
as Adam [124]) and (Nesterov [125]) momentum respectively. Such techniques are used
extensively in the deep learning community and in particular are the optimization
techniques employed in the NNPDF4.0 methodology. By maintaining a record of the
step size at each iteration during gradient descent, a momentum term is added to
the update rule to encourage the model to follow directions which lead to the global
minimum. Similarly, a record of past loss function gradients allows the optimizer to
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Figure 3.3: The NNPDF4.0 NNLO PDF sets at the fitting scale of 1.6 GeV (left) and at
100 GeV (right).

update important parameters slowly while those parameters which have less impact on
the loss are updated more quickly (hence an adaptive learning rate).

Note that for all gradient descent algorithms, the gradient of the loss function is
required. This is done using automatic differentiation [126], where by the exact gradient
is computed using backpropagation by considering the execution graph generated by
the forward pass of the network and then applying the chain rule in reverse, starting
first from the loss and working backwards to the inputs themselves. This proves to
be a highly efficient method, filling in the rows of the Jacobian matrix using only one
backwards breadth first traversal of the execution graph.

3.2 The NNPDF4.0 methodology

The NNPDF4.0 PDF set serves as the latest major release from the NNPDF collabo-
ration. The methodology toolchain has been majorly overhauled, using the latest in
cutting edge machine learning libraries such as TensorFlow and the accompanying
wrapper library Keras [127]. As such the NNPDF4.0 approach boasts a significantly
improved performance and accuracy, where a fully global fit can be achieved in ∼ 5
hours as compared to the previous release’s ∼ 24 hour fit time.

In this section we present the methodology employed to parameterize the parton
distribution functions of the proton using neural networks. We highlight salient method-
ological improvements over the previous releases both in terms of fitting methodology,
but also in the new datasets introduced. Presented in figure 3.3 are the PDF sets at
the fitting scale of 1.6 GeV and evolved, using the DGLAP evolution, to a higher Q
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value of 100 GeV. These constitute the most precisely determined PDF sets NNPDF
has provided to date and it is the objective of the present section to outline how we
arrive at these PDFs.

3.2.1 Error propagation and Monte Carlo PDFs

The covariance matrix

The data used in a PDF fit are obtained from experimental measurements and as such,
associated with them, are uncertainties and correlations between them. This correlation
information is encapsulated by the covariance matrix and the information must be
propagated down to the PDF level. The sources of uncertainty can be categorized as
follows [128]

• Statistical uncertainties are associated with the inherent randomness of the
measurement being made. This source of uncertainty originates from the fact
that an experimental measurement is the result of a finite sample of some unknown
population.

• Systematic uncertainties instead are associated to a particular aspect of the
experimental setup, such as the nature of the measuring apparatus, and are
in general correlated between different measurements (the beam luminosity
being an archetypal example). We shall break these uncertainties down further
into two categories. Additive uncertainties, σadd, which do not depend on the
measured value, and multiplicative uncertainties, σmul, which are proportional to
the measurement.

The uncertainty breakdown, provided from experimental collaborations, can be used
to generate a covariance matrix encapsulating uncertainty and correlation information.
As a motivating example, suppose we have a series of observed measurements Di.
We assume that the true underlying value is xi, but then acknowledge that each
measurement is affected, not only by a statistical error of σstat

i , but also a systematic
error of σsys

i the source of which is common to all measurements. Letting the expectation
value of a random variable, X : Ω→ R, with an event space Ω and distribution pω be
denoted by:

E(X) =
∑
ω∈Ω

pωX(ω) (3.14)
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then it is true that:

Di = xi +Xi + Si (3.15)
with E(Xi) = E(Si) = 0 E(S2

i ) = (σsys
i )2 E(X2

i ) = (σstat
i )2. (3.16)

Then, noting that a constant shift of a random variable does not affect its covariance:

cov (Di, Dj) = E(Di Dj)− E(Di)E(Dj)
= E

(
(Xi + Si)(Xj + Sj)

)
− E(Xi + Si)E(Xj + Sj)

= E(Xi Xj) + σsys
i σsys

j

=

(σstat
i )2 + (σsys

i )2 i = j

σsys
i σsys

j i ̸= j
(3.17)

where we have used the fact that S and X are independent and so E(SX) =
E(S)E(X) = 0. We see that for a given data point the total variance is given by
summing in quadrature the sources of uncertainty (the diagonal entries of the covariance
matrix), while the covariance between two distinct points (the off-diagonal entries)
is the product of the correlated systematic uncertainties. Thus the full covariance
between experimental measurements p and q generalizes to:

Cpq = δpqσ
uncorr
p σuncorr

q +
∑

i

σadd
ip σadd

iq +
∑

j

σmult
jp σmult

jq

 ·DpDq (3.18)

where we allow for systematic uncertainties to be possibly uncorrelated and so σuncorr
p

is the total uncorrelated uncertainty obtained by adding the individual sources in
quadrature. A description of this procedure is provided in appendix A.

An example of a correlation matrix (covariance matrix normalized by the total
uncertainty) is shown in figure 3.4, whereby a 3,092×3,092 correlation matrix is
generated using the procedure outlined above. We categorize the data points according
to their process type and observe the strong intra-process correlation. Indeed, the
correlation matrix is in block-diagonal form, owing to the fact that, for example, a data
point as measured by the HERA experiments (CC and NC DIS) has no correlation
with those measured by the LHC (DY, top and jets).

Although the covariance matrix, as given by equation 3.18, allows us to define the
objective loss function of equation 3.11; it suffers from the problem that the minimum



48 The neural network determination of proton structure

DIS NC
DIS CC DY JETS TOP

DIS NC

DIS CC

DY

JETS

TOP

Experimental Correlation Matrix

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3.4: A 3,092×3,092 correlation matrix encoding the correlation and uncertainty
information of the various data points available in the NNPDF framework.

obtained from such an approach is not an unbiased estimator [129]. This bias, known
as the d’Agostini bias, can often be appreciable and its presence can be circumvented
using the so-called t0 approach [130], by replacing the experimental central values of
the right most term in equation 3.18, with the theoretical predictions obtained by
convolving the partonic cross section with some previous PDF determination, Tp:

Cpq = δpqσ
uncorr
p σuncorr

q +
∑

i

σadd
ip σadd

iq +
∑

j

σmult
jp σmult

jq

 · TpTq (3.19)

which is known as the t0 covariance matrix, and is the covariance matrix used for
computing the figure of merit during training of the neural network model. In practice,
only one iteration of the PDF set used for the t0 matrix calculation is required.
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Monte Carlo pseudodata generation

There are many approaches to incorporate training data uncertainty in a machine
learning model [131], however, the method employed in the NNPDF4.0 methodology
pertains to that of ensemble learning. Using this approach the data central value
and covariance matrix defines a probability distribution in the space of experimental
data. From this distribution, Monte Carlo (MC) samples of the data are made (often
referred to as pseudodata) and to each pseudodata sample, a neural network of the
form presented in section 3.2.2 is trained.

The pseudodata generation mechanism is described in [132] and proceeds by pro-
ducing fluctuations about the experimental data central value, D(0)

p , by an amount
proportional to the experimental uncertainty. The k’th MC pseudodata replica for
data point p then reads

D(k)
p =

(
D(0)

p +
∑

i

X
(k)
ip σ

add
ip

)∏
j

(
1 + Y

(k)
jp σmult

jp

)
(3.20)

where X(k)
ip and Y (k)

jp are a collection of independent and identically distribution N (0, 1)
random variables which allows for fluctuations about the experimental data central
value to be generated. As discussed above the uncertainty breakdown can be composed
of correlated systematics which in general introduce correlations between different
measurements p and p′. In this particular case, the random variables associated with
the systematic are set equal: X(k)

ip = X
(k)
ip′ (or Y (k)

ip = Y
(k)

ip′ if they are multiplicative
uncertainties).

As with the covariance matrix generation, the pseudodata generation implementa-
tion has been entirely overhauled, eliminating altogether the need for the legacy C++
codebase. The pseudodata generation has proven to be a major performance bottleneck
in previous releases, but thanks to the new implementation a performance boost of 2
orders of magnitude is achieved. Further performance can be gained using just-in-time
compilation through the use of Numba [133], however, such performance gains were not
deemed necessary for the current release.

A low level implementation of the procedure is implemented in appendix A with
the actual implementation being heavily vectorized in order to achieve performance.

A model, as described in section 3.2.2, is then trained for each such MC replica,
generating an ensemble of Nrep neural networks. The observable, T (k), is then obtained
by convolving the partonic cross section with the k’th replica. The central value
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(expected value) and uncertainty (variance) is given by the weak law of large numbers
as

Ek

(
T (k)

)
= 1
Nrep

Nrep∑
k=1

T (k) (3.21)

Vark

(
T (k)

)
= 1
Nrep − 1

Nrep∑
k=1

(
T (k) − Ek

(
T (k)

))2

. (3.22)

In general∼ 100 MC replicas are sufficient for a faithful reproduction of the experimental
uncertainties at percent level, with ∼ 1,000 replicas achieving the correlations at the
same precision [134].

3.2.2 Model design

Functional form

Contrary to previous releases of NNPDF [130, 135–137] the NNPDF4.0 release of PDFs
parameterizes all parton flavours using a single neural network. The basis used to fit
the partons is the evolution eigenbasis:

Σ = u+ ū+ d+ d̄+ s+ s̄+ 2c
T3 =

(
u+ ū

)
−
(
d+ d̄

)
T8 =

(
u+ ū+ d+ d̄

)
− 2

(
s+ s̄

)
V =

(
u− ū

)
+
(
d− d̄

)
+
(
s− s̄

)
V3 =

(
u− ū

)
−
(
d− d̄

)
V8 =

(
u− ū+ d− d̄

)
− 2

(
s− s̄

)
T15 =

(
u+ ū+ d+ d̄+ s+ s̄

)
− 3

(
c+ c̄

)
g

(3.23)

and it is assumed that at the fitting scale c = c̄. Here, u, d, s and c refer to the up,
down strange and charm quark distributions with the bar denoting the anti-quark
distribution. The g PDF refers to the gluon distribution. We shall refer equations 3.23
as the evolution basis in this text.

It is important to note that the parameterization captures the Bjorken-x dependence
of the PDFs, since the Q dependence is fully determined thanks to the DGLAP
evolution of equation 2.42 and equation 2.43. As such we fit the x dependence at
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Figure 3.5: The neural network architecture used to fit the parton distributions. The input
layer is Bjorken-x and its logarithm. The output layer is the PDFs in the evolution basis.
All solid edges are learned parameters, the dashed edges are non-trainable and depict the
convolution of the PDFs with the partonic cross (FK table in section 3.2.3). The architecture
used is a 2-25-20-8 design.

fixed scale Q0 = 1.65 GeV before evolving to the relevant process scale using the
DGLAP equations. This value of initial scale ensures that the PDFs are fitted above
the charm mass threshold, in the case where the intrinsic charm content of the proton
is independently determined.

The PDFs themselves are parameterized by neural networks complemented by a
preprocessing term that characterizes the small and large-x extrapolation behaviour
and aids in the parameterization convergence:

fi(x,Q2
0) = Ai x

−αi(1− x)βiNNi(x), i ∈ {1, . . . , 8} (3.24)

where i enumerates the parton flavour, NNi is the i’th output of the neural network of
figure 3.5 and Ai is a normalizing constant that allows the parameterization to abide
by the momentum and valence sum rules. Note that the valence sum rules of equations
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2.30-2.33 in the evolution basis read
∫ 1

0
dx V (x,Q2) =

∫ 1

0
dx V8(x,Q2) = 3

∫ 1

0
dx V3(x,Q2) = 1 (3.25)∫ 1

0
dxx

(
Σ(x,Q2) + g(x,Q2)

)
= 1 (3.26)

and so setting:

Ag = 1−
∫ 1

0 dxxΣ̃(x)∫ 1
0 dx xg̃(x)

, AV = 3∫ 1
0 dx Ṽ (x)

,

AV3 = 1∫ 1
0 dx Ṽ3(x)

, AV8 = 1∫ 1
0 dx Ṽ8(x)

(3.27)

allows for equation 3.24 to satisfy the momentum and valence sum rules. The notation
here is such that f̃ refers to the unnormalized PDFs, that is, equation 3.24, but without
the normalization constant.

The exponents of the preprocessing term, αi and βi, are determined iteratively
according to the prescription outlined in [136]. The favoured exponents of a previous
PDF fit are used to define a uniform distribution to sample new exponents from and
this process is repeated until convergence is achieved. This, typically, requires only
one iteration of the preprocessing exponents.

Early stopping and optimization

With deep learning models often having large numbers of free parameters, the risk of
the model being overly complex and thus learning the statistical noise is high. Such
a regime is known as overfitting and can occur when the number of parameters is
comparable to the number of training samples. Numerous ways exist to circumvent
this problem, such as dropout mechanisms which stochastically drop links between
neurons thus preventing certain connections from developing too strongly [138], or
regularization techniques such as L2-regularization (weight decay) [139] which add
a penalty term to the loss function, forbidding the model parameters from growing
too large. The regularization approach employed in NNPDF4.0 is the so-called early
stopping approach which halts the training process once the onset of overlearing occurs.

The approach followed by this method begins by splitting the global dataset into
two disjoint subsets (such that their intersection is empty and the union is the entire
dataset) referred to henceforth as training and validation sets. The precise nature of
this split is left to the user, but in general, a 3 : 1 ratio is recommended. The training



3.2 The NNPDF4.0 methodology 53

dataset is then used to train the model using the gradient descent based algorithms
outlined in section 3.1.1. After each iteration of gradient descent the model χ2 is
evaluated on the validation set, which is in principle out-of-sample and thus can be
treated as unseen data. The general trend is that the training and validation χ2 both
begin to initially decrease as the model learns the underlying laws common to both
subsets. However, while the training χ2 will generally continue to decrease ad infinitum
since the model can be tuned to asymptotically fit the data noise, the validation metric
does not enjoy such improvements. Rather, after a particular number of iterations the
goodness of fit on out-of-sample data begins to cease to improve and instead starts to
deteriorate. The point at which this transition occurs is effectively the parsimonious
point of the model at which the underlying law is learned as best as possible and any
further training will only serve to overfit the model. At this point training is halted,
despite not being at the global minimum of the loss-surface: hence early stopping.

This process is depicted schematically in figure 3.6 whereby the training loss de-
creases monotonically while the validation loss initially follows the trend, but eventually
begins to deteriorate. We choose to stop training the model at the optimal stopping
point which is depicted by the vertical line that divides the under and overfitting
regimes. In practice, however, the minimum of the validation loss is not so clear cut
and instead we end training once the validation χ2 has not improved for a certain
number of iterations known as the patience parameter.

As discussed in section 3.1, a variety of choices for the neural network model are
determined by the user. For example, the precise choice of neural network architecture,
activation functions, initializer, optimizer and parameters therein, and loss function,
amongst others. Collectively, all such parameters are referred to as hyperparameters.
In general, there is no algorithmic way to determine the best hyperparameter choice
and so it is the task of the user to use their intuition and various guiding principles to
choose hyperparameters that are best suited to the machine learning problem at hand.

A naive, brute force, method would be simply to perform a scan of all reasonable
hyperparameters and converge on the set of hyperparameters that achieved the lowest
loss. Such a task is, however, in general infeasible owing to the fact that the complexity
grows exponentially in the number of hyperparameters. However, it is possible to
employ Bayesian approaches [140] whereby the information gained from one random
trial educates the parameter selection for the following trial. Indeed, this methodology,
dubbed Hyperopt [140], is employed for the NNPDF4.0 hyperparameter selection. The
result of this process is tabulated in table 3.2. The most salient difference between the
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Figure 3.6: Schematic depiction of the early stopping mechanism. For each iteration in
the learning process, the χ2 of the training (blue) and validation (orange) set is monitored.
Training is halted once the minimum of the validation χ2 is obtained. Configurations to the
left of this point are underfitted and overfitted to the right.

hyperparameter choices of NNPDF4.0 and previous iterations is the use of gradient
descent optimizers as opposed to the legacy genetic algorithm approach [141]. The
improved optimization algorithm leads to an improved fit quality and the substantial
performance gains advertised. The fact that hyperparameter optimization in this way
is possible is credit to the fact that an individual fit using TensorFlow is much quicker
and the fact that K-fold cross validation [142] is used as a hyperoptimization figure of
merit. Using the legacy C++ implementations of NNPDF3.1 would have meant that
such a scan would have been simply too computationally intensive and thus infeasible.

Table 3.2: The hyperparameter selection used for NNPDF4.0, obtained using the Hyperopt
methodology.

Parameter Choice
Architecture 2-25-20-8
Activation tanh− tanh−linear
Initializer glorot-normal [143]
Optimizer Nadam [144]
Learning Rate 2.6× 10−3

Max. epochs 17, 000
Patience 10% max. epochs
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3.2.3 From neural networks to theoretical predictions

As mentioned before, the task of PDF fitting is an example of an inverse problem,
where we are given the observations (cross section measurements) and we attempt to
reconstruct the causal factor that generated them (the PDF). Recalling the discussion
of section 2.2, the forward problem is given by convolving the PDF with a hard partonic
cross section computed in pQCD. However, with the PDF model being given by the
output of a neural network, it is not obvious how this convolution should happen,
indeed, the convolution involves a non-trivial integral which must be performed every
time a prediction is needed. Moreover, ignoring the problem of feasibility and assuming
such a procedure exists, it need also be an extremely fast operation. The convolution
happens for each data point a vast number of times during learning. For every iteration
of the neural network parameters the convolution must be performed, and so an
approximate figure for the maximum time taken for a convolution must be on the
order of milliseconds or better. With the choice to perform the optimization using
gradient descent methods in NNPDF4.0, the procedure must also be composed of
mathematical primitives, such that they are differentiable, using backpropagation, to
obtain the gradients required for the optimization problems of section 3.1.1. To further
complicate matters, the factorization and renormalization scales must also be evolved
to the kinematic scale in a similarly efficient manner. As described by equations 2.42
and 2.43, the former is governed by the DGLAP evolution equations and the latter by
the relevant beta functions.

The Fast Kernel (FK) approach [134, 145, 146] provides precisely the prescription
required. The non-trivial convolution is reduced to a tensor product with FK tables
that have been precomputed and stored. The tensor product is clearly a differentiable
operation and an extremely efficient one too since tensor manipulations are heavily
optimized with readily available libraries. The overview of the FK table approach,
presented here, will prove pertinent for much of the discussions in chapter 6.

As a pedagogical example, consider a lepton-hadron interaction, as in DIS, measured
at kinematical point (xI , Q

2
I). We can use the evolution kernel operator (EKO),

Γij(xI , Q
2
I , Q

2
0), to evolve the PDFs from the fitting scale, Q2

0, to the scale of the
observable, Q2

I :

fi(xI , Q
2
I) =

∫ 1

xI

dy

y
Γij

(
xI

y
,Q2

I , Q
2
0

)
fj(y,Q2

0) (3.28)

where summation on repeated indices is implied throughout this discussion. Then,
convolving fj(x,Q2) with the coefficient function appropriate for this process, Cj where



56 The neural network determination of proton structure

j indexes the partonic channel, we may write the theoretical cross section for this
specific point as:

σ(xI , Q
2
I) =

∫ 1

xI

dy

y
Cj

(
xI

y
,Q2

I

)
fj(y,Q2

I) (3.29)

=
∫ 1

xI

dy

y
Kj

(
xI

y
,Q2

I , Q
2
0

)
fj(y,Q2

0) (3.30)

where we have defined a modified evolution operator, Kj, that also incorporates the
convolution with the coefficient function:

Kj(xI , Q
2
I , Q

2
0) =

∫ 1

xI

dy

y
Ck

(
xI

y
,Q2

I

)
Γkj(y,Q2

I , Q
2
0). (3.31)

We can factorize the PDFs at fixed scale, fj(y,Q2
0), from equation 3.30 by introducing

a basis of interpolation functions, {Iα}, and a grid of x values which is a monotonically
strictly increasing sequence, {xα}, for α ∈ {1, . . . , Nx}. In the jargon, the xα are
known as knots and represent points at which the function is known precisely. The
interpolation functions satisfy the useful property that for each knot there exists one
and only one interpolation function that is non-zero at that point while all others are
vanishing. We refer the reader to [134] for the precise nature of the x-grid and choice
of the interpolation basis.

Linear combinations of the interpolation basis can be used to approximate an
arbitrary function and we can thus approximate the PDFs at fixed scale by:

fj(y,Q2
0) ∼

Nx∑
α=1
I(α)(y)fj(xα, Q

2
0) (3.32)

with the accuracy of the interpolation being governed by coarseness of the x-grid.
The term, fj(xα, Q

2
0), denotes the output of the neural network parameterization of

equation 3.24 evaluated at xα.
By interpolating the PDF parameterization on a grid of x values in this way we

may rewrite equation 3.30 as:

σ(xI , Q
2
I) ∼

Nx∑
α=1

[∫ 1

xI

dy

y
Kj

(
xI

y
,Q2

I , Q
2
0

)
I(a)(y)

]
fj(xα, Q

2
0)

≡
Nx∑

α=1
Σαj fj(xα, Q

2
0) (3.33)
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where the summation on α is left explicit. The quantity Σ is the FK-table which
reduces the convolution integral to a tensor product. Note that the FK-table is free
from the dependence on the PDF parameterization: this key point allows the FK tables
to be pre-computed once and stored on disk thereafter. As such, the forward map from
PDF to observable is an extremely quick operation, on the order of a few milliseconds,
once the FK tables have been computed, making the FK table approach ideal for PDF
fitting. The computation of the FK-table is done using the public PDF evolution code
APFEL [147].

The extension to hadronic observables is a more involved example of the prescription
outlined above, requiring a rank-4 tensor contracted with the PDF luminosity.

3.2.4 Positivity and integrability of PDFs

The interpretation that parton distributions are understood as probability distributions
(and thus non-negative) breaks down beyond LO in QCD. The reason for this is that at
NLO the collinear subtraction is scheme dependent and so whether a PDF is positive
or not depends on the scheme chosen. That being said, however, it can be shown [148]
that MS PDFs are positive even at NLO. In addition, any physical observable obtained
by convolving the parton distributions with a partonic cross must be non-negative at
all orders in perturbation theory by the simple argument that a cross-section is related
to a probability distribution.

The positivity of NLO PDFs themselves are new to NNPDF4.0 and are implemented
by modifying the target loss function with the addition of a Lagrange multiplier, Λk,
penalty term for each independently parameterized parton flavour. The inclusion of
this term penalizes network configurations that violate the positivity. Noting that this
positivity applies to the flavour basis, f̃k (related to the fitting basis of equation 3.23
by a linear system of equations), and so we append to the χ2 loss:

χ2 → χ2 +
8∑

k=1
Λk

ni∑
i=1

Eluα

(
−f̃(xi, Q

2)
)

(3.34)

where

Eluα(t) =

t t > 0

α (et − 1) t < 0
(3.35)
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with α set to 10−7. The Lagrange multipliers increase exponentially during fitting,
reaching a maximal value by the final epoch. The initial values, on the other hand, are
determined by hyperoptimization.

The positivity of physical observables is imposed in a similar manner, with a
Lagrange multiplier being introduced to impose positivity on pseudo-observables
constraining linear combinations of PDFs and their luminosities.

Also new to NNPDF4.0 is the requirement that the PDFs are integrable. By
equations 3.25 and 3.26 we see that for q ∈ {V, V3, V8, xg, xΣ} (and also T3 and T8 by
the Gottfried sum rules [149]) the behavior in the small-x region must satisfy

lim
x→0+

xq(x,Q0) = 0 (3.36)

in order for the valence and momentum sum rules to be satisfied. In a similar fashion to
the positivity, we enforce the integrability conditions by adding a Lagrange multiplier
to the loss function proportional to

(
xq(xi, Q0)

)2
(3.37)

for a set of sample points, xi, concentrated in the small-x region.
Finally, as a final a posteriori check, once fitting has successfully terminated, we

check that all final PDFs do not violate positivity and integrability conditions too
strongly. Indeed, due to the vastly improved methodology used in NNPDF4.0, far fewer
replicas are discarded by the post-fit selection (as compared to NNPDF3.1) meaning
the user need run only a small fraction more replicas than the number desired.

3.3 Declarative data cut selections

One of the core mantras embedded in the principles of the NNPDF software design is
that all inputs to the vast code base must be not only reproducible, but also human
readable. That is to say a given runcard must declare, in a readable way, all inputs
(leaves) for the code infrastructure (execution graph) such that an execution of the
runcard will always produce an identical output regardless of when or where it is
run. As such, the NNPDF codebase is developed based off of the reportengine [150]
framework which processes YAML inputs and produces the code output(s) as specified
by the user.
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However, a major point which was lacking this code philosophy was in the data
cut selection. When data is implemented into the fitting framework, it is often the
case that a small subset of points are in kinematical regions of phase space that are
not appropriate to be included in a PDF fit. For example, a given DIS measurement
may have low Q2 (relative to ΛQCD) and thus higher twist corrections to the collinear
factorization are not suppressed and become non-negligible. Similarly some data points
have large electroweak corrections related to them for which we do not have an adequate
theoretical description 3. For such particular cases, it is important that these data
points are not included in a fit in order to avoid introducing tensions which only exist
because of our lack of theoretical understanding.

In previous releases, with approximately 3,000 data points, the cut selection was
implemented by simply considering a large if-else statement, thus making it very
difficult to trace down the reason why a given data point was, or was not, cut from the
fit. Such an implementation thus lacks human readability, often getting in the way of
physics (since one must consider why a data point, which may aid in constraining a
PDF has not been considered), but is also prone to errors; in that a data point has
been cut when it should not have been or vice versa4.

With the large influx of new data points, spanning a broad spectrum of processes
and experiments, being introduced into NNPDF4.0 and future releases, this method of
implementing cuts was no longer sustainable and was rather impeding the stream of
incoming datasets. As such, in NNPDF4.0, a new cut selection procedure has been
implemented which boasts readability as the main improvement, but also performance
enhancements as a by-product.

In doing so, we have implemented a new YAML parser with the ability of understand-
ing domain specific constructs [152]. A syntax is developed to allow for a readable
and easily implemented declaration of cut policies which can be added, removed or
edited with minimal effort. We begin by defining a list of filter rules which are atomic
declarations of a specific cuts policy. These filters declare to which dataset or process
type the rule applies. For example, we may wish that a rule applies to all DIS data
points, or perhaps to only a specific experiment from the HERA collider. Accompanying
this information is the cut policy itself. This is a string written in valid Python syntax
which should return a boolean value. If the value of the expression is False then this

3Though good progress is being made in the full inclusion of electroweak corrections using the
PineAPPL library [151].

4A quick check on the issue tracking of the code repository reveals several such bugs did indeed
exist and have been since caught thanks to the new style cuts implementation.



60 The neural network determination of proton structure

rule discards the point in question. If, however, the rule evaluates to True then we move
on to the next rule (importantly a return value of True does not imply that the point
is kept). One may further define optional arguments to the filter rule. These include
specifying if the cut should be applied only if the corresponding theory is at a particular
perturbative order. The user can also specify additional local_variables which are
used to define variables specific only to a given rule. These generally help simplify
the syntax for the rule itself. The user has the option to use typical mathematical
primitives in this namespace, such as exponentials or logarithms; with more niche
functions being available so long as it is available in the NumPy library. The final,
optional argument is a reason field which is simply a string which explains why the
cut policy is there in the first place.

As a pedagogical example one such filter rule is given below in the corresponding
YAML syntax and indeed is a filter rule from the NNPDF4.0 release.

- dataset: CMSDY2D11
reason: Remove data points for which electroweak corrections are large.
PTO: NNLO+
local_variables:

M: sqrt(M2)
max_rapidity: 2.2
max_M: 200.0

rule: M <= max_M and etay <= max_rapidity

It is clear that the rule applies to the CMS Drell-Yan double differential measurement
from 2011 [153]. A quick glance at the corresponding article [153] reveals the distribution
is binned in dimuon absolute rapidity (referred to by the variable etay) and the dimuon
invariant mass (M2 in the code which is simply the squared invariant mass). These two
variables, alongside the centre of mass energy (sqrts in the code), define the three
kinematic variables for this measurement and form the basis of our rule definition. We
see that any point with invariant mass above 200 GeV or absolute rapidity above 2.2 is
discarded. For convenience, we have defined the variable M to be invariant mass and
also the maximum rapidity and invariance mass have their own variables too, which
ensures that it is clear that these values are upper bounds. The PTO variable declares
that the cut should only be used if a NNLO or better (denoted by the +) theory is
employed. The rationale here being that αEW ∼ α2

s and so electroweak corrections
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are comparable to the NNLO QCD corrections. Finally, the reason field provides a
brief reason for the cut and we see that is is to avoid regions of phase space with large
electroweak corrections.

A more non-trivial example is given by the fixed target Drell-Yan measurement
from experiment E605 at Fermilab [154].

- dataset: DYE605
reason: |

Remove data points for which the fixed-order
perturbative expansion is not reliable since
resummation effects are large. A justification
of these cuts can be found in arXiv:1507.01006.

process_type: DY
local_variables:

tau: M2 / sqrts**2
ymax: -0.5 * log(tau)
maxTau: 0.080
maxY: 0.663

rule: tau <= maxTau and fabs(y/ymax) <= maxY

This particular filter rule pertains to threshold resummation and removes datapoints
deemed to be too close to the production threshold which would spoil the validity of the
resummation. The process_type field focuses on fixed target Drell-Yan measurements
and applies for all perturbative orders. The local_variables field here plays an
important role. The standard choice of kinematic variables for this dataset are the
squared invariant mass of the dimuon pair, the (square root) beam centre of mass
energy, and absolute rapidity. The rule itself, however, concerns the kinematic variable
τ , defined through the relation

τ = m2

s
(3.38)

which is of course different for each measured value. Moreover, the allowed maximum
rapidity is defined through τ through the upper-bound ymax = −1

2 log τ . Writing the
rule entry, explicitly using these relations, will spoil the readability of the rule. As
such, we choose to define them symbolically in the local_variables field and then
use these newly defined variables in the rule. The rule itself is then trivial, cutting out
data points that exceed a maximal τ and rapidity value. The fabs and log operations



62 The neural network determination of proton structure

10 4 10 3 10 2 10 1 100

x

101

102

103

104

105

106

107

Q2  (
Ge

V2 )

Kinematic coverage
Fixed-target DIS
Collider DIS
Fixed-target DY
Collider gauge boson production
Collider gauge boson production+jet
Z transverse momentum
Top-quark pair production
Single-inclusive jet production
Di-jet production
Direct photon production
Single top-quark production
Black edge: new in NNPDF4.0

Figure 3.7: The kinematic coverage of the datasets used in NNPDF4.0, grouped according
to their process, mapped in the (x,Q2)-plane. Points marked with a black edge are new to
NNPDF4.0.

are floating point absolute value and the base-e logarithm respectively, which the
parser understands and applies correctly. The reason entry for this particular rule is
paramount, stating that the threshold resummation will be violated by data points not
abiding by this cut policy and conveniently links a reference for more details [155].

The development of this custom YAML parser also provides the user with a convenient
framework to investigate the effect adding or removing particular data points has on
the resulting fit. Indeed, for the various chapters pertaining to PDF fitting presented
throughout this work, this method of applying cuts is used extensively and seamlessly.

3.4 New datasets in NNPDF4.0

Accompanying the various methodological improvements, discussed extensively through-
out this chapter, is a host of new datasets spanning a broad range of new processes.
The addition of an extra 333 (131) data points at NNLO (NLO) as compared to the
previous NNPDF3.1 release [137] aids in a markedly improved precision in the latest
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PDF sets. The additional processes introduced are: gauge boson with jets, single top
production, inclusive isolated (prompt) photon production, and dijet production. The
data points are depicted in the (x,Q2) plane in figure 3.7 with the markers grouped
according to their process. We depict the new points with a black border and highlight
the extended kinematic reach of, for example, jet production. The introduction of new
data points are a key ingredient to parton distribution determination. By exploiting
different processes as well as the universality of PDFs, one can constrain different
regions of Bjorken-x and further consolidate regions already well determined. However,
despite the advantages of using data spanning more distant regions of kinematical
phase space, one is at peril of being sensitive to possible BSM resonances residing
beyond the highest energy bins. We shall address this issue in chapter 5, but for now
we assume this not to be the case and thereby assume the correct description of LHC
phenomenology is the Standard Model when fitting PDFs.

3.5 High precision parton distribution functions

We now move on to present the results of these numerous methodological improvements
and the impact of the dataset extension. In figure 3.8 we compare the NNPDF4.0 PDF
set with the NNPDF3.1 release [137]. Both PDFs are composed of 1000 MC replicas
for enhanced statistics. We compare two representative choices of parton flavours:
shown are both the up and gluon distributions at Q = 100 GeV. We see a strong
agreement in both flavours: the up quark central value remains virtually identical
across the entire Bjorken-x domain. The gluon PDF shows a good agreement too, with
the gluon suppression at medium/large-x being due to the new single-inclusive jet,
dijet, and top-pair production datasets. The fact that it is precisely these datasets that
modify the gluon is determined by performing fits with various training datasets and
determining which variant has the greatest impact on the gluon PDF [1]. An important
point of note is the reduction in PDF uncertainties, also shown in figure 3.8, this time
in the lower panel. Indeed, in various kinematical regions we see a reduction in PDF
uncertainties by up to 50% relative to the NNPDF3.1 PDF sets, with the absolute
PDF uncertainty reaching a low of ∼ 1%. This crucial figure acts as a milestone for
precision in PDF determinations and sets a precedence in achieving a gold-standard
of 1% PDF uncertainties across a broad kinematic range as well as for all the various
PDF flavours. This reduces the PDF contribution to theoretical uncertainties and acts
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Figure 3.8: Comparison of NNPDF4.0 PDFs (orange) normalized to those obtained in
the NNPDF3.1 release (green) at Q = 100 GeV. Shown are the up (left) and gluon (right)
distributions (top) and the relative 1σ uncertainties (lower panel). Solid and dashed bands
correspond to 68% confidence level and one-sigma uncertainties, respectively.

as an impetus for a strong understanding in the missing higher order uncertainties
[156, 157].

The importance of a well determined PDF set is presented at a phenomenological
level in figure 3.9 where we perform a data-theory comparison for the HERA combined
dataset [158] as well as the CMS measurement of double differential Drell-Yan cross
sections at the LHC [159]. We use both NNPDF4.0 and NNPDF3.1 PDF sets to make
the comparison. We bring the reader’s attention to the improved central value agreement
of NNPDF4.0 as compared to NNPDF3.1. Moreover, and equally as important, is
the reduction in PDF uncertainties highlighted by the shrinkage in error bars. It is
worth mentioning that the pQCD part of the theoretical calculation is identical in both
cases. That is: the partonic cross section is computed at NNLO in QCD and the PDFs
themselves are fitted assuming NNLO DGLAP evolution. The increased precision is
thus totally attributed to the improved methodology and enlarged input dataset for
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Figure 3.9: Data-theory comparisons using NNPDF4.0 (orange), NNPDF3.1 (green), CT18
[35], (blue), and MSHT20 (pink) [160]. Shown are the H1 and ZEUS combined dataset
measurement of neutral current positron-proton scattering with proton beam energy of 920
GeV and Q = 31.62 GeV [158] (left) and the double differential CMS Drell-Yan measurement
at 7 TeV binned in dimuon rapidity at an invariant mass of 90 GeV [159] (right).

the NNPDF4.0 PDF fit. Phenomenological comparisons between the NNPDF4.0 PDF
set against the CT18 [35] and MSHT20 [160] PDF sets are also made in figure 3.9.
We see that even when compared to non-neural network based approaches, the PDF
uncertainties are vastly reduced with the NNPDF4.0 PDFs.

Finally, the picture for the global dataset is captured by table 3.3 where we tabulate
the χ2 fit quality for the various processes used in this work. As is usual, we use the
experimental covariance matrix (equation 3.18) to make the χ2 calculation. The fit
quality is generally compatible, being close to unity for virtually all the processes. At
NNLO in QCD the largest χ2 is 1.36 for inclusive gauge boson production; though
this dataset has by the far the greatest experimental precision. At the opposite end
of the spectrum, single top production has the lowest χ2 of 0.36, but correspondingly
has the largest uncertainties. We note here that an arbitrarily low χ2 is not in
general desired since this can be a sign of overfitting. We expect a χ2 per degree
of freedom close to unity since then the standard fluctuations around the central
value are comparable to the uncertainties; while if they are too low then we are, in
a sense, fitting too well, and perhaps fitting the noise rather than an underlying law.
However, the number of data points for this dataset is rather low, and combined with
the large experimental uncertainties, we can safely conclude that this dataset has
been adequately captured by the NNPDF4.0 PDFs. The increase in DIS χ2 from
NNPDF3.1 to NNPDF4.0 is attributed to enhanced sensitivity to small-x resummation
effects [161] being omitted in the fit. Indeed, with reference to figure 3.7, we note
the addition of small-x DIS measurements not previously present in the NNPDF fits.
These logarithmic enhancement effects arise order-by-order in perturbation theory and
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lead to large logarithms in the small-x region, the resummation of which requires the
BFKL equation [162–165]. We note the remarkable result that the overall NNPDF4.0
fit quality to the global dataset is comparable to the NNPDF3.1 goodness-of-fit, despite
the substantial increase in the number of data points in the entire data set (333) at
NNLO.

Table 3.3: Summary of χ2 per degree of freedom for the various processes used in NNPDF4.0.
The number of data points are shown in parentheses. We tabulate values using NNPDF4.0
(central column) and NNPDF3.1 (right column). Prompt photon and single top production
were not included in NNPDF3.1 and so we do not tabulate their χ2 values. The χ2 is
computed using the experimental covariance matrix of equation 3.18.

Dataset NNPDF4.0 NNPDF3.1

DIS NC (fixed-target) 1.26 (973) 1.12 (973)

DIS CC (fixed-target) 0.86 (908) 1.08 (908)

DIS NC (collider) 1.19 (1127) 1.15 (1130)

DIS CC (collider) 1.28 (81) 1.18 (81)

Drell-Yan (fixed-target) 1.00 (195) 1.25 (189)

Tevatron W,Z inclusive production 1.09 (65) 1.29 (74)

LHC W,Z production (inclusive) 1.37 (483) 1.37 (314)

LHC W,Z production (ZpT and W+jets) 0.98 (150) 1.00 (120)

LHC top-quark pair production 1.21 (66) 1.08 (19)

LHC jet production 1.26 (500) 0.94 (470)

LHC isolated γ production 0.77 (53) —

LHC single t production 0.36 (17) —

Total 1.16 (4618) 1.15 (4285)

3.6 The open source NNPDF code

Up until the NNPDF4.0 PDF release, the related code base for all prior NNPDF
releases has been an internally held, developed, tested, and executed infrastructure.
In fact, this statement is true of all global PDF sets, whereby the fitting code of
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other PDF collaborations has never been made publicly available to the high energy
physics community. However, for the first time the NNPDF code has been made public
and open source [2] in conjunction with the PDF sets themselves. In addition to the
fitting code itself, this release includes the original and filtered experimental data, the
fast NLO interpolation grids relevant for the computation of hadronic observables,
and whenever available the bin-by-bin NNLO QCD and NLO electroweak K-factors
for all processes entering the fit. Furthermore, the code comes accompanied by a
battery of plotting, statistical, and diagnosis tools providing the user with an extensive
characterization of the PDF fit output. The entirety of the code base is accompanied
by a comprehensive and user-friendly documentation resource and a host of pedagogical
example use cases. Doing so sets a precedence for transparency, reproducibility, and
scrutiny of the code base in keeping with the ethos of the scientific method.

The availability of the NNPDF open-source code, along with its detailed online
documentation, will enable users to perform new PDF analyses based on the NNPDF
methodology and modifications thereof. Some examples of potential applications
include assessing the impact of new measurements in the global fit; producing variants
based on reduced datasets, carrying out PDF determinations with different theory
settings, for example as required for studies of the strong coupling or heavy quark
mass sensitivity, or with different electroweak parameters; and quantifying the role
of theoretical uncertainties from missing higher orders to nuclear effects [156, 157].
One could also deploy the NNPDF code as a toolbox to pin down the possible effects
of beyond the Standard Model physics at the LHC, such as Effective Field Theory
corrections in high-pT tails of chapter 5 or modified DGLAP evolution from new BSM
light degrees of freedom [166]. Furthermore, while the current version of the NNPDF
code focuses on unpolarized parton distributions, its modular and flexible infrastructure
makes it amenable to the determination of closely related non-perturbative collinear
QCD quantities such as polarized PDFs, nuclear PDFs [167, 168], fragmentation
functions, or even the parton distributions of mesons like pions and kaons [169].





Chapter 4

Constraining the strange content of
the proton

As the energy at which the proton is probed is increased, one is able to resolve the
proton with greater and greater resolution. With sufficiently high energies, the

sea distributions, formed by quark-antiquark creation from gluon splitting, begin to
contribute at a level on-par with the valence distributions. This is manifest from figure
3.3, where evolution to Q = 100 GeV, well above the charm production threshold,
shows the sea distributions competing with the valence up and down quarks. Moreover,
in a quantum field theory with gauge group SU(3)C and Nf flavours of identical
mass spinors transforming in the fundamental representation, the isospin symmetry
SU(Nf)f relating to unitary transformations of the flavours is an exact symmetry.
However, QCD does not enjoy this exact symmetry, owing to the different quark
masses, but despite this, an observational fact is that the up and down quark masses
are very similar, and so the SU(2) is an approximate isospin symmetry in QCD. With
larger values of Q this approximation becomes better and better, being promoted to
SU(3) well above the strange mass. So at these high-Q regimes, the second generation
quarks are equally as important as the first generation quarks and are thus of great
phenomenological interest at the LHC. For example, the determination of Standard
Model parameters such as the W -boson mass [170], the Weinberg angle [171], or general
electroweak parameter determinations using LHC measurements will benefit greatly
from an improved knowledge of the strange or charm quark distribution. However,
with the relative lack of processes entering a global fit of PDFs that are sensitive to
the strange quark distribution, the strange PDF is in general much less constrained
than the up and down distributions.
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The determination of the proton strangeness will be addressed in this section. We
will employ the NNPDF3.1 methodology to determine the strange quark distribution
using various cutting edge theoretical calculations supplemented by the addition of
LHC strange sensitive measurements. We shall consider the strangeness ratio

Rs(x,Q2) = s(x,Q2) + s̄(x,Q2)
ū(x,Q2) + d̄(x,Q2)

(4.1)

which measures the sea-strangeness relative to the other light sea-quark combinations.
The strangeness ratio of equation 4.1 has gained a lot of interest recently, with
tensions arising from ATLAS measurements of W and Z boson rapidity measurements
favouring a ratio of Rs(0.023, 1.62 GeV2) ∼ 1 [172, 173] strongly incompatible with
the Rs(0.023, 1.62 GeV2) ≲ 0.5 obtained from the CT18, CT18A (CT18A a variant of
CT18 which includes the ATLAS W and Z rapidity distributions) [35], MMHT14 [36],
and ABMP16 [37] PDF analyses.

4.1 Data sensitive to the strange distribution

The main bulk of the data used in this study stems from the precision strong cou-
pling determination of [174]. In particular, this contains measurements of dimuon
(anti)neutrino-nucleus DIS cross sections from NuTeV [175, 176]. The NuTeV exper-
iment measured charged current (CC) (anti)neutrino-iron collisions which leads to
charm production events through the strange quark (or the Cabibbo suppressed down
quark 1) interactions. This leads to charm quark production which semimuonically
decays to a dimuon final state whereby the muons have opposite charge. The neutrino
beam energy varied in the range 20-400 GeV. Additionally, inclusive gauge boson pro-
duction in proton-(anti)proton collisions from various Tevatron and LHC experiments
[173, 178–181] are also present in this data selection.

Accompanying these strange-sensitive datasets are additional measurements which
are introduced to better constrain the strange distribution. The NOMAD [182]
experiment measures neutrino-iron deep inelastic scattering events giving rise to dimuon
final states. The process is shown schematically in figure 4.1. The semi-leptonic decay of
the charm quark results in dimuon production where the final state muon is oppositely
charged to that coming from the charm quark decay. The dimuon presents a clear
signal by which to differentiate this process from other charged current background

1The CKM matrix elements to compare are |Vcs| = 0.997± 0.017 with |Vcd| = 0.218± 0.004 [177].
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Figure 4.1: The dominant mechanism for neutrino induced charged current deep inelastic
scattering charm dimuon production measured by the NOMAD experiment [182]. The
processes stemming from an emitted down quark is Cabibbo suppressed.
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Figure 4.2: The dominant mechanism for the associated W + c production. The d and d̄
contributions are Cabibbo suppressed.

interactions. Crucially, while the charm dimuon production can proceed via an emitted
down quark, this process is Cabibbo suppressed by CKM matrix elements and so the
NOMAD mechanism provides a precise probe for the strangeness of the proton. The
observable delivered by NOMAD is the charm dimuon cross section ratio normalized
by the total charged current cross section:

R(Eν) = σµµ(Eν)
σCC(Eν) , (4.2)

where we bin the measurements in Eν , the neutrino beam energy. The NOMAD
experiment introduces a total of 19 additional data points. The observable of equation
4.2 is ideal for constraining strangeness as the ratio leads to cancellation of experimental
uncertainties as well as the fact that the denominator is largely insensitive to the
strange distribution since the inclusive cross section does not suffer from a Cabibbo
suppressed first generation quark contribution.

In the case of proton-proton collisions the ATLAS 7 TeV inclusive gauge boson
production [173] is adjusted to also include the off-peak2 and forward rapidity bins

2Dilepton invariant mass significantly above and below the Z peak.



72 Constraining the strange content of the proton

(which were originally omitted from [174]) making for a total of 91 data points from
this experiment. Measurements of W + c-jet from ATLAS at 7 TeV [183] and CMS
at 7 [184] and 13 TeV [185] are also included. The dominant mechanism for this
process is shown in figure 4.2 which again uses the Cabibbo suppression of the first
generation quark channel to probe the strange content most dominantly. These datasets
together contribute 37 extra measurements. Finally, 32 extra data points are introduced
corresponding to the ATLAS W+jets measurement at 8 TeV differential in the W -boson
transverse momentum, pT [186]. The total number of data points in this study is thus
4096; optimized for a precision determination of the proton strangeness.

4.2 Theoretical considerations

4.2.1 The NOMAD observables

To compute the theoretical predictions corresponding to the numerator and denominator
of the ratio observable, equation 4.2, we require the DIS double differential cross section:

d2σi

dxdQ2 = G2
FM

2
W

4π
1

(Q2 +M2
W )2

·
[(
Y+ −

2m2
px

2y2

Q2

)
F i

2(x,Q2)− y2F i
L(x,Q2) + Y−xF

i
3(x,Q2)

]
Ki (4.3)

where Y± = 1± (1− y)2 related to the inelasticity y = Q2/(2mpEνx). The quantity GF

is the Fermi constant and MW is the W -boson mass. The index i enumerates whether
we are considering the numerator (i = µµ) or the denominator (i =CC) of equation 4.2.
Correspondingly, the overall factor Ki is unity for the inclusive cross section (i =CC)
while for the charm dimuon measurement it is the charm semi-leptonic branching ratio
and has the slightly more involved functional form:

K(µµ) =
∫ 1

0
dz
∑

h

fhD
h
c (z)B(h→ µX) (4.4)

where fh is the production fraction of a charmed hadron, h, and B(h → µX) is the
inclusive branching ratio for the muon decays. The quantity Dh

c (z) is the charm
fragmentation function [187], which is required when specific final states are identified
(exclusively or semi-inclusively) and can be thought of as the probability that an
unpolarized charm quark fragments into an unpolarized charmed hadron, h, where the
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hadron carries a fraction z of the parton momentum. As with PDFs, this probabilistic
interpretation breaks down beyond LO in QCD [188]. Akin to PDFs, fragmentation
functions are non-perturbative objects in QCD and require to be fitted to data as-
suming some parameterization. The NOMAD experiment assume the Collins-Spiller
parameterization [189], as well as a universal fragmentation function, Dc(z), for all
charmed hadrons:

Dc(z) =
[1− z

z
− ϵc

2− z
1− z

]
(1 + z)2

[
1− 1

z
− ϵc

1− z

]−2
(4.5)

where ϵc is a free parameter and determined, using NOMAD data as well as data from
E531 at Fermilab [190], to be:

ϵc = 0.165± 0.025. (4.6)

The production fraction and branching ratio are then combined in an effective semi-
leptonic branching ratio for muon production:

Bµ =
∑

h

fhB(h→ µX) (4.7)

with the functional form of Bµ(Eν) = a(1 + b/Eν)−1 being assumed. The fit parameters
are again determined by NOMAD [182] to be a = 0.097±0.003 and b = 6.7±1.8. These
uncertainties are included as systematic uncertainties for inclusion in the experimental
covariance matrix to be used in the PDF fits as discussed in section 3.2.1.

Both the charm (i = µµ) and total (i =CC) structure functions F i
2,L,3(x,Q2) of

equation 4.3 are computed using APFEL [147] and have been benchmarked against
an independent computation based on [191]. The agreement is on the permille level,
reaching a few percent in the lowest Eν bins. Finally, the observable of equation 4.2 is
related to the differential cross sections of equation 4.3 by integrating over the fiducial
phase space:

σi(Eν) =
∫ Q2

max

Q2
min

dQ2
∫ xmax

xmin
dx

d2σi

dxdQ2 (x,Q2, Eν) (4.8)

which is handled numerically.
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4.2.2 NNLO massive corrections in neutrino DIS

We incorporate charm-quark massive corrections in the theoretical description of the
neutrino DIS structure functions [191, 192] (computed at NNLO in QCD) of NOMAD
[182] and NuTeV [176]. These massive corrections are not ready to be implemented
directly in a PDF fit owing to their computational intensity [191] and so are delivered
in the K-factor approximation, defined by convolving an NNLO PDF set, fNNLO, with
the relevant partonic cross section. Schematically:

K = fNNLO ⊗ σ(mc ̸= 0)
fNNLO ⊗ σ(mc = 0) (4.9)

and so the differential cross section of equation 4.3 including massive corrections reads:

d2σi

dxdQ2

∣∣∣∣∣
mc

= K · d2σi

dxdQ2

∣∣∣∣∣
mc=0

. (4.10)

4.2.3 Nuclear corrections in neutrino DIS

The neutrino DIS measurements of NuTeV and NOMAD used in this study use an iron
(Fe) target. It is a known fact that the PDFs of free nucleons are not identical to those
when the nucleons are bound in a nucleus [193, 168]. This effect is, however, ignored
in our study since they are expected to be sub-dominant relative to other sources
of uncertainty. For the case of NuTeV, the effect is shown explicitly to be moderate
[194], while for NOMAD the effect is expected to approximately cancel in the ratio
observable. The validity of the latter statement was checked by computing equation 4.2
using the NLO Fe nuclear PDF set nNNPDF2.0 [167] and compared with the equivalent
NLO free proton PDF set. The difference was on the permille level, reaching ∼ 3% in
the lowest Eν bin: vastly smaller than the data and PDF uncertainties.

4.2.4 NNLO corrections for collider gauge boson production

The theoretical predictions for inclusive W and Z-boson production as well as for
W -boson production in association with charm quarks or light jets are evaluated at
NLO using MCFM+APPLgrid [195, 196] and are supplemented by NNLO QCD K-factors.
These K-factors are computed using FEWZ [197] for the inclusive gauge boson production,
and Njetty [198, 199] for the W production with light jets. However, for the W + c-jet
production data, NNLO QCD corrections have only recently been made available [200]
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and are not ready to be used in a PDF fit. As such, NNLO QCD corrections are
omitted and the missing higher order uncertainty is implemented using the so-called
9-point (renormalization and factorization) scale variations of the NLO calculation
[156, 157], which allows a component to be added to the t0 covariance matrix to account
for the theoretical uncertainties that affect this observable in the fit.

4.2.5 Positivity of cross sections

Using the approach outlined in section 3.2.4, positivity of the charm structure function,
F c

2 , is imposed alongside positivity constrains on light quark distributions. This ensures
the intrinsic charm PDF does not become unphysically negative.

4.3 PDF fit strategy

We now assess the impact of the above experimental data and theoretical considerations
on the PDF fits. We will perform PDF fits at NNLO, where available, and all the
PDFs are obtained using the NNPDF3.1 methodology [136]. The reason for this is
that, at the time this study was performed, the NNPDF4.0 approach and PDF sets
were not yet available. An interesting future study would be to perform this study
presented in this section using the enhanced accuracy of the NNPDF4.0 approach.

The first PDF fit is our baseline, referred to henceforth as str_base. This fit
corresponds to [174], with the exception that NNLO charm-mass K-factors for NuTeV
data are included, positivity on F c

2 is enforced and the 2010 and 2011 ATLAS inclusive
gauge boson production of [173, 180] are omitted. The reason for this last point is that
these datasets introduce tensions in the PDF fit and so by isolating them in this way,
their impact can be more critically assessed.

The inclusive gauge boson production data is then reinstated and all the new
LHC data described in section 4.1 are now included to yield the PDF fit we shall call
str_prior.

Finally, the str_prior PDF set is supplemented with the NOMAD data using
the Bayesian reweighting and unweighting procedure [201, 202] with the prior being
the str_prior set. The reason the NOMAD data must be added in this way is that
the two-dimensional fiducial integral of equation 4.8 is too computationally costly
to do during a PDF fit. The reweighting procedure, however, allows us to compute
the integral only once, so long as the number of new data points is relatively small
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Table 4.1: Value of the χ2 per data point for the various strangeness-sensitive datasets
considered in this work. We display values for all 3 PDF sets described in section 4.3. The
totals for each sub-categories are also shown, which account for correlations across datasets.
Values in square brackets are for datasets not included in the corresponding fit.

Process Dataset ndat χ2
str_base χ2

str_prior χ2
str

νDIS (µµ) NuTeV [176] 76/76/76 0.70 0.71 0.53
NOMAD [182] —/—/19 [9.0] [8.8] 0.55

Total 76/76/95 0.70 0.71 0.53
W,Z (incl.) ATLAS

[180, 173]
—/91/91 [2.61] 1.52 1.44

W + c-jet CMS [184, 185] —/15/15 [1.10] 0.98 0.96
ALTAS [183] —/22/22 [0.53] 0.48 0.42

Total —/37/37 [0.76] 0.68 0.60
W+jets ATLAS [186] —/32/32 [1.58] 1.18 1.18
Total 3917/4077/4096 1.17 1.17 1.17

relative to the prior, which is indeed the case here. The baseline fit, str_base, is
composed of Nrep = 100 Monte Carlo replicas while the prior, str_prior, is composed
of Nrep = 500 replicas since the reweighting method requires a large prior in order for
the posterior to have an appreciable ensemble size. After reweighting, we construct
the PDF set, composed of Nrep = 100 MC replicas, containing all the strange sensitive
data of section 4.1, which we shall refer to as str.

In table 4.1 we summarize the values of the χ2 per data point obtained using the
3 PDF sets described above. We group the χ2 values according to the process and
consider only the strange sensitive measurements. We see that initially the inclusive
gauge boson production from ATLAS and the NOMAD measurements are poorly
described, having a χ2 per degree of freedom of 2.61 and 9.0 respectively. Including
the ATLAS data in the str_prior fit reduced the χ2 to a much better value of 1.52,
while the reweighting procedure further improves this to 1.44, thanks to the better
constrained strange PDF arising from now including the NOMAD data. Similarly
for the NOMAD data, the χ2 is improved to 8.8 at first when considering the LHC
measurements, but the reduction is much more significant when NOMAD is introduced,
dropping all the way to 0.55 in the full str PDF. The χ2 of all the other datasets,
however, continue to be consistently well described and we therefore concluded that
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the global dataset is overall consistent and satisfactorily described by the final str
PDF.

4.4 Data theory comparisons
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Figure 4.3: Comparison between the theoretical predictions against the data for the NOMAD
experiment [182] as a function of the neutrino beam energy Eν . The inset displays the ratio
to the central value of each data point. The error bands depict the 1σ PDF uncertainties.
The PDFs used are str_prior (blue) and str (green) where only the latter has the NOMAD
data included.

We now move on to compare the strangeness-sensitive datasets included in our
analysis with the corresponding theoretical predictions. We aim to assess the impact
of introducing the various datasets at the observable level, before discussing the PDF
level impact in section 4.5.

We begin by considering the impact of neutrino-DIS observables. In figure 4.3
we display the comparison for the NOMAD measurements against the theoretical
predictions as a function of the neutrino beam energy, Eν . We see that when predictions
are made using the str_prior PDF set, which omits the NOMAD data, an overshoot
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of the data points of about 20% is present. We see all the data points consistently
lie beyond the PDF uncertainty error bands and hence lead to the large χ2 value of
8.8 reported in table 4.1. After the NOMAD data is included in the fit using the
reweighting procedure, the data is now well described (evidenced by the χ2/ndat = 0.55).
We see the interesting result that once the data is considered by the fit, not only is the
central values in better agreement, but the PDF uncertainty is shrunk consistently by
approximately a factor of 4 at the observable level.

This has a knock-on effect of better describing the other neutrino-DIS dataset
considered in this work: the NuTeV dimuon production [176]. In figure 4.4 we plot the
theory prediction normalized to the data for both the neutrino and anti-neutrino beams
used in the NuTeV experiment. Shown are values for both the str_base baseline PDF
and the full str PDF set, including NOMAD. We see that not only is the central value
improved, but there is a further reduction in uncertainties across all measurements.
This is also reflected by table 4.1, whereby the introduction of the NOMAD data causes
the NuTeV χ2 to drop from 0.70 to 0.53, despite the fact that this dataset was present
in both PDF determinations.

We now turn our attention to the LHC experiments. In particular we consider
the ATLAS [183] and CMS [184, 185] measurements of W + c-jet production and
present the comparisons for ATLAS inclusive gauge boson production in appendix
B (which are in keeping with the present discussion). Figure 4.5 shows the theory
predictions, made using str_base and str, normalized to the data central value. The
measurements are binned in lepton invariant mass which are produced by the decay
of the W -boson. A consistent pattern of reduced uncertainties is observed, with a
general trend in the central value moving closer to the central data point. Indeed,
a few data points are poorly reproduced, but we highlight to the reader the rather
large experimental uncertainties in these measurements. The findings presented in
this section demonstrate the importance of a well constrained PDF set. The interplay
between datasets is strong, often leading to improved descriptions, at the observable
level, in distant regions of phase space. Indeed, such precision is necessarily required in
order to achieve strong (5σ) discrepancies needed to drive the search for new physics
forward.



4.4 Data theory comparisons 79

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7
Q (GeV)

0.7

0.8

0.9

1.0

1.1

1.2

Ra
tio

 to
 D

at
a

NuTeV c x = 2.100E-2

Data
str
base

4 5 6 7 8 9 10 11
Q (GeV)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Ra
tio

 to
 D

at
a

NuTeV c x = 0.3260
Data
str
base

3 4 5 6 7 8
Q (GeV)

0.8

1.0

1.2

1.4

1.6

Ra
tio

 to
 D

at
a

NuTeV c x = 0.2070
Data
str
base

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
Q (GeV)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Ra
tio

 to
 D

at
a

NuTeV c x = 4.200E-2

Data
str
base

Figure 4.4: Comparison between theoretical predictions and experimental data for the
neutrino (upper) and antineutrino (lower) charm dimuon cross sections measured by the
NuTeV experiment [176]. The low-x region is shown (left) as well as for high-x (right). The
theoretical predictions are normalized to the data central value (black). Predictions are made
using str_base (orange) and str (green).
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Figure 4.5: Data-theory comparison for ATLAS (top) and CMS (bottom) W + c-jet
production measured in lepton rapidity.

4.5 PDF sets with precision strange distributions

We now consider the impact of the enhanced strange-sensitivty on the PDFs themselves.
In figure 4.6 we plot the strange and anti-strange distributions as a function of Bjorken-
x at Q = 10 GeV. We present the three different PDFs considered in this work as
well as the relative uncertainties defined by δsi/si, where δsi is the uncertainty of
PDF set i and si is the central value of the reference PDF set . The inclusion of the
LHC datasets in str_prior does not greatly alter the central value of the PDF, lying
well within the 1σ uncertainty band of the baseline PDF. The effect of this dataset,
however, is to narrow the PDF uncertainty across the entire x range giving a more
precise determination of the strange distribution. Introducing the NOMAD data causes
the strange distributions to be suppressed in the region x ≳ 0.1 corresponding to the
kinematic region of the NOMAD measurements. The PDF uncertainty is reduced by
up to a third in the same region as a result.

In figure 4.7 we show a similar plot, except this time for the up and gluon PDFs.
We see a modification of the gluon PDF in the small-x region corresponding to
processes such as that shown in figure 4.2. Indeed, the deflection is within confidence
levels, though not negligible; the uncertainty, however, remains identical in all 3 fits.
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Figure 4.6: The total strange (left) and anti-strange (right) PDFs (top panel), for the
3 fits considered in this work: str_base (green), str_prior (orange), and str (blue) at
Q = 10 GeV. We also plot the relative PDF uncertainties (lower panel) defined by δsi/si.
We normalize these plots to str_base.



82 Constraining the strange content of the proton

10 3 10 2 10 1

x

0.98

0.99

1.00

1.01

1.02

1.03

Ra
tio

 to
 st

r_
ba

se

u at 10 GeV
str_base (68% c.l.)
str_prior (68% c.l.)
str (68% c.l.)

10 3 10 2 10 1

x

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

Ra
tio

 to
 st

r_
ba

se

g at 10 GeV
str_base (68% c.l.)
str_prior (68% c.l.)
str (68% c.l.)

10 3 10 2 10 1

x

0.012

0.014

0.016

0.018

0.020

0.022

0.024

(R
at

io
 to

 st
r_

ba
se

)

u at 10 GeV

str_base
str_prior
str

10 3 10 2 10 1

x

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

(R
at

io
 to

 st
r_

ba
se

)

g at 10 GeV
str_base
str_prior
str

Figure 4.7: Same as figure 4.6, but for up (left) and gluon (right) distributions.

The up (and other light) quarks, however, are altered in central value very little,
with the LHC datasets constraining instead the uncertainty. Indeed, a considerable
reduction in uncertainty levels is seen in the x ≲ 0.1 region corresponding to the LHC
measurements.

4.6 Strangeness ratio

We now return to the earlier mention of the strangeness ratio defined in equation 4.1.
This is a measure of the fraction of sea-quarks that are strange or antistrange. A
closely related object is Ks(Q2) which measures the momentum fraction carried by the
strange quarks (excluding contributions from the gluons, up, and down quarks):

Rs(x,Q2) = s(x,Q2) + s̄(x,Q2)
ū(x,Q2) + d̄(x,Q2)

(4.11)

Ks(Q2) =
∫ 1

0 dx x [s(x,Q2) + s̄(x,Q2)]∫ 1
0 dx x

[
ū(x,Q2) + d̄(x,Q2)

] . (4.12)
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Figure 4.8: The strangeness ratio, defined in equation 4.11 as a function of Bjorken-x at
Q = 10 GeV (left). The relative uncertainties are also plotted (right). We use str_base
(green), str_prior (orange), and str (blue) for the computation.

We plot Rs as well as its relative uncertainties 3 at Q = 10 GeV in figure 4.8 for
the various PDFs considered in this work. The effect of the LHC data is to cause
Rs to rise slightly from the baselines central value, though the effect is very mild.
The NOMAD data has a similarly slight impact, but for x ≳ 0.1 the value of Rs is
suppressed, in keeping with the strange-PDF suppression of figure 4.6. Similarly, the
uncertainties are reduced (right of figure 4.8) by approximately 4% in x ≲ 0.1 with the
inclusion of the LHC data and further suppressed by the NOMAD data in the x ≳ 0.1
region corresponding to the NOMAD phase space. At sufficiently high-x the PDFs are
essentially unconstrained due to a lack of data points and so the PDF uncertainties
diverge: this is typical behaviour in the so-called extrapolation region.

We compare our strangeness determination with the ATLAS strangeness determi-
nation [172, 173]. A value of Rs = 1.13± 0.11 at x = 0.023 and Q = 1.6 GeV 4 was
reported using a combined analysis of HERA deep inelastic scattering data as well as
the inclusive gauge boson production of the same study. The PDF fit was done using
the xFitter framework [203]. This result suggests a much more prominent strange
sea, while results using the CT18, CT18A [35], MMHT14 [36], and ABMP16 [37] PDF
sets suggest a far more suppressed strange sea. We compare our values of strangeness
ratio against those of the above PDF sets in figure 4.9 as well as Ks of equation 4.12
for representative value of kinematic variables. We see that our results for Rs and Ks

are compatible with the above PDF sets, but not with the ATLAS ratio delivered in
[173]. The reason for this can likely be attributed to their using a reduced dataset

3Defined by δRs/Rs.
4This particularly peculiar choice of kinematic point corresponds to the region of enhanced

sensitivity of the study’s inclusive gauge boson production dataset.
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Figure 4.9: The strangeness ratio (top) and momentum fraction (bottom) as defined in
equations 4.11 and 4.12. Comparisons are made using the str_base, str_prior, and str
PDF sets of this work (respectively: orange, blue, and green) as well as PDF sets using the
CT18(A) [35], MMHT14 [36], and ABMP16 [37] methodologies (respectively: red, purple,
brown, and pink). Shown also are the 1σ PDF uncertainties. The values of Rs are at
x = 0.023 and Q = 1.6 GeV (left) and x = 0.13 and Q = 100 GeV (right). Likewise Ks is
shown for Q = 1.6 GeV (left) and Q = 100 GeV (right).

or the more restricted functional form PDF fitting methodology [203]. For the str
PDF set we observe a reduction in both the central value and uncertainties of Rs for
larger values of Bjorken-x corresponding to the enhanced sensitivity of NOMAD data
at high-x. Similar arguments apply to Ks with the large-Q behaviour explained by the
extended high-Q reach at the LHC. Our results thus suggest a strangeness fraction in
between the highly suppressed and strange dominated regimes.

The precision strange determination, referred to as str in this text, serves as a
deliverable of this study [3] ready for public consumption in the LHAPDF format [204].
We have illustrated how the precision determination of sea quark distributions is
paramount to LHC phenomenology and how the measurement and use of unfolded,
strange sensitive, observables is vital to obtain a good understanding of how strange
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the proton is. Similarly, the charm distribution is a topic of similar interest whose
precision determination has been studied in a similar fashion as this work [205] with
an improved determination, using the NNPDF4.0 methodology, to be made available
in a future publication.





Chapter 5

Disentangling new physics effects
from PDFs

The PDFs constructed using the NNPDF methodology outlined in chapter 3
implicitly assume the validity of the Standard Model (SM) at all kinematic

regions of phase space spanned by the input data. This assumption manifests through
the fact that the partonic cross sections and DGLAP evolution kernels of equation
3.31 are computed at some finite order in perturbation theory in the framework of
the Standard Model and that even the high-energy observables are not modified by
any new physics imprints. The PDFs are in this sense SM PDFs. While new physics
corrections are necessarily suppressed at the LHC and thus assuming SM theoretical
predictions is fine for phenomenological studies, such as that presented in chapter 4;
this assumption is a possible source of inconsistency when a beyond the Standard Model
(BSM) analysis is performed. Indeed, the precise nature of such a work mandates that
the Standard Model must be extended, for example, by extending the gauge group or
matter content of the theory. In turn, this requires that the partonic cross sections or
DGLAP evolution to be corrected accordingly, possibly yielding significantly different
PDFs.

While a direct search for BSM physics does not suffer from this problem (looking
instead for a Breit-Wigner resonance in event count atop a continuously decreasing
SM background [15, 16]) indirect searches must be most cautious of this inconsistency.
In indirect searches, one attempts to exploit subtle deviations from the SM signal
which can be induced by possible heavy degrees of freedom beyond the direct collider
kinematical reach. Indirect approaches to constraining BSM dynamics often make
use of the effective field theory framework to study the higher-dimensional operators
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which are generated by integrating out heavy degrees of freedom (see section 2.3 and
references therein) which thereby restricts the class of UV completions which may exist.
The EFT then provides a powerful tool to identify and parameterize the new physics
in a model-independent, bottom-up, manner. It is clear then that not only is a firm
grasp on experimental uncertainties tantamount to the success of a BSM study, but
so too is the precision of theoretical ingredients such as the perturbative order of the
partonic cross section or PDFs and their uncertainties. As such, simply omitting the
BSM sensitive datasets used in an indirect search from a PDF fit is unsatisfactory since
one loses constraining power on the PDFs: a quantity whose precision is of utmost
importance. On the other hand, inclusion of the BSM datasets in both is perhaps even
more unsatisfactory since the logical inconsistency may lead to incorrect conclusions.

This apparent dichotomy is the concern of this chapter. We will assess the question
of how the PDF and EFT interplay may affect conclusions on bounds for BSM physics
and answer the question of whether the new physics effects can be reabsorbed into a
flexible parameterization of the PDFs. In what follows, section 5.1 describes how one
can explore the space of EFT parameters in a way that the back-reaction of non-zero
Wilson coefficients on the PDFs can be studied. Section 5.2, shows how bounds on the
Wilson coefficients are then obtained, accounting for the PDF uncertainties as well as
the finite size uncertainties owing to the fact that a finite ensemble of PDF MC replicas
are used. In section 5.3, we then deploy this methodology to study the interplay of
SMEFT operators and the PDFs using deep inelastic scattering data. Section 5.4 then
extends this to include high-mass Drell-Yan processes from the LHC.

5.1 PDF exploration of EFT space

In this section we will outline the procedure for how one can explore the EFT parameter
space and simultaneously account for the back-reaction effect on the PDFs. For our
studies we will employ the Standard Model Effective Field Theory (SMEFT) lagrangian
of equation 2.82 due to the numerous advantages this approach enjoys (outlined in
section 2.3.4), while the prescription below can equally well be applied to other EFTs
such as, for example, the HEFT. The general approach corresponds to picking a
subset of Nop non-renormalizable operators with corresponding Wilson coefficients
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Figure 5.1: Schematic depiction of an example choice of benchmark points corresponding
to a BSM scenario with 3 Wilson coefficients. Each mark depicts a particular choice of
benchmark point in arbitrary units. The point (0, 0, 0) corresponds to the SM. The vertical
lines are to aid the reader.

{c1, . . . , cNop}. We shall collect these Wilson coefficients in vector form as

c =


c1
...

cNop

 (5.1)

which we imagine as living in a Nop dimensional vector space. An exploration of this
vector space can be made by performing a scan of the Wilson coefficients. We do so by
choosing a set of benchmark points:

P = {c1, . . . , cNop} (5.2)

chosen to be sufficiently well spread so as to achieve a good resolution of the Wilson
coefficient space, but not too far from the SM point (the origin) in order to avoid
spoiling the validity of the perturbative expansion. An illustration in the 3-dimensional
case is shown in figure 5.1.

We initially construct a PDF set by assuming as theory input the SM (c = 0).
Correspondingly the theory prediction entering the figure of merit of equation 3.11 is
the purely SM prediction. This is the typical case whereby one assumes the PDF is not
sensitive to the BSM dynamics. We shall refer to the outcome of a PDF fit determined
in this way as SM PDFs. Thus the theory prediction, t, varies upon moving in Wilson
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coefficient space only through the partonic cross section and so we have an explicit
dependence on c: t = t(c). We generalize this notion further by supposing that the
PDF also varies as we explore the EFT parameter space. This corresponds to the
fully consistent scenario, whereby the training of the PDFs is done in the presence of
non-vanishing EFT operators in equation 3.11, with the couplings determined by the
particular choice of benchmark point, c. The PDF then acquires implicit dependence
on the Wilson coefficient, which we write as f(c). As such, the theory prediction vector
acquires dependence on the Wilson coefficients not only through the partonic cross
section, but also implicitly through the PDF dependence on c: t = t(c, f(c)). The
PDF sets constructed in this way will be referred to as SMEFT PDFs henceforth: with
one SMEFT PDF set for each benchmark point.

We highlight here that at the time of performing the work in the present chapter,
the NNPDF4.0 methodology and PDF sets were in their infancy. As such, the work
done here is performed using the NNPDF3.1 approach. The major difference between
the two approaches is the use of genetic algorithms [141] to optimize the figure of merit
rather than the gradient descent based approaches, discussed in chapter 3.

5.2 The Hessian approach to EFT bounds

Having performed the scan of EFT space by trialing various benchmark points, we now
turn our attention to how this process can give us bounds on the Wilson coefficients.

We pick a set of benchmark points P = {ci : i = 1, . . . , NBP} and for each element
of this set, we compute a χ2 value to the data:

χ2
i =

(
d− t(ci, f(ci))

)T

C−1
(

d− t(ci, f(ci))
)

i = 1, . . . , NBP (5.3)

where d is the vector of experimental measurements and t(ci, f(ci)) the corresponding
vector of theoretical predictions, computed as the mean across replicas. Note that
in the case of SM PDFs, the PDF used to compute t does not depend on ci. The
covariance matrix, C, is constructed under the t0 prescription outlined in section 3.2.1.

For reasons that will become apparent shortly, we wish to treat the χ2 as a continuous
function of the Wilson coefficients. For now it is only known at each benchmark point.
We do so by fitting a functional form to the list of known, but discrete, χ2 values given
by computing equation 5.3 for each benchmark point. To motivate the functional form
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we use, note that the χ2 can be written near its minimum as:

χ2(c) = χ2
0 + 1

2

Nop∑
p,q=1

(c− c0)p(c− c0)q
∂2χ2

∂cp∂cq

∣∣∣∣∣
c=c0

+O(|c− c0|3) (5.4)

where c0 is the location of the minimum and χ2
0 is the value of the χ2 at this mini-

mum. Note that in the case of SM PDFs and truncating at O(1/Λ2), this functional
approximation is exact globally. The reason for this is that the theory predictions are
at most linear in the Wilson coefficients and so the χ2 is at most quadratic. Thus, the
quadratic form above exactly captures the χ2 dependence on c. However, in the case
of SMEFT PDFs, it is an approximation, justified by the fact that we are expanding
the χ2 around the minimum and restricting to within a small neighborhood about this
point. The non-linear dependence of the PDFs on c being the reason why the above
argument does not hold in the SMEFT PDF case.

In principle, higher order terms in equation 5.4 are subleading in the neighborhood
of the minimum. However, it is often advantageous to include quartic terms in the case
where one considers the effect of O(1/Λ4) terms in the cross section. Again, in the
case of SM PDFs, the functional form thus becomes exact, while for SMEFT PDFs it
remains an approximation. This will be required in the discussion of section 5.4.6 and
the following arguments must then be replaced by a numerical optimization approach.

Writing the Hessian, Hpq, as the matrix of mixed derivatives (with the factor of
1/2) we may write this as:

χ2(c) = χ2
0 + (c− c0)TH(c− c0) + · · · . (5.5)

We then treat χ2
0, c0, and H as parameters to be fitted to the known values of the

function at the benchmark points as computed by equation 5.3. We package these fit
parameters in vector form as

β = (χ2
0, c0, H) (5.6)

such that we treat the functional form of equation 5.5 to additionally be a function of
β, χ2(c; β). Note that the Hessian is symmetric and so we have

dim β = 1 +Nop + 1
2Nop(Nop + 1) = 1 + 1

2Nop(Nop + 3). (5.7)
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We can obtain β by minimizing the usual ordinary least squares function:

β̂ = arg min
β

NBP∑
i=1

∣∣∣χ2
i − χ2(ci; β)

∣∣∣2 . (5.8)

The minimization problem of equation 5.8 in fact has a closed form solution. To see
this note that we may write equation 5.5 as:

χ2(c) =
(
1 −2cp cpcq

)
χ2

0 + cT
0Hc0

Hpq(c0)q

Hpq

 (5.9)

where summation on repeated indices after the tensor multiplication is implied. The
convention here is that p, q = 1, . . . , Nop indices run over components of c while
i = 1, . . . , NBP runs over the benchmark points. The vector of χ2 values evaluated at
all the benchmark points thus reads:


χ2(c1)

...
χ2(cNBP)

 =


1 −2c1

p c1
pc

1
q

... ... ...
1 −2cNBP

p cNBP
p cNBP

q


︸ ︷︷ ︸

X


χ2

0 + cT
0Hc0

Hpq(c0)q

Hpq


︸ ︷︷ ︸

δ

(5.10)

which defines the (known) design matrix X and allows us to write the functional form
of equation 5.5 to be linear in the newly defined covariates δ, which are themselves a
non-linear, though invertible, function of the original parameters of interest β.

The solution to equation 5.8 is then the well known solution from linear regression:

δ̂ = (XTX)−1XT ·


χ2(c1)

...
χ2(cNBP)

 (5.11)

which, by the Gauss-Markov theorem, will give the best 1 linear unbiased estimator for
δ. Having computed δ̂, we can invert the relation to find β̂ by using the values of Hij

to solve for c0 and then solving for χ2
0.

1In the sense that it has the least sampling variance.
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5.2.1 Confidence intervals

Having fitted the functional form of equation 5.5 to the grid of benchmark points,
the maximum likelihood estimator (assuming the data is distributed according to a
multivariate normal distribution) for the Wilson coefficients, ĉ, is then given by:

ĉ = arg minχ2(c). (5.12)

However, in general we will be more interested in a α% (0 ≤ α ≤ 100) confidence
interval rather than a best fit value. This will be a random interval that will, on
average, contain the true Wilson coefficients α% of the time samples are made.

This can be done using the prescription outlined in [206]. The region in parameter
space described by the subspace of Wilson coefficients:

Rα = {c : χ2(c)− χ2
0 ≤ ∆α,Nop} (5.13)

contains all the points in Wilson coefficient space corresponding to a confidence level
of α. The constant ∆α,Nop represents the increment in χ2 corresponding to a (α
significance) deviation from the maximum likelihood estimator. It can be obtained
from any standard χ2 distribution table and corresponds to the inverse of the cumulative
function for a χ2 distribution having Nop degrees of freedom. Using equation 5.5, this
has a very simple geometric interpretation:

χ2(c)− χ2
0 = (c− c0)TH(c− c0) = ∆α,Nop (5.14)

and remembering that H is the Hessian matrix evaluated at a minimum, then equation
5.14 is a quadratic form tracing out a Nop dimensional ellipsoid which is the boundary
of the confidence region Rα. In 1 dimension this surface is an interval contained within
the real number line, while in 2 dimensions this surface corresponds to an ellipse. The
marginalized bounds for each of the orthogonal directions are then given by projecting
the ellipse onto each axis as shown in figure 5.2 [207]. Equivalently the ellipse is
placed within a minimally enclosing hypercube (square in two dimensions) that is
aligned with the principal directions. The dimensions of this hypercube then yield the
confidence interval for the corresponding directions. This problem can be formulated
using constrained optimization. We wish to extremize ci subject to the constraint that
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c1

c2

Figure 5.2: An example of an ellipse in a 2-dimensional Wilson coefficient space which
forms the boundary of a confidence region (orange). The green lines form the minimally
enclosing hypercube, the dimensions of which give the bounds for the marginalized directions
and are given by the solutions to equations 5.19 and 5.20.

we remain on the boundary of Rα. The target function is then:

Li = ci − λi

(
(c− c0)TH(c− c0)−∆α,Nop

)
(5.15)

where λi is a Lagrange multiplier and we have one for each direction (operator).
Differentiating this target function then gives:

∂Li

∂cj

= δij − 2λiHjk(c− c0)k = 0 (5.16)

which gives the set of equations

1− 2λi Hik(c− c0)k = 0 No sum on i (5.17)
−2λi Hjk(c− c0)k = 0 ∀j ̸= i. (5.18)

The Lagrange multiplier is then strictly non-vanishing for any direction, i, that we
consider, since otherwise the first of the two equations would give a contradiction.
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These conditions then reduce further to give:

Hjk(c− c0)k = 0 ∀j ̸= i (5.19)
(c− c0)TH(c− c0) = ∆α,Nop (5.20)

which gives two solutions for ci corresponding to the upper and lower bounds. The
implementation of equations 5.19-5.20 has been done using the symbolic mathematics
library SymPy [208].

5.2.2 Including PDF uncertainty

For the case of the fixed SM PDF analysis, it is important to consider the effect of
the PDF uncertainty on the bounds obtained. The prescription for this is very akin to
the above discussion, except for the fact that bounds are obtained for each of the Nrep

replicas rather than the central replica. One thus obtains a set of bounds

[
c

(k)
min, c

(k)
max

]
k = 1, . . . , Nrep (5.21)

which gives the bounds with 1σ-PDF uncertainty after taking the 68% envelope or
2σ-PDF uncertainty with the 95% envelope. The case for SMEFT modified PDFs,
however, incorporates the PDF uncertainty by construction since it was constructed
from a global set of PDFs.

5.2.3 Methodological uncertainty and the bootstrap method

As discussed above, while exact for the SM PDFs, the functional form of equation
5.5 is an approximation for the SMEFT PDF case inspired by truncating the Taylor
expansion around the EFT minimum. The reason for this can be traced backed to the
fact that the χ2 is not only dependent on the Wilson coefficients through the partonic
cross section, but implicitly through the fact that the PDFs too are non-linear functions
of c. As such, for the SMEFT modified PDF analysis, one must consider the impact
of the finite number of replicas used in the ensemble. Indeed, computing χ2(ci) for a
given ensemble will vary depending on which member replica is used in the calculation.
The uncertainty from this finite sampling of an unknown population can be computed
using the bootstrap method [174, 209].
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We provide a general overview of the bootstrap prescription before applying it
specifically to our particular use case concerning the statistical fluctuations of the χ2

in varying the ensemble member.
Consider independent and identically distributed random variables X1, . . . , Xn each

taking values in X with common cumulative distribution function F . We can construct
an estimator for some unknown parameter θ as a function, T , of our data

θ̂ = T (X1, . . . , Xn). (5.22)

In general, we will be interested in the accuracy of our point estimate, θ̂, as well as
the value itself. Noting that θ̂ is a function of random variables so is itself a random
variable, then one may enquire about its variance, Var(θ̂). If F is known analytically,
then we can also compute Var(θ̂) analytically 2:

Var(θ̂) =
∫

X n

(
θ̂ − E(θ̂)

)2
dF (5.23)

E(θ̂) =
∫

X n
θ̂ dF. (5.24)

If instead, the distribution is not known, or the above integrals are intractable, but
the distribution is easily sampled from (through Markov Chain Monte Carlo [210, 211]
or accept-reject sampling), then a Monte Carlo estimate of the variance is an adequate
substitute. In this regime, we construct N samples of the data

{X i
1, . . . , X

i
n} i = 1, . . . , N (5.25)

which in turn generates N samples of the estimator θ̂i = T (X i
1, . . . , X

i
n). Then the

variance of θ̂ can be estimated using the sample variance:

Var(θ̂) = 1
N − 1

N∑
i=1

θ̂i −
1
N

N∑
j=1

θ̂j

2

(5.26)

where we choose the unbiased (Bessel corrected) estimator for the variance.
However, a ubiquitous scenario occurs when F is sufficiently complex that it is

neither known nor easily sampled from: as such any attempt at an analytic calculation
or Monte Carlo estimate will prove futile. Instead, we consider the case where we have
made a sample of the data once to obtain B = {X1, . . . , Xn}, but are unable to make

2We use the notation that the measure is to be understood as dF =
∏n

i=1 F
′(xi)dnx
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further samples. To proceed we come up with a notion of the cumulative distribution
function obtainable purely from B.

Definition 5.1 (Empirical cumulative distribution function) Let X1, . . . , Xn be
independent and identically distributed random variables. The empirical cumulative
distribution function, F̃ (t), is defined by

F̃ (t) = 1
n

n∑
i=1

I(Xi ≤ t) (5.27)

where I is the indicator function:

I(Xi ≤ t) =

1 if Xi ≤ t

0 otherwise
. (5.28)

The empirical cumulative distribution function is attractive because it is unbiased:

E
(
F̃ (t)

)
= 1
n

n∑
i=1

P (Xi < t) = P (X1 < t) = F (t) (5.29)

and by the weak law of large numbers: asymptotically tends to the true cumulative
distribution function in the limit of large n. The bootstrapping prescription simply
suggests using the empirical distribution instead of the true distribution to sample the
data points of equation 5.25. The corresponding sampling distribution is then uniform
on the set of measured values, B. The procedure is then straightforward. From the set
of measured values, obtain a bootstrap sample:

B∗
i = {X∗

1i, . . . , X
∗
ni} (5.30)

by sampling uniformly with replacement from B. As such, each B∗
i differs from the

original dataset B in that it includes duplicates and missing values. We construct
i = 1, . . . , Nres such bootstrap resamples, which gives Nres copies of the estimator θ̂:

θ̂∗
i = T (X∗

1i, . . . , X
∗
ni) (5.31)

with the bootstrap variance being estimated by:

Var(θ̂) = 1
Nres − 1

Nres∑
i=1

(
θ̂∗

i −
1
Nres

Nres∑
i=1

θ̂∗
i

)2

. (5.32)
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We now return to the original problem of estimating the statistical fluctuations of
χ2(ci) at each benchmark point, ci, due to using different PDF ensemble members in
the theory calculation. For all the data points, we construct a corresponding vector
of theory predictions tk using the k’th replica of the ensemble, where dim tk = Ndata.
This generates a set of theory predictions of size Nrep:

B = {t1, . . . , tNrep} (5.33)

from which we resample with replacement Nres times to obtain the bootstrap samples:

B∗
i = {t1i, . . . , tNrepi} i = 1, . . . , Nres. (5.34)

For each bootstrap, compute the mean theory prediction:

t∗
i = 1

Nrep

Nrep∑
k=1

tki (5.35)

and use it to compute the χ2 to the data to obtain a scalar value for each bootstrap
χ2∗

i . The variance of the χ2 is then the sample variance across bootstraps:

Var(χ2∗) = 1
Nres − 1

Nres∑
i=1

χ2∗
i . (5.36)

A value for Nres of 104 was determined to be adequate in order to obtain stable results
that are independent on the seeding of the random number generator that performs
the bootstrap sampling.

5.3 Constraining the SMEFT with lepton-proton
scattering

As an initial proof-of-concept study, we choose to constrain a subset of 4 Warsaw basis
operators using DIS data. The precise choice of operators and dataset is discussed in
section 5.3.1. The DIS only study provides a convenient initial framework to assess
the interplay of PDFs with BSM effects due to a number of reasons. The first is
that, thanks to the collider DIS data from HERA [158], a sufficiently broad kinematic
coverage of Q is achieved. As such we suspect the highest energy bins to be sensitive
to the heavy mass effects and thus provide constraints on the Wilson coefficients; while
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the large number of DIS data points (3092 in total) provides strong constraints on the
PDFs. Secondly, the modifications to the DIS structure functions arising from these
operators can be easily calculated in a perturbative framework. This calculation is
presented in section 5.3.2 and subsequently implemented in the APFEL library [147]:
responsible for generating DIS predictions for the corresponding observable. The
calculation is done to leading order in QCD while a separate analysis shows that QCD
corrections to the new SMEFT scattering graphs are negligible. The SM partonic cross
sections are computed at NNLO, however. The DIS data form approximately 75%
of the total global dataset in a PDF fit and is thus very much the backbone of any
PDF determination. The assessment of its interplay with BSM dynamics is therefore a
crucial first starting point. For this particular study, we question to what extent the
neural network parameterization of PDFs is prone to fitting away any possible BSM
effects present within DIS data. We then analyse the effect that a consistent treatment
of the PDFs has on imposing bounds on the Wilson coefficients. We do so by obtaining
bounds assuming a fixed SM PDF, and then compare these bounds when we allow for
the PDFs to vary appropriately as we explore the Wilson coefficient space using the
approach outline in section 5.2.

5.3.1 Dataset selection and BSM scenario

The operators we choose to study are a subset of the Warsaw basis [108] restricted to
the form

Of = cf

Λ2 (l̄RγµlR) (q̄f
Rγ

µqf
R) (5.37)

where l are the charged lepton Dirac spinor fields taken in this study to be the electron
or muon field and qf are the quark fields corresponding to flavour f which are taken
to be the independently parameterized up, down, strange and charm flavours. We
assume a universal coupling to the lepton families as suggested by LEP precision data
[212], but non-universally to the quarks and as such there are 4 independent Wilson
coefficients, cf . The new physics scale is denoted by Λ taken in this study to be 1
TeV well above the highest Q value of 173 GeV reached by the neutral current HERA
experiments. Note that the spinor fields have been projected onto their right-handed
components, lR = 1

2(1 + γ5)l, thus transforming trivially under SU(2)L. The operators
of the form presented in equation 5.37 form a reasonable case study for analyzing the
interplay of BSM dynamics with the parton distribution functions. As is shown in
section 5.3.2, the modifications to the neutral current structure functions scale linearly
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Figure 5.3: Kinematic coverage of the DIS datasets used in this study. The markers are
grouped according to their experiment.

in Q2 (at leading order in the Wilson coefficients) leading to an energy growing effect
at the observable level that is faster than the SM: the sensitivity to which should be
present within the highest energy DIS measurements available.

As discussed earlier, for this initial study we shall use data from inclusive fixed-
target deep inelastic scattering data, from NMC [213, 214], SLAC [215], BCDMS [216],
CHORUS [217], NuTeV [175] as well as the HERA combined collider data from H1 and
ZEUS [158]. We also include the HERA measurements for heavy flavour (charm and
bottom) production [218] which proceeds via gluon-boson fusion and thus constrains
the gluon. The kinematic coverage in the (x,Q2) plane for all these DIS datasets is
presented in figure 5.3, with the markers grouped according to their experiment.

5.3.2 SMEFT-modified DIS observables

When computing the full amplitude for neutral-current DIS scattering we have contri-
butions from photon and Z mediated exchange as well as a new contribution from the
dimension 6 operators. To maintain generality, we consider fields having chirality λ for
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Figure 5.4: Diagram corresponding to deep inelastic scattering of eH → eX by the added
BSM 4-fermion contact interaction in the parton model. The variable q = k− k′ is defined to
be the exchanged momentum.

the leptons and λ′ for the quarks:

Of = cf

Λ2 l̄γµ(1 + λγ5)l q̄fγµ(1 + λ′γ5)qf . (5.38)

The squared amplitude then introduces 3 additional terms not present in the Standard
Model calculation:

|A|2 = |Aγ|2 + |AZ |2 + 2Re(AγA∗
Z)+

|ABSM|2 + 2Re(ABSMA∗
γ) + 2Re(ABSMA∗

Z).
(5.39)

Suppressing the spinor indices, the Feynman diagrams evaluate to read:

iAγ = (−ie)ū(k′)γµu(k)
(
−igµν

q2

)
⟨H(P )|jν

EM(0)|X(PX)⟩ (5.40)

iAZ =
(
− ig

cos θW

)
ū(k′)γµ(VZ − AZγ

5)u(k)
(
−igµν

q2 −M2
Z

)
⟨H(P )|jν

Z(0)|X(PX)⟩ (5.41)

iABSM = (−i)ū(k′)1
2γµ(1 + λγ5)u(k) ⟨H(P )|jµ

BSM(0)|X(PX)⟩ . (5.42)

with the vector and axial couplings with the Z boson being:

VZ = 1
2I3 − e sin2 θW AZ = 1

2I3 (5.43)

where e is the particles electric charge in units of the positron charge, θW is the weak
mixing angle and I3 is the third component of the weak isospin. We mention here the
fact that the BSM vertex is a 4-fermion contact interaction. As such, the Feynman rule
for the hadronic matrix element must omit the factor of −i since it has already been
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included in the leptonic part of the matrix element. Similarly, for notational clarity,
we have left the cf/Λ2 factor with the hadronic current insertion. The calculation of
all three additional contributions follows the same procedure as one another and so we
focus here on the SMEFT interference term with the photon. This term corresponds
to a cross term and so we must recall to take the real part and multiply by 2. This
term alone then reads:

ABSMA∗
γ = − ie

Q2 ū(k′)1
2γµ(1 + λγ5)u(k) ū(k)γνu(k′)

⟨H(P )|jµ
BSM(0)|X(PX)⟩ ⟨X(PX)|jµ†

EM(0)|H(P )⟩ . (5.44)

Remembering that in order to compute a cross section, this term lives inside a spin
sum average, we can compute the leptonic tensor as before 3:

Lµν = − ie

2Q2 Tr
(
/k

′ 1
2γµ(1 + λγ5)/kγν

)
(5.45)

= − ie

Q2

(
k′

µkν − (k′ · k)gµν + kµk
′
ν + iλk′βkαϵµναβ

)
. (5.46)

We now turn our attention to the hadronic tensor. As before, this term will be computed
within the parton model:

W µν = 1
8xP · q

∑
q

fq(x)
∑
spins
⟨q(xP )|jµ

BSM(0)|q(xP + q)⟩ ⟨q(xP + q)|jν†
EM(0)|q(xP )⟩

(5.47)
with the matrix elements now being computed using pQCD:

W µν = ie

8xP · q
∑

q

fq(x)cfQf

Λ2

∑
spins

ū(xP + q)1
2γ

µ(1 + λ′γ5)u(xP )ū(xP )γνu(xP + q).

(5.48)
It is important to highlight here that the matrix elements have been computed assuming
the ejected parton is a quark. In the case of an anti-quark, the form is much the
same except for the fact that the momenta must be swapped around and the positive
frequency modes, u, must be replaced with the negative frequency modes, v. We shall

3With the additional help of Tr(γµγνγργσγ
5) = −4iϵµνρσ.
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comment further on this momentarily. The spin-sum average simplifies to read:

∑
spins

ū(xP + q)1
2γ

µ(1 + λ′γ5)u(xP )ū(xP )γνu(xP + q)

= 1
2Tr

(
(x/P + /q)γµ(1 + λ′γ5)x/Pγν

)
= 2(x2PαPβ + xqαPβ)

(
gαµgβν − gαβgµν + gανgµβ − iλ′ϵαµβν

)
. (5.49)

At this point a pause for reflection will prove fruitful. Recall that in equation 5.48
we computed the matrix elements assuming the ejected parton is a quark. For an
anti-quark the fact that the negative frequency modes are needed is immaterial since
the massless assumption still implies

∑
spins

v(p)v̄(p) = /p (5.50)

however the reversal of momenta causes the α and β indices to swap. The net effect
is to introduce an additional minus sign for the term proportional to ϵαµβν (upon
relabelling summation indices) while the remainder of the expression is symmetric
under swapping α↔ β. This results in the structure function F3 being proportional
to (fq − fq̄) while F1 and F2 will be proportional to (fq + fq̄). This gives the overall
hadronic tensor as 4

W µν = ie

2xP · q
∑

q

fq(x)cfQf

Λ2

(
2xP µP ν−xP 2gµν+P µqν−(P ·q)gµνP νqµ−iλ′Pαqβϵ

αµβν
)
.

(5.51)
Decomposing the DIS cross section into its constituent structure functions, this

time accounting for the parity violating structure function, F3, reads:

d2σ

dxdy
= 4πα2

xyQ2

xy2F1(x,Q2) +
(

1− y − x2y2M2

Q2

)
F2(x,Q2) +

(
y − y2

2

)
F3(x,Q2)


(5.52)

with α = e/4π the fine structure constant. We remind the reader this expression is
obtained by contracting the leptonic tensor with the hadronic tensor:

d2σ

dxdy
= y

8πLµνW
µν . (5.53)

4The additional factor of two, originating from the fact that this will be a cross term in the overall
squared amplitude, has been included here.
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Performing the exercise in contracting 4-vectors and using the Ward identity qµLµν =
qνLµν = 0, we obtain the photon-BSM induced modifications to the DIS structure
functions read:

F2 = F SM
2 +Q2∑

q

e2Qfcf

2Λ2 (fq(x) + fq̄(x)) (5.54)

F3 = F SM
3 +Q2∑

q

λλ′ e
2Qfcf

2Λ2 (fq(x)− fq̄(x)) (5.55)

F1 = 1
2xF2. (5.56)

The contribution from the other terms in equation 5.39 follow by a directly analogous
computation the details of which we spare the reader of. The full correction, with the
appropriate chirality choice of λ = λ′ = 1 corresponding to equation 5.37, reads:

F2(x,Q2) =F SM
2 (x,Q2)

+ x

12e4

(3c2
d

Q4

Λ4 − 2cde
2Q

2

Λ2 (1 + 4KZ sin4 θW ))(d(x,Q2) + d̄(x,Q2))

+(3c2
u

Q4

Λ4 + 4cue
2Q

2

Λ2 (1 + 4KZ sin4 θW ))(u(x,Q2) + ū(x,Q2))

+(3c2
s

Q4

Λ4 − 2cse
2Q

2

Λ2 (1 + 4KZ sin4 θW ))(s(x,Q2) + s̄(x,Q2))

+(3c2
c

Q4

Λ4 + 4cce
2Q

2

Λ2 (1 + 4KZ sin4 θW ))(c(x,Q2) + c̄(x,Q2))

(5.57)

F3(x,Q2) =F SM
3 (x,Q2)

+ 1
12e4

(3c2
d

Q4

Λ4 − 2cde
2Q

2

Λ2 (1 + 4KZ sin4 θW ))(d(x,Q2)− d̄(x,Q2))

+(3c2
u

Q4

Λ4 + 4cue
2Q

2

Λ2 (1 + 4KZ sin4 θW ))(u(x,Q2)− ū(x,Q2))

+(3c2
s

Q4

Λ4 − 2cse
2Q

2

Λ2 (1 + 4KZ sin4 θW ))(s(x,Q2)− s̄(x,Q2))

+(3c2
c

Q4

Λ4 + 4cce
2Q

2

Λ2 (1 + 4KZ sin4 θW ))(c(x,Q2)− c̄(x,Q2))

(5.58)

F1(x,Q2) = 1
2xF2(x,Q2) (5.59)
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where θW is the weak mixing angle and for convenience we define

KZ = Q2

4 cos2 θW sin2 θW (Q2 +M2
Z) . (5.60)

with MZ the Z-boson pole mass. We note that the Callan-Gross relation is preserved
implying the longitudinal structure function retains its SM form. Recalling the dis-
cussion from section 2.3 we see that the term corresponding to |ABSM|2 is suppressed
by O(1/Λ4) and is thus sub-leading relative to the O(1/Λ2) terms. As such this study
omits the quartic corrections, keeping only the EFT interference with the SM diagrams.
Indeed, it was explicitly verified that the quadratic effects yielded virtually identical
results to the case where they were omitted in the individual operator scenario.

Since the operators of equation 5.37 do not affect the QCD splitting functions, the
QCD collinear structure is preserved. As such the DGLAP evolution equations retain
their Standard Model form. Similarly, there is no running of the Wilson coefficients
with scale since no loop calculations are done meaning no UV divergent momenta. We
show in appendix C that even if QCD loop corrections were made, the particular Wilson
coefficients for the operators of the present discussion have vanishing beta function
at NLO. The structure function modifications of equation 5.57-5.59 require a trivial
modification of the APFEL library [147] which generates the DIS theory predictions for
the NNPDF codebase.

5.3.3 BSM absorption by PDFs

In this section we present the results of PDFs obtained by performing an NNPDF3.1
DIS only fit at various benchmark point choices. Note that since we perform a manual
scan of the Wilson coefficient space, we are restricted to PDFs at representative choices
of c. We reserve discussion of a first truly simultaneous PDF extraction for chapter 6.
For lepton-proton scattering, the phenomenological quantity of interest are the PDFs
themselves, while for hadron-hadron processes, the luminosity is of principal concern
and we reserve presentation of these quantities for section 5.4

A representative point of (cu, cd, cs, cc) = (−1.3, 1.3, 0.0, 0.0) is used to present
the modifications induced on the PDFs in figure 5.5. A reminder that these Wilson
coefficients are in units of 1/Λ2 where Λ = 1 TeV. These PDFs are obtained by
performing a fit in the presence of the operators of equation 5.37 with the couplings set
according to this benchmark point. With reference to table 5.3, this point corresponds
to the PDF set with the largest deterioration in fit quality (as measured according
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Figure 5.5: The SMEFT modified PDFs fitted in a BSM scenario corresponding to
(cu, cd, cs, cc) = (−1.3, 1.3, 0.0, 0.0) (orange) normalized to the corresponding SM PDFs
(green) at Q = 100 GeV. The bands illustrate 68% confidence levels.

to the χ2 increase to the data relative to the SM). We present representative parton
flavours corresponding to the valence up quark and gluon distributions in figure 5.5.
We see that the modification in the PDF central value is moderate, with the largest
deflection observed in the gluon distribution approaching the 68% confidence level
band of the baseline SM PDF. The largest deflection occurs in the Bjorken-x region
corresponding to the area containing the highest concentration of data: the so-called
data region. Correspondingly, this is where the PDF is best constrained. Despite the
deflection in the gluon PDF, the effect remains moderate implying a mild absorption of
the BSM effects by the PDFs. Indeed, as we show throughout this chapter and further
on in this text, for currently available data, this will prove to be a common theme. It
takes the inclusion of projected data for the High Luminosity upgrade of the LHC for
a considerable effect to be observed.

Indeed the largest deflection is seen in the gluon, where the deflection approaches
the 1σ uncertainty bands of the SM PDF fit. The reason for this is attributed to the
fact that the gluon is most constrained by the Bjorken scaling violations of high Q

data relative to the low Q measurements. This behaviour is strongly amplified by the
SMEFT operators which have an energy growing effect linear in Q2 at the O(1/Λ2)
level. On the other hand, the quark distributions are predominantly determined by the
moderate Q datasets and thus are less affected by the high-Q measurements that are
sensitive to the EFT operators. Indeed, making reference to figure 5.3, the large-x quark
distributions are most strongly constrained by the BCDMS, SLAC, and CHORUS
measurements which preside in a region of phase space corresponding to small values
of Q2 (< 300 GeV2) where EFT effects are suppressed. Interestingly, the effect of the
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Figure 5.6: Distribution of χ2 differences to the DIS data for each choice of benchmark
point relative to the Standard Model χ2: shown for both SM PDFs (green) and SMEFT
PDFs (orange). The χ2 is computed using the experimental covariance matrix of equation
3.18. The values of c for each benchmark point are tabulated in table 5.3.

EFT operators on the uncertainty bands is to leave them unchanged. This is to be
expected since the number of PDF constraining measurements is the same, regardless
of which benchmark point one uses. We will show, however, that in the scenario were
the Wilson coefficients are treated on the same footing as the PDFs in chapter 6, then
this property no longer holds. The discussion above is applicable to the vast majority
of the benchmark points (barring small statistical fluctuations) used in this study and
tabulated in table 5.3, but with varying levels of manifestation. Indeed, the PDFs
of figure 5.5 are the most affected by the EFT operators, and hence are ideal for
illustration purposes.

In figure 5.6, we plot the χ2 difference to the data, relative to the SM χ2, for each
choice of benchmark point. A clear trend of a slight drop in the χ2 in going from the
SM PDFs to SMEFT PDFs is observed; implying the absorption of SMEFT effects into
the PDF remains particularly mild at the energy scales probed by the DIS experiments.



108 Disentangling new physics effects from PDFs

25 50 75 100 125 150 175 200
Qmax

1.100

1.125

1.150

1.175

1.200

1.225

1.250

1.275

2 he
ra

/n
da

t

SM PDF + SMEFT theory
SMEFT PDF + SMEFT theory
SM PDF + SM theory

Figure 5.7: The χ2 per data point to the HERA combined data as a function of the
maximum Q cut, Qmax. The experimental covariance matrix of equation 3.18 is used in the
computation. Shown are values for SM PDFs convolved with SMEFT partonic cross sections
(green), SMEFT PDFs convolved with SMEFT partonic cross sections (orange), and SM
PDFs convolved with SM partonic cross sections (blue). The benchmark point assumed here
is (cu, cd, cc, cs) = (−1.3, 1.3, 0.0, 0.0).

The scale dependence of the structure functions can be exploited to assess the
degree of this reabsorption. Recall that in purely SM calculations, the Bjorken scaling
is broken by terms logarithmic in Q2. However, the analysis of section 5.3.2 reveals
that the SMEFT operators introduce a scale dependence linear in Q2 and hence energy
growing effects faster than the purely SM case. In figure 5.7 we plot the HERA χ2 per
degree of freedom against the maximum Q that enters the evaluation of the χ2. This is
done for the SM PDF + SM theory case, but also for a representative choice of Wilson
coefficient cu = −cd = −1.3 and cs = cc = 0 both for the case of fixed SM PDFs and
SMEFT PDFs. While for Qmax = 25 GeV the χ2 in all three cases is virtually identical
(since the vast majority of SMEFT sensitive data has been filtered out by the Qmax

cut) a rapid degradation in fit quality is observed as more and more EFT sensitive
measurements are included, while the SM curve (in blue) quickly reaches saturation.
Importantly, we note that the drop in the SM PDF + SMEFT theory (green) to the
SMEFT PDF + SMEFT theory curve (orange) is much smaller than the distance to
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the SM PDF + SM theory curve (blue). This important observation again highlights a
slight reabsorption into the PDFs: in the case where a more marked absorption occurs,
the improvement in fit quality would be closer to the SM PDF + SM theory curve.
Again, this benchmark point is chosen for illustration purposes with virtually all other
benchmark points behaving in the same way, as is evident from figure 5.6.

5.3.4 Bounds on Wilson coefficients using DIS data

We now turn our attention to discuss the second concern of this study. Namely,
the effect one would obtain on the Wilson coefficient bounds by considering a fully
consistent treatment whereby the PDFs are allowed to vary in EFT parameter space
(by producing SMEFT PDFs for each benchmark point); versus a more rudimentary
analysis of keeping the PDFs fixed as SM PDFs. Moreover, the effect of fitting multiple
EFT operators in the presence of one another is known to have a considerable impact on
the bounds as compared to when they are fitted individually owing to the correlations
between operators [43, 219]. This effect too will be assessed in light of varying PDFs
alongside the Wilson coefficients.

We begin by presenting 90% CL bounds assuming SM PDFs in table 5.1. Included
are bounds for individual Wilson coefficients as well as marginalized bounds for the full
global analysis incorporating all 4 SMEFT operators, where for the latter we include the
PDF uncertainty bounds as explained in section 5.2.2. We find that the most stringent
bounds are obtained for cu followed by cd and the widest bounds for cc and cs. This
can be understood through the observation that the corresponding quark distributions
are constrained in the same order by DIS data. Indeed, this is attributed to the
Wilson coefficients being multiplied by the corresponding PDF flavour in equations
5.57 and 5.58. Moreover, the bounds broaden significantly upon considering the full
4-dimensional Wilson coefficient space as opposed to the 1-dimensional individual case.
Indeed, this property is ubiquitous and highlights the importance of considering as
global a setting as possible: the more operators considered the better. Note however,
that in the setting of a DIS only study, bounds on, for example, top quark or Higgs
sector operators would not be possible and can safely be discarded; however, it does
highlight the pertinent issue that all relevant operators to a set of measurements should
be considered. The generic problem associated with the addition of further operators,
however, is the existence of flat directions in the Wilson coefficient space. This makes
it very difficult for a Hessian approach to be viable and we will address this issue in
chapter 6 by presenting a more sophisticated methodological improvement.



110 Disentangling new physics effects from PDFs

Table 5.1: The 90% CL bounds obtained on the Wilson coefficients using SM PDFs and the
approach outlined in section 5.2. The first column of bounds corresponds to the scenario
where Wilson coefficients are fitted individually and so the χ2 profiles are parabolas. The
second set of columns are the bounds in the fully simultaneous case. The third set includes
PDF uncertainty for the simultaneous case using the method outlined in section 5.2.2.

Wilson Individual Marginalised
Coefficient no PDF unc PDF unc

cu [−0.1,+0.4] [−2.4,+1.4] [−3.6,+2.7]
cd [−1.6,+0.4] [−13,+3.9] [−19,+11]
cs [−2.8,+4.2] [−18,+29] [−36,+47]
cc [−2.6,+1.2] [−13,+7.0] [−21,+15]

In table 5.2 we present bounds, but this time allow for variations of the PDFs as
we explore the Wilson coefficient space. Indeed, much of the results stay the same.
We see the same hierarchy of bounds and a significant broadening going from the
individual scenario to the marginalized 4-dimensional case. We see the bounds are

Table 5.2: Same as table 5.1, but using SMEFT PDFs instead. Bounds with PDF uncertainty
are included by construction and so the “no PDF uncertainty” column is omitted.

Wilson Individual MarginalisedCoefficient
cu [0.0,+0.5] [−0.4,+2.4]
cd [−1.1,+0.8] [−4.4,+4.5]
cs [−4.5,+3.6] [−61,+39]
cc [−2.4,+0.7] [−29,+2.7]

roughly comparable with the fixed SM PDF case. The slight variation in the bounds is
attributed to the discussion in the previous section implying that the SMEFT effects
are only partially absorbed by the PDFs. The numerical differences, however, could
potentially lead to misleading conclusions in the context of a BSM study and are
suggestive of the need for a consistent framework to disentangle the interplay of BSM
dynamics and the PDFs.

5.3.5 Fit quality

In table 5.3 we present the total χ2 values for the various benchmark points used in
this study. The computation of the χ2 is made using the experimental covariance
matrix of equation 3.18. We show the χ2 to the global DIS dataset as well as to the
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HERA combined dataset only; for both SM PDFs and SMEFT PDFs. In principle, this
information is sufficient to reproduce the Hessian matrix of section 5.2 and to reproduce
the bounds of tables 5.1 and 5.2. The total number of data points amount to 3092
for the global DIS dataset, while the number of data points for the HERA inclusive
structure function data (both neutral current and charged current, but excluding heavy
quark structure functions) is 1145.

The vast majority of benchmark points enjoy an improved fit quality, with a handful
of data points having the opposite behaviour. However, these violations are particularly
small and most likely a result of the number of replicas used in the PDF ensemble
(Nrep = 300).

5.4 Parton distributions and the SMEFT from high-
mass Drell-Yan tails

The lepton-proton scattering analysis presented above serves as a convenient framework
to provide a proof-of-concept study for the interplay between PDFs and BSM dynamics.
We find that for the kinematic coverage of the DIS data and the high energy reach of
the HERA experiments, a mild reabsorption of the BSM dynamics occurs by the neural
network parameterization of PDFs. However, with reference to figure 3.7, the span
of the DIS data is restricted to a low to medium energy region of kinematical phase
space. With the advent of the latest analyses from the LHC, a kinematic coverage
is achieved surpassing the vast majority of DIS measurements. In addition, for the
DIS study, the number of EFT sensitive data points is few in comparison to those
which are not affected by the EFT operators. This results in the PDFs being highly
restricted, since the effects of the EFT are suppressed relative to fitting the PDFs to
the low energy points. We expect this narrative to change if we equalled the number
of EFT sensitive data points with those that reside at lower Q. One is naturally led
to consider the impact of the above analysis applied to more exotic measurements
from proton-proton collider data, especially those stemming from high-mass Drell-Yan
measurements from the LHC. In this section we extend the discussion of the DIS
only study to further include hadronic measurements from some of the highest energy
processes we have available. Moreover, we select SMEFT operators with a similarly
fast energy growing effect as those of equation 5.37, thus allowing for a strong control
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Table 5.3: The χ2 figure of merit calculated using the experimental covariance matrix.
Shown are values for the full DIS dataset as well as to only the HERA combined dataset.
We use both SM PDFs as well as SMEFT PDFs and for convenience show the difference for
each BP to the corresponding SM χ2. We also specify the values of benchmark points used
in this study.

BP cu cd cs cc
SM PDF SMEFT PDF

χ2
tot χ2

HERA ∆χ2 χ2
tot χ2

HERA ∆χ2

SM 0 0 0 0 3445.8 1311.8 - 3445.8 1311.8 -

BP1 -0.28 0.1 0.1 -0.28 3453.4 1319.4 7.6 3451.0 1314.6 5.2
BP2 -0.04 -0.19 -0.19 -0.04 3445.8 1311.7 0.0 3447.2 1312.4 1.4
BP3 -1.0 0.7 -0.7 1.0 3502.8 1368.9 57.0 3490.2 1354.9 44.4
BP4 -0.7 0.5 0.0 3.0 3473.0 1338.7 27.2 3470.7 1331.1 24.9
BP5 1.0 0.0 0.0 0.0 3474.1 1339.9 28.3 3465.5 1341.7 19.7
BP6 -0.5 0.0 0.0 0.0 3461.1 1327.1 15.3 3468.3 1324.1 22.5
BP7 0.5 0.0 0.0 0.0 3450.2 1316.1 4.4 3453.7 1316.9 7.9
BP8 0.3 0.0 0.0 0.0 3446.1 1312.0 0.3 3440.2 1313.7 -5.6
BP9 0.0 -1.0 0.0 0.0 3445.5 1311.4 -0.3 3443.2 1312.5 -2.6
BP10 0.0 0.5 0.0 0.0 3448.1 1314.1 2.3 3440.7 1315.4 -5.1
BP11 0.0 -1.5 0.0 0.0 3447.3 1313.2 1.5 3442.5 1318.9 -3.2
BP12 0.0 -1.9 0.0 0.0 3449.8 1315.6 4.0 3448.9 1317.4 3.1
BP13 0.0 0.0 -0.7 0.0 3446.2 1312.1 0.4 3440.4 1312.5 -5.4
BP14 0.0 0.0 0.0 -0.2 3445.7 1311.6 -0.1 3436.5 1314.2 -9.3
BP15 0.0 0.0 0.0 -1.0 3445.5 1311.6 -0.3 3444.0 1311.3 -1.8
BP16 0.9 0.9 0.0 0.0 3457.5 1323.4 11.7 3455.2 1325.5 9.4
BP17 -1.3 1.3 0.0 0.0 3566.8 1433.0 121.0 3541.1 1405.7 95.3
BP18 0.0 0.0 5.0 -5.0 3481.6 1347.8 35.8 3470.1 1337.6 24.4
BP19 0.0 0.0 -2.0 2.0 3455.4 1321.2 9.6 3448.9 1323.4 3.1
BP20 0.3 0.0 10.0 0.0 3454.6 1320.6 8.8 3451.4 1321.6 -1.8
BP21 0.3 0.0 -5.0 0.0 3458.1 1324.0 12.3 3454.2 1327.0 8.4
BP22 -0.3 0.0 0.0 5.0 3465.2 1330.6 19.4 3463.2 1326.7 17.4
BP23 0.0 1.2 10.0 0.0 3487.1 1353.2 41.3 3474.7 1343.1 28.9
BP24 0.0 -1.8 -5.0 0.0 3467.2 1332.9 21.4 3469.8 1336.3 24.0
BP25 0.3 1.2 -5.0 -5.0 3449.3 1315.4 3.5 3436.9 1311.3 -8.9
BP26 0.3 -1.8 10.0 5.0 3466.7 1332.0 20.9 3456.6 1327.1 10.8
BP27 0.3 -1.8 10.0 -5.0 3462.7 1328.8 16.9 3459.7 1324.5 13.9
BP28 0.3 -1.8 -5.0 -5.0 3445.1 1311.0 -0.7 3437.1 1310.9 -8.7
BP29 -0.3 -1.8 -5.0 5.0 3510.7 1375.9 64.9 3493.4 1365.7 47.6
BP30 0.0 -0.2 0.0 0.0 3445.3 1311.2 -0.5 3437.8 1308.3 -8.0
BP31 0.0 0.0 -2.6 0.0 3448.1 1314.0 2.3 3446.4 1313.2 0.6
BP32 0.0 0.0 2.6 0.0 3446.6 1312.5 0.8 3443.3 1307.8 -2.5
BP33 0.0 0.0 -1.0 0.0 3446.4 1312.3 0.6 3442.0 1313.9 -3.8
BP34 0.0 0.0 1.0 0.0 3445.8 1311.7 0.0 3439.1 1312.0 -6.7
BP35 0.0 0.0 0.0 0.8 3447.2 1313.1 1.4 3449.5 1314.3 3.7
BP36 0.0 0.0 0.0 1.0 3447.7 1313.6 1.9 3442.8 1315.7 -3.0
BP37 0.0 0.0 0.0 -2.0 3446.7 1312.8 0.9 3444.1 1312.2 -1.7
BP38 0.0 0.0 0.0 2.0 3451.0 1316.8 5.2 3450.6 1317.0 4.8
BP39 0.0 0.0 10.0 0.0 3464.5 1330.6 18.7 3461.0 1327.4 15.2
BP40 0.0 0.0 -5.0 0.0 3452.8 1318.7 7.0 3444.0 1317.4 -1.8
BP41 0.0 0.0 0.0 -3.0 3449.5 1315.6 3.7 3446.1 1314.9 0.3
BP42 0.0 0.0 20.0 0.0 3526.6 1392.7 80.8 3509.9 1368.9 64.1
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on the Wilson coefficient bounds as well as the PDFs. We remind the reader that both
analyses performed in this chapter are done with the NNPDF3.1 machinery.

5.4.1 BSM sensitive Drell-Yan data

The dataset used in this study is identical to the DIS data selection of section 5.3.1
supplemented by a number of hadron collider processes. We extend the lepton-proton
measurements with Drell-Yan measurements making for 4022 post cut data points,
spanning a broad range of processes including neutral and charged current DIS data
to high mass Drell-Yan measurements from ATLAS and CMS at the LHC. The full
dataset selection is an extension of the strangeness study presented in chapter 4 and
NNPDF3.1 [137].

The Drell-Yan measurements can be categorized into low-mass, on shell, and high-
mass measurements: referring to the produced dilepton invariant mass, mℓℓ. In table
5.4 we summarize the Drell-Yan measurements corresponding to the first two categories.
These include measurements from the Tevatron at Fermilab as well as modern LHC
measurements at CERN. These amount to 609 total measurements, and we tabulate
the center-of-mass-energy as well as the measured observable.

Accompanying these low-invariant mass measurements are the neutral current
Drell-Yan measurements from ATLAS at 7, and 8 TeV [233, 234] and CMS at 7, 8,
and 13 TeV [159, 235, 236]. These are high-mass Drell-Yan measurements from the
LHC that are used to constrain, not only the PDF, but are also sufficiently sensitive
to the BSM scenario considered in this work to also constrain the EFT operators.

We tabulate these experiments in table 5.5, highlighting the total integrated lumi-
nosity, final states, whether the distribution is 1 or 2 dimensional (that is: differential
in the dilepton invariant mass or dilepton invariant mass and rapidity), the number of
data points, and the bin-edges for the highest energy binnings. Some of these datasets
are available in terms of both Born and dressed leptons, such as ATLAS at 7 TeV, for
which we use the Born data to avoid the need for electroweak corrections corresponding
to final-state QED radiation of the leptons. However, the CMS data at 13 TeV is only
available for dressed lepton measurements and so we do include the corresponding final
state radiation corrections. The CMS data at 13 TeV is the only high-mass set that is
provided in terms of individual final state products (either dielectron or dimuon) or the
combined channel. The benefit of this is that it allows one to assess the effect of new
physics scenarios that couple differently across the charged-lepton flavours (such as
that outlined in section 5.4.3), while flavour universal models (such as in section 5.4.2)
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Table 5.4: The low-mass and on-shell Drell-Yan datasets used in the present study. For each
dataset we indicate the experiment, the centre-of-mass energy

√
s, the publication reference,

the physical observable, and the number of data points.

Exp.
√
s/TeV Ref. Observable ndat

E886 0.8 [220] dσd
DY/dσ

p
DY 15

E886 0.8 [221, 222] dσp
DY/(dy dmℓℓ) 89

E605 0.04 [154] σp
DY/(dxF dmℓℓ) 85

CDF 1.96 [178] dσZ/dyZ 29

D0 1.96 [179] dσZ/dyZ 28
D0 1.96 [223] dσW →µν/dηµ asy. 9

ATLAS 7 [180] dσW /dηl, dσZ/dyz 30
ATLAS 7 [224] dσZ→e+e−/dme+e− 6
ATLAS 7 [173] dσW /dηl, dσZ/dyz 61
ATLAS 7 [225] dσW +c/dyc 22
ATLAS 8 [226] dσZ/dpT 82
ATLAS 8 [186] dσW +j/dpT 32

CMS 7 [227] dσW →lν/dηℓ asy. 22
CMS 7 [184] dσW +c/dyc 5
CMS 7 [184] dσW ++c/dσW −+c 5
CMS 8 [228] dσZ/dpT 28
CMS 8 [181] dσW →µν/dηµ 22
CMS 13 [185] dσW +c/dyc 5

LHCb 7 [229] dσZ→µ+µ−/dyµ+µ− 9
LHCb 7 [230] dσW,Z/dη 29
LHCb 8 [231] dσZ→e+e−/dye+e− 17
LHCb 8 [232] dσW,Z/dη 30

Total 659

will enjoy the reduced systematic uncertainties of the combined channel. In all, an
additional 270 data points are introduced by the high-mass data, or 313 if we consider
the individual CMS 13 TeV channels. The kinematic coverage of all the data points
used in this study are shown in figure 5.8. The points are shown in (x,Q2) space with
the data points that are modified by the EFT operators highlighted with a border,
such points thus also constrain the Wilson coefficients as well as the PDFs.
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Table 5.5: Same as table 5.4 for the neutral-current high-mass Drell-Yan datasets considered
in this work. We also indicate the final-state, whether the distribution is 1D (which are
differential in the invariant mass, mℓℓ, of the final-state leptons) or 2D (which are differential
in both the invariant mass of the leptons, mℓℓ, and in their rapidity, yℓℓ), and the values of
the mℓℓ bin edges for the most energetic bin.

Exp.
√
s/TeV Ref. L (fb−1) Channel 1D/2D ndat mmax

ℓℓ /TeV

ATLAS 7 [233] 4.9 e−e+ 1D 13 [1.0, 1.5]
ATLAS 8 [234] 20.3 ℓ−ℓ+ 2D 46 [0.5, 1.5]

CMS 7 [159] 9.3 µ−µ+ 2D 127 [0.2, 1.5]
CMS 8 [235] 19.7 ℓ−ℓ+ 1D 41 [1.5, 2.0]

CMS 13 [236] 5.1
e−e+, µ−µ+

1D
43, 43

[1.5, 3.0]
ℓ−ℓ+ 43

Total 270 (313)

5.4.2 SMEFT scenario I: the oblique corrections

An important class of BSM models are the universal new physics models [237–239].
These BSM scenarios can include new heavy vector bosons which mix with the SM
gauge bosons [240–243] or new charged degrees of freedom [244]. Such models manifest
in the low energy by modifications to the electroweak gauge boson vacuum polarization
tensor, ΠV V ′(q2), [245] and thus modify the boson self-energy. The effects of the new
physics can be captured in the IR using the oblique parameters. One may expand the
gauge boson self-energies in powers of q2 (the exchanged 4-momentum) and truncating
at order q4, while imposing normalization and symmetry constraints, implies the
need for only 4 parameters: Ŝ, T̂ , Ŵ , and Ŷ [246–248] 5. The parameters Ŝ and T̂

grow as O(q0) and O(q2) respectively and are heavily constrained by precision LEP
measurements [237]. However, Ŵ and Ŷ both grow as O(q4) and so form an ideal
operator selection for use in conjunction with the LHC high-mass Drell-Yan data. We
shall leverage this energy growing effect to examine the possible modifications to the
PDFs; an effect that up until now has been ignored in the literature, though could
possibly affect a number of various BSM interpretations [249]. Though in principle
the same sentiment applies to the Ŝ and T̂ parameters, we expect from the onset the

5We place hats on the oblique parameters so as to not confuse them with the gauge boson W or
hypercharge Y .
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Figure 5.8: The kinematic coverage of the data points used in this study grouped according
to their process. Points marked with a black edge are also used to constrain the EFT
operators.

effect to be mild. Thus, since our primary objective is to assess the impact the BSM
and PDF interplay has on BSM bounds, we shall choose to omit these parameters. In
principle a fully global analysis should account for these parameters, perhaps using the
methodology presented in chapter 6, we here restrict the effect to those operators most
sensitive to the interplay.

The inclusion of the Ŵ and Ŷ parameters necessitates the addition of the following
dimension-6 operators to the Standard Model lagrangian

L = LSM −
Ŵ

4m2
W

(
DρW

a
µν

)2
− Ŷ

4m2
W

(∂ρBµν)2 (5.61)

where Dρ is the usual covariant derivative, mW is the W -boson mass, and W a
µν (Bµν) is

the field strength tensor associated with the unbroken SU(2)L (U(1)Y ) gauge symmetry.
The index a enumerates the su(2) Lie algebra generators.
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These operators can be decomposed into the Warsaw basis via the equations of
motion as [5, 238]:

L = LSM −
g2Ŵ

4m2
W

O(3)
lq −

g2
Y Ŷ

m2
W

YlYdOld + YlYuOlu

+ YlYqO(1)
lq + YeYdOed + YeYuOeu + YeYqOqe

 (5.62)

Where g and gY are the corresponding electroweak gauge couplings and the hypercharges
are: 

Yq

Yl

Yu

Yd

Ye


=



1
6

−1
2

2
3

−1
3

−1


. (5.63)

The various operators are defined as

Old = (l̄γµl)(d̄γµd), Olu = (l̄γµl)(ūγµu), O(1)
lq = (l̄γµl)(q̄γµq),

Oed = (ēγµe)(d̄γµd), Oeu = (ēγµe)(ūγµu), Oqe = (q̄γµq)(ēγµe), (5.64)
O(3)

lq = (l̄σaγµl)(q̄σaγµq).

Here l and q represent the lepton and quark SU(2)L left-handed doublets respectively,
while u, d and e are respectively the up, down, and electron right-handed singlets. The
Pauli matrices, σa, act on SU(2) space, while the gamma matrices as ever act on the
Lorentz spin structure. There is an implicit summation on the left-handed generations;
that is we have

(l̄γµl) ≡ l̄1γµl
1 + l̄2γµl

2 + l̄3γµl
3. (5.65)

The modifications induced by the Ŵ and Ŷ operators have been implemented and
cross checked with the SMEFTsim package [250]. As in the case of the DIS only study,
we restrict the analysis for Scenario I to O(1/Λ2). These operators have gained much
attention in the context of high-energy LHC data and the following bounds have been
reported for individual Ŵ and Ŷ operators (that is: assuming the presence of one
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operator at a time) at 95% confidence level [249]:

Ŵ ∈ [−3, 15]× 10−4 (ATLAS 8 TeV, 20.3 fb−1 [234])
Ŵ ∈ [−5, 22]× 10−4 (CMS 8 TeV, 19.7 fb−1 [235])
Ŷ ∈ [−4, 24]× 10−4 (ATLAS 8 TeV, 20.3 fb−1 [234])
Ŷ ∈ [−7, 41]× 10−4 (CMS 8 TeV, 19.7 fb−1 [235])

(5.66)

which have been obtained assuming SM PDFs. In this study we will benchmark
these results and then compare them to the consistent treatment of using SMEFT
modified PDFs. We note here that a known flat direction exists if one attempts
to simultaneously extract Ŵ and Ŷ operators together using only neutral current
Drell-Yan data [249] which we will demonstrate further in chapter 6. As such, we will
perform the simultaneous fit with the HL-LHC data which includes charged current
processes in section 5.5.

5.4.3 SMEFT scenario II: left-handed muon-philic lepton-
quark interactions

The second benchmark scenario we choose to consider follows that of [45] and is
sensitive to flavour physics. We consider the gauge invariant four-fermion operators
built from the quark and lepton SU(2)L doublets. From equation 5.4.2, these are O(1)

lq

and O(3)
lq . Performing the enumeration over SU(2)L indices, we restrict to operators of

the form:

L = LSM +
CUµ

ij

v2 (ūi
Lγµu

j
L)(µ̄Lγ

µµL) +
CDµ

ij

v2 (d̄i
Lγµd

j
L)(µ̄Lγ

µµL) (5.67)

where v ≃ 246 GeV is the Higgs vacuum expectation value and CUµ
ij and CDµ

ij are
matrices of Wilson coefficients. The indices i, j = 1, 2, 3 run over quark flavours;
however, we choose to consider those operators that couple solely to the second lepton
family. Here, µL is the left-handed muon Dirac spinor field, while ui

L (di
L) is the

spinor field corresponding to left-handed up-type (down-type) quarks of flavour i. The
operators of equation 5.67 form an attractive choice of BSM scenario due to the lepton
flavour universality violating LHCb anomalies reported in rare B-meson decays [24–26].
The operator structure of equation 5.67 are reminiscent of the flavour-changing CKM
structure of charged current weak decays and thus affect processes such as b→ sµ+µ−

within pp → µ+µ− charged current Drell-Yan scattering at the LHC. Modifications



5.4 Parton distributions and the SMEFT from high-mass Drell-Yan tails 119

to this channel would be responsible for the discrepancies between the SM prediction
for R(K(∗)) and the observed experimental values. Models successfully explaining the
B-anomalies [251] suggest the dominant channel in the EFT is bb̄→ µ+µ−. While the
direct production channel stemming from an operator such as (b̄LγµsL)(µ̄Lγ

µµL) does
exist; it is Cabibbo suppressed by Vts after rotating from the weak eigenbasis to the
mass eigenbasis in the Yukawa sector. As such the only Wilson coefficient of interest is
CDµ

33 with the corresponding lagrangian for BSM scenario II being

L = LSM + CDµ
33
v2 (b̄LγµbL)(µ̄Lγ

µµL) (5.68)

where bL the left-handed bottom quark field. Note that the electron channel is still
governed by the Standard Model. This property provides a useful handle to constrain
both the PDFs and the Wilson coefficients. Using dielectron production data, we can
constrain heavily the PDF while the dimuon measurements constrain both. Moreover,
this particular Wilson coefficient poses a complication which we have up until now
been neglecting. Previously, we deemed the SMEFT-SMEFT interference terms in the
squared amplitude to be subleading relative to the SM-SMEFT cross term diagrams.
We argued this occurs due to a suppression of O(1/Λ4) in the former and O(1/Λ2) in
the latter. However, it is known that at linear level in the EFT, this particular Wilson
coefficient is virtually unconstrained [45] and so the O(1/Λ4) cannot be neglected as
they are required to provide the necessary constraining power. As such, instead of
performing a 1-dimensional quadratic fit as in equation 5.5, we will use the full quartic
polynomial. Note that this operator is of the form considered in equation 5.37 and so
affects the heavy quark structure function measurements from HERA. We will, however,
neglect this modification owing to the fact that the bottom quark distribution is very
small in a broad kinematic range and that DIS measurements probe low energies. As a
benchmark, the ATLAS search data of [252] was used in [45] to obtain

CDµ
33 ∈ [−2.6, 2.1]× 10−2 (ATLAS 13 TeV, 36.1 fb−1 [252]). (5.69)

5.4.4 Theory modifications

In the DIS study, we showed how the operators of equation 5.37 modify the DIS
structure functions by the calculation outlined in section 5.3.2. By the exact same
token, the operators introduced in the various BSM scenarios above will also modify
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the corresponding theory predictions for the various measurements in this study too,
which crucially include proton-proton scattering processes.

The corrections from these SMEFT operators are introduced using the K-factor
approximation. Consider a general SMEFT lagrangian expansion at dimension-6 as:

L = LSM +
Nop∑
n=1

cn

v2On (5.70)

where we allow for Nop dimension-6 operators, On, enumerated by the index n. Here v
is some new physics scale introduced to make the Wilson coefficients, cn, dimensionless.
The linear effect of these operators at the cross section level can be expressed as:

R
(n)
SMEFT ≡

(
LNNLO

ij ⊗ dσ̂(n)
ij,SMEFT

)/ (
LNNLO

ij ⊗ dσ̂ij,SM
)
, n = 1 . . . , Nop , (5.71)

with LNNLO
ij being the usual partonic luminosity evaluated at NNLO QCD relating

partons of flavour i and j:

Lij(x,m) =
∫ 1

x

dy

y
fi(y,m)fj

(
x

y
,m

)
, (5.72)

dσ̂ij,SM the bin-by-bin partonic SM cross section, and dσ̂
(n)
ij,SMEFT the corresponding

partonic cross section associated to the interference between On and the SM amplitude
ASM when setting cn = 1. The notation ⊗ is as ever the Mellin convolution. Likewise,
the ratio encapsulating the quadratic effects is defined as

R
(n,m)
SMEFT ≡

(
LNNLO

ij ⊗ dσ̂(n,m)
ij,SMEFT

)/ (
LNNLO

ij ⊗ dσ̂ij,SM
)
, n,m = 1 . . . , Nop , (5.73)

with the bin-by-bin partonic cross section dσ̂
(n,m)
ij,SMEFT now being evaluated from the

squared amplitude AnAm associated to the operators On and Om when cn = cm = 1.
The SMEFT partonic cross sections are computed in this study at leading order in
QCD. The overall K-factor which maps a SM prediction to one which includes SMEFT
modifications is then:

KEFT = 1 +
Nop∑
n=1

cnR
(n)
SMEFT +

∑
n,m

cncmR
(n,m)
SMEFT (5.74)
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with the mapping being related by a simple multiplicative factor:

dσSMEFT = dσSM ×KEFT (5.75)

where the dσSM is the state-of-the-art SM prediction including NNLO QCD and NLO
EW corrections. Clearly, the K-factor is a PDF dependent object, since it depends on
the PDF luminosity. In [5] we show that the dependence on varying the input PDF
is at the permil level for Scenario I while for Scenario II the effect is slightly more
pronounced, but still only at the few percent level. As such this effect will be ignored
here henceforth, while in chapter 6 we introduce an approach which eliminates the
need for K-factors altogether, instead building on the FK-table approach of section
3.2.3.

5.4.5 Constraints on oblique parameters from high-mass Drell-
Yan measurements: Scenario I

We deploy the methodology outlined in sections 5.1 and 5.2 to perform a 1-dimensional
fit of Ŵ and Ŷ where only one parameter is allowed to be non-zero at a time. The
reason for this is the flat direction that exists for neutral-curent Drell-Yan measurements
which we shall lift in section 5.5 with the use of charged-current Drell-Yan from the
High-Luminosity LHC projections. We perform an exploration of Wilson coefficient
space by again constructing a set of benchmark points for each operator. For each
benchmark point we obtain PDF fits of ensemble size equal to Nrep = 100 MC replicas.
In the case of Ŷ we use 21 sampling values equally spaced in the closed interval
Ŷ = [−20, 20] × 10−4 while for Ŵ we found it convenient to use 15 equally spaced
points in the closed interval Ŵ = [−14, 14] × 10−4 supplemented by two additional
points at Ŵ = −18× 10−4 and −22× 10−4.

In figure 5.9 we display the parabolic fits corresponding to equation 5.5 for the case
of SMEFT PDFs. The error bars are obtained using the bootstrap methodology outlined
in section 5.2.3 and correspond to the methodology uncertainties. The horizontal line
corresponds to ∆χ2 = 4. The points corresponding to the intersection of the horizontal
line with the parabolas corresponds to a 2σ or 95% CL. We see that for both scenarios
the SM value is contained in the 95% confidence levels. We highlight here an important
statement about the computation of χ2

i in equation 5.8. The datasets entering the
computation are only those which are affected by the EFT corrections: namely the
DIS measurements that have a reach in Q above 120 GeV and the high-mass data
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Figure 5.9: The ∆χ2 parabolic fits, corresponding to the Taylor expansion of equation 5.5,
for both the Ŵ (left) and Ŷ (right) scenarios in the case of SMEFT PDFs. The error bars
are calculated using the bootstrap method of section 5.2.3. The only data entering the χ2

i

computation (black dots) are those affected by the SMEFT corrections. The horizontal line
in blue depicts ∆χ2 = 4 which corresponds to a 2σ (∼ 95% CL) interval. The red cross
depicts the SM point.

of table 5.5. We shall refer to the χ2 obtained in this way as the partial-χ2 rather
than the global-χ2 that would in principle use all the data of figure 5.8. The need for
this approximation is down to the fact that the statistical fluctuations corresponding
to the global-χ2 are too large to obtain stable estimates on the Wilson coefficient
bounds. The only way to tame these fluctuations is to significantly increase the number
of MC replicas or to increase the density of benchmark points in the region of EFT
parameter space being explored. This approximation is, however, well justified since
the dominant contribution to the global-χ2, as a function of the benchmark points,
originates from the SMEFT corrections to the partonic cross section and from the
impact of the SMEFT modifications on the PDFs. The datasets most sensitive to these
effects are precisely those that induced them in the first place, that is: the Q > 120
GeV DIS data and the high-mass Drell-Yan measurements. As such, restricting to
the partial-χ2 captures the dominant effects, whilst simultaneously minimizing the
level of statistical fluctuations. We will show how we can eliminate this approximation
altogether using the SIMUnet approach of chapter 6 by considering the impact of the
global dataset on the PDFs and Wilson coefficients from the ground-up determination
of both.

In figure 5.10 we compare these same parabolas with those one would obtain
assuming fixed SM PDFs. For both operators a broadening is observed reminiscent
of those seen in the DIS only study of section 5.3. While the best-fit value of Ŵ
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Figure 5.10: Comparison between the ∆χ2 parabolic fits obtained using SMEFT PDFs
(orange) to those one would obtain assuming fixed SM PDFs (blue dashed) for individual Ŵ
(left) and Ŷ (right) scenarios. The insets zoom on the region close to the minima.

remains approximately similar in both the SM and SMEFT PDF case, we see that
the simultaneous determination results in a shift in the best-fit of Ŷ by approximately
+2× 10−4. Though the effect of the broadening in confidence levels occurs in a region
excluded by LEP [237] the effect would most certainly affect electroweak precision tests
of the SMEFT at the LHC [249].

We define two useful quantities when considering the bounds in this part of the
study. The best-fit shift corresponds to the difference in best fit values of Ŵ when
using SMEFT and SM PDFs:

best-fit shift =
(
Ŵ (0)

∣∣∣
SMEFT PDF

− Ŵ (0)
∣∣∣
SM PDF

)
(5.76)

where Ŵ (0) is the best-fit value of Ŵ obtained using either SMEFT or SM PDFs. The
fractional increase in confidence level width relative to the SM PDF bounds defines
the broadening:

broadening =
(

∆Ŵ (0)
∣∣∣
SMEFT PDF

− ∆Ŵ (0)
∣∣∣
SM PDF

)/
∆Ŵ (0)

∣∣∣
SM PDF

(5.77)

where ∆Ŵ (0) is the width of the confidence intervals obtained using SM or SMEFT PDFs.
Analogous expressions are defined for the Ŷ oblique parameter. These expressions,
along with the SM and SMEFT PDF bounds at 68% and 95% are tabulated in table
5.6

For the SM PDF case, we present bounds with and without PDF uncertainties,
where the contribution from PDF uncertainties can be included using the procedure
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Table 5.6: The 68% CL and 95% CL bounds on the Ŵ and Ŷ parameters obtained from
the corresponding parabolic fits to the ∆χ2 values calculated from either the SM or the
SMEFT PDFs. For the SM PDF results, we indicate the bounds obtained with (lower) and
without (upper entry) PDF uncertainties accounted for using the approach outlined in section
5.2.2. The SMEFT PDF bounds already include PDF uncertainties by construction: being
constructed from a global set of PDFs. The fourth and fifth column indicate the absolute
shift in best-fit values, equation 5.76, and the percentage broadening of the EFT parameter
uncertainties, equation 5.77, when the SMEFT PDFs are consistently used instead of the SM
PDFs.

SM PDFs SMEFT PDFs best-fit shift broadening

Ŵ × 104 (68% CL)
[−3.0, 2.2]

[−3.5, 2.4]
−0.2 +13%

[−4.3, 3.8] −0.3 −27%

Ŵ × 104 (95% CL)
[−5.5, 4.7]

[−6.4, 5.3]
−0.2 +15%

[−6.8, 6.3] −0.3 −11%

Ŷ × 104 (68% CL)
[−4.4, 4.7]

[−3.4, 6.9]
+1.6 +13%

[−6.7, 7.5] +1.4 −27%

Ŷ × 104 (95% CL)
[−8.8, 9.2]

[−8.3, 11.8]
+1.6 +12%

[−11.1, 12.0] +1.3 −13%

of section 5.2.2; the bounds for SMEFT PDFs incorporate the PDF uncertainties by
construction. The interesting result here is that, as with the DIS study, a broadening of
the results is observed when PDF uncertainties are neglected, however, when accounted
for the bounds in fact are improved upon. One would expect that with a better control
of the PDF uncertainties, the same broadening behaviour would be seen in both cases.
Indeed an interesting study would be to perform this analysis employing the NNPDF4.0
approach. In this case, the reduced PDF uncertainties could in principle be sufficient
to achieve this regime. We reserve such an analysis for a future study, but remark
here that the change in bounds remains mild, but not negligible; indicative of a slight
absorption of the new physics effects by the neural network parameterization. Such
a light effect can be understood by the scarcity of the high-mass Drell-Yan datasets
available. Indeed, the highest data comes from LHC Run II and only one dataset at
the full kinematic reach of 13 TeV. Indeed comparing table 5.4 with table 5.5, we see
that the number of EFT sensitive datasets is eclipsed by the low-mass measurements
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as well as the 3092 DIS measurements. This achieves a strong control over the PDF
determination thus not allowing them to be heavily modified by the new physics effects.

We now turn our attention to the modification of the PDFs themselves. Note that
since we are considering hadron-hadron processes, involving the ejection of a parton
from each, we are phenomenologically interested in the PDF luminosities (convolution
of the PDFs) and not the PDFs themselves. We plot the luminosities for the gluon-
quark, quark-antiquark, and quark-quark channels in figure 5.11 at

√
s = 14 TeV as a

function of the produced final state invariant mass, MX . Shown are both the Ŵ (upper)
and Ŷ (lower) luminosities for representative benchmark points corresponding to the
boundaries of the 95% confidence intervals. For clarity of the figure we display the SM
luminosity along with its 68% PDF uncertainty, while for the SMEFT luminosities we
show only the central values. We have verified that the PDF uncertainty is unchanged in
the SMEFT PDFs as in the DIS only study. In this case, the luminosity deviations from
the SM remain small, with the largest deflection seen in the qq̄ channel. This can be
explained by the fact that in neutral-current DY, the dominant production mechanism
is mediated primarily by the uū and dd̄ combination and so the modifications to this
process induced by the Scenario I operators of equation 5.62 mostly affect this particular
channel. Certainly in all cases the deviation is contained within the PDF uncertainties,
illustrative again of the fact that the interplay between the EFT effects and PDFs
remains moderate in the tails of high-mass Drell-Yan distributions considered in this
work.

An important point here is how one would disentangle these EFT-induced shifts
in PDF luminosity from other possible sources of deviations, such as internal incon-
sistencies and tensions between datasets or missing higher orders in the perturbative
expansion of the partonic cross section. We can resolve this issue in a similar fashion
as to what was done for figure 5.7 in the DIS only study. We use the energy-growing
effects associated with the higher-dimensional EFT operators which in turn translate
into an enhanced sensitivity to the Ŵ and Ŷ parameters for large values of dilepton
invariant mass, mℓℓ. Thus, a useful ratio to consider is:

Rχ2

(
m

(max),Ŵ ,Ŷ
ℓℓ

)
=

χ2
(
m

(max)
ℓℓ , Ŵ , Ŷ

)
χ2
(
m

(max)
ℓℓ = 120 GeV, Ŵ , Ŷ

) (5.78)

where mℓℓ is the upper bound on the value of dilepton invariant mass bins that enter
the χ2 calculation. As in figure 5.7, the χ2 calculation is done for both SM and SMEFT
PDFs at various benchmark point. The denominator is the χ2 in the kinematic region
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Figure 5.11: Comparison between the SM PDF luminosities with their SMEFT counterparts,
displayed as ratios to the central value of the SM luminosities, for representative values of
the Ŵ (upper) and Ŷ (lower panel) parameters. The values of Ŵ and Ŷ are chosen to be
close to the upper and lower limits of the 95% CL intervals reported in table 5.6. From left
to right we show the gluon-gluon, quark-antiquark, and quark-quark channels.

where sensitivity to the EFT operators is negligible. We show Rχ2 for representative
choices of Wilson coefficients in figure 5.12. The Rχ2 estimator is approximately unity
for small choices of m(max)

ℓℓ consistent with the fact that all EFT sensitive binnings have
been cut out. For increasing values of m(max)

ℓℓ , the ratio includes contributions from mℓℓ

bins more sensitive to the EFT effects. Thus, for the case where Rχ2 is computed at a
non-zero choice of Ŵ and Ŷ , but using SM PDFs (orange), we expect a degradation in
fit quality, since there is a mismatch between the partonic cross section used in the χ2

computation with that used during the fits of the PDFs. Correcting for this mismatch
and using instead SMEFT PDFs (green) causes Rχ2 to improve in the high invariant
mass bins. However, we note the improvement here is mild, dropping only slightly
below the mismatched case and still far from the SM PDF and Ŵ = Ŷ = 0 case (blue).
This is precisely the same behaviour as seen in figure 5.7 indicative again of a mild
interplay between the EFT effects and PDFs.
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Figure 5.12: The Rχ2 estimator as defined in equation 5.78 normalized to its SM value
(that is: Ŵ = Ŷ = 0 and using SM PDFs) as a function of m(max)

ℓℓ . Shown are representative
choice of Ŵ (left) and Ŷ (right). We display the results obtained both with SM PDFs (orange
and blue) and SMEFT PDFs (green).

5.4.6 Constraints on muonphilic operators with high-mass
Drell-Yan data: Scenario II

We now consider the BSM scenario II of section 5.4.3 which adds a muonphilic BSM
operator to the SM lagrangian, coupling preferentially to the dimuon DY process and
leaving the dielectron production to be described by SM dynamics. This property alone
implies that to constrain the CDµ

33 Wilson coefficient, we require high-mass Drell-Yan
measurements with an exclusive measurement of dimuon final states. From table 5.5
we see the only measurements satisfying this condition are CMS at 7 and 13 TeV
amounting to a total of 170 data points. As such, we expect the PDF-EFT interplay to
be even milder than in the oblique parameter scenario and as such we perform here a
fixed PDF determination of CDµ

33 , reserving the joint determination for when HL-LHC
projections are included in section 5.5.

In figure 5.13 we display the results of three quartic fits to the χ2
(
CDµ

33

)
profile

in benchmark scenario II, akin to the functional form of equation 5.5, but extended
to include the quartic terms. As in the above discussion, the calculation of χ2

i for
each benchmark point is the partial-χ2 and includes only the contributions from the
two available DY measurements with a dimuon final state. We present fits based on
cross sections that account only for the linear, only for the quadratic, and for both
the linear and quadratic terms in the EFT expansion. In all cases, these cross sections
are computed using the baseline SM PDF set. The inset displays the outcome of the
linear EFT fit with an enlarged x-axis range. Figure 5.13 nicely illustrates the fact
that the muonphilic operator is effectively completely unconstrained at the O(1/Λ2)
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Figure 5.13: The results of quartic polynomial fits to χ2
(
CDµ

33

)
, in scenario II. The

χ2 computed at each benchmark point includes only the contributions from the two DY
measurements in the dimuon final state. We display results for fits based on cross sections
that account only for the linear, only for the quadratic, and for both linear and quadratic
terms in the EFT expansion, in all cases using the baseline SM PDF set. The inset displays
the fit to the linear EFT values with an enlarged x-axis range.
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level: requiring a much extended x-axis in the inset for the parabolic fit to be visibly
concave. Only once the O(1/Λ4) terms, arising from the SMEFT-SMEFT diagram in
the squared amplitude, are included can this operator be constrained at any appreciable
level. This behaviour is known [45] and can be traced back to the fact that the SM
interference with this operator is suppressed. The 95% confidence levels obtained when
using the full linear and quadratic cross section reads:

CDµ
33 ∈ [−1.2, 10.7]× 10−2 (5.79)

which can be directly compared to equation 5.69 which is obtained in [45] and uses the
ATLAS search data [252]. The source of discrepancy between the two bounds can be
attributed to the fact that the dilepton search data benefits from an extended coverage
of mℓℓ as compared to the unfolded DY data used in our study.

5.5 PDF and EFT interplay at the High-Luminosity
LHC

The discussions of sections 5.4.5 and 5.4.6 show that even with the inclusion of LHC
measurements of high-mass Drell-Yan events, the interplay between PDFs and EFTs
remains moderate; although not entirely negligible. However, with the High-Luminosity
upgrade of the LHC set to accumulate more data, it is entirely possible that in the era
of future colliders the effects will become more enhanced. In view of this, we repeat the
analyses of sections 5.4.5 and 5.4.6, but this time include HL-LHC projections in the
fit strategy. We follow the procedure of [253] (see also [254, 255]) to generate HL-LHC
pseudo-data for NC and CC high-mass Drell-Yan processes at a center-of-mass energy
of
√
s = 14 TeV making for a total integrated luminosity of L = 6 ab−1; with ATLAS

and CMS each contributing L = 3 ab−1. The theoretical predictions for these forecasted
observables are computed at NNLO in QCD and NLO electroweak (EW) corrections
are additionally included. We include both dielectron and dimuon production cross
sections through neutral and charged current Drell-Yan, the latter being the crucial
process which will allow for the flat direction to be broken in the combined (Ŵ , Ŷ )
space. The NC distribution is binned in dilepton invariant mass, mll ∈ [500, 4000] GeV
while the CC distribution is binned in dilepton transverse mass, mT ∈ [500, 3500] GeV.
For the precise details of the construction of these projections we refer the reader to
[5].
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Figure 5.14: Impact of the HL-LHC pseudo-data on the quark-antiquark luminosity for the
SM PDF fits as a function of the final state invariant mass, mX . Shown are the luminosities
(left) for the DIS+DY fit (green) and the corresponding fits including the HL-LHC pseudo-
data, with only NC (orange) or also with CC (blue) cross sections, presented as a ratio to
the central value of the former. Also shown is the relative PDF uncertainty in Lqq̄ (right)
(with the central value of the DIS+DY baseline as reference) for the same fits.

In figure 5.14 we compare the quark-antiquark luminosities, at
√
s = 14 TeV,

obtained with a fit to the DIS and DY data to those which include the NC HL-LHC
projections and with the NC+CC HL-LHC projections. We see a marked reduction
in the luminosity uncertainty (highlighted by the right panel) while the central value
remains much the same. This is as expected since the DY process is dominated by the
uū and dd̄ channel. On the other hand, the gluon-quark and quark-quark luminosities
experience little improvement after introducing the HL-LHC compared to the DIS+DY
only fits. With this motivation, we thus expect an enhancement in PDF-EFT interplay
as compared to the current LHC reach. Moreover, we now are able to present the
results of a combined (Ŵ , Ŷ ) fit since we incorporate CC DY data. Furthermore, a
simultaneous extraction of the muonphilic Wilson coefficient CDµ

33 as well as the PDFs
is presented, since the HL-LHC data is generated for both the dielectron and dimuon
channel which can help constrain BSM scenario II.

5.5.1 The oblique parameters and the HL-LHC

The benchmark points for the simultaneous fit of (Ŵ , Ŷ ) are now a list of tuples,
for which we construct a total of 35 benchmark points, scanning the 2-dimensional
parameter space. Of these, 25 points are equally spaced in either Ŵ ∈ [−1.6, 1.6]×10−5

and Ŷ ∈ [−8.0, 8.0]× 10−5 and the remaining 10 points are equally spaced along the
diagonal directions. We have verified that the addition of 12 extra benchmark points
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Table 5.7: Same as table 5.6 for the 68% CL and 95% CL marginalised bounds on the Ŵ
and Ŷ parameters obtained from the two-dimensional (Ŵ ,Ŷ ) fits that include the HL-LHC
pseudo-data for NC and CC Drell-Yan distributions. As in table 5.6, for the SM PDFs we
indicate the bounds obtained with (lower) and without (upper entry) PDF uncertainties
accounted for.

SM PDFs SMEFT PDFs best-fit shift broadening

Ŵ × 105 (68% CL)
[−0.7, 0.5]

[−4.5, 6.9]
1.3 850%

[−1.0, 0.9] 1.3 500%

Ŵ × 105 (95% CL)
[−1.0, 0.8]

[−8.1, 10.6]
1.4 940%

[−1.4, 1.2] 1.4 620%

Ŷ × 105 (68% CL)
[−1.8, 3.2]

[−6.4, 8.0]
0.1 190%

[−3.7, 4.7] 0.3 70%

Ŷ × 105 (95% CL)
[−3.4, 4.7]

[−11.1, 12.6]
0.1 190%

[−5.3, 6.3] 0.3 110%

(8 further away from the origin and 4 along the principal axes) does not affect the
confidence level contours obtained, thus verifying the stability of our procedure.

In table 5.7 we tabulate the 68% and 95% CL marginalise bounds on the Wilson
coefficients obtained in a simultaneous fit of (Ŵ , Ŷ ) both for the case of SM PDFs
and SMEFT PDFs. Bounds are shown at 68% and 95% as well as the best-fit shift
and broadening defined respectively in equation 5.76 and equation 5.77. For the SM
PDF bounds we give intervals with and without PDF uncertainties. In the case of
HL-LHC, the interplay is very significant and cannot, at all, be neglected. Indeed, in
this scenario, one would obtain completely inconsistent bounds if the back-reaction
of the Wilson coefficients on the PDFs is neglected. The SM PDFs (which ignore
this back-reaction) give bounds significantly tighter that the SMEFT PDFs, with the
broadening for Ŵ (Ŷ ) being 620% (110%) at 95% CL when PDF uncertainties are
accounted for. Clearly, the situation would be worse if PDF uncertainties are neglected.

In table 5.8 we present the same results as table 5.7, but having replaced the SM
PDFs with conservative SM PDFs. A conservative PDF is the one a fastidious particle
physicist would use: conscious of the perils of an inconsistent treatment between the
EFT and PDFs, they would choose to omit the high-mass Drell-Yan and HL-LHC data
from the PDF fit when performing a BSM analysis. Thus, the conservative PDF set is
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Table 5.8: Same as table 5.7 for the 68% and 95% CL marginalised bounds on the Ŵ
and Ŷ parameters obtained from the two-dimensional (Ŵ ,Ŷ ) fits that include the HL-LHC
pseudo-data for NC and CC Drell-Yan distributions. The input PDF set for the analysis
done using fixed SM PDFs (corresponding to the results displayed in the column “SM cons.
PDFs”) is a conservative PDF set that does not include any of the high-mass distributions or
the HL-LHC projections. The limits obtained from the simultaneous fit of PDFs and Wilson
coefficients (corresponding to the results displayed on the column “SMEFT PDFs”) are the
same as those in table 5.7.

SM cons. PDFs SMEFT PDFs best-fit shift broadening

Ŵ × 105 (68% CL)
[−1.0, 0.0]

[−4.5, 6.9]
1.7 1000%

[−4.0, 2.8] 1.8 70%

Ŵ × 105 (95% CL)
[−1.4, 0.4]

[−8.1, 10.6]
1.8 940%

[−4.3, 3.1] 1.9 150%

Ŷ × 105 (68% CL)
[2.1, 7.0]

[−6.4, 8.0]
-3.7 190%

[−3.4, 11.2] -3.6 -1%

Ŷ × 105 (95% CL)
[0.5, 8.5]

[−11.1, 12.6]
-3.7 200%

[−5.0, 13.7] -3.6 30%
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Figure 5.15: The 95% confidence level contours in the (Ŵ , Ŷ ) plane obtained using SM
PDFs (blue), conservative (which omit the high-mass DY and HL-LHC data) PDFs (green),
and the SMEFT PDFs (orange). The dashed ellipses account for the PDF uncertainty. The
crosses depict the best-fit value.

fitted to the DIS data, low-mass DY and on-shell DY data of table 5.4. We observe
that using conservative PDFs and accounting for PDF uncertainties, the EFT bounds
increase when compared to the full SM PDF bounds, albeit with a much smaller
broadening value. As a result, the size of the bounds obtained by keeping fixed SM
PDFs is closer to the size obtained from the simultaneous fits, although still slightly
underestimated. At the same time, the shift in the best-fit becomes more marked. We
owe this behaviour to the fact that the fewer data points used in the fit causes the PDF
to be less well constrained. Thus the bounds with PDF uncertainty are significantly
wider than when they are omitted: highlighting the importance of incorporating and
taming the PDF uncertainties. The results are displayed graphically in figure 5.15,
where 95% confidence level contours in the (Ŵ , Ŷ ) plane are obtained using SM PDFs,
conservative PDFs, and the consistent SMEFT PDF treatment. We also show the
effect of including PDF uncertainties, which has the greatest effect on the conservative
PDFs.

The increased role that the interplay between PDFs and EFT coefficients will play
at the HL-LHC can also be illustrated by comparing the expected behaviour of the
quark-antiquark luminosity, shown in figure 5.16, for the SMEFT PDFs corresponding
to representative values of (Ŵ , Ŷ ) relative to the SM PDFs. Indeed, the central value
of the quark-antiquark luminosity for SMEFT PDFs lies well outside the 1σ error band
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Figure 5.16: Same as figure 5.14, now comparing the quark-antiquark SM PDF luminosities
in the fits including HL-LHC pseudo-data with those obtained in the SMEFT PDF fits for
representative values of (Ŵ , Ŷ ).
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Figure 5.17: Same as figure 5.12, but now for the fits including the HL-LHC pseudo-data.
In the charged current case m(max)

ℓℓ refers to the transverse mass, mT .

of the SM PDFs, while the PDF uncertainties themselves are unchanged. This change
in central value of the large-x PDFs reabsorbs the EFT effects in the partonic cross
section induced by the SMEFT operators and leads to better χ2 values as compared to
those obtained with the SM PDFs.

The importance of considering the PDF-EFT interplay at the HL-LHC is nicely
illustrated by figure 5.17, where we again plot the Rχ2 estimator defined in equation
5.78, now for the HL-LHC case. The same monotonic growth of Rχ2 is seen as in
figure 5.12, with the reasoning being identical to that discussed in the surrounding
text. However, the most striking difference is that the SMEFT PDF curve (green) is
virtually identical to the SM PDF with vanishing Wilson coefficients curve (blue). This
is indeed the smoking gun we’ve been waiting to see: it shows that the EFT effects
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Figure 5.18: The values of ∆χ2 obtained for the SMEFT PDFs as a function of CDµ
33 using

the HL-LHC data as well as the corresponding quartic polynomial fit (left). We also compare
the polynomial fit for SMEFT PDFs to that obtained with the SM PDF counterpart (right).
The inset zooms on the neighborhood of the global minimum.

are almost entirely absorbed into the PDFs during fitting. The findings here act as an
impetus to devise a methodology which can systematically disentangle PDF fitting
from possible BSM effects.

5.5.2 Lepton flavour universality violating operators at the
HL-LHC

With the addition of separated dielectron and dimuon channels from the HL-LHC
projection pseudo-data, we now have sufficient constraining power to attempt a si-
multaneous determination of PDFs and CDµ

33 of scenario II. We recall that the CMS
high-mass measurements are also provided in separate channels and so this dataset is
also used in the determination.

The benchmark points used for this study are 21 points evenly distributed in the
closed interval CDµ

33 ∈ [−0.02, 0.02]. Following on from the results obtained in section
5.4.6, we include the O(1/Λ4) terms in the partonic cross section and perform quartic
polynomial fits to the corresponding χ2

i : that is expanding equation 5.5 to quartic
order.

The result of this process is shown in figure 5.18, for both SM and SMEFT PDFs.
Again the error bars are computed using the bootstrap method outlined in section 5.2.3.
The corresponding 68% and 95% confidence levels are shown in table 5.9. We have
the interesting result that in the case of scenario II, the interplay of PDFs and EFT
dynamics remains moderate, even at the HL-LHC. Despite the consistent treatment of
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Table 5.9: Same as table 5.7, now for the CDµ
33 parameter from EFT benchmark scenario II.

SM PDFs SMEFT PDFs best-fit shift broadening

CDµ
33 × 102 (68% CL) [−0.1, 1.1] [−0.3, 1.2] 0.06 25%

CDµ
33 × 102 (95% CL) [−1.0, 1.2] [−1.2, 1.4] 0.06 18%

PDFs and Wilson coefficients of scenario I (see figure 5.15 and surrounding text), the
bounds obtained for scenario II loosen by around only 30%. The origin of this behaviour
is explained by the fact the dielectron channel does not receive EFT corrections, hence
all the information provided by the e−e+ channel goes in to exclusively constraining
the PDFs. The muon channel distributions then determine the allowed range for
CDµ

33 , which is now restricted by the well-constrained large-x quark and antiquark
distributions thanks to the electron data. This finding emphasizes how the availability
of separated leptonic final states is of utmost importance to test BSM models that
account for lepton flavour universality violation.

In this chapter we have presented a first analysis of the interplay between PDFs and
possible BSM dynamics. Indeed, we may be indirectly sensitive to such BSM effects in
the highest energy unfolded data that are included in both PDF and EFT fits. We
assessed the questions of to what extent can a PDF parameterization absorb possible
BSM effects and also the effect of a consistent analysis of PDFs and EFTs would have
on bounds obtained on each. We did so by considering first a DIS only study, before
including proton-proton measurements at the LHC in the form of high mass Drell-Yan
processes. The effect was deemed ostensibly mild with current observations; however,
the use of HL-LHC projected data suggested that the effect can not only become more
pronounced at the HL-LHC, but the results one would obtain by neglecting this EFT
induced back-reaction would be completely misleading.

We acknowledge that the benchmark point based methodology, used in this work,
though able to disentangle PDFs from BSM effects, cannot be deemed a truly simulta-
neous determination. Indeed, it is not possible to plot the PDF set that one would
obtain from this approach, restricted instead to only displaying representative choices
of benchmark point. Moreover, a deliverable PDF for phenomenological use is also not
provided by this approach. Finally, we remark that, while enforced upon us due to
stability reasons, the use of the partial-χ2 in section 5.4.5 is not entirely satisfactory
if a global analysis of all available datasets is to be performed. With these points in



5.5 PDF and EFT interplay at the High-Luminosity LHC 137

mind, we consider the SIMUnet methodology next, which serves as a new generation of
simultaneous determination methodology.





Chapter 6

A new generation of simultaneous
global fits

Despite the ability to disentangle the interplay between PDF and BSM dynamics
using the approach outlined in chapter 5, there are various extensions which

the methodology outlined in section 5.1 cannot provide. For example, we can obtain
bounds on the Wilson coefficients by scanning benchmark points in the EFT coefficient
space, but it is not clear what the resulting PDF from this process should be. Indeed,
for the various PDF and luminosity plots presented, one is restricted to show only
representative choices of benchmark points. As such this discretized scan of EFT
space cannot promise to provide a single simultaneously determined PDF set that
is free from the effects of possible contamination that arises from BSM resonances.
Moreover, a truly global fit of the LHC data, in the context of indirect searches for
new physics, would not only account for possible BSM operators, but also treat all the
free parameters of the theory, such as the strong coupling, the heavy quark masses,
the gauge boson masses, etc. on an equal footing and fit the entire set of independent
parameters simultaneously. Indeed, it has been shown that unless PDFs and αs(MZ)
are fitted simultaneously (when using hadronic processes), then one necessarily achieves
inconsistent results: failing to obtain the most optimal values for both [256]. The case
of αs and PDFs is special, since the two are highly correlated thanks to the DGLAP
evolution, but in principle the same argument applies to all the other aforementioned
parameters.

In this chapter we present a novel methodology which can fit, truly simultaneously,
the PDFs alongside any external parameter that affects the theory predictions, whether
within the SM or beyond it. The methodology, dubbed SIMUnet [6], is based on the
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NNPDF4.0 methodology of chapter 3 and introduces a new sequential layer to capture
the data dependence on any external parameters with the PDF sector of the neural
network architecture free to capture the data dependence on the PDFs. We showcase
the methodology by performing a truly simultaneous fit of the Standard Model Effective
Field Theory operators considered in section 5.4. The results of chapter 5 thus forms a
benchmark for the present chapter. We demonstrate how this ground-up fit of PDFs
and external parameters can be made without making the partial-χ2 approximation of
section 5.4. We demonstrate the robustness of SIMUnet by performing a closure test
[219, 257] whereby we contaminate our data with artificially chosen choices of Wilson
coefficient and show how the methodology can not only retrieve these Wilson coefficients,
but can also replicate a known underlying PDF law. The SIMUnet methodology thus
acts as a significant step forward towards a global fit of the Standard Model and forms
the methodology of choice for all future studies akin to those of chapter 5.

6.1 Fast interface to theory predictions

In this section we outline a general formalism that allows for the fast interface of theory
predictions and to isolate their dependence on the physical parameters that one may
want to fit simultaneously with the PDFs. We then focus on simplifying this approach
through the use of multiplicative K-factors before discussing in the next section how
we extend the NNPDF4.0 framework to fit PDFs along with other physical parameters.

In order to fit a general set of external parameters alongside the PDFs, we first need
to isolate their dependence during a fit. Recall from the discussion of section 3.2.3, all
theory parameters are encapsulated in the FK tables. Using the notation employed in
[145], we can write the theoretical prediction for any hadronic cross section as

T hh
I =

Npdf∑
i,j=1

Nx∑
α,β=1

ΣI
αβij N

0
αi N

0
βj ≡ N0 · ΣI ·N0, (6.1)

where I indicates a specific hadronic observable included in a PDF fit; α, β are the
indices of the interpolation grids in x-space for the first and second parton respectively;
i, j are the indices of the PDFs of the initial-state partons that contribute to the
observable I and N0 are the neural network parametrization of the independent PDFs
at the initial scale Q0 (equation 3.24). The computation of the hadronic observables
is reduced to a bilinear product over an interpolation grid in the x1,2 space and the
basis of the input PDFs for a given process. The quantity Σ is the FK-table, which



6.1 Fast interface to theory predictions 141

incorporates both the evolution of the PDFs from the initial scale to the scale of the
measured observable and the partonic cross sections associated to each of the partonic
channels that enter the computation of the hadronic cross section. For processes
involving only one hadron and one lepton, like DIS, the expression is even simpler and
reads:

T hl
I =

Npdf∑
i=1

Nx∑
α=1

ΣI
αi N

0
αi ≡ ΣI ·N0. (6.2)

We can collectively refer to the theory prediction for a generic observable - whether it
involves one or two hadrons in the initial states - as

TI = ΣI · L0, (6.3)

where L0 indicates either the parametrisation of one independent PDF at the initial
scale or the product of two of them.

If we now consider how the theoretical predictions TI for each observable I explicitly
depend upon a single parameter c, that could be for example the strong coupling
constant, αs, or the top mass, mt, the entire dependence upon this parameter is
contained in the FK-tables Σ, since L0 only captures the initial scale parametrization
of PDFs, which is fitted from the data. For clarity of notation we focus here on the
case where only one single parameter is fitted alongside PDFs, but the generalization
to more parameters is a straightforward extension of the following argument, simply
requiring the use of multi-variate Taylor expansions. Schematically we can write the
FK-tables as

ΣI(c) = [σ̂(c)⊗ Γ(c)]I (6.4)

where σ̂ is the partonic cross section and Γ are the evolution kernels that evolve the
PDFs from the initial scale to the scale of TI . The shorthand ⊗ denotes the usual
convolution given by equation 2.37. For a standard PDF-only determination, the
parameter c is typically fixed to a certain value during the computation of the FK
table. In general both σ̂ and Γ depend on the given parameter (the strong coupling
being one such example), whilst in some other cases only the partonic cross sections, σ̂,
depends on the parameter under consideration (the Wilson coefficients of the SMEFT
expansion being one such example).
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If we now want to fit the parameter c alongside the PDFs, we need a fast interface
to the dependence of each ΣI(c) upon the parameter c1. One possible way to achieve
such a fast interface is to assume that both the evolution kernel and the partonic cross
section are suitably analytic such that they can be accurately described by their Taylor
expansion about some point c∗. The closer the point c∗ is to the actual parameter,
the greater the validity of truncating the Taylor series. Dropping from now on the
observable index I, we can write

Σ(c) =
∑
p,q

(c− c∗)p+q

p!q!
∂pσ̂(c∗)
∂cp

⊗ ∂qΓ(c∗)
∂cq

=
∑

k

(c− c∗)k
∑
p,q:

p+q=k

1
p!q!

∂pσ̂(c∗)
∂cp

⊗ ∂qΓ(c∗)
∂cq

=
∑

k

(c− c∗)kΣk(c∗), (6.5)

whereby for each power of c we have an order-by-order FK table, Σk(c∗), that can be
pre-computed before the fit, with the dependence on the parameter c being isolated
from the FK table. In this way the task of querying the FK table for various values
of c has been reduced to computing individual FK tables for each order and taking a
weighted sum of these tensors which is a computationally trivial and fast operation.
Importantly, such an operation can be implemented using the purely TensorFlow
functionality already present in the NNPDF4.0 methodology, thus allowing for the
gradients to be computed using automatic differentiation techniques [258].

6.1.1 Observable dependence on the strong coupling

To make the above discussion more concrete, we explicitly consider the case whereby
we wish to isolate the FK table dependence on the strong coupling constant at the
Z-pole, such that, following our above notation, we have c = αs(mZ) and c∗ =
αPDG

s (mZ) = 0.1179(10) is the PDG value for the strong coupling evaluated at the
Z-boson mass [177].

1In section 6.3 we will see that the reason for this is that gradient descent will assess the optimal
value of c at every step during learning by repeatedly evaluating theory predictions with different c
values.



6.1 Fast interface to theory predictions 143

The partonic cross section admits a power expansion in αs using perturbation
theory, which allows us to write the exact expression

σ̂(c) =
∑

p

(c− c∗)p σ̂p(c∗) (6.6)

where we have simply centred the order by order sum around c∗. For illustrative
purposes, we restrict ourselves to the case where the process depends solely on the
non-singlet quark distribution. The evolution kernel in Mellin space to leading order
in the anomalous dimension (the Mellin transform of the splitting function) γ0, is then
given by [132]:

Γ(N,αs(Q2), αS(Q2
0)) =

(
αs(Q2)
αs(Q2

0)

)−γ0(N)/β0

. (6.7)

If we consider the leading-log evolution of αs via renormalisation group equation from
M2

Z to Q2 or Q2
0 and set c = αs(M2

Z), we get

αs(Q2) = c

1 + β0c ln Q2

M2
Z

αs(Q2
0) = c

1 + β0c ln Q2
0

M2
Z

(6.8)

where β0 = 11 − 2
3Nf . Expanding the evolution kernel Γ according to equation 6.5,

taking c∗ = αPDG
s (MZ) = 0.1179, it is easy to see that we get

Γ(c) = Γ0 + (c− c∗)Γ1 + · · · , (6.9)

where

Γ0 =
1 + c∗β0 ln Q2

0
M2

Z

1 + c∗β0 ln Q2

M2
Z

(6.10)

Γ1 = −γ0(N)
β0

Γ
− γ0(N)

β0
−1

0

 β0 ln Q2
0

M2
Z

1 + c∗β0 ln Q2

M2
Z

−

(
1 + c∗β0 ln Q2

0
M2

Z

)
β0 ln Q2

M2
Z(

1 + c∗β0 ln Q2

M2
Z

)2

 . (6.11)

Finally, once equation 6.9 is combined with equation 6.6 we obtain the order by order
expansion for the FK tables:

K =σ̂0 ⊗ Γ0 + (c− c∗)
(
σ̂1 ⊗ Γ0 + σ̂0 ⊗ Γ1

)
+ · · · (6.12)

≡K0 + (c− c∗)K1 + · · · (6.13)
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which can, in principle, be computed and stored permanently in the usual way. In this
way we can capture the FK table dependence on the strong coupling parameter in the
neighborhood of some prior choice c∗.

So far, we have limited ourselves to the leading order evolution of the PDFs and
the strong coupling constant, however a similar expression can be straight forwardly
obtained at NLO and NNLO. The only caveat is that, from NLO onwards terms of the
form ln

(
1 + β0c ln Q2

M2
Z

)
arise which spoil the validity of the Taylor expansion. The

term ln Q2

M2
Z

can in principle be made arbitrarily large thus exiting the unit disc which
is the region of analyticity of ln(1 + x). This problem can be circumvented, however,
by noting:

ln
(

1 + β0c ln Q2

M2
Z

)
= ln

(
1 + β0c

∗ ln Q2

M2
Z

)
+ ln

1 +
β0(c− c∗) ln Q2

M2
Z

1 + β0c∗ ln Q2

M2
Z

 (6.14)

where the rightmost term can now be Taylor expanded since c − c∗ can be made
arbitrarily small so as to suppress the large logarithm. Indeed, note that in the worst
case:

lim
Q2→∞

(c− c∗)
β0 ln Q2

M2
Z

1 + β0c∗ Q2

M2
Z

 = c− c∗

c∗ ≤ 1 (6.15)

=⇒ c ≤ 2c∗ (6.16)

which can be implemented within the optimizer to restrict it from venturing to values
greater than 2c∗.

Finally if one was to include electroweak corrections to the DGLAP evolution
equation, as is for example done in APFEL [147], then electroweak parameters will in
general also be present in the combined QCD and QED evolution operator. For such a
scenario, the prescription outlined in this section must then be followed. However, the
corrections to the pure QCD splitting functions introduced by electroweak considera-
tions have no dependence on the CKM matrix elements, the weak mixing angle, θW , or
gauge boson masses, amongst others. Such quantities manifest solely in the partonic
cross section and in general yield a prescription much simpler than that outlined here.
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6.1.2 Interpolation of Fast Kernel tables

Despite the appeal of the method of Taylor expanding the FK tables using equation
6.5, the practicality of this method may be rather restricted for the specific case of
fitting the strong coupling at the Z-pole. The reason for this is that the computational
implementation of equations such as 6.10 and 6.11 will be rather cumbersome in the
(Fortran based) APFEL library [147]. Realistically, the picture will only get worse once
non-singlet evolution is considered and NNLO expansions of the evolution kernel are
used.

A viable alternative to the Taylor expansion approach for the determination of
αs and the PDFs is to compute various FK tables using preset values of the strong
coupling and then perform an element-wise interpolation between these tensors. In
this way one can avoid having to implement the Taylor series expansion, while still
accurately replicating the linear behaviour of the FK table. More concretely, one
selects a set of values for the strong coupling, A = {α(1)

s , . . . , α(p)
s } (perhaps linearly

spaced in the interval [0.115, 0.122]) and for each one an FK table is computed using
APFEL: S = {Σ(1), . . . ,Σ(p)}. Then the FK table for a general choice of αs is given
by interpolating the FK table elementwise. For example, using a piecewise linear
interpolant, the FK table as a function of αs would be given by:

Σ(αs) = Σ(α↓
s) + (αs − α↓

s) · Σ(α↑
s)− Σ(α↓

s)
α↑

s − α↓
s

(6.17)

where α↑
s (α↓

s) is the nearest neighbor from above (below) of αs for elements in the set
A; that is:

α↑
s = arg min

x∈A≥αs

(x− αs) α↓
s = arg max

x∈A≤αs

(αs − x). (6.18)

This method is appealing because such a piecewise linear interpolation is in an extremely
quick computation with much less implementational overhead than implementing
equations 6.10 and 6.11. However, the accuracy of mimicking the precise behaviour of
Σ around the neighborhood of the knots α(i)

s may be restricted if one uses too coarse a
selection of A. This problem can be overcome by choosing a more dense set of knots
since in principle any continuous function can be replicated using an infinite number
of piecewise linear functions. We shall reserve this endeavour for a future, though
ongoing, study.
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6.2 Observable dependence on the Wilson coeffi-
cients

We now focus on the parameters that we shall use to showcase the potential of our
approach. Specifically, we are interested in fitting N parameters {cn} with n = 1, . . . , N ,
each of which is a parameter associated to a Wilson coefficient of a given operator in
the SMEFT expansion of equation 2.82.

As we have seen in chapter 5, to include the effects of the corrections coming from
the dim-6 operators included in the SMEFT expansion in the theoretical prediction TI

for any observable included in the fit, one has to augment the SM partonic cross sections
with the effects of the relevant operators with the linear and quadratic modifications
of the SM cross section that the operators induce. Note that, given that the SMEFT
operators that we consider here do not modify the PDF DGLAP evolution, the
corrections will only appear in the partonic cross sections σ̂ and, unlike in the case of
the Taylor expansion around the PDG value of αs discussed in section 6.1.1, here the
sum is exact (and not approximated) when the Taylor expansion is truncated at order
k = 2 (corresponding to linear and quadratic corrections). Recall from the discussion of
equation 5.74, the EFT corrections can be adequately implemented using the K-factor
approximation, by defining:

K({cn}) = 1 +
N∑

n=1
cnR

(n)
SMEFT +

N∑
n,m=1

cncmR
(n,m)
SMEFT , (6.19)

where R
(n)
SMEFT (R(n,m)

SMEFT) corresponds to the SM-EFT (EFT-EFT) matrix element
arising due to operator, n (n with m), normalized to the pure SM matrix element.
This allows us to express a general cross section accounting for the dim-6 operators of
equation 2.82 as

T = T SM ×K({cn}) (6.20)

where T is the SMEFT-modified theoretical prediction, T SM is the state-of-the-art SM
theoretical prediction including NNLO QCD and NLO EW corrections and K({cn})
are the SMEFT K-factors defined in equation 6.19. In this approach, the SMEFT
predictions inherit factorisable higher-order radiative correction [45, 259]. The coeffi-
cients associated with the linear (quadratic) corrections R(n)

SMEFT ( R(n,m)
SMEFT) in equation

6.19 can be precomputed before the fit using a reference PDF set and then kept fixed.
The impact of the coefficients {cn} can thus be included in the FK-tables, Σ, by a
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simple multiplicative factor. This is convenient because we are then able to factorize
the K-factors and thereby isolate the {cn} dependence. Schematically this reads

Σ({cn}) = [σ̂ ⊗ Γ]×K({cn}) = ΣSM ×K({cn}), (6.21)

where the first factor does not depend on the Wilson coefficients and it is given by
the same FK-tables that one computes for the standard NNPDF4.0 fits [1] which
implicitly assume the SM to be valid at all scales at which observables are measured.
The possibility of factoring the whole dependence upon the SMEFT parameters in a
multiplicative factor simplifies the procedure highlighted in equation 6.5 and it thus
simplifies the way in which the dependence upon the parameters {cn} is fitted within
SIMUnet, as will be outlined below.

6.3 Methodology

In this section we move on to discuss the details of the new SIMUnet methodology. We
show how, by extending the NNPDF4.0 methodology discussed in chapter 3, we can
exploit the fast interface of the theory dependence on the external parameters presented
in sections 6.1 and 6.2 to simultaneously fit the PDFs and external parameters. We
show how the Monte Carlo method can be used to build a representation of not only the
PDFs, but also of {cn}. We also highlight various points of the NNPDF4.0 methodology
that remain pertinent to our study, in particular the hyperparameter selection as well
as the cross-validation techniques employed to avoid overfitting.

6.3.1 Neural network design

The NNPDF4.0 fit [1] that our methodology is built upon, shares the features of
the previous NNPDF releases [137, 145], specifically the use of a Monte Carlo rep-
resentation of PDF uncertainties and correlations, and the use of neural networks
as basic interpolating functions. As such all the details of the fitting methodology,
such as the choice of neural network architecture and the minimization algorithm,
are now selected through an automated hyperoptimization procedure [260]. As such,
our methodology employs state-of-the-art deep-learning techniques through publicly
available and highly optimised Machine Learning libraries such as TensorFlow [127]
and Keras [140]. As a result, it boasts both performance and improved fit quality using
the cutting edge in optimiser technology. Moreover, through the use of TensorFlow
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Figure 6.1: Schematic depiction of the SIMUnet methodology. The input nodes (shown in
green) are Bjorken-x and its logarithm. The forward pass through the deep hidden layers
(blue) are performed as in equation 3.6 to yield the output PDFs at the initial scale (red). The
initial scale PDFs are then combined in the initial scale luminosity L0, defined in equation 6.3.
The initial scale luminosity is then convolved with the pre-computed FK-tables Σ (shown
in blue) to obtain the theoretical prediction T (shown in red), which enters the figure of
merit (equation 6.22) and is minimized during the fit. The Σ dependence on the parameters
{cn} is fed into theoretical prediction T via the trainable edges of the combination layer.
All trainable edges are shown by solid edges and are thus learned parameters determined
through gradient descent, while dashed edges are non-trainable.

graph based execution, the code enjoys the readability Python is famed for, whilst still
maintaining the performance of more traditional, statically typed, compiled languages.
Additionally, we still retain parallel based execution capabilities, allowing for the ability
to fit many replicas in a scalable way, whether on a local machine (using central or
graphical processing units) or on a cluster.

The key feature of the SIMUnet methodology is the use of a custom combination
layer, which captures the dependence of the theoretical predictions upon the external
parameters {cn}, with n = 1, . . . , N , that we fit alongside the PDFs. The edges of the
combination layer are fitted simultaneously with the weights and biases associated
with the parametrization of the PDFs at the initial scale Q0.
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The approach is represented schematically in figure 6.1, whereby the theory predic-
tion, T , for each experimental observable included in the fit depends on a dynamical
choice of {cn}. The values of {cn} are associated with the weights of the trainable
edges which determine the FK table, Σ, as in equation 6.5. Such dependence enters
the theoretical prediction T via the bilinear product between Σ({cn}) and the initial
scale PDFs, which in equation 6.3 we refer to as L0, where L0 indicates either the
parametrization of one independent PDF at the initial scale or the product of two of
them.

Letting θ denote the set of trainable neural network parameters (the weights and
biases) that parameterize the PDFs and {cn} the parameters that we fit alongside the
PDFs, SIMUnet fits the joint θ̂ = θ ∪ {cn} parameter set, by letting gradient descent
determine their optimum value in order to minimize the figure of merit used in the fit,
which is defined as

χ2(θ̂) = 1
Ndat

(D−T(θ̂))TC−1(D−T(θ̂)), (6.22)

with D being the vector of experimental central values, T the vector of theoretical
predictions and C the covariance matrix encapsulating the experimental uncertainties
and the correlations therein. As in NNPDF4.0, the covariance matrix is constructed
using the t0 prescription in order to avoid the d’Agostini bias [129]; we refer the
reader to section 3.2.1 for further details. If one wanted to include also correlated
sources of theoretical uncertainties, such as those associated with missing higher order
uncertainties in the theory predictions, we could include them using the method
outlined in [156, 157, 261]. We leave this endeavour to a future analysis, once the
theory covariance matrix for missing higher orders will be available at NNLO.

6.3.2 Parameter fitting using linearisation

In the case of dim-6 operators, discussed in section 6.2, including only the interference
of the SMEFT corrections with the SM diagrams is trivial, as we only add a linear
dependence upon the Wilson coefficients. Indeed, the identity of equation 6.20 allows
us to write the theoretical predictions by SIMUnet at a particular configuration θ̂ as

T (θ̂) = Σ({cn}) · L0(θ) = T SM(θ) ·
(

1 +
N∑

n=1
cnR

(n)
SMEFT

)
, (6.23)
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Figure 6.2: Schematic representation of the architecture used by SIMUnet in the case of
the fit of SMEFT coefficients, in which the dependence of the theoretical prediction T upon
the parameters {cn} can be factored into a multiplicative K-factor, as in equation 6.21. The
scheme is the same as the one of figure 6.1, however the initial scale PDFs L0 are first convolved
with the relevant SM FK Tables to obtain the Standard Model theory prediction (T SM). The
SM predictions are then incremented by the addition of the linear SMEFT corrections via a
final linear combination layer. All solid edges are trainable and thus modified during gradient
descent. The precise nature of the manipulation performed by the final layer is outlined in
equation 6.23.

where T SM(θ) = ΣSM · L0(θ) is the SM theoretical prediction for each observable and
corresponds to {cn = 0}. Given that in this case the dependence upon the parameters
{cn} is factored out of the FK-tables into a multiplicative factor, we can visualize the
dependence upon the parameter in the simplified schematic representation given in
figure 6.2. Thanks to linearisation, the bracketed term is implemented using a Keras
custom layer, which takes the usual SM observable predicted by the network at some
interim configuration and maps it to a SMEFT modified observable with the strength
of the new physics interaction being determined by the weights of the combination
layer, which in this case is simply an extra sequential layer that maps T SM into the
theoretical prediction T which enters the figure of merit defined in equation 6.22.
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The SMEFT-modified theory prediction, T , is then split into disjoint training and
validation splits. For each split we compute a training and validation χ2. Gradient
descent attempts to minimize the training χ2 by descending the loss surface in θ̂-space
while the validation χ2 is monitored to assess the network’s out of sample performance.
The validation χ2 decreases initially (since the network is learning the shared underlying
laws that are common to both sets), but upon the onset of overfitting, the out of sample
performance begins to deteriorate as the network fits the noise of the training data.
This particular point in the training process corresponds to the validation χ2 ceasing
to decrease and instead beginning to increase. Upon reaching this regime, training is
halted and various checks, such as positivity and integrability of the resulting PDF
are assessed. It is at this point that the best fit values of the Wilson coefficients {cn}
are obtained, since gradient descent has modified the combination layer’s weights such
that they best fit the input data. Using this cross-validation procedure [132, 135, 262]
we ensure the fitting of statistical fluctuations are avoided as much as possible and it
is the shared underlying physical laws that are being fitted instead. At the same time,
in order to ensure that the {cn} are not overfitted, we set the datasets that will be
modified by these parameters to have a good representation both within the training
set and validation set. Thus in this study we split such datasets to have their training
and validation fractions equal: ftr = fval = 0.5, while keeping all other training and
validations fractions as in the fits of section 5.4.

As with all deep learning studies, the user has freedom to choose the various
hyperparameters of their model at their own discretion. Such parameters include the
architecture of the network, the particular choice of initializer that sets the initial
values of network parameters {θ}, or the choice of minimizer (and the specific settings
therein) that tunes these parameters to their optimal values such that the performance
metric is minimized. Techniques exist to automate this process such as the hyperopt
library [263] employing Bayesian methods to perform this optimization. Indeed this is
employed by NNPDF4.0 and we choose to use the same settings that were found to be
optimal there [1, 2] (see table 3.2). In this study, the hyperoptimization procedure has
not been performed to reassess the optimality of the various neural network settings.
Indeed, this is justified, since we expect, a priori that the PDF modifications due
the presence of the aforementioned SMEFT operators will be moderate, and thus
the hyperparameters selected assuming a SM-only scenario will remain adequate.
However, this assumption does not hold anymore in the event that a more marked PDF
modification is expected or obtained a posteriori. This point is also worth considering
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if one is to introduce a large number (relative to NNPDF4.0) of new measurements
or any measurements which introduce tensions with other datasets. Should this be
the case, hyperoptimization should be performed again on the layers preceding the
combination layer.

The connections to the combination layer (one for each of the cn) are initialized to
zero, since we assume a priori the Wilson coefficients will be small; although we observe
that if they are initialized according to a normal distribution, then virtually identical
results are obtained. These connections are then modified during back propagation.
It is worth mentioning that for small values of Wilson coefficients (such as those in
this study), it is highly desirable to scale the units such that the Wilson coefficients
are O(1) and thus comparable to the learning rate. This will assist the optimiser
during gradient descent to converge upon the minimum in a timely fashion, since the
step size will be more suited to the characteristic scale of the Wilson coefficients. In
practice, the appropriate scaling is usually determined a posteriori, where one can
analyse the typical values for the Wilson coefficients and refit with the normalization
set accordingly.

6.3.3 Incorporating non-linear effects

The effect of including the SMEFT self-interference diagrams can often introduce a
marked effect on the bounds obtained for a given SMEFT scenario [5, 264]. Moreover,
with the impetus to produce high precision theoretical predictions for the LHC era,
the inclusion of higher order corrections in the SMEFT scattering graphs are becoming
particularly pertinent [265–268]. Such considerations introduce a non-linear dependence
on the Wilson coefficients in the space of observables: quadratic in the former and
quadratic in the highest order in the QCD expansion in the latter. This point serves
as a major advantage of our methodology which can accommodate these effects during
the fit by the simple addition of non-trainable edges.

When computing the amplitude of a Feynman diagram related to some process one
has the schematic form A = ASM +∑Ai where Ai is the amplitude corresponding to
the operator O(i) computed to some order in perturbation theory. We assume here
that it is LO in the Wilson coefficients, but need not be in general and the extension to
higher orders in the Wilson coefficient expansion is discussed at the end of the present
section. When computing the observable, the matrix element, |A|2, introduces terms
of the form AiAj. Since these amplitudes are computed to LO in perturbation theory,
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Figure 6.3: Schematic representation of how SIMUnet allows for the effects of the SMEFT
self-interaction diagrams (dim-6)2 to be included. We show here how the SM observable can
be transformed to a SMEFT observable which includes the O(1/v4) terms. The preceding
PDF layers are omitted for clarity. The linear contributions are included in the usual way,
with the strength of the SMEFT couplings being determined by the trainable edges, cn: shown
by the solid lines. The SMEFT-SMEFT interference contributions are instead non-trainable
edges with their value being fixed by the strength of the corresponding pair of trainable
edges. These are shown by the dashed lines. There will in general be N trainable edges, and
N(N + 1)/2 non-trainable edges.

we can rewrite equation 6.23 as

T (θ̂) = T SM(θ) ·
1 +

N∑
n=1

cnR
(n)
SMEFT +

∑
1≤n≤m≤N

cncmR
(n,m)
SMEFT ,

 (6.24)

with R
(n)
SMEFT (R(n,m)

SMEFT) being defined as in equation 5.71 (5.73). Including this contri-
bution in the simultaneous fit is a straightforward task and simply requires that the
manipulation performed by the combination layer correspond to that of equation 6.24
instead of equation 6.23.

In practice, however, it is more convenient to rewrite the terms in the right most
sum of equation 6.24 by defining cnm = cncm:

T (θ̂) = T SM(θ) ·
1 +

N∑
n=1

cnR
(n)
SMEFT +

∑
1≤n≤m≤N

cnmR
(n,m)
SMEFT ,

 (6.25)

we see that both summations are of the same form and so the manipulation required
to incorporate the quadratic effects of the squared SMEFT amplitude is reduced
to introducing N(N + 1)/2 additional edges to the combination layer, one for each
cnm. These additional connections, however, are not trainable, that is to say their
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value is not determined by gradient descent during learning; since cnm is completely
determined by the product of trainable edges n and m. This is shown schematically
in figure 6.3, whereby the trainable edges determine the non-trainable edges that
perform the manipulation corresponding to the right most term in the brackets of
equation 6.24. Loops involving SMEFT operator insertions can thus also be fitted in
this way alongside the higher dimensional operators in the SMEFT expansion (such
as adding dimension-8 operators [109, 110]) that contribute at the same order in the
power counting parameter.

Moreover, to incorporate quantum corrections arising from Next-to-Leading Order
(NLO) terms in the QCD perturbative expansion of the SMEFT corrections is a
similarly straightforward task, simply requiring the computation of the corresponding
K-factor and including an additional edge in the combination layer whose value is
pinned to be the value of the corresponding trainable edge raised to some power. If
one wanted to include also the scale dependence of the Wilson coefficients [269–271],
one would have to fit the scale dependent Wilson coefficients at some fixed scale, Q0,
and use the relevant β-functions to evolve the operator to the relevant scale using
some pre-computed evolution kernel, which would be factored into the pre-computed
FK-tables.

Finally, it is well-known that one can obtain prior knowledge on the Wilson
coefficients by assuming a UV completion of the EFT exists that is local, unitary and
causal. Such matching conditions can often impose positivity bounds [272] on functions,
fi, of the Wilson coefficients by leveraging these standard conditions on the UV theory.
To incorporate such a prior within our framework is analogous to the way positivity
on physical cross sections is achieved within the NNPDF methodology [134, 136]. The
minimizer is informed of the prior by modifying the training loss function to penalize
negative values of Wilson coefficients, with one such choice of penalty term being

loss = loss + λ
∑

i

Θ
(
− fi({c})

)
, (6.26)

with Θ the usual Heaviside step function which takes unit value for positive arguments
and vanishes otherwise. The parameter λ is a non-negative scalar which can be treated
as a hyperparameter and encapsulates the degree of belief in the prior: larger values
impose the positivity more strictly while smaller values allow for slight violations of the
positivity constraints. In a similar way to NNPDF it is also possible to filter the replicas
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a posteriori by discarding those that are deemed to violate positivity constraints too
strongly.

6.3.4 Fixed PDF analysis

A desirable feature of any simultaneous fitting methodology is to be able to benchmark
the simultaneous extraction with the analogous fixed PDF analysis. Indeed, this is
precisely what is done in chapter 5 and the broadening of the Wilson coefficients
bounds there being the key message of the chapter.

This too is achievable with our methodology and proceeds as follows. We begin
by first freezing the combination layer parameters by making them non-trainable.
Mathematically, the combination layer thus performs an identity transformation,
effectively removing itself from the process. At this stage we are in effect performing
a regular NNPDF4.0 PDF fit. Upon successfully achieving the stopping criterion for
the PDF only portion of the fit, we then freeze the PDF sector of the neural network
(again by making the weights and biases non-trainable) and reinstate the combination
layer, allowing for gradient descent to optimize the external parameters, ci, only. In
this way we eliminate the cross-talk between the PDFs and the external parameters
and so the external parameters fitted in this way are equivalent to an analogous study
keeping the PDFs fixed to the baseline.

6.4 A first simultaneous determination of PDFs and
Wilson Coefficients

In this section we present the results we obtain by applying the SIMUnet methodology
to fit the Wilson coefficients alongside the PDFs in the two benchmark scenarios
considered in section 5.4. We describe the results we obtain in the two scenarios, both
in terms of the resulting PDFs and bounds on the Wilson coefficients. We stress here
that these PDFs are the first to have been truly fitted alongside the Wilson coefficients.
We compare our findings to those obtained when PDFs are kept fixed to the SM
baseline versus those fitted simultaneously alongside the Wilson coefficients. Finally,
we summarize our results, by exploring the correlations between PDFs and the Wilson
coefficients that we consider in this study and quantifying the agreement with respect
to the previous findings of section 5.4.
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We reiterate here that the dataset consider in this work is precisely that of section
5.4.1 and in particular uses high mass Drell-Yan measurements to achieve strong
handles on the EFT operators. We shall also include the High-Luminosity projections
from section 5.5 when considering the simultaneous fit of (W,Y ) and PDFs. The two
EFT benchmark scenarios considered are the oblique parameters of section 5.4.2 and
the muonphilic operator of section 5.4.3. The ability to accommodate a broader span
of Wilson coefficients was not directly assessed in this study, though a detailed analysis
of the top sector using top quark sensitive data from the LHC is an on going analysis
and reserved as a future publication. In this context the ability for SIMUnet to scale
with the number of external parameters will be presented. It is, however, well expected
that our methodology can accommodate a vastly greater number of Wilson coefficients
than just those presented in the present section. This is chiefly due to the fact that the
number of experimental measurements available in the global analysis far outweighs the
number of external parameters. Even if one is to account for the degrees of freedom in
the PDF sector of the neural network architecture, the resulting optimization problem
is still well-posed.

6.4.1 Results for Benchmark Scenario I

We first present the results obtained within the first Benchmark Scenario outlined in
section 5.4.2, in which the linear effects are dominant as compared to the quadratic
effect and, as a result, SMEFT-modified theoretical predictions are defined as in
equation 6.23. We start by employing SIMUnet to individually constrain the W and Y
operators with the ATLAS and CMS neutral-current (NC) high mass DY data from
Run I and Run II (table 5.5). In the next subsection we will be able to constrain them
simultaneously thanks to the inclusion of charged-current (CC) HL-LHC projections.

In figure 6.4 we show the distribution of the optimal values of W and Y determined
for each of the 1000 replicas of the Monte Carlo representation of the experimental
data that we obtain during gradient descent in the simultaneous fit of either W or
Y and the PDFs. The best-fit values are normally distributed in keeping with the
Monte-Carlo pseudodata replica generation that the neural network replicas are fit to.
We compare the distribution (in green) with the one that we obtain by keeping the
PDFs fixed to the SM baseline (in orange), the latter obtained by using the methodology
outlined in section 6.3.4. Both distributions are centred around zero, illustrating that
the high-mass DY datasets are compatible with the SM-only hypothesis, but admit
non-zero values, with Y being less constrained by the data than W . The distribution
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Figure 6.4: Distribution of best fit W (left panel) and Y values (right panel) obtained across
1000 replicas by fitting each of the Wilson coefficients alongside PDFs with the SIMUnet
methodology (green) compared to the distribution that one would obtain by keeping the
PDFs fixed to the SM baseline (orange).

Table 6.1: The 68% and 95% CL bounds on the W and Y parameters obtained either for a
fit in which PDFs are kept fixed (SM PDFs) or in a fit in which PDFs are fitted simultaneously
with either W or Y (SMEFT PDFs). The fourth and fifth column indicate the absolute
shift in best-fit values, equation 5.76, and the percentage broadening of the SMEFT bounds,
equation 5.77, when the PDFs are allowed to change alongside the Wilson coefficients.

SM PDFs SMEFT PDFs best-fit shift broadening
W × 104 (68% CL) [−9.0, 2.1] [−8.2, 3.2] +1.0 +2.6%
W × 104 (95% CL) [−14.5, 7.6] [−13.9, 8.9] +1.0 +3.2%
Y × 104 (68% CL) [−13.8, 5.7] [−12.2, 7.9] +1.9 +3.1%
Y × 104 (95% CL) [−23.5, 15.5] [−22.2, 18.0] +1.9 +3.1%

of best fits obtained in a simultaneous fit looks similar to the distribution of best fits
obtained by keeping the PDFs fixed to the SM baseline.

For a more quantitative comparison, in table 6.1 we compare the bounds for the
individual W and Y obtained in the simultaneous fits to those obtained by keeping
the PDFs fixed to the SM baseline. We indicate the shift and the broadening of the
bounds that are obtained once the Wilson coefficients are fitted alongside PDFs as in
equations 5.76 and 5.77 respectively. As in section 5.4, the effect of the back-reaction
on the PDFs induced by the Wilson coefficients on the interpretation of high-mass DY
constraints is entirely moderate, with the bounds of the simultaneous fit being only
slightly looser (by a factor around 3%) than those obtained by keeping the PDFs fixed.

In figure 6.5 we show the quark-antiquark channel luminosity plots defined in
equation 5.72 with the error bands showing 68% confidence levels, normalised to the
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Figure 6.5: The one dimensional luminosity in the qq̄ channel for a PDF fitted in the
presence of a non-zero W operator (left panel) or of a non-zero Y operator (right panel)
shown in orange, normalized to the SM baseline PDF shown in green.

baseline SM PDFs. We notice that, while in the previous analysis of section 5.4, we
could only produce sets of PDFs obtained at fixed values of W and Y (corresponding to
the Benchmark Points that were taken under consideration), here we do really produce
a set of PDFs obtained out of a simultaneous fit alongside the Wilson coefficients. We
see the luminosity modification due to the simultaneous fit remains moderate, with a
slightly larger deviation found at higher values of the produced lepton invariant mass,
where the PDFs exhibit slightly larger uncertainties. This is indeed a result consistent
with the indications given in section 5.4. Indeed, the dominant luminosity channel for
NC DY is uū and dd̄ with the valence quark distribution being strongly constrained by
DIS and the SMEFT modification being small relative to the experimental uncertainties
of the highest invariant mass bins probed by current experimental data. Again, this
finding shows that the interplay between EFT effects and PDFs remains moderate
when one performs a truly simultaneous determination of both.

It is interesting to observe that, if we try to fit W and Y at the same time using
only the current NC DY data, we identify both the flat direction and the strong
anti-correlation between W and Y , which are known to exist in this case [249]. Results
are shown in figure 6.6. Both the flat direction and the anti-correlation can be retrieved
within the framework of the SIMUnet methodology, without the user having to be aware
of the existence or particular nature of any flat directions which may exist. Indeed,
the optimizer cannot preferentially differentiate one point from another within this
landscape valley and so the points are distributed tightly along the flat direction. The
true minimum is thus a soft attractor in this case. The preference for the upper left
quadrant in the W -Y plane is consistent with the findings of [249] with the failure
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Figure 6.6: Scatter plot for the best fit values of (W,Y ) per replica using ATLAS and CMS
high mass Drell-Yan data, which are exclusively NC observables. The upper and rightmost
panels are histograms in their respective directions. A clear flat direction has been detected
along with a strong anti-correlation.

to capture the origin possibly due to the lack of inclusion of O(1/Λ4) terms in the
partonic cross section which is known to ease such tensions when only O(1/Λ2) terms
are present, as it was pointed out in reference [264], where the effect of dim-8 operator
is carefully assessed. While easily spotted in a two operator analysis by simply plotting
the best fit values of Wilson coefficients, it is significantly more challenging to notice a
flat direction in a many operator scenario. A plot like figure 6.6 can no longer be made
in higher-dimensions and in such a case it is wise to perform a principle component
analysis (PCA) to assess directions of high variance in best fit values [273, 274].

6.4.2 Inclusion of the HL-LHC projections

The flat direction illustrated in figure 6.6 can be eliminated with the inclusion of
Charged Current (CC) DY data as we explicitly demonstrated in section 5.5. No
unfolded measurements of the high-mass transverse mass mT distribution have been
yet released at 13 TeV, thus we will base our analysis on the High Luminosity LHC
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Figure 6.7: Scatter plot for best fit tuples of (W,Y ) for each replica obtained in the
simultaneous fit (green) compared to those obtained when PDFs are kept fixed to the
SM baseline (orange). The upper and rightmost panels are histograms in their respective
directions.

(HL-LHC) high-mass Drell-Yan projections that we used in chapter 5; inspired by the
HL-LHC projections studied in [253]. We perform a simultaneous fit of the PDFs and
the two (W,Y ) parameters by adding two trainable edges in the combination layer
displayed in figure 6.2 and appending the aforementioned HL-LHC projected data to
the already present DIS and Drell-Yan data. The best fit values of (W,Y ) obtained for
each of the 1000 replicas of the Monte Carlo ensemble are plotted in figure 6.7. We see
that not only is the flat direction of figure 6.6 broken, but the HL-LHC projections
heavily favour vanishing Wilson coefficients. Indeed, the origin is now covered in both
the W and Y axes and much more heavily constrained, enjoying roughly two orders of
magnitude tighter constraints in both directions. We notice a slightly favorable pull
towards the upper-left quadrant in the W -Y plane, that the ATLAS and CMS datasets
seem to prefer. Comparing the best-fit distribution that we get in a simultaneous fit
(displayed in green) to the one we get in a fit in which PDFs are kept fixed to the SM
baseline (displayed in orange) we can see that the bounds are visibly tighter once PDFs
are kept fixed to the SM baseline and are not allowed to consistently vary alongside
the Wilson coefficients. This is precisely the same behaviour as figure 5.15.

In table 6.2 we compare the bounds for the individual W and Y fits obtained in the
simultaneous fits to those obtained by keeping the PDFs fixed to the SM baseline. We
indicate the shift and the broadening of the bounds according to the definitions given
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Table 6.2: Same as table 6.1 for the 68% C.L. and 95% C.L. marginalized bounds on the W
and Y parameters obtained from the two-dimensional (W,Y ) fits that include the HL-LHC
pseudo-data for NC and CC Drell-Yan distributions.

SM PDFs SMEFT PDFs best-fit shift broadening
W × 105 (68% CL) [−1.1, 0.5] [−2.4, 1.5] −0.2 +144%
W × 105 (95% CL) [−2.0, 1.4] [−4.3, 3.4] −0.2 +126%
Y × 105 (68% CL) [−0.4, 5.2] [0.6, 8.0] +1.9 +32%
Y × 105 (95% CL) [−3.2, 8.1] [−3.1, 11.7] +1.9 +31%

in equations 5.76 and 5.77. Consistently to what was found in our previous study of
section 5.5 we observe that including high-mass data at the LHC both in a fit of PDFs
and in a fit of SMEFT coefficients and neglecting the interplay between them could
result in a significant underestimate of the uncertainties associated to the SMEFT
parameters. Indeed, the marginalized bounds on the W (Y ) parameter increase by
about 150% (30%) once a simultaneous fit of the PDFs and the (W,Y ) parameters
is performed. The broadening is smaller than observed in section 5.5, but it is still
significant. A detailed comparison is given in section 6.4.4.

As far as the quark-antiquark luminosity is concerned, we can see in figure 6.8 that
once the PDFs are fitted simultaneously with the (W,Y ) parameters two things happen.
First of all the central values of the luminosity shift upwards for large values of the
invariant mass (MX ≳ 1 TeV) towards the edge of the 68% C.L. error band. Second
the error band significantly increases. The shift in the central value is compatible to
what we observed before, namely that the luminosity plots, once PDFs are fitted at
some representative values of the W and Y parameters, do change significantly, well
outside the 1σ error band of the SM PDFs, while the PDF uncertainties themselves
are unchanged (figure 5.16). However, in this case the PDF uncertainty does in fact
increase since here we are actually performing a simultaneous fit and, as a result, the
PDF error band increases proportionally to the width of the range of W and Y that
the data allow. This is a very interesting result and shows that PDF error bands at
large-x inherently have an extra source of theory uncertainty related with possible
BSM effects that the data do not exclude.
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Figure 6.8: The qq̄ luminosity channel of the PDF fitted in the presence of W and Y
parameters (orange) fitted to the ATLAS and CMS high mass Drell-Yan data as well as
the NC and CC DY HL-LHC projections, normalized to the appropriate baseline SM PDF
(green).

6.4.3 Results for Benchmark Scenario II

In this section we employ the left-handed muon-philic operator CDµ
33 to showcase our

methodology’s ability to constrain Wilson coefficients whilst accounting for the effect
of quadratic dim-6 effects using the approach discussed in section 6.3.3. The fact
that this second Benchmark SMEFT scenario is effectively unconstrained [5] at the
linear level serves to act as the ideal setting to assess the ability to fit EFT operators
whilst simultaneously accounting for their quadratic contributions, as in equation 6.24.
Furthermore, since the CDµ

33 operator affects only muon final state observables, while
electron final states are described by the SM, the combination layer uses only those
datasets that have a muon in the final state to constrain CDµ

33 . In particular, the CMS
high-mass measurements at 13 TeV, which up until now have been for the combined
decay channel, is again separated into the electron and muon channels. As a result of
splitting this particular dataset into separate channels, we have accordingly generated
a new baseline PDF used in the comparisons.

The best-fit values of CDµ
33 across the 1000 replicas in the fit are shown on the right-

hand panel of figure 6.9. We compare the distribution obtained out of a simultaneous
fit (green) with the one obtained when PDFs are kept fixed to the SM baseline (orange).
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Figure 6.9: Left: qq̄ luminosity channel of the PDF fitted in the presence of the CDµ
33

parameter normalized to the baseline SM PDF. Right: histogram plot for best fit values
for CDµ

33 for each replica. The best-fit distribution over 1000 replicas obtained out of a
simultaneous fit (green) is compared to the one obtained by keeping PDFs fixed to the SM
baseline (orange).

Table 6.3: Same as Table 6.1 for the 68% CL and 95% CL bounds on the CDµ
33 Wilson

Coefficient, including both linear and quadratic terms in the SMEFT expansion.

SM PDFs SMEFT PDFs best-fit shift broadening

CDµ
33 × 103 (68% CL) [−5.6, 6.9] [−8.0, 6.7] −0.9 +18%

CDµ
33 × 103 (95% CL) [−11.9, 13.1] [−15.3, 14.0] −0.9 +17%

We see that the distribution of best fit values is centred at the origin, although it is
skewed towards CDµ

33 ≈ 5 × 10−3. The shape of the distribution is what we expect
once quadratic terms are allowed in the fit of the Wilson coefficients by keeping PDFs
fixed [44], and it is interesting to see this feature not only holds but it is actually
enhanced once the Wilson coefficient is fitted alongside PDFs (green histogram).

For a quantitative comparison of the bounds obtained in the simultaneous fit to
those obtained in a Wilson coefficient-only fit, in table 6.3 we show the bounds that we
obtain in the two cases. The interplay between PDFs and SMEFT coefficients is quite
moderate in this particular scenario. In contrast with the marked effects in Benchmark
Scenario I; in Benchmark Scenario II the obtained bounds on this Wilson coefficient
would loosen by around 20%. The origin of this rather different behaviour can be
traced back to the fact that in this scenario the electron channel data do not receive
EFT corrections, and hence all the information that they provide makes it possible
to exclusively constrain the PDFs. The muon channel distributions then determine
the allowed range for the CDµ

33 , restricted by the well-constrained large-x quarks
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and antiquark PDFs from the electron data. This claim is backed by the luminosity
comparison, displayed on the left-hand panel of figure 6.9: the shift and the increase in
the PDF uncertainty of the qq̄ luminosity are visible, but less enhanced than in the first
Benchmark Scenario. Again, our findings here are corroborated by the discussion of
section 5.5.2 where we found that even at the HL-LHC the broadening of CDµ

33 remains
moderate owing to the relative lack of measurements that differentiate between lepton
flavours.

6.4.4 Results overview

To conclude this section, we present an overview of our results. We have seen in
section 6.4.1 that the current high-mass Drell-Yan data from LHC Run I and Run
II do not allow to simultaneously fit W and Y in Benchmark Scenario I and loosely
constrain CDµ

33 in Benchmark Scenario II. This is mostly due to the lack of unfolded
CC Drell-Yan data, which would remove the flat direction that our algorithm is able
to detect (see figure 6.6). Moreover, our analysis confirms what was outlined in section
5.4 namely that the interplay between the individual fits of W and Y and the fit of
the large-x quark distributions is mild at the level of current DY data. However, once
the high-statistics data projections from the HL-LHC are included, the flat direction
disappears and one is able to obtain strong constraints both on the (W,Y ) plane and on
the individual CDµ

33 coefficient. From the point of view of showcasing our methodology,
the two scenarios are interesting, as in the Benchmark Scenario I, once the HL-LHC
projections are included, we can simultaneously fit both W and Y alongside the PDFs,
including only the linear SMEFT corrections while in the Benchmark Scenario II
we can fit individually CDµ

33 alongside the PDFs, including both the linear and the
quadratic SMEFT corrections. In the first scenario, we observe that there is a strong
interplay between SMEFT and PDF fits, as the bounds for the SMEFT coefficients
significantly broaden once PDFs are allowed to vary alongside W and Y (see figure 6.7)
and the PDFs themselves display a sizeable shift (see figure 6.8). The interplay is more
moderate in the second scenario, given that BSM effects only affect the data with
muons in the final states, while the data with electrons in the final states constrain the
large-x quark distributions.

In this section, we focus on the results obtained including the HL-LHC projections.
We first explore the correlation patterns between the PDFs and the SMEFT coefficients
in both Benchmark Scenarios. These correlation coefficients can be evaluated as in [4].
For example in the case of the gluon and the W Wilson coefficient, the correlation
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Figure 6.10: Correlation coefficients, defined in equation 6.27, between the W (green),
Y (orange), CDµ

33 (blue) and the up quark PDF (left panel) and gluon PDF (right panel)
computed at Q = 100 GeV as a function of the momentum fraction x. The PDFs used to
compute the correlation coefficients are those obtained in the simultaneous fit of (W,Y ) and
the PDFs described in section 6.4.2 (in the case of the green and orange curves) and those
obtained in the simultaneous fit of CDµ

33 and the PDFs described in section 6.4.3 (in the case
of the blue curve).

coefficient is defined as follows

ρ (W, g(x,Q)) =

〈
W (best−fit)g(x,Q)

〉
−
〈
W (best−fit)

〉
⟨g(x,Q)⟩√

⟨W (best−fit)2⟩ − ⟨W (best−fit)⟩2
√
⟨g(x,Q)2⟩ − ⟨g(x,Q)⟩2

, (6.27)

where W (best−fit) is the best-fit of the W coefficient for each replica in the simultaneous
fit, in which PDFs are allowed to vary alongside W and Y . In equation 6.27, averages
are computed over the Nrep = 1000 replicas. We show in appendix D, that even
restricting to Nrep = 100 replicas, as is usually done in PDF fitting, then virtually
identical results are obtained. This correlation coefficient provides a measure of how the
variations in the PDFs translate into modifications of the best fit value of the Wilson
coefficients. In figure 6.10 we show these correlation coefficients between the up quark
distribution and the gluon PDFs at Q = 100 GeV. Each of the curves corresponds to
one of Wilson coefficients considered in the HL-LHC analysis, the W and Y being
fitted simultaneously alongside the PDFs (hence the “WY PDF” label) and the CDµ

33

being fitted individually alongside the PDFs (hence the “CDµ
33 PDF” label) . Although

correlations are moderate, it is interesting to observe that the correlation/anticorrelation
between W and the PDFs is much stronger than the correlation with the other Wilson
coefficients. This explains why the broadening of the bounds in the W direction are
more marked than those in the Y directions.
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Throughout this study we found that the results obtained with the SIMUnet
methodology are in line with those presented in section 5.4. In table 6.4 we make this
comparison more quantitative, by focussing on the results in which the effects of the
interplay between the SMEFT coefficients and the PDFs are more visible, namely the
fits obtained by using the NC and CC projections from the HL-LHC. The results are
comparable, although the effect of fitting the Wilson coefficients along with the PDFs
is more moderate. This is not surprising, as there are two crucial differences in the
two analyses. On the one hand the PDF set that we use here in the fixed SM PDF
case is different compared to the one we used in the previous analysis, being based
on the same dataset as before but on the NNPDF4.0 methodology rather than the
NNPDF3.1 methodology. Secondly, because the previous methodology was based on
the use of Benchmark Points in the Wilson coefficients parameter space, we determined
the bounds on the parameters by using the partial χ2 including only the data affected
by the SMEFT corrections, rather than the global χ2. Recall this approximation was
forced because the statistical fluctuations of the global χ2 were found to be significantly
larger than those of the partial χ2 and could only be tamed by running a very large
batch of replicas for each Benchmark Point and by increasing the density of Benchmark
Points in the region that is explored. This approximation is no longer necessary within
SIMUnet, because we no longer rely on the interpolation over Benchmark Points, rather
we perform a truly simultaneous fit of the PDFs and the Wilson coefficients based on
the global χ2. Additionally, the minimizer used in this study employs a momentum
driven stochastic gradient descent based algorithm (Nesterov-accelerated adaptive
moment estimation [124, 125] available from the Keras library), while in section 5.4
we employed a more traditional genetic algorithm approach using legacy in-house
implementations. As such, one in general expects to achieve an improved fit quality
with our methodology. Finally, the bounds quoted in our study are defined using
Monte Carlo based statistical estimators, whereas in the latter approach, the geometry
of the χ2 profile is used to define bounds on the Wilson coefficients. Notwithstanding,
we observe that the results and the trends are consistent with each other, although the
use of the partial χ2 over-emphasizes the broadening of the bounds.

Results in the HL-LHC scenario are displayed in figure 6.11. Shown are the results
obtained including the current high-mass Drell-Yan data and the projected HL-LHC
NC and CC Drell-Yan pseudo-data. In Scenario I, W and Y are fitted simultaneously
by keeping only the linear term in the SMEFT expansion, while in Scenario II the CDµ

33

coefficients is fitted individually including the O(1/Λ4) quadratic terms in the SMEFT
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Table 6.4: 95% CL bounds on the simultaneous fit of the W and Y Wilson coefficients in
Benchmark Scenario I and of the individual fit of the CDµ

33 Wilson Coefficient in Benchmark
Scenario II, based on a fit including the HL-LHC projections, compared to those obtained
in the previous analysis presented in section 5.4. The fourth and fifth column indicate the
absolute shift in best-fit values, equation 5.76 and the percentage broadening of the SMEFT
bounds, equation 5.77, when the PDFs are allowed to change alongside the Wilson coefficients.

SM PDFs SMEFT PDFs best-fit shift broadening
W × 105 (this work) [−2.0, 1.4] [−4.3, 3.4] −0.2 +126%
W × 105 section 5.4 [−1.4, 1.2] [−8.1, 10.6] −1.4 +620%
Y × 105(this work) [−3.2, 8.1] [−3.1, 11.7] +1.9 +31%
Y × 105 section 5.4 [−5.3, 6.3] [−11.1, 12.6] +0.3 +110%

CDµ
33 × 103 (this work) [−11.9, 13.1] [−15.3, 14.0] −0.9 +17%

CDµ
33 × 103 section 5.4 [−10.4, 12.3] [−12.5, 14.6] −0.6 +18%

expansion. The results from both studies are compatible, although the bounds obtained
from this study are slightly more conservative with differences being explained by the
differences between the methodologies employed that are outlined in this section.

6.5 Fit quality

We now move on to discuss the fit quality of not only the final PDF sets, but also
the contribution arising from the best-fit Wilson coefficients. For each MC replica
there is the pair (fi, ci) which are the best fit PDFs and Wilson coefficients respectively.
Together they can be used to generate the corresponding theory predictions for each
dataset, noting that any datasets which were not modified by the SMEFT operators will
effectively have c = 0. We thus have an ensemble of Nrep vectors of theory predictions,
T, with the central theory prediction being given by the average across replicas:

⟨T⟩ = 1
Nrep

Nrep∑
i=1

T(fi, ci). (6.28)

The central χ2 per data point is then computed in the usual way

χ2 = 1
Ndat

(d− ⟨T⟩)TC−1(d− ⟨T⟩) (6.29)
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Figure 6.11: Comparison of 95% CL bounds between this study (green) and those determined
using the Hessian approach of section 5.4 (orange). The W and Y bounds are determined
simultaneously in the HL-LHC scenario, CDµ

33 is fitted individually including SMEFT quadratic
terms in the HL-LHC scenario. The bounds obtained by keeping the PDFs fixed to the SM
baseline (dashed lines) are compared to those obtained in a simultaneous fit of PDFs and
Wilson coefficients (solid lines).

with d being the vector of experimental central values and C the covariance matrix
encapsulating the experimental uncertainties and the correlations therein. These values
are tabulated in table 6.5 for each of the various SMEFT scenarios considered in this
work. We also tabulate the χ2 for various groupings of these datasets, such as DIS only,
including or excluding the high-mass DY measurements etc. For these particular entries
various correlated systematics may exist between datasets, such as the uncertainty in
beam luminosity, which introduces off-diagonal entries in the covariance matrix; as
such the grouped χ2 is not necessarily equal to the weighted average of the individual
χ2 values constituting the grouping. This effect is particularly marked for the HL-LHC
entries.

In all scenarios considered, the added degrees of freedom result in the χ2 per data
point to drop when a simultaneous determination is performed when contrasted to
the purely Standard Model fits. The SM χ2 in this sense serves as an upper bound,
since the optimizer is free to determine c = 0 and so the goodness of fit can be no
worse than the SM fit. In particular we see the SMEFT sensitive high-mass DY
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Table 6.5: Values of the χ2 per data point across all datasets used in this study. We tabulate
values for the baseline PDF set as well as those obtained in the various SMEFT scenarios.
Shown also is the χ2 for the HL-LHC scenario. The rows indicating total χ2 values are
computed accounting for any relevant correlated systematic errors. Values in italics indicate
the dataset was not used in the corresponding fit.

Dataset ndata

χ2/ndata

SM
W Y

HL-LHC HL-LHC
Baseline SM Baseline (W, Y )

SLAC 67 0.866 0.855 0.854 0.837 0.850
BCDMS 581 1.285 1.265 1.265 1.294 1.266
NMC 325 1.320 1.318 1.318 1.333 1.320
CHORUS 832 1.208 1.209 1.210 1.206 1.208
NuTeV 76 0.444 0.486 0.487 0.472 0.497
HERA inclusive 1145 1.188 1.183 1.183 1.190 1.184
HERA charm 37 1.435 1.384 1.382 1.463 1.391
HERA bottom 29 1.113 1.110 1.110 1.118 1.110

Total DIS 3092 1.202 1.197 1.197 1.206 1.198

E886 σd
DY/σp

DY 15 0.669 0.609 0.600 0.974 0.679
E886 σp

DY 89 1.572 1.593 1.604 1.566 1.631
E605 σp

DY 85 1.197 1.200 1.205 1.197 1.213

CDF dσZ/dyZ 29 1.613 1.546 1.548 1.623 1.563
D0 dσZ/dyZ 28 0.612 0.610 0.610 0.613 0.613
D0 W → µν asy. 9 1.845 1.510 1.503 2.052 1.587

ATLAS W, Z 2010 30 1.021 1.014 1.014 1.017 1.017
ATLAS low-mass Z → ee 6 0.923 0.921 0.921 0.923 0.921
ATLAS W, Z 2011 CC 46 2.095 2.005 2.006 2.091 2.010
ATLAS W, Z 2011 CF 15 1.062 1.072 1.073 1.066 1.071
ATLAS W + c rapidity 22 0.453 0.463 0.463 0.447 0.457
ATLAS ZpT 92 0.959 0.938 0.936 0.939 0.928
ATLAS WpT jets 32 1.685 1.672 1.670 1.676 1.665

CMS W e asy. 11 0.785 0.790 0.789 0.815 0.804
CMS W µ asy. 11 1.767 1.732 1.733 1.765 1.732
CMS σW +c 7 TeV 5 0.513 0.518 0.516 0.502 0.504
CMS σW ++c/σW −+c 7 TeV 5 1.822 1.791 1.796 1.884 1.848
CMS ZpT 28 1.303 1.312 1.311 1.287 1.306
CMS W → µν rapidity 22 1.472 1.337 1.340 1.422 1.310
CMS W + c rapidity 13 TeV 5 0.719 0.722 0.721 0.712 0.711

LHCb Z → µµ 9 1.503 1.545 1.550 1.506 1.549
LHCb W, Z → µ 7 TeV 29 2.043 1.973 1.977 2.066 2.005
LHCb W, Z → ee 17 1.249 1.236 1.236 1.220 1.231
LHCb W, Z → µ 8 TeV 30 1.621 1.497 1.502 1.615 1.543

Total DY (excl. HM) 670 1.302 1.274 1.276 1.307 1.286

ATLAS DY high-mass 7 TeV 13 1.680 1.575 1.609 1.654 1.626
ATLAS DY high-mass 8 TeV 46 1.174 1.177 1.171 1.175 1.171
CMS DY high-mass 7 TeV 117 1.694 1.671 1.676 1.677 1.669
CMS DY high-mass 8 TeV 41 0.923 0.944 0.941 0.893 0.914
CMS DY high-mass 13 TeV 43 2.003 2.064 2.037 2.000 2.005

Total DY (HM only) 260 1.531 1.529 1.527 1.517 1.515

Total (excl. HL-LHC) 4022 1.245 1.236 1.237 1.248 1.238

HL-LHC CC e 16 1.119 119.9 0.922 0.588 0.544
HL-LHC CC µ 16 1.414 112.8 1.162 0.894 0.803
HL-LHC NC e 12 1.164 17.65 7.495 1.104 0.961
HL-LHC NC µ 12 1.041 13.32 5.048 0.964 1.071

Total HL-LHC only 56 1.298 72.88 5.546 0.894 0.836

Total 4078 1.246 2.220 1.296 1.243 1.232



170 A new generation of simultaneous global fits

datasets experience a large overall improvement in fit quality, largely driven by the
CMS measurements at 7 TeV owing to the large weight carried by this dataset: forming
just under half the entire high-mass DY data points considered in this study. Moreover,
the DIS only grouping experiences a marked improvement in fit quality with the χ2 per
data point dropping by 0.014 across 3092 data points in the case of the simultaneous
(W,Y ) determination. The reader is again reminded that the HERA combined dataset,
which forms the majority of the DIS data points, is included in the set of datasets
that are modified by the W and Y operators. It is interesting to observe that the
improvement in fit quality is propagated down to those datasets, such as the low-mass
measurements, that are not used to explicitly constrain the Wilson coefficients. Such
datasets, however, are correlated through shared sources of systematic errors, such
as the luminosity uncertainty or detector effects, thus improving the fit to one such
dataset necessarily affects others. Also tabulated are the fit quality values for the
HL-LHC projections, even for those fits which do not incorporate these projections in
their training data. These entries illustrate the pull the HL-LHC projections have on
the Wilson coefficients. We see that not including these data points in the fit renders
the fit virtually useless in the context of the projected data. This is indeed reflected in
the values of the K-factors used for these projections, reaching K ≃ 5 for the highest
transverse mass bins.

The χ2 values for the muonphilic operator, CDµ
33 , are tabulated in table 6.6 where

the quadratic effects of the EFT operator are included both in the fit and in the χ2

calculation. The story is much the same here, albeit with the improvement across the
high mass Drell-Yan measurements being rather mild; the reason being again due to
the lack of measurements differentiating between the dielectron and dimuon channel.
Here, all datasets are improved upon, except for the 8 TeV measurement from CMS.
We see that despite the total high-mass Drell-Yan measurements being slightly less
well explained by the simultaneous fit, the overall dataset is indeed improved upon
thanks again to the strong weight carried by the HL-LHC projections.

6.6 Methodology validation and closure testing

In this section, we assess the robustness of our approach through the closure testing
framework [219, 257]. Here we do not address the robustness of the PDF part of the
fit, which in a sense comes from the results presented in the NNPDF4.0 release [1] and



6.6 Methodology validation and closure testing 171

Table 6.6: Values of the χ2 per data point across all high mass Drell-Yan measurements
for the muonphilic operator. We tabulate values for the baseline PDF set as well as those
obtained in the EFT scenario II. Shown also is the χ2 for the HL-LHC projections. Quadratic
terms in the EFT parameter are used in the χ2 calculation. The rows indicating total χ2

values are computed accounting for any relevant correlated systematic errors. Datasets
marked with an asterisk indicate that they were not used to constrain CDµ

33 .

Dataset ndata
SM CDµ

33Baseline
ATLAS DY high-mass 7 TeV 13 1.631 1.625
ATLAS DY high-mass 8 TeV 46 1.179 1.168
CMS DY high-mass 7 TeV 117 1.666 1.664
CMS DY high-mass 8 TeV 41 0.858 0.893
CMS DY high-mass 13 TeV ee* 43 2.579 2.574
CMS DY high-mass 13 TeV µµ 43 0.836 0.837
Total DY (HM only) 303 1.501 1.503
HL-LHC CC e* 16 0.437 0.424
HL-LHC CC µ* 16 0.841 0.752
HL-LHC NC e* 12 1.108 1.130
HL-LHC NC µ 12 0.943 0.969
Total HL-LHC only 56 0.830 0.826

the following dedicated study [257], but rather focus on the robustness of the fit of the
Wilson coefficients and of the PDFs in a simultaneous fit.

Crucially, the central values of the SMEFT-sensitive datasets are modified by
artificially contaminating them with pre-chosen, extreme, values of Wilson coefficients.
This will emulate a situation where a dataset will favour a non-vanishing EFT operator.
In the first part of this section we show that our methodology is sufficiently flexible to
recover these chosen values. In the second part of this section we consider the case
where the input datasets are replaced by theory predictions from a known underlying
PDF set, rather than experimental central values. We show that even in the case of
fixing both the underlying PDF and Wilson coefficients to some a priori values, the
methodology is sufficiently robust that it can simultaneously reproduce both.

6.6.1 Closure test results on the Wilson Coefficients

In this section we will fix the value of the Wilson coefficients a priori and study how
effectively we can retrieve these values using our methodology. To perform this kind of



172 A new generation of simultaneous global fits

closure test, we artificially choose extreme values of the Wilson coefficients considered
in Benchmark Scenario I, where the interplay between PDF and SMEFT fits is more
marked, in two separate analyses:

1. The individual fit of the W Wilson coefficient including the current high-mass DY
data from LHC Run I and Run II along with all other datasets listed in section
5.4.1. Specifically we set W = 1× 10−3, which is outside the 95% C. L. bounds
that are displayed in figure 6.4

2. The combined fit of the (W,Y ) parameters including the HL-LHC projections.
Specifically we set (W,Y ) = (1,−1) × 10−4, which is also far outside the 95%
C. L. contours displayed in figure 6.7.

The way we input these non-zero values of the Wilson coefficients in the underlying law
is by multiplying the Monte Carlo pseudodata central values by the SMEFT K-factors
obtained by setting the Wilson coefficient(s) to the aforementioned values. The fitting
methodology proceeds as before. Importantly, the entire tool chain has no knowledge
of what the value of the Wilson coefficient it is looking for are set to.
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Figure 6.12: Result of the closure testing framework for our methodology. Left: histogram
for the distribution of the W parameter when the input data has been modified by setting
W = 1× 10−3. Right: distribution of (W,Y ) when fitting to data that has been modified by
setting (W,Y ) = (1,−1) × 10−4. The upper and right panels show the histograms for the
distribution of the best fit values in their respective directions.

The result of the closure test are shown in figure 6.12. On the left-hand panel
we see that the distribution of best fit values of W across 1000 replicas, that were
previously centred at the origin, now moves considerably towards the a priori value of
W = 1× 10−3. Similarly, in the second analysis displayed on the right-hand panel, we
see that the presence of HL-LHC data continues to eliminate the flat direction, with
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the distribution of best fit Wilson coefficients resembling that of figure 6.7, but with the
best-fits values of the (W,Y ) parameters consistently pushed towards the pre-selected
a priori values of (W,Y ) = (1,−1)× 10−4. We see that, despite an extremal choice of
the injected values of the Wilson coefficients, the methodology is sufficiently flexible
and robust to recover them.
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Figure 6.13: The qq̄ luminosity obtained from the closure tests when the experimental
central values are modified to encode a specific SMEFT benchmarking scenario (“closure
PDF” in orange), compared to the results of the simultaneous fits (“PDF” in blue) normalized
to the corresponding baseline (in green). Shown in the left panel is the W = 1×10−3 scenario
while the (W,Y ) = (1,−1)× 10−4 scenario is displayed in the right panel.

The PDFs generated in the context of the closure tests are displayed in figure 6.13.
On the left panel, we plot the quark-antiquark luminosity obtained when the exper-
imental central values are modified by inputting W = 1 × 10−3 (called “W closure
PDF”) and compare it to the ones that we obtain in the simultaneously fit of the
PDFs and W presented in section 6.4.1 (called “W PDF”), both normalized to the SM
baseline. We observe that the PDFs generated with our closure test for W = 1× 10−3

are similar to those that we obtain in the simultaneous fit, despite the fact that the
training dataset has been heavily modified by the extreme a priori choice of W . This
is to be expected, since one can view the combination layer as capturing the data’s
dependence on the Wilson coefficients, whilst the complementary PDF sector of the
network architecture captures the data’s dependence on the underlying PDF, which
of course remains unchanged. The combination layer, in effect, subtracts off the
EFT dependence, leaving behind the pure SM contribution for the PDF sector to
parameterize. This exact same sentiment is echoed in the case of the HL-LHC based
closure test where the data is contaminated with a choice of (W,Y ) = (1,−1)× 10−4

displayed on the right-hand panel of the figure. Again, the “WY HLLHC closure PDF”
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Figure 6.14: The gluon (left) and up quark (right) PDFs obtained from the closure test
framework in which both the underlying PDF set and Wilson coefficients are known. Shown
in green is the PDF replica used as the underlying law which generates the fake data used to
train our model. The resulting PDFs are shown in orange along with their 68% confidence
level bands. The fake data generated by the underlying law is subsequently modified so as to
encode the (W,Y ) = (1,−1)× 10−4 condition.

obtained when performing a fit to the contaminated data is virtually indistinguishable
from the simultaneous fits presented in figure 6.8, labelled “WY HLLHC PDF”.

This result is indeed a remarkable feature of our methodology and serves to prove
its robustness. By performing a simultaneous fit of the PDFs and Wilson coefficients
using the SIMUnet methodology, one is guaranteed that the resulting PDFs are free
from any possible BSM contamination that may be present in the data: so long as the
contamination is entirely captured by the choice of EFT operators.

6.6.2 Closure test results on the simultaneous fit

The natural extension of the closure test described in the previous subsection is to assess
the degree to which SIMUnet is able to replicate, not only fixed Wilson coefficients,
but also a known underlying PDF. For this scenario we employ the NNPDF level 2
[136] closure test strategy. In the context of a simultaneous fitting methodology this
amounts to generating Standard Model predictions using a known PDF set (referred
to henceforth as the underlying law) and mapping these to SMEFT observables by
multiplying the SM theory predictions with SMEFT K-factors scaled by a previously
determined choice of Wilson coefficients. These SMEFT observables, generated by the
underlying law, replace the usual MC pseudodata replicas and are used to train the
neural network in the usual way.
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Through this approach we are able to assess the degree to which the parameterization
is able to capture not only an underlying choice of Wilson coefficients, but ensures
it is sufficiently flexible to adequately replicate a known PDF. For such a closure
test, we use the HL-LHC baseline used in this study as the underlying law with the
SMEFT scenario being again the simultaneous (W,Y ) determination, with the input
data being adjusted to have (W,Y ) = (1,−1) × 10−4 encoded within it. The PDFs
generated in this way are shown in figure 6.14 for representative choices of parton
flavour: we display both the resulting PDFs as well as the underlying law. We see that,
despite modifying the training data with an extreme choice of SMEFT benchmark,
the methodology is sufficiently robust so as to be able to recover the true PDF set
with good precision. Indeed, the distribution of best fit (W,Y ) values plotted in figure
6.15 shows that not only did the methodology retrieve the underlying law, but also
managed to recover the chosen SMEFT scenario: being able to correctly determine the
(W,Y ) = (1,−1)× 10−4 condition. Such behaviour is reminiscent of the above closure
test whereby the combination layer is able to parameterise the BSM dynamics while
the preceding layers of the model are left to parameterise the PDFs. This conclusion
thus illustrates how our methodology is able to correctly disentangle the interplay
between PDFs and BSM dynamics.
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Figure 6.15: Distribution of best fit (W,Y ) parameters for each Monte Carlo replica. The
data used for the fit was generated by a pre-selected PDF before the SM predictions were
transformed to a SMEFT observable with (W,Y ) = (1,−1)× 10−4. The upper panel is the
histogram of best fit values in the W axis while the right panel is the histogram for the Y
axis.



Chapter 7

Concluding remarks and outlook

In this thesis we have presented a discussion of the precision determination of proton
subnuclear structure in terms of its elementary constituents; the quarks and gluons.

Knowledge of non-perturbative hadron dynamics is a vital consideration for precision
QCD predictions in the era of hadron based collider experiments. To this end we have
demonstrated how neural networks, an important subclass of machine learning based
approaches, form the ideal parameterization for the parton distribution functions of
the proton. An outline of deep learning was presented, before discussing how it can
be applied to precision PDF determinations in a global QCD analysis. This led us to
present the NNPDF4.0 PDF set, which forms the latest and one of the most precisely
determined PDF sets to date. Alongside this, the entire codebase used for the PDF fit
is made publicly available and open source: the first global PDF fitting platform to do
so. This allows for the high energy physics community to extend and contribute to the
framework as well as to use it for their own phenomenological studies.

We showed how the precision determination of the strange quark content of the
proton is not only of utmost importance for the determination of various Standard
Model quantities, but also a topic of great interest in current LHC phenomenology. To
this end a dedicated study of the proton strange content was performed using a host
of strange sensitive measurements from neutrino deep inelastic scattering experiments
to gauge boson production based processes at the LHC.

We then turned our attention to consider the interplay of PDFs with possible
BSM manifestations at the LHC. The issue of the validity of assuming the Standard
Model at all scales was brought into question by considering how the SMEFT induced
back-reaction on PDFs can alter the interpretation of Wilson coefficient bounds. We
started to study this question by considering the effect of lepton-quark dimension-
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6 operators of the SMEFT in the context of deep inelastic scattering experiments.
This formed the ideal arena to study this interplay due to the relative theoretical
simplicity of hadron-lepton scattering as well as the precision of the HERA combined
datasets. Moreover, we exploited the broad kinematic reach of DIS measurements to
achieve sensitivity not only on the PDFs, but also on the EFT operators thanks to
the high-Q reach of HERA. The interplay was found to be mild, with possible BSM
reabsorption effects by the PDF being slight. Inspired by the results of this study one
was then naturally led to extend this approach to incorporate high-mass Drell-Yan
measurements from the LHC, which covers a much larger region of Q. We selected
two beyond the Standard Model scenarios which we motivated by selecting operators
deemed to be sufficiently sensitive to these Drell-Yan observables. The methodology
naturally extended to accommodate these processes and operators, with the interplay
being particularly strong with the EFT oblique parameters at the High-Luminosity
LHC. We saw that in this particular case, if one was to neglect the EFT back-reaction,
then significantly misleading results would be obtained.

This then motivated the need for a new generation of fitting methodology that
can systematically disentangle EFT effects from the PDF. To this end, we introduced
the SIMUnet methodology which, for the first time, allowed for a truly simultaneous
determination of PDFs and external parameters. This approach extends the NNPDF4.0
neural network architecture by the inclusion of an additional sequential layer, the
architecture of which is atypical in the deep learning community. We showcased its
ability by performing a PDF and BSM simultaneous determination using high-mass
Drell-Yan data and the oblique parameters of the above study. We showed how the
methodology can find the presence of a flat direction without the need for prior user
knowledge or input. This flat direction was then broken by introducing charged-current
Drell-Yan data from the High-Luminosity LHC projected data. We showed how the
need for linearity in Wilson coefficients, at the matrix element level, is not at all
imposed and how the quadratic and beyond terms can be readily accounted for by the
simple inclusion of non-trainable edges. The robustness of the SIMUnet methodology
was then assessed, whereby we showed that our approach is sufficiently flexible to
not only recover a prior choice of Wilson coefficient, but also an underlying choice of
PDF set. This so-called closure test contaminates the data with a defined choice of
extreme Wilson coefficient before providing it to the SIMUnet model. We showed how
the contamination yielded the same PDFs as the non-closure test PDFs, despite the
large difference in numerical value of training data. This then led us to conclude that
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the architecture is such that the combination layer captures the data dependence on
the Wilson coefficients, leaving the PDF layers free to replicate the data dependence
on the true, underlying, PDF.

The next steps in this program are to apply the SIMUnet approach to the top
sector of the SMEFT operators and employ top quark measurements from the LHC.
In the literature, this sector has gained a lot of interest thanks to its suspected strong
sensitivity to possible BSM dynamics. Moreover, we discussed how SIMUnet can be
employed for a precision determination of PDFs and the strong coupling, αs. Again,
this is a topic of great interest thanks to the strong correlation between these two
objects. In the past, these approaches were based on the Hessian approach presented
in chapter 5, but we discussed in chapter 6 how an interpolation in FK-table space
based approach can be used to obtain a better determination. This would, again, be
the first ever truly simultaneous determination of PDFs and αs and could in principle
use the entire global dataset entering a PDF fit.

Work on both these extensions is under way, the results of which are left to future
publications. In the longer term, a strong case for the SIMUnet methodology, presented
here, has been presented to be the approach of choice to have a first global, precision,
determination of Standard Model quantities, fitting electroweak parameters, the strong
coupling, PDFs themselves, and possibly the entirety of the Warsaw basis of Wilson
coefficients. Such an endeavour is crucial for indirect new physics searches, the feasibility
of which has only now been made possible thanks to the work presented in this text.
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Appendix A

Low level implementations for
NNPDF4.0

In this appendix we provide an overview of the low-level algorithmic implementations
for the covariance matrix construction and Monte Carlo pseudodata generation used
in NNPDF4.0. As mentioned in the main text, the actual implementations enjoy
vectorized operations implemented natively by the NumPy and Pandas libraries, thus
maintaining a great deal of the performance obtained in the legacy C++ codebase while
retaining readability.

A.1 Covariance matrix construction

The experimental covariance matrix can be constructed from the systematic uncertainty
breakdown of a set of experimental measurements. A mathematical definition is given
by equation 3.18 with a low level code implementation given by algorithm A.1.1. In the
NNPDF4.0 methodology the implementation is in a purely Python framework enjoying
not only readability, but also substantial performance gains thanks to using optimized
libraries such as NumPy [275] and Pandas, reducing the covariance matrix computation
down to order a few seconds, as opposed to minutes.

Note that the covariance matrix constructed using the t0 prescription of equation
3.19 only requires a trivial modification of this algorithm.
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Algorithm A.1.1 Algorithm to obtain the covariance between two datapoints given
their uncertainty breakdown.

1: procedure Covariance(datapoint1, datapoint2)
2: if datapoint1 is datapoint2 then
3: same ← True ▷ Diagonal entry
4: else
5: same ← False ▷ Off-diagonal entry
6: end if
7: covariance ← 0
8: for (unc1, unc2) in (datapoint1.uncertainties,

datapoint2.uncertainties) do
9: if same then ▷ Add uncorrrolated uncertainties to diagonal

10: covariance ← covariance + unc1.uncorr ∗ unc2.uncorr
11: end if
12: if unc1 is additive then ▷ Both uncertainties have same type so only check

first
13: covariance ← covariance + unc1 ∗ unc2
14: else ▷ Then it was multiplicative
15: covariance ← covariance +

unc1 ∗ datapoint1.central ∗
unc2 ∗ datapoint2.central

16: end if
17: end for
18: end procedure
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A.2 Monte Carlo pseudodata generation

The Monte Carlo data replicas have historically been a considerable bottleneck in the
NNPDF fitting methodology. By replacing this algorithm, significant performance gains
have been made. The low level code implementation is presented in algorithm A.2.1. A
major bottleneck of the current implementation is the while condition which produces
MC replicas until a positive replica is found. This ensures that all observables, that
are not asymmetry measurements, are positive definite, but the stochastic approach
employed to achieve this condition carries a large performance footprint. Alternative
solutions include simply relaxing this condition or to sample from a truncated gaussian,
both of which are left as future work.
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Algorithm A.2.1 Algorithm for the generation of pseudodata. We assume access to
a random number generator (RNG) capable of generating univariate standard normal
random variables.

1: procedure GeneratePseudodata(datapoints)
2: replicas ← [ ] ▷ Empty list
3: for datapoint in datapoints do
4: positive ← False
5: correlates ← {} ▷ Empty hashtable
6: while not positive do
7: replica ← datapoint.central
8: for uncertainty in datapoint.uncertainties.additive do
9: if uncertainty is in correlates then ▷ Check if this uncertainty

source has occurred be-
fore

10: random ← correlates[uncertainty]
11: else
12: random ← RNG( )
13: correlates[unceratinty]← random
14: end if
15: replica ← replica + random ∗ uncertainty
16: end for ▷ End additive loop
17: mult ← 1 ▷ Order matters. Apply multplicative after additive
18: for uncertainty in datapoint.uncertainties.multiplicative do
19: if uncertainty is in correlates then
20: random ← correlates[uncertainty]
21: else
22: random ← RNG( )
23: correlates[unceratinty]← random
24: end if
25: mult ← mult + random ∗ uncertainty
26: end for ▷ End multiplicative loop
27: replica ← replica ∗ mult
28: if replica > 0 or datapoint is asymmetry then
29: positive ← True
30: replicas append replica
31: end if
32: end while ▷ End positivity check loop
33: end for ▷ End data points loop
34: end procedure



Appendix B

Data theory comparisons for
inclusive W,Z-boson production

We present here data-theory comparisons for ATLAS inclusive gauge boson production
[180, 173] which supplement the discussion of section 4.4. In figure B.3 we plot the
data-theory comparison for inclusive W,Z gauge boson production. Comparisons are
made for each of the gauge bosons and binned in (di)lepton rapidity from W (Z)
decay. The central and forward rapidity distributions are shown in figures B.2 and
B.1 respectively. For the Z-boson measurements, the data is provided in low-mass,
on-shell, and high-mass dilepton invariant mass binnings (respectively Zlow, Zpeak, and
Zhigh in the figures).
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Figure B.1: Data-theory comparison for precision ATLAS inclusive gauge boson at 7 TeV
[173]. We show here the forward rapidity selection. Values are normalized to the data central
value. Only Z-boson measurements at the Z-peak and above are delivered for this dataset.
Predictions are made using str_base (orange) and str (green).
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Figure B.2: Same as figure B.1 but for the central rapidity region. The top row shows the
Z boson production for low-mass, on-shell, and high mass dilepton invariant mass bins (read
left to right). The bottom row shows W+ and W− production respectively. The binnings
are in (di)lepton rapidity from W (Z) decay.
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Figure B.3: Data-theory comparison for ATLAS inclusive gauge boson production at 7 TeV
[180]. Values are reported for each gauge boson and measured in (di)lepton rapidity from W
(Z) decay (from left to right, top to bottom, we have W+, W− and Z channels.) Values are
normalized to the data central value. Predictions are made using str_base (orange) and
str (green).





Appendix C

The QCD non-renormalization of
Wilson coefficients at NLO

We here outline that the NLO pure QCD correction of the Wilson coefficients of
equation 5.37 exactly cancels the one loop gluon self-energy. Note that the anomalous
dimensions of dimension-6 operators are not in general vanishing if one considers
Yukawa couplings [270, 271, 276], but here we concern ourselves only with QCD
running.

Consider the following massless Yang-Mills theory with the addition of a 4-fermion
contact interaction:

L = q̄i /D q − 1
4F

a
µνF

µνa + c

4Λ2 q̄γ
µ(1 + λ′γ5)q l̄γµ(1 + λγ5)l (C.1)

where the λ, λ′ denote some chirality configuration and a runs over Lie algebra gen-
erators. If we naively use this theory to one loop order, then we will find that our
loop integrals give divergences which must be regulated. To do so, we add to the
bare lagrangian of equation C.1 counter-terms, δψ and cδc; the values of which will
be determined in a way to match the residue of the poles corresponding to these UV
divergences. The lagrangian with the appropriate counter-terms thus reads:

L = (1 + δψ)q̄i /D q − 1
4F

a
µνF

µνa + c+ cδc

4Λ2 q̄γµ(1 + λ′γ5)q l̄γµ(1 + λγ5)l. (C.2)

By convention it is usual to rescale the fields such that the coefficient of the quark
kinetic term is unity. We perform the field redefinition qR =

√
1 + δψq and so in terms
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Figure C.1: The diagrams contributing to the running of the Wilson coefficient corresponding
to the 4-fermion contact operator connecting leptons and quarks. Virtual emission (left)
is shown to cancel exactly with the wavefunction renormalization of the quark self-energy
(right).

of the renormalized fields and couplings we have:

L = q̄R /D qR −
1
4F

a
µνF

µνa + 1 + δc

1 + δψ

c

4Λ2 q̄Rγ
µ(1 + λ′γ5)qR l̄γµ(1 + λγ5)l. (C.3)

We shall demonstrate perturbatively that δc = δψ such that the Wilson coefficient
receives no corrections at this order (charge conservation arguments suggest this holds
at all orders, but this argument is omitted). The pure vertex correction diagram is
shown in figure C.1 (left) as well as the quark propagator self-energy (right) at NLO
in QCD. We work in d = 4− 2ϵ dimensions using dimensional regularization [59] in
order to regularize the divergence. The matrix element associated with the amputated
diagram reads 1:

iMµ =
∫ ddk

(2π)d
(−igs)2µ2ϵCFγν

i

/p+ /q − /k

(
−i c

4Λ2γ
µ(1 + λ′γ5)

)
i

/p− /q
γν
(−i
k2

)
(C.4)

where CF is the colour factor arising from traces over products of Gell-Mann matrices
and µ is a physically arbitrary mass scale introduced to ensure the gauge field coupling,
gs, is dimensionless. The notation follows the convention

1
/p

= /p

p2 . (C.5)

1We do not include the usual u, ū spinor fields as we are concerned in the correction to the BSM
vertex: which may be an operator insertion at an arbitrary position in a scattering graph.
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The matrix element then simplifies to

iMµ = −g2
sµ

2ϵCF

∫ ddk

(2π)d

γν(/p+ /q − /k)
(

c
4Λ2γ

µ(1 + λ′γ5)
)

(/p− /k)γν

(p+ q − k)2(p− k)2k2 . (C.6)

For notational clarity we will define Oµ to capture the Lorentz structure of our BSM
operator:

Oµ = c

4Λ2γ
µ(1 + λ′γ5). (C.7)

The use of Feynman parameters allows us to separate the product in the denominator
into a sum:

iMµ = −2g2
sµ

2ϵCF

∫ 1

0
du1

∫ 1

0
du2

∫ 1

0
du3

∫ ddk

(2π)d

γν(/p+ /q − /k)Oµ(/p− /k)γν(
(p+ q − k)2u1 + (p− k)2u2 + k2u3

)3 δ(1− u1 − u2 − u3). (C.8)

Using this trick allows us to write the denominator as:

u1(p2 + q2 + k2 + 2p · q − 2p · k − 2q · k) + u2(p2 + k2 − 2p · k) + u3k
2 (C.9)

which, after performing the u3 integral, gives:

= k2 + u1(p2 + q2 + 2p · q − 2p · k − 2q · k) + u2(p2 − 2p · k) (C.10)

and after completing the square, we obtain:

= (k−u1p−u1q−u2p)2− (u1p+u1q+u2p)2 + (u2p
2 +u1p

2 +u1q
2 + 2u1p · q). (C.11)

Defining
∆ ≡ (u1p+ u1q + u2p)2 − (u2p

2 + u1p
2 + u1q

2 + 2u1p · q). (C.12)

the diagram we are computing reads:

iMµ = −2g2
sµ

2ϵCF

∫ 1

0
du1

∫ 1

0
du2

∫ ddk

(2π)d

γν(/p+ /q − /k)Oµ(/p− /k)γν(
(k − u1p− u1q − u2p)2 −∆

)3 . (C.13)
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Focusing for now only on the integral and using translation invariance of the phase
space measure, the integral reads

∫
· · · =

∫ 1

0
du1

∫ 1

0
du2

∫ ddk

(2π)d

γν(/p+ /q − /k − u1 /P − u1/q − u2/p)Oµ(/p− /k − u1/p− u1/q − u2/p)γν

(k2 −∆)3 (C.14)

Noting that the terms linear in k will result in an odd integrand and will thus evaluate
to zero we get:

∫
· · · =

∫ 1

0
du1

∫ 1

0
du2

∫ ddk

(2π)d

[
γν/kOν/kγµ

(k2 −∆)3 +

γν(/p+ /q − u1/p− u1/q − u2/p)Oµ(/p− u1/p− u1/q − u2/p)γν

(k2 −∆)3

]
(C.15)

A simple power counting argument reveals the latter term in the integrand to be finite.
We thus focus on the divergent part of the integral arising due to the former term.
Examining the numerator of this term reveals the following simplification:

γν/kOµ/kγν = c

4Λ2γν/kγ
µ(1 + λ′γ5)/kγν

=
(

(2− 2ϵ)k2γµ − 2kµ(2− 2ϵ)kνγν

)
c

4Λ2 (1 + λ′γ5), (C.16)

where we have used /k · /k = k2 and γµγµ = 4− 2ϵ which can be obtained directly from
the Clifford algebra of equation 2.3.

The first term in the parenthesis will give a term that is proportional to the Lorentz
structure, Oµ, of our BSM operator. The right term will also do so after some further
manipulation. Noting that this term lives inside the phase space integral, we isolate its
contribution as:

Iαβ ≡
∫ ddk

(2π)d

kαkβ

(k2 −∆)3 (C.17)

Noting Iαβ = Iβα and that I is a Lorentz tensor, it must be the case that Iαβ = Aηαβ

for some constant A. Contracting both sides of the equation with ηαβ
we find:

(4− 2ϵ)A =
∫ ddk

(2π)d

k2

(k2 −∆)3 (C.18)
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We can use the master equation [100]:

∫ ddk

(2π)d

(k2)a

(k2 −∆)b
=

(−1)b−aiΓ(b− a− 1
2d)Γ(a+ 1

2d)
(4π) d

2 Γ(b)Γ
(

d
2

) ( 1
∆

)b−a− d
2

(C.19)

to solve for A giving:

A = iΓ(ϵ)Γ(3− ϵ)
(4π)2−ϵΓ(3)Γ(2− ϵ)(4− 2ϵ)

( 1
∆

)ϵ

(C.20)

where the Γ function is defined as:

Γ(x) =
∫ ∞

0
zx−1e−zdz (C.21)

and famously evaluates to (n− 1)! for integer arguments. Returning to our integral
and using Γ(3) = 2, we thus find:

∫ ddk

(2π)d

γµ/kOµ/kγµ

(k2 −∆)3 = i(2ϵ− 2)Γ(ϵ)Γ(3− ϵ)
2(4π)2−ϵΓ(2− ϵ)(4− 2ϵ)

( 1
∆

)ϵ

Oµ, (C.22)

but we must remember that this was the integrand of a du1 du2 integral thus giving:

iMµ = −2g2
sµ

2ϵCF
i(2ϵ− 2)Γ(ϵ)Γ(3− ϵ)

2(4π)2−ϵΓ(2− ϵ)(4− 2ϵ)O
µ
∫ 1

0
du1

∫ 1

0
du2

( 1
∆

)ϵ

+ finite terms

(C.23)
but the integrand ( 1

∆

)ϵ

= e−ϵ log ∆ = 1 +O(ϵ) (C.24)

will not contribute to the divergent part of this diagram. Taking the limit of ϵ → 0
and using the definition αs ≡ g2

s

4π
we have:

iMµ = i
αsCF

4πϵ O
µ + finite terms. (C.25)

We see that the counter-term to add in the minimal subtraction (MS) scheme is thus:

δc = αsCF

4πϵ (C.26)

precisely the same counter-term arising from the wavefunction renormalization of the
quark propagator [277].





Appendix D

SIMUnet stability on replica number

When performing purely PDF fits to experimental data, it is often the case one will
have to compute ∼ 100 Monte Carlo PDF replicas in order to achieve a percent level,
faithful, uncertainty estimation [134]. As the study presented in chapter 6 acts as a
proof-of-concept for our SIMUnet methodology, we perform high statistic fits composed
of 1000 MC replicas. However, with each replica requiring approximately 3 hours
of compute time, one necessarily requires access to a cluster of nodes in order to
asynchronously compute the roughly 3000 hours of total wall clock time that is needed
for each fit. It is possible, however, to reduce this time by an order of magnitude by
instead computing ∼ 100 MC replicas per fit and in this appendix we show that doing
so poses little risk in underestimating the statistics when compared to a high replica
fit.

From each of our high replica fits we randomly sample, without replacement, a
set of 100 replicas thereby effectively emulating the scenario whereby the user would
have performed a low statistics fit. In figure D.1 we plot the qq̄ luminosity for the
various SMEFT scenarios considered in this work. We plot the low replica luminosity
normalized to the analogous high replica set. We see that the luminosities remain
virtually identical, with no discernible difference at the ensemble level. Such behaviour
is inherited directly from NNPDF4.0 where a typical fit will typically only possess 100
MC replicas after the post-fit selection has filtered poorly performing replicas.

In figure D.2 we present the distributions of best-fit W and Y values using both
the high replica and reduced sets. We see that the distribution of best fit Wilson
coefficients are accurately reproduced by the low statistics set: implying that, had we
stopped the fitting process with 100 MC replicas, the additional 900 replicas would
have changed the ensemble statistics such as the mean, standard deviation, or bounds
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Figure D.1: The qq̄ luminosity of the 100 replica (low statistics) fits normalized to the
1000 replica (high statistics) fits for various SMEFT scenarios considered in this work. Shown
in the top left (top right) is the individual W (Y ) scenario, while the lower panel is the
combined (W,Y ) scenario with HL-LHC projections being used in the fit.

very little. This is a typical pattern in the Monte Carlo approach to PDF fitting,
whereby one quickly reaches saturation after ∼ 100 MC replicas and further replicas
only serve to accurately reproduce the experimental correlations.
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Figure D.2: Distributions of the best fit W (left) and Y (right) parameters using both
high (Nrep = 1000) and low (Nrep = 100) statistic fits. We bring the readers attention to the
different y axes for the histogram overlays.
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