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Abstract

A spline-DCS model is developed to forecast the conditional distribution

of high-frequency financial data with periodic behavior. The dynamic cubic

spline of Harvey and Koopman (1993) is applied to allow diurnal patterns

to evolve stochastically over time. An empirical application illustrates the

practicality and impressive predictive performance of the model.
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1 Introduction

Intra-day periodicity caused by periodic trading patterns is a stylized feature of

high-frequency financial data. Standard methods for modeling diurnal patterns

include the use of the Fourier representation or a deterministic spline and comput-

ing sample moments for each intra-day bin.1 In the existing literature, the shape

of diurnal patterns is generally assumed to be a deterministic function of time and

remains the same for every trading day. It is also a standard approach to estimate

the intra-day periodic component first and diurnally adjust data before estimating

∗Email: ri239@cam.ac.uk. I would like to thank my supervisor Andrew Harvey for his
helpful guidance and comments on this research throughout the year. I would also like to thank
Philipp Andres, Stephen Thiele, Michele Caivano, Oliver Linton, Donald Robertson, and the
participants of the Score Workshop in 2013 at Tinbergen Institute, especially Andre Lucas, for
providing thoughtful comments on a preliminary version of this paper.

1See, for instance, Andersen and Bollerslev (1998), Engle and Russell (1998), Zhang et al.
(2001), Campbell and Diebold (2005), Engle and Rangel (2008), Brownlees et al. (2011), and
Engle and Sokalska (2012).
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other stochastic components by a two-step procedure, but such a procedure can

render the asymptotic properties of statistical tests invalid. This paper proposes

to use the dynamic cubic spline of Harvey and Koopman (1993) to allow for the

possibility that diurnal patterns may evolve stochastically over time. The dynamic

cubic spline is a parsimonious way of capturing evolving diurnal patterns, and it

can be estimated simultaneously with all other components of the model by the

method of maximum likelihood.

Harvey and Koopman (1993) originally developed the dynamic cubic spline to

estimate the intra-weekly patterns of hourly electricity demand. It was employed

later by Harvey et al. (1997) to model a changing seasonal component of weekly

money supply in the U.K., and also by Bowsher and Meeks (2008) to forecast zero-

coupon yield curves. Bowsher and Meeks (2008) interpret the spline as a special

type of “dynamic factor model”, where the knots of the spline are the factors and

the factor loadings are treated as given and specified according to the requirement

that the model has to be a cubic spline. In order to capture dynamic diurnal

patterns in high-frequency financial data, we integrate the dynamic cubic spline

with a model for forecasting conditional density and volatility (or scale) dynamics.

The model we use for this purpose is the dynamic conditional score (DCS) model

formally defined and studied by Harvey (2013) and Andres and Harvey (2012).

The DCS model is also termed the generalized autoregressive score (GAS) model

and studied independently by Creal et al. (2011, 2013).

The basic DCS model for scale is defined as follows. Given a sequence of

T observations (yt)
T
t=0, suppose we denote its underlying random data generating

process by (Yt)
T
t=0. We assume that this process is defined on the probability space

(Ω,F ,P) equipped with a filtration (Ft)Tt=0, and that F0 is trivial so that Y0 is

almost surely constant. The scale DCS model assumes that there exist a location

factor c ∈ R and a standard cumulative distribution function (cdf) denoted by F

such that

(Yt − c)/αt|t−1|Ft−1 ∼ iid F t = 1, . . . T (1)

for a sequence of scale factors
(
αt|t−1

)T
t=1

, where αt|t−1 > 0 for all t = 1, . . . , T .

The notation ·t|t−1 reflects the conditionality of the variable at time t on Ft−1. F

is a short-hand notation for the standard cdf F (·;θ) re-centered around the origin

with a constant vector θ of distribution parameters that does not include c and

αt|t−1. The probability density/mass function (pdf) of F is denoted by f . The

first-order DCS filter for scale is

αt|t−1 = exp(λt|t−1), λt|t−1 = δ + φλt−1|t−2 + κut−1, t = 1, . . . T, (2)
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where ut is the conditional score

ut =
∂ log

[
e−λt|t−1f(yte

−λt|t−1 ;θ)
]

∂λt|t−1

, t = 1, . . . , T.

We also have δ ∈ R, κ > 0, and |φ| < 1 if (λt|t−1)Tt=1 is stationary. ω = δ/(1−φ) is

the unconditional mean of λt|t−1 when it is stationary. The use of the exponential

link with the canonical link parameter λt|t−1 ∈ R ensures that the scale parameter

αt|t−1 remains positive for all t without any parameter restrictions.2

Andres and Harvey (2012) study the case where yt is non-negative for all t,

and consider a number of non-negative distributions for F including generalized

gamma (GG), generalized beta of the second kind (GB2), and log-normal.3 The

Beta-t-EGARCH model of Harvey and Chakravarty (2008) is also a special case

of DCS in which the Student’s t-distribution is assigned to F . Beta-t-EGARCH

can be used to model volatility of asset returns.

The advantages of DCS are threefold. First, the parameters of the model can

be estimated easily by the method of maximum likelihood. The consistency and

asymptotic normality of the maximum likelihood estimators (MLEs) are estab-

lished for many distributions, including a number of heavy- or long-tailed dis-

tributions, by Harvey (2013). Second, the analytic expressions of the multi-step

optimal predictors4 as well as their mean square errors are available whenever the

corresponding moments of F and the moment generating function (mgf) of ut ex-

ist. Third, the model is robust to extreme observations because of the use of the

conditional score in the filter. See Harvey (2013) for more details.

This paper contributes to the literature by illustrating the practicality and

forecasting performance of our proposed spline-DCS model. Aside from diur-

nal patterns, our spline-DCS model also captures other stylized features of high-

frequency financial data such as a frequency mass of zero-valued observations, the

day-of-the-week effect, and the overnight effect.

The day-of-the-week effect is a type of calendar effects, and refers to the de-

pendency of the dynamics of a given variable on the day of the week. (See Taylor

(2005) and Hautsch (2012) for discussions.) Generally, this effect is modeled in

the existing literature using day-of-the-week dummies, see, for instance, Andersen

2The choice of link function should always be consistent with the parametric choice of F for
the asymptotic properties of DCS to go through. See Harvey (2013).

3If F is characterized by the GG distribution, ut is a linear function of a gamma distributed
random variable. If F is characterized by the GB2 distribution, ut is a linear function of a beta
distributed random variable. In both cases, ut is iid given Ft−1 for all t. See Appendix A.

4This optimality is in terms of minimum mean square error (MMSE).
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and Bollerslev (1998) and Lo and Wang (2010).5 In contrast, using a special case

of the dynamic cubic spline termed weekly spline, our model captures the day-of-

the-week effect by allowing for a change in the level as well as the overall shape

of diurnal patterns on different weekdays without using any dummy variables.

We capture the overnight effect by relaxing the continuity condition of the

spline between the end and the beginning of any two consecutive trading days.

This means that the spline on any trading day can begin from a level different from

where it ended on the previous trading day. This method allows for the possibility

that it may take time for the overnight effect to diminish completely during the

day, and eliminates the need to identify which morning observations are due to

overnight information. Our way of adjusting for the overnight effect can be viewed

as an alternative to the existing methods in the literature including differentiating

day and overnight jumps, the use of dummy variables, and treating events that

occur in a specified period immediately after market opening as censored. See, for

instance, Gerhard and Hautsch (2007), and Boes et al. (2007). It seems that our

model handles extreme morning observations very well. This is partly due to the

use of the exponential link function: highly volatile and dynamic movements in

the scale parameter can be induced by small movements in the link parameter to

which the DCS filter is applied.

We fit the spline-DCS model to intra-day observations of trade volume of IBM

stock traded on the New York Stock Exchange (NYSE). Trade volume is a mea-

sure of intensity of trading activity. There are a variety of volume measures used

in the literature including the number of shares traded, dollar volume, number

of transactions, turnover (shares traded divided by shares outstanding), and dol-

lar turnover. As the choice of volume measure is not very important given the

stated purpose of this paper, we arbitrarily choose the number of shares traded.

Although this study deals with non-negative time series, the spline-DCS model

can be also applied to variables with support over the entire real line, in which

case our model should be viewed as an extension of Beta-t-EGARCH and can be

used to contribute to studies of high-frequency asset returns including the seminal

paper by Andersen and Bollerslev (1998).

Although we use the DCS model as a vehicle for illustrating the usefulness of

the dynamic cubic spline for high-frequency financial analysis, the dynamic cubic

spline can be easily put in the GARCH or ACD framework. Due to the empirical

5Andersen and Bollerslev (1998) use day-of-the-week dummies in the analysis of high-
frequency returns of the Deutsche Mark-Dollar exchange rate (DM-Dollar). Lo and Wang (2010)
use day-of-the-week dummies in the analysis of the weighted daily turnover and returns of indices
of NYSE and AMEX ordinary common shares.
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Series Smpl. Size Mean Max. Min. S.D. Skewness 99.9% quantile Freq. of zero

IBM30s 19,500 10,539 1,652,100 0 26,071 29 293,654 0.47%
IBM1m 9,750 21,297 1,652,100 0 39,114 18 604,295 0.06%

Table 1 – Table of sample statistics of the IBM trade volume. Sampling period: Monday
28 February - Friday 31 March 2000. (25 trading days with 6.5 trading hours per trading
day.)

feature of our data, the estimated cubic spline for our application turns out to

be U-shaped on any trading day. This U-shape is obtained without imposing

any restrictions on the shape of the spline. As the spline can reflect any periodic

shape including multi-modal and concave ones, it can be used to estimate diurnal

patterns of other financial variables including asset returns and duration.

The structure of this paper is as follows. Section 2 gives an initial investigation

of the trade volume data and motivates the construction of our model. Section 3

outlines our modeling assumptions and formally constructs the spline-DCS model.

Sections 3.6 and 4 discuss methods for estimation and model selection. The in-

sample and out-of-sample estimation results are reported in Sections 4 and 5.

2 Data characteristics

Before proceeding to detailed modeling and forecasting results, it is useful to get an

overall feel for the trade volume data. This section provides an initial investigation

of our data to motivate our formal model in Section 3.

We analyze the trade volume (in the number of shares) of IBM stock traded

on NYSE during the market opening hours (9.30am-4pm in the New York local

time) between Monday 28 February and Friday 31 March 2000, which includes

25 trading days and no public holidays. Our raw data set is in tick-format and

consists of the record of every trade in the order of occurrence. The tick-data is

irregularly spaced and often has multiple transactions in one second. In order to

explore the effects of marginal changes in the aggregation interval on our inference,

we aggregate the tick-data by 30 seconds and 1 minute, respectively, to generate

two aggregated series. If the aggregation interval is 30 seconds, there are 780

observations per trading day. For convenience, we refer to the aggregated series

as IBM30s if the aggregation interval is 30 seconds and IBM1m if 1 minute.

In the top panel of Figure 1, we observe several recurrent spikes in trade volume

near the moment of market opening or closure. These extreme observations make

the upper tail of empirical distribution very long. (See Table 1.) The smoothed

IBM30s series in the right column of Figure 1 reflects that there is a diurnal U-

5



400,000

500,000

600,000

700,000

800,000

0

100,000

200,000

300,000

Mon-20-Mar Tue-21-Mar Wed-22-Mar Thu-23-Mar Fri-24-Mar

60,000

80,000

100,000

120,000

140,000

0

20,000

40,000

60,000

Mon-20-Mar Tue-21-Mar Wed-22-Mar Thu-23-Mar Fri-24-Mar

40,000

50,000

60,000

70,000

80,000

90,000

100,000

0

10,000

20,000

30,000

40,000

09:30 10:30 11:30 12:30 13:30 14:30 15:30

20,000

25,000

30,000

35,000

40,000

45,000

50,000

0

5,000

10,000

15,000

20,000

09:30 10:30 11:30 12:30 13:30 14:30 15:30

Figure 1 – IBM30s (left column) and the same series smoothed by the simple moving
average of nearest 20 observations (right column). Time on the x-axis. Top panel: Monday
20 - Friday 24 March 2000. Each day covers market opening hours between 9.30am-4pm (in
the New York local time). Bottom panel: Wednesday 22 March 2000, covering 9.30am-4pm
(in the New York local time).

shaped pattern in trading activity on every trading day. Extreme movements in

trading activity in the first hour of trading day can be caused by news transmitted

over night. Trading activity slows down towards lunch time of around 1pm as

overnight information is processed, but picks up again in the afternoon as traders

re-balance their positions before market closure. One may naturally suspect that

the shape of diurnal pattern may be slowly changing over time. Other measures

of trading activity based on durations (such as trade durations, midquote change

durations, and volume durations) exhibit similar diurnal patterns, but the shape

is inverted so that the duration is long during lunch. See Hautsch (2012, p.41).

The left and middle columns of Figure 2 show that our series are heavily right-

skewed and have extremely long upper-tail. The length of upper-tail can be also

seen in the distance between the maximum and the 99.9% sample quantile in Table

1.6 The right column of Figure 2 shows the highly persistent nature of our series.

IBM30s exhibits statistically significant autocorrelation that is very slow to decay.

The autocorrelation of IBM1m is faster to decay than that of IBM30s. Moreover,

there is a non-negligible number of zero-valued observations. (See Table 1.)

The discussion so far suggests that our model needs a periodic component

to capture the diurnal U-shaped patterns. This component should allow for the

possibility that the shape of diurnal patterns may change over time. Moreover,

6Note that the sample skewness statistics in Table 1 must be interpreted with care as the
theoretical skewness may not exist.
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Figure 2 – Frequency distribution (left column), empirical cdf (middle column), and sample
autocorrelation (right column). IBM30s (top row), and IBM1m (bottom row). The axes of
cdf and autocorrelation charts are fixed so that they are easily comparable. The 200th lag
corresponds approximately to 1.5 hours prior for IBM30s and 3 hours prior for IBM1m.

non-periodic factors may coexist with the periodic component. One such factor

is a highly persistent low-frequency component. The empirical autocorrelation

structure suggests that a highly persistent behavior similar to long memory may

be inherent in data. This can be captured by a combination of autoregressive

components. The presence of non-negligible number of zero-valued observations

can be explained by a binary component governing whether the next observation

is zero or non-zero. Given the empirical distribution of data, we find that fixing

the location parameter (c) at zero works for our application. The next section

gives the formal definition of each of these components.

3 Spline-DCS model

3.1 Redefining time indices

Henceforth, we use the notation τ = 1, . . . , I to denote the location of intra-day

bins and t = 1, . . . , T to denote trading days in our sample. We use the subscript

·t,τ to denote the τth intra-day bin on the tth trading day. We assume that F1,0 is

trivial. We let τ = 1 to be the location of the first aggregated observation for each

trading day. The total sample size is I×T . In order to avoid superfluous subscripts,

we merely write ·t,τ instead of ·t,τ |t,τ−1 even when the variable is conditional on
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Ft,τ−1. Finally, we introduce the following set notations

ΨT, I = {(t, τ) ∈ {1, 2, . . . , T} × {1, 2, . . . , I}},

ΨT,I>0 = {(t, τ) ∈ {1, 2, . . . , T} × {1, 2, . . . , I} : yt,τ > 0}.

3.2 A probability mass at the origin

The presence of a non-negligible number of zero-valued observations cannot be

explained by conventional continuous distributions as the probability of observing

a particular value is zero by definition. Although one can eliminate zero-valued

observations by widening the aggregation interval, a better approach is to define

a distribution such that its strictly positive support is captured by a conventional

continuous distribution and the origin has a discrete probability mass.

Formally, we define the cdf F : R≥0 → [0, 1] with a constant parameter vector

θ of a standard random variable X ∼ F as

PF (X = 0) = p, PF (X > 0) = 1− p, PF (X ≤ x|X > 0) = F ∗(x;θ∗) (3)

for some p ∈ [0, 1] and any x > 0, where F ∗ : R>0 → [0, 1] is the cdf of a con-

ventional standard continuous random variable with the time-invariant parameter

vector θ∗.7 Thus we have θ = (p,θ∗>)>. The properties of this type of distri-

butions are studied formally in Hautsch et al. (2010).8 For non-negative series,

F ∗ can be a number of distributions including Weibull, Gamma, Burr, and log-

normal, many of which are special cases of the GG and GB2 distributions. See

Figure 3 and, more formally, Kleiber and Kotz (2003) for the relationship between

these distributions.

Under this definition of F in (3), ut,τ becomes the conditional score of F ∗ and

it is defined only for yt,τ > 0. Thus, we set ut,τ = infs∈Ω ut,τ (s) whenever yt,τ = 0.

If F ∗ is the GB2 distribution, this means that we set ut,τ = −νξ whenever yt,τ = 0.

It is natural to suspect that p may change over time because the probability of

zero-volume must be lower during morning trading hours than during quiet lunch

hours. Rydberg and Shephard (2003) and Hautsch et al. (2010) independently

study decomposition models for estimating the conditional dynamics of p via the

logit link. An interesting extension of our model is a hybrid spline-DCS model

7The unconditional nth moment of X is well-defined as long as it is well-defined for F ∗

because
EF [Xn] = p EF [Xn|X = 0] + (1− p)EF [Xn|X > 0] = (1− p)EF∗ [Xn].

8This decomposition technique is a standard one in econometrics and essentially the same as
the classical censored regression models and the decomposition models of McCulloch and Tsay
(2001) and Rydberg and Shephard (2003).
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Figure 3 – Nested diagram of some of the useful non-negative distributions. Scale factor
is assumed to be one in all cases.

for the conditional dynamics of p as well as the scale parameter. However, in this

paper, we assume p to be constant for simplicity and leave this extension for future

research. This restriction on p is inconsequential in our application as the number

of zero-valued observations is relatively small compared to the total number of

observations.

Denoting the standardized observations as εt,τ ≡ yt,τ/αt,τ for all (t, τ) ∈ ΨT,I ,

where αt,τ > 0 is the time-varying scale parameter, the joint likelihood function

based on F for the set of observations (yt,τ )(t,τ)∈ΨT,I is

L
(
(yt,τ )(t,τ)∈ΨT,I ;θ

)
=

∏
(t,τ)∈ΨT,I>0

(1− p) exp(−λt,τ )f ∗(εt,τ ;θ∗)
∏

(t,τ)∈ΨT,I∩ΨcT,I>0

p,

where f ∗ is the pdf of F ∗. The log-likelihood is

logL = A log(1−p)+(T×I−A) log p+
∑

(t,τ)∈ΨT,I>0

log (exp(−λt,τ )f ∗(εt,τ ;θ∗)) , (4)

where A = |ΨT,I>0|. It is easy to check that the MLE of p is p̂ = (T×I−A)/(T×I).

3.3 Unobserved components of scale

We assume that the diurnal U-shaped patterns and autocorrelation in our data

are entirely due to the periodicity and autocorrelation in (αt,τ )(t,τ)∈ΨT,I . The stan-

dardized series εt,τ given Ft,τ−1 is assumed to be iid and free of periodic behavior

for all (t, τ) ∈ ΨT,I . As we will estimate αt,τ via the link parameter λt,τ , this means

that λt,τ exhibits periodicity and autocorrelation.9 Given these assumptions, we

specify λt,τ as a sum of (i) the periodic component st,τ , which explains the diurnal

U-shaped patterns that may or may not evolve over time; (ii) the random-walk

9We note that, by the stationarity/nonstationarity property of λt,τ , we do not infer the true
stationarity property of the underlying process as the spirit of our model is merely to obtain a
good local approximation of the true data generating process. Our analysis is local in the sense
that it is limited to working with discrete-time observations of what is actually a continuous-time
process collected over a short sampling period.
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component µt,τ capturing the slowly changing low-frequency movements that is

non-periodic; and (iii) the stationary high-frequency component ηt,τ , which is a

mixture of several autoregressive components and captures the highly persistent

nature of data. Formally, our spline-DCS model is:

yt,τ = εt,τ exp(λt,τ ), λt,τ = ω + µt,τ + ηt,τ + st,τ , εt,τ |Ft,τ−1 ∼ iid F

for ω ∈ R, τ = 1, . . . , I and t = 1, . . . , T . µt,τ is defined as

µt,τ = µt,τ−1 + κµut,τ−1, ∀ (t, τ) ∈ ΨT, I ,

where ut,τ is the score of F ∗ and ut,τ = infs∈Ω ut,τ (s) whenever yt,τ = 0. The

estimation results in Section 4 suggest that this random-walk component does

a good job in capturing the low-frequency dynamics of our data.10 ηt,τ is the

stationary component defined as:

ηt,τ =
J∑
j=1

η
(j)
t,τ , ∀ (t, τ) ∈ ΨT, I

η
(j)
t,τ = φ

(j)
1 η

(j)
t,τ−1 + φ

(j)
2 η

(j)
t,τ−2 · · ·+ φ

(j)

m(j)η
(j)

t,τ−m(j) + κ(j)
η ut,τ−1, j = 1, . . . , J

for some J ∈ N>0. We assume that m(j) ∈ N>0 and η
(j)
t,τ is stationary for all

j = 1, . . . , J . The stationarity requirements on the autoregressive coefficients are

the same as in an ARMA model. By making ηt,τ a mixture of components with

autoregressive structures, we are allowing for a highly persistent behavior similar

to long memory. Although the specification of ηt,τ above is in a general form

of J autoregressive components, J = 2 works well for our application. For the

identifiability of each component, we assume that µt,τ is less sensitive to changes

in ut,τ−1 than η
(1)
t,τ , which is in turn less sensitive than η

(2)
t,τ . Thus we assume that

κµ < κ
(1)
η < κ

(2)
η . Moreover, the scale of trade volume should increase in the wake

of positive news. Thus we have κµ > 0.

3.4 Dynamic cubic spline st,τ

The periodic component st,τ captures the diurnal U-shaped patterns. We define

this component based on the cubic spline model of Harvey and Koopman (1993).

In order to formally define st,τ , we first give the definition of a special case, termed

a static spline, in which the pattern of periodicity does not change over time.

Some of the technical details are omitted in the following sections, but we give the

complete mathematical construction in Appendix B.

10In other applications, the low-frequency component can be an integrated random walk. See
Harvey (2013, p.92).
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3.4.1 Static daily spline

The cubic spline is termed a daily spline if the periodicity is complete over one

trading day. The static daily spline assumes that the shape of diurnal patterns

is the same for every trading day. The daily spline is a continuous piecewise

function of time and connected at k + 1 knots for some k ∈ N>0 such that k < I.

The coordinates of the knots along the time axis are denoted by τ0 < · · · < τk,

where τ0 = 1, τk = I, and τj ∈ {2, . . . , I − 1} for j = 1, . . . , k − 1. The set of

knots is also called mesh. The y-coordinates (height) of the knots are denoted by

γ = (γ0, . . . , γk)
>. The static daily spline (st,τ = sτ ) is defined as

sτ =
k∑
j=1

1l{τ∈[τj−1,τj ]} zj(τ) · γ, τ = 1, . . . , I, (5)

where zj : [τj−1, τj]
k+1 → Rk+1 for j = 1, . . . k is a (k + 1)-dimensional vector of

deterministic functions that conveys all information about the polynomial order,

continuity, and zero-sum conditions of the spline. See Appendix B for the def-

inition of these conditions and the derivation of zj(τ). The zero-sum condition

ensures that the parameters in γ are identified. To impose the zero-sum condition,

we also need to set γk = −
∑k−1

i=0 w∗iγi/w∗k, where w∗ = (w∗0, . . . , w∗k)
> is defined

in Appendix B.

3.4.2 Location of daily knots and overnight effect

The locations of internal knots τ1, . . . , τk−1 and the size of k depend on the empiri-

cal shape of diurnal patterns, the number of intra-day observations, and estimation

efficiency. Increasing k can sometimes improve the fit of the model, but using too

many knots deteriorates estimation efficiency. In the subsequent analysis, we find

that positioning internal knots at 11am, 12.30pm, and 2.30pm works well for a

daily spline. The shape of the spline up to 12.30pm captures the busy trading

hours in the morning, between 12.30pm and 2.30pm captures the quiet lunch

hours, and after 2.30pm captures any acceleration in trading activities before clo-

sure. There is little to no improvement in the goodness of fit when the number

of knots per day increases from this specification. The periodicity condition of

the original spline by Harvey and Koopman (1993) sets (τk, γk) to be the same

as (τ0, γ0) as their hourly electricity demand data is collected 24 hours on each

sampling day. We capture the overnight effect by relaxing this condition in order

to allow for a discrepancy in the spline between the end and the beginning of any
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γ 
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Figure 4 – Picture illustration of the static weekly spline. Both the level and the shape
depend on the day of the week.

two consecutive trading days.11

3.4.3 Dynamic daily spline

The static daily spline (5) becomes dynamic by letting γ be time-varying as

st,τ =
k∑
j=1

1l{τ∈[τj−1,τj ]} zj(τ) · γt,τ , γt,τ = γt,τ−1 + κ∗ · ut,τ−1 (6)

for τ = 1, . . . , I and t = 1, . . . , T , where κ∗ = (κ∗0, . . . , κ
∗
k)
>. Harvey and Koopman

(1993) use a set of contemporaneous Gaussian disturbances to drive the dynamics

of γt,τ instead of the lagged score.12 In terms of parameter identification, our

dynamic spline in (6) still satisfies the zero-sum condition over one complete pe-

riod due to the construction of zj(τ), but we also need to impose the parameter

restrictions

γk;1,0 = − 1

w∗k

k−1∑
i=0

w∗iγi;1,0 κ∗k = − 1

w∗k

k−1∑
i=0

w∗iκ
∗
i . (7)

where γi;1,0 denotes the ith element of γ1,0. See Appendix B.

3.4.4 Static weekly spline

The static spline becomes a static weekly spline if we set the periodicity of the

spline to be complete over one trading week instead of one day. The static weekly

spline assumes that the shape of diurnal patterns may be different for each week-

day, but the overall shape for the whole week is fixed and remains the same for

every trading week. For this spline, we redefine τ0, τ1, . . . , τk as follows. We let

τ̃0 < τ̃1 < · · · < τ̃k′ denote the coordinates along the time-axis of the intra-day

11This makes the definition of our zj(τ) to be different from the one in Harvey and Koopman
(1993). See Appendix B.

12This makes the identification restrictions on our spline parameters to be different from the
ones specified by Harvey and Koopman (1993).
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mesh, where k′ < I, τ̃0 = 1, τ̃k′ = I, and τ̃j ∈ {1, . . . , I − 1} for j = 1, . . . , k′ − 1.

Then the coordinates τ0, τ1, . . . , τk along the time-axis of the total mesh for the

whole week is defined as τi(k′+1)+j = τ̃j for i = 0, . . . , 4 and j = 0, . . . , k′. This

means that (τj)
k
j=0 is no longer an increasing sequence. The total number of knots

for one whole week is k+ 1 = 5(k′+ 1). The height of the knots are γ0, γ1, . . . , γk′

for Monday, γk′+1, γk′+2, . . . , γ2(k′+1) for Tuesday, and so on. As before, there is

no periodicity condition between τk and τ0 so that we can allow for the effect of

weekend news on trading patterns. Moreover, we capture the overnight effect of

weeknights (between Monday and Friday) by relaxing the continuity and polyno-

mial order restrictions between τ̃k′ and τ̃0 of any two successive weekdays. Thus,

the procedure for computing zj(τ) is different from the daily spline. See Appendix

B.

The weekly spline can be used to capture the day-of-the-week effect. It allows

for the level as well as the overall shape of the diurnal U-shaped patterns to depend

on the day of the week by varying the height of the knots for different weekdays.

That is, the weekly spline allows for (γ0, γ1, . . . , γk′)
> 6= (γk′+1, γk′+2, . . . , γ2(k′+1))

> 6=
· · · 6= (γ4k′+4, γ4k′+5, . . . , γ5(k′+1))

>. See Figure 4. We can test for the day-of-the-

week effect by a likelihood ratio test under the null hypothesis:

H0 : (γ0, γ1, . . . , γk′)
> = (γk′+1, γk′+2, . . . , γ2(k′+1))

> = · · · = (γ4k′+4, γ4k′+5, . . . , γ5(k′+1))
>.

The alternative hypothesis replaces = by 6=. The likelihood ratio statistic under

the null asymptotically has the chi-square distribution with 4(k′ + 1) degrees of

freedom. The weekly spline may be preferred over day-of-the-week dummies as a

method for capturing the day-of-the-week effect if there are reasons to believe that

the day-of-the-week effect not only shifts the level, but also changes the overall

shape of the diurnal U-shaped patterns.

One disadvantage of the weekly spline is that the number of total knots for one

week increases quickly (fivefold) with the number of daily knots. If we use 5 knots

per trading day (k′ = 4) as we specified for the daily spline, the total number of

knots for the week is 25 (k = 24). Estimating such a high number of knots can be

computationally inefficient, especially when the sampling frequency is high.

3.4.5 Restricted weekly spline

Instead of letting the coordinates of the mesh be free for all weekdays, we can

restrict them to be the same on selected days. We term this special case the

restricted weekly spline. We restrict the diurnal pattern to be the same on mid-

weekdays (Tuesday-Thursday) and let the pattern be different on Monday and

Friday. This restricted weekly spline captures a special type of the day-of-the-

13



week effect called the weekend effect, which, in the context of this paper, refers

to the tendency of trade volume before and after the weekend to display distinct

patterns compared to mid-weekdays. This effect is due to the amount of news

disseminated over weekend, which may be more than any of the weeknights.

The evidence for the day-of-the-week effect in financial data is generally mixed

and largely depends on the estimation method and the variable being estimated.

For instance, Andersen and Bollerslev (1998) found that the day-of-the-week effect

is insignificant in the DM-Dollar returns once the calendar effect (e.g. daylight

saving and public holidays) and the effects of major macroeconomic announce-

ments are taken into account. However, they found indications of a weak (but

clear) seasonality on Monday mornings and Friday afternoons. Lo and Wang

(2010) found that some financial returns exhibit a strong day-of-the-week effect.

Their volume data as measured by turnover is roughly constant on all days except

on Mondays and Fridays when turnover is slightly lower than mid-weekdays. The

weekend effect is well-documented in many other studies (mainly in the context

of asset returns) and appears to be more pronounced than the more general day-

of-the-week effect. Thus, given the computational cost of the full-blown weekly

spline, estimating the restricted weekly spline may be adequate and sufficient if

one’s ultimate goal is to establish a good forecasting model. Formally, we define

(the static version of) the restricted weekly spline as:

sτ =
k∑
j=1

1l{τ∈[τj−1,τj ]} zj(τ) · Sγ (8)

where γ = (γ̃>1 , γ̃
>
2 , γ̃

>
3 )> and γ̃i for i = 1, 2, 3 are (k′ + 1)-dimensional mesh

vectors for Monday, mid-weekdays (Tuesday-Thursday), and Friday, respectively,

and zj(τ) is of the weekly spline. S is the following 5(k′+ 1)× 3(k′+ 1) matrix of

zeros and ones:

S =


I(k′+1) 0 0

0 I(k′+1) 0
...

...
...

0 I(k′+1) 0

0 0 I(k′+1)

 .
where I(k′+1) is the identity matrix of size (k′ + 1). We can rewrite (8) as

sτ =
k∑
j=1

1l{τ∈[τj−1,τj ]} z̃j(τ) · γ (9)

where z̃j(τ) = S>zj(τ). Finally, we can let γ be time-varying according to the

dynamics in (6) with appropriate adjustments to the zero-sum conditions. Then

14



we obtain the dynamic restricted weekly spline. In this case, we use the notations

κ∗ = (κ̃∗>1 , κ̃∗>2 , κ̃∗>3 )> and γt,τ = (γ̃>1;t,τ , γ̃
>
2;t,τ , γ̃

>
3;t,τ )

> for (t, τ) ∈ ΨT,I , where

dim(κ̃∗j) = dim(γ̃j;t,τ ) = (k′ + 1) for j = 1, 2, 3. If we place 5 knots per trading

day (i.e. k′ = 4) as we specified for the daily spline, we have 15 unrestricted knots

for one week.

3.5 Summary of the model specification

To summarize, our spline-DCS model is

yt,τ = εt,τ exp(λt,τ ), λt,τ = ω + µt,τ + ηt,τ + st,τ , εt,τ |Ft,τ−1 ∼ iidF,

where the components are

µt,τ = µt,τ−1 + κµut,τ−1

ηt,τ = η
(1)
t,τ + η

(2)
t,τ

η
(j)
t,τ = φ

(j)
1 η

(j)
t,τ−1 + φ

(j)
2 η

(j)
t,τ−2 · · ·+ φ

(j)

m(j)η
(j)

t,τ−m(j) + κ(j)
η ut,τ−1, j = 1, 2

st,τ =
k∑
j=1

1l{τ∈[τj−1,τj ]} zj(τ) · γt,τ

γt,τ = γt,τ−1 + κ∗ · ut,τ−1

for (t, τ) ∈ ΨT,I , where F denotes the distribution defined in (3) and has the

parameter p = P(yt,τ = 0) for any (t, τ) ∈ ΨT,I . ut,τ is the score of conditional

distribution F ∗, and we set ut,τ = infs∈Ω ut,τ (s) whenever yt,τ = 0. zj(τ) is to be

replaced by z̃j(τ) for the restricted weekly spline.

3.5.1 Public holidays

Public holidays can be treated in the same way as overnight periods or weekends

where data is missing due to market closure. Whenever t ∈ H ≡ {t ∈ N>0 :

t is a public holiday}, we set

µt,τ = µt,τ−1, η
(1)
t,τ = η

(1)
t,τ−1, η

(2)
t,τ = η

(2)
t,τ−1, γt,τ = γt,τ−1

for all τ = 1, . . . , I so that λt,τ is unchanged. The joint log-likelihood is defined

only for days t ∈ Hc.

3.6 Maximum likelihood estimation

All parameters of the model can be estimated by the method of maximum like-

lihood using the log-likelihood function in (4). We do not formally verify that

the asymptotic results of the MLEs shown in Harvey (2013) also extend to our

particular specification in which the scale parameter αt,τ (or λt,τ ) is nonstationary.

This is left for future research. We choose the initial values of the components of
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Figure 5 – Empirical cdf of ε̂t,τ > 0 against cdf of Burr(ν̂, ζ̂) (left). Empirical cdf of the

PIT of ε̂t,τ > 0 when F ∗(·; θ̂
∗
) is Burr(ν̂, ζ̂) (right). IBM30s over 28 February - 31 March

2000. Using Model 2 specified in Table 5.

λ1,0 as follows. We set η1,0 = 0 as we have E[η
(1)
t,τ ] = E[η

(2)
t,τ ] = 0. As µt,τ is assumed

to be a random-walk, we have E[µt,τ ] = µ1,0. So we impose the constraint µ1,0 = 0

for ω to be identified. For s1,0 or γ1,0, we treat the elements of γ1,0 as unknown

constant parameters to be estimated simultaneously with all other parameters of

the model. We impose the zero-sum constraint w∗ · γ1,0 = 0 as specified in (7).

4 Estimation results

This section reports the estimation results of fitting our model to the series we

investigated in Section 2. In order to test the sensitivity of our inference to changes

in the aggregation interval, we report the estimation results for both IBM30s and

IBM1m. We denote the estimated quantities by ·̂ .

4.1 Choice of F ∗

Given the shape of empirical distribution of data, distributions in the GG, GB2,

and Pareto classes are among our candidate F ∗ for both IBM1m and IBM30s. Note

that the GB2 distribution is closely related to the Pareto class of distributions. See

Appendix A and Figure 3 for the formal definitions of these distributions and the

relationship between them. Taking a general-to-specific approach, we sequentially

estimate GB2, Burr, and then log-logistic from the GB2 class of distributions.

Within the GG class of distributions, we sequentially estimate GG, and then

Gamma and Weibull.13

We find that the GB2 distribution is difficult to estimate as it has three param-

13We find this general-to-specific approach easy to implement as GB2 and GG nest many
useful distributions. One is typically required to write estimation programs for GB2 and GG
first, and then simply impose parameter restrictions to fit many distributions nested within GB2
and GG.
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eters in θ∗. Burr fits both IBM30s and IBM1m very well. As the GG distribution

is a limiting distribution of GB2 for when ζ is large, GG can be considered as a

special class of GB2. However, the goodness of fit of the GG class of distributions

are found to be inferior to the GB2 class of distributions. The inferior fit of GG

is consistent with the estimated size of the GB2 parameter ζ, which is far from

being large for both IBM1m and IBM30s. (See Table 2.)

Figure 5 illustrates the impressive fit of Burr for IBM30s. The quality of fit for

IBM1m is equally as impressive. The empirical cdf of non-zero ε̂t,τ overlaps the cdf

of Burr(ν̂,ζ̂) so that these two lines are visually indistinguishable. The empirical

cdf of the probability integral transform (PIT) of non-zero ε̂t,τ when F ∗(·; θ̂
∗
) is

Burr(ν̂, ζ̂) lies along the diagonal, indicating that the PIT values are remarkably

close to being standard uniformly distributed (denoted by U [0, 1]). The computing

time taken for a maximum likelihood estimation procedure to converge when F ∗

is Burr is generally very short (a few seconds) and the results are robust to the

choice of initial parameter values.

As an experiment, we have also fitted many other distributions including

inverse-Gamma and log-Cauchy. However, none achieved the closeness of fit of

the Burr distribution.

4.2 Comparing with log-normality

The log-normal distribution is widely used to fit non-negative time series whenever

the logarithm of observations roughly resembles normality. In such cases, the

degree of efficiency and bias in the estimated parameters depends on how far the

distribution of the log-variable is from normality. See, for example, Alizadeh et al.

(2002) for a discussion and an empirical example.

In our case, the fit of log-normal turns out to be inferior to that of Burr for

both IBM1m and IBM30s.14 This is due to the departure of the logarithm of non-

zero data (hereafter denoted by log(IBM1m) and log(IBM30s)) from normality

particularly around the tail regions. This is illustrated in Figure 6. While the

frequency distribution of log(IBM1m) roughly resembles normality, log(IBM30s) is

clearly far from normal. The QQ-plots show that the normal distribution appears

to put too much weight on the lower-tail and too little weight on the upper-tail.

Burr fits better than log-normal presumably because the shape of log-normal

is determined by only one parameter (σ) while Burr has two shape parameters (ν

and ζ). To compare the shape of Burr and log-normal, Figure 7 shows the pdf of

14The Bowman-Shenton (Jarque-Bera) test comfortably rejects normality of the logarithm of
the estimation residuals when F ∗ is log-normal for both IBM1m and IBM30s.
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Figure 6 – The frequency distribution (top panel) and the QQ-plots (bottom panel):
log(IBM1m) (left column) and log(IBM30s) (right column). The logarithm series are re-
centered around mean and standardized by one standard deviation.
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Figure 7 – The pdf of log(X): X ∼ Burr(ν̂ ,ζ̂) against X ∼ log-normal(σ) for different

values of σ. ν̂ and ζ̂ are obtained by fitting Model 2 of Table 5 to IBM1m (left) and IBM30s
(right).

log(X) when X ∼ Burr(ν̂, ζ̂) against the case when X is log-normally distributed

with different values of σ. For both IBM1m and IBM30s, the asymmetric shape

of the pdf of log(X) for X ∼ Burr(ν̂, ζ̂) contrasts with the symmetric shape of

the normal distribution.

4.3 Estimated coefficients and diagnostics

We find that empirically a two component specification (i.e. J = 2) for ηt,τ

is the most effective for capturing the autocorrelation structure of data. The

autoregressive structure of order two for η
(1)
t,τ and one for η

(2)
t,τ was found to be

appropriate for both IBM1m and IBM30s. That is, our preferred specification for
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IBM30s IBM1m IBM30s IBM1m

κµ 0.006 (0.001) 0.007 (0.002) γ0;1,0 1.273 (0.106) 1.195 (0.098)

φ
(1)
1 0.557 (0.136) 0.377 (0.093) γ1;1,0 0.078 (0.058) 0.075 (0.057)

φ
(1)
2 0.410 (0.135) 0.567 (0.096) γ2;1,0 -0.469 (0.070) -0.450 (0.069)

κ
(1)
η 0.049 (0.007) 0.045 (0.008) γ3;1,0 -0.227 (0.047) -0.244 (0.047)

φ
(2)
1 0.688 (0.041) 0.621 (0.057) ω 9.146 (0.174) 9.752 (0.155)

κ
(2)
η 0.092 (0.008) 0.069 (0.008) ν 1.631 (0.016) 2.230 (0.033)
κ∗0 0.003 (0.002) 0.003 (0.002) ζ 1.486 (0.045) 1.142 (0.044)
κ∗1 0.001 (0.001) 0.000 (0.001) p 0.0047 (0.0005) 0.0006 (0.0003)
κ∗2 -0.002 (0.001) -0.002 (0.001)
κ∗3 0.000 (0.001) 0.000 (0.001)

Table 2 – Estimated coefficients when ηt,τ has two components and st,τ is the daily spline
(’Model 2’ in Table 5). F ∗ is Burr. Standard errors in parenthesis are computed using
numeric derivatives of the likelihood function with respect to the parameters.

Series Model Type of df Loglike Likelihood χ2
df ,

specification spline ζ = 1 ζ 6= 1 ratio stat p-value

IBM30s Model 2 Daily 1 -195,584 -195,487 195.6 0.000
Model 4 Weekly 1 -195,572 -195,475 195.4 0.000

IBM1m Model 2 Daily 1 -104,119 -104,113 11.8 0.001
Model 4 Weekly 1 -104,103 -104,097 11.8 0.001

Table 3 – Likelihood ratio statistics to test the null H0 : ζ = 1 (log-logistic) against the
alternative H1 : ζ 6= 1 (Burr). Model specifications are in Table 5.

ηt,τ is ηt,τ = η
(1)
t,τ + η

(2)
t,τ with

η
(1)
t,τ = φ

(1)
1 η

(1)
t,τ−1 + φ

(1)
2 η

(1)
t,τ−2 + κ(1)

η ut,τ−1, η
(2)
t,τ = φ

(2)
1 η

(2)
t,τ−1 + κ(2)

η ut,τ−1 (10)

for (t, τ) ∈ ΨT, I .

Table 2 shows the estimated coefficients of our model when ηt,τ has two compo-

nents and st,τ is the daily spline (’Model 2’ in Table 5). The coefficient estimates

for all other specifications we considered are reported in Appendix C. For both

IBM1m and IBM30s, we have κ̂
(2)
η > κ̂

(1)
η > κ̂µ > 0 as expected, which means

that η
(2)
t,τ is more sensitive to changes in ut,τ−1 than η

(1)
t,τ , and that η

(1)
t,τ is more

sensitive to ut,τ−1 than µt,τ . We also have 0 < φ̂
(2)
1 < 1 so η

(2)
t,τ is stationary. The

stationarity of η
(1)
t,τ requires15

φ
(1)
1 + φ

(1)
2 < 1, −φ(1)

1 + φ
(1)
2 < 1, and φ

(1)
2 > −1. (11)

It is easy to check that these conditions are satisfied by φ̂
(1)
1 and φ̂

(1)
2 so that η

(1)
t,τ

is also stationary. The estimate of the probability mass at zero is p̂ = 0.0006

15See, for example, Harvey (1993, p.19).
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Model spec. No. of coef. Type of spline AIC SIC

IBM30s —— 14 Static (γ†) 20.02608 20.032

Model 2 18 Dynamic (γ†
t,τ

) 20.02608 20.033

IBM1m —— 14 Static (γ†) 21.30550 21.316

Model 2 18 Dynamic (γ†
t,τ

) 21.30553 21.319

Table 4 – Static versus dynamic splines. The criterions for static spline are computed by
setting κ∗ = 0 in Model 2. Model 2 is as specified in Table 5. F ∗ is Burr.
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Figure 8 – Sample autocorrelation of trade volume (left), of ε̂t,τ (middle), and of ût,τ
(right). IBM30s (top row) and IBM1m (bottom row). Using Model 2 as specified in Table
5. The 95% confidence interval is computed at ±2 standard errors.

for IBM1m and p̂ = 0.0047 for IBM30s. These estimates are consistent with the

sample statistics in Table 1. The estimate of the Burr parameter (ζ̂) is not far

from one. If ζ = 1, Burr becomes log-logistic. A likelihood test rejects the null

hypothesis that ζ = 1. See Table 3.16 We have ν̂ζ̂ ≈ 2.5 for IBM1m and ν̂ζ̂ ≈ 2.4

for IBM30s, implying that only the first and second moments exist under the

assumption that F ∗ is Burr. (See Appendix A.1.) Thus the theoretical skewness

does not exist for both IBM1m and IBM30s.

The estimates of some of the elements in κ∗ are very close to zero and appear

statistically insignificant. We can assess whether a dynamic spline is preferred

over a static one by comparing AIC and SIC.17 They are tabulated in Table 4. We

find that SIC is slightly larger for the dynamic spline, while the results are mixed

for AIC. Hence the static spline is preferred over the dynamic spline according to

SIC, whereas AIC is inconclusive. SIC penalizes the inclusion of κ∗ more severely

16This can be also tested using other likelihood based tests such as a Wald test.
17AIC and SIC stand for the Akaike and Schwarz information criteria, respectively.
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IBM30s IBM1m
Model # 1 2 3 4 1 2 3 4

Spline Daily Daily Weekly Weekly Daily Daily Weekly Weekly
ηt,τ

a AR(1) (10) AR(1) (10) AR(1) (10) AR(1) (10)
Dyn.coef. 7 10 17 20 7 10 17 20

AIC 20.0289 20.0261 20.0289 20.0269 21.3094 21.3055 21.3087 21.3065
SIC 20.0350 20.0333 20.0430 20.0422 21.3204 21.3188 21.3345 21.3344

ε̂t,τ : Q(100)b — — — — 93.3 87.0 94.5 90.5
Q(150) 106.7 108.1 105.2 103.2 152.8 149.8 158.2 154.9
Q(200) 143.5 143.0 137.9 134.8 195.2 194.3 199.4 197.9

ût,τ : Q(100) — — — — 124.0* 88.2 122.2** 91.1
Q(150) 191.9** 141.9 190.9** 142.4 161.9 124.0 158.3 126.9
Q(200) 236.2* 182.7 233.5** 183.2 204.5 167.3 201.5 169.9

a ηt,τ has either the one-component AR(1) structure or the two-component specification in (10).
b Q(K) is the Box-Ljung statistic based on the first K autocorrelation computed under the null hypothesis

of no autocorrelation up to order K. Q(K) is compared against the chi-square distribution with K − q
degrees of freedom (denoted by χ2

K−q), where q is the number of dynamic parameters of the model (e.g.

the basic DCS in (2) has two dynamic parameters φ and κ). We report the results for K ≈
√
T × I and

some deviations above it following Harvey (1993, p.76). * and ** denote the significance at the 5% and
1% levels, respectively.

Table 5 – Goodness-of-fit statistics. F ∗ is Burr and all specifications use the dynamic cubic
spline with 5 knots per day. ”Weekly” refers to the restricted weekly spline.

Model df Loglike Likelihood χ2
df ,

specification Restricted Unrestricted ratio stat p-value

IBM30s Model 2 & 4 18 -195,487 -195,475 24.2 0.149
IBM1m Model 2 & 4 18 -104,113 -104,097 31.0 0.029

Table 6 – Likelihood ratio test for the weekend effect. Using the dynamic spline. Sample
period: 28 February - 31 March 2000. Model specifications are in Table 5.

than AIC.

Figure 8 shows that the slowly decaying autocorrelation in IBM30s and IBM1m

is captured very well by the model as the estimation residuals ε̂t,τ and the score

ût,τ show no obvious signs of serial correlation. The absence of autocorrelation is

also verified more formally by the Box-Ljung statistics in Table 5. Note that ût,τ

exhibits stronger serial correlation than ε̂t,τ . This is because the score down-weighs

(and thus it is robust to) the effects of extreme observations. We find that both

AIC and SIC fall and the autocorrelation in ût,τ is removed whenever we change

ηt,τ from the one-component AR(1) structure to the two component specification

in (10).
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4.3.1 Test for the weekend effect

In Table 5, we observe that SIC always increases (while the results are mixed for

AIC) when we change the specification from daily to restricted weekly spline. This

is largely due to the inclusion of ten extra parameters in the restricted weekly

spline, which is penalized severely by SIC. We can test whether the restricted

weekly spline is preferred over the daily spline by a likelihood ratio test. The null

hypothesis18 of the test is

H0 : κ̃∗1 = κ̃∗2 = κ̃∗3 and γ̃1;1,0 = γ̃2;1,0 = γ̃3;1,0.

The alternative hypothesis replaces = by 6=. As dim(γ̃j;1,0) = dim(κ̃∗j) = 5 for

j = 1, 2, 3, the likelihood ratio statistics are compared against the chi-square

distribution with eighteen degrees of freedom.19 If the null hypothesis is rejected,

there is statistical evidence for the weekend effect over our sampling period. The

test results reported in Table 6 depend on the aggregation interval. The null

cannot be rejected at the 5% level for IBM30s, but it is rejected at the 5% level

for IBM1m.

4.4 Estimated components

Figure 9 shows ε̂t,τ and the estimated components of λ̂t,τ of Model 2 for IBM30s.

(The results for IBM1m are very similar to Figure 9 and so they are omitted.) All

series are displayed over the entire sampling period between 28 February and 31

March 2000. While the time series plot of IBM30s clearly exhibits periodic pat-

terns, ε̂t,τ appears free of periodicity. The diurnal U-shaped patterns are captured

by λ̂t,τ through the spline ŝt,τ . µ̂t,τ and η̂t,τ appear to satisfy their structural as-

sumptions as µ̂t,τ resembles a random-walk while η̂
(1)
t,τ and η̂

(2)
t,τ resemble stationary

AR(2) and AR(1) processes, respectively.

Figure 10 shows the estimated daily spline, ŝt,τ , for IBM30s. We find that ŝt,τ

successfully captures the tendency of trade volume to be high in the morning, fall

during the quiet lunch hours of around 1pm, and pick-up again in the afternoon.

As it is a dynamic spline, the shape of the diurnal U-shaped pattern varies over

time. The spline takes a step-increase between the end and the beginning of any

two consecutive trading days, reflecting the overnight effect.

18We can also perform the test using the static spline, in which case the null and alternative
hypotheses of the test become

H0 : γ̃1 = γ̃2 = γ̃3 (daily spline), H1 : γ̃1 6= γ̃2 6= γ̃3 (restricted weekly spline).

19Not twenty degrees of freedom due to the zero-sum conditions.
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Figure 9 – IBM30s (top left), ε̂t,τ (top middle), α̂t,τ (top right), λ̂t,τ (second-row left), µ̂t,τ

(second-row middle), ŝt,τ (second-row right), η̂
(1)
t,τ (bottom left), and η̂

(2)
t,τ (bottom middle)

of Model 2 fitted to IBM30s over 28 February - 31 March 2000. Time along the x-axes.

Figure 10 – ŝt,τ of Model 2 for IBM30s. Over 6 - 31 March 2000 (top left). ŝt,τ of a typical
day, Tuesday 14 March, from market open to close (top right). ŝt,τ of different weeks over 6
- 31 March 2000 superimposed (bottom left). The weekly average of ŝt,τ over 6 - 31 March
2000 (bottom right). Time along the x-axes.
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5 Out-of-sample performance

5.1 Model stability: one-step ahead forecasts

We use the predictive cdf to assess the stability of the estimated distribution and

parameters as well as the ability of our model to produce good one-step ahead

forecasts over a given out-of-sample prediction period. The procedure is as follows.

Henceforth, we use the following notations

Ψh = {(t, τ) ∈ {T + 1, . . . , T + h} × {1, . . . , I}}

Ψh,>0 = {(t, τ) ∈ {T + 1, . . . , T + h} × {1, . . . , I} : yt,τ > 0}

Given a set of in-sample observations up to trading day T , we compute the pre-

dictive cdf for the next h trading-days at each positive observation as

F ∗(ε̂t,τ ; θ̂
∗

), ε̂t,τ = yt,τ/α̂t,τ ∀(t, τ) ∈ Ψh,>0 (12)

where all parameters are the maximum likelihood estimates computed using the

observations up to day T . We take the estimation results from Section 4 to

compute (12). The predictive cdf in (12) simply gives the PIT values of future

observations.20 Figure 11 shows the empirical cdf of the PIT values for IBM30s

over different forecast horizons up to h = 20 days ahead. (The results for IBM1m

are very similar to Figure 11.) As we have 390 observations per day for IBM1m

and 780 observations per day for IBM30s, h = 20 corresponds to 7,800 steps ahead

for IBM1m and 156,000 steps ahead for IBM30s. We find that the distribution of

the PIT values is roughly U [0, 1] for much of the 20 days of forecast horizon for

both IBM1m and IBM30s, although there is non-negligible deterioration in the

quality of fit. For IBM1m, the empirical cdf of the PIT values is particularly close

to uniformity when h = 5 and h = 20. For IBM30s, it is the closest when h = 5.

In summary, our estimated distributions and parameter values appear to be

fairly stable and able to provide reasonable one-step-ahead forecasts of the condi-

tional distribution of our series for up to 20 days of prediction horizon.

20We assess the closeness of the PIT values to uniformity only qualitatively by inspecting
the empirical cdf of (12). One can formally test this using the predictive likelihood methods
discussed in Mitchell and Wallis (2011). In our application, the predictive (log-)likelihood of a
single observation is

log lt,τ = 1l{yt,τ>0} log(1− p̂ ) +
(
1− 1l{yt,τ>0}

)
log p̂ + 1l{yt,τ>0} log

(
α̂−1t,τ f

∗(ε̂t,τ ; θ̂
∗

)
)

for all (t, τ) ∈ Ψh.
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Figure 11 – Empirical cdf of the PIT values (predictive cdf) for one-step ahead forecasts.
Forecast horizons: 1 day ahead (left), 10 days ahead (middle), 20 days ahead (right). IBM30s
for forecast horizons between 3 - 23 April 2000. Using Model 2 as specified in Table 5.

5.2 Multi-step ahead forecasts

We now examine multi-step forecasts, which are of greater interest than one-step

forecasts as they give us an ultimate assessment of our model’s predictive ability.

We produce multi-step ahead density forecasts over a long forecast horizon using

the estimation results obtained in Section 4. The procedure is as follows. We

make optimal forecasts of αt,τ = exp(λt,τ ) for (t, τ) ∈ Ψh conditional on FT,I . This

optimality is in terms of MMSE so that the prediction is E [exp(λt,τ )|FT,I ] ≡ α̃t,τ

for (t, τ) ∈ Ψh.
21 We then standardize the actual future observations yt,τ by

α̃t,τ for all (t, τ) ∈ Ψh. The standardized future observations ε̃t,τ ≡ yt,τ/α̃t,τ

should be conditionally distributed as Burr(ν̂, ζ̂ ) at least approximately. Then

F ∗(ε̃t,τ ; θ̂
∗
) for (t, τ) ∈ Ψh,>0 gives the PIT values of future observations, and they

should be distributed approximately as U [0, 1] and be free of autocorrelation if

the predictions are good. We make predictions for up to h = 8 future trading

days, which corresponds to 3,120 steps ahead for IBM1m and 6,240 steps ahead

for IBM30s.

We find that the distribution of the PIT values is very close to U [0, 1] for the

first day of forecast horizon for both IBM1m and IBM30s. See Figure 12. (We omit

the results for IBM1m again as they are very similar to IBM30s.) This means that

the density prediction produced by our model is very good for the first 390 steps

for IBM1m and 780 steps for IBM30s. A Box-Ljung test indicates that the PIT

values for the first quarter of the first forecast day, equivalent to around 200 steps

(100 steps) ahead for IBM30s (IBM1m), are not serially correlated. See Figure

13. By the end of the first forecast day, the PIT becomes autocorrelated, although

the degree of autocorrelation remains very small. These results are again similar

for IBM1m. If we consider this predictive performance in terms of the number of

21Harvey (2013) outlines the forecasting methodology for the basic scale DCS model (1)-(2).
The difference between notations ·̂t,τ and ·̃t,τ is that the computation of the former does not
require the use of conditional moment conditions.
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Figure 12 – Empirical cdf of the PIT of multi-step forecasts. Forecast horizons: 1 day
ahead (left), 5 days ahead (middle), 8 days ahead (right). IBM30s for forecast horizons
between 3 - 23 April 2000. Using Model 2 as specified in Table 5.
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Figure 13 – Autocorrelation of the PIT of multi-step forecasts. Forecast horizons: a quarter
of a day ahead (left), one day ahead (middle), two days ahead (right). IBM30s for forecast
horizons between 3 - 23 April 2000. Using Model 2 as specified in Table 5.

steps, these results are impressive as they imply that the PIT values are close to

being iid U [0, 1] for several hundred steps of the forecast horizon.

Beyond the first forecast day, the quality of density forecasts and the degree of

autocorrelation deteriorate with the length of forecast horizon. Any deterioration

in the goodness of fit over a given out-of-sample period can be attributed to

changes in fundamental factors such as the nature of periodicity, autocorrelation,

and the shape of the underlying distribution. In order to reflect these changes, the

model should be re-estimated frequently as more data becomes available. When

updating the model, one may want to keep the length of the sampling period

roughly fixed and roll it forward instead of arbitrarily increasing the sample size

because the estimation efficiency deteriorates relatively quickly as the number of

sampling days T increases in a high-frequency environment with large I.

6 Concluding remarks

This paper developed a spline-DCS model for high-frequency observations of a

financial variable with diurnal patterns that may evolve over time. We also showed

that DCS becomes a powerful tool for financial analysis and forecasting, provided

that we thoroughly understand the main characteristics of data and the parametric

assumptions are formulated to reflect them.
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Our estimation results are robust to the choice of aggregation interval, but

the aggregation interval affects whether we can detect the presence of the-day-

of-the-week effect. The Burr distribution, which is a special case of the GB2

distribution, achieves an impressive fit to the data. In particular, the PIT values

of the estimation residuals are remarkably close to being iid standard uniformly

distributed. In contrast, the log-normal distribution is found to give an inferior fit

due to the departure of the log-transformed data from normality especially around

the tail regions. Although the evidence for changing diurnal patterns appeared to

be mixed or weak for our data, diurnal patterns may evolve more significantly for

other data sets collected over longer sampling periods. The out-of-sample forecast

results show that the in-sample estimation results are stable, and that our model

is able to provide good one-step and multi-step ahead forecasts for several hundred

steps of prediction horizon.

The object of our empirical analysis is trade volume as measured by the number

of shared traded, and, as such, this study also contributes to the literature dedi-

cated to the analysis of market activity and intensity. We studied the movements

of volume in complete isolation from price, which is ultimately not satisfactory if

one is interested in studying the interaction of price and quantity dynamics. Thus,

the next natural step is to construct multivariate intra-day DCS that models price

and volume simultaneously. One can also extend our framework to study corre-

lation of scale with other variables, or construct a model for panel-data using a

composite likelihood.
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A List of distributions and their properties

A.1 Generalized beta distribution

The (standard) generalized beta distribution of the second kind (GB2) has the

pdf:

f(x; ν, ξ, ζ) =
νxνξ−1(xν + 1)−ξ−ζ

B(ξ, ζ)
, x > 0, and ν, ξ, ζ > 0
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where B(·, ·) denotes the Beta function.22 If a non-standardized random variable

Y follows the GB2 distribution, its pdf fY : R>0 → R with the scale parameter

α > 0 is fY (y;α, ν, ξ, ζ) = f(y/α; ν, ξ, ζ)/α for y > 0. For a set of iid obser-

vations y1, . . . , yT where each follows the non-standardized GB2 distribution, the

log-likelihood function of a single observation yt can be written using the expo-

nential link function α = exp(λ) with the link parameter λ ∈ R as:

log fY (yt) = log(ν)− νξλ+ (νξ− 1) log(yt)− logB(ξ, ζ)− (ξ+ ζ) log[(yte
−λ)ν + 1].

The score ut of the non-standardized GB2 computed at yt is

ut ≡
∂ log fY (yt)

∂λ
=
ν(ξ + ζ)(yte

−λ)ν

(yte−λ)ν + 1
− νξ = ν(ξ + ζ)bt(ξ, ζ)− νξ

where we used the notation bt(ξ, ζ) ≡ (yte
−λ)ν/((yte

−λ)ν + 1). By the property

of the GB2 distribution, we know that bt(ξ, ζ) follows the beta distribution with

parameters ξ and ζ.23 It is easy to check that E[ut] = 0. bt(ξ, ζ) is bounded

between 0 and 1, which means that we have −νξ ≤ ut ≤ νζ.

A.2 Generalized gamma distribution

The (standard) generalized gamma (GG) distribution has the pdf:

f(x; γ, ν) =
ν

Γ(γ)
xνγ−1 exp (−xν) , 0 < x, and γ, ν > 0,

where Γ(·) is the gamma function.24 If a non-standardized random variable Y fol-

lows the GG distribution, its pdf fY : R>0 → R with the scale parameter α > 0 is

fY (y;α, γ, ν) = f(y/α; γ, ν)/α for y > 0. For a set of iid observations y1, . . . , yT

where each follows the non-standardized GG distribution, the log-likelihood func-

tion of a single observation yt can be written using the exponential link function

α = exp(λ) as:

log fY (yt) = log(ν)− λ+ (νγ − 1) log(yte
−λ)− (yte

−λ)ν − log Γ(γ).

22GB2 becomes the Burr distribution when ξ = 1 and the log-logistic distribution when
ξ = ζ = 1. The Burr distribution is also called the Pareto Type IV distribution (Pareto IV).
Log-logistic is also called Pareto III. Burr becomes Pareto II when ν = 1. Burr becomes Weibull
(defined in Appendix A.2) when ζ → ∞. GB2 with ν = 1 and ξ = ζ is a special case of the F
distribution with the degrees of freedom ν1 = ν2 = 2ξ.

23The beta distribution characterized by the mgf is

Mb(z; ξ, ζ) ≡ E[ebz] = 1 +

∞∑
k=1

(
k−1∏
r=0

(
ξ + r

ξ + ζ + r

)
zk

k!

)
.

24The GG distribution becomes the gamma distribution when ν = 1, the Weibull distribution
when γ = 1, and the exponential distribution when ν = γ = 1.
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The score ut of the non-standardized GG computed at yt is

ut ≡
∂ log fY (yt)

∂λ
= ν(yte

−λ)ν − νγ = νgt(ν)− νγ,

where we used the notation gt(ν) ≡ (yte
−λ)ν . By the property of the GG dis-

tribution, we know that gt(ν) follows the (standard) gamma distribution with

parameter γ, which is characterized by the mgf E[egz] = (1− z)−γ for z < 1. We

also have E[ut] = 0 and ut > −νγ by the property of the gamma distribution.

B Dynamic cubic spline

In this section, we formally explain the mathematical construction of the dynamic

cubic spline from Section 3.4. The time indices are as defined in Section 3.3.

B.1 Daily spline

The specification of the knots are the same as Section 3.4.1. We denote the

distance between knots along the time-axis by hj = τj − τj−1 for j = 1, . . . k. Our

cubic spline function g : [τ0, τk]→ R is a piecewise function of the form

g(τ) =
k∑
j=1

gj(τ)1l{τ∈[τj−1,τj ]}, ∀ τ ∈ [τ0, τk],

where each function gj : [τj−1, τj] → R is a polynomial of order up to three for

all j = 1, . . . , k. We can set g to be continuous at each knot (τj, γj); that is,

gj(τj) = γj and gj(τj−1) = γj−1 for all j = 1, . . . , k. This means we have

gj(τj−1) = gj−1(τj−1) and g′j(τj−1) = g′j−1(τj−1). (13)

for j = 2, . . . , k. (13) is the continuity condition of g. The polynomial order of

each gj means that g′′j (·) is a linear function on [τj−1, τj] for j = 1, . . . , k. This

implies that

g′′j (τ) = aj−1 +
τ − τj−1

hj
(aj − aj−1) =

(τj − τ)

hj
aj−1 +

(τ − τj−1)

hj
aj, (14)

for τ ∈ [τj−1, τj] and j = 1, . . . , k, where a0 = g′′1(τ0) and aj = g′′j (τj) for j =

1, . . . , k. (14) is the polynomial order condition of g.25

We integrate (14) with respect to τ to find the expressions for g′j and gj. That

is, we evaluate g′j(τ) =
∫
g′′j (τ)dτ and gj(τ) =

∫ ∫
g′′j (τ)dτ for each j = 1, . . . , k,

25In addition to the continuity and polynomial order conditions, Harvey and Koopman (1993)
include the periodicity condition; that is, g1 and gk satisfy γ0 = γk, g′1(τ0) = g′k(τk), and
g′′1 (τ0) = g′′k (τk) so that a0 = ak. This is because their hourly electricity demand data is
collected 24 hours on every sampling day.
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where we recover the integration constant using (13). Then we obtain

g′j(τ) = −
[

1

2

(τj − τ)2

hj
− hj

6

]
aj−1 +

[
1

2

(τ − τj−1)2

hj
− hj

6

]
aj, (15)

gj(τ) = rj(τ) · γ + sj(τ) · a (16)

for τ ∈ [τj−1, τj] and j = 1, . . . , k, where a = (a0, a1, . . . , ak)
>, and rj(τ) and sj(τ)

are the following k-dimensional vectors

rj(τ) =

(
0, . . . , 0,

(τj − τ)

hj
,
(τ − τj−1)

hj
, 0, . . . , 0

)>
,

sj(τ) =

(
0, . . . , 0, (τj − τ)

(τj − τ)2 − h2
j

6hj
, (τ − τj−1)

(τ − τj−1)2 − h2
j

6hj
, 0, . . . , 0

)>
.

The non-zero elements of rj(τ) and sj(τ) are at the jth and (j+1)th entries. The

conditions for g′j in (13) and (15) give

hj
hj + hj+1

aj−1 + 2aj +
hj+1

hj + hj+1

aj+1 =
6γj−1

hj(hj + hj+1)
− 6γj
hjhj+1

+
6γj+1

hj+1(hj + hj+1)

for j = 1, . . . , k−1. From these, we obtained a system of k−1 equations with k+1

unknowns a0, . . . , ak. Following Poirier (1976) we set a0 = ak = 0 (the natural

condition for a spline). We can write this system of equations in a matrix form as

Pa = Qγ, where P and Q are the following square matrices of size (k + 1):

P =



2 0 0 0 . . . 0 0
h1

h1+h2
2 h2

h1+h2
0 . . . 0 0

0 h2

h2+h3
2 h3

h2+h3
· · · 0 0

0 0 h3

h3+h4
2 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 2 hk
hk−1+hk

0 0 0 0 . . . 0 2


,

Q =



0 0 0 . . . 0 0
6

h1(h1+h2)
− 6
h1h2

6
h2(h1+h2)

. . . 0 0

0 6
h2(h2+h3)

− 6
h2h3

. . . 0 0

0 0 6
h3(h3+h4)

. . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . − 6
hk−1hk

6
hk(hk−1+hk)

0 0 0 . . . 0 0


.

The first and the last rows of P and Q ensure that a0 = ak = 0. For a non-

singular P, we have a = P−1Qγ. Then (16) can be written as gj(τ) = wj(τ) · γ
for τ ∈ [τj−1, τj], where wj(τ)> = rj(τ)> + sj(τ)>P−1Q. Finally, we obtain the
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following expression for the daily cubic spline

sτ = g(τ) =
k∑
j=1

1l{τ∈[τj−1,τj ]}wj(τ) · γ, ∀ τ ∈ [τ0, τk]. (17)

The elements of γ are the parameters of the model to be estimated. For the

parameters to be identified, we impose the following zero-sum constraint on the

elements of γ∑
τ∈[τ0,τk]

sτ =
∑

τ∈[τ0,τk]

k∑
j=1

1l{τ∈[τj−1,τj ]}wj(τ) · γ = w∗ · γ = 0,

where

w∗ = (w∗0, w∗1, . . . , w∗k)
> =

∑
τ∈[τ0,τk]

k∑
j=1

1l{τ∈[τj−1,τj ]}wj(τ).

We can impose this condition by setting γk = −
∑k−1

i=0 w∗iγi/w∗k. Then (17)

becomes

sτ =
k∑
j=1

1l{τ∈[τj−1,τj ]}

k−1∑
i=0

(
wji(τ)− wjk(τ)w∗i

w∗k

)
γi =

k∑
j=1

1l{τ∈[τj−1,τj ]}zj(τ)·γ (18)

for τ ∈ [τ0, τk]. wji(τ) denotes the ith element of wj(τ), and the ith element of

zj(τ) is

zji(τ) =

wji(τ)− wjk(τ)w∗i/w∗k i 6= k

0 i = k

for τ ∈ [τj−1, τj] and each i = 0, . . . , k and j = 1, . . . , k. When estimating the

model, it is convenient to compute w∗ using the equation w>∗ = r>∗ + s>∗ P−1Q,

where r∗ and s∗ are k-dimensional vectors computed using the rules of arithmetic

and polynomial series as

r∗ =

(
τ1 − τ0 + 1

2
,
τ2 − τ0

2
, . . . ,

τk−1 − τk−3

2
,
τk − τk−1 + 1

2

)>
,

s∗ =

(
h1 − h3

1

24
,
τ2 − τ0 − h3

2 − h3
1

24
, . . . ,

τk−1 − τk−3 − h3
k−1 − h3

k−2

24
,
hk − h3

k

24

)>
.

Note that these formulae for computing w∗, r∗, and s∗ are different from those of

Harvey and Koopman (1993) due to the removal of the periodicity condition. The

static spline in (18) becomes dynamic by letting γ be time-varying according to

st,τ =
k∑
j=1

1l{τ∈[τj−1,τj ]} zj(τ) · γt,τ , γt,τ = γt,τ−1 + κ∗ · ut,τ−1 (19)

for τ = 1, . . . , I and t = 1, . . . , T , where κ∗ = (κ∗0, . . . , κ
∗
k)
> is a vector of parame-
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ters. The dynamic spline (19) needs to sum to zero over one complete period for

the parameters to be identified. That is, st,τ must satisfy
∑I

τ=1 st,τ = w∗ ·γt,τ = 0

for t = 1, . . . , T . The construction of zj(τ) ensures that this constraint holds, but

we also need to set w∗ ·γ1,0 = 0 and w∗ ·κ∗ = 0. We can impose these conditions

on γ1,0 and κ∗ by setting

γk;1,0 = − 1

w∗k

k−1∑
i=0

w∗iγi;1,0 and κ∗k = − 1

w∗k

k−1∑
i=0

w∗iκ
∗
i ,

where γi;1,0 denotes the ith element of γ1,0.

B.2 Weekly spline

The specification of the knots for the weekly spline are as we defined in Section

3.4.4. As before, we allow for γk 6= γ0 in order to capture the weekend effect. We

capture the overnight effect of weeknights by relaxing the continuity and polyno-

mial order conditions (13)-(14) between τ̃k′ and τ̃0 of any two successive weekdays.

This redefines P and Q matrices as follows. For the P matrix, we replace the

off-diagonal entries in the i(k′ + 1)th and (i(k′ + 1) + 1)th rows by zeros for each

i = 1, . . . (k+1)/(k′+1). For the Q matrix, we replace all entries in the i(k′+1)th

and (i(k′ + 1) + 1)th rows by zeros for each i = 1, . . . (k + 1)/(k′ + 1).
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C Estimated coefficients of other model specifi-

cations in Table 5

IBM30s IBM1m

Model 1 Model 3 Model 4 Model 1 Model 3 Model 4

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

κµ 0.019 0.002 0.016 0.002 0.008 0.002 0.017 0.002 0.014 0.002 0.010 0.002

φ
(1)
1 0.795 0.016 0.797 0.016 0.556 0.143 0.721 0.025 0.710 0.026 0.346 0.107

φ
(1)
2 — — — — 0.397 0.143 — — — — 0.553 0.120

κ
(1)
η 0.116 0.005 0.117 0.005 0.048 0.009 0.097 0.005 0.097 0.005 0.043 0.012

φ
(2)
1 — — — — 0.676 0.048 — — — — 0.607 0.065

κ
(2)
η — — — — 0.089 0.009 — — — — 0.065 0.012
κ∗0 0.006 0.004 0.017 0.012 0.008 0.007 0.004 0.004 0.013 0.011 0.010 0.009
κ∗1 0.003 0.002 0.000 0.007 0.002 0.005 0.002 0.002 0.002 0.007 0.003 0.007
κ∗2 -0.005 0.002 -0.012 0.003 -0.005 0.003 -0.005 0.002 -0.010 0.004 -0.007 0.004
κ∗3 -0.002 0.002 -0.005 0.004 -0.003 0.003 -0.001 0.002 -0.007 0.004 -0.005 0.004
κ∗4 — — 0.017 0.011 0.006 0.006 — — 0.018 0.010 0.010 0.008
κ∗5 — — 0.000 0.004 0.001 0.003 — — 0.002 0.004 0.002 0.003
κ∗6 — — 0.000 0.003 0.000 0.002 — — 0.000 0.003 -0.001 0.002
κ∗7 — — -0.003 0.002 -0.002 0.002 — — -0.004 0.002 -0.003 0.002
κ∗8 — — -0.003 0.002 0.000 0.002 — — -0.001 0.002 0.000 0.002
κ∗9 — — 0.005 0.004 0.003 0.003 — — 0.004 0.004 0.003 0.003
κ∗10 — — 0.011 0.009 0.006 0.005 — — 0.012 0.009 0.008 0.006
κ∗11 — — 0.013 0.008 0.002 0.004 — — 0.002 0.006 -0.001 0.004
κ∗12 — — -0.001 0.005 0.000 0.004 — — 0.001 0.005 0.002 0.005
κ∗13 — — 0.006 0.005 0.003 0.004 — — 0.007 0.006 0.005 0.005
γ0;1,0 1.219 0.091 1.542 0.221 1.563 0.192 1.118 0.075 1.486 0.179 1.517 0.171
γ1;1,0 0.119 0.062 0.052 0.142 0.008 0.129 0.112 0.052 0.007 0.130 -0.007 0.134
γ2;1,0 -0.483 0.069 -0.419 0.161 -0.444 0.128 -0.442 0.061 -0.396 0.135 -0.401 0.127
γ3;1,0 -0.231 0.042 -0.137 0.111 -0.143 0.109 -0.246 0.036 -0.115 0.111 -0.131 0.109
γ4;1,0 — — 0.547 0.307 0.589 0.198 — — 0.665 0.298 0.699 0.228
γ5;1,0 — — 1.106 0.077 1.120 0.086 — — 1.034 0.083 1.041 0.086
γ6;1,0 — — 0.037 0.068 0.016 0.057 — — 0.041 0.058 0.029 0.055
γ7;1,0 — — -0.479 0.056 -0.488 0.061 — — -0.446 0.052 -0.450 0.060
γ8;1,0 — — -0.178 0.053 -0.197 0.050 — — -0.217 0.047 -0.224 0.049
γ9;1,0 — — 0.655 0.117 0.607 0.113 — — 0.658 0.101 0.645 0.098
γ10;1,0 — — 1.030 0.215 1.033 0.193 — — 0.779 0.213 0.849 0.192
γ11;1,0 — — 0.273 0.234 0.324 0.119 — — 0.346 0.106 0.334 0.100
γ12;1,0 — — -0.328 0.115 -0.233 0.099 — — -0.252 0.106 -0.224 0.109
γ13;1,0 — — -0.414 0.151 -0.350 0.128 — — -0.423 0.145 -0.394 0.136
ω 9.136 0.225 8.976 0.203 9.008 0.166 9.735 0.193 9.578 0.173 9.588 0.154
ν 1.627 0.016 1.628 0.016 1.632 0.016 2.224 0.033 2.231 0.033 2.234 0.033
ζ 1.492 0.045 1.493 0.045 1.487 0.045 1.143 0.044 1.141 0.044 1.141 0.044
p 0.0047 0.0005 0.0047 0.0005 0.0047 0.0005 0.0006 0.0003 0.0006 0.0003 0.0006 0.0003

Table 7 – Estimated coefficients of other model specifications in Table 5. Standard er-
rors are computed using numeric derivatives of the likelihood function with respect to the
parameters. See Table 5 for the model specifications.
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