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Adjoint-based optimization for inkjet printing
Petr Kungurtsev

In this thesis the flow inside inkjet printhead microchannels is analysed using a two-

parameter low Mach number expansion of the compressible Navier–Stokes equations

and a reduced order model for the free surface flow inside the inkjet nozzle. The

channel flow is separated into equations for an incompressible flow with no acoustic

oscillations and equations for thermoviscous acoustic oscillations with no mean flow.

This thesis concerns two types of optimal control problems. The optimal control

problem of the first type is finding a velocity profile of the piezo-electric actuator

that eliminates residual oscillations after a droplet is ejected. The cost function is

the sum of the acoustic energy in the channel and the surface energy of the spherical

cap of ink at the end of the nozzle at a given time. This problem is approached by

obtaining the sensitivity of the total energy inside an inkjet microchannel with respect

to boundary forcing using the adjoint method. Using gradient-based optimization

algorithms, optimal waveforms are found that minimize the objective value at various

final times and for geometries with increasing complexity. Physical interpretation to

the optimal waveforms profiles is provided, and the exploited mechanisms are revealed.

The optimal control problem of the second type is finding a shape of the inkjet

printhead channel that maximises dissipation of the acoustic oscillations, without

increasing the pressure drop required to drive the steady flow. Similarly, the adjoint

approach is used to obtain the sensitivity of the acoustic flow eigenvalues with respect

to boundary deformations in Hadamard form. Knowing the shape sensitivity of the

incompressible flow viscous dissipation, the constrained optimization problem is solved

to find a design that has the same viscous dissipation for the steady flow but a 40%

larger decay rate for the oscillating flow. The final shape is not straightforward and

would have been di�cult to achieve through physical insight or trial and error. It could

be improved further by adapting the parameters that describe the shape, but in this

case the improvement would be small. The method is general and could be applied to

many di�erent applications in microfluidics.

In summary, the methods in this thesis are promising techniques in the design

and optimization of inkjet printheads. The discussed numerical techniques and the

gained physical understanding can be used to automatically find the optimal design

parameters, or, at a minimum, accelerate the experimental trial and error processes.
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4.10 The velocity magnitude ū and the adjoint velocity magnitude ū† of the
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Chapter 1

Introduction

1.1 Inkjet printing

Piezoelectric inkjet drop-on-demand printing (Basaran et al., 2013; Li et al., 2019;
Wijshoff, 2010) is a modern widely used technology and a promising tool for many
future applications and research. Inkjet printers are used extensively in industry to
print pictures, patterns and labels onto textiles, ceramics, and packaging (Hoath, 2016).
Increasingly they are used for advanced manufacturing: 3D printing (Wang et al., 2016),
chemical (Tamura et al., 2014) and biomedical applications (Herran, 2013; Spears et al.,
2016), production of microelectronics and MEMS devices (Marinis, 2009; Parashkov
et al., 2005). Polymeric inks, such as PEDOT (Groenendaal et al., 2000), are becoming
increasingly popular (Gan et al., 2009) in emerging areas such as printed wiring and
even bioelectronics (Donahue et al., 2020).

This study concerns inkjet drop-on-demand printheads. These contain several
hundred ink-filled parallel channels, each of which has a piezo-electric actuator on one
side and a 20-50 micron nozzle on the opposite side. There is a free surface at the end
of each nozzle, where the ink meets the air. When a drop is demanded, an electric
signal is applied to the actuator. The actuator moves the boundary of the channel by
a few hundred nanometers, forcing an ink droplet out of the nozzle and onto a moving
substrate below. After this droplet formation stage, acoustic oscillations reverberate
within the channel, decaying through viscous and thermal dissipation (Beltman, 1999b;
Dijksman, 2019; Tijdeman, 1975).
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Challenges and objectives

The main objectives in engineering an inkjet printhead system are characteristics of
individual droplets, such as volume and shape, ability to jet at high frequencies, and
consistency and reproducibility of jetting behaviour under varying operating conditions
(degradation of fluid, nozzle surface wetting, temperature variation (Shin et al., 2011)).
Manufacturers would like to increase the printing resolution, and therefore decrease
droplet size. Recent studies report that picolitre resolution jetting can be achieved
(Chen and Basaran, 2002; Gan et al., 2009; Snyder et al., 2019). It is also required to
control the droplet velocity in order to avoid merging of consecutive droplets before
they reach the printing substrate (Khalate et al., 2011).

Nozzle

Actuator

Ink chamber

Throughflow

Fig. 1.1 A schematic of an inkjet microchannel cross section, showing the piezo actuator,
the nozzle, and the ink throughflow (green arrows). Diagram from Strevens et al.
(2020).

Manufacturers would like to increase the droplet ejection frequency, while retaining
or improving the reproducibility of the droplets. There is, however, a trade-off between
the droplet ejection frequency and the droplet reproducibility. If the characteristics of
one droplet depend on the time since the previous droplet, sharp edges of the print
become fuzzy. This occurs if the acoustic reverberations from the previous droplet
have not died away sufficiently when the next droplet is demanded. As the time
between ejections decreases, each droplet becomes increasingly affected by the residual
oscillations from the previous ejection. This limits the rate at which droplets can be
printed to around 100,000 per second (Basaran et al., 2013; Miers and Zhou, 2017).
Manufacturers would like to increase this rate but, to do so, need the reverberations to
decay more quickly. This can be done, for example, by designing print head shapes that
passively damp residual oscillations (Kungurtsev and Juniper, 2019). Manufacturers
also alter the electrical waveforms sent to the print heads microchannels in order
to damp residual oscillations with open loop control (Khalate et al., 2011). These
waveforms are currently adjusted by trial and error in extensive experimental campaigns.
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In inkjet printers, it is crucial that every nozzle functions identically and that all
drops are the same. If a single nozzle stops working, it leaves a straight unprinted
line on the substrate. For this reason, ink is flushed continually through the channels
(Crankshaw et al., 2016). This flushes away any air bubbles and also reduces the chance
that any solid impurities become lodged in the nozzle. This, however, comes at a cost:
a pump is required to push the ink through the narrow channels. A faster flow rate or
more constricted channels require more power, which is dissipated by viscosity in the
printhead.

Inlet manifold

Outlet manifold

Actuator membrane

Nozzle

Restrictor

Fig. 1.2 A schematic of a U-shaped inkjet microchannel, showing the piezo actuator
membrane, the nozzle, and the ink throughflow from the inlet to the outlet manifold.

Boundary deformations and propagation of pressure waves inside a single channel
inevitably leads to cross-talk (Voit et al., 2011). When several channels are firing
simultaneously, the drop velocity reduces, which results in dot placement errors. In
some applications, this means that only every third nozzle can be active at the same
time (Beurer and Kretschmer, 1997), which effectively reduces the droplet ejection
frequency.

Modelling flow inside inkjet microchannels

The motion of a fluid inside an inkjet printhead microchannel can be described as a
compressible flow with viscous and thermal effects, and is governed by the compressible
Navier—Stokes equations. These equations can be simplified when the Mach number
of the flow is small. The asymptotic analysis (Hunter, 2004) of compressible low Mach
number flow is presented in Müller (1998) and (Alazard, 2008); the incompressible limit
of the full system of compressible Navier–Stokes equations is discussed in Lin (1995);
Rehm et al. (1978) presents the low Mach number approximation of thermally driven,
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buoyant flows. A particularly interesting case is the two-parameter expansion of a
reacting flow by Culick et al. (2012): the mean and the fluctuating flow components are
shown to be independent to first order in low mean and fluctuating flow Mach numbers,
and can be modelled separately. The low Mach number expansion of the compressible
flow in microchannels yields the thermoviscous acoustic system of equations (Chu,
1965).

Although some earlier studies suggested that the inkjet microchannel flow can be
described as incompressible (Beasley, 1977), experimental and theoretical analysis of
flows inside one-dimensional inkjet transducers driven by piezoelectric sleeve contraction
by Bogy and Talke (1984); Dijksman (1984) show that the flow inside an inkjet
microchannel is governed by acoustic equations with viscous effects. Shield et al.
(1987) used a linear acoustic model with Darcy-Weisbach type viscous drag to simulate
pressure wave propagation and droplet formation inside a long glass tube, and found
good agreement with experimental observations. This one-dimensional analysis can be
extended to account for more complex physical effects relevant to inkjet dynamics, for
example modelling entrapped air bubbles (de Jong et al., 2006; Jeurissen, 2009).

More advanced models of the acoustic motion are based on the linearized Navier–
Stokes equations. Tijdeman (1975) investigated a compressible flow with viscosity and
thermal conductivity inside a long tube with constant cross-section and proposed the
low reduced frequency model. This model assumes constant pressure gradient along
the domain, and presents an analytical solution that depends on the nondimensional
(reduced) frequency of the harmonic flow oscillations and the Reynolds number. The
analytical solutions of the low reduced frequency model are available for particularly
simple geometries (Moser, 1980), and can be obtained for more general geometries
(Beltman, 1999a,b), or solved numerically (Kampinga et al., 2010). Christensen (2011)
compared the solution of the low reduced frequency model and the numerical solution
of the full Navier–Stokes equations inside channels with different cross-sections, and
confirmed good agreement.

Another approach is a class of boundary layer models that approximate the boundary
layer effects by a special thermo-viscous impedance boundary condition. Bossart et al.
(2003) proposed an iterative boundary element method that decouples the isentropic
flow in the inner part of the computational domain from the thermal and viscous waves
in the domain regions close to the boundaries. The analytical solution in the viscous
and thermal boundary layers is transformed into an admittance boundary condition.
Alternatively, viscous and thermal dissipation can be accounted for by a Wentzell
boundary condition that is derived using asymptotic boundary-layer analysis (Berggren
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et al., 2018; Rienstra and Hirschberg, 2013; Schmidt and Thöns-Zueva, 2019; Schmidt
et al., 2014). The sequential linearized Navier–Stokes model (SLNS) (Kampinga et al.,
2011) is derived using techniques from both low reduced frequency models (slowly
varying pressure gradient), and boundary layer models (decoupling of the isentropic
and thermo-viscous waves). The SLNS model is applicable to arbitrary geometries,
when the thickness of the narrow parts of the domain is comparable to the boundary
layer thickness. The results of these models, however, are not valid when the thickness
of the boundary layer is of order of the radii of the surface curvature. While these
models are computationally cheap and useful for initial designs, they fail to predict
performance of printhead microchannels with complex geometries.

Obtaining a solution to the full linearized Navier–Stokes system of equations is more
computationally demanding in comparison to the reduced order models: all unknowns
(pressure, temperature, and velocity fields) are calculated directly, and careful meshing
of the boundary layer regions is required (Joly, 2010). Modelling linear acoustic wave
propagation that interacts with a mean flow is even more challenging because the
mean flow field needs to be known in advance, for example, from a DNS solution of
the nonlinear compressible Navier–Stokes equations (Kierkegaard et al., 2010). This
is, however, impractical for most applications since the oscillating flow to mean flow
interaction scales as the second order of small Mach number. A generic way to solve
the thermoviscous acoustic problem is to use the finite element method (Alnæs et al.,
2015) with an appropriate choice of spatial discretization (Kampinga et al., 2010).
In this case, a sensible way to improve the accuracy of the numerical solution and
construct a refined mesh is to use goal-oriented mesh adaptation (Fraysse et al., 2012;
Rognes and Logg, 2013).

The frequency domain models of the acoustic flow inside the inkjet microchannel
assume linear interaction between the flow and the multiphase interface at the end of
the nozzle (Khalate et al., 2011; Wijshoff, 2010). The nonlinear interaction can be
accurately captured by unsteady simulations (Wassink, 2007). Since some form of the
energy norm is usually the quantity of interest (for example, energy transfer between the
acoustic flow and the surface energy of the forming droplet, or the energy of the residual
oscillations after a droplet ejection cycle), finite difference discretization (Trefethen,
1996) of the unsteady thermoviscous equations has to be free from numerical dissipation
(Thomas and Roe, 1993). The second order accurate Crank–Nicolson scheme satisfies
this criterion (Apel and Flaig, 2012; Thomas, 2013).
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Modelling nozzle flow and droplet formation

Understanding the physics of jet instabilities (Eggers and Villermaux, 2008; Rayleigh,
1879) and drop formation (Driessen and Jeurissen, 2016) is the second ingredient of
modelling inkjet drop-on-demand printing. Considering separate models for the nozzle
and the channel flows allows the two domains to be considered separately and, if
analysed numerically, to be discretized independently (Wijshoff, 2004). In turn this
allows the analysis in the nozzle to be focused on droplet formation.

The formation of droplets can be investigated either experimentally or numerically.
Experimental imaging-based techniques vary from simple measurement of the drop
volume (Furbank and Morris, 2004) and observation of meniscus motion (Kwon, 2009)
to more advanced image processing to determine the velocity profile inside the droplet
(Snyder et al., 2019; van der Bos et al., 2014). Earlier studies of drop formation in
liquid jets (Bogy, 1979) and emitting devices (Badie and Dirk Frits, 1997; Dijksman,
1984) show that these phenomena depend on the ink viscosity and surface tension,
and the mass and energy transfer towards the multiphase interface in the nozzle. The
flow in the short nozzle near the free surface (in contrast to the rest of the printhead
microchannel) is typically modelled as incompressible and axisymmetric (Chen and
Basaran, 2002; Shield et al., 1987; Wu et al., 2004), driven by the pressure (Fumagalli
et al., 2018) or velocity inflow (McIlroy et al., 2013; Miers and Zhou, 2017) from the
channel.

Various numerical methods have been proposed to model the free surface develop-
ment, droplet formation, and pinch-off in inkjet print heads. One-dimensional models
of droplet formation (Adams and Roy, 1986; Eggers and Dupont, 1994; Jiang and Tan,
2018) and jet break-up (Bogy, 1979) have shown good agreement with experiments. A
particularly interesting method has been proposed by Driessen and Jeurissen (2011): for
a fixed one-dimensional grid, small modifications to the surface tension can regularize
pinch-off and coalescence singularities. Womersley (1955) analysed an axisymmetric
incompressible arterial flow driven by a periodic pressure gradient, and derived an
analytical solution for the velocity profile as a function of the oscillation frequency
(a Womersley velocity profile). Brereton and Jiang (2005) took this idea one step
further, and presented exact solutions for the unsteady laminar pipe flows under the
assumption of constant pressure gradient along the pipe. They provided analytical
relationships between various quantities of interest as functions of time. For example, it
is possible to calculate the flow rate as a function of the time-varying pressure gradient,
local velocity (and consequently kinetic energy) as a function of flow rate, and vice
versa. Finally, Wassink (2007) extended this approach to study the drop initiation and
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thinning of the drop tail processes. The proposed two-port modeling approach assumes
a Poiseuille velocity profile of the flow inside a nozzle with a slowly varying cross
section, and couples the flow rate at the free surface to the free surface deformation.
This results in a fast, accurate, and experimentally validated numerical technique to
simulate the ink channel dynamics.

Explicit interface tracking methods: the volume of fluid (Hirt and Nichols, 1981; Wu
et al., 2004; Yang et al., 2005) and level-set methods (Galusinski and Vigneaux, 2008a;
Miers and Zhou, 2017) have been successfully applied to compute the position of free
surface boundary and droplet formation. In the above papers, the nozzle is assumed
always to be filled with fluid. This assumption can be relaxed and the dynamics of
the contact line between liquid, solid, and gas (Snoeijer and Andreotti, 2013) can
be simulated using a variational approach (Fumagalli et al., 2018; Manservisi and
Scardovelli, 2009).

Overall, development and verification of droplet formation modelling tools is a
non-trivial task, and such simulations are computationally expensive and often require
ad hoc improvements in the context of optimization (Hinze, 2000). If the nozzle flow is
studied from the point of view of free surface relaxation after a droplet has already been
formed, reduced order models: control volume approach (Wassink, 2007) or lumped
element modelling (He et al., 2015; Shah et al., 2019) can be applied, if other free
surface modelling tools are not available.

1.2 Optimization

1.2.1 Optimization of drop-on-demand inkjet systems

The main optimization objectives in inkjet printing are consistent droplet velocity and
volume (Gan et al., 2009) and increasing the jetting frequency (Miers and Zhou, 2017).
There are three groups of inkjet system parameters that can be altered to improve
the inkjet performance: ink type or composition, the shape of the inkjet printhead
microchannels, and the shape of the actuating waveform.

Experimental studies (Chen and Basaran, 2002; Jo et al., 2009) and computational
analysis (Xu and Basaran, 2007) show that the drop formation regime and drop
characteristics are determined by nondimensional characteristic numbers: the Weber
number (ratio of fluid inertia to surface tension), and the Ohnesorge number (importance
of the viscous force relative to the surface tension). The jetting behaviour can be
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passively optimized by changing the fluid composition (Liu and Derby, 2019), or by
adding small amounts of polymers (Hoath et al., 2015; Shore and Harrison, 2005).

Shape optimization

Changing the shape of the printhead microchannels is another promising approach
to passively improve the performance of an inkjet system (Kungurtsev and Juniper,
2019). Kim et al. (2018) analysed the effect of the nozzle diameter and length and the
length of the acoustic channel on the maximum jetting frequency. Reducing the nozzle
diameter allows jetting at megahertz frequency and smaller droplet size (Miers and
Zhou, 2017). However, no systematic approach to estimate the sensitivity of inkjet
performance metrics with respect to the generic shape parameters has been reported.

Waveform optimization

Active control of the printing process is done by applying a fine-tuned actuating
waveform to the piezo element that drives the ink drop formation (Gan et al., 2009)
and damps residual oscillations and the cross-talk effects (Khalate et al., 2011, 2012).
Waveform optimization does not require any hardware changes and is regularly applied
to existing print heads, for example when a new ink is being used.

A common approach is to tune the pulse amplitude and duration of a fixed shape
waveform (Shin et al., 2011). The most basic waveform is the unipolar (trapezoidal
push in) waveform. Bogy and Talke (1984) concluded that the optimal pulse width is
L/cs, i.e., proportional to the length of the jetting device Lc, and the inverse of the
speed of sound cs (for a standard inkjet microchannel (Dijksman, 2019), the length Lc

is the distance between the ink supply manifold and the nozzle, and the distance from
the inflow to the outflow boundary for a through flow (Strevens et al., 2020) inkjet,
see figure 1.2). This waveform has a number of drawbacks: the volume of the ejected
droplets is large, the amplitude of residual reverberations is high, and satellite droplets
are formed in addition to the main droplet (Kwon, 2009). Bipolar (trapezoidal push in
then trapezoidal pull out) waveforms are used to eliminate satellite droplets (Gan et al.,
2009). The W-shaped waveform type can significantly reduce the volume of ejected
droplet, compared with unipolar and bipolar waveforms (Chen and Basaran, 2002),
and eliminate the residual acoustic waves from the last ejection cycle (Gan et al., 2009).
Droplets formed from complex waveforms are, however, more sensitive to changes in
the waveform shape. This means that optimal waveforms become harder to find as the
waveform type becomes more complex. Given that waveforms are usually found by trial
and error during extensive experiments, this leads to considerable experimental cost as
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the waveforms become more complex and motivates the more systematic approach in
this thesis.

Systematic waveform optimization can be approached in several ways. A feed-
forward control method (Khalate et al., 2011) can be used to eliminate residual
reverberations by flattening the response of the meniscus velocity to the pulse frequency.
If numerical models are not accurate enough, or are too computationally expensive
to predict the droplet characteristics, then the waveform parameter space can be
explored with model-free methods by combining an automated experimental rig with an
optimization algorithm (Ezzeldin et al., 2010). The waveform shape is the experimental
input and the droplet characteristics are the experimental output. This method has
been used with a genetic algorithm (Snyder et al., 2019) and a swarm-intelligence based
technique (He et al., 2015). Alternatively, a highly efficient adjoint-based approach of
instantaneous control applied to unsteady incompressible flow has been developed by
Gunzburger and Manservisi (2000); Hinze (2000), and extended by Fumagalli et al.
(2018) to the free surface problem inside the inkjet nozzle. The approach developed
in this study (also, Kungurtsev and Juniper (2020)) is similar, in that it considers a
systematic approach to waveform optimization by using adjoint-based optimization,
but it includes the acoustics in the channel as well as the flow in the nozzle.

1.2.2 Adjoint-based sensitivity analysis

Many problems in mathematical physics can be formulated as follows: find an optimal
input f to a complex system that minimizes (or maximizes) some objective value
J . The state of the system q (a scalar or a vector of numbers or functions) usually
explicitly defines the objective value: the objective is a function of the state J = J (q).
It is cheap to evaluate the objective given the state of the system. There is a matrix or
a differential operator A that relates the input f to the state q. Calculating the state
of the system is quite often computationally expensive.

Gradient-based optimization algorithms are used to find a local minimum of the
objective functions with respect to input parameters. Adjoint-based optimization is
much faster than non-gradient-based or tangent-linear gradient-based methods when
the number of control parameters greatly exceeds the number of objective functions,
which is usually the case. If gradient vectors are calculated directly using the finite-
difference approach, N + 1 (expensive) primal state evaluations are required, where
N is the number of input parameters. The adjoint methods provide, in a single
calculation, the gradient of an objective function with respect to all of the control
parameters (Cossu, 2014; Luchini and Bottaro, 2014; Schmid and Brandt, 2014). This



10 Introduction

requires only one (expensive) primal state evaluation, and M (cheap) linear adjoint
computations, where M is the number of the objective functions. This gradient is
then used within a gradient-based optimization algorithm in order to converge to a
local optimum, and greatly speeds up optimization. It has been used in aerodynamics
optimization (Nadarajah and Jameson, 2000), triggering in thermoacoustics (Juniper,
2011), hydrodynamic stability (Brewster and Juniper, 2020), and finding the minimal
seed in transition to turbulence (Kerswell, 2018). Kast (2016) discussed the application
of the adjoint method to error estimation and mesh adaptation.

A comprehensive introduction to the theory of adjoint operators, duality, and the
underlying functional analysis is presented in Estep (2004). Here we briefly discuss the
main ideas and the beauty of the adjoint method. We start by considering a linear
operator A and a linear objective J function. In this case, the optimization problem is

Minimize J ≡ (v,q)
subject to Aq = f ,

(1.1)

where (· , ·) is an appropriately defined scalar product, and (v, ·) is the linear objective
function operator. The scalar product of the state equation residual r ≡ Aq − f = 0
with an arbitrary function (vector) λ is always zero,

(λ, r) = (λ,Aq − f) ≡ 0.

Let us define the adjoint operator A†:

(u,Av) =
(
A†u, v

)
∀u, v. (1.2)

The residual scalar product becomes

(λ,Aq)− (λ, f) =
(
A†λ,q

)
− (λ, f) = 0.

Since the above expression is true for all λ, we can choose this variable to satisfy the
following equation:

A†λ = v, (1.3)

and therefore the objective function that previously implicitly depended on the input
parameters f can be rewritten as an explicit expression J = (v,q) =

(
A†λ,q

)
= (λ, f).

The adjoint state variable λ expresses the sensitivity of the objective function J with
respect to the input parameters f . In this linear case, a single calculation of the adjoint
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equation (1.3) is required to get the objective value, while the state equation from (1.1)
is never used.

The linear case can be generalized to nonlinear differential operators, commonly
arising in CFD. Let A be a nonlinear differential operator, such that Aq = f is a
nonlinear state equation. The objective function is also a nonlinear function of q. We
can linearize the state equation and the objective around a base state (f0,q0), given an
arbitrary admissible variation of the state δq:

δJ [δq] =
(
J ′

q (q0) , δq
)
,

A′ (q0) δq − δf = 0.
(1.4)

The variation of the objective function δJ [δq] equals the scalar product of the state
variation δq and the objective function’s sensitivity J ′

q with respect to the state
variation. As for the previous case, this is a linear form, and the derivative of the
objective function can be calculated using the adjoint approach: given the base state
q0, the linear adjoint operator A† can be defined. By solving the adjoint state equation
and finding λ, the sensitivity of the objective function with respect to the variation of
the input parameters δf is available immediately.

Aq0 = f0,

A† : (u,A′ (q0) v) =
(
A†u, v

)
,

A†λ = J ′
q (q0) ,

δJ = (λ, δf) .

(1.5)

The adjoint method can be applied to calculate the objective sensitivity not only
to explicit input parameters, such as external forcing, initial or boundary conditions,
spatial distribution of material properties, but also to the shape of the physical
domain. In combination with gradient-based optimization algorithms, adjoint-based
shape sensitivity analysis is a powerful tool that has been applied to the design of
airfoils (Jameson and Martinelli, 2000), mixing of fluids (Eggl and Schmid, 2020),
hydrodynamic instability (Brewster and Juniper, 2020) and thermoacoustic stability
(Aguilar and Juniper, 2020).
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1.3 Thesis scope and structure

The scope of the thesis is to: (i) develop accurate and computationally efficient models
of the inkjet printhead microchannel flow, and implement a high level programming
interface that automates the solution of such problems; (ii) define the optimization
objectives and control parameters of the drop-on-demand inkjet systems; and (iii)
develop an interpretable optimal control approach, and apply it to the inkjet flow.

Chapter 2 discusses the inkjet flow models. We split the inkjet printhead microchan-
nel into the channel and the nozzle domain with different governing equations for each.
For the channel domain, we use the low Mach number asymptotic analysis to separate
the compressible Navier–Stokes equations into equations for an incompressible flow with
no acoustic oscillations and equations for acoustic oscillations with no mean flow. We
derive the weak forms of the unsteady and frequency domain oscillating thermoviscous
acoustic flow, and use the finite element method to discretize and solve the problem
numerically. For the nozzle domain, we use the mass and energy conservation equations
to construct a reduced order model of an axisymmetric free surface flow. We develop a
general approach to couple the channel to the nozzle through the boundary conditions
on the surface between the channel and the nozzle. Finally, we study the spectrum
and the frequency response of the coupled channel–nozzle inkjet system.

Chapters 3 and 4 contain the main results and the original contributions. Chapter
3 contains the derivation of the adjoint-based sensitivity analysis to external forcing
applied at the actuator boundary. We define a cost function to be the sum of the
acoustic energy in the channel and the surface energy of the spherical cap of ink at
the end of the nozzle. We use a gradient-based optimization algorithm to find the
optimal boundary condition that minimizes the cost function at various final times
and for geometries with increasing complexity. We discuss the physical interpretation
of the optimal waveform shape that eliminates residual oscillations after a droplet is
ejected. Chapter 4 contains the derivation of the adjoint-based sensitivity analysis
of the systems presented in chapter 2 to shape modifications of the channel. We
obtain expressions for the gradient of two objective functions: the viscous dissipation
of the steady flow and the dissipation of the oscillations with respect to boundary
deformations in Hadamard form. We combine these with a gradient-based optimization
algorithm, which quickly converges to a design that has the same viscous dissipation
for the steady flow but a 50% larger decay rate for the oscillating flow. We show that
this design is nearly optimal.

Chapter 5 contains the summary of the thesis results and suggestions of future
work.



Chapter 2

Inkjet printhead flow models

In this chapter we develop an accurate and computationally feasible approach to model
flows inside microscale devices, in particular inkjet printhead microchannels. The
characteristic timescale of the processes of interest is tenths of microseconds, and the
characteristic size of the microchannels is from several micrometers to a few millimeters.
The flow disturbances propagate at the speed of sound. For a typical speed of sound
of 1000 ms−1, there are only a few wave reflections in the relevant observation time, so
the flow compressibility cannot be neglected. Additionally, dissipation due to viscous
and thermal effects in the boundary layers cannot be ignored.

This study focuses on one particular type of drop-on-demand inkjet printhead: a
U-shaped microchannel connected to the ink supply manifolds, with a small conic
nozzle and a flat piezoelectric actuator located on the channel’s top boundary opposite
the nozzle (figure 2.1). There are several sources of fluid motion inside a microchannel.
The steady mean flow of ink is continually pumped through the microchannels and
flushes away any air bubbles (de Jong et al., 2006; Fraters et al., 2019) and also reduces
the chance that any solid impurities become lodged in the nozzle. An electric signal
is applied to a piezoelectric actuator that moves the boundary by a few hundred
nanometers at a frequency of up to several megahertz, forcing an ink droplet out of
the nozzle (Bogy and Talke, 1984). This generates acoustic waves that travel along the
channel and decay through viscous and thermal effects. The fluid–air interface in the
inkjet nozzle deforms when the acoustic waves reflect off the interface, and ultimately
ink droplets are forced out of the nozzle.

In section 2.2, we discuss how to reduce the complexity of the problem by splitting
the full compressible Navier–Stokes equations into equations for a steady mean flow
with no oscillation and equations for an oscillation with no mean flow. This is done by
a two-parameter low Mach number asymptotic expansion of the equations of motion
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Actuator

Inkjet microchannel

Fig. 2.1 Schematic representation of a 3D inkjet microchannel. The arrows indicate
the inflow and the outflow of the recirculating ink throughflow.

(Culick et al., 2012; Müller, 1998). The steady flow is governed by the incompressible
Navier–Stokes equations. The oscillating flow is governed by the thermoviscous acoustic
equations.

The fluid inside a printhead microchannel is bounded by the channel’s solid walls,
inlet and outlet boundaries between the channel and the ink supply manifolds, and
a free surface in the nozzle: a multiphase interface between the fluid and the outside
gaseous phase (air). The physical domain occupied by the fluid moves: the position of
the free surface and the three-phase contact line between the nozzle walls, fluid, and
air changes over time. We split the printhead microchannel into two nonoverlapping
parts: the static channel domain Ωc, and the moving nozzle domain Ωn (figure 2.2).
The boundary between the Ωc and Ωn subdomains is static and splits the inkjet nozzle
into two parts. It is chosen such that the fluid–air interface never intersects with the
boundaries between the subdomains. The nozzle subdomain includes the bottom part
of the inkjet nozzle with the moving fluid–air interface. The channel subdomain covers
the rest of the printhead microchannel and the top part of the inkjet nozzle. This allows
us to address modelling of the free surface movement separately from the fluid motion
inside the channel. In section 2.3, we focus on the oscillating flow equations inside the
channel domain: acoustics with thermal and viscous effects. We define the unsteady,
frequency domain, and eigenvalue thermoviscous acoustic problems. We discuss the
corresponding weak formulation of these problems, and time and FEM discretization.
Section 2.4 is devoted to modelling the flow inside the nozzle domain and the moving



2.1 Notation 15

free surface. The nozzle flow is described by a reduced order model of an axisymmetric
flow, with an explicitly parameterized shape of the fluid–gas interface. The resulting
ODE system is linked to the acoustic channel flow via a boundary condition. This
approach allows us to modify and adapt the nozzle flow model for a particular nozzle
design, while the the flow model inside the rest of the microchannel remains the same.
In this thesis, modelling is performed in a 2D domain. Extension to 3D is possible and
conceptually straightforward.

Ωn

Ωc

Fig. 2.2 Inkjet printhead microchannel consists of a channel Ωc (oragne) and nozzle Ωn
(blue) subdomains.

Summing up, we propose a modular approach to describe how different phenomena
contribute to the physics of the flow inside the printhead microchannel: we start
with adding the most important flow models (thermoviscous acoustic flow, nozzle flow
reduced order model) independently of each other (figure 2.3). Then, we work towards
coupling the flow models via boundary conditions. We can add more physical effects
or substitute the existing models with more advanced ones while keeping other parts
unchanged. This accelerates development and testing, and allows finer control over
the whole system, especially for industrial scale projects. In section 2.7.1 we discuss
which physical effects are not considered in the system in figure 2.3, and what the
requirements are to formulate the corresponding models.

2.1 Notation

We denote the spatial domain by Ω ⊂ Rd, d = 1, 2, 3, and the boundary of the domain
by ∂Ω = ⋃Γi ⊂ Rd−1. We denote the temporal domain of an unsteady problem by
T = {t : t0 < t < tf}, where t0 and tf are the initial and the final times, respectively.
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Flow inside inkjet microchannels

Fig. 2.3 Example model components diagram of the flow inside an inkjet printhead
microchannel. Arrows denote interactions between models; a connection with one
arrow means that there is no feedback from the receiving model, and a connection with
a forward and a reverse arrow means that the models are two-way coupled.

We denote the joint time-space mixed domain of the problem by Σ = (Ω× T ), and
∂Σ = (∂Ω× T ). A problem can be independent of time or a spatial coordinate.

We define the following scalar products in the spatial, temporal, and mixed domains:

[a, b]Σ ≡
∫
T

∫
Ω
a∗ b dtdx, {a, b}∂Σ ≡

∫
T

∫
∂Ω
a∗ b dtds,

⟨a, b⟩Ω ≡
∫

Ω
a∗ b dx, {a, b}Γi

≡
∫

Γi

a∗ b ds,

(a, b)T =
∫
T
a∗ b dt.

(2.1a)

(2.1b)

(2.1c)

Here ∗ denotes complex conjugation. An integral of a single variable over a domain is
equivalent to the corresponding scalar product with a ≡ 1, ⟨b⟩Ω ≡ ⟨1, b⟩Ω.

2.2 Equations of motion in the low Mach number
limit

The motion of a fluid with viscosity, heat conductivity and compressibility is governed
by the compressible Navier–Stokes equations, which, in conservative form, are given
by:

∂

∂t
q +∇j

(
fc
j(q)− fv

j (q,∇q)
)

= 0 in Ω, (2.2)

where ∇j is the j-th component of the spatial derivative ∇j ≡ ∂
∂xj

, fc and fv refer
to convective and viscous components of the equations. The vector of conservative
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variables, q, and the fluxes, fc(q), fv(q), are defined by

q ≡


ρ

ρui

ρE

 , fc
j(q) =


ρuk

ρuiuj + Pδik

uj (ρE + P )

 , fv
j (q) =


0

τji

τjiui + κth∇jT

 (2.3)

The variables ρ,u, P, T denote the flow density, velocity vector, pressure and temper-
ature; τij is the viscous stress tensor, which is proportional to the dynamic viscosity
coefficient µvis

τij = µvis

(
∇iuj +∇jui −

2
3δij∇kuk

)
. (2.4)

Most of the standard inks used in printing are Newtonian (Basaran et al., 2013; Derby,
2010; Dijksman, 2019), so here the viscosity µvis is held constant. The total energy of
the flow E is a sum of the kinetic energy and the static internal energy e = e(T, P ):

ρE = ρe+ ρuiui

2 , (2.5)

and κth is the thermal conductivity coefficient. We also introduce an equation of state,
which relates the pressure, density and temperature:

ρ = ρ(P, T ) (2.6)

Without loss of generality, we will use the flow velocity, pressure, and temperature as
the primary variables.

2.2.1 Low Mach number expansion

Equation (2.2) can describe a range of physical phenomena, which is excessive in this
case because the system’s behaviour is governed to first order by only two phenomena.
The first is steady flow in a channel with rigid boundaries, with the inlet velocity of
order Ū = 1 m/s and Re ≈ 10. The second is periodic acoustic oscillation, with a small
displacement amplitude at the boundary ∆ ≤ 0.1µm and a high oscillation frequency
ω ≈ 100 kHz. The characteristic oscillation velocity is of order Ũ = ω∆ ≈ 0.01 m/s.

We choose the ambient state density ρb and the speed of sound
(
cb

s

)2
= (∂P/∂ρ)s

(Landau and Lifschitz, 1986; Wang and Millero, 1973) as the reference dimensional
density and velocity, and the characteristic domain size L as the reference length.
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The reference pressure P b is chosen as a function of density and the speed of sound:
P b = ρb

(
cb

s

)2
, and the reference temperature T b is the ambient temperature.

In this problem, we assume that the local Mach number is small:

M ≡ ∥u∥
cb

s

≪ 1 (2.7)

The characteristic velocity amplitudes of the steady flow, Ū , and the oscillating flow,
Ũ , are also small in comparison to the speed of sound, which allows us to introduce
two small parameters: the steady flow Mach number, µ, and the oscillating flow Mach
number, ϵ:

µ ≡ Ū

cb
s

≃ 1.0
1000 ≪ 1,

ϵ ≡ Ũ

cb
s

≃ 0.1
1000 ≪ 1

(2.8a)

(2.8b)

The oscillating flow time scale differs greatly from the steady flow time scale.
The oscillating time scale is tac ∼ L/cb

s, and the steady flow time scale is thyd ∼
L/Ū = µ−1tac ≫ tac. This allows us to decouple two phenomena and study them
independently. We consider a generic state variable ψ(x, t) = (u, P, T ). We denote a
zero-order state variable by ψ0(x, t), as if the steady flow and the oscillating flow were
absent: ψ0(x, t) ≡ ψ(x, t, ϵ = 0, µ = 0). If there is no external energy and momentum
production (by imposed temperature gradients, heat release or body forces), then ψ0 is
uniform in space and constant in time. The perturbation φ(x, t) of ψ is proportional
to µ and ϵ, such that:

ψ(x, t) = ψ0 + φ(x, t, µ, ϵ) (2.9)

We assume that a flow state perturbation related to a particular phenomenon depends
solely on the phenomenon’s temporal scale, such that φ(x, t) becomes a sum of the slow
hydrodynamic perturbation φ̄(x, t, µ), labelled the steady flow, and the fast acoustic
perturbation φ̃(x, t, ϵ), labelled the oscillating flow:

φ(x, t, µ, ϵ) = φ̄(x, t, µ) + φ̃(x, t, ϵ),

φ̄(x, t, µ) = 1
tac

∫
tac
φ(x, t, µ, ϵ)dt.

(2.10a)

(2.10b)

In summary, the generic flow variable ψ(x, t) consists of the zero-frequency ambient
state, ψ0, the low-frequency hydrodynamic perturbation φ̄(x, thyd, µ), and the high-
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frequency acoustic perturbation φ̃(x, tac, ϵ):

ψ(x, t) = ψ0 + φ̄(x, thyd, µ) + φ̃(x, tac, ϵ) (2.11)

We can perform a low Mach number expansion in terms of µ and ϵ because they
are both small. The state perturbations φ̄(x, thyd) and φ̃(x, tac) independently tend to
zero as µ→ 0 and ϵ→ 0, so we assume low Mach-number decompositions of the form

φ̄(x, thyd) =
∥∥∥φ̄∥∥∥∑µkφ̄(k)(x, thyd),

and
φ̃(x, tac) =

∥∥∥φ̃∥∥∥∑ ϵkφ̃(k)(x, tac),

where φ̄(k), φ̃(k) are the k-th order non-dimensional perturbation shapes, and
∥∥∥φ̄∥∥∥ , ∥∥∥φ̃∥∥∥

are the characteristic dimensional magnitudes of the variables: ∥ū∥ = Ū , ∥ũ∥ =
Ũ ,
∥∥∥P̄∥∥∥ =

∥∥∥P̃∥∥∥ = P b,
∥∥∥T̄∥∥∥ =

∥∥∥T̃∥∥∥ = T b.
We neglect the interaction between the steady flow and the oscillating flow given

by the higher order mixed terms ∑µnϵmφ(m+n)(x, tac, thyd); m,n ≥ 1 because ϵ and µ

are both small. The expansion of the primal variables is therefore:

u(x, t) = cb
s

(
µū(1) + ϵũ(1)

)
+ O(µ2, ϵ2, µϵ),

P (x, t) = P bP (0) + P b
(
µP̄ (1) + µ2P̄ (2) + ϵP̃ (1)

)
+ O(µ3, ϵ2, µϵ),

T (x, t) = T bT (0) + T b
(
µT̄ (1) + ϵT̃ (1)

)
+ O(µ2, ϵ2, µϵ)

(2.12a)

(2.12b)

(2.12c)

The highest order velocity components are proportional to µ, ϵ to first order. We keep
both the first and second order pressure terms µP̄ (1) + µ2P̄ (2) here because the first
order steady flow pressure perturbation µP̄ (1) does not contribute to the steady flow,
because it is a part of the ambient state (Müller, 1998).

The expansion of the derivative flow variables, such as density, energy, and entropy
can be achieved by substituting the primal variables expansion into the respective
thermodynamics expansions, for example,

ρ = ρ(0) +
(
∂ρ

∂P

)
T

(
P − P (0)

)
+
(
∂ρ

∂T

)
P

(
T − T (0)

)
+ O

(
µ2, ϵ2, µϵ

)

The pressure gradient due to the gravity force is small ∆P = gL = 10−3 Pa in
comparison to the ambient pressure P bP (0) = 105 Pa, and is therefore neglected. The
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nondimensional gravity term gL/
(
cb

s

)2
= 10−9 ≪ ϵ is also neglected in the low Mach

number oscillating flow equations.

2.2.2 Zero Mach number limit

Substituting the primal variables expansion (2.12) into (2.2) and (2.6), and collecting
the zero-order terms, we obtain:

∇iP
(0)(x) = 0,

∇k

(
κth∇kT

(0)(x)
)

= 0,

ρ(0)(x) = ρ(P (0), T (0)).

(2.13a)
(2.13b)

(2.13c)

The zeroth-order equations describe the ambient state, ϵ = µ = 0. Equation (2.13a)
shows that the ambient pressure P (0) is spatially uniform, and (2.13b) describes the
temperature distribution of the ambient state. If all the boundaries have uniform and
constant temperature, then the ambient temperature and density are uniform and
non-dimensionalized as T (0)(x) = 1, ρ(0)(x) = 1.

2.2.3 Low Mach number incompressible flow

We substitute the flow variable expansion (2.12) into (2.3) and collect the first order
terms of µ in the continuity equation and the second order terms of µ2 in the momentum
equations. Assuming a Newtonian fluid results in the incompressible Navier–Stokes
equation:

∇iū
(1)
i = 0,

∂

∂thyd

ū
(1)
i +

(
ū

(1)
j ∇j

)
ū

(1)
i +∇iP̄

(2) − 1
Re
∇2

kū
(1)
i = 0,

(2.14a)

(2.14b)

where Re ≡ ρbLŪ/µvis is the steady flow Reynolds number. The steady flow pressure
perturbation, P̄ , balances the nonlinear convective term in the momentum equation,
so P̄ = µ2P̄ (2) + O(µ3).

We supplement the incompressible flow equations with a prescribed velocity bound-
ary condition at the inlet, Γin, a no slip boundary condition on the walls, Γw, and a
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zero stress boundary condition at the outlet, Γout:

ū(1) = Uin on Γin,

ū(1) = 0 on Γw,

−P̄ (2)n + 1
Re

∂ū(1)

∂n
= 0 on Γout

(2.15a)
(2.15b)

(2.15c)

2.2.4 Low Mach number oscillating flow

We substitute the flow variable expansion (2.12) into (2.3) and collect the first order
terms of ϵ. Using the internal energy expansion to first order in ϵ (the first law of
thermodynamics),

ẽ(1) = T (0)s̃(1) + P (0)

(ρ(0))2 ρ̃
(1)

we obtain the nondimensional continuity, momentum and energy equations for the
oscillating acoustic flow:

∂

∂tac
ρ̃(1) +∇iũ

(1)
i = 0,

∂

∂tac
ũ

(1)
i +∇iP̃

(1) = 1
R̃e
∇j τ̃

(1)
ij ,(

cb
s

)2

T b

∂

∂tac
s̃(1) = cp

P̃e
∆T̃ (1)

(2.16a)

(2.16b)

(2.16c)

The Reynolds and Peclet numbers based on the speed of sound are R̃e ≡ ρbLcb
s/µvis

and P̃e ≡ ρbLcb
scp/κth. The heat capacity ratio is γth ≡ cp/cv, where cp and cv are the

specific heats at constant pressure and constant volume. In this study, the speed of
sound is one of the most crucial parameters. The speed of sound is therefore imposed
directly, rather than calculated from an equation of state. The value of the speed of
sound used in inkjet studies varies from 800 to 1600 ms−1 (Beltman, 1998; Dijksman,
2019; Kim et al., 2014). We use a value of 1000 ms−1. The ratio of specific heats, which
describes how much a fluid expands when heated, is slightly greater than 1 for liquids.
If taken to be exactly 1, as in Beltman (1998), there is no thermal expansion and
the thermal field becomes decoupled from the mechanical field and can be neglected.
In this thesis, we wish to consider the more general and accurate case in which this
coupling is retained. We therefore use γth = 1.017, which is charactersitic of water at
25◦C (Kell, 1970). In any case, for values of gamma just greater than 1, the thermal
field has little influence on the problem, meaning that gamma has little influence on the
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problem. The viscous contribution to the mechanical energy dissipation ∇k

(
τ̃

(1)
kj ũ

(1)
j

)
,

and the time derivative of the kinetic energy ∂
∂tac

(
ρ(0)ũiũ

(1)
i /2

)
are absent in (2.16c)

because they are second order in ϵ and therefore negligible.
We aim to formulate the acoustic flow equations in terms of the acoustic pressure

P̃ (1), velocity ũ(1) and temperature T̃ (1). The flow density and entropy are functions of
the pressure and temperature variables. Using the classical thermodynamics differen-
tials, they can be explicitly expressed as s̃(1) = s̃(P̃ (1), T̃ (1)), and ρ̃(1) = ρ̃(P̃ (1), T̃ (1)):

sbs̃(1) =
(
∂S

∂P

)
T

P bP̃ (1) +
(
∂S

∂T

)
P

T bT̃ (1) = −αp

ρb

P bP̃ (1) + cp

Tb

T bT̃ (1),

ρbρ̃(1) =
(
∂ρ

∂P

)
T

P bP̃ (1) +
(
∂ρ

∂T

)
P

T bT̃ (1) = γth

(cb
s)

2P
bP̃ (1) − ρbαpT

bT̃ (1),

(2.17a)

(2.17b)

where αp ≡ ρb
(

∂V
∂T

)
P

is the volumetric coefficient of thermal expansion, and has dimen-
sion of temperature. These expressions are substituted into (2.16). For convenience,
we redefine the acoustic flow temperature as αpT

bT̃ (1) → T̃ (1). We also note that
cp − cv = T b

(
cb

s

)2
α2

p/γth. The density and entropy variables are expressed as:

ρ̃(1) ≡ γthP̃
(1) − T̃ (1), s̃(1) ≡ T̃ (1)

γth − 1 − P̃
(1) (2.18)

These explicit expressions for the density and entropy variables allow us to express the
continuity (2.16ba), momentum (2.16b) and energy (2.16c) equations in terms of the
primal acoustic variables:

∂

∂tac

(
γthP̃

(1) − T̃ (1)
)

+∇iũ
(1)
i = 0,

∂

∂tac
ũ

(1)
i +∇iP̃

(1) = 1
R̃e
∇j τ̃

(1)
ij ,

∂

∂tac

(
T̃ (1)

γth − 1 − P̃
(1)
)

= 1
(γth − 1) P̃e

∆T̃ (1)

(2.19a)

(2.19b)

(2.19c)

Here ∆ ≡ ∇2 is the Laplace operator. This is a system of linear thermoviscous
acoustic equations. No-slip ũ(1) = 0 and isothermal T̃ (1) = 0 walls induce viscous
and thermal boundary layers, which damp the acoustic waves. The thickness of the
viscous boundary layer δν and the thermal boundary layer δT depends on the oscillation
frequency (Beltman, 1999b): δν(ω) =

√
µvis/(ρbω) = δT

√
Pr. The non-dimensional
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viscous and thermal boundary layers thicknesses, δ̃ν(ω), δ̃T (ω), are:

δ̃2
ν(ω) = δ2

ν(ω)
L2 = 1

R̃e
ωac

ω
, δ̃2

T (ω) = δ2
T (ω)
L2 = 1

P̃e
ωac

ω
, (2.20)

where ωac = t−1
ac is the characteristic acoustic frequency. If the oscillation frequency, ω,

is similar to or smaller than the acoustic frequency, ωac, then the viscothermal effects
cannot be ignored for general R̃e, P̃e. This is true for inkjet printhead microchannels:
the fluid viscosity is of order 10−2 Pa·s, the speed of sound is 103 ms−1, and the channel
width is of order 100µm, which results in ωac = 10 MHz. For inks used in inkjet
printers, with 10 < Pr < 30 (Seccombe, 1997), δ̃T ∼ 0.025. At the typical operational
frequency of ω = 100kHz the viscous boundary layer thickness is then δ̃ν ∼ 0.1. The
thermal boundary layer thickness is smaller by a factor of

√
Pr .

In the absense of inhomogeneous initial or boundary condition on T̃ (1), thermal
dissipation becomes less influential as γth decreases towards 1. The energy equation
(2.19c) can be rewritten as a heat equation with a source term:

∂

∂tac

T̃ (1) − 1
P̃e

∆T̃ (1) = (γth − 1) P̃ (1).

If γth → 1, the magnitude of the temperature variable is small: T̃ (1) ∼ (γth − 1) P̃ (1) ≪
P̃ (1), and T̃ (1) can be ignored in the continuity equation (2.19a):

∂

∂tac

P̃ (1) +∇iũ
(1)
i = ∂

∂tac

(
T̃ (1) − (γth − 1) P̃ (1)

)
= O (γth − 1) .

In this case, the continuity and the momentum equations become independent of the
temperature component, and the oscillating flow is governed by the viscous acoustic
equations. We retain the energy equation such that further analysis is applicable
for all possible values of γth. The thermal contribution can be omitted in numerical
simulations of a flow in inkjet microchannels, unless the flow is driven by thermal
effects.

2.3 Thermoviscous acoustic flow

2.3.1 General formulation

The thermoviscous acoustic flow is formulated in terms of the pressure, velocity, and tem-
perature acoustic variables that constitute the acoustic state vector, q(x, t) ≡ (u, P, T ).
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The acoustic flow is defined in a one-, two-, or three-dimensional nondeforming domain
Ω ⊂ Rd, d = 1, 2, 3, where ∂Ω = ⋃Γi ⊂ Rd−1 is the boundary. The temporal domain
of the problem is T = {t : 0 < t < tf}, where tf is the final time. The joint time-space
domain is Σ = (Ω× T ). We write the governing equation (2.19) in matrix form:

∂

∂t
Aq(x, t) + Bq(x, t) = 0 in Σ,

A ≡


1 0 0

0 γth −1

0 −1 1
γth−1

 , B ≡


− 1

R̃e∇jτ ij ∇i 0
∇i 0 0
0 0 − ∆

(γth−1)P̃e

 .

(2.21a)

(2.21b)

Here τ ij is a viscous stress tensor operator: τ ijui ≡ τij. We introduce the symmetric
stress tensor, σij:

σij ≡ −Pδij + 1
R̃e
τij. (2.22)

The thermoviscous acoustic problem initial condition at t = 0 is

q(x, t = 0) = q0(x). (2.23)

For the domain boundaries ∂Ω = ⋃Γi, either the velocity U or force f is prescribed
at the boundary. We apply homogeneous no slip and stress-free boundary conditions
by setting U = 0 on no slip boundaries, and f = 0 on stress-free (outlet) boundaries:

u = U on Γin, u = 0 on Γw,

σijnj = fi on Γforce, σijnj = 0 on Γout.

(2.24a)
(2.24b)

The same applies to the temperature and heat flux boundary conditions, and the
homogeneous isothermal and adiabatic boundary conditions:

T = T0 on Γth,
∂T

∂n
= κthQheat on Γheat,

T = 0 on Γisoth,
∂T

∂n
= 0 on Γadiab.

(2.25a)

(2.25b)

It is possible for a boundary condition to represent a particular physical phenomenon,
in which case the boundary velocity (or stress) is a function of the acoustic state,
u(x, t) = u (q(x′, t′)) on Γ. If x ̸= x′ or t > t′, the boundary condition is non-local in
space or time.
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2.3.2 Frequency domain and the eigenvalue problems

The unsteady thermoviscous acoustic problem can be analysed in the frequency domain.
The thermoviscous acoustic problem (2.21) is linear in q, and we perform a Fourier
transform q(x, t) F−→ q̂ω(x) for a real-valued frequency ω ∈ R and a complex frequency
mode q̂ω. If any of the boundary conditions are nonlinear in q, we would also need to
linearize them. The time-harmonic equation for a given frequency ω is

Find q̂ω(x) such that
iωAq̂ω + Bq̂ω = 0 in Ω.

(2.26)

For the thermoviscous acoustic eigenvalue problem, we linearize the acoustic state
q = q0 + δq and the boundary conditions, and perform a modal decomposition of
the acoustic flow perturbation δq(x, t) = q̂(x)est. The time derivative operator acts
as ∂

∂t
→ s. We solve the eigenvalue problem and find the complex eigenfunctions

q̂ = (û, P̂ , T̂ ) and the corresponding complex eigenvalues s = σ + iω, where −σ is the
decay rate and ω is the angular frequency of the mode:

Find s, q̂(x) such that
sAq̂ + Bq̂ = 0 in Ω,
s = σ + iω.

(2.27)

The time-harmonic inhomogeneous velocity and force boundary conditions, and the
homogeneous no slip and stress-free boundary conditions are equivalent to the unsteady
boundary conditions (2.24). All boundary conditions of the eigenvalue problem (2.27)
have to be homogeneous: a no slip condition is applied on both the no slip walls and
the inflow boundaries, and a stress-free condition is applied on the both outlet and
forced boundaries:

û = 0 on Γw
⋃

Γin, σ̂ijnj = 0 on Γfree
⋃

Γforce. (2.28)

Similarly, the isothermal and adiabatic boundary conditions are:

T̂ = 0 on Γisoth,
∂T̂

∂n
= 0 on Γadiab. (2.29)

If the domain Ω is a symmetric domain, let yz (for 3D problems) or y (for 2D
problems) be the symmetry plane located at x = 0, and Ωs1,Ωs2 be the symmetric
subdomains: Ω = Ωs1

⋃Ωs2 and Γsym ≡ Ωs1
⋂Ωs2. We might want to employ the
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symmetry of the eigenmodes q̂ in Ω, and solve a smaller eigenvalue problem in a
subdomain Ωs1 (or Ωs2). The spectrum and the eigenmodes of the original problem
can be found by solving the eigenvalue problem in Ωs1 with the additional boundary
conditions on the symmetry boundary Γsym. From (2.19b) we notice that the parity
of the velocity x-component ûx = û · ex is different from the velocity y, z-components
ûy, ûz and pressure P̂ :

ûx(−x, y, z)
ûx(x, y, z) = − ûy(−x, y, z)

ûy(x, y, z) = − ûz(−x, y, z)
ûz(x, y, z) = − P̂ (−x, y, z)

P̂ (x, y, z)
.

From (2.19c), the parity of the pressure P̂ and the temperature T̂ functions are the
same: P̂ (−x, y, z)/P̂ (x, y, z) = T̂ (−x, y, z)/T̂ (x, y, z). Due to the symmetry of the
original problem, the components of the eigenmodes can be either even or odd, and
therefore there are two possible solutions in the subdomain Ωs1 depending on the choice
of the symmetry boundary type. The first type of symmetry boundary conditions

σ̂ijnj = 0, T̂ = 0 on Γsym (2.30)

results in ûx being an even function and ûy, ûz, P̂ , T̂ being odd functions. The second
type of symmetry boundary conditions

û · ex = û · n = 0, ∂T̂
∂n

= 0 on Γsym (2.31)

results in ûx being an odd function and ûy, ûz, P̂ , T̂ being even functions. The set of
eigenvalues and eigenmodes of (2.27) is a union of the eigenvalues and eigenmodes of
the smaller eigenvalue problems in Ωs1 with the symmetry boundary conditions of the
first and second type.

Robin boundary conditions

The inkjet microchannel walls are not fully rigid, and displace in reaction to the flow
on the boundary. A typical wall displacement is 10 − 20 nm (Wijshoff, 2010) and
is small in comparison to the channel width. Modelling this phenomenon as a full
fluid structure interaction problem is excessive. The boundary reaction to the acoustic
perturbations can be modelled via the impedance boundary condition that links the
acoustic pressure and velocity on the boundary (Myers, 1980). The compliance of the
walls against a stress from the flow can be computed from the wall thickness, Young’s
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modulus of elasticity, and Poisson’s ratio (Timoshenko and Woinowsky-Krieger, 1959).
For viscous flow, the force applied to a surface is a sum of the pressure and viscous
stress. The impedance boundary condition is

Zûi = σ̂ijnj on Γimped. (2.32)

Here we neither restrict the tangential velocity to be zero nor forbid tangential displace-
ments of the compliant boundary. As the boundary impedance tends to zero, Z → 0,
the boundary becomes a stress-free surface, σ̂ijnj → 0. For large values, Z →∞, the
boundary becomes a no slip rigid wall, û→ 0.

Similarly, the thermal accommodation coefficient αw : Re(αw) ≥ 0 can be introduced
to describe the temperature boundary condition (Beltman, 1999b; Carslaw and Jaeger,
1986),

T̂ = −αw
∂T̂

∂n
on Γaccom. (2.33)

As |αw| → 0, the boundary becomes isothermal. As |αw| → ∞, the boundary becomes
adiabatic.

The domain boundaries can have non-uniform compliance and thermal properties.
The boundary impedance and thermal accommodation coefficients are non-uniform
frequency dependent functions, Z = Z(x, s), αw = αw(x, s) on ∂Ω.

In summary, the velocity and temperature boundary conditions can be generalized
to Robin boundary conditions (2.32, 2.33), with special cases for rigid and stress-free
boundaries:

Z = 0 on Γw, Z−1 = 0 on Γout,

αw = 0 on Γisoth, α−1
w = 0 on Γadiab.

(2.34a)
(2.34b)

Using the universal parameters, Z and αw, to describe all boundary types is convenient
for formulation of the boundary value problem and further analysis.

2.3.3 Weak formulation and energy norms

To construct the weak formulation of the acoustic problem (2.21), we choose a Hilbert
function space W of test functions on a non-deforming domain Ω. We introduce the
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pressure P, velocity V, and temperature T spaces,

W = P× V× T,

V =
{

v ∈
(
H1(Ω)

)d
: v = 0 on Γw

⋃
Γin

}
,

P =
{
w ∈ L2(Ω)

}
,

T =
{
q ∈ H1(Ω) : q = 0 on Γisoth

⋃
Γth

}
.

(2.35a)

(2.35b)

(2.35c)

(2.35d)

Weak formulation of the unsteady thermoviscous acoustic problem

We start by introducing the weak form of the unsteady thermoviscous problem. We
multiply the state equations by a vector of test functions p ≡ (v, w, q) ∈ W and
integrate over the volume,

〈
p, ∂

∂t
Aq + Bq

〉
Ω

= 0. After integration by parts the terms
with the highest (second) order spatial derivatives once, we obtain the weak formulation
of the problem:

a

(
p,

∂

∂t
q
)

+ b (p,q) + bΓ (p,q) = 0 ∀p ∈W, (2.36)

where the bilinear form b (p,q) represents the volume terms that appear after the
integration by parts, and bΓ (p,q) represents the boundary components of the weak
form:

a (p,q) ≡ ⟨p,Aq⟩Ω = ⟨w, ρ⟩Ω + ⟨v,u⟩Ω + ⟨q, s⟩Ω ,

b (p,q) ≡ ⟨q,∇iui⟩Ω − ⟨∇ivi, P ⟩Ω +
〈
∇jvi,

1
R̃e
τij

〉
Ω

+
〈
∇jq,

1
(γth − 1)P̃e

∇jT

〉
Ω
,

bΓ (p,q) ≡ −{vi, σijnj}∂Ω −
{
q,

1
(γth − 1)P̃e

∂T

∂n

}
∂Ω
.

(2.37a)

(2.37b)

(2.37c)

The term bΓ (p,q) is a linear form on the boundaries with Dirichlet and Neumann type
of boundary conditions (2.24, 2.25), bΓ = bΓ (q). On the boundaries with homogeneous
boundary conditions it is zero, bΓ = 0.

We define total acoustic energy Eac (Chu, 1965), volume dissipation Rac, and
boundary energy flux F corresponding to the thermoviscous acoustic problem (2.21)
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as
Eac = 1

2a (q,q) = 1
2 (⟨P, ρ⟩Ω + ⟨u,u⟩Ω + ⟨T, s⟩Ω) ,

Rac = b (q,q) =
〈 1

R̃e
τij,∇s

jui

〉
Ω

+
〈
∇jT,

1
(γth − 1)P̃e

∇jT

〉
Ω
,

F = −bΓ (q,q) = {ui, σijnj}∂Ω +
{
T,

1
(γth − 1)P̃e

∂T

∂n

}
∂Ω
,

(2.38a)

(2.38b)

(2.38c)

where ∇s
jui is a symmetric gradient ∇s

jui = 1
2 (∇jui +∇iuj). Using the definitions of

the acoustic density and entropy (2.18), the acoustic energy is non-negative for γth > 1:

u2 ≥ 0, ρP + sT = γthP
2 − 2PT + T 2

γth − 1 ≥ 0,

and, therefore, the total acoustic energy Eac is non-negative.
The volume-averaged energy balance equation is obtained by choosing the state

vector q as the test function in (2.36):

d

dt
Eac + Rac = F. (2.39)

The energy changes due to the viscous and thermal effects inside the domain, and
the energy flux through the domain boundaries. The total boundary energy flux is
a sum of the energy fluxes through all domain boundaries: F = ∑

k
FΓk . The kinetic

component of the energy flux {ui, σijnj} is naturally zero on the no slip and stress-free
boundaries, and the thermal component

{
T, 1

(γth−1)P̃e
∂T
∂n

}
is zero on the adiabatic and

isothermal boundaries.

Weak formulation of the thermoviscous acoustic eigenvalue problem

We proceed with the analysis of the thermoviscous acoustic eigenvalue problem (2.27).
The natural frequency s is a complex value s = σ + iω, and the state vector q̂ is a
complex function, q̂ ≡ Re(q̂) + iIm(q̂) = q̂R + iq̂I . The operator A is symmetric and
real (2.21b), and the operator B can be complex, B = BR + iBI (for instance, due to
the azimuthal components of the flow state in cylindrical domains). For computational
convenience, we construct the eigenvalue problem in weak form in terms of real operators
and functions. We split the eigenvalue problem into real and imaginary components,
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and write it in matrix form:
 σ −ω

ω σ


 A 0

0 A


 q̂R

q̂I

+

 BR −BI

BI BR


 q̂R

q̂I

 = 0. (2.40)

We introduce two test functions pR and pI that belong to the space W: pR,pI ∈W.
By testing the matrix equation (2.40) against the vector

(
pR,pI

)
, integrating over

the volume and applying the boundary conditions, we obtain the following weak
formulation:

σ
(
αR(q̂R) + αI

(
q̂I
))

+ ω
(
−αR

(
q̂I
)

+ αI
(
q̂R
))

+ βRR
(
q̂R
)
− βRI

(
q̂I
)

+ βIR
(
q̂I
)

+ βII
(
q̂R
)

= 0 ∀pR ∈W, ∀pI ∈W,
(2.41)

where αj, βjk are useful real-valued operators defined by

αj(·) = a
(
pj, ·

)
, j = R, I,

βjk(·) = bk
(
pj, ·

)
+ bk

Γ

(
pj, ·

)
, j = R, I, k = R, I.

Since the test functions pR,pI are independent, we can fix pR = 0 and test the
problem against pI , and vice versa. This is equivalent to writing the weak formulation
(2.41) in matrix form:

 σ −ω

ω σ


 αR 0

0 αI


 q̂R

q̂I

+

 βRR −βRI

βII βIR


 q̂R

q̂I

 = 0. (2.43)

The equation (2.43) represents the weak form of the eigenvalue problem (2.27), where
all operators (αj, βjk) and state functions (q̂R, q̂I) are real.

The problem (2.43), however, is not in the form of an eigenvalue problem; to
find s ≡ σ + iω and q̂R, q̂I we will work with an auxiliary problem. We introduce
two complex functions φ, ψ defined in the same function space as q̂. The auxiliary
eigenvalue problem is: find ι, (φ, ψ) such that

ι

 αR 0

0 αI


 φ

ψ

+

 βRR −βRI

βII βIR


 φ

ψ

 = 0. (2.44)
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As discussed by Brewster (2020), the weak solution of the original eigenvalue problem
(2.27) can be recovered from the eigenvalue ι and the eigenmode (φ, ψ) of the problem
(2.44) as

s = ι,

q̂R = Re(φ)− Im(ψ),
q̂I = Im(φ) + Re(ψ).

(2.45)

We introduce the spectral energy norm, Êac:

Êac = a (q̂, q̂) = ⟨û, û⟩Ω +
〈
P̂ , ρ̂

〉
Ω

+
〈
T̂ , ŝ

〉
Ω
. (2.46)

The total energy Eac = Êace
2st decays in time as e2σt. We substitute the real and

imaginary components of the eigenmode q̂ into the bilinear forms (2.41) instead of
pR,pI , and express the the decay rate σ of the mode:

σ = bR(q̂R, q̂R) + bR
Γ (q̂R, q̂R) + bR(q̂I , q̂I) + bR

Γ (q̂I , q̂I)
a(q̂R, q̂R) + a(q̂I , q̂I)

+ bI(q̂I , q̂R) + bI
Γ(q̂I , q̂R)− bI(q̂R, q̂I)− bI

Γ(q̂R, q̂I)
a(q̂R, q̂R) + a(q̂I , q̂I)

(2.47)

In the absence of the imaginary component BI (no azimuthal component, i.e. no swirl)
the operator βj,I is identically zero, and the decay rate expression simplifies to

σ ≡ Re(s) = 1
Êac

〈
− 1

2R̃e
τij∇s

jû
∗
i −

1
(γth − 1)P̃e

∣∣∣∇iT̂
∣∣∣2〉

Ω

+ 1
Êac

− Re(αw)
(γth − 1)P̃e

∣∣∣∣∣∂T̂∂n

∣∣∣∣∣
2

+ Re(Z) |û|2


∂Ω

≡ 1
Êac

(∫
Ω
σΩdx +

∫
∂Ω
σ∂Ωds

)
.

(2.48)

The decay rate σ is a sum of volumetric energy dissipation σΩ and the surface energy
transfer σ∂Ω: σ = σΩ + σ∂Ω. The volumetric energy dissipation of the acoustic
perturbation consists of viscous and thermal dissipation and is always negative, σΩ ≤ 0,
while the surface energy transfer of the acoustic perturbation depends on the heat
losses through the boundary and the work done by or on the fluid at the boundary.
The surface energy transfer vanishes on the rigid and stress free boundaries (2.34a)
and adiabatic and isothermal boundaries (2.34b), and therefore their contribution to
σ∂Ω is zero.
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Similarly to (2.48), the expression for ω can be obtained by substituting (−q̂I , q̂R)
instead of pR,pI in (2.41):

ω = bR(q̂I , q̂R) + bR
Γ (q̂I , q̂R)− bR(q̂R, q̂I)− bR

Γ (q̂R, q̂I)
a(q̂R, q̂R) + a(q̂I , q̂I)

+ bI(q̂R, q̂R) + bI
Γ(q̂R, q̂R) + bI(q̂I , q̂I) + bI

Γ(q̂I , q̂I)
a(q̂R, q̂R) + a(q̂I , q̂I)

(2.49)

In the absence of the imaginary component BI the operator βj,I is identically zero, and
the frequency expression simplifies to

ω ≡ Im(s) = 2
Êac

〈
P IdivuR − PRdivuI

〉
Ω

+ 1
Êac

− Im(αw)
(γth − 1)P̃e

∣∣∣∣∣∂T̂∂n

∣∣∣∣∣
2

+ Im(Z) |û|2


∂Ω

≡ 1
Êac

(∫
Ω
ωΩdx +

∫
∂Ω
ω∂Ωds

)
.

(2.50)

The oscillation frequency ω is a sum of volumetric ωΩ and surface ω∂Ω components.

2.3.4 Time discretization

To discretize the unsteady problem (2.36) in time, we divide the time domain T into
N intervals of length ∆t. The discrete time domain is Th = {tn ≡ n∆t, n = 0 . . . N}.
A function of time f(t) evaluated on Th at tn is denoted as fn ≡ f(tn). A value of the
time-discrete function at an intermediate time tn+θ = (1− θ)tn + θtn+1, 0 ≤ θ < 1 is
approximated by a weighted linear combination of the closest discrete values, f(tn+θ) ≡
fn+θ = (1 − θ)fn + θfn+1. We approximate the discrete time derivative of the first
order as ∂tf

n+θ = fn+θ+ 1
2 −fn+θ− 1

2
∆t

.
Following Bangerth et al. (2010), the mid-point rule θ = 1

2 is chosen to discretize the
unsteady thermoviscous acoustic equations by a finite difference scheme. This choice of
θ is equivalent to the non-dissipative, dispersive, second order accurate Crank-Nicolson
scheme (Thomas, 2013). We choose a non-dissipative scheme because we want to
minimize the error in the acoustic energy due to the numerical effects.

The time discrete form of the unsteady thermoviscous acoustic problem is: given
the initial acoustic state q0 = q0, for each n = 0, . . . , N − 1 find qn+1 such that

a
(
p, ∂tqn+ 1

2
)

+ b
(
p,qn+ 1

2
)

+ b
n+ 1

2
Γ

(
p,qn+ 1

2
)

= 0 ∀p ∈W, (2.51)
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where qn+ 1
2 ≡ (un+ 1

2 , P n+ 1
2 , T n+ 1

2 ), and the boundary operator bn+ 1
2

Γ is defined at tn+ 1
2 .

For example, the stress component of bΓ on a boundary Γforce with prescribed force
boundary condition f(t) is

{
v, fn+ 1

2
}

Γforce
. For each time step, we solve the following

linear variational problem: find qn+1 such that

1
∆ta

(
p,qn+1

)
+ 1

2
(
b
(
p,qn+1

)
+ bn+1

Γ

(
p,qn+1

))
= Ln(p) ∀p ∈W. (2.52)

Here Ln : W→ R is a linear form that includes data from the previous time step and
inhomogeneous boundary conditions:

Ln(p) = 1
∆ta (p,qn)− 1

2
(
b (p,qn) + bn

Γ (p,qn) + bn+1
Γ (p)

)
. (2.53)

2.3.5 Spatial discretization

We derive the FEM approximation of the thermoviscous acoustic problem and the weak
components (2.37). We divide the acoustic domain Ω into triangular elements with
local discretization size h (Geuzaine and Remacle, 2009); the discrete spatial domain is
Ωh. The test ph and trial qh functions are continuous polynomial functions of degree
(rP , ru, rT ) defined on a corresponding discrete space Wh = (Ph × Vh × Th) ⊂W in Ωh.
The discrete spatial scalar products Wh ×Wh → R are denoted ⟨·, ·⟩Ωh

and {·, ·}∂Ωh
.

In this study, we use a second order polynomial approximation of the velocity and tem-
perature components ru = rT = 2, so Vh,Th = {ψ ∈ C0(Ω) : ψ|K ∈ P2(K) ∀K ∈ Ωh},
and a first order polynomial approximation of the pressure component rP = 1, so that
Ph = {ψ ∈ C0(Ω) : ψ|K ∈ P1(K) ∀K ∈ Ωh} (Kampinga et al., 2010).

We construct the FEM approximation of the weak form components (2.37): a (ph,qh),
b (ph,qh) and bΓ (ph,qh) using the UFL form language (Alnæs et al., 2014) and the
FEniCS form compiler FFC (Alnæs et al., 2015; Kirby and Logg, 2006). For the
unsteady problem, we define the initial discrete state vector q0

h as a FEM interpolation
of the original initial condition q(t = 0). For each of the problems of interest (unsteady
acoustics (2.51), frequency domain and eignevalue problems (2.44)) we use the dis-
crete components in the respective weak formulations. A python package firecrest
(Kungurtsev, 2020a) was developed to automate the initialization and solution of 2D
thermoviscous acoustic problems using finite element (detailed in appendix A.2).
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ΓC−N

ΓN−C

Γfree

u(t)

r

x

Γw

HCL

Rn

Fig. 2.4 Fluid inside a cylindrical nozzle domain Ωn is bounded by the solid walls Γw
and the free surface Γfree, and connects to the channel domain Ωc through ΓN−C. Rn is
the nozzle radius, and HCL is the distance from the boundary between the nozzle and
channel domains and the free surface at rest.

2.4 Nozzle flow reduced order models

A nozzle is an integral part of any inkjet system. It is an axisymmetric cylindrical
tube or an orifice in a solid base of a microchannel. Nozzle dimensions and shapes
are determined by many parameters, such as the manufacturing technology, type of
ink, and printing conditions. We assume that the volume of the nozzle part of the
microchannel is much smaller than the total volume of the microchannel, which is
true for most inkjet drop on demand printheads. A typical radius Rn of a nozzle of
a modern inkjet printer is 10 − 50µm (Chen and Basaran, 2002), and the length of
the nozzle (the base plate thickness or the length of the nozzle tube) is approximately
20−100µm. Depending on the application, nozzles can have cylindrical, conical, barrel,
or bell mouth (Knol, 2017) shapes. We envisage that custom nozzle shapes that are
optimized for particular microchannels, ink properties, and operational conditions will
be necessary to print at ultrahigh speed (more than MHz droplet ejection frequency).

For the fluid density ρ = 103 kg m−3 and surface tension coefficient γdim = 50 · 10−3

N m−2, the capillary time scale is tγ =
√
ρR3

n/γdim = 10−5 s (Popinet, 2018; Rayleigh,
1879). The ratio of fluid inertia to surface tension is given by the Weber number. For
a characteristic velocity of the flow |u| = 0.1 ms−1 and large deformations of the free
surface (the curvature radius of the free surface equals the nozzle radius), the ratio of
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fluid inertia to surface tension is small:

We = ρ |u|2 Rn

γdim
= 2.0 · 10−3.

The ratio of viscous forces to surface tension is also small:

Ca = µvis |u|
γdim

= 2.0 · 10−2,

where µvis = 10−2 Pa·s is the dynamic viscosity. In section 2.4.1, we show that the
fluid inertial and viscous forces cannot be ignored for small amplitude deformations of
the free surface.

The fluid inside the nozzle is enclosed between rigid walls Γw and a free surface Γfree

which is a multiphase interface between the fluid and the outside gas. Direct simulation
of the free boundary problem, namely formation and pinch-off of an ink droplet and
subsequent relaxation of the free surface, and sensitivity analysis of such a system are
computationally expensive. In order to avoid explicit modelling of the acoustic flow
boundary conditions on the moving free surface, we decompose the original domain
into two non-overlapping subdomains. We separate a small part of the physical domain
that encloses the multiphase interface from the rest of the microchannel by a (virtual)
flat shared boundary, and call this part of the printhead domain a nozzle subdomain.

Let Ωn denote the nozzle subdomain, and Ωc denote the remaining static part of the
microchannel. The shared boundary is denoted by ΓC−N ⊂ ∂Ωc and ΓN−C ⊂ ∂Ωn, such
that n|ΓC−N

= − n|ΓN−C
. The position of the shared boundary does not change over

time. We assume that Ωn is entirely inside the microchannel’s nozzle, or equivalently
that the free surface and the shared boundary never intersect. Figure 2.4 shows the
decomposition of the nozzle part of the original physical domain into the channel
subdomain (orange) and the nozzle subdomain (blue). We consider that the radius
of the cylindrical nozzle domain equals Rn = 10µm, and the distance between the
shared boundary and the free boundary at rest (the fluid-solid-air contact line at rest)
is HCL = 10µm.

We need to define a set of boundary conditions on ΓC−N,ΓN−C for the flow fields
inside Ωc and Ωn that are consistent with the original problem. Some numerical studies
of the free boundary problem allow mass exchange between the domain with a free
surface (Ωn) and the rest of the channel (Ωc), and suggest using a force boundary
condition on ΓN−C (Fumagalli et al., 2018). The shared boundary ΓN−C can also be
treated as an inflow boundary with the flow velocity prescribed on it (Miers and Zhou,
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2017; Wu et al., 2004). In both formulations, the boundary condition on ΓN−C is
provided by the state of the acoustic channel flow on ΓC−N ⊂ Ωc. Here we choose the
velocity Dirichlet boundary condition on ΓN−C, and therefore the flow inside Ωc has the
Neumann stress boundary condition prescribed on ΓC−N. Let qc denote the flow state
in Ωc, and qn denote the flow state in Ωn. A generic form of the boundary conditions
is

qc : σijnj = fi(qn) on ΓC−N,

qn : u = u(qc) on ΓN−C.

(2.54a)
(2.54b)

It is possible to apply existing simulation techniques to solve the free boundary
problem inside the nozzle subdomain given the inflow boundary condition, calculate
the force applied to the shared boundary ΓN−C, and couple the nozzle flow to the
channel flow via (2.54). This can be done using a one-dimensional approximation
of the axisymmetric incompressible flow (Eggers and Dupont, 1994; Jiang and Tan,
2018), interface capturing methods (Galusinski and Vigneaux, 2008b; Wu et al., 2004;
Zahedi et al., 2009), or explicit computation of the domain motion (Donea et al., 2017;
Fumagalli et al., 2018; Gerbeau et al., 2003). In this study we do not focus on accurate
tracking of the exact position of the multiphase interface and the exact solution of the
flow field in Ωn. Instead, we introduce several approximations on the nozzle domain
flow field and the shape of the free surface, and discuss a reduced order model based
on conservation of mass and energy in Ωn. We calculate the force field on ΓC−N acting
on the acoustic channel flow from the nozzle using the reduced order model.

2.4.1 Conservation laws in the nozzle subdomain

We start by deriving volume and mass conservation equations in the moving nozzle
domain Ωn = Ωn(t). A vector field w defines the domain deformation due to the
movement of the free boundary Γfree. The relationship between w and u depends on
the type of boundary. On Γw both the domain and the fluid velocities have zero normal
component (2.55a). On Γfree the flow velocity and the domain velocity are equal in
the normal direction (2.55b). On ΓN−C there is no deformation although there is mass
flow through this boundary (2.55c).

w · n = u · n = 0 on Γw.

w · n = u · n on Γfree.

w · n = 0 on ΓN−C.

(2.55a)
(2.55b)
(2.55c)
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The algebraic relation between the time derivative of the nozzle volume |Ωn(t)| and
the velocity of the free surface, although obvious, can be derived rigorously with the
Reynolds transport theorem by considering the time derivative of a volume functional
J = ⟨φ⟩Ω:

d

dt
J =

〈
∂

∂t
φ+ div(φw)

〉
Ω

=
〈
∂

∂t
φ

〉
Ω

+ {φw · n}∂Ω . (2.56)

By choosing φ ≡ 1,Ω = Ωn, the functional is the domain volume J = ⟨1⟩Ωn
≡ |Ωn|.

After applying the boundary condition (2.55), the time derivative of the nozzle volume
equals the normal flow at the free surface.

d

dt
|Ωn| = {w · n}Γfree

= {u · n}Γfree
.

By choosing φ ≡ ρ, and considering the continuity equation ∂tρ+ div(ρu) = 0 in Ωn,
the time derivative of the total mass inside the nozzle domain is

d

dt
⟨ρ⟩Ωn

= {ρ (w− u) · n}∂Ωn
= −{ρu · n}ΓN−C

.

The flow inside the nozzle (and therefore the free surface) is driven by the acoustic
inflow from the channel domain Ωc. The nozzle velocity on ΓN−C, u = cb

sϵU , is
determined by the acoustic velocity on ΓC−N: u = U . For a flow coming from the
axisymmetric nozzle part of the channel domain, we can neglect the velocity components
that are tangent to ΓC−N. Following the same strategy as in section 2.2.4, we expand
the density and velocity variables in terms of the oscillating flow Mach number,
ρ ≃ ρb

(
ρ(0) + ϵρ(1)

)
+ O (ϵ2) and u ≃ cb

sϵu(1) + O (ϵ2). We use the characteristic size
L of the channel domain Ωc as the reference length. The nondimensional volume and
mass conservation equations integrated over Ωn are:

d

dtac
|Ωn| = ϵ

{
u(1) · n

}
Γfree

+ O
(
ϵ2
)
,

d

dtac
|Ωn|+ ϵ

d

dtac

〈
ρ(1)

〉
Ωn

= −ϵ {U · n}ΓN−C
+ O

(
ϵ2
)
.

(2.57a)

(2.57b)

The fluid possesses a kinetic energy Kn ≡ ⟨ρu2⟩Ωn
/2 and a potential energy

Pn ≡ ⟨ρe⟩Ωn
. The amount of energy transferred through the shared boundary ΓN−C

and the free boundary Γfree is defined by the energy fluxes FN−C and Ffree, respectively.
The energy dissipates through viscous and thermal effects inside the fluid RΩn ≡〈
τij∇jui + κth (∇kT )2

〉
Ωn

and on the nozzle walls R∂Ωn ≡ {−uiσijnj − κthT∂nT}Γw

via wall friction and heat flux. The stress component of R∂Ωn is identically zero if the
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nozzle walls are modelled as no slip boundaries u = 0 on Γw. Next to the contact
line Γw

⋂Γfree no slip has to be replaced with the Navier boundary condition (Qian
et al., 2006; Ren and Weinan, 2007) that relates velocity to the tangential stress via
the wall friction coefficient: −βsuτ = (σijnj)τ on Γw, where (·)τ is the tangential
projection defined as aτ ≡ a − (a · n) n. The stress component of the wall dissipation
function then becomes {−uiσijnj}Γw

= {βsu2
τ}Γw

≥ 0. The volume-averaged energy
conservation equation is

d

dt
(Kn + Pn) + RΩn + R∂Ωn = FN−C + Ffree.

The energy flux on Γfree by construction equals the change of the free surface energy
Efree, and therefore the energy conservation equation can be rewritten as

d

dt
(Kn + Pn + Efree) + RΩn + R∂Ωn = FN−C.

The free surface energy is a sum of the potential energies of the fluid-gas interface,
fluid-solid interface, and solid-gas interface. Here the contact line is assumed static: the
distance between the shared boundary ΓN−C and the contact line is static d

dt
HCL = 0.

This implies that that contribution to the capillary force acting on the fluid in the nozzle
that arises due to the difference between the the fluid-solid and the gas-solid surface
coefficients (called the uncompensated Young stress on the contact line (Batchelor,
2000; Qian et al., 2003)) is neglected. Equivalently, the free surface energy is given
only by the potential energy of the fluid-gas interface Efree = {γdim}Γfree

.
We divide all terms of the energy conservation equation by ρbL2

(
cb

s

)3
and expand

the nondimensional variables in terms of the oscillating flow Mach number ϵ. The first
order terms cancel out due to (2.19), and the second order terms give

d

dtac

(
ϵ2K(2)

n + ϵ2P(2)
n

)
+ ϵ2R(2)

Ωn + ϵ2R(2)
∂Ωn = FN−C + Ffree + O

(
ϵ3
)
. (2.58)

For simplicity the flow in Ωn is assumed to be adiabatic: the entropy variation is
zero ϵs(1) ≡ 0, and therefore the potential energy P(2)

n equals
〈
P (1) · P (1)

〉
Ωn
/2. The

nondimensional energy flux through ΓN−C is

FN−C = ϵ2
{
Uiσ

(1)
ij nj

}
ΓN−C

.

The force applied to the nozzle flow from the free surface is σijnj = −γdimκni on
Γfree, where γdim is the surface tension coefficient of the liquid-gas interface, and κ is
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the curvature of the free surface. The nondimensional energy flux through Γfree is

Ffree = ϵ2
{
−γκn.d.u(1) · n

}
Γfree

,

where γ ≡ 2γdim/
(
ϵρb

(
cb

s

)2
Rn

)
is the nondimensional surface tension coefficient, and

κn.d. ≡ κRn/2 is the nondimensional curvature of the free surface.
The nondimensional energy of the free surface (divided by ϵ2) is Efree = ϵ−1 rn

2 γ |Γfree|.
We define the total energy of the nozzle system as

En ≡ Efree + K(2)
n + P(2)

n . (2.59)

We normalize the geometric quantities in the nondimensional conservation equations
(2.57b, 2.58) using the channel characteristic size L as the reference length. The
nondimensional radius of the nozzle domain is rn ≡ Rn/L. We introduce an effective
nondimensional height of the channel defined as the ratio between the nondimensional
volume of the nozzle domain and the area of the shared boundary:

hn ≡ |Ωn| / |ΓN−C| = |Ωn| /
(
πr2

n

)
. (2.60)

Volume integrals scale as ⟨·⟩Ωn
∼ hnr

2
n, and surface integrals scale as {·}Γw

∼ hnrn and
{·}ΓN−C

, {·}Γfree
∼ r2

n. In this study we consider that the nozzle height is considerably
shorter than the reference length, and expand the conservation equations in terms of
hn ≪ 1. If hnL ≃ L, however, then the terms proportional to hn cannot be ignored
and the flow should be directly modelled in the nozzle as well as in the channel.

Zero-order approximation, hn = 0

By setting hn to zero in (2.57b) and (2.58) we effectively neglect the flow energy and
the energy dissipation inside the nozzle domain. Mass and energy propagates directly
from the static shared boundary ΓN−C to the free surface Γfree. The zero-order mass
and energy conservation equations are:

−{U · n}ΓN−C
=
{
u(1) · n

}
Γfree

,{
Uiσ

(1)
ij nj

}
ΓN−C

=
{
γκn.d.u(1) · n

}
Γfree

.

(2.61a)

(2.61b)



40 Inkjet printhead flow models

From (2.61a), the zero-order nozzle volume conservation equation is expressed in terms
of the acoustic variables

d

dtac
|Ωn| = ϵ {u · n}ΓC−N

. (2.62)

Let γκ̂ be an effective pressure of the free surface, γκ̂
{
u(1) · n

}
Γfree

=
{
γκn.d.u(1) · n

}
Γfree

.
We substitute this into (2.61b) and use (2.61a) to obtain

{
Ui

(
σ

(1)
ij nj + γκ̂ni

)}
ΓN−C

= 0,

thereby the force acting on the shared boundary can be consistently approximated
by σ(1)

ij nj = −γκ̂ni on ΓN−C. Equivalently, the zero-order approximation to the force
boundary condition for the acoustic channel flow on ΓC−N is

σijnj = −γκ̂ni on ΓC−N. (2.63)

First-order approximation, 0 < hn ≪ 1

The next step is to retain the terms that are linear in hn to account for the fluid
compressibility, energy and dissipation in Ωn. We can estimate the magnitude of the
inertial term as ρbHCLω |u| ≃ 103 Pa for a characteristic flow velocity of |u| ≃ 0.1
ms−1 and a typical oscillation frequency ω ≃ 106 s−1. This is equivalent to pressure
generated by a free surface with a radius of curvature 100µm. Considering that the
radius of the nozzle is Rn = 10µm, the pressure drop due to the inertial and viscous
effects can be safely neglected when the free surface curvature is high (0.1 ≤ κ̂ ≤ 1),
but may not be negligible otherwise.

We start by expanding the flow velocity and pressure:

u(1) ≃ U |ΓN−C
+ O (hn) , P (1) ≃ P (1)

∣∣∣
ΓN−C

+ O (hn) in Ωn.

The expansion of the continuity equation (2.57b) reads

−{U · n}ΓN−C
=
{
u(1) · n

}
Γfree

+ d

dtac

〈
P (1)

〉
Ωn

≃
{
u(1) · n

}
Γfree

+ d

dtac

{
hnP

(1)
}

ΓN−C
+ O

(
h2

n

)
=
{
u(1) · n

}
Γfree

+ d

dtac
(γκ̂ |Ωn|) + O

(
h2

n

)
,
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and consequently the first-order nozzle volume conservation equation in terms of the
acoustic variables is

d

dtac
|Ωn| = ϵ {u · n}ΓC−N

− ϵ d

dtac
(γκ̂ |Ωn|) . (2.64)

In comparison to the zero-order approximation (2.62), the extra term on the right hand
side is proportional to hn and accounts for compressibility effects. Although ϵ d

dtac
|Ωn| κ̂

in (2.64) is of order ϵ2 and therefore small, we retain this term to be consistent with
the change of the potential energy of the nozzle flow.

Kinetic and potential energy of the nozzle flow K(2)
n ,P(2)

n and energy dissipation
R(2)

Ωn and R(2)
∂Ωn are approximated by the value of the integrand on ΓN−C:

2K(2)
n =

〈
u(1) · u(1)

〉
Ωn
≃ hn

{
u(1) · u(1)

}
ΓN−C

+ O
(
h2

n

)
= hn {U · U}ΓN−C

+ O
(
h2

n

)
,

2P(2)
n =

〈
P (1) · P (1)

〉
Ωn

= |Ωn| (γκ̂)2 + O
(
h2

n

)
,

and

R(2)
Ωn + R(2)

∂Ωn = 1
R̃e

(〈
τ

(1)
ij ∇ju

(1)
i

〉
Ωn

+
{
τ

(1)
ij nju

(1)
i

}
Γw

)
≃ −hn

R̃e
{
u(1) ·∆Γu(1)

}
ΓN−C

+ O
(
h2

n

)
= −hn

R̃e
{U ·∆ΓU}ΓN−C

+ O
(
h2

n

)
.

We substitute these approximations into the energy conservation equation, and apply
(2.57b). Up to first order in hn, the energy equation becomes

1
2
d

dtac
hn {U · U}ΓN−C

+ 1
2
d

dtac

〈
P (1) · P (1)

〉
Ωn
− hn

R̃e
{U ·∆ΓU}ΓN−C

=
{
Uiσ

(1)
ij nj

}
ΓN−C

+ γκ̂

(
{U · n}ΓN−C

+ d

dtac

〈
P (1)

〉
Ωn

)
+ O

(
h2

n

)
.

The pressure terms cancel out:

1
2
d

dtac

〈
P (1) · P (1)

〉
Ωn
− γκ̂ d

dtac

〈
P (1)

〉
Ωn
≃ O

(
h2

n

)
,

and the remaining expression can be rewritten as{
Ui

(
σ

(1)
ij nj + γκ̂ni − hn

d

dtac
Ui + hn

R̃e
∆ΓUi

)}
ΓN−C

= O
(
h2

n

)
.
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(Here the terms proportional to d
dtac

hn ∼ ϵ are neglected.) Similarly to the zero-order
case, we use the above expression to derive an approximation to the force acting on
the shared boundary that is consistent with the energy transfer through ΓN−C. Hence
the acoustic force boundary condition on ΓC−N is given up to first order in hn by

σijnj = −γκ̂ni − hn

(
d

dtac
ui −

1
R̃e

∆Γui

)
on ΓC−N. (2.65)

In comparison to the zero-order approximation (2.63), the new terms on the right hand
side are proportional to hn and account for the kinetic energy of the flow and viscous
dissipation inside the nozzle domain.

Summing up, we derive a force boundary condition for the acoustic flow in Ωc that
accounts for the potential and kinetic energy of the flow in the nozzle subdomain Ωn,
viscous dissipation, and the free surface energy. This boundary condition is a function
of the acoustic velocity on ΓC−N and the effective curvature of the free surface κ̂. While
the acoustic velocity field is given by the solution of the acoustic flow in the channel
domain itself, the curvature is calculated from a nozzle volume conservation equation
(2.62) or (2.64). In the next section we discuss the relationship between the nozzle
volume |Ωn| and the effective curvature κ̂.

2.4.2 Free surface parametrization

In this section we aim to develop a parametric reduced order model of the free surface
boundary Γfree. Inspired by experimental observations (Hsiao et al., 2011; van der
Meulen et al., 2016; Yang et al., 2014) and existing numerical models (Dijksman,
2019; Kim et al., 2014), we approximate the free surface as a spherical cap, Γfree ≃
Γ̂free, neglecting the presence of large wavenumber capillary waves k ≫ π/Rn. Van
Der Meulen et al. (2020) studies the effects of higher wave number disturbance shapes,
and shows that a much higher free surface acceleration magnitude is required for those
shapes to appear, in comparison to the smallest wavenumber mode. The axisymmetric
surface with the smallest energy - i.e. a spherical cap - is chosen as the starting point
for the present simulations.

Naturally, the uniform curvature of the approximate free surface coincides with the
effective curvature κ|Γ̂free

= κ̂, and this notation will be used to denote the uniform
curvature of Γ̂free. The uniform curvature of the surface Γ̂free is nondimensionalized by
the nozzle radius κ̂ = κRn/2, such that the free surface is a hemisphere when κ̂ = 1.
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The surface area
∣∣∣Γ̂free(κ̂)

∣∣∣ nondimensionalized by L2 equals

∣∣∣Γ̂free(κ̂)
∣∣∣ = r2

n

4
8π
κ̂2 (1− cos θ(κ̂)) , (2.66)

where cos θ(κ̂) ≡
√

1− κ̂2. The nondimensional energy of the free boundary with
uniform curvature (divided by ϵ2) equals Êfree = ϵ−1γ rn

2

∣∣∣Γ̂free

∣∣∣.
The nozzle volume |Ωn| consists of the volume between the shared boundary ΓN−C

and the plane of the free surface contact line, and the volume
∣∣∣Ω̂n

∣∣∣ enclosed between
the plane of the free surface contact line and the free surface:

|Ωn| = πr2
n

HCL

L
+
∣∣∣Ω̂n

∣∣∣ = πr2
nhCL + r3

n

8
8π
3

1
κ̂3 (2 + cos θ(κ̂)) (1− cos θ(κ̂))2 .

The effective height of the channel hn (2.60) and the derivatives of the surface area
and enclosed volume are functions of κ̂:

hn = hn(κ̂) = hCL + rn

3
1
κ̂3 (2 + cos θ(κ̂)) (1− cos θ(κ̂))2 ,

8
r3

n

d
∣∣∣Ω̂n(κ̂)

∣∣∣
dκ̂

= 4
r2

n

1
κ̂

d
∣∣∣Γ̂free(κ̂)

∣∣∣
dκ̂

= 8π
κ̂4

(1− cos θ(κ̂))2

cos θ(κ̂)

(2.67a)

(2.67b)
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Fig. 2.5 Nondimensional area and volume of a spherical cap as functions of the uniform
curvature variable κ̂.

As discussed before, we assume that the position of the contact line does not change
over time d

dt
HCL = L d

dt
hCL = 0, and therefore d

dtac
|Ωn| = d

dtac

∣∣∣Ω̂n(κ̂)
∣∣∣. The nozzle
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volume conservation equation (2.64) then becomes an ODE on the uniform curvature
κ̂: d

∣∣∣Ω̂n(κ̂)
∣∣∣

dκ̂

 d

dtac
κ̂ = ϵ {u · n}ΓC−N

− ϵ |Ωn(κ̂)| d

dtac
γκ̂.

Given an initial condition κ̂(t = 0) = κ̂0, we can integrate this equation to calculate
the uniform curvature at any time t:

κ̂(t) = κ̂0 +
∫ t

0
dt
d

∣∣∣Ω̂n(κ̂)
∣∣∣

dκ̂
+ ϵγ |Ωn(κ̂)|

−1

ϵ {u · n}ΓC−N
. (2.68)

The term ϵγ |Ωn(κ̂)| is the sum of the static ϵγhCL |ΓC−N| and dynamic ϵγ
∣∣∣Ω̂n(κ̂)

∣∣∣
components. The contribution of the dynamic component ϵγ

∣∣∣Ω̂n(κ̂)
∣∣∣≪ d|Ω̂n(κ̂)|

dκ̂
is of

order ϵ2, and can be neglected. This means that we consider the compressibility effects
and potential energy of the nozzle flow only between the shared boundary and the
static contact line. Under this assumption, the curvature state equation is

d

dtac

∣∣∣Ω̂n(κ̂)
∣∣∣ = ϵ {u · n}ΓC−N

− ϵhCL |ΓC−N|
d

dtac
γκ̂,

κ̂(t) = κ̂0 +
∫ t

0
dt
d

∣∣∣Ω̂n(κ̂)
∣∣∣

dκ̂
+ ϵγhCL |ΓC−N|

−1

ϵ {u · n}ΓC−N
.

(2.69a)

(2.69b)

Finally, we substitute (2.67a) and (2.69b) into the acoustic stress boundary condition
(2.65) which becomes a nonlinear (through the curvature term κ̂) impedance boundary
condition that depends only on the acoustic variables.

The proposed model is well-defined for −1 ≤ κ̂ ≤ 1. If the absolute value of
the volume

∣∣∣Ω̂n

∣∣∣ exceeds 2
3πr

3
n the surface can no longer be parameterized only by

the uniform curvature κ̂. Thus we would need to extend the free surface reduced
order model, for example by taking into account the motion of the contact line. The
generalized Navier boundary condition is a promising candidate for the moving contact
line model, as discussed by Fumagalli et al. (2018); Gerbeau et al. (2003); Qian et al.
(2003).
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2.5 Nozzle boundary conditions for the acoustic
flow problems

We combine the acoustic stress boundary condition (2.65) and the uniform curvature free
surface parametrization (2.67a) and (2.69b). The acoustic stress boundary condition
then depends only on the acoustic velocity at the target boundary, explicitly via
the inertial and viscous term, and implicitly via the curvature term. The nonlinear
(through the curvature term κ̂) impedance boundary condition approximates the flow
field and the free surface inside the nozzle domain Ωn. We simplify the nonlinear
term hn

(
d

dtac
ui − 1

R̃e∆Γui

)
in the stress boundary condition (2.65) by considering the

inertial and viscous effects only in the static part of the nozzle domain, and replace hn

with hCL.

σijnj = −γκ̂ni − hCL

(
d

dtac
ui −

1
R̃e

∆Γui

)
on ΓC−N,d

∣∣∣Ω̂n(κ̂)
∣∣∣

dκ̂

 d

dtac
κ̂ = ϵ {u · n}ΓC−N

− ϵhCL |ΓC−N|
d

dtac
γκ̂,

κ̂(t = 0) = κ̂0,

|Ωn(κ̂)| = πr2
nhCL +

∣∣∣Ω̂n(κ̂)
∣∣∣ .

(2.70a)

(2.70b)

(2.70c)
(2.70d)

The boundary condition (2.70a) represents a system that possesses non-zero energy,
and the acoustic energy conservation equation (2.39) can be rewritten as

d

dt
(Eac + En) + Rac = F∂Ωc/ΓC−N ,

En = ϵ−1 rn

2 γ
∣∣∣Γ̂free

∣∣∣+ hCL

2

({
(u · n)2

}
ΓC−N

+ |ΓC−N| (γκ̂)2
)
.

(2.71a)

(2.71b)

Similarly to the simplified stress boundary condition, the kinetic and potential energy
of the nozzle flow are accounted for only inside the static part of the nozzle domain.

The proposed impedance-type boundary condition (2.70) can be compared to
existing models. In Kim et al. (2014); Stachewicz et al. (2009), the movement of
the ink in the nozzle is described using a linear damping system. Similarly to the
model in this thesis, those studies approximate the free surface by a spherical cap,
but the equivalent of the curvature equation (2.70b) is linearized around κ̂ = 0. The
fluid inertia is taken to be proportional to the ink column height, which corresponds
exactly to the term hCL

d
dtac

ui in (2.70a). The aforementioned studies approximate the
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viscous flow resistance of the nozzle using the Poiseuille law, while in this study the
viscous resistance hCLR̃e−1∆Γui is explicitly calculated from the acoustic state. Some
studies (Kim et al., 2014; Shah et al., 2019) that use a linear damping model suggest
estimating the viscous effects from numerical flow simulations with an actual nozzle
shape geometry. Overall, the model used in this thesis is conceptually close to the
existing models, but does not rely on the assumption of small magnitude perturbations
of the free surface curvature, and can be more easily coupled with the acoustic flow
model inside the channel.

2.5.1 Time discretization of the boundary condition

We derive the time discrete acoustic boundary condition on ΓN−C for the unsteady
thermoviscous acoustic equations (2.3.1). Using the Crank–Nicolson scheme, the
discrete in time stress boundary condition (2.70a) becomes

σ
n+ 1

2
ij nj = −γκ̂n+ 1

2ni − hCL

(
∂tu

n+ 1
2

i − 1
R̃e

∆Γu
n+ 1

2
i

)
on ΓC−N. (2.72)

We substitute the stress term into the boundary term of the time discrete weak form
(2.52), and collect the acoustic state variables qn+1 in the bilinear form.

The second order accurate discretization of the curvature equation (2.70b) is

∂t

∣∣∣Ω̂n(κ̂)
∣∣∣n+ 1

2 = ϵ
{
un+ 1

2 · n
}

ΓC−N
− ϵhCL |ΓC−N| ∂tγκ̂

n+ 1
2 + O

(
∆t2

)
, (2.73)

or, in terms of the curvature variable κ̂n

d
∣∣∣Ω̂n(κ̂)

∣∣∣
dκ̂

n

∂tκ̂
n+ 1

2 + ∆t
2
(
∂tκ̂

n− 1
2
)2
d2

∣∣∣Ω̂n(κ̂)
∣∣∣

dκ̂2

n

=

= ϵ
{
un+ 1

2 · n
}

ΓC−N
− ϵhCL |ΓC−N| ∂tγκ̂

n+ 1
2 + O

(
∆t2

)
,

(2.74)

which allows us to express the unknown curvature at the n+ 1 time step as a function
of un+1 and variables from the previous time step.

The volume terms a (p,qn+1) , b (p,qn+1) in the time-discrete bilinear form (2.52)
are independent of time. We notice that by using the implicit expression (2.74) in
the stress boundary condition (2.72), the boundary term bn+1

ΓC−N
(p,qn+1) becomes time
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dependent,

bn+1
ΓC−N

(
p,qn+1

)
=
{
γκ̂n+1v · n

}
ΓC−N

+ . . .

= γ∆t(
d|Ω̂n(κ̂)|

dκ̂

)n

+ ϵγhCL |ΓC−N|

ϵ

2
{
un+1 · n

}
ΓC−N

{v · n}ΓC−N
+ . . .

In this case, after spatial discretization of the boundary component, a different matrix
has to be inverted every time. If the discrete bilinear form is independent of time, the
matrix factorization can be stored and re-used each time step. This greatly reduces
the computational time required to run a direct solver, and, as shown later, the adjoint
solver backwards in time. In order to reduce the cost of the unsteady computations,
we use explicit approximation of the weak form boundary components that depend on
time. We use explicit approximation of the term

{
un+ 1

2 · n
}

ΓC−N
in (2.73) and (2.74),

un+ 1
2 ≈

(
1 + ∆t∂t

)
un− 1

2 + O (∆t2) = 1
2 (3un − un−1) · n + O (∆t2):

∂t

∣∣∣Ω̂n(κ̂)
∣∣∣n+ 1

2 = ϵ
{(

1 + ∆t∂t

)
un− 1

2 · n
}

ΓC−N
− ϵhCL |ΓC−N| ∂tγκ̂

n+ 1
2 + O

(
∆t2

)
,

(2.75)
and d

∣∣∣Ω̂n(κ̂)
∣∣∣

dκ̂

n

∂tκ̂
n+ 1

2 + ∆t
2
(
∂tκ̂

n− 1
2
)2
d2

∣∣∣Ω̂n(κ̂)
∣∣∣

dκ̂2

n

=

= ϵ
{(

1 + ∆t∂t

)
un− 1

2 · n
}

ΓC−N
− ϵhCL |ΓC−N| ∂tγκ̂

n+ 1
2 + O

(
∆t2

)
.

(2.76)

The time discrete boundary terms bn+1
ΓC−N

(p,qn+1) , bn
ΓC−N

(p,qn) are therefore given by

b
n+ 1

2
ΓC−N

(
p,qn+ 1

2
)
≡ 1

2
(
bn+1

ΓC−N

(
p,qn+1

)
+ bn

ΓC−N
(p,qn)

)
,

bn+1
ΓC−N

(
p,qn+1

)
= hCL

{( 2
∆t −

1
R̃e

∆Γ

)
un+1,v

}
ΓC−N

,

bn
ΓC−N

(p,qn) = hCL

{( 2
∆t + 1

R̃e
∆Γ

)
un,v

}
ΓC−N

+ 2γκ̂n {v · n}ΓC−N

+
2ϵ∆tγ

{(
1 + ∆t∂t

)
un− 1

2 · n
}

ΓC−N(
d|Ω̂n(κ̂)|

dκ̂

)n

+ ϵγhCL |ΓC−N|
{v · n}ΓC−N

.

(2.77a)

(2.77b)

(2.77c)
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The term (2.77b), and the first and the third terms in (2.77c) represent the change of
the nozzle flow kinetic energy and viscous dissipation inside the nozzle Ωn. The second
term in (2.77c) approximates the change of the free surface energy.

Together with the volume components of the weak form (2.52), the discussed
time discretization of the boundary components on the shared boundary ΓC−N (2.77)
results in a second-order accurate approximation of the original unsteady problem.
Although the weak formulation contains explicit terms in b

n+ 1
2

ΓC−N

(
p,qn+ 1

2
)
, the spatial

discretization of the resulting bilinear form is independent of time, and has to be
factorized only once for each unsteady problem. The same inverted matrix is then
applied to the vector representation of the linear form (2.53) at each time step.

To verify the implementation of the time integration scheme, an unsteady thermo-
viscous acoustic problem was solved in a unit square domain with the nondimensional
final time tf = 1. The nozzle boundary condition (2.72) with κ̂(t = 0) = 0.25 is
prescribed on one wall, and the other boundaries are no slip. The initial acoustic state
is zero everywhere. The total energy E = Eac + En is calculated at t = tf , and the
convergence of this value with respect to the time step size ∆t is shown in figure 2.6.
For all examined mesh sizes h, the second order convergence in ∆t is observed, as
expected.
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Fig. 2.6 Convergence of the total energy E(tf ) with time step refinement for an unsteady
thermoviscous flow with a nozzle boundary condition.
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2.5.2 Eigenvalue problem boundary conditions

We derive the boundary conditions for the acoustic eigenvalue problem discussed in
section 2.3.2. The acoustic stress boundary condition on the surface between the
channel and nozzle domains ΓC−N (2.70) is given by a nonlinear system of equations.
We linearize the nozzle state equation (2.70b) around the base state,

κ̂ = κ̂(0) + δκ̂, |Ωn(κ̂)| ≃
∣∣∣Ωn(κ̂(0))

∣∣∣ , h(0)
n ≡ hn(κ̂(0)) = hCL +

∣∣∣Ω̂n(κ̂(0))
∣∣∣

|ΓC−N|
.

We perform a Fourier transform and replace the time derivative operator with the
complex oscillation frequency of the mode ∂

∂t
→ s. The linearized nozzle state equation

becomes

s

d
∣∣∣Ω̂n(κ̂)

∣∣∣
dκ̂

+ ϵγhn |ΓC−N|

∣∣∣∣∣∣
κ̂(0)

δκ̂ = ϵ {û · n}ΓC−N
.

The linearized acoustic stress boundary condition on ΓC−N is an impedance type
boundary condition. It is a sum of the capacitive reactance, inductive reactance, and
resistance terms:

σ̂ijnj =− γδκ̂ni − h(0)
n

(
s− 1

Re∆Γ

)
ûi

=− 1
s

ϵγ(
d|Ω̂n(κ̂)|

dκ̂
+ ϵγhn |ΓC−N|

)∣∣∣∣
κ̂(0)︸ ︷︷ ︸

Capacitance

{û · n}ΓC−N
ni

− s h(0)
n︸︷︷︸

Inductance

ûi + h(0)
n

Re ∆Γ︸ ︷︷ ︸
Resistance

ûi.

(2.78)

The first term, − 1
sC

, is a high-pass filter, as the the free surface contribution to
the acoustic stress boundary condition is proportional to the cumulative (integrated
over time) mass flow through the shared boundary {u · n}ΓC−N

(see 2.70b), and high
frequency oscillations on average do not contribute to the change in κ̂. The second
term, −sL, is a low-pass filter, as the nozzle flow inertia attenuates high frequency
oscillations.

The inductance and resistance terms of the acoustic stress σ̂ijnj depend on the
local velocity value ûi, and the capacitance term contains a nonlocal term {û · n}ΓC−N

.
We use different strategies to find a solution of the frequency domain problem (2.26)
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and the eigenvalue problem (2.27) subject to the impedance boundary condition on
ΓC−N.

The eigenvalue problem boundary condition

Finite element approximation of the eigenpairs of second order eigenvalue problems
with nonlocal Dirichlet, Neumann and Robin boundary conditions is discussed in
Ta-Tsien (1989), De Schepper and Van Keer (1997), Andreev and Racheva (2007). The
key point of solving such problems is to introduce a suitable finite element space V
and a finite dimensional subspace Vh ⊂ V ,

V =
{
v ∈ H1 (Ω)

∣∣∣∣∫
Γ0
v ds = 0

}
,

where Γ0 is the boundary with a nonlocal boundary condition. However, the finite
element framework FEniCS used in this study does not implement automated generation
of such discrete spaces. Instead, we propose to replace the nonlocal term with a local
approximation,

{û · n}ΓC−N
ni → |ΓC−N| ûi,

such that the stress boundary condition for the eigenvalue problem becomes a local
impedance boundary condition:

σ̂ijnj = Zloc(s)ûi on ΓC−N,

Zloc(s) = − 1
s

ϵγ |ΓC−N|(
d|Ω̂n(κ̂)|

dκ̂
+ ϵγhn |ΓC−N|

)∣∣∣∣
κ̂(0)

− sh(0)
n + h(0)

n

Re ∆Γ.

(2.79a)

(2.79b)

Zloc(s) is a differential impedance operator. We substitute the boundary condition into
the weak form (2.41) and obtain a nonlinear (through the capacitance term) eigenvalue
problem.

The discrete eigenproblem: find s, q̂h such that

sa (ph, q̂h) + b (ph, q̂h) + b∂Ωc/ΓC−N (ph, q̂h) + bΓC−N (s; ph, q̂h) = 0 (2.80)

is solved using a fixed-point iterative algorithm (Nicoud et al., 2007) with relaxation
(Ni, 2017).

1. We set σ̂ijnj = 0 on ΓC−N and therefore bΓC−N (s; ph, q̂h) = 0, and identify the
eigenvalues s[0]

i , i = 1, 2, . . . of the acoustic eigenvalue problem with a stress-free
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boundary condition on ΓC−N. We select one frequency of interest s[0] and use it
as an initial guess for the algorithm.

2. We use s[0] as the first iteration guess, and solve

sa (ph, q̂h) + b (ph, q̂h) + b∂Ωc/ΓC−N (ph, q̂h) + bΓC−N

(
s[0]; ph, q̂h

)
= 0.

The first iteration approximation of the eigenvalue is s[1] = s.

3. We define the algorithm tolerance criteria, ε > 0. For k ≥ 2, we set bΓC−N =
bΓC−N

(
s[k−1]; ph, q̂h

)
in (2.80), and find the eigenvalue s of the corresponding

problem that is closest to the previous step solution s[k−1]. The k-th iteration
value s[k] is calculated using relaxation

s[k] = αs+ (1− α)s[k−1],

where the value of the relaxation coefficient α is chosen in order to optimize the
convergence of the algorithm (Ni, 2017):

α = 1
1− ∂s

∂s[k−1]

,
∂s

∂s[k−1] ≈
s− s[k−1]

s[k−1] − s[k−2] . (2.81)

The iterative algorithm is stopped if the difference falls below the convergence
threshold

∣∣∣s[k] − s[k−1]
∣∣∣ < ε. Otherwise, we proceed to the next iteration k → k+1.

This iterative fixed-point algorithm effectively minimizes the difference
∣∣∣s− s[k]

∣∣∣ us-
ing Newton’s method with the function gradient given by the backwards difference
approximation.

2.6 Numerical examples

In this section, we study the eigenvalue problem corresponding to the thermoviscous
acoustic flow inside an inkjet printhead microchannel (figure 2.7). The physical domain
is a symmetric U-shaped channel, and we perform the analysis in the left subdomain
and provide an appropriate set of boundary conditions on the symmetry plane Γsym.
We apply standard no slip, adiabatic boundary conditions on the channel walls Γw,
and stress-free, isothermal conditions on the outlet boundaries Γout. A typical depth of
the channel in 3D is 100µm. We examine a 2D domain now, but extension to 3D is
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Fig. 2.7 Symmetric printhead microchannel domain (sizes in µm). The right boundary
is a symmetry plane.

possible and conceptually straight-forward. The parameters of the experiments are
provided in table 2.1.

dimensional value
speed of sound, cs, m · s−1 103

Mach number, ϵ 10−5

viscosity, µvis, kg (m · s)−1 1.6 · 10−2

Prandtl number, Pr 10
surface tension, γdim, N · m−1 50 · 10−3

nozzle radius, Rn, m 10 · 10−6

nozzle height, HCL, m 10 · 10−6

characteristic length, L, m 100 · 10−6

actuator length, Lact, m 400 · 10−6

Table 2.1 Dimensional parameters of the inkjet microchannels numerical experiments.

2.6.1 Spectrum of a 2D printhead microchannel

The thermoviscous acoustic flow (§2.3.3) is dissipative d
dt
Eac < 0, and therefore the

real part of the spectrum is always negative Re(s) ≡ σ < 0. We solve the discretized
eigenvalue problem (2.44) using the SLEPc toolkit (Hernandez et al., 2005) and its
python interface SLEPc4py (Dalcin et al., 2011). To speed up the convergence of the
eigenvalue solver, we apply the shift-invert strategy and target the lowest magnitude
eigenvalues.

Since the printhead microchannel domain is symmetric, we can solve the eigenvalue
problem in the left half of the domain subject to the symmetric (2.31) or antisymmetric
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Fig. 2.8 Spectrum of the thermoviscous acoustic flow inside a printhead microchannel
with the stress-free boundary condition (◦), and no slip boundary condition (×) on
ΓC−N. Blue markers denote symmetric modes, red markers denote antisymmetric
modes.

(2.30) boundary conditions on Γsym (the symmetry is presumed with respect to the
pressure modes):

symmetric modes : û · n = 0, ∂T̂
∂n

= 0 on Γsym,

antisymmetric modes : σ̂ijnj = 0, T̂ = 0 on Γsym.

(2.82)

The spectrum of the acoustic flow in the original domain is the sum of the symmetric
and antisymmetric eigenvalues. Figure (2.8) shows the spectrum of the thermoviscous
acoustic flow inside the printhead microchannel when the channel-nozzle boundary
ΓC−N is modelled as a stress free, adiabatic boundary (empty circles ◦), and the flow
spectrum when the no slip boundary condition is applied on ΓC−N (× markers). Blue
symbols denote symmetric modes, and red symbols denote antisymmetric modes.

For the modes with frequency ω below 1.2 MHz and stress-free boundary condition
on ΓC−N, symmetric modes have a lower decay rate σ (the magnitude of the negative
decay rate is larger) than the antisymmetric modes. The symmetric acoustic oscillations
decay faster due to the high velocity of the flow inside the nozzle part of the channel
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(figure 2.9b), while the velocity magnitude in the nozzle of the antisymmetric modes
(figure 2.10b) is almost zero.

(a) (b)

(c)

Fig. 2.9 The first symmetric mode with the stress-free boundary condition on ΓC−N.
(a) Velocity component magnitude |û| inside the printhead microchannel, (b) inside
the nozzle part of the microchannel. (c) Pressure component magnitude

∣∣∣P̂ ∣∣∣.
The eigenvalues of the antisymmetric modes with no slip and stress-free boundary

conditions on ΓC−N are almost equal (compare the red markers in figure 2.8) because
the effective impedance of the nozzle part of the domain is high. The mode shapes are
very similar (compare the velocity fields in figures 2.10a and 2.11a, and the pressure
fields in figures 2.10c and 2.11c), and differ only in the nozzle part of the channel,
where different boundary conditions are applied on ΓC−N (figures 2.10b and 2.11b).

Figure 2.13 shows the volumetric decay rate σΩ (2.48) for the lowest frequency
symmetric modes with stress-free and no slip ΓC−N. In both cases, acoustic oscillations
mostly dissipate in the boundary layers near the no slip walls Γw, and there is almost
no dissipation along the centreline of the channel. The high velocity amplitude near
the nozzle in the stress-free case (figure 2.13a) greatly contributes to the decay rate
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(a) (b)

(c)

Fig. 2.10 The first antisymmetric mode with the stress-free boundary condition on
ΓC−N. (a) Velocity component magnitude |û| inside the printhead microchannel, (b)
inside the nozzle part of the microchannel. (c) Pressure component magnitude

∣∣∣P̂ ∣∣∣.
of the mode, which is the expected behaviour for typical inkjet systems (Smith and
Shin, 2012). In the no slip case (figure 2.13b), the velocity amplitude near the nozzle
is almost zero, and contributes very little to the decay rate of the mode.

2.6.2 Printhead spectrum with the nozzle model boundary
condition

So far we have discussed the spectrum of a printhead microchannel with the stress-free
and no slip boundary conditions on the nozzle boundary ΓC−N. We continue this
analysis by applying the impedance boundary condition (2.79) that represents the
reduced order model of the nozzle flow with the moving free surface. We use the same
values of the nozzle radius and height, fluid viscosity and Mach number as in table
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(a) (b)

(c)

Fig. 2.11 The first antisymmetric mode with the no slip boundary condition on ΓC−N.
(a) Velocity component magnitude |û| inside the printhead microchannel, (b) inside
the nozzle part of the microchannel. (c) Pressure component magnitude

∣∣∣P̂ ∣∣∣.

(a) (b)

Fig. 2.12 The first symmetric mode with the no slip boundary condition on ΓC−N. (a)
Velocity component magnitude |û|. (b) Pressure component magnitude

∣∣∣P̂ ∣∣∣.
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(a) (b)

Fig. 2.13 Spatial distribution of the absolute value of the volumetric decay rate in the
printhead channel (on a logarithmic scale), log10(−σΩ), of the first symmetric mode
with (a) the stress-free, (b) no slip boundary on ΓC−N.

2.1. The effective height of the nozzle is always positive h(0)
n > 0. The value of the

capacitance term is defined by the nondimensional surface tension coefficient, and the
base state curvature κ̂(0) around which the linearisation is done. The value of κ̂(0)

determines the value of the nozzle volume derivative with respect to the curvature
d|Ω̂n(κ̂)|

dκ̂
(2.5). The capacitance term is positive and bounded from above:

0 < ϵγ |ΓC−N|(
d|Ω̂n(κ̂)|

dκ̂
+ ϵγhn |ΓC−N|

)∣∣∣∣
κ̂(0)

≤ 4ϵγ
rn

, (2.83)

and reaches its maximum value at κ̂(0) = 0. We use the flat free surface κ̂(0) = 0 as
the base state. When the surface tension coefficient γ is large, the capacitance term
dominates and the nozzle boundary ΓC−N becomes no slip in the limiting case. When
γ → 0, however, the nozzle boundary does not become a stress-free boundary because
of the non-zero inductance and resistance.

The motion of the actuator boundary creates symmetric acoustic oscillations, and
we choose the lowest frequency symmetric modes to be the main target for our analysis.
We analyse the spectrum of the symmetric acoustic oscillations and the drift of the
eigenvalues for different values of γ. For a range of nondimensional surface tension
values γ ∈ [0, 10] we solve the corresponding eigenvalue problems using the iterative
technique discussed in section 2.5.2. We start by setting γ = 0 and use one of the low
frequency eigenvalues of the stress-free modes (σ̂ijnj = 0 on ΓC−N) as the initial guess.
Figure 2.14 shows that the natural frequencies of these modes (γ = 0, red dots) are
close to the stress-free eigenvalues (empty blue circles), as expected. We gradually
increase γ and use the previous converged eigenvalue as the new initial guess; the
eigenvalues approach the no slip solution with a lower frequency and decay rate. Figure
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2.14 shows the trajectories of the eigenvalues from γ = 0 to γ →∞ (solid red lines).
For a typical surface tension of ink γdim = 20 · 10−3 Nm−1 to 70 · 10−3 Nm−1 (Dijksman,
2019), the nondimensional value is γ = 0.2 to 1.4, and the respective eigenvalues
lie between the stress-free and the no slip modes. If a free surface with a non-zero
curvature is chosen as the base state κ̂(0) ≠ 0, or the acoustic flow Mach number ϵ is
low, the magnitude of the capacitance term decreases and the γ = 1 eigenvalues shifts
towards the γ = 0 solution. In this case, the stress-free boundary condition on ΓC−N is
a better approximation than the no slip boundary condition.
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Fig. 2.14 Eigenvalues of the symmetric modes of the acoustic flow inside the printhead
microchannel with the no slip (×) and stress-free (◦) boundary conditions on ΓC−N.
The solid red lines show the eigenvalues corresponding to a range of positive surface
tension coefficients γ used in the reduced order model of the nozzle flow (2.79) as
the boundary condition on ΓC−N. The dashed red lines are the continuation of the
eigenvalue trajectories to the negative capacitance of the nozzle boundary condition.

We can find a continuation of the positive γ eigenvalues trajectories if we allow the
capacitance term to be negative, or, equivalently, allow negative surface tension γ < 0.
Figure 2.14 shows that the negative trajectories (dashed red lines) connect the γ = 0
modes to higher frequency, no slip modes as γ decreases to γ → −∞. The trajectory
of the eigenvalues shift becomes a continuous line parameterized by the value of the
capacitance term ϵγ|ΓC−N|(

d|Ω̂n(κ̂)|
dκ̂

+ϵγhn|ΓC−N|
)∣∣∣

κ̂(0)

.
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2.7 Conclusions

In this chapter the physics and modelling of the flow inside an inkjet printhead
microchannel is discussed. We use low Mach number asymptotic analysis to separate
the compressible Navier–Stokes equations into equations for a steady flow with no
oscillations (incompressible flow) and equations for oscillations with no steady flow
(thermoviscous acoustic flow). The main requirements of this method are that the
steady flow Mach number and oscillating flow Mach number are small, which are often
satisfied in microfluidics, so the methods in this chapter could be applied to many
other applications.

We focus on the acoustic flow phenomena. We separate the free surface flow inside
the nozzle part of the channel Ωn from the acoustic flow inside the rest of the printhead
microchannel Ωc. We approximate the free interface between the fluid (ink) and the
outside gas by a spherical cap with uniform curvature, and account for the kinetic and
potential energy and viscous dissipation of the flow inside the nozzle subdomain Ωn.
We develop a reduced order model for the nozzle flow that is an ordinary differential
equation of the free surface effective curvature, and a nonlinear acoustic impedance
boundary condition on the shared boundary ΓC−N = Ωc

⋂Ωn.
We analyse the spectrum of the thermoviscous acoustic flow inside a 2D inkjet

printhead microchannel. We show that the natural frequencies of the flow with the
nozzle model boundary condition on ΓC−N are enclosed between natural frequencies
corresponding to the flow with stress-free and no slip boundary conditions on ΓC−N. We
discuss how the surface tension coefficient and the deformation amplitude (curvature)
of the base unperturbed state of the free surface affects the natural modes of the system.
The reduced order nozzle model boundary condition behaves more as an open end
(stress-free) boundary rather than a no slip boundary for typical values of the surface
tension coefficient.

2.7.1 Advanced models

So far we have introduced several assumptions about fluid and structural dynamics of
an inkjet printhead. First, we ignored any interaction between the incompressible and
the acoustic flows: the low Mach number flows discussed in sections 2.2.3 and 2.2.4 are
independent. Bubbles and solid impurities carried by the incompressible mean flow
will impact the natural oscillation frequencies and the acoustic wave propagation inside
the microchannels (de Jong et al., 2006). Second, we assumed that the piezo actuator
boundary velocity can be prescribed directly. However, the transfer function between
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Flow inside inkjet microchannels

2

3

1

Fig. 2.15 Advanced model components diagram of the flow inside an inkjet printhead
microchannel: (1) interaction between the steady incompressible through flow and
the acoustic oscillations, (2) dependency between the applied voltage and the piezo
actuator displacement, and (3) cross-talk effects.

the applied driving voltage Vpiezo and the piezo element displacement d, H : Vpiezo → d

depends on frequency, the piezo layer thickness and operating conditions (Brünahl
and Grishin, 2002; Gautschi, 2002; Wijshoff, 2010). It is important to investigate
the effect of the implicit control model: voltage to actuator velocity, on the feasible
waveforms. Third, we ignored the interactions between adjacent microchannels, as if
they were separated by an impermeable solid plate that damps all fluid and channel
walls vibration. The cross-talk effect generated by neighboring channels deformation
and travelling acoustic pressure waves reduces the performance of inkjet printheads: it
is not possible to maintain desired jetting behaviour in two neighboring channels at
the same time (Kretschmer and Beurer, 1997; Smith and Shin, 2012). Incorporating a
model to measure cross-talk is a first step towards optimal cross-talk control (Khalate
et al., 2012; Voit et al., 2011) and the multichannel waveform design. These are left
for future work.



Chapter 3

Actuator velocity profile
optimization

Piezo actuator waveforms consist of two phases: the ejection phase and the residual
control phase. The purpose of the ejection phase is to push the flow through the nozzle
and form a droplet with the desired characteristics. The purpose of the residual control
phase is to prepare the flow inside the microchannel for the next printing cycle, by
active damping of residual acoustic waves and elimination of satellite droplets. We
aim to reduce the residual oscillations by optimizing the deformation at the channel
wall caused by the piezo-electric actuator. In practice, this deformation is caused by
a voltage waveform, which is applied across the actuator. The relationship between
voltage and deformation depends on the actuator so, rather than focus on a specific
actuator, here we focus on the motion it induces at the boundary. In this chapter we
use adjoint-based optimization to find an actuator velocity waveform that, within the
residual control phase of a given time, both flattens the liquid/air interface at the nozzle
and eliminates residual oscillations in the channel. In practice, this time would be the
desired period between droplets and this process would prepare the channel for the
subsequent ejection in order that each ejected drop is identical. We use the approach
discussed in chapter 2 and separate the domain into the channel and the nozzle domain
with different governing equations for each. The channel flow state is coupled to the
nozzle state through the boundary conditions on the surface between the channel and
the nozzle. We then derive the adjoint of this coupled channel–nozzle system (section
3.1.1) and discuss the time discretization of the adjoint problem (section 3.1.2). We
optimize the velocity waveform at the actuator for a one-dimensional test case and
various two dimensional channel shapes (section 3.2): a straight channel, a long straight
print head channel and a generic printhead channel, and different optimization times.
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We reveal the physical mechanisms that are exploited in order to reduce the residual
oscillations and define the minimum residual control phase duration. In section 3.2.5,
optimal waveforms with a uniform actuator velocity profile and a parabolic actuator
velocity profile are compared. It is shown that the shape of the actuator velocity profile
has little influence on the optimized waveform. The results in this chapter have been
submitted for publication: Kungurtsev and Juniper (2020).

3.1 Optimal control of coupled domains

In this section a PDE-constrained optimization problem of channel and nozzle printhead
domains is considered, and an optimization framework is derived using the method
of Lagrange multipliers. The goal is to calculate the sensitivity of an energy-based
objective functional with respect to boundary conditions. We demonstrate how to
derive the adjoint problem and the functional in continuous forms, and obtain the
time-discrete forms. This approach is useful for demonstrating and learning the adjoint
method, but depends on the choice of governing equations and the discretization
scheme. Future research might consider obtaining adjoint-based sensitivities of a
generic objective function with respect to generic control automatically, for example,
using dolfin-adjoint (Dokken et al., 2020; Mitusch et al., 2019), or cashocs (Blauth,
2021). Rapid development of algorithmic differentiation frameworks makes it easier to
focus only on the primal problem, and automatically compute gradient information
for a wide range of objective functionals and types of control. This requires, however,
knowledge of how automatic differentiation works and how to structure a code so that
its adjoint is realizable and quick to evaluate, for which this thesis will be valuable.

3.1.1 Governing equations for the adjoint problems

Here we derive the adjoint counterpart of the coupled acoustic and nozzle flow system.
The acoustic state qac is defined in Σc = (Ωc × T ) and governed by the thermoviscous
acoustic equations (2.21) and boundary conditions (2.24, 2.25). The nozzle flow state
κ̂ is characterized by the free surface curvature ODE (2.70b). The acoustic and nozzle
flows are coupled via the boundary conditions (2.70a) and the flow through the shared
boundary. The acoustic energy and the flow energy inside the nozzle are defined by
(2.38) and (2.71b), respectively. We choose the total energy E ≡ Eac + En at the final
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time tf as the objective function J at t = tf :

J ≡ Eac + En

= 1
2a ⟨qac,qac⟩Ωc

+ ϵ−1 rn

2 γ
∣∣∣Γ̂free

∣∣∣+ hCL

2

({
(u · n)2

}
ΓC−N

+ |ΓC−N| (γκ̂)2
)
.

(3.1)

We account for the kinetic and potential energy of the nozzle flow only inside the static
part of the nozzle domain. We multiply the acoustic state equations (2.21) by the
adjoint acoustic variables Λ†

c ≡
(
u†, P †, T †

)
. We multiply the nozzle state equations

(2.70b) by ϵ−1γκ†, where κ† is the adjoint curvature variable. The augmented objective
function is:

L = J −
[
Λ†

c,
∂

∂t
Aqac + Bqac

]
Σc

−
[
ϵ−1γκ†,

d

dt

∣∣∣Ω̂n(κ̂)
∣∣∣+ ϵ {u · n}ΓN−C

+ ϵhCL |ΓC−N|
d

dt
γκ̂

]
Σn

.

(3.2)

We set the variation of the Lagrangian δL with respect to the primal state to zero:

∂L
∂qac

δqac = 0, ∂L
∂κ̂

δκ̂ = 0 ∀t ∈ T . (3.3)

Since the objective function contains only terms at t = tf , the variation of the objective
function δJ = ∂J

∂qac
δqac(t = tf ) + ∂J

∂κ̂
δκ̂(t = tf ) determines the initial conditions for the

adjoint acoustic Λ†
c and curvature κ† variables at t = tf .

After successive integration by parts and applying the acoustic initial and boundary
conditions, we obtain the adjoint acoustic equations (with the leftmost expression
indicating the origin of the equation):

[ · , δqac]Σc
: − ∂

∂t
AΛ†

c + B†Λ†
c = 0 in Σc,

[ · , δqac](ΓC−N×T ) : σ†
ijnj = −γκ†ni − hCL

(
d

dt
+ 1

R̃e
∆Γ

)
u†

i on ΓC−N,

⟨ · , δqac(tf )⟩Ωc
: Λ†

c(x, t = tf ) = qac(x, t = tf ),

(3.4a)

(3.4b)

(3.4c)
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and the adjoint nozzle flow equations, given by the ( · , δκ̂)T and ( · , δκ̂(tf )) terms,
respectively:

d
∣∣∣Ω̂n(κ̂)

∣∣∣
dκ̂

 d

dt
κ† = ϵ

{
u† · n

}
ΓN−C

− ϵ
∂
(∣∣∣Ω̂n(κ̂)

∣∣∣ κ̂)
∂κ̂

d

dt
γκ† = 0 in Σn,

κ†(t = tf ) = κ̂(t = tf ).

(3.5a)

(3.5b)

The adjoint acoustic operator B† is defined as

B† =


− 1

R̃e∇jτ ij −∇i 0
−∇i 0 0

0 0 − ∆
(γth−1)P̃e

 . (3.6)

The adjoint acoustic stress tensor is defined as σ†
ij = −P †δij − R̃e−1

τ †
ij. The adjoint

no slip velocity and stress free boundary conditions, as well as the isothermal and
adiabatic temperature boundary conditions, are equal to the homogeneous boundary
conditions of the primal problem.

3.1.2 Adjoint problem discretization
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2
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1

2
N −

3
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adjoint

direct

Fig. 3.1 Time discretization for the primal (bottom) and the adjoint (top) variables. The
direct calculation runs forward in time, while the adjoint calculation runs backwards
in time.

Figure (3.1) shows the grid used for the time discretization of the primal and adjoint
problems. In sections 2.3.4 and 2.5.1, the channel and nozzle states were discretized
on the gridpoints tn, n = 0, . . . , N . The solution is approximated in the midpoints
tn+ 1

2 using a second order accurate finite difference scheme. The adjoint states will be
approximated in the midpoints using the same method. This results in a consistent
time-discrete dual problem (Apel and Flaig, 2012). The discrete form of the integration
rule (2.1c) consistent with the chosen time discretization is:

(a, b)Th
≡

N−1∑
n=0

∆t an+ 1
2 bn+ 1

2 . (3.7)
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We start by constructing a time-discrete form of the Lagrangian (3.2). We retain
the notation of section 3.1.1, with an additional index that indicates the timestep. We
use time-discrete adjoint acoustic variables Λ†,n+ 1

2
c ≡

(
u†,n+ 1

2 , P †,n+ 1
2 , T †,n+ 1

2
)

as a test
function p in the semi-discrete acoustic state equation (2.52). The curvature equation
(2.73) is multiplied by Λ†,n+ 1

2
d ≡ ϵ−1γκ†,n+ 1

2 , where κ†,n+ 1
2 is a time-discrete adjoint

curvature. The objective function (the total energy of the acoustic channel flow and
the nozzle flow) is evaluated at the final time tf = tN . The time-discrete Lagrangian is:

L = EN
ac + EN

n

−
[
Λ†

c, ∂tAqac + Bqac
]

(Ωc×Th)

−
(
ϵ−1γκ†, ∂t

∣∣∣Ω̂n(κ̂)
∣∣∣+ ϵ {u · n}ΓN−C

+ ϵhCL |ΓC−N| ∂tγκ̂
)
Th

.

(3.8)

We obtain the time-discrete version of the adjoint system (3.4, 3.5) by setting to
zero the Lagrangian variation with respect to the primal variables

∂L
∂qn

ac
δqn

ac = 0, ∂L
∂κ̂n

δκ̂n = 0 for all n.

After successive integrations by parts, we collect the groups of the similar variation
terms at each time step. The adjoint quantities Λ†,n

c mean the same as in the primal
problem, Λ†,n

c = 1
2

(
Λ†,n+ 1

2
c + Λ†,n− 1

2
c

)
. The same applies for the time derivatives. The

strong form of the adjoint problem becomes (with the leftmost expression indicating
the origin of the equation):

Find Λ†,n+ 1
2

d , κ†,n+ 1
2 , for n = N − 2, . . . , 0, such that :

⟨·, δqn
ac⟩Ωc

: −∂tAΛ†,n
c + B†Λ†,n

c = 0,

{·, δun
i }ΓC−N

: σ†,n
ij nj = −γniκ

†,n − hCL

(
∂t + 1

R̃e
∆Γ

)
u†,n

i on ΓC−N,

δκ̂n :
d

∣∣∣Ω̂n(κ̂)
∣∣∣

dκ̂

n

∂tκ
†,n =

= −ϵ
{
u†,n · n

}
ΓN−C

− ϵ

∂
∣∣∣Ω̂n(κ̂)

∣∣∣ κ̂
∂κ̂

n

∂tγκ
†,n.

(3.9a)

(3.9b)

(3.9c)

In section 2.5.1, an alternative form of the curvature equation (2.75) was introduced.
The explicit approximation of the term

{
un+ 1

2 · n
}

ΓC−N
allowed us to reduce the

computational cost due to the matrix inversion of the discrete bilinear form. If (2.75)
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is used in the Lagrangian (3.8), the adjoint stress boundary condition (3.9b) on ΓN−C

becomes:
σ†,n

ij nj = −γni

(
1−∆t∂t

)
κ†,n+1 − hCL

(
∂t + 1

R̃e
∆Γ

)
u†,n

i . (3.9d)

If we use (2.75) for the primal problem and proceed with the spatial discretization of
the adjoint problem, the matrix of the adjoint bilinear form will also be independent
of time, and therefore the LU factorization of it can also be reused.

The adjoint initial conditions are defined at tN− 1
2 , and we obtain them by setting

the variation of the primal states at the final time to zero:

〈
·, δqN

ac

〉
Ωc

terms : AΛ†,N− 1
2

c − AqN
ac

∆t/2 + B†Λ†,N− 1
2

c = 0,{
·, δuN

i

}
ΓC−N

terms : σ
†,N− 1

2
ij nj = −γniκ

†,N− 1
2

− hCL

∆t/2

(
uN

i − u
†,N− 1

2
i

)
− hCL

R̃e
∆Γu

†,N− 1
2

i on ΓC−N,

δκ̂Nterms :
d

∣∣∣Ω̂n(κ̂)
∣∣∣

dκ̂

N

κ̂N − κ†,N− 1
2

∆t/2 = −ϵ
{
u†,N− 1

2 · n
}

ΓN−C

− ϵ

∂
∣∣∣Ω̂n(κ̂)

∣∣∣ κ̂
∂κ̂

N

γ
κ̂N − κ†,N− 1

2

∆t/2 .

(3.10a)

(3.10b)

(3.10c)

The initial condition equations can be read as a backwards half time step from the
primal terminating condition to the adjoint initial condition.

3.1.3 The primal–adjoint problems symmetry

There is symmetry between the primal (2.21, 2.70b) and the adjoint problems (3.4,
3.5). In the frequency domain, performing complex conjugation and then inverting the
sign of the velocity component makes the adjoint problem equivalent to the primal
problem. Complex conjugation in the frequency domain translates to time inversion in
the time domain: t→ −t. The velocity sign change has the same effect. We introduce
a symmetry operator, S:

S : Λ†
c → Λ̌†

c =
(
−u†, P †, T †

)
(−t) ≡

(
ǔ†, P̌ †, Ť †

)
(ť).



3.1 Optimal control of coupled domains 67

We apply the symmetry operator to the coupled adjoint problems (3.4, 3.5), which
results in

∂

∂ť
AΛ̌†

c + B†Λ̌†
c = 0 in Σ̌c,

σ̌†
ijnj = −γκ†ni − hCL

(
d

dť
− 1

R̃e
∆Γ

)
ǔ†

i on ΓC−N,

Λ̌†
c(x, t = tf ) = Sqac(x, t = tf ),

(3.11a)

(3.11b)

(3.11c)

andd
∣∣∣Ω̂n(κ̂)

∣∣∣
dκ̂

 d

dť
κ† = −ϵ

{
ǔ† · n

}
ΓN−C

− ϵ
d
(∣∣∣Ω̂n(κ̂)

∣∣∣ κ̂)
dκ̂

d

dť
γκ† = 0 in Σ̌n,

κ†(ť = tf ) = κ̂(t = tf ).

(3.12a)

(3.12b)

After applying the symmetry operator, S, to the adjoint problem, the temporal
components of Σc and Σn change such that the adjoint flow propagates forward in time,
in Ť = −T . The updated adjoint stress tensor is σ̌†

ij = −P̌ †δij + R̃e−1
τ̌ †

ij. The initial
condition for Λ̌†

c (3.12b) implies that time integration of the adjoint problem should
start from the state qac(x, t = tf ), but with the velocity vector pointing in the opposite
direction. The adjoint system now has the same form as the primal systems (2.21,
2.70b), with the difference that the terms

(
d|Ω̂n(κ̂)|

dκ̂

)
and d(|Ω̂n(κ̂)|κ̂)

dκ̂
in (3.12a) come

from the solution of the primal problem: the adjoint curvature follows the trajectory
defined by the primal curvature κ̂.

Finally, we discretize and apply the symmetry operator, S, that was introduced in
section 3.1.1. This changes the sign of the adjoint acoustic velocity and the direction of
the time integration of the adjoint system of equations. The symmetry operator reflects
the adjoint time grid with respect to the termination time of the primal problem:

S : Λ†,n → Λ̌†,2N−n ≡
(
−u†,2N−n, P †,2N−n, T †,2N−n

)
.

The discrete time derivative changes to ∂tf
n S−→ −∂tf

2N−n. We update the time
integration rule for a scalar product between a primal state and the reflected adjoint
variables:

(ǎ, b)Th
≡

N−1∑
n=0

∆t ǎ2N−(n+ 1
2) bn+ 1

2 . (3.13)
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Fig. 3.2 Time discretization for the primal (bottom) and the adjoint (top) variables
after the symmetry operator S has been applied to the adjoint variables. Both the
primal and adjoint states run forwards in time.

The transformation of the time-discrete adjoint problem yields:

Find Λ̌†,n+ 1
2

d , κ†,n+ 1
2 , for n = N + 1, . . . , 2N − 1, such that :

∂tA Λ̌†,n
c + B†Λ̌†,n

c = 0,

σ†,n
ij nj = −γniκ

†,n − hCL

(
∂t −

1
R̃e

∆Γ

)
ǔ†,n

i on ΓC−N,d
∣∣∣Ω̂n(κ̂)

∣∣∣
dκ̂

n

∂tκ
†,n = −ϵ

{
ǔ†,n

i · n
}

ΓN−C
− ϵ

∂
∣∣∣Ω̂n(κ̂)

∣∣∣ κ̂
∂κ̂

n

∂tγκ
†,n,

(3.14a)

(3.14b)

(3.14c)

or, if (3.9d) is set as a boundary condition, the stress on ΓN−C equals:

σ†,n
ij nj = −γni

(
1−∆t∂t

)
κ†,n+1 − hCL

(
∂t −

1
R̃e

∆Γ

)
ǔ†,n

i . (3.14d)

We perform the spatial discretization of the adjoint problem (3.14) in the same
way as that of the primal problem in section 2.5.1. By using (2.75) (and, consequently,
(3.14d)), the bilinear forms of the discrete primal and adjoint problem coincide, while
the linear forms naturally differ.

3.1.4 The augmented gradient

The top boundary of the channel contains a piezo-electric actuator, which we model as
a prescribed velocity boundary condition U(t). We minimize the objective function J
(3.1) by optimizing the velocity profile on the actuator boundary Γact. This control is
described through a velocity Dirichlet boundary condition:

u = U on Γact.

The only non-zero term in the Lagrangian variation (3.2) is the adjoint stress boundary
integral on Γact. This equals the objective variation with respect to the control, and
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therefore the objective gradient is:

J ′[δU ] =
{
σ†

ijnj, δUi

}
∂Σact

. (3.15)

In other words, the distribution of the adjoint stress along the control boundary is the
sensitivity distribution.

The objective gradient with respect to the control velocity is zero only if the adjoint
stress on the control boundary is zero, σ†

ijnj ≡ 0. Since the adjoint initial condition is
defined by the primal state at the final time, the optimality condition for the waveform
shape U(t) yields that no adjoint acoustic disturbances reach the control boundary at
any time.

Similarly to the velocity Dirichlet boundary condition, the control can be described
through a boundary forcing (2.24b) and even the boundary temperature or the heat
flux (2.25):

σijnj = fi on Γact,

T = T0 or ∂T

∂n
= Qheat on Γact.

In these cases, the objective variations with respect to the control force is:

J ′[δf ] =
{
u†, δf

}
∂Σact

, (3.16)

and variations with respect to the actuator temperature and the heat flux are:

J ′[δT0] =
{

1
(γth − 1)P̃e

∂T †

∂n
, δT0

}
∂Σact

or

J ′[δQheat] =
{
T †,

1
(γth − 1)P̃e

δQheat

}
∂Σact

.

(3.17)

Remark. The sensitivity of an objective to a control function can be used to evaluate
the objective variation caused by a random fluctuation of the control. If the ensemble
average of the fluctuations is zero (which is often the case), the ensemble average of
the objective variation is also zero. Unfortunately, this means that it is impossible to
infer any useful information about the average objective response to a zero mean noise,
as this would require higher order sensitivity functionals.
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3.1.5 Waveform parameterization

We solve primal and adjoint problems that are discrete in time and space to find the
cost function sensitivity. The sensitivity functional

{
σ†

ijnj, ·
}

∂Σact
is given by values

of the adjoint stress vector for each boundary degree of freedom on Γact and for each
time step in Th. For a typical 2D problem, the number of spatial degrees of freedom
can reach several hundred points, and there are several thousand time steps. The value
of the adjoint stress for each boundary degree of freedom and for each time step can be
considered as an optimization parameter. The resulting optimization space contains
millions of optimization parameters. We reduce the dimension of the optimization
problem by projecting the original high dimensional spaces into lower dimensional
spaces, defined by physical constraints of printhead systems. We iteratively solve the
optimization problem on nested optimization spaces, and use the coarse solution as an
initial guess for the next optimization round on a finer search space.

For each optimization problem: find the actuator velocity profile U(x, t) that
minimizes the final energy of the system, we define a set of basis functions in time
and space that represent U . The simplest case of the spatial basis is a uniform
velocity profile: U(x) = 1 · n(x)c(t). For a general actuator velocity profile V(x), the
boundary velocity equals U(x) = V(x)c(t). We choose piecewise linear interpolation
of the actuator velocity, so the temporal basis functions are the first order Lagrange
polynomials. The boundary velocity belongs to a continuous piecewise linear function
space T1

w =
{
u ∈ H1

0 (Th) | ∀K ∈ Tw, u|K ∈ P 1
}
, where Tw is a tessellation of the

discrete space Th into equal intervals of width w. For a natural number n ≥ 2, the
space T1

w is embedded into T1
w/n, and functions f ∈ T1

w can be projected on T1
w/n

exactly. Figure 3.3 shows an example signal (blue line) projected on two piecewise
linear function spaces: T1

w with w = 1.0 (solid black line), and T1
w with w = 0.2 (dashed

black line).
At each timestep of an optimization step, we project the adjoint stress onto the

admissible spatial space. The objective gradient data at each timestep is then projected
onto the T1

w space. The latter is implemented in the PiecewiseLinearBasis class as
part of the firecrest package. The class provides functionality to convert vectors
that belong to Th from and to T1

w, and to convert vectors between piecewise linear
function spaces with different widths w.
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Fig. 3.3 An example projection of a signal on piecewise linear spaces with different
basis widths.

3.2 Applications

3.2.1 One dimensional test case

In order to illustrate the method and to discuss the physical mechanisms it exploits,
we first apply the optimization technique in section 3.1 to a one-dimensional test case.
A thermoviscous acoustic flow inside a unit length domain Ωc = {x : 0 ≤ x ≤ 1} is
initially at rest qac(x, t = 0) = 0. The boundary at x = 1 is set as a control boundary.
We prescribe a velocity profile u(x = 1) = U(t) on this boundary. The boundary at
x = 0 is a free surface (2.70b). This free surface is initially deformed κ̂(t = 0) = 0.05,
and therefore possesses non-zero initial energy E(t = 0) = En(t = 0).

We define the nondimensional acoustic timescale tac to be the time taken for a
wave to travel from x = 0 to x = 1. In these units the time taken for a wave to travel
from one side to the other and back is tL = 2. This is a key quantity that will be
referred to later. We discretize the time domain T into equal intervals with time step
∆t = 10−4. The non-dimensional parameters of the experiment are provided in table
3.1. The optimization search space consists of control velocity values at each discrete
time point Un for n = 1 . . . N − 1. The values of U0,UN are fixed to zero. We use the
scipy.minimize(method=‘TNC’) (Jones et al., 2020) implementation of the truncated
Newton method as the gradient-based algorithm to minimize the objective function
(3.1).

We start with the case in which the final time is set to tf = 2.5 and use the
gradient-based method to find the optimal waveform (figure 3.4a). Figure 3.4b shows
the time history of the free surface energy En (green line) and the acoustic energy Eac
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non-dimensional value
domain length, Lc 1
final time, tf 2.5, 3
speed of sound, cb

s 1
Mach number, ϵ 10−3

Reynolds number, R̃e 5 · 103

initial curvature, κ̂(t = 0) 0.05
surface tension, γ 0.01
nozzle radius, rn 0.1
time step size, ∆t 10−4

Table 3.1 Parameters of the optimization test case 3.2.1

(blue line) in the optimally controlled case, normalized by the initial total energy value
E(t = 0). The final energy at E(t = tf ) is 105 time lower the initial value. In this simple
case, the physical mechanism that it exploits can be clearly identified. The optimal
waveform consist of three stages. The first stage is a pulse lasting τp = tf − tL = 0.5
that withdraws half the volume stored in the nozzle domain. In the second stage the
actuator remains inactive while the front and back of the pulse reach the free surface
at t = 1 and t = 1 + τp respectively. The pulse velocity amplitude doubles as it reflects
from the free surface. The amount of fluid transferred through the free surface is
therefore equal to the volume initially stored in the nozzle domain. Between these two
times the free surface relaxes to zero curvature and, in doing so, reflects an acoustic
pulse back towards the actuator. At t = 2 the front of the reflected pulse reaches the
actuator. The third stage is a pulse lasting τp = tf − tL = 0.5 that withdraws more
fluid such that the reflected pulse leaves the channel without further reflection and
returns the fluid in the channel to its initial state at exactly t = tf . The two pulses,
when combined, withdraw exactly the amount of fluid initially stored in the nozzle
domain.

For comparison we then examine the case in which the final time is set to tf = 3.0
(figure 3.5). Figure 3.5b shows the time history of the free surface energy En (green line)
and the acoustic energy Eac (blue line) in the optimally controlled case, normalized by
the initial total energy value E(t = 0). The optimal waveform is qualitatively identical
to that found when tf = 2.5 but with pulses lasting τp = tf − tL = 1.0 rather than
τp = 0.5. As before, the actuator withdraws exactly the half mass of fluid between
the initial and final positions of the surface, but this time with a longer pulse and,
consequently, with a smaller actuator velocity. Consideration of the physical mechanism
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Fig. 3.4 Optimally controlled case of one-dimensional unit-length domain, tf = 2.5. (a)
optimal velocity U of the control boundary, τp indicates the pulse duration, and tL
is the timescale of length of channel; (b) nozzle energy (green), and acoustic energy
(blue), normalized by the initial total energy value E(t = 0).

shows that the optimization time has to be greater than tf = 2 and that, beyond that,
its lower limit will be determined by the maximum speed of the actuator. In both cases,
the spurious oscillations in U appear due to the Crank-Nicholson time discretization
scheme, which is dispersive.
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Fig. 3.5 Optimally controlled case of one-dimensional unit-length domain, tf = 3. (a)
optimal velocity U of the control boundary, τp indicates the pulse duration, and tL
is the timescale of length of channel; (b) nozzle energy (green), and acoustic energy
(blue), normalized by the initial total energy value E(t = 0).
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dimensional value
final time, tf , s (1− 5) · 10−6

speed of sound, cb
s, m/s 103

Mach number, ϵ 10−3

viscosity, µvis, kg/(m · s) 2 · 10−2

Prandtl number, Pr 10
initial curvature, κ(t = 0), m−1 0.05 · 106

surface tension, γdim, N/m 50 · 10−3

nozzle radius, Rn, m 10 · 10−6

nozzle height, HCL, m 20 · 10−6

time step size, ∆t, s 10−9

Table 3.2 Inkjet microchannels setup parameters (section 3.2.2)

rn = 10

Lc = 900

hc = 100

Lact

h = 120

Fig. 3.6 Two dimensional straight channel domain (sizes in µm).

3.2.2 Two dimensional straight channel

Having shown that the optimization algorithm works for a simple 1D case, and having
identified the physical mechanism in that case, we now examine a 2D straight channel
with a nozzle placed at the centre of one wall, an actuator along the opposite wall, an
outlet boundary at the left side, and a symmetry boundary at the right side (figure
3.6). The dimensional parameters of the nozzle domain and acoustic constants are
given in table 3.2. In the remaining sections, we present the time and space scales in
dimensional format because this enables easier comparison with the literature.

We assume that the nozzle state κ̂ shortly after the droplet has been expelled is
a free surface with uniform curvature. For ease of explanation, we assume that the
acoustic energy in the channel has already decayed to zero. This assumption could
easily be relaxed in practice. The simulation therefore starts from the zero acoustic
state and non zero curvature:

qac(t = 0) = 0, κ̂(t = 0) = 0.25. (3.18)
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The actuator is at rest at t = 0. The objective is to minimize the total energy at final
time J = E(tf ) = Eac(tf ) + En(tf ) (3.1).

Typically the time between droplets is between 2 µs and 20 µs. Here, we will
examine optimization times of 1 µs, 2 µs and 3 µs in order to investigate whether
open loop control over these times could significantly reduce the the total energy, and
therefore the time required between droplets. We discretize the time domain T into
equal time intervals with the time step ∆t = 10−3 µs. The time step is chosen in order
to have sufficient time resolution of the acoustic motion inside the narrowest part of
the channel Ωc, near the nozzle boundary.

The actuating waveforms in inkjet printing are constrained by the limitations of
the driving electronics and response of the piezo-electric actuator. We assume that the
piezo-electric actuator deforms as a solid plate in the direction normal to the channel’s
wall. We model this as a boundary velocity U that is spatially uniform along the control
boundary Γact. In practical devices the electric signal that forces the piezo-electric
actuator is piecewise linear with a temporal resolution, w, between 0.01 µs and 0.1 µs.
We use a continuous piecewise linear function to describe the boundary velocity.

In our model, shown in figure 3.6, the length of the control element (actuator
boundary) varies from Lact = 20µm to Lact = 200µm. The waveform time resolution is
fixed at w = 0.1µs. The left boundary is stress-free. The right boundary is a symmetry
plane.

Figure 3.7 shows the optimized total energy at final time En(tf) normalized by
the uncontrolled total energy at final time E∗(tf ). For 1µs optimization time there is
almost no energy reduction because, as will be shown later, there is insufficient time to
control the wave reflected by the left boundary. For 2µs optimization time the final
energy reduces by one order of magnitude. For 3µs optimization time the final energy
reduces by a further order of magnitude. The actuator size has little influence as long
as it exceeds 100µm. The physical reasons for this are explored next.

Waveform optimization for tf = 2µs.

For illustration, we will examine the results with final time tf = 2µs and actuator
length Lact = 200µm. Figure 3.8a shows the nozzle surface energy (green) and the
total energy (blue) for the uncontrolled (dashed) and controlled (solid) cases. Figure
3.8c shows, for the uncontrolled case, the integrated acoustic energy dissipation (red
dashed) and, for the controlled case, the total energy E(t) again (blue), the integrated
energy flux through the actuator boundary

∫ Fact(τ)dτ (purple), the integrated acoustic
energy dissipation

∫ R(τ)dτ (red solid). Due to the energy balance (2.71a), these are
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Fig. 3.7 Optimized objective values for eight actuator lengths, Lact, and three final
times, tf . The values are normalized by the total energy at final time in the uncontrolled
case.

related by
E(t) = E(0) +

∫ t

0
Fact(τ)dτ −

∫ t

0
R(τ)dτ. (3.19)

Figure 3.8b shows the mass flux through the actuator boundary (black) and the nozzle
boundary (red). Figure 3.9 shows snapshots of the pressure field of the controlled case
at times corresponding to the empty circles in figure 3.8.

For the uncontrolled case, the nozzle surface energy E∗
n (green dashed line in figure

3.8a) reduces smoothly as the free surface relaxes. As for the one-dimensional test case,
this sends an acoustic wave down the channel, increasing the acoustic energy. The total
energy E∗ (blue dashed line, figure 3.8a), which comprises the nozzle surface energy
and the acoustic energy, reduces gently as the wave dissipates due to thermo-viscous
mechanisms.

At time t = tf = 2.0 µs, the controlled case has almost 20 times lower energy than
the uncontrolled case (compare the solid blue and dashed blue lines in figure 3.8a).
The optimal waveform (black line in figure 3.8c) consists of three phases. During the
first phase A+ : 0 ≤ t ≤ 0.38 µs the actuator pulls fluid upwards and creates a negative
pressure wave (figure 3.9a). This wave moves down towards the nozzle and left along
the channel. The wave reaches the nozzle boundary at t = 0.12µs, at which point mass
starts to be pulled out of the nozzle (red solid line in 3.8b), and the nozzle surface
energy starts to reduce (green solid line in 3.8a). The wave reflects back off the nozzle,
reaching the actuator at t = 0.24µs. Reverberations at this timescale, which is that



3.2 Applications 77

0.0 0.5 1.0 1.5 2.0
T, µs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

en
er

gy

A+ A−

E∗(t)/E(0)

E∗n(t)/E(0)

E(t)/E(0)

En(t)/E(0)

fig.10 snapshots

(a)

0.0 0.5 1.0 1.5 2.0
T, µs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

en
er

gy

A+ A−

E(t)/E(0)∫ t
0 dτ Fact(τ)/E(0)
∫ t

0 dτ R(τ)/E(0)
∫ t

0 dτ R∗(τ)/E(0)

(b)

0.0 0.5 1.0 1.5 2.0
T, µs

0.000

0.005

0.010

0.015

0.020

B
ou

n
d

ar
y

m
as

s
fl

u
x

A+ A−

Timescale of length of channel

Timescale of height of channel

Mact(t)

−Mn(t)

−M∗
n(t)

(c)

Fig. 3.8 Comparison between the uncontrolled case (dashed lines) and the optimally
controlled case (solid lines) with Lact = 200µm and tf = 2µs. (a) Total energy En(t)
(blue) and nozzle energy En(t) (green), normalized by E(t = 0). (b) Integrated energy
flux through the actuator boundary

∫ Fact(τ)dτ (purple line), integrated acoustic energy
dissipation

∫ R(τ)dτ (red solid line), and the integrated acoustic energy dissipation∫ R∗(τ)dτ in the uncontrolled case (red dashed line). (c) Boundary mass flux through
the actuator boundary Mact (black) and the nozzle boundary Mn (red). The red
dashed line is the mass flux M∗

n through the nozzle boundary in the uncontrolled case.
The coloured patches denote the actuation phases, when the acoustic waves are formed
(A+) and absorbed by the actuator (A−).
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of the height of the channel, continue during the controlled period. This behaviour
is similar to that of the 1D test case but is more complicated because the flow is 2D.
This wave relaxes the free surface but, unavoidably, produces a large amplitude wave
moving left along the channel (figure 3.9b). Indeed the energy flux through the control
boundary during the first phase, A+, is large and the total energy rapidly increases to
nearly three times that of the uncontrolled case.

During the second phase 0.38 ≤ t ≤ 1.62 µs the integrated mass flux through the
actuator, Mact ≡ {u · n}Γact

, is almost identical to the integrated mass flux away from
the nozzle, Mn (black and red solid lines in figure 3.8c). Compared with the first
pulse, this motion is relatively slow, shown by the fact that the energy flux through the
actuator boundary is small ∂tE ≃ 0. The nozzle surface energy reduces to nearly zero
during this phase (green solid line in 3.8a). Meanwhile, in the channel, the pressure
wave generated during the first phase reflects off the stress-free boundary and a positive
pressure wave travels back towards the nozzle and the actuator (figure 3.9c). The total
energy E steadily decreases due to viscous and thermal dissipation of the acoustic wave
(figure 3.8b, red line).

The third phase A− : 1.62 ≤ t ≤ 2.0 µs is the counterpart of the first phase
A+. When the positive pressure wave reaches the symmetry plane of the channel the
actuator quickly moves upwards again (black line in figure 3.8b) and optimally absorbs
the acoustic energy (blue line in figure 3.8c) by moving to make the wave do work
on the actuator boundary (purple line in figure 3.8c). The acoustic pressure quickly
reduces and remains small thereafter (fig. 3.9f). This acts on the timescale of the
channel: 2Lc/c

b
s = 2 × 900µm/ (1000m/s) = 1.8µs. If the optimization time is 1µs,

the nozzle free surface energy could be reduced by the actuator but there would then
be insufficient time to absorb the acoustic wave that is reflected off the stress-free
boundary. The optimal solution is to do almost nothing.

We now investigate the effect of the actuator size Lact on the final energy and
the optimal waveform. Figure 3.7 (orange line) shows the final total energy of the
controlled cases, normalized by the final energy of the uncontrolled case. Figure 3.10
shows the optimal mass flux through the actuator boundary for different actuator sizes,
Lact. All waveforms have the three-phase shape described above and exploit the same
mechanism.

Waveform optimization for tf = 3µs.

For illustration, we will examine the results with final time tf = 3µs and actuator
length Lact = 100µm. Figure 3.11 shows the time history of the energy and boundary
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(a) t = 0.06µs. (b) t = 0.3µs.

(c) t = 1.3µs. (d) t = 1.9µs.

(e) t = 2.0µs. (f) t = 2.5µs.

Fig. 3.9 Snapshots of the pressure distribution inside an injector channel at different
times, with the optimal control applied to the actuator boundary, Lact = 200µm,
tf = 2µs.
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Fig. 3.10 Optimal mass flux through the control boundary as a function of time, for
different actuator lengths. The control duration is 2 µs.

mass fluxes for the uncontrolled and optimally controlled cases. Figure 3.12 shows
snapshots of the pressure field at the times shown as open circles in figure 3.11.

The first phase A+ : 0 ≤ t ≤ 0.55 µs is similar to the A+ phase of the tf = 2µs case.
The actuator pulls fluid upwards and generates a negative pressure wave (figure 3.12a).
As before, the wave reaches the nozzle boundary at t = 0.12µs and mass starts to be
pulled out of the nozzle. This wave reflects back off the nozzle. The reverberations
in the fluid are as strong as in the previous case (which has a shorter actuator and
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Fig. 3.11 Comparison between the uncontrolled case (dashed lines) and the optimally
controlled case (solid lines) with Lact = 100µm and tf = 3µs. (a) Total energy E(t)
(blue) and nozzle energy En(t) (green), normalized by E(t = 0). (b) Integrated energy
flux through the actuator boundary

∫ Fact(τ)dτ (purple line), integrated acoustic energy
dissipation

∫ R(τ)dτ (red solid line), and the integrated acoustic energy dissipation∫ R∗(τ)dτ in the uncontrolled case (red dashed line). (c) Boundary mass flux through
the actuator boundary Mact (black) and the nozzle boundary Mn (red). The coloured
patches denote the actuation phases, when the acoustic waves are formed (A+,B+)
and absorbed by the actuator (A−,B−).

a shorter channel) but the actuator is wider and would be unable to reduce their
amplitude without simultaneously creating high amplitude waves elsewhere. Therefore
the actuator moves less. As before, this motion produces a large amplitude wave
moving left along the channel.

During the second phase B+ : 0.55 ≤ t ≤ 1.2µs the mass flux through the nozzle
reaches a maximum. The actuator is still moving upwards, partially compensating for
the flow from the nozzle and slowly absorbing the acoustic energy. A positive pressure
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(a) t = 0.1µs. (b) t = 0.8µs.

(c) t = 1.05µs. (d) t = 1.2µs.

(e) t = 1.8µs. (f) t = 2.05µs.

(g) t = 2.4µs. (h) t = 2.6µs.

(i) t = 2.8µs. (j) t = 3.0µs.

Fig. 3.12 Snapshots of the pressure distribution inside an injector channel at different
times, with the optimal control applied to the actuator boundary, Lact = 100µm,
tf = 3µs.

wave moves left along the channel (fig. 3.12b). (The optimization algorithm does not
create this wave for the 2µs case because there is insufficient time to cancel it.) During
this phase, almost all of the fluid is quickly transferred from the nozzle to the channel.
By the end of the B+ phase, the free surface has nearly reached its final low energy
state.

During the third phase 1.2 ≤ t ≤ 1.75µs the mass flux from the actuator broadly
cancels that from the nozzle. No new pressure waves form during this phase (fig.3.12c).
The negative pressure left-running wave reflects from the open end (3.12d) and becomes
a positive pressure right-running wave. This middle phase is similar to the middle
phase of the T = 2µs case.

The fourth phase A− : 1.8 ≤ t ≤ 2.3µs is the same as the A− phase in the T = 2µs
case. The positive right-running wave is absorbed by the actuator (fig. 3.12e, 3.12f).
This results in rapid decrease in total energy. Meanwhile the positive left-running wave
has reflected from the open end and has become a negative right-running wave. During
the fifth phase B− : 2.3 ≤ t ≤ 3.0µs, the negative left-running pressure wave reaches
the actuator, and is optimally absorbed by doing work on the actuator boundary.
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Figure 3.13 shows the mass flow at the actuator Mact as a function of time for
different Lact. The shapes of the waveforms for T = 3µs with different actuator lengths
are similar.
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Fig. 3.13 Optimal mass flux through the control boundary as a function of time, for
different actuator lengths. The control duration is 3 µs.

In summary, the most effective control is achieved when the actuator moves out
of the domain and provides a negative pressure pulse to accelerate the flow at the
nozzle, and then adapts to the large mass flux during the B+ phase. This combination
efficiently transfers all fluid from the nozzle to the channel and leaves sufficient time
for the actuator to absorb the reflected waves afterwards. At lower optimization times,
reasonably effective control can be achieved with a short negative pulse, followed by
a long middle period in which the channel slowly absorbs the fluid from the nozzle,
leaving sufficient time to cancel its reverberation from the ends of the channel. If
there is insufficient time to cancel the reverberation from the ends of the channel then
any control is ineffective. This shows that the minimum optimization time (i.e. the
minimum time between droplet ejections) is 2Lc/c

b
s.

3.2.3 Two dimensional long straight print head channel

We now examine the case with a longer channel (Lc = 1235µm) and a longer optimiza-
tion time (tf = 5µs). This length is equal to the distance along the centreline of the
U-shaped channel in section 3.2.4.

Figure 3.14 shows the time history of the energy and boundary mass fluxes for
the uncontrolled and optimally controlled cases. Figure 3.15 shows snapshots of the
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pressure field at the times shown as open circles on figure 3.14. By comparing figure
3.14 with figure 3.11, we see that the physical mechanisms are the same as those for
the optimally controlled case with Lact = 100µm and tf = 3µ s but that there is no
gap between the B+ and A− phases.
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Fig. 3.14 Comparison between the uncontrolled case (dashed lines) and the optimally
controlled case (solid lines) with Lact = 400µm and tf = 5µs. (a) Total energy E(t)
(blue) and nozzle energy En(t) (green), normalized by E(t = 0). (b) Integrated energy
flux through the actuator boundary

∫ Fact(τ)dτ (purple line), integrated acoustic energy
dissipation

∫ R(τ)dτ (red solid line), and the integrated acoustic energy dissipation∫ R∗(τ)dτ in the uncontrolled case (red dashed line). (c) Boundary mass flux through
the actuator boundary Mact (black) and the nozzle boundary Mn (red). The coloured
patches denote the actuation phases, when the acoustic waves are formed (A+,B+)
and absorbed by the actuator (A−,B−).

In the first phase (A+ : 0 ≤ t ≤ 1.2µs) the actuator pulls fluid upwards and
generates a negative pressure wave (figures 3.15a, 3.15b). Note that the total mass
pulled upwards during the first phase is the same as for the previous, T = 3µs case.
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Note also that, by moving more slowly, the actuator puts less energy into the system
(compare maximum normalized energy of the tf = 5µs case, Emax/E(0) ≈ 2.8 with that
of the tf = 3µs case, Emax/E(0) ≈ 5.9). This actuator motion creates a large amplitude
negative pressure wave moving left along the channel. This reaches the end of the
channel at 1.3µs and reflects off the stress-free boundary (figures 3.15c, 3.15d). During
this A+ phase, the free surface contracts and fluid moves into the channel from the
nozzle (red line in figure 3.14c). The mass flux from the nozzle reaches a maximum,
and a positive pressure wave moves left along the channel (3.15d–3.15g), which then
reflects as a negative pressure wave (phase B+ : 1.2 ≤ t ≤ 2.2µs). Meanwhile, the
actuator has continued to move upwards in order to absorb the mass flux from the
nozzle. From t = 1.2 to t = 2.2µs the actuator mass flux is returning to zero until, at
2.2µs the reflection of the first wave arrives back at the outer edge of the actuator,
as a positive pressure wave. From 2.2 to 3.4 µs, the actuator moves upwards again
to absorb the energy from this wave (A−). Then, around 3.4 µs, the reflection of the
second wave arrives back at the actuator, as a negative pressure wave (figure 3.15h).
The actuator moves downwards to absorb this wave (B−) and, by 4.5 µs has absorbed
both waves.

In summary, in the 5 µs case we see the same waves (A+ and B+) as for the tf = 3µs
case but the actuator moves more slowly and for a longer period of time so that the
maximum acoustic energy is less.

3.2.4 Two dimensional U-shaped print head channel

Having shown that the optimization algorithm works for a straight channel, and having
highlighted the importance of wave reflections at the ends of the channel, we now
examine a realistic case, in which the ends of the channel bend upwards to make a
U-shape and the length along the centreline is the same as that in section 3.2.3 (figure
2.7). We set the actuator length to Lact = 400µm.

From the snapshots (figure 3.17) we see that the waves disperse slightly as they
travel round the corner. By comparing figure 3.16 with figure 3.14, however, we see
that the optimal profiles for the U-shaped channel are qualitatively identical to those
for the long straight channel in section 3.2.3. From this, and the snapshots, we deduce
that the optimization method is exploiting the same physical mechanism.

Figure 3.16 shows the comparison between the uncontrolled case (dashed lines) and
optimally controlled case (solid lines) for the waveform with time resolution w = 1.0µs.
In the uncontrolled case, the total energy (figure 3.16a, blue dashed line) decreases over
time, and almost half of the total energy dissipates through viscous and thermal effects.
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(a) t = 0.25µs. (b) t = 0.5µs.

(c) t = 1.4µs. (d) t = 1.7µs.

(e) t = 2.3µs. (f) t = 2.9µs.

(g) t = 3.3µs. (h) t = 3.9µs.

(i) t = 4.4µs. (j) t = 5.0µs.

Fig. 3.15 Snapshots of the pressure distribution inside a long straight printhead at
different times, with the optimal control applied to the actuator boundary, Lact =
400µm, tf = 5µs.

The mass flux through the nozzle surface M∗
n (red dashed line, figure 3.16c) oscillates

due to the reflected acoustic waves approaching the nozzle surface at different times.
Figure 3.16c shows the optimal waveform (black line). The actuator moves out

of the domain at t ≤ 1µs, and accelerates the flow inside the nozzle Mn (red line).
The energy flux through the actuator Fact is positive (figure 3.16b, purple line). For
t > 1.4µ, the energy flux Fact is negative (except for a short period 2.8 ≤ t ≤ 3.2µs),
and energy is actively removed from the system by the actuator (figure 3.16b, purple
line). However, energy is mostly dissipated passively by viscous and thermal effects R
(figure 3.16b, red line), similarly to the setups discussed in section 3.2.2. By the end
of the simulation at t = 5µs, the work done by the actuator on the system is positive
and approximately equal to the initial energy of the system. The dissipated energy∫ T

0 dt R(t) is therefore almost double the amount of initial energy in the system.
Finally we investigate how the objective value changes when we increase the

waveform time resolution from w = 1.0 to w = 0.5, and 0.25µs. These correspond
to the time resolution of state-of-the-art piezoelectric controllers. We project the
optimal waveform with w = 1.0µs (figure 3.18b, solid line) to a higher dimensional
space T1

w with w = 0.5µs, and use the projected solution as the initial guess for a new
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Fig. 3.16 Comparison between the printhead uncontrolled case (dashed lines) and
the optimally controlled case (solid lines) with Lact = 400µm and T = 5 µs. (a)
Total energy E(t) (blue) and nozzle energy En(t) (green), normalized by E(t = 0).
(b) Integrated energy flux through the actuator boundary

∫ t
0 Fact(τ)dτ (purple line),

integrated acoustic energy dissipation
∫ R(τ)dτ (red solid line), and the integrated

acoustic energy dissipation
∫ R∗(τ)dτ in the uncontrolled case (red dashed line). (c)

Boundary mass flux through the actuator boundary Mact (black) and the nozzle
boundary Mn (red). The red dashed line is the mass flux M∗

n through the nozzle
boundary in the uncontrolled case.

optimization problem. We noticed that using the coarse solution as the initial guess
for a more resolved waveform has considerably decreased the number of optimization
iterations to converge. The optimal waveform for w = 0.5µs (figure 3.18b, dash-dotted
line) results in 25% lower objective value (figure 3.18a). We use the optimal solution
for w = 0.5µs as the initial guess for the w = 0.25µs case. The optimal waveform for
w = 0.25µs (figure 3.18b, dotted line) results in further 4% reduction in the objective
value. These improvements are quite small, showing that the rather basic sinusoid-type
waveform for the w = 1.0µs case provides a good trade-off between efficiency and
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(a) t = 0.25µs. (b) t = 0.5µs.

(c) t = 1.4µs. (d) t = 1.7µs.

(e) t = 2.3µs. (f) t = 2.9µs.

(g) t = 3.3µs. (h) t = 3.9µs.

(i) t = 4.4µs. (j) t = 5.0µs.

Fig. 3.17 Snapshots of the pressure distribution inside a U-shaped printhead at different
times, with the optimal control applied to the actuator boundary, Lact = 400µm,
tf = 5µs.
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complexity. This waveform is an outward moving pulse lasting 2.7µs, and an inwards
moving pulse lasting 2 µs. The outward pulse causes the free surface to relax but
generates acoustic waves that travel down the channel. These reflect and first arrive
back at the actuator at t = 2.4µs. The trailing edge of the outward pulse and then the
inward pulse absorb these reflected waves optimally. Given that this waveform would
be imposed just after ejection of the droplet, it is reassuringly similar to the W-shaped
waveform that, by trial and error, has been shown to remove residual acoustic waves
arising from the previous ejection cycle (Gan et al., 2009). The advance in this thesis
is to show this rigorously with adjoint-based optimization in the time domain and to
identify the physical mechanisms that this waveform exploits.
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Fig. 3.18 (a) Optimized objective values (total energy at final time E(T ) normalized by
initial value E(0)) for different waveform resolution w, and (b) corresponding waveforms.

3.2.5 Optimization with a parabolic actuator velocity profile

In previous sections, the flow inside a straight and a U-shaped channels driven by an
actuator with a uniform actuator velocity profile has been optimized. This section
examines a system with a parabolic actuator velocity profile, and two cases are
considered: a straight channel with Lact = 200µm, tf = 2µs (similar to 3.2.2), and
a U-shaped channel with Lact = 400µm, tf = 5µs (similar to 3.2.4). The velocity
boundary condition on Γact is u = c(t) (x− xact) (x− xact − 2Lact) n, where x is the
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coordinate along the actuator boundary, and xact is the position of the leftmost point
on the actuator boundary.

The same optimization strategy as descried in section 3.2.1 is applied to find an
optimal waveform. Figure 3.19 shows an optimal waveform, and a mass and energy
fluxes for a straight channel (figure 3.6) and tf = 2µs (dashed lines). Solid lines denote
the optimized results for a flat actuator velocity profile (from section 3.2.2). The
optimal waveforms (figure 3.19c) for parabolic and flat velocity profiles are very similar,
and the energy transfer between the nozzle, channel, and the actuator follow the same
pattern (figure 3.19b).

Figure 3.20 shows optimization results for a U-shaped printhead channel (the same
as in section 3.2.4) with a parabolic actuator velocity profile. Again, the parabolic
profile results (dashed lines) match very closely the optimization results for a uniform
profile (solid lines). This means that the energy damping mechanism is independent
of the exact shape of the actuator velocity profile, and is governed by the mass flow
through the actuator boundary Mact.

3.3 Concluding remarks

In this chapter we develop a gradient-based approach that uses adjoint methods in
the time domain to optimize the motion of the piezo-electric actuator in an inkjet
printhead microchannel. We seek to minimize the residual reverberations inside the
microchannel after a droplet is ejected by defining the objective function to be the sum
of the acoustic and free surface energy at a given final time (3.1). We derive the adjoint
equations for the acoustic equations and the free surface model (3.11, 3.12), and thereby
obtain the expression for the objective function derivative (3.15). With an optimization
method we obtain the optimal deformation for a one-dimensional test case (3.2.1), a
two-dimensional rectangular microchannel (3.2.2, 3.2.3), and a U-shaped printhead
microchannel (3.2.4). We show that an optimally controlled actuator can reduce the
total energy inside the printhead microchannel geometry by 1000 times, compared with
the uncontrolled case. The physical mechanism for reducing the energy is qualitatively
similar for all three microchannels, and does not depend on the exact shape of the
actuator velocity profile. The actuator’s initial deformation withdraws fluid from the
nozzle. The liquid/gas surface relaxes towards the zero curvature state. This initial
deformation sends an acoustic wave down the microchannel, which reflects off the open
end and returns some time later. The actuator then deforms in order to perfectly
absorb the reflected acoustic wave. The minimum time over which optimization can be
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Fig. 3.19 Comparison between the optimally controlled straight channel flow with flat
(solid lines) and parabolic (dahsed lines) actuator velocity profiles with Lact = 200µm
and tf = 2µs. (a) Total energy En(t) (blue) and nozzle energy En(t) (green), normalized
by E(t = 0). (b) Integrated energy fluxes through the actuator boundary

∫ Fact(τ)dτ
(purple line), integrated acoustic energy dissipation

∫ R(τ)dτ (red solid line). (c)
Boundary mass fluxes through the actuator boundary Mact (black) and the nozzle
boundary Mn (red). The coloured patches denote the actuation phases, when the
acoustic waves are formed (A+) and absorbed by the actuator (A−).

successful, which is therefore the minimum time between droplets, is the time taken for
an acoustic wave to travel from the actuator to the open end and back. The duration of
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Fig. 3.20 Comparison between the optimally controlled printhead flow with flat (solid
lines) and parabolic (dahsed lines) actuator velocity profiles with Lact = 400µm and
T = 5 µs. (a) Total energy E(t) (blue) and nozzle energy En(t) (green), normalized
by E(t = 0). (b) Integrated energy fluxes through the actuator boundary

∫ t
0 Fact(τ)dτ

(purple line), integrated acoustic energy dissipation
∫ R(τ)dτ (red solid line). (c)

Boundary mass fluxes through the actuator boundary Mact (black) and the nozzle
boundary Mn (red).

the waveform itself must be added to this time. Short waveforms (e.g. A+ in figure 3.8)
are in one direction only and reduce the energy by just over one order of magnitude.
Longer optimization times allow sufficient time for the deformation waveform to have
two components in opposite directions (e.g. A+ and B+ in figures 3.11 and 3.14)).
This waveform reduces the free surface energy more quickly and by over a further order
of magnitude. Although these qualitative features are consistent, the exact optimal
waveform and the final energy depend on the available optimization time, the actuator
length, and the waveform resolution.





Chapter 4

Shape optimization of the inkjet
microchannels

We consider the reverberation (residual control) stage of the drop-on-demand process,
and ask whether it is possible to change the shape of the printhead’s microchannels in
order to increase the decay rate Re(s) of acoustic reverberations while decreasing (or
at least maintaining) the pressure drop required to flush ink through the printhead.
In both cases, viscous dissipation in the channel is the major damping mechanism.
We define two objective functions: the steady flow viscous dissipation that serves as a
proxy for the channel’s pressure drop, and the oscillating flow decay rate. We then
set the former one to be a constraint. We discover that it is possible to increase one
while decreasing the other. The question then arises as to how to find the optimal
channel shape. So many shape parameters can be changed that a particularly efficient
approach is to use gradient-based optimization algorithms.

Using the adjoint approach, it is possible to obtain the sensitivity of the objective
functions to shape modifications. The shape sensitivity of the steady flow viscous
dissipation is calculated using results obtained by Schmidt and Schulz (2010). In this
chapter we derive the adjoint counterpart of the thermoviscous acoustic eigenvalue
problem and calculate the natural frequency and decay rate shape sensitivities (e.g.
Luchini and Bottaro (2014)).

We choose the parameter-based approach to define the optimization boundaries,
and describe the optimization domain in terms of B-spline boundaries. This approach
provides smooth surfaces with analytic expressions of parametric sensitivities and
surface properties. An alternative parameter-free approach requires additional surface
smoothing (Jameson and Martinelli, 2000) to obtain shapes that can be reproduced by
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CAD programs (Schmidt et al., 2016) and avoid being stuck at local optima (Bängtsson
et al., 2003).

The main goal of this chapter is to describe the method and the physics that
it exploits. The gradient-based optimization is then applied to a two-dimensional
channel and a generic geometry of the printhead’s microchannels. Constraining the
channel to be two-dimensional considerably reduces the computational expense of the
problem without altering the most influential aspects of the physics. This is because
the longest-lasting residual oscillations are those of the lowest frequency mode, whose
frequency is determined mainly by the length of the channel and whose dissipation is
predominantly in the boundary layers at the sides of the channel. The results of this
chapter have been published in Kungurtsev and Juniper (2019).

4.1 Shape optimization framework

4.1.1 Shape calculus formalism

We consider a governing equation R (q, a) = 0 satisfied over a domain Ω, with solution
q for model parameters a. In this particular case, the model parameters determine the
domain shape: Ω = Ω(a). We define an objective function J(q,Ω, a). The optimal
control problem we aim to solve is

Find Ω∗ = arg min J(q,Ω, a)
subject to R (q, a) = 0,

a ∈ Aadm, Ω ∈ OΩ,

(4.1)

where Aadm is a set of admissible model parameters, and OΩ is the set of admissible
domains.

In 2D, a displacement field V : R2 → R2 defined in Ω represents the domain
deformation, and ξ is the displacement amplitude. Following Schmidt and Schulz
(2010), we define a parametric family of mappings Tξ : x→ x + ξV (x) for x ∈ Ω. The
perturbed domain Ωξ and the perturbed boundary Γξ = ∂Ωξ are given by

Ωξ = Tξ (Ω) , Γξ = Γ + ξV (x) for x ∈ Γ. (4.2)

qξ denotes the corresponding perturbed flow state. The Fréchet derivative of J with
respect to a domain perturbation, V , at Ω0 = Ω(a0), q0 = q(Ω0, a0), is denoted with a
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square bracket J ′[V ]:

J ′(q0,Ω0, a0)[V ] = lim
ξ→0†

J(qξ,Ωξ)− J0

ξ
. (4.3)

If the domain boundary Γ is sufficiently smooth, any tangential displacement
only changes the boundary parametrization but not the actual shape. Therefore the
boundary displacements in the direction of V and its normal component (V · n) n are
equivalent, where n is the boundary unit normal vector. A shape derivative J ′(Ω)[V ]
can be written in Hadamard form (Delfour and Zolésio, 2011; Grinfeld, 2010) as a
scalar product of a sensitivity functional G(q, q†) and the normal component of the
deformation field V , where q† is the adjoint state:

J ′[V ] =
∫

Γ0
(V · n)G(q, q†)ds. (4.4)

The sensitivity functional naturally depends on the choice of the state equations and
the objective function. We derive the sensitivity functionals of interest in section 4.2.

Shape derivatives of boundary conditions

The shape derivative of a general boundary condition independent of the geometry,
in particular independent of the surface normal, can be calculated as follows. Given
a boundary condition g(q0) = g0 on the unperturbed boundary Γ0, the perturbed
boundary condition g(qξ) = gξ on Γξ can be linearised around Γ0 for a small shape
deformation with magnitude ξ ≪ 1. We expand the perturbed solution as

qξ (Γξ) = (1 + ξ(V · ∇)) qξ (Γ0) + O
(
ξ2
)

= (1 + ξ(V · ∇)) (q0 (Γ0) + ξq′
0[V ] (Γ0)) + O

(
ξ2
)

=q0 (Γ0) + ξq′
0[V ] (Γ0) + ξ (V · ∇) q0 (Γ0) + O

(
ξ2
)
,

(4.5)

such that the total (material) derivative of the solution with respect to the shape
perturbation V is dq[V ] ≡ q′

0[V ] (Γ0) + (V · ∇)qξ (Γ0) and q′
0[V ] is the local shape

derivative. The linearisation of the boundary condition is

g (qξ (Γξ)) = g(q0 + ξdq[V ]) = g(q0,Γ0) + ξ

(
∂g
∂q

∣∣∣∣∣
0

(q′
0[V ] + (V · ∇)q0)

)
+ O

(
ξ2
)
,

(4.6)
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where the subscript |0 indicates the value at q = q0,Γ = Γ0. The term ∂g
∂q

∣∣∣
0
q′[V ]

represents the boundary condition of the first order solution’s response to shape
deformation on the unperturbed boundary. It can be expressed in terms of the initial
solution q0 as

∂g
∂q

∣∣∣∣∣
0
q′[V ] = lim

ξ→0†

gb,ξ − gb,0

ξ
− ∂g
∂q

∣∣∣∣∣
0

(V · ∇)q0 = (V · ∇)gb,0 −
∂g
∂q

∣∣∣∣∣
0

(V · ∇)q0. (4.7)

4.1.2 Parameter-based shape optimization

We use the parameter-based shape optimization framework, and require that the model
parameters belong to a discrete space a =

{
ak, k = 1, 2, . . .

}
. The parameter-based

approach restricts the number of possible boundary deformations to the number of
control parameters. Essentially, a parametrization projects the function space of the
admissible shape deformations onto a lower dimensional subspace, which allows us to
operate with the vector representation of shape gradients instead of the continuous
boundary sensitivities. We assume that there is a unique mapping between the original
model parameters and a set of two (or three) dimensional control points. Each control
point generates a boundary displacement field, V k, which is, by definition, the boundary
shape sensitivity to the control point’s position:

V k = ∂Γ
∂ak

. (4.8)

The objective function gradient with respect to the displacement field J ′[V k] transforms
to the sensitivity with respect to the control parameters, J ′[ak].

For a sufficiently small perturbation δa, the objective function can be locally
approximated as J(a) = J(a0+δa) ≃ J(a0)+J ′(a0)[a]δa. The components of the vector
J ′[δa] ∈ RN are J ′[ak] ≡

{(
V k · n

)
G(q, q†)

}
. In general, the basis

{
V k, k = 1, 2, . . .

}
is not orthonormal:

{
V k, V k′

}
Γ
̸= δk,k′ , and the metric corresponding to the scalar

product is defined by a mass matrix Mk,k′ : for two deformation fields V1 = ∑
k α

k
1V

k

and V2 = ∑
k′ αk′

2 V
k′ ,

{V1, V2}Γ =
∑
k,k′

αk
1α

k′

2

{
V k, V k′}

Γ
≡
∑
k,k′

αk
1α

k′

2 Mk,k′ .

Therefore, the covariant gradient descent is given by

δak ∼ −M−1
k,k′J ′(a0)[ak′ ]. (4.9)
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This result is discussed in details by Kiendl et al. (2014), and has been visualized
for a simple objective function J = |Ω| by Wang et al. (2017). Naive application of
δa = J ′(a0) as the gradient step in steepest descent minimization algorithms results in
parameterization-dependent convergence, while the covariant gradient descent (4.9) is
parameterization-agnostic.

We can estimate the optimality of a shape (but not the parametrization) by
considering the scalar product of the objective shape sensitivity, G, with the constraint
shape sensitivity, G′. The surface inner product {G,G′}Γ and the surface norm
∥G∥2

Γ = {G,G}Γ form the optimality coefficient α:

α = {G,G′}Γ
∥G∥Γ ∥G′∥Γ

≥ −1. (4.10)

The optimality coefficient indicates the cosine of the angle between the objective
function shape sensitivity and the constraint shape sensitivity, such that α = −1 implies
that they point in opposite directions and the system has reached its local optimum.
In the case of N optimization parameters, a sensitivity functional is realised on a
shape deformation subspace, spanned by V k, k = 1 . . . N . The parametric optimality
coefficient αp is:

αp = gT g′

∥g∥ · ∥g′∥
≤ α, (4.11)

where gi = {G, V i}Γ and g′
i = {G′, V i}Γ. In the parameter-based optimization, αp = −1

implies that the local optimum has been reached within the choice of parametrization.

4.1.3 Automatic shape generation using PySplines

The python package PySplines (Kungurtsev, 2020b) has been developed as a part of
this work. It is based on a symbolic algebra package sympy (Meurer et al., 2017). The
development of the tool is motivated by CAD-style parameter-based shapes generation
and optimization. The tool aims to solve the following problems:

1. allow easy generation of B-splines with given control points and degree;

2. provide fast access to the surface properties in analytical and numerical forms
(normals, curvature, displacement fields), especially when they are used multiple
times;

3. implement fine control of the curve smoothness and uniformity of the points
distribution along the curve.
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The following example illustrates the B-spline generation and refinement features:
1 from pysplines . bsplines import Bspline
2

3 def generate_bsplines ():
4 # Create two ‘Bspline ‘ objects : with and without refinement .
5 control_points = [
6 [[0.0, 0.0], [2.0, 0.0], [-1.0, 1.0], [1.0, 1.0]]
7 ]
8 bspline = Bspline ( control_points , degree =3, refine = False )
9 refined_bspline = Bspline (

10 control_points , degree =3, refine =True , angle_tolerance =0.03
11 )
12 return bspline , refined_bspline
13

14

15 if __name__ == " __main__ ":
16 bspline , refined_bspline = generate_bsplines ()
17

18 bspline .plot( color ="blue", show= False )
19 refined_bspline .plot( color ="red")

Figure 4.1 shows the resulting curves. While both lines are a discrete representation of
the same B-spline with an equal number of surface points, the refined spline (red line)
approximates the regions with high curvature better than the spline without refinement
(blue line). The majority of the refined curve surface points are located near the bend
of the spline (figure 4.1b). As shown in the following sections, accurate representation
of these boundary features is important for calculating viscous and thermal dissipation
in the acoustic flow boundary layers during shape optimization.

The BSpline class implements several commonly used boundary properties: the
surface normal, curvature, displacement fields (as defined by 4.8), and the mass matrix
(4.9). These built-in methods are used for automatic estimation of shape sensitivities
and re-building the optimization domain.

4.2 Shape sensitivities

In this section we discuss the choice of the objective functions for the steady and the
oscillating flows, construct the adjoint states, and derive the corresponding sensitivity
functionals. Detailed derivation of the objective function shape gradient in Hadamard
form with respect to an arbitrary boundary displacement V is provided in Appendix B.
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Fig. 4.1 B-splines generated using the PySplines package. Two third-order splines
with equal control points and number of discrete surface points are demonstrated:
without (blue) and with (red) automatic refinement.

4.2.1 Incompressible flow shape sensitivity

For the unsteady incompressible flow, we wish to minimize the viscous dissipation, Jvd,
in the domain Ω and averaged over time:

Jvd(ū,Ω) =
[ 1
Re

(∇jūi)2 w(t)
]
, (4.12)

where ū satisfies the momentum equation and the divergence-free condition given
by (2.14, 2.15), and w(t) is an optional weight function w(t) : T → R. By choosing
w(t) ≡ 1, the objective function is a simple time-averaged viscous dissipation. The
unsteady incompressible flow viscous dissipation shape derivative with respect to shape
displacements defined on no slip boundaries is:

J ′[V ] = [(V · n)Gvd]Γw×T +
〈
ū†

i , ū
′
i[V ]

〉
Ω,t=0

. (4.13)

The term ū′
i[V ](t = 0) denotes the sensitivity of the initial condition with respect

to shape modifications; the term is zero if the initial condition is homogeneous. As
discussed by Schmidt and Schulz (2010), the viscous dissipation sensitivity functional
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Gvd is

Gvd(ūi, ū
†
i ) = 1

Re
∂ūi

∂n
∂
(
ū†

i − ūi

)
∂n

, (4.14)

where ū†
i and ū†

p are the adjoint velocity and pressure states satisfying

∂

∂t
ū†

i + ūj∇jū
†
i + ūj∇iū

†
j −∇iū

†
p + 1

Re
∆ū†

i = 2w(t)
Re

∆ūi,

∇iū
†
i = 0, in Ω,
ū†

i = 0 on Γin ∪ Γw,

ū†
i ūjnj + ū†

jūjni + 1
Re

∂ū†
i

∂n
+ ū†

pni = 2w(t)
Re

∂ūi

∂n
on Γout

(4.15a)

(4.15b)
(4.15c)

(4.15d)

The right hand side source terms of the adjoint equations and boundary conditions
depend on the choice of the objective function, while the left hand sides are governed
only by the primal steady flow formulation.

4.2.2 Oscillating flow shape sensitivity

For the oscillating flow we wish to control the decay rate and frequency (Luchini and
Bottaro, 2014), so the objective function is the complex natural frequency, s, of the
thermoviscous acoustic flow (2.27):

Js = s. (4.16)

We introduce an adjoint state vector q† = (P †, û†, T †) containing the adjoint
pressure, velocity, and temperature variables. Taking the inner product of the primal
equations and the corresponding adjoint variables, we construct a Lagrangian of the
system (Gunzburger, 2002),

L = s−
〈
q†, sAq̂ + Bq̂

〉
. (4.17)

The optimality condition sets any first Lagrangian variation to zero. Variation with
respect to the adjoint and primal variables gives the primal and the adjoint state
equations, respectively. As discussed in Appendix B.1, the adjoint and the primal states
of the thermoviscous acoustic problem are related by P † = P̂ ∗,u† = −û∗, T † = T̂ ∗,
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subject to the normalization condition:

1 =
〈
u†, û

〉
+
(
P †, γthP̂ − T̂

)
+
(
T †,

T̂

γth − 1 − P̂
)

+

+
{

u†,
∂Z

∂s
û
}
−
{
∂T †

∂n
,

(∂αw/∂s)
(γth − 1)P̃e

∂T̂

∂n

}
.

(4.18)

For a shape deformation normal to a boundary V ≡ (V · n) n, the oscillating
flow eigenvalue sensitivity Gs consists of the surface stress and the thermal terms,
Gs = Gstr

s +Gth
s (derived in Appendix B.2). Given that the primal and adjoint states

are identical up to the sign of the velocity term, the sensitivity functionals are:

Gstr
s =− 2∂ûi

∂n
njσ̂ij − κûiσ̂ijnj +∇j (ûiσ̂ij) ,

Gth
s = 2∂T̂

∂n
q̂n + κT̂ q̂n −∇j

(
T̂ q̂j

)
.

(4.19a)

(4.19b)

where q̂i ≡
(
(γth − 1)P̃e

)−1
∇iT̂ is the boundary heat flux, and q̂n = (q̂ · n) is its

normal component. The viscous and the thermal sensitivity functionals have equivalent
structure in terms of the (û, σ̂ij) and

(
T̂ , q̂i

)
pairs.

On the no slip and stress-free boundaries, the viscous sensitivity functional simplifies
to

Gstr
s,w =− ∂ûi

∂n j
σ̂ij,

Gstr
s,out =∇j (ûiσ̂ij) ,

(4.20a)

(4.20b)

and on the isothermal and adiabatic boundaries, the thermal sensitivity functional
simplifies to

Gth
s,isoth = ∂T̂

∂n
q̂n,

Gth
s,ad =−∇j

(
T̂ q̂j

)
.

(4.21a)

(4.21b)

The sensitivity functionals (4.19) are calculated from the discrete solution of the
governing equations obtained using the finite element method. The discrete form of
the surface normal vector and curvature are provided by the software that generated
the domain boudaries (PySplines) for each mesh node on the domain surface, and
interpolated linearly between the surface nodes.
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4.3 Shape optimization in a 2D straight channel

4.3.1 Optimization domain

We start with a flow in a two-dimensional uniform-width channel, defined as

Ω0 =
{
(x, y) ∈ R2 | [0, 1]× [0, 0.1]

}
, (4.22)

with inlet and outlet boundaries

Γin,0 =
{
(x, y) ∈ R2 | x = 0

}
,

Γout,0 =
{
(x, y) ∈ R2 | x = 1

}
,

(4.23a)

(4.23b)

and no slip boundaries Γw,0 = ∂Ω0\ (Γin,0
⋃Γout,0). For the oscillating flow, the stress

free boundary is Γfree,0 = Γin,0 ∪ Γout,0.
The boundary Γw,0 is to be optimized by modifying the no slip boundaries, while

fixing the inlet and the outlet. If equivalent boundary displacement fields are applied
to the top and bottom no slip surfaces then the steady flow and the oscillating flow
boundary sensitivities and the shape gradients remain symmetric. Therefore we may
consider deformation of only the top boundary.

In this study, we parametrize the boundary with a set of N control points{
ak ∈ R2 | k = 1 . . . N

}
defining the third order rational uniform B-spline curve. This

provides a smooth surface of class C2 for which parametric sensitivities can be calcu-
lated (Samareh, 2001). As the positions of the control points are moved in the gradient
direction, the domain is updated and the computational mesh is rebuilt. We apply
the goal-oriented adjoint-based error control technique (Rognes and Logg, 2013) for
the automated adaptive mesh refinement. The goal functional in our case is the target
eigenvalue.

We parametrize the top boundary of the initial rectangular domain with 11 control
points, ai = (i/10, 0.1) , i = 0 . . . 10, spaced uniformly at intervals of 0.1. The first and
last points are kept at their initial positions so that the inlet and outlet boundaries are
fixed and the channel’s length remains equal to 1.

The steady flow is computed in the initially flat channel (4.22) at Re = 0.1 with a
parabolic inflow velocity profile. In the unaltered domain this results in the Poiseuille
flow solution, and the corresponding viscous dissipation value J0

vd is taken as a reference.
For the oscillating flow at R̃e = 1000, we choose the smallest non-zero frequency natural
mode as the target mode, with s0 = −0.555 + 2.81i. Figure 4.2 shows the real and
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Fig. 4.2 First natural mode of the oscillating flow in a flat channel at R̃e = 1000. From
top to bottom: pressure P̂ , longitudinal ûx and transverse ûy velocity components,
and temperature T̂ mode shapes; real (left) and imaginary (right) parts.

Fig. 4.3 Spatial distribution of the decay rate production σΩ in a flat channel. Black
lines correspond to the oscillating flow velocity magnitude isolines û = const.

imaginary parts of the mode shape, normalized by (4.18). The pressure gradient ∂xP̂

and the longitudinal velocity ûx are highest on the stress-free open end boundaries
at x = 0, x = 1. As indicated on figure 4.3, the regions with the highest contribution
to the decay rate σΩ are the no slip wall regions close to the open ends, where the
velocity magnitude isolines converge and therefore the transverse velocity gradient is
the largest. For the initial channel configuration, αp = −0.7.

The steady flow state in the unperturbed channel is independent of the longitudinal
coordinate x so the viscous dissipation shape sensitivity Gvd(ū, ū†) is constant along the
no slip walls (figure 4.4). Here, and later, Gvd is normalized by the viscous dissipation
value J0

vd in the starting geometry configuration. The shape sensitivity Gvd is always
negative, so any boundary displacement resulting in contraction of the channel’s width
leads to growth of viscous dissipation. The complex eigenvalue shape sensitivity
Gs(P̂ , û, T̂ ) is not uniform; the real part Re(Gs) is almost zero in the middle part of the
boundary and grows towards the channel’s open ends where the decay rate production
is highest, as shown previously. As for viscous dissipation, any shape deformation
directed inwards (V · n) < 0 leads to an increase in the decay rate magnitude.

As indicated on figure 4.4, the decay rate is less sensitive to shape modifications in
the middle region of the channel at 0.3 ≤ x ≤ 0.7, and has higher sensitivity on the
outer region. We expect therefore, that the channel will expand in the middle and
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Fig. 4.4 Shape sensitivity distribution along the flat channel top boundary for the decay
rate Re(Gs) (solid line) and frequency Im(Gs) (dashed line) of the first oscillating
mode, and the steady flow viscous dissipation shape sensitivity Gvd/J0 normalized by
viscous dissipation inside the channel (dotted line).

shrink around the free boundaries to increase the decay rate while keeping the steady
flow viscous dissipation constant. This is also what we expect on physical grounds:
the channels will constrict where the acoustic velocity is greater.

4.3.2 Constrained gradient optimization

Our goals are to make the oscillation’s decay rate, −σ, more negative, and decrease (or
at least not increase) the steady flow viscous dissipation. There is a trade-off between
these goals, so here we set the steady flow dissipation as an inequality constraint and
minimize Re(s).

min
Ω⊂OΩ

Re(s)

subject to Jvd ≤ J0
vd

and state equations (2.14), (2.27).

(4.24)

An alternative approach would be to incorporate the viscous dissipation as a penalty
function with an appropriate normalization constant β ≥ 0:

min
Ω⊂OΩ

Re(s) + β
(
Jvd − J0

vd +
∣∣∣Jvd − J0

vd

∣∣∣)
subject to state equations (2.14), (2.27).

We use the method of moving asymptotes (Svanberg, 1987, 2002) as the optimization
algorithm for the problem (4.24). This is a widely applied iterative method of structural
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optimization (Bendsoe and Sigmund, 2013; Gersborg-Hansen et al., 2005; Perez et al.,
2012) that generates strictly convex approximations of the original function. The
method conveniently allows us to incorporate state-dependent inequality constraints
(viscous dissipation should be less than a certain threshold), and lower and upper
bounds for the design variables. These algorithm features make it a perfect choice for
our optimization problem.

We use standard internal parameters as discussed in (Svanberg, 1987). The objective
and the constraint values and their parametric sensitivities are calculated by:

1. solving the steady steady flow (2.14) and the oscillating eigenvalue (2.27) prob-
lems;

2. finding the adjoint steady flow (4.15) and oscillating flow (4.18) states;

3. calculating the boundary sensitivities Gvd, Gs using (4.14) and (4.19); and com-
puting the objective and constraint sensitivities with respect to the boundary
control points s′[ak] =

{
V k, Gs

}
, J ′

vd[ak] =
{
V k, Gvd

}
.

We use εp = αp + 1 as a tolerance criteria for the optimization process. At the stage
the boundary control points are moved, we also verify that the domain boundaries do
not overlap, which essentially adds inequality constraints on the gradient application
step.

4.3.3 Optimized 2D channel domain

A nearly optimal configuration is found in 20 iterations, and then fine-tuned during the
subsequent 15 iterations of the MMA algorithm. Figure 4.5 shows the objective and
constraint values during the optimization, and three different shapes of the channel.
The final shape has the optimality coefficient (4.10) of αp = −0.98. The first eigenmode
in the optimized channel is s = −1.31 + 1.68i. In comparison to the initial solution,
the decay rate objective function changes by almost 140%, and the frequency (which is
unconstrained) decreases by 40%. The total area almost doubles and the channel’s
shape loses symmetry around the x = 0.5 vertical plane, while remaining symmetric
in the horizontal plane. The channel constricts near x = 0.07 and x = 0.99, and the
middle part of the channel expands, as expected.

Figure 4.6 shows the steady flow (top) and the adjoint flow (bottom) velocity
magnitude ū and ū† for the optimized channel. The lines correspond to the steady flow
streamlines. The no slip boundaries are smooth and the flow remains attached to the
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Fig. 4.5 Normalized values of the objective function Re(s) and the constraint (viscous
dissipation) during 2D channel shape optimization. Top part of the channels at
iterations n = 3, 9 and 34 are shown, and the corresponding objective and constraint
values are highlighted.

Fig. 4.6 Steady flow in the optimized channel at Re = 0.1. Top: the steady flow |ū|
velocity magnitude, with the streamlines indicated (solid lines). Bottom: the adjoint
steady flow |ū†| velocity magnitude.

walls with no recirculation zones. Viscous dissipation in the optimized channel is the
same as in the initial channel.

The steady flow velocity amplitude and velocity gradients as well as the adjoint
velocity are highest in the constricted areas. This makes the constricted regions much
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more sensitive to shape changes than the expanded part, where the adjoint velocity
magnitude is almost zero.

The decay rate production is initially located in the corner regions of the uniform
width channel. When the boundaries shift, this region shifts inside the channel towards
the constrictions, as indicated in figure 4.7. The decay rate production strongly
concentrates in the narrow parts of the channel, with the maximum at x = 0.99
more than 10000 times higher than the average value. It is almost zero between the
constrictions.

Fig. 4.7 Spatial distribution of the decay rate production in the optimized channel (on
a logarithmic scale), log10(−σΩ). Black lines correspond to the oscillating flow velocity
magnitude isolines û = const.

Fig. 4.8 The decay rate shape sensitivity distribution (solid line) of the first oscillating
mode in the optimized channel, and the steady flow viscous dissipation sensitivity
(dotted line) normalized by viscous dissipation inside the channel.

Figure 4.8 illustrates the viscous dissipation Gvd/J
0
vd (dash-dotted line) and the

decay rate Re(Gs)/ω0 (solid line) boundary sensitivities as functions of the longitudinal
coordinate along the top boundary in the optimized channel. Both sensitivities reach
their extreme values in the constricted areas and are much smaller in the intermediate



108 Shape optimization of the inkjet microchannels

region. They are almost equal and opposite to each other, showing that the design is
almost optimal. Further improvements can still be made, for instance, by boundary
re-parametrization or by introducing additional control points. However, this simple
problem has achieved its purpose by showing that the optimization procedure can
indeed increase acoustic dissipation while keeping the steady flow dissipation constant.

4.4 Inkjet printhead channel shape optimization

4.4.1 Optimization domain

Inlet manifold Outlet manifold

Actuator membrane

1840

20

75 200

390

Fig. 4.9 A 2D generic printhead geometry with a piezoelectric actuator. The channel
is connected to the ink supply manifolds via the inlet and outlet boundaries. Circles
denote the B-spline boundary control points. All sizes are in µm.

Figure 4.9 shows a 2D generic inkjet printhead chamber, which consists of a vertical
inlet and outlet, connected to ink manifolds, and a horizontal main channel. The
manifolds’ cross sections are much larger than the printhead cross section. A 30µm
long conical printing nozzle, which has a 20µm outer diameter and a taper of 8◦, is
located in the middle of the printhead. A flat piezoelectric membrane is located on the
top boundary opposite the nozzle. In 3D, the channel has a depth of 60µm into the
page. We approximate the channel to be uniform in that direction and examine only
2D deformations, as in §4.3. We aim to increase the decay rate of the oscillating flow
while keeping the steady flow viscous dissipation constant.

We parametrize the printhead walls by third order B-splines with the control points
indicated on figure 4.9. The inlet and the outlet points are fixed. The nozzle shape
cannot change but it can move in both the vertical and horizontal directions. The
bottom wall cannot extend below the nozzle tip.

We choose a characteristic length L = 100µm. The steady flow Reynolds number
is Re = 0.066 and the Reynolds number based on the speed of sound is R̃e = 6000.
The steady flow Mach number is µ = 10−4 and the oscillating flow Mach number is
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ϵ = 10−5. For the steady flow, the inlet has a fixed parabolic velocity profile, the outlet
is an open end with stress-free boundary condition (2.15c), and the walls are no-slip
boundaries and the nozzle exit is modelled as a no slip boundary because there is no
flow through it. For the acoustic flow, the walls are adiabatic no-slip, and the open
boundaries, including the nozzle exit, are stress-free and isothermal. We neglect the
surface tension at the nozzle exit.

Fig. 4.10 The velocity magnitude ū (top) and the adjoint velocity magnitude ū† (bottom)
of the steady flow in the initial printhead channel at Re = 0.066.

Figure 4.10 shows the steady flow primal ū and adjoint ū† velocity magnitude in the
initial geometry. The largest velocity magnitude is in the narrow horizontal channel.
The adjoint velocity has highest value near the sharp corners at the channel entrance
and the nozzle. These regions have the greatest influence on the steady flow viscous
dissipation.

The frequency of the first natural mode is Im(s1/2π) = ω/2π = 0.342 MHz, and
the decay rate is Re(s1/2π) = σ/2π = 0.0171 MHz. Figure 4.11 shows the mode
shape, normalized by (4.18). The pressure and the temperature modes are zero on the
stress-free boundaries and have antinodes in the middle of the channel. Since the walls
are adiabatic, the thermal boundary layer is absent and the pressure and temperature
gradients are tangential to the boundaries. The velocity magnitude is highest near the
nozzle, as shown in figure 4.11, where the viscous boundary layers overlap. The decay
rate production is shown in Fig. 4.12. It is concentrated in the nozzle region of the
initial printhead configuration, in the viscous boundary layers along the no slip walls,
and around the corners.

The parametric optimality coefficient (4.11) for the initial printhead design is
αp = 0.017, which implies that the decay rate and the viscous dissipation gradient
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P̂ T̂

Im(û)

Re(û)

Fig. 4.11 The first natural mode of the oscillating flow in the initial printhead geometry
at R̃e = 6000. From top to bottom: the magnitude of the velocity mode real part Re(û)
in the entire domain (left) and near the nozzle (right), the velocity mode imaginary
part Im(û), and pressure P̂ (bottom left) and temperature T̂ (bottom right) mode
shapes.
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Fig. 4.12 Spatial distribution of the decay rate production in the initial printhead
channel (on a logarithmic scale), log10(−σΩ).

vectors are almost orthogonal. Therefore we expect to be able to obtain a noticeable
improvement in the objective function.

4.4.2 Optimization

In this section we use the optimization algorithm in section 4.3.2 to update the control
points until the relative improvement falls below the tolerance level of εp ≤ 0.1.
The geometry is parameterized by three third-order B-splines, and 53 control points{
ak ∈ R2 | k = 1 . . . 53

}
. We impose geometric constraints: the piezoelectric actuator
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Fig. 4.13 (a) The initial (violet lines) and the optimized (red lines) printhead geometry,
and the B-spline control points. The intermediate geometries are in colour. The inlet
and the outlet boundaries (dashed) remain fixed. The piezoelectric membrane and
nozzle parts can move up and down but cannot change shape. (b) Normalized values
of the objective function Re(s) and the constraint (viscous dissipation) during 2D
printhead microchannel shape optimization.

membrane (Lact = 800µm) and the nozzle can move but cannot change shape, and the
inlet and outlet boundaries remain fixed, the distance between the bottom channel
walls and the tip of the nozzle in the vertical direction cannot be less than that of
the initial domain, and the boundaries are C2 smooth. We account for the geometric
constraints and convert the initial 63 controls in R2 into 96 parameters in R.

The optimized domain is shown in figure 4.13a. The channel constricts near the
corners of the top boundary, where the decay rate production had a local maximum.
These constrictions increase the steady flow viscous dissipation there, but the central
part of the channel expands to compensate. The optimized shape of the channel is not
symmetric, and the nozzle shifts slightly towards the outlet. The new frequency of the
first natural mode is Im(s1/2π) = ω/2π = 0.266 MHz, and the decay rate increases
to Re(s1/2π) = σ/2π = 0.0262 MHz, which is almost 40% higher than before. The
steady flow viscous dissipation is the same as in the initial printhead. The parametric
optimality coefficient (4.11) of the optimized shape is αp = −0.94, showing that it is
nearly optimal. Figure 4.13b shows the normalized objective and constraint values at
intermediate iterations (the colours denote the same steps as in figure 4.13a).

Figure 4.14 shows the spatial distribution of the decay rate production log10 (−σΩ)
inside the optimized domain. The viscous boundary layers overlap in the narrow
parts of the channel, resulting in higher acoustic energy dissipation there. The highest
amplitudes of decay rate production are around the nozzle. This shows that changes
to the nozzle geometry are particularly influential.
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Fig. 4.14 Spatial distribution of the decay rate production in the optimized printhead
channel (on a logarithmic scale), log10 (−σΩ).

4.5 Concluding remarks

In this chapter we perform constrained gradient-based shape optimization of a mi-
crochannel in an inkjet printhead microchannel. We then seek to control two objective
functions by changing the shape of the boundaries: viscous dissipation of the incom-
pressible steady mean flow, and the decay rate of the thermoviscous acoustic flow. We
obtain expressions for the derivatives of the above objective functions with respect to
boundary deformations in Hadamard form by deriving the adjoint equations for both
flows.

These equations are general and could be used in many ways. We start by showing
how they can be combined with an optimization algorithm in order to increase the
viscous and thermal dissipation of oscillations in a channel without changing the viscous
dissipation of the steady flow in the channel. This works by constricting the channel
where the acoustic velocity is largest and enlarging the channel where the acoustic
velocity is smallest. This result is straight-forward and could have been obtained using
physical intuition.

We then apply this technique to the same problem in a 2D generic inkjet printhead
microchannel. The 2D simulations under-estimate the dissipation because they have
two sides, rather than four, but they capture the major shape changes required in both
the 2-D and 3-D cases. The printhead manufacturer would like to increase the decay
rate of residual oscillations after a drop has been ejected, without changing the pressure
drop required to continually flush ink through the head. Starting from a generic design
and incorporating constraints such as the sizes of the nozzle and piezo-electric actuator,
the algorithm converges to a design with a 40% larger decay rate, but the same pressure
drop, which we show to be nearly optimal. The final shape is not straight-forward
and would have been difficult to achieve through physical insight or trial and error. It
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could be improved further by adapting the parameters that describe the shape, but in
this case the improvement would be small.





Chapter 5

Conclusions and future work

5.1 Conclusions

In this thesis the flow inside an inkjet printhead microchannel is studied using the
thermoviscous acoustic equations and a reduced order model for the flow in the
inkjet nozzle. Adjoint methods are developed to evaluate the sensitivity of various
energy objectives with respect to control parameters. For the unsteady simulation,
the sensitivity of the total energy of the system with respect to the boundary forcing
is obtained. A method to calculate shape sensitivities of the thermoviscous acoustic
flow eigenvalues is presented. The gradient information is then used as an input to
optimization algorithms to damp the residual reverberations after a droplet is ejected.
Successive application of these methods to practical devices will lead to higher temporal
resolution and more repeatable droplets.

Chapter 2 concerns the flow models and numerical methods for the unsteady and
frequency domain simulations, and solving the eigenvalue problems. The printhead
microchannel is split into the non-overlapping channel and nozzle domains, such that
the two domains are considered separately and, when analysed numerically, discretized
independently. Using the low Mach number asymptotic analysis, the compressible
Navier–Stokes equations of the channel flow are separated into equations for a slowly
varying incompressible flow and equations for acoustic oscillations with no mean flow.
The main requirements are that the steady flow Mach number and oscillating flow Mach
number are small, which are often satisfied in microfluidics, so the model in this chapter
could be applied to many other applications. The flow in the nozzle domain is given
by a reduced order model that accounts for energy conservation and dissipation, and
approximates the free surface between the fluid (ink) and the outside gas by a spherical
cap with uniform curvature. We discuss the numerical discretization and implement
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the flow solvers using the finite element method. We analyse the spectrum and the
frequency response of the thermoviscous acoustic flow inside a 2D inkjet printhead
microchannel, coupled to the reduced order model nozzle flow that is represented by a
nonlinear impedance boundary condition.

Inkjet printhead manufacturers would like to reduce the time between droplet
ejections by eliminating residual acoustic reverberations. They currently eliminate
these reverberations by deforming the piezo-element as in chapter 3, but find the
optimal waveform through trial and error on extensive experimental campaigns. We
demonstrate the success of a more systematic approach: adjoint-based optimization
of the waveform using numerical simulations. Temporal and spatial waveform shape
parameterization is inspired by the limitations of the driving electronics and response
of the piezo-electric actuator in practical devices. For a number of test cases, an
unconstrained optimization problem is solved to find an optimal waveform. We show
that, if this stabilization method is to be used, the minimum time between drops is the
sum of the waveform duration and the time taken for an acoustic wave to travel from
the nozzle to the manifold boundary and back. Further, it reveals the mechanisms that
are exploited. At a minimum, this physical understanding is useful in narrowing down
the range of waveforms tested experimentally by trial and error. At best, this technique
shows how to use numerical simulations in order to systematically and efficiently find
the optimal waveform and the minimum time between drops in inkjet print heads.

In Chapter 4 we derive and demonstrate a new way to optimize the shapes of narrow
channels that contain thermoviscous oscillating flows with (or without) steady flow.
The efficiency of the inkjet devices depends on the natural frequency and the decay
rate of the thermoviscous acoustic oscillations. Manufacturers would like to damp
the residual reverberations, without increasing the pressure drop required to drive the
steady flow. The discussed 2D optimization process changes the height of the inkjet
channel, increasing this dissipation in influential areas. The main novelty is the cheap
and accurate calculation of the shape gradients, using adjoint methods, which allows
optimization with gradient-based algorithms. This is useful in two complementary
ways. Firstly, these algorithms quickly converge to shapes that a human designer, using
physical insight and trial and error, would probably not consider. Secondly, the adjoint
methods provide physical insight into the mechanisms that influence the objective
functions. It can be then used to alter the choice of shape parameters if it becomes
apparent that the algorithm is missing a good shape due to a bad choice of shape
parameters. The method is general and could be applied to many different applications
in microfluidics. Its main requirements are that the steady flow Mach number and
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oscillating flow Mach number are small, and that dissipation is dominated by viscous
mechanisms.

5.2 Future work

Over the past several years, many open source simulation and automatic differentiation
tools have been developed and became available to the research community. Discon-
tinuous Galerkin finite element solver for the compressible Navier–Stokes equations
implemented by Houston and Sime (2018) can be considered as replacement for the
thermoviscous acoustic solver discussed in chapter 2. Manual derivation, implemen-
tation and testing of adjoint models for optimization problems is a great learning
tool, and encourages the use of physical knowledge to simplify a problem. In some
cases the manual approach might be challenging and not robust. dolfin-adjoint
(Mitusch et al., 2019) automatically derives adjoint models for problems formulated
in FEniCS, including time-dependent PDEs with Dirichlet boundary conditions. In
future, algorithmic differentiation tools should be considered to obtain the sensitivity
information.

There are three directions for future work: (i) further development and experimental
validation of the numerical models taking into account the industry performance and
accuracy metrics; (ii) designing new objective functions and respective adjoint methods
for specific inkjet system configurations; (iii) development of ad-hoc optimization
algorithms, and applying the optimization results in production.

Improved modelling of the printhead microchannel flow

Possible improvements to the models of the channel and nozzle flows are discussed in
section 2.7.1. The main step forward, although very challenging, is to implement a
droplet formation model for which the adjoint counterpart can be derived. This would
allow us to apply the developed control methods to all stages of the inkjet process,
not only to the residual reverberations control. It could be possible to utilize the
data-driven approach to build an accurate reduced-order droplet model using data
assimilation from automated experimental setups (Yu et al., 2021).

Another extension, which is particularly relevant to inkjet printing, is to consider
non-Newtonian fluids (McIlroy et al., 2013). Although these are challenging to model,
it should be relatively straight-forward to develop adjoints of these models.
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Shape optimization

This thesis demonstrates computationally efficient and physically interpretable methods
to calculate the shape sensitivity of the acoustic flow eigenvalues and use the gradient
information in paramter-based shape optimization. Now that the technique has been
proven on a 2D geometry, the desirable next step is to apply it to 3D geometries and
with the large number of extra shape parameters that this will entail. For the adjoint
methods and optimization algorithms, the extension from 2D to 3D is straightforward.
For the shape parametrization, this extension is usually harder. In this case, however,
the manufacturable 3D shapes of inkjet print heads are severely constrained because
they are etched into silicon wafers. Similar constraints apply to many microfluidic
applications. These constraints, which require geometries to be close to 2D, both
render the 2D analysis more relevant and make the 3D shape parametrization more
simple.

The printhead channel shape optimization (section 4.4) concerns the shape of the
channel but not the nozzle shape. We envisage that optimizing the shape of the nozzle
in addition to the channel shape could enhance the droplet size controllability and the
printing speed. It should be reasonably straightforward to extend the adjoint-based
eigenvalue shape sensitivity method to the unsteady problem, and even combine the
unsteady waveform optimization with the nozzle shape optimization.

It would be interesting to investigate the existing tolerance criteria of printhead
channels manufacturing, and predict receptivity of the acoustic flow to surface rough-
ness using the present sensitivity calculation methods. If this reveals a possibility to
control roughness or the thermal conductivity of the channel wall to damp the residual
reverberations without affecting the droplet ejection, this would be yet another mech-
anism to passively improve the inkjet performance. We note, however, that thermal
dissipation becomes less influential as the heat capacity ratio decreases towards 1.

Waveform optimization

Waveform parametrization. In section 3.2 we assumed that the electric signal that
forces the piezo-electric actuator is translated into a piecewise linear actuator velocity
profile with a fixed temporal resolution. Instead, one-dimensional B-splines seem to
be a more robust and less constrained choice. The first step would be to develop a
model of the piezo actuator’s deformation as a function of the applied electric voltage
in order to match exactly the actuator control used in industry. Then, a new waveform
parametrization can be deduced.
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With regards to the spatial parametrization, only uniform actuator deformations
have been considered. Deformation profiles corresponding to other piezoelectric ac-
tuation modes can be incorporated with little effort. A small research project can
be suggested to adapt the existing tools to investigate the efficacy of an array of
independent actuators (in contrast to a single one): a technique similar to that used in
acoustic ink printing (Hadimioglu et al., 1992).

Waveform optimization for the droplet ejection. The same method could also be
used to perform waveform optimization for the droplet ejection, in order to control the
droplet volume and momentum. This would require a new differentiable nozzle model
(for example, a one-dimensional drop formation model (Driessen and Jeurissen, 2016))
and a new differentiable objective function (a combination of the droplet volume at
pinchoff and the residual energy of the system), but the channel model and optimization
method would remain the same.

Cross-talk minimization. The waveform optimization method discussed in this
study can be applied to minimize cross-talk effects. This can be done by either a
one-way or a two-way coupling method. In the one-way coupled case, the droplet
ejection in the first (active) channel perturbs the flow in the second (idle) neighboring
channel via the external boundary forcing. A residual control actuation pulse in the
second channel has to damp those oscillations before the main pulse is applied in the
second channel. This does not require direct modelling of multiple channels operating
simultaneously. Instead, the flow in the first channel and the external forcing can be
calculated first, and used as an input to the waveform optimization problem in the
second channel. In the two-way coupled case, the flow in the second channel induces a
secondary cross-talk and affects the droplet ejection of the first channel. This would
require simultaneous modelling of multiple inkjet channels.

Finally, alternative optimization methods (Riedmiller and Braun, 1993; Rojas-
Labanda and Stolpe, 2015) can be explored for both waveform and shape optimization.
This includes applying global search in the parameter space prior to performing any
local gradient-based optimization.
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Appendix A

Technical tools

A.1 Testing the gradient consistency using the Tay-
lor test

An optimization program that minimizes (or maximizes) an objective function using
the gradient-based approach should verify the calculated gradient vector. This should
be done prior to optimization to guarantee optimal convergence of the optimization
algorithm. The first type of optimization programs compute the gradient function via
the finite-difference approximation. In this case, the gradient is essentially another
representation of the objective function, and does not provide any additional information
itself. These programs can calculate the gradient value up to machine precision for
sufficiently small input perturbation magnitude. The second type of optimization
programs compute the gradient function via automated (Bradbury et al., 2018; Dokken
et al., 2020; Mitusch et al., 2019) or symbolic differentiation, which are equivalent
(Laue, 2019). These programs generate the gradient function as a separate entity,
which is not necessarily consistent with the objective function. In this work, we have
been discussing gradients calculation using the adjoint approach, which also falls into
the second category.

We discuss the Taylor remainder convergence test: a robust approach to verify
the correctness of the gradient calculated by the programs of the second type. We
define the input parameters x ∈ X and the objective function F : X → R. Let δx be
a perturbation to x, and ϵ be the magnitude of the perturbation, such that

∥F (x + ϵδx)− F (x)∥ = O (ϵ) . (A.1)
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The exact objective gradient ∇F (x) together with the appropriate scalar product
(· , ·) computes the variation of the objective with respect to the parameters variation
∆F : X × X → R:

∆F (· , ·) = (∇F (·) , ·) .

While the exact gradient is usually unknown, the function ∇̂F (x) provided by the
automated differentiation or the adjoint method is used as the gradient approximation.
The approximated objective variation is defined as ∆̂F (· , ·) =

(
∇̂F (·) , ·

)
.

We introduce the Taylor remainder T, which has to be of order ϵ2 if the gradient
function ∇̂F (x) is consistent with the objective:

T(x, δx) ≡
∥∥∥F (x + ϵδx)− F (x)− ϵ

(
∇̂F (x) , δx

)∥∥∥
= ϵ

∥∥∥(∇F (x) , δx)−
(
∇̂F (x) , δx

)∥∥∥
= ϵ

(
∆F (x, δx)− ∆̂F (x, δx)

)
= O

(
ϵ2
)
.

(A.2)

For sufficiently large ϵ, the Taylor remainder is of order ϵ2 or higher even if the gradient
is inconsistent, due to the higher order terms in the Taylor expansion of the objective
function.

We can estimate the convergence order of the Taylor remainder, and prove the
consistency of the objective-gradient pair by showing that it is greater than 2. If the
convergence order is less than 2, the Taylor remainder T grows slower than ϵ2, and
therefore the gradient is incorrect (inconsistent with the objective function). Given a
vector of input parameters x0, the algorithm 1 can be used to estimate the order of
convergence. The Taylor remainder convergence test evaluates the objective function
N + 1 times, and the gradient function is evaluated once. The initial perturbation
magnitude ϵ can be rather large, but should satisfy (A.1). A heuristic approach is to
set N = 20, given the algorithm’s step reduction strategy.

A preliminary Taylor testing can be performed for an arbitrary feasible input
parameter x0 and a perturbation direction δx. If the slope estimated by the Taylor
test is 2 or greater, we can safely use the objective and gradients functions in a
gradient-based optimazation algorithm. If the optimization algorithm returns an
optimal parameter value x∗, a severe Taylor testing can be performed around this
value. The optimal parameter value presumes that the gradient norm ∥∇F (x∗)∥ is
nearly zero; therefore the Taylor remainder T ≈ ϵ

∥∥∥(∇̂F (x∗) , δx
)∥∥∥ is of order ϵ2 only

if the exact gradient norm is also nearly zero.
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Algorithm 1 Taylor remainder convergence test
1: procedure Taylor test(x0, F (·), ∆̂F (· , ·))
2: initialize δx :: perturbation vector
3: initialize ϵ :: initial perturbation magnitude
4: initialize N :: number of evaluations
5: initialize r :: empty array of floats of dimension N × 2
6: do calculate F (x0), ∆̂F (x0, ·)
7: while N > 0 do
8: r[N ][0]← log ϵ
9: r[N ][1]← log (T(x0, δx|ϵ)/F (x0))

10: ϵ← ϵ/2
11: N ← N − 1
12: end while
13: do slope, shift← linear fit(r)
14: return slope
15: end procedure
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A.2 Introduction to firecrest

A software tool firecrest was developed to formalize the obtained knowledge and au-
tomate typical workflows. Currently, this tool concerns only the thermoviscous acoustic
flow problems. firecrest is a python package that uses PySplines (Kungurtsev,
2020b) to generate boundaries and surface properties, Gmsh (Geuzaine and Remacle,
2009) for mesh generation, and the FEniCS (Alnæs et al., 2015) finite element solver.
firecrest is free and open-source; comments and contributions via GitHub are very
welcome. We overview the main steps of a numerical problem formulation and solution
using firecrest.

Defining the computational domain

The first step of the problem formulation is to define a computational domain. The
domain initialization approach is motivated by parameter-based shape optimization
applications, such that the domain boundaries are defined by collections of parameters,
or control_points. A simple boundary that consists of multiple line segments can be
generated using LineElement(control_points). A more general case is a uniform
rational B-spline boundary of degree degree: BSplineElement(control_points,
degree). The mesh resolution is controlled by setting the size of the mesh elements
facets adjacent to the boundary. It is specified by the elsize key word of the boundary
object; the default value is 0.05.

In this example, a bspline_boundary and a line_boundary boundaries are defined
by two control points lists line_control_points and bspline_control_points, and
compose a simply connected domain domain.

1 from firecrest .mesh. boundaryelement import BSplineElement , LineElement
2 from firecrest .mesh. geometry import SimpleDomain
3

4 line_control_points = [[0.5, 0.1], [0.5, -0.2], [0.0, -0.2], [0.0, 0.0]]
5

6 bspline_control_points = [
7 [0.0, 0.0], [0.1, 0.1], [0.2, -0.1], [0.3, 0.2], [0.4, 0.0], [0.5, 0.1]
8 ]
9

10 if __name__ == " __main__ ":
11 bspline_boundary = BSplineElement ( bspline_control_points )
12 line_boundary = LineElement ( line_control_points , el_size =0.1)
13 domain = SimpleDomain ([ bspline_boundary , line_boundary ])

Figure A.1 shows the resulting domain and the mesh. While the geometry and mesh
files are available in the Mesh/ subdirectory in the script file path, users do not need
to interact with these low-level objects directly.
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Fig. A.1 An example computational domain and the mesh.

The LineElement, BSplineElement classes are based on the PySplines machin-
ery, which makes it possible to use the automatically generated surface properties (such
as the surface curvature) in the finite element formulation and shape optimization.

Defining the boundary conditions

The domain object in the first example knows nothing about the flow problem of
interest yet. For each boundary object, boundary conditions can be specified by an
argument bcond of type dictionary.

For the thermoviscous acoustic flow, there are two groups of boundary conditions:
those related to the flow velocity and pressure, and those related to the flow temperature
and heat flux. The following code defines a no slip, isothermal boundary boundary_1
and a stress free, adiabatic boundary boundary_2:

1 from firecrest .mesh. boundaryelement import LineElement
2

3 control_points_1 = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
4 boundary_1 = LineElement (
5 control_points_1 , bcond ={" noslip ": True , " isothermal ": True }
6 )
7 control_points_2 = [[1.0, 1.0], [0.0, 1.0], [0.0, 0.0]]
8 boundary_2 = LineElement ( control_points_2 , bcond ={"free": True , " adiabatic ": True })

A boundary with inhomogeneous boundary conditions can be defined in two ways. A
fixed value boundary condition can be provided as the bcond dictionary element. If a
boundary condition value needs to be changed every time it is evaluated (for example,
in an unsteady problem), an object that implements the eval() evaluation method
can be provided. The example below instantiates a boundary with an inhomogeneous
temperature boundary condition T = 1 using "temperature": 1.0 in the bcond
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dictionary, and a periodic velocity boundary condition. The eval() method of the
Inflow object returns a two-dimensional velocity vector.

1 import math
2 from firecrest .mesh. boundaryelement import LineElement
3

4 class Inflow :
5 time = 0.0
6

7 def eval (self):
8 self.time += 0.01
9 return (math.sin(self.time), math.cos(self.time))

10

11 control_points = [[0.0, 0.0], [1.0, 0.0]]
12 boundary = LineElement (
13 control_points , bcond ={" inflow ": Inflow () , " temperature ": 1.0}
14 )

The full list of supported acoustic boundary conditions is defined by two at-
tributes of the firecrest.fem.tv_acoustic_weakform.BaseTVAcousticWeakForm
class: allowed_stress_bcs and allowed_temperature_bcs.

Defining and solving acoustic flow problems

Three types of the thermoviscous acoustic flow solvers are available: the eigenvalue
EigenvalueTVAcousticSolver and frequency domain SpectralTVAcousticSolver
solvers, and the unsteady acoustic flow solver UnsteadyTVAcousticSolver. All solvers
require the domain object as the first argument, and the Reynolds and Prandtl (or
Peclet) numbers as keyword arguments. The EigenvalueTVAcousticSolver solves
the acoustic eigenvalue problem (2.27) and accepts an additional complex_shift
argument that allows users to specify the search region of the acoustic eigenvalues.
The SpectralTVAcousticSolver solves the acoustic problem in the frequency domain
(2.26), and requires the nondimensional complex-valued frequency argument that is the
frequency of the time-harmonic acoustic oscillations. The UnsteadyTVAcousticSolver
solves the time discrete unsteady acoustic problem (2.3.4), and the time step ∆t is set
by the dt argument. The code below demostrates the instantiation of these solvers:

1 from firecrest .api import (
2 EigenvalueTVAcousticSolver , SpectralTVAcousticSolver , UnsteadyTVAcousticSolver
3 )
4 eigenvalue_solver = EigenvalueTVAcousticSolver (
5 domain , complex_shift =-1.0+2.0j , Re=100.0, Pr=10.0
6 )
7 spectral_solver = SpectralTVAcousticSolver (
8 domain , frequency =10.0j , Re=100.0, Pr=10.0
9 )

10 unsteady_solver = UnsteadyTVAcousticSolver (domain , dt=1.0e-3, Re=100.0, Pr=10.0)
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Solvers implement the solve method that returns the solution state state. Addi-
tionally, the UnsteadyTVAcousticSolver implements the solve_direct and solve_adjoint
methods that yield intermediate results of the unsteady simulation. It is possible to

choose different time discretization schemes (the default one is Crank–Nicolson).
Use solver.output_field(state) to visualize the solution: the resulting .vtu

files are stored in the Visualization/ folder. Please refer to the project documentation,
and to firecrest/demos for more examples.

On the firecrest design

The architecture of the firecrest is inspired by the components of the finite element
method. The low level entities: Geometry and Space constitute the BaseFunctionSpace
class that concerns the generation of function spaces using the dolfin API. The

TVAcousticFunctionSpace and ComplexTVAcousticFunctionSpace classes inherit
from the BaseFunctionSpace, and provide the real and complex discrete function
spaces for the thermoviscous acoustic problem (as discussed in section 2.3.5). Figure
A.2 shows the dependency diagram and the main fields of these objects.

BaseFunctionSpace

+ domain : Geometry

+ spaces : Tuple(Space)

+ function_space : dolfin.FunctionSpace

Geometry

+ boundary_elements : List[BoundaryElement]

+ mesh : dolfin.Mesh

+ boundary_parts : dolfin.MeshFunction

+ ds : dolfin.Measure("ds")

+ dx : dolfin.dx

Space

+ element_type : Str

+ order : Int

+ dimension : Int TVAcousticFunctionSpace

+ pressure_function_space : Space

+ velocity_function_space : Space

+ temperature_function_space : Space

ComplexTVAcousticFunctionSpace

+ pressure_function_space : (Space, Space)

+ velocity_function_space : (Space, Space)

+ temperature_function_space : (Space, Space)

Provides attribute

Subclass of

Fig. A.2 The firecrest function spaces related objects dependency diagram.

The next functional layer concerns weak forms generation using the function
space objects. The acoustic weak form components (2.37) are implemented by the
TVAcousticWeakForm class (figure A.3). In addition to the necessary volumetric
a (p,q) , b (p,q) and surface bΓ (p,q) components, this class also provides methods
to calculate some aggregate flow state properties. For example, given the solution
state (u, P, T ), the volume_dissipation method returns total dissipation Rac, and
mass_flow_rate returns the mass flux {u · n} through a given boundary.
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Finally, firecrest provides a public API to define and solve acoustic flow problems
using the Solver objects. Users can access the underlying weak forms from the .forms
argument of their solvers.

TVAcousticWeakForm

+ allowed_stress_bcs = Dict{Str: Str}

+ allowed_temperature_bcs = Dict{Str: Str}

+ constants : Tuple(gamma : Int, Re: Int, Pe: Int)

+ temporal_component(trial_functions, test_functions) : ufl.Form

+ spatial_component(trial_functions, test_functions) : ufl.Form

+ boundary_components(trial_functions, test_functions) : ufl.Form

+ density(dolfin.Function, dolfin.Function): dolfin.Function

+ entropy(dolfin.Function, dolfin.Function): dolfin.Function

+ shear_stress(dolfin.Function): dolfin.Function

+ stress(dolfin.Function, dolfin.Function): dolfin.Function

+ heat_flux(dolfin.Function): dolfin.Function

+ kinetic_energy_flux(trial_function, Vector, BoundaryElement) : Float

+ mass_flow_rate(trial_function, BoundaryElement) : Float

+ avg_normal_stress(trial_function, BoundaryElement) : Float

+ volume_dissipation(trial_function) : Float

BaseSolver

+ forms : None

+ output_field(dolfin.Function, Str): None

+ solve(): None

EigenvalueSolver

+ solver: SLEPc.EPS

EigenvalueTVAcousticSolver

+ extract_solution(Int) : dolfin.Function

+ solve(Int) : dolfin.Function

SpectralTVAcousticSolver

+ solve() : dolfin.Function

SpectralTVAcousticSolver

+ dt : Float

+ final_time : Float

+ solve_direct(initial_state) > dolfin.Function

Fig. A.3 The firecrest weak forms and solver objects dependency diagram.

We conclude this overview with a simple example of a thermoviscous acoustic
eigenvalue problem solved inside a triangular domain. Two sides of the triangle compose
a no slip, isothermal boundary boundary1, and the third side is an adiabatic, compliant
boundary with complex impedance z = - 1.0-2.0j (boundary2). The Reynolds and
the Prandtl numbers are specified by the solver arguments Re and Pr, respectively. We
create an instance the eigenvalue solver, and search for one mode that is closest to the
target complex_shift number. After the eigenproblem is solved, we output the real
and imaginary mode components. Finally, we assert that the mass flow rate through
the no slip boundary boundary1 is almost zero.

1 from firecrest .api import LineElement , SimpleDomain , EigenvalueTVAcousticSolver
2

3 z = -1.0 - 2.0j
4 control_points_1 = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
5 control_points_2 = [[1.0, 1.0], [0.0, 0.0]]
6 boundary1 = LineElement ( control_points_1 , bcond ={" noslip ": True , " isothermal ": True })
7 boundary2 = LineElement ( control_points_2 , bcond ={" impedance ": z, " adiabatic ": True })
8 domain = SimpleDomain (( boundary1 , boundary2 ))
9

10 solver = EigenvalueTVAcousticSolver (domain , complex_shift =-3.0j , Re=100.0, Pr=1.0)
11

12 if __name__ == " __main__ ":
13 (ev , real_mode , imag_mode ), *_ = solver . solve ( number_of_modes =1)
14 solver . output_field ( real_mode + imag_mode )
15 print ( solver . forms . mass_flow_rate (real_mode , boundary1 )) # 1.2e -13
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A.3 Meshes in waveform optimization experiments

In order to verify the accuracy of the numerical computations performed in Chapter
3, simulations results using meshes with different resolution are analysed. The mesh
convergence is analysed for the two dimensional straight channel case from section
3.2.2. The total energy E(tf) is calculated at tf = 2µs with the optimized actuator
boundary velocity from figure 3.8. The domain is discretized with an average cell size
h ≃ 0.1, and this coarse mesh is taken as the initial point (688 cells, 4826 degrees of
freedom). The mesh resolution is increased near the nozzle part of the channel, and
the actuator boundary. The mesh is uniformly refined several times and the simulation
is performed on the refined mesh until the relative difference of E(tf) between the
subsequent calculations falls below 10−3. Figure A.4 shows the final energy values for
different numbers of degrees of freedom (black line). An estimated order of convergence
is 2.
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Fig. A.4 Final energy of the controlled flow in a 2D straight channel, tf = 2µs (section
3.2.2) for different mesh resolution. A reference mesh with an initial average element
size h = 0.1 is refined uniformly (black line). Red dot corresponds to the mesh used in
the experiments.

For the numerical computations, a sufficiently small characteristic mesh element
size is estimated from the convergence data (figure A.4, red marker), and a new mesh
is built (figure A.5). The mesh corresponding to the two dimensional long straight
print head channel from section 3.2.3 is built using the same mesh resolution.

Using this approach, the characteristic mesh element size is chosen to build the
mesh for the U-shaped printhead channel numerical simulations in section 3.2.4. Figure
A.6 shows the mesh, which consists of 245000 cells.
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Fig. A.5 A 2D straight channel mesh used in numerical simulations in section 3.2.2.

Fig. A.6 A U-shaped printhead channel mesh used in numerical simulations in section
3.2.4.

Future work can consider adjoint-based techniques for mesh adaptation. Kast (2016)
discussed a framework for optimal mesh refinement in unsteady problems. Automatic
tools such as AdaptiveLinearVariationalSolver implemented in FEniCS can also
be adapted for transient simulations (see, for example, Zimmerman and Kowalski
(2017)).



Appendix B

Shape senstivities

B.1 Adjoint acoustic eigenvalue problem

The thermoviscous acoustic eigenvalue problem (2.27) is written in terms of the
acoustic state eigenvector q̂ ≡

(
û, P̂ , T̂

)
and the complex eigenvalue s, sAq̂ + Bq̂ = 0.

We generalize the system of primal linearized boundary conditions N q̂ = 0 to the
impedance and thermal accomodation conditions (2.32, 2.33)

Z(s, x)ûi =
(
−P̂ δij + R̃e−1

τij

)
nj,

T̂ =− αw(s, x)∂T̂
∂n

.

(B.1a)

(B.1b)

There exists a corresponding adjoint state vector q† =
(
u†, P †, T †

)
. A Lagrangian

functional of the system (2.27) with a objective function J is defined as

L = J −
〈
q†, sAq̂ + Bq̂

〉
. (B.2)

The system’s eigenvalue sensitivity can be determined by setting J = s.
The optimality condition yields that the total variation of the Lagrangian with

respect to the primal q̂, s, and the adjoint q† variables must be zero. The variation
with respect to the adjoint variables gives the primal state equations. To determine
the adjoint set of equations, we take the variation with respect to the primal variables
and integrate the volume term in (B.2) by parts:

∂L
∂q̂

δq̂ = 0 = ∂J
∂q̂

δq̂ −
〈
s∗A†q† + B†q†, δq̂

〉
−
{
N †q†, δq̂

}
. (B.3)
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The volume terms define the adjoint state equations, which in matrix form are:

s∗


1 0 0

0 γth −1

0 −1 1
γth−1

q† +


−R̃e−1∇j τ̂ ij −∇i 0

−∇i 0 0

0 0 − 1
(γth−1)Pe∆

q† = 0, (B.4)

where τ̂ ijq† = τ †
ij ≡ ∇ju

†
i +∇iu

†
j − 2/3 δijdivu† is the adjoint viscous stress tensor.

The surface terms determine the adjoint boundary conditions N †q† = 0:

Z∗(s, x)u†
i =

(
P †δij + R̃e−1

τ †
ij

)
nj,

T † =− αw(s, x)∂T
†

∂n
.

(B.5a)

(B.5b)

Consideration of the primal (2.27) and adjoint (B.4) state equations, and the
corresponding boundary conditions (B.1) and (B.5) yields that the adjoint state can
be expressed in terms of the primal state variables:

q† =
(
−û∗, P̂ ∗, T̂ ∗

)
. (B.6)

The variation of the Lagrangian with respect to the eigenvalue δs gives the normal-
ization condition:

∂L
∂s
δs = 0 = δs−

〈
q†, Aq̂

〉
δs−

{
q†,

∂N
∂s

q̂
}
δs. (B.7)

Taking into account the adjoint state representation in terms of the primal variables,
the normalization condition is:

1 =− ⟨û∗, û⟩+
〈
P̂ ∗, γthP̂ − T̂

〉
+
〈
T̂ ∗,

T̂

γth − 1 − P̂
〉

+

+
{

û∗,
∂Z

∂s
û
}
−
{
∂T̂ ∗

∂n
,

(∂αw/∂s)
(γth − 1)P̃e

∂T̂

∂n

}
.

(B.8)

If the boundaries’ impedance and thermal accommodation coefficient are frequency-
independent, the surface terms in (B.8) vanish and the normalization condition is given
by 〈

q†,Aq̂
〉

= 1. (B.9)
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B.2 Acoustic flow shape sensitivity

We want to construct the eigenvalue shape sensitivity G(q̂,q†) of the thermoviscous
acoustic problem for a given shape displacement field V . We take the variation of the
Lagrangian (B.2) with respect to a shape perturbation L′[V ], and, due to the choice
of the adjoint state (B.6), only the boundary terms do not vanish. This gives us the
shape gradient

L′[V ] =−
{
N †q†, q̂′[V ]

}
={

u†
i ,
(
−P̂ ′[V ]δij + R̃e−1

τ̂ ′
ij[V ]

)
nj

}
−
{(
P †δij + R̃e−1

τ †
ij

)
nj, û

′
i[V ]

}
+
{
T †,

1
(γth − 1)P̃e

∂T̂ ′[V ]
∂n

}
−
{
∂T †

∂n
,

1
(γth − 1)Pe T̂

′[V ]
} (B.10)

The primal stress tensor is σ̂ij = −P̂ δij + R̃e−1
τ̂ij and the adjoint stress tensor is

σ†
ij = −P †δij + R̃e−1

τ †
ij. Also, we define the primal q̂i = 1

(γth−1)Pe∇iT̂ and adjoint
q†

i = 1
(γth−1)Pe∇iT

† heat fluxes, and their normal components q̂ini ≡ q̂n, q†
ini ≡ q†

n.
On boundaries, the conditions (B.1) hold, resulting in the compliant and thermal

boundary shape derivatives:

0 = d (Zûi − σ̂ijnj) [V ] =dZ[V ]ûi + Zdûi[V ]− dσ̂ij[V ]nj − σ̂ijdnj[V ],

0 = d
(
T̂ + αw

∂T̂

∂n

)
[V ] =dT̂ [V ] + dαw[V ]∂T̂

∂n
+

+αwdnj[V ]∇jT̂ + αw
∂dT̂ [V ]
∂n

,

(B.11a)

(B.11b)

As discussed in section 4.1.1, the total and the local shape derivatives of the Dirichlet
and Neumann boundaries, satisfy:

dûi[V ] =û′
i[V ] + (V · ∇)ûi,

dσ̂ij[V ] =σ̂′
ij[V ] + (V · ∇)σ̂ij,

dT̂ [V ] =T̂ ′[V ] + (V · ∇)T̂ ,
d
(
∇jT̂

)
[V ] =∇jT̂

′[V ] + (V · ∇)∇jT̂

(B.12a)
(B.12b)
(B.12c)
(B.12d)
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Assuming the boundary properties (impedance and thermal accomodation) to be
constant in the displacement direction, the material derivative results in dZ[V ] =
0, dαw[V ] = 0.

The displacement vector field V can be presented as a sum of its normal and
tangential components, V = (V · n) n + ∑d−1

i=1 (V · τ i)τ i, where τ i spans the d − 1
dimensional space tangent to the surface. As shown in (Sokolowski and Zolesio, 1992),
a shape derivative vanishes in the tangential direction, since any boundary deformation
in the tangential direction does not change the domain boundary. Therefore, for a
domain boundary of sufficient smoothness the shape derivatives in the direction of
the displacement field are equivalent to the shape derivatives in its normal projection.
Therefore V can be replaced with (V · n) n and (V · ∇) with (V · n) ∂/∂n. By intro-
ducing the tangential gradient ∇Γ

i = ∇i−ninj∇j , the shape derivative of the boundary
normal is (Sonntag et al., 2016)

dni[V ] = −∇Γ
i (V · n) . (B.13)

Combining (B.11 - B.13), the shape derivatives of the compliant boundary condition
and the thermal boundary condition result in

Zû′
i[V ]− σ̂′

ij[V ]nj =− Z (V · n) ∂ûi

∂n
+ (V · n)nj

∂σ̂ij

∂n
− σ̂ij∇Γ

i (V · n) ,

T̂ ′[V ] + αw
∂T̂ ′[V ]
∂n

=− (V · n) ∂T̂
∂n

− αw (V · n)nj
∂∇jT̂

∂n
+ αw∇Γ

i (V · n)∇iT̂

(B.14a)

(B.14b)

Considering the adjoint boundary conditions (B.5) in the primal shape derivative (B.10)
and substituting the above expressions, we obtain

L′[V ] =
{
u†

i , σ̂
′
ij[V ]nj − Zû′

i[V ]
}
−
{
q†

n, T̂
′[V ] + αw

∂T̂ ′[V ]
∂n

}

=
{
u†

i , (V · n)
(
Z
∂ûi

∂n
− nj

∂σ̂ij

∂n

)
+ σ̂ij∇Γ

j (V · n)
}

+{
q†

n, (V · n)
(
∂T̂

∂n
+ αwnj

∂∇jT̂

∂n

)
− αw∇Γ

i (V · n)∇iT̂

}
.

(B.15a)

(B.15b)

The shape gradient is represented by stress and thermal contributions. Two terms
are still not in Hadamard form, so we apply the surface tangential Green’s formula
(Delfour and Zolésio, 2011). The relation holds for a smooth vector field A and a scalar
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field b: ∫
∂Ω

(A,∇Γ)b ds =
∫

∂Ω
κb(A, n)− b divΓA ds. (B.16)

Here κ = divΓn describes the surface curvature. With Aj = −u†∗
i σ̂ij, b = (V · n),

the transformation of the stress contribution (the first surface integral in (B.15b)) to
Hadamard form is given by

u†∗
i σ̂ij∇Γ

j (V · n) = κ (V · n)u†∗
i σ̂ijnj − (V · n)∇Γ

j (u†∗
i σ̂ij), (B.17)

and using the definition of the tangential gradient, the tangential divergence in (B.17)
combines with the following term and we obtain:

∇Γ
j (u†∗

i σ̂ij) + u†∗
i nj

∂σ̂ij

∂n
= ∇j(u†∗

i σ̂ij)−
∂u†∗

i

∂n
njσ̂ij. (B.18)

For the thermal contribution (the second surface integral in (B.15b))

Aj = αw∇jT̂
(
∂T †/∂n

)∗

so the Hadamard form is:

αwq
†
n∇jT̂∇Γ

j (V · n) =

= κ (V · n)αwq
†∗
n

∂T̂

∂n
− (V · n)∇Γ

j

(
αwq

†∗
n ∇jT̂

)
= (V · n)

(
καwq

†∗
n

∂T̂

∂n
− αwq

†∗
n

(
∆T̂ − nj

∂∇jT̂

∂n

)
−∇Γ

j

(
αwq

†∗
n

)
∇Γ

j T̂

) (B.19)

After rearranging the terms in (B.15), the shape derivative in Hadamard form is
given by the surface integral of the normal displacement and the sum of the stress and
thermal sensitivity functionals, Gstr

s and Gth
s :

s′[V ] = L′[V ] =
∫

∂Ω
(V · n)

(
Gstr

s (q̂,q†) +Gth
s (q̂,q†)

)
, (B.20)

where the functionals are defined as

Gstr
s (q̂,q†) =∂ûi

∂n
njσ

†∗
ij + ∂u†∗

i

∂n
njσ̂ij + κûiσ

†∗
ij nj −∇j

(
u†∗

i σ̂ij

)
,

Gth
s (q̂,q†) =∂T̂

∂n
q†∗

n + ∂T †∗

∂n
q̂n + κT̂ q†∗

n −∇j

(
T †∗q̂j

)
.

(B.21a)

(B.21b)
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Finally, considering (B.6), the eigenvalue sensitivity functionals can be derived:

Gstr
s =−

(
2∂ûi

∂n
njσ̂ij + κûiσ̂ijnj −∇j (ûiσ̂ij)

)
,

Gth
s = 2∂T̂

∂n
q̂n + κT̂ q̂n −∇j

(
T̂ q̂j

)
.

(B.22a)

(B.22b)

Two special cases, the no slip and stress-free boundaries, simplify the viscous
sensitivity functional to

Gstr
s,w =− ∂ûi

∂n
njσ̂ij,

Gstr
s,open =∇j (ûiσ̂ij) ,

(B.23)

and the thermal sensitivity functional turns into the following expressions on isothermal
and adiabatic boundaries:

Gth
s,isoth = ∂T̂

∂n
q̂n,

Gth
s,ad = −∇j

(
T̂ q̂j

)
.

(B.24)

B.3 Automated mesh adaptation

Mesh refinement (h-adaptation) is one of the approaches to ensure the convergence
of a numerical solution. In most cases, it is accuracy of a particular function of the
numerical solution that needs to be improved, rather than the global solution error
norm. Uniform mesh refinement is a basic approach to reduce numerical error. This
approach does not concern any information about the nature of the problem, and
therefore generally yields poor convergence of the objective value versus the number
of degrees of freedom. Goal-oriented mesh adaptation strategies mark parts of the
computational domain that are expected to contribute the most to the output error.
Mesh cells are marked and refined according to the estimated local error value. Some
algorithms (Joly, 2010) rely on a priori knowledge about sources of the numerical error.
These algorithms use the primal solution on a coarse mesh to estimate the contribution
of each mesh cell to the error in the objective function. Adjoint-based error control
algorithms (Pierce and Giles, 2000) do not make assumptions on how the numerical
error in the solution affects the objective value accuracy. Instead, the primal problem
solution is combined with the adjoint solution, which incorporates the knowledge about
the flow objective. This allows the user to weight the primal solution residuals by their
contribution to the objective error, and perform efficient automated mesh adaptation.
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For a thermoviscous acoustic flow, the boundary layer thicknesses δν(ω), δT (ω) (2.20)
define the characteristic length scale of the velocity and temperature fields oscillations
near the no slip and isothermal boundaries ∇u ∼ δ−1

ν u, ∇T ∼ δ−1
T T . Insufficient

mesh resolution in the acoustic boundary layer regions can lead to high numerical
error in acoustic dissipation. On the other hand, using high mesh resolution in the
whole domain is not only unnecessary, but also results in a computationally infeasible
problem. For these reasons, mesh adaptation algorithms have to be applied.

The FEniCS framework implements automated adaptive solvers of linear and nonlin-
ear problems, so the goal-oriented mesh adaptation for the frequency domain acoustic
flow (2.26) objective requires one simply to define such an objective. Unfortunately,
there are no automated tools for generic eigenvalue problems. We investigate whether it
is possible to improve the eigenvalues’ convergence using the aforementioned techniques.
A thermoviscous acoustic eigenvalue problem inside an L-shaped domain (figure B.1) is
considered as an example problem. The bottom and the right boundaries are adiabatic,
stress-free boundaries. All other boundaries are no slip, isothermal boundaries. The
Reynolds and Prandtl numbers are Re = 5000, Pr = 1. Two objective functionals are
tested: an eigenvalue close to −0.45 + 3.5i and a higher frequency eigenvalue close
to −0.12 + 12.15i. We compare three iterative mesh refinement strategies: uniform,
Hessian-based error indicators (Joly, 2010), and adjoint-based error indicators (Kast,
2016; Rognes and Logg, 2013). On each iteration, element-wise error indicators are
computed, and cells are sorted in order of decreasing error size. A number of cells that
contribute the most to the output error are refined in an isotropic manner. Marking
all cells for refinement naturally results in uniform mesh refinement. A new eigenmode
and eigenvalue is computed on a finer mesh.

In the Hessian-based approach, Hessian matrices of the velocity and temperature
eigenmode components H(|û|),H(

∣∣∣T̂ ∣∣∣) are computed for each mesh element. A cell is
marked for refinement if the magnitude of any of the Hessian matrix elements exceeds
a globally-computed threshold. The velocity and temperature thresholds are computed
individually, as the 75th percentile of the absolute values of the respective Hessian
matrix elements. Figure B.1a shows the velocity magnitude |û| and the mesh for the
first test case (s = −0.0485 + 3.497i) at the fifth refinement iteration (5700 cells). The
algorithm refines the mesh along the no slip walls where the velocity magnitude is high,
and near the corner (1.0, 0.3). No mesh refinement is applied for x > 1.3, where the
solution magnitude is small. Figures B.2 and B.3 show the convergence of the real and
imaginary parts of the test eigenvalues versus the number of cells (green lines). The
algorithm outperforms the uniform mesh refinement (red lines).
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In the adjoint-based approach, the error indicators are computed by testing the
strong cell and facet residuals against the extrapolated adjoint solution (see Rognes and
Logg (2013), Algorithm 2). The strong residuals are derived by hand. Conveniently,
the adjoint solution is available from the solution of the primal problem (B.6), subject
to the normalization condition (B.8). Figure B.1b shows the velocity magnitude |û|
and the mesh for the first test case (s = −0.049 + 3.497i) at the eleventh refinement
iteration (6200 cells). Similarly to the previous algorithm, the mesh is refined along
the no slip walls and near the corner. The average cell diameter is smaller than that
generated by the Hessian-based algorithm. Additionally, the refined cells are located
much closer to the boundaries (this also applies to the corner region), while the bulk
of the domain is coarser. Figures B.2 and B.3 show the convergence of the real and
imaginary parts of the test eigenvalues versus the number of cells (black lines). The
adjoint-based algorithm outperforms both the uniform and the Hessian-based mesh
refinement strategies.
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Fig. B.1 Comparison of the velocity magnitude fields |û| and mesh cells distribution
of the (a) Hessian-based algorithm (5700 cells), and (b) the adjoint-based algorithm
(6200 cells) for the first test case (approximate eigenvalue is s = −0.048 + 3.5i).

The advantages of using the adjoint-based error control is that it naturally yields a
better convergence rate in comparison to other techniques, and does not require any a
priori knowledge about the error distribution in the numerical solution.
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Fig. B.2 The convergence of the real (a) and imaginary (b) eigenvalue components
versus the number of cells N for the first test case and different mesh adaptation
strategies.
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Fig. B.3 The convergence of the real (a) and imaginary (b) eigenvalue components
versus the number of cells N for the second test case and different mesh adaptation
strategies.





Appendix C

Frequency domain modelling of the
inkjet flow

An example acoustic problem is solved in the frequency domain. We measure the
mass flux through the shared boundary ΓC−N generated be harmonic oscillations of the
printhead actuator for a range of frequencies used in inkjet printing. It is shown that the
frequency-dependent impedance boundary condition and the nozzle model boundary
condition prescribed on ΓC−N results in almost no mass flux on the free surface for
both low and high oscillation frequencies. The actuator motion at 0.1 ≤ ω ≤ 1.0 MHz
frequencies maximises the magnitude of the mass transfer {ûω · n} through the shared
boundary.

C.1 Boundary condition for the frequency domain
problem

We derive the boundary conditions for the acoustic frequency domain problem discussed
in section 2.3.2. The time-harmonic equation for a given frequency ω is

Find q̂ω(x) such that
iωAq̂ω + Bq̂ω = 0 in Ω.

(C.1)
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The acoustic stress boundary condition on the surface between the channel and nozzle
domains ΓC−N (2.70) is given by a nonlinear system of equations:

σijnj = −γκ̂ni − hCL

(
d

dt
ui −

1
R̃e

∆Γui

)
on ΓC−N,d

∣∣∣Ω̂n(κ̂)
∣∣∣

dκ̂

 d

dt
κ̂ = ϵ {u · n}ΓC−N

− ϵhCL |ΓC−N|
d

dt
γκ̂.

(C.2a)

(C.2b)

We linearize the nozzle state equation (C.2b) around the base state,

κ̂ = κ̂(0) + δκ̂, |Ωn(κ̂)| ≃
∣∣∣Ωn(κ̂(0))

∣∣∣ , h(0)
n ≡ hn(κ̂(0)) = hCL +

∣∣∣Ω̂n(κ̂(0))
∣∣∣

|ΓC−N|
.

We perform a Fourier transform q(x, t) F−→ q̂ω(x) for a real-valued frequency ω ∈ R
and a complex frequency mode q̂. The time derivative operator is replaced with
the complex oscillation frequency of the mode ∂

∂t
→ iω. The linearized nozzle state

equation becomes

iω

d
∣∣∣Ω̂n(κ̂)

∣∣∣
dκ̂

+ ϵγhn |ΓC−N|

∣∣∣∣∣∣
κ̂(0)

δκ̂ = ϵ {û · n}ΓC−N
.

The linearized acoustic stress boundary condition on ΓC−N is an impedance type
boundary condition.

σ̂ijnj =− γδκ̂ni − h(0)
n

(
iω − 1

Re∆Γ

)
ûi

=− 1
iω

ϵγ(
d|Ω̂n(κ̂)|

dκ̂
+ ϵγhn |ΓC−N|

)∣∣∣∣
κ̂(0)

{û · n}ΓC−N
ni

− iωh(0)
n ûi + h(0)

n

Re ∆Γûi.

(C.3)

Given a frequency ω : s ≡ iω, a set of boundary conditions on ∂Ωc/ΓC−N and the
impedance boundary condition (C.3) on ΓC−N, we aim to find an acoustic state q̂ω(x)
which is a solution to the problem (C.1). In order to simplify the notation, we rewrite
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(C.3) in terms of the nonlocal Z1(ω) and local Z2(ω) impedance variables:

σ̂ijnj = Z1(ω) {û · n}ΓC−N
ni + Z2(ω)ûi on ΓC−N,

Z1(ω) = − 1
iω

ϵγ(
d|Ω̂n(κ̂)|

dκ̂
+ ϵγhn |ΓC−N|

)∣∣∣∣
κ̂(0)

,

Z2(ω) = −iωh(0)
n + h(0)

n

Re ∆Γ.

(C.4)

We consider two well-posed auxiliary subproblems:

Find q̂ω,1(x) such that
iωAq̂ω,1 + Bq̂ω,1 = 0 in Ω,
σ̂ij,1nj = Z2(ω)ûi,1 on ΓC−N,

original boundary conditions on ∂Ωc/ΓC−N;

Find q̂ω,2(x) such that
iωAq̂ω,2 + Bq̂ω,2 = 0 in Ω,
σ̂ij,2nj = 1 · ni + Z2(ω)ûi,2 on ΓC−N,

homogeneous boundary conditions on ∂Ωc/ΓC−N.

(C.5a)

(C.5b)

A standard impedance boundary condition is prescribed on ΓC−N in the first problem
(C.5a). An inhomogeneous impedance boundary condition is prescribed on ΓC−N in
the second problem (C.5b), where 1 · ni is a unit force in the normal direction.

For an arbitrary constant c, a linear combination of the solutions q̂ω,1+cq̂ω,2 satisfies
the acoustic equations in the volume, and the boundary conditions on ∂Ωc/ΓC−N. The
combined stress vector on ΓC−N equals

σ̂ij,1nj + cσ̂ij,2 = Z2(ω)ûi,1 + c (1 · ni + Z2(ω)ûi,2)
= cni + Z2(ω) (ûi,1 + cûi,2) .

We notice that by choosing c = c⋆ such that c⋆ = Z1(ω) {(û1 + c⋆û2) · n}ΓC−N
, the

linear combination q̂ω,1 + c⋆q̂ω,2 satisfies not only the acoustic state equations in Ωc

and the original boundary conditions on ∂Ωc/ΓC−N, but also the impedance boundary
condition (C.4). This means that the solution q̂ω of the problem of interest with the
nonlocal impedance boundary condition can be found as follows:

1. Find the solutions q̂ω,1, q̂ω,2 of the auxiliary problems (C.5a, C.5b).
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2. Calculate the value c⋆ given the velocity components û1, û2 of q̂ω,1 and q̂ω,2,
respectively.

c⋆ =
Z1(ω) {û1 · n}ΓC−N

1− Z1(ω) {û2 · n}ΓC−N

. (C.6)

3. Obtain the problem solution as a linear combination q̂ω = q̂ω,1 + c⋆q̂ω,2.

Since c⋆ = Z1(ω) {û · n}ΓC−N
by construction, the mass flux through the shared

boundary ΓC−N equals

{û · n}ΓC−N
=

{û1 · n}ΓC−N

1− Z1(ω) {û2 · n}ΓC−N

. (C.7)

A useful feature of the method is that the first impedance coefficient Z1(ω) is not
involved in the solution of the thermoviscous acoustic problem (C.5). This allows us
to compute and store the values of {û1 · n}ΓC−N

, {û2 · n}ΓC−N
, and calculate the mass

flux (C.7) for an arbitrary Z1(ω) value for free.

C.2 Frequency response of the printhead flow to
harmonic excitation

We study the response of the acoustic flow inside the inkjet printhead microchannel
(figure 2.7) to harmonic oscillations of the actuator boundary Γact at different frequencies
ω. Mass and energy transfer through the free surface inside the inkjet nozzle is an
important metric of a printhead performance. We choose the mass flux {ûω · n}ΓC−N

as the response measure of the flow.
The velocity boundary condition û = 1 · n is prescribed on Γact. We consider three

frequency domain problems (§2.3.2) with different boundary conditions on ΓC−N: (i)
stress-free, (ii) impedance Z(ii) (2.32), and (iii) reduced order nozzle model (C.4). The
frequency-dependent impedance Z(ii)(ω) of the second problem boundary condition
is a local approximation of the reduced order nozzle model boundary condition with
κ̂(0) = 0:

Z(ii)(ω) = − 1
iω

ϵγ |ΓC−N|(
d|Ω̂n(κ̂)|

dκ̂
+ ϵγhn |ΓC−N|

)∣∣∣∣
κ̂(0)

− iωh(0)
n −

h(0)
n

Re
1
r2

n

, κ̂(0) = 0.
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The nondimensional parameters of the experiment are provided in table C.1. The third
frequency domain problem with the nozzle model boundary condition is solved using
the method discussed in section C.1.

nondimensional value
Base state of the free surface curvature, κ̂(0) 0, 0.5
Mach number, ϵ 10−5

Reynolds number, Re, 1.6 · 10−5

Prandtl number, Pr 10
surface tension, γ, 1

Table C.1 Nondimensional parameters of the experiments of the inkjet microchannel
flow response to harmonic excitation.

We vary the oscillation frequency from ω = 0.25 kHz to ω = 40 MHz. Figure
C.1 shows the nondimensional absolute value and the phase of the mass flux through
the shared boundary {ûω · n}ΓC−N

as a function of the actuator oscillation frequency.
The solid red line corresponds to the first problem with the stress-free boundary
condition σ̂ijnj = 0 on ΓC−N. The solid blue line corresponds to the second problem
with the impedance boundary condition σ̂ijnj = Z(ii)(ω)ûi on ΓC−N. The dashed
and dash-dotted blue lines corresponds to the third problem with the nozzle model
boundary condition, κ̂(0) = 0 and κ̂(0) = 0.5, respectively. The solid, dashed and
dash-dotted green lines show phases of the complex-value boundary mass flux for
the second problem, the third problems with κ̂(0) = 0, and the third problem with
κ̂(0) = 0.5, respectively.

The mass flux through the shared boundary ΓC−N with the stress-free boundary
condition is almost uniform for frequencies below 1 MHz and rapidly decreases for
higher frequencies ω/(2π) ≥ 1 MHz, because of the natural inductance-type impedance
of the nozzle part of the channel. The maximum magnitude of the mass flux through
the stress-free boundary is reached at ω = 0.1 MHz. The magnitude and phase of
the mass fluxes through ΓC−N with the impedance boundary condition (the second
problem) and the nozzle model boundary condition with κ̂(0) = 0 (the third problem)
are almost identical. We conclude that it is possible to use the local approximation
impedance boundary condition instead of the reduced order nozzle model to calculate
the mass flux through the ΓC−N boundary generated by the harmonic oscillations of the
actuator. For the lower part of the frequency range ω/(2π) ≤ 0.1 MHz, the capacitance
term dominates, and the boundary acts as a no slip surface. For higher frequencies
ω/(2π) ≥ 1 MHz, the inductance term damps the acoustic oscillations, and reduces
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Fig. C.1 Magnitude and phase of the mass fluxes through the shared boundary ΓC−N
for different boundary conditions and different oscillation frequencies.

the mass flux through ΓC−N. The maximum magnitude of the mass flux through the
nozzle model boundary, κ̂(0) = 0, is reached at ω = 0.8 MHz.

For a fixed frequency, the capacitance of the nozzle model boundary condition
is bounded from above (2.83) and has the maximum value at κ̂(0) = 0. A non-zero
base state curvature κ̂(0) = 0.5 results in lower magnitude of the capacitance term∣∣∣∣∣∣ ϵγ|ΓC−N|(

d|Ω̂n(κ̂)|
dκ̂

+ϵγhn|ΓC−N|
)∣∣∣

κ̂(0)

∣∣∣∣∣∣, and the mass flux {ûω · n}ΓC−N
approaches the stress-free

case. The maximum magnitude of the mass flux through the nozzle model boundary,
κ̂(0) = 0.5, is reached at ω = 0.4 MHz.




