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The first reports in the 1970s of extracellular ATP (eATP) effects on algal cytoplasmic 12 

streaming and Venus fly trap closure received little attention (Jaffe, 1973; Williamson, 1975). 13 

By the time interest in plant eATP revived, work on animals had revealed the existence of 14 

plasma membrane (PM) receptors for eATP that function in such processes as pain perception 15 

and vasodilation (Burnstock, 2016). Plant research is now catching up. eATP effects on roots 16 

(gravitropism, growth and development), hypocotyl (elongation), pollen (germination and tube 17 

growth), stomatal aperture, and cell viability are now documented (reviewed by Clark et al., 18 

2014, Cho et al., 2017). Furthermore, eATP is implicated in immunity, abiotic stress responses 19 

and nodulation (reviewed by Clark et al., 2014, Cho et al., 2017). eATP increases in response 20 

to wounding, mechanical stimulation, abiotic stress, abscisic acid, glutamate and chitin (Dark 21 

et al., 2011; Cho et al., 2017). eATP can increase plant free Ca2+ (cytosolic, nuclear, 22 

mitochondrial), phosphatidic acid, nitric oxide, and reactive oxygen species (ROS) as potential 23 

second messengers in signalling (Demidchik et al., 2003, 2009; Loro et al., 2012; Cho et al., 24 

2017). Until recently, perception of eATP was very much a “black box” mechanism as no 25 

equivalents of animal receptors were apparent in higher plant genomes. A breakthrough came 26 

with the discovery of Arabidopsis thaliana DORN1 (Does not Respond to Nucleotides1) as a 27 

PM eATP receptor (Choi et al., 2014). Analysis of dorn1 mutants has shown that this receptor 28 

governs eATP-induced [Ca2+]cyt elevation in young seedlings and also a specific transcriptional 29 

response enriched in wound-responsive genes (Choi et al., 2014).  30 
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Delineation of the first higher plant eATP receptor will now spur on attempts to identify the 31 

immediate targets of its serine/threonine kinase activity and downstream components of the 32 

signalling pathway it commands. eATP affects plasma membrane Ca2+, K+ and Na+ fluxes 33 

(Demidchik et al., 2011; Zhao et al., 2016) but none have yet been shown to rely on DORN1. 34 

eATP-activated Ca2+ fluxes are mediated by channel proteins in Arabidopsis root epidermal 35 

and guard cell PM but their genetic identities are unknown (Demidchik et al., 2009; Wang et 36 

al., 2014; Zhu et al., 2017). eATP- and eADP-induced K+ fluxes have been detected at the 37 

Arabidopsis root epidermis using extracellular K+-selective microelectrodes (Demidchik et al., 38 

2011). eADP was found (by using patch clamp electrophysiology) to activate channel-mediated 39 

K+ efflux and Ca2+ influx conductances (Demidchik et al., 2011). Patch clamp 40 

electrophysiology has been used here to test whether DORN1 is required for activation of 41 

Arabidopsis root epidermal PM channel conductances by exogenous ATP. Roots were chosen 42 

as they have greater eATP-induced [Ca2+]cyt elevations than leaves (Tanaka et al., 2010) and 43 

robust DORN1 expression (Cho et al., 2017).   44 

 45 

Plasma membrane cation-permeable conductances under control conditions 46 

DORN1 expression is high at the root apex and is maintained there as the root ages; expression 47 

declines with age in distal epidermis (Cho et al., 2017). Therefore epidermal protoplasts were 48 

isolated from excised root apices (<3 mm) of 9-16 days old Col-0 (parental wild type) and two 49 

dorn1 mutants. The dorn1-1 mutant has a point mutation in its cytosolic serine-threonine kinase 50 

domain while the dorn1-3 mutant has a T-DNA insertion in the extracellular legume-type lectin 51 

domain; both lesions result in failure in eATP-induced [Ca2+]cyt elevation (Choi et al., 2014). 52 

Both mutants were confirmed as homozygous. Mean (± SE) protoplast diameter was 16 ± 0.5 53 

µm (n = 40), smaller than those in a previous study from the mature epidermis (20 µm) isolated 54 

using the same method (Demidchik et al., 2011). The “whole cell” mode of patch clamping 55 

was applied, permitting measurement of net current as ions are conducted through PM channels 56 

at different trans-membrane voltages, and reported as the overall current/voltage (I/V) 57 

relationship. Under control conditions, one type of overall non-linear conductance was most 58 

commonly observed in Col-0 (Figure 1a, left panel and Supplemental Figure S1a) and both 59 

dorn1 mutants (Supplemental Figure S1b, c). The time constant of half-activation of Col-0 60 

outward currents at 23 mV was 88.4 ± SE 8.5 ms (n = 12). This is reminiscent of the 61 

depolarization-activated non-selective cation channels (NSCC) in different plant species 62 

(Wegner and de Boer, 1997; Zhang et al., 2002; Shabala et al., 2006). In all genotypes, both 63 
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inward currents (evoked by hyperpolarised voltages) and outward currents (evoked by 64 

depolarised voltages) were greatly inhibited by the cation channel blocker, Gd3+ (Supplemental 65 

Figure S1a-c). The Gd3+-insensitive conductance was not investigated further. Tail-current 66 

analysis of the Col-0 outward conductance revealed a reversal potential (Erev) of -90.2 ± 8.9 67 

mV (n = 8). Thus, permeability ratios PK/PCl and PCa/PK of 13.7 ± 5.4 and 0.04 ± 0.01, 68 

respectively, were estimated using the Goldman equation. A high selectivity for K+ was also 69 

found in the NSCC studies and also for PM K+ channels in root cells of Arabidopsis (Maathuis 70 

and Sanders, 1995). Voltage ramping minimised activation of the Col-0 outward conductance 71 

to delineate the inward conductance (Supplemental Figure 2) and yielded an Erev of -8.2 ± 4.7 72 

mV (n = 6) and PCa/PK of 1.9 ± 0.7. This indicates Ca2+ influx contributing to the inward 73 

conductance. Single channel studies are now required to delineate channel contribution to the 74 

Gd3+-sensitive K+- and Ca2+-permeable conductances. 75 

 76 

eATP activates K+-  and Ca2+-permeable conductances in wild type root plasma membrane  77 

Before addition of ATP, at least two recordings were performed to confirm the stability of 78 

currents (Figure 1b, -3 and 0 mins). ATP was added as its disodium salt and in controls with 79 

an equivalent Na+ concentration applied as NaCl, there was no current activation 80 

(Supplemental Figure 3), confirming that any responses would be caused by ATP. Addition of 81 

300 µM ATP increased the outward currents and initiated small ‘spiky’ inward currents at 82 

hyperpolarized voltage after 3 minutes (Figure 1a, b). The kinetics of the inward conductance 83 

resembled the hyperpolarization-activated Ca2+ conductance (HACC) found in previous studies 84 

on epidermal PM (e.g., Demidchik et al., 2009). Current activation was transient (Figure 1c), 85 

as was previously observed with eATP- and eADP-activated PM conductances in protoplasts 86 

from mature epidermis (Demidchick et al., 2009, 2011). Eight minutes after ATP application, 87 

maximum current values (at +43 and -217 mV) were significantly greater than those prior to 88 

treatment (p < 0.01, Student’s t-test; Figure 1c, d) and inward rectification of the 89 

hyperpolarization-activated currents became apparent. Analysis of the eATP-activated currents 90 

(control I/V subtracted from eATP I/V at 8 minutes; Figure 1d, insert) revealed a positive shift 91 

of Erev to -64.5 ± 16.8 mV, indicating a greater Ca2+ permeability in eATP-induced inward 92 

currents (ECa at + 161 mV). It is therefore likely that eATP transiently increased Ca2+ 93 

conductivity to deliver Ca2+ to the cytosol, although increased Cl- permeation is also possible. 94 
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However, neither outward nor inward currents in Col-0 were stimulated by the same 95 

concentration of eADP (300 µM; Supplemental Figure 4). 96 

 97 

eATP-induced current activation does not occur in dorn1 mutants  98 

Under control conditions, there was no significant difference between the overall Col-0 99 

conductance and that of dorn1-1 (Figure 2a,b: Tail current analysis of outward current, Erev -100 

88.8 ± 9.3 mV; PK/PCl 9.4 ± 3.0; n=5). Consistent with Col-0, the epidermal PM currents 101 

recorded from both dorn1 mutants were blocked by Gd3+ (Supplemental Figure S1b, c). In 102 

contrast to Col-0, dorn1-1 did not respond to 300 µM ATP (Figure 2a,b,c), neither did dorn1-103 

3 (Figure 2d,e). As DORN1 binds ATP with a Kd of 45.7 nM (Choi et al., 2014), the lack of 104 

response to this high concentration of ATP supports the currents’ lying downstream of this 105 

receptor in Col-0.  106 

 107 

DORN1 is involved in eATP activation of Arabidopsis root epidermal PM currents 108 

DORN1 governs eATP’s transient activation of a Ca2+-permeable inward conductance at 109 

hyperpolarized voltages (Figure 1c, d; Figure 2).  With resting PM voltage in epidermal cells 110 

from Arabidopsis roots varying between -153 and -129 mV (Maathuis and Sanders, 1993), 111 

eATP-induced HACC-like currents could initiate [Ca2+]cyt elevation for wound signalling 112 

(Choi et al., 2014) and promote the eATP-induced depolarization of Arabidopsis PM (Lew and 113 

Dearnaley, 2000). DORN1 also governs eATP’s transient activation of a K+-permeable 114 

outward conductance (probably NSCC) at depolarized voltages (Figure 1c, d; Figure 2).  In 115 

whole Arabidopsis roots, the same concentration of eATP (300 µM) was shown by Demidchik 116 

et al. (2011) to induce K+ efflux at the root epidermis. The K+ efflux conductance found in the 117 

present study would be a strong candidate for the root eATP-induced K+ efflux pathway. This 118 

may have significance for eATP and DORN1 function in pathogen- or stress-induced K+ loss 119 

in cell death (Demidchik, 2014).  120 

 121 

DORN1 commands [Ca2+]cyt elevation in response to both eATP and eADP (Choi et al., 2014). 122 

The eADP concentration used here (300 µM) was found previously to activate PM K+ efflux 123 

and Ca2+ influx conductances in Col-0 protoplasts from mature root epidermis (Demidchik et 124 

al., 2011) but in the present study it had no effect on those from the root apex (Supplemental 125 
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Figure 4). A possible explanation is a cell-specific secondary effect of ADP that negates 126 

DORN1’s activation of channels. Nevertheless, the relationship between DORN1 and PM 127 

conductances found here for eATP may well prove valuable in the search for the molecular 128 

identities of the contributory channels. Root PM conductances activated by eATP 129 

independently of DORN1 may also yet be discovered. 130 

 131 
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Figure 1. Exogenous ATP activates K+ and Ca2+ currents in Col-0 root epidermal plasma 191 

membrane.  192 

a. Representative current traces from whole cell recordings of Arabidopsis thaliana Col-0 193 

before (left panel) and after 3 minutes’ ATP treatment (300 µM; right panel). Baseline 194 

membrane voltage was held at -137 mV prior to a step-wise voltage protocol of 20 mV 195 

increments. b. Effect of 300 µM eATP on I/V relationships. Data are means ± SE (n = 6), 196 

recorded 3 minutes before ATP addition, immediately before addition (0 minutes) and 3 197 

minutes after.  Inward current below the V axis is mainly Ca2+ influx. Outward current above 198 

the V axis is mainly K+ efflux from cytosol. Equilibrium potentials for K+ (EK) and Cl- (ECl) are 199 

annotated. ECa = + 161 mV c. eATP transiently increased inward and outward currents. Data 200 

are means ± SE of current recorded at -217 and +43 mV respectively (n = 3 to 6). ** marks 201 

significant difference from control (p < 0.01, Student’s t-test). d. I/V relationships 8 minutes 202 

after ATP addition and (insert) difference I/V to reveal the eATP-activated currents (n = 4). Bath 203 

solution comprised 20 mM CaCl2, 0.1mM KCl, 20 µM NaCl, 5 mM MES-Tris, pH 5.6.  Pipette 204 

solution comprised 40 mM  K-gluconate, 10 mM KCl, 0.4 mM CaCl2, 1mM BAPTA, 2mM 205 

MES-Tris, pH 7.2 (Demidchik et al., 2011).  206 

  207 

Figure 2. dorn 1-1 and dorn 1-3 failed to respond to exogenous ATP.  208 

a. Representative current traces from Arabidopsis thaliana dorn 1-1 before (left panel) and 209 

after 3 minutes’ ATP treatment (300 µM; right panel). b. There was no effect of eATP on I/V 210 

relationships of dorn 1-1  3 minutes after eATP application and (c) no effect over an extended 211 

time period. d. There was no effect of eATP on I/V relationships of dorn 1-3 3 minutes after 212 

eATP application and (e) no effect over an extended time period. Data are presented as means 213 

± SE (n = 5 in b and c; n = 3 in d and e). Bath solution comprised 20 mM CaCl2, 0.1mM KCl, 214 

20 µM NaCl, 5 mM MES-Tris, pH 5.6.  Pipette solution comprised 40 mM  K-gluconate, 10 215 

mM KCl, 0.4 mM CaCl2, 1mM BAPTA, 2mM MES-Tris, pH 7.2 (Demidchik et al., 2011). 216 

 217 

Fig. S1. Gd
3+ 

inhibits whole-cell currents from epidermal plasma membrane of Col-0 and 218 

dorn1 mutants. 219 

Fig. S2. Voltage ramping to determine Ca2+ permeability of the Col-0 inward conductance.  220 

Fig. S3. Exogenous NaCl has no effect on Col-0 currents.  221 

Fig. S4. Exogenous ADP does not induce currents in Col-0 apical root epidermal plasma 222 
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membrane.  223 

 224 
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