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Abstract
Cells are quintessential examples of out-of-equilibrium systems, but theymaintain a homeostatic state over a timescale of hours
to days. As a consequence, the statistics of all observables is remarkably consistent. Here, we develop a statistical mechanics
framework for living cells by including the homeostatic constraint that exists over the interphase period of the cell cycle. The
consequence is the introduction of the concept of a homeostatic ensemble and an associated homeostatic temperature, along
with a formalism for the (dynamic) homeostatic equilibrium that intervenes to allow living cells to evade thermodynamic
decay. As a first application, the framework is shown to accurately predict the observed effect of the mechanical environment
on the in vitro response of smooth muscle cells. This includes predictions that both the mean values and diversity/variability in
themeasured values of observables such as cell area, shape and tractions decrease with decreasing stiffness of the environment.
Thus, we argue that the observed variabilities are inherent to the entropic nature of the homeostatic equilibrium of cells and
not a result of in vitro experimental errors.

Keywords Cell · Cytoskeleton · Statistical mechanics · Effective temperature · Fluctuations

1 Introduction

Cells display a fluctuating response in in vitro experiments
that results in a diversity of observables in nominally identical
tests. As an illustration, human vena saphena cells (HVSCs),
cultured on a fibronectin coated glass slide and then fixated
after 24 h, display a diversity of observables not only in
terms of cell shape but also the distributions of vinculin and
the cytoskeletal actin (Fig. 1a). However, it is well estab-
lished that over a large number of observations, the statistics
are highly reproducible (Tan et al. 2003; Engler et al. 2004;
Prager-Khoutorsky et al. 2011; Saez et al. 2007;Discher et al.
2005; Chen et al. 1997, 2003; Parker et al. 2002; Théry et al.
2006; Lamers et al. 2010). Intriguingly, this observed vari-
ability is not only a function of the cell type but also a function
of the environment. For example, the standard error of the
projected cell area of smooth muscle cells (SMCs) cultured
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on elastic substrates decreases with decreasing substrate
modulus (Engler et al. 2004). Similarly, micropatterning of
the adhesive environment reduces the diversity of a number
of observables, but variations in the force measurements per-
sist (Mandal et al. 2014; Oakes and Gardel 2014; Schiller
et al. 2013). This variability in direct observables such as
cell shape, area, cytoskeletal protein arrangements and trac-
tion forces also reflects in other critical cell functionality.
In particular, mechanical, geometric and topological cues
direct the differentiation of mesenchymal stem cells (MSCs)
(Engler et al. 2006; Discher et al. 2009; Kilian et al. 2010;
McBeath et al. 2004; McMurray et al. 2011) in a statistical
fashion: MSCs differentiate mainly but not exclusively into
bone cells when cultured on stiff substrates, while the prob-
ability to differentiate into neuronal cells increases on soft
substrates (Engler et al. 2006). Importantly, the responses
of cells are always characterised in terms of statistics rather
than unique outcomes. A mechanistic understanding of this
stochastic behaviour of cells will have far-reaching impli-
cations in aiding the interpretation of a wide range of cell
functionalities.

Consider a typical in vitro experiment comprising an
adherent cell in an extracellular matrix (ECM) immersed in
a liquid growth medium (i.e. a nutrient broth referred to here
as the nutrient bath). The nutrient bath not only maintains
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Fig. 1 Response of cells in in vitro experiments and the system used to
analyse these experiments. a HVSCs seeded on a glass substrate coated
with 50μg/l fibronectin, fixated after 24 h and stained for actin (green),
vinculin (pink) and the nucleus (blue). The scale bar corresponds to
50μm (Buskermolen, A.B.C., Private communication). b Sketch of a
section of a representative in vitro experiment of a cell in an ECM (here

illustrated as a substrate) within a nutrient bath. A small selection of the
species exchanged between the cell and the nutrient bath is labelled. c
Schematic of the definition of a morphological microstate specified by
the mapping of material points on the cell surface with material points
on the ECM. For clarity, the ECM is illustrated as a flat substrate

the cell and ECM at a constant temperature and pressure but
also furnishes the cell with nutrients; see Fig. 1b. Similar to
a mechanical system in a thermal bath, we do not wish to
consider the entire setup but rather focus on a system com-
prising just the cell and the ECM that is usually designed to
mimic some in vivo environments. However, this is an open
system with the cell exchanging (chemical) species with its
surroundings (the nutrient bath in this case). In principle, it is
possible to account for all the exchanges of species between
the systemand the nutrient bathwith thermodynamic equilib-
rium of this open system being achieved when the chemical
potentials of all mobile species within the cell and nutrient
bath equalise (Dill and Bromberg 2003; Reif 2009). While
cells are alive, they never achieve such an equilibrium state
(e.g. all cells maintain a resting potential between the cell
and the surrounding nutrient bath by actively regulating the

concentration of various ions within the cell (Keener and
Sneyd 2009; Lewis et al. 2011)). Hence, cells are thought
to be inherently in a non-equilibrium state (Recordati and
Bellini 2004).

A very large number of complex interlinked metabolic
reactions such as (but not restricted to) ion pumps, osmosis,
diffusion and cytoskeletal reactions operate to actively regu-
late the concentration of species within the cell. Energy for
the active processes is obtainedmainly from the hydrolysis of
ATP and ultimately from glucose furnished by the nutrient
bath. Remarkably, these processes maintain the concentra-
tions of all species within the cell to be very nearly constant
over a sustained period of time (e.g. the interphase period
of the cell cycle). This phenomenon is known as cellular
homeostasis (Weiss 1996). Homeostasis in living systems
is prevalent from the level of the whole organism (Cannon
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1929; Buchman 2002) to the extracellular (Humphrey et al.
2014) and tissue level (Basan et al. 2009) as well as down
to the intracellular level (Weiss 1996). Here, we are restrict-
ing ourselves to homeostasis of the intracellular environment
and simply refer to it as homeostasis with the sum of all the
mechanisms that maintain this state labelled as the homeo-
static processes. Biologists have long viewed the fluctuating
homeostatic state, which is a stationary state of living cells, as
an equilibrium state. Here, we shall regularise this notion by
developing the underlying principles to define the (dynamic)
homeostatic equilibrium. This will not only enable quantita-
tive predictions of the stochastic response of cells but also
result in a probabilistic view of cell mechanics.

In statistical mechanics, the canonical ensemble (e.g. Reif
2009) describes the probability distribution of themicrostates
that a closed system can assume in a thermal bath. These
myriad microstates are sampled by the exchange of energy
between the system and the bath via collisions of atoms of
the system with atoms in the thermal bath. Entropy maximi-
sation subject to the constraint of constant total energy of
the system and the bath leads to the well-known Boltzmann
distribution as the equilibrium macrostate of the system with
kT specifying the distribution parameter, where T is the ther-
modynamic temperature of the bath and k the Boltzmann
constant. The Boltzmann distribution is obtained not only
without explicitly modelling all the thermal interactions but
also without invoking the underlying dynamics via which
the system fluctuates between the available microstates (e.g.
the Newton’s laws for the motion of the atoms). Given the
complexity and intertwined nature of homeostatic processes
in living cells, extending the ideas of statistical mechanics
and/or statistical inference is an ideal methodology for for-
malising the homeostatic equilibrium of cells.

Schrödinger (1944) introduced the notion that living
matter evades decay to thermodynamic equilibriumbyhome-
ostatically maintaining negative entropy. While there is
increasing experimental evidence of statistical effects and
non-thermal fluctuations in living cells (Tulier et al. 2016;
Battle et al. 2016; Nadrowski et al. 2004; Brangwynne
et al. 2007), a theory of the mechanics and statistics of liv-
ing cells using Schrödinger’s ideas has, to date, remained
elusive. Progress has been restricted to granular and soft mat-
ter systems following the introduction of the ensemble of
jammed states (Edwards and Oakeshott 1989) and the non-
equilibrium analysis of active matter (Mizuno et al. 2007;
Ramaswamy 2010). The main stumbling block is that not
only is it impractical to model all the homeostatic processes,
but also that the underlying dynamical laws are not fully
known. Here, we make a novel proposition to break this
deadlock by using statistical mechanics to coarse-grain out
the homeostatic process variables. In particular, we make the
ansatz that living cells are entropic and introduce the concept
of the homeostatic ensemble with cellular homeostasis pro-

viding the additional constraints andmechanisms for entropy
maximisation. This defines the notion of a (dynamic) home-
ostatic equilibrium state that intervenes to allow living cells
to elude thermodynamic equilibrium. The overall outcome
is a homeostatic statistical mechanics framework for living
cells that rationalises the views of Schrödinger (1944) and is
comparable to that for systems comprising dead matter.

1.1 Overview of the statistical mechanics framework

Following Jaynes (1957), statistical mechanics is a particu-
lar application of a general tool of statistical inference which
argues that the probability distribution of the states that a
system attains is best represented by the distribution that
maximises entropy, given the known constraints on the sys-
tem. Here, we develop a statistical mechanics framework
for living cells using these notions of statistical inference
with the homeostatic processes providing the mechanisms
and constraints for entropy maximisation. The framework is
applicable for a cell over a timescale from a few hours to
a few days such that the cell remains as a single undivided
entity (i.e. the interphase period of the cell cycle). Before pro-
ceeding to describe the framework in detail, it is instructive
to summarise the overall framework:

(i) We begin with the observation that the timescale for
a cell to change its morphology is significantly longer
than the time required for rearrangement of proteins
within the cell. Over this short timescale when the
cell morphology remains fixed but the internal protein
structure evolves, the only constraint for cells in an
ECM (Fig. 1b) is that they are in the constant thermo-
dynamic temperature and pressure environment. Cells
with a fixed morphology thus attain equilibrium spec-
ified by a minimum Gibbs free-energy state.

(ii) Over longer timescales, the cell morphology fluctu-
ates, but the cell attains an equilibrium distribution
of morphological states. This equilibrium probability
distribution is given by maximising the entropy of the
distribution of morphological states subject to the con-
straint that the cells maintain a homeostatic state.

(iii) In the homeostatic state, the morphology of the cell
fluctuates. However, over these fluctuations the cell
maintains a specific average number of all species that
is dependent on the cell type but independent of its envi-
ronment. This constraint specifies the average Gibbs
free-energy of the cells over the distribution of mor-
phological states they attain.

(iv) The average Gibbs free-energy of the cells is shown
to equal the Gibbs free-energy of a cell in suspen-
sion. Cells attain a unique morphological state while
in suspension, and this provides a known constraint
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against which the entropy maximisation in (ii) can be
conducted.

The result is a statistical mechanics framework for living
cells, on par with conventional statistical thermodynamics
in which a homeostatic equilibrium for cells is defined. The
differences between homeostatic and thermodynamic equi-
librium can be summarised as follows. At thermodynamic
equilibrium of an open system, there is no net transfer of
energy or species between the system and the bath with the
total number of each of the species and energy remaining
fixed for the isolated setup comprising the system plus bath.
Conversely, at homeostatic equilibrium there is also no net
energy transfer between the system and the nutrient bath, but
there is a net transfer of species such that average number of
all species within the system remain constant (e.g. there is an
overall flux of glucose into the cell, while the flow of carbon
dioxide is in the opposite direction with the concentration
of glucose within the cell being maintained approximately
constant). The framework introduces the concept of a home-
ostatic ensemble and an associated homeostatic temperature
along with a formalism for the (dynamic) homeostatic equi-
librium that intervenes to allow cells to evade thermodynamic
decay.

The outline of the paper is as follows. First, in Sect. 2
we develop the homeostatic statisticalmechanics framework.
Then, in Sect. 3 we present a model for the Gibbs free-energy
of the cell before proceeding to discuss numerical results in
Sect. 4 for cells on elastic substrates. A large number of
mathematical symbols are used in the manuscript, and the
critical symbols are summarised in Table 1 for the sake of
convenience.

2 Homeostatic statistical mechanics

We develop a statistical mechanics description for cells,
applicable over the interphase period of the cell cycle span-
ning a timescale of few hours to a few days. Over this
timescale, processes such as cell division and proliferation
are not operativewith the cell remaining as a single undivided
entity and achieving a homeostatic state.

2.1 Two levels of microstates

Wepresent a statistical mechanics description for cells where
the system comprises the cell and an elastic passive envi-
ronment mimicking the ECM with the system immersed in
a nutrient bath (Fig. 1b). Controlling only macrovariables
(i.e. macrostate) such as the temperature, pressure and nutri-
ent concentrations in the nutrient bath results in an inherent
uncertainty (referred to here as missing information) in the
microvariables (i.e. microstates) of the system. This includes

Table 1 A summary of the key parameters of the model

Parameter symbol Brief description

1/ζ Homeostatic temperature

A0 Cross-sectional area of single stress-fibre

A( j) Area of the cell in the equilibrium morphological
microstate ( j)

A( j)
s Aspect ratio of the cell in the equilibrium

morphological microstate ( j)

b0 Thickness of an undeformed circular 2D cell

e Specific internal energy of the system

Esub Young’s modulus of the substrate

f Specific Helmholtz free-energy of the cell

fcyto Contribution of the stress-fibre cytoskeleton to
the specific Helmholtz free-energy of the cell

F ( j)
cell Equilibrium Helmholtz free-energy of the cell in

morphological microstate ( j)

F ( j)
cyto Equilibrium Helmholtz cytoskeletal free-energy

of the cell in morphological microstate ( j)

F ( j)
passive Equilibrium Helmholtz passive free-energy of the

cell in morphological microstate ( j)

F ( j)
sub Equilibrium Helmholtz free-energy of the

substrate in morphological microstate ( j)

F0 Volume fraction of stress-fibre proteins

G( j) Equilibrium Gibbs free-energy of morphological
microstate ( j)

GS Equilibrium Gibbs free-energy of the cell in
suspension

GS
ECM Free-energy of the elastic ECM isolated from the

cell

Ḡ Average Gibbs free-energy of the ensemble of
morphological microstates

G( j) Gibbs free-energy of the morphological
microstate ( j)

h(i) Enthalpy of molecular microstate (i) belonging
to the morphological microstate ( j)

H ( j) Equilibrium enthalpy of morphological
microstate ( j)

H̄ Average enthalpy of the ensemble of
morphological microstates

I ( j)
M Entropy of the molecular microstates in

morphological microstate ( j)

IT Total entropy of the system

I� Entropy of the morphological microstates

k Boltzmann constant

�0 Undeformed length of the functional unit of a
stress-fibre

�ss Optimal length of the functional unit of a
stress-fibre

m Material constant governing the nonlinearity of
the deviatoric elastic response of the cell

M Homeostatic potential

123



The homeostatic ensemble for cells

Table 1 continued

Parameter symbol Brief description

n Number of functional units within a stress-fibre
at orientation φ in the RVE

nss Number of functional units within a stress-fibre
at orientation φ in the RVE at steady state

nR Reference number of functional units within the
stress-fibre in the undeformed RVE

Nb Total number of bound functional units within
stress-fibres in the RVE

N̄L Angular concentration of available lattice sites
for the unbound stress-fibre proteins in the RVE

NT Total number of protein packets (bound+
unbound) in the RVE

Nu Number of unbound protein packets in the RVE

N ( j)
α Average number of molecules of species (α) in

the system in morphological microstate ( j)

p(�) Probability density function of observable �
P(i) Probability of molecular microstate (i), or

equivalently, molecular macrostate

P(i, j) Joint probability of molecular microstate (i) and
morphological microstate ( j)

P(i | j) Conditional probability of molecular microstate
(i) given morphological microstate ( j)

P( j) Probability of the morphological microstate ( j),
or equivalently, morphological macrostate

P( j)
eq Equilibrium probability distribution of the

morphological microstates

r ( j) Stress-fibre intensity in the equilibrium
morphological microstate ( j)

R0 Radius of an undeformed circular 2D cell

S( j)
M Equilibrium molecular entropy of morphological

microstate ( j)

ST Maximised (equilibrium) total entropy

S� Equilibrium morphological entropy

T Thermodynamic temperature

T( j)
i Tractions in the equilibrium morphological

microstate ( j)

̂T( j)
T Normalised average traction of the equilibrium

morphological microstate ( j)

V0 Volume of an undeformed cell

Z Partition function of the homeostatic ensemble

Z ( j)
M Molecular partition function of morphological

microstate ( j)

εnom Nominal strain of a stress-fibre at orientation φ in
the RVE

ε̃nom Nominal strain of the functional units within a
stress-fibre in the RVE

ε̃ssnom Nominal strain of the functional units within a
stress-fibre in the RVE at steady state

η Angular concentration of stress-fibres at
orientation φ in the RVE

Table 1 continued

Parameter symbol Brief description

ηmax Maximum angular concentration of stress-fibres
at orientation φ in the RVE

κ In-plane bulk modulus of the cell

λI , λI I , λI I I Principal stretches

μ Shear modulus of the cell

μb Enthalpy of nR functional units within a
stress-fibre in the RVE

μb0 Internal energy of nR functional units within a
stress-fibre in the RVE

μu Internal energy of unbound proteins that form nR

functional units within a stress-fibre in the RVE

Π Total number of stress-fibres within the RVE

ρ0 Density of stress-fibre proteins in the RVE

σi j Active Cauchy stress

σ
p
i j Passive Cauchy stress

σmax Maximum (isometric) tensile stress of a
stress-fibre

Σi j Total Cauchy stress

Φelas Elastic strain energy density function of the cell

χb Chemical potential of a single bound functional
unit

χu Chemical potential of the aggregate unbound
proteins that form a single functional unit of
stress-fibres

χ
( j)
α Chemical potential of species (α) in the system

in morphological microstate ( j)

� Strain energy density of the elastic substrate
material

� Volume of nR functional units in their
undeformed state

a level of unpredictability in homeostatic process variables,
such as the spatio-temporal distribution of chemical species,
that is linked to Brownian motion and the complex feed-
back loops in the homeostatic processes. Thus, in this system
there is not only the usual missing information on the precise
positions and velocities of individual molecules associated
with the thermodynamic temperature but also an uncertainty
in cell shape (Fig. 1a) resulting from the homeostatic pro-
cesses not being precisely regulated. The consequent entropy
production forms the basis of this new statistical mechan-
ics framework. Given that there is a deterministic relation
between cell shape and the perceptible intracellular struc-
ture (e.g. arrangement of the cytoskeleton), this motivates
the definition of the following two levels of microstates:

(i) Molecular microstates Each molecular microstate has a
specific configuration (position and momentum) of all
the molecules within the system. The collection of all
molecular microstates in a given molecular macrostate
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is referred to as the ensemble of molecular microstates.
The corresponding molecular macrostate is the proba-
bility distribution that gives the probability of finding
a particular molecular microstate in the collection of
all molecular microstates (referred to as the ensemble
of molecular microstates). It is worth emphasising here
that most macrovariables such as the energy or concen-
tration of species are highly degenerate, i.e. multiple
molecular microstates correspond to a given value of
the macrovariable.

(ii) Morphological microstates (Fig. 1c) Each morphologi-
cal microstate is specified by the mapping (connection)
of material points on the cell membrane to material
points on the ECM. The portion of the cell surface not
connected to the ECM is subjected to fixed tractions
(pressure) exerted by the bath. In broad terms, a mor-
phological microstate specifies the shape of the cell.
Eachmorphologicalmicrostate can be formed by a large
number of molecular microstates, but every molecu-
lar microstate only belongs to a single morphological
microstate. Again, the corresponding morphological
macrostate is the probability distribution that gives
the probability of finding a particular morphologi-
cal microstate in the collection of all morphological
microstates (referred to as the ensemble of morpholog-
ical microstates). We emphasise that a morphological
microstate is not specified by a strain distribution within
the cell. This is because a morphological microstate is
only specified by the mapping of material points on the
surface of the cell to the ECMwith the displacements of
all other material points within the cell left unspecified.

In the homeostatic state, the system is in (dynamic) equi-
librium with no net change in the internal state of the system
but with a net flux of species between the system and nutri-
ent bath (e.g. there is an overall flux of glucose into the cell,
while the flow of carbon dioxide is in the opposite direc-
tion). We make the ansatz that “living cells are entropic” and
shall identify this (dynamic) equilibrium state by entropy
maximisation. Thus, subsequently we shall simply refer to
it as an equilibrium state to emphasise that it is a stationary
macrostate of the system inferred via entropy maximisation
as in a conventional equilibrium analysis. Let P(i) and P(i, j)

denote the probability of molecular microstate (i) and the
joint probability of molecular microstate (i) and morpho-
logical microstate ( j), respectively. Then, the total Gibbs
entropy IT is defined as (Shannon 1948; Jaynes 1957; Cover
and Thomas 2006)

IT � −
∑

i

P(i) ln P(i) � −
∑

j

∑

i∈ j

P(i, j) ln P(i, j), (2.1)

since every molecular microstate (i) belongs to a unique
morphological microstate ( j). Using Bayes’ theorem, this
is decomposed as

IT �
∑

j

P( j) I ( j)
M + I�, (2.2)

where I ( j)
M ≡ −∑i∈ j P

(i | j) ln P(i | j) is the entropy of the
molecular microstates in morphological microstate ( j) and
I� ≡ −∑ j P

( j) ln P( j) is the entropy of the morpholog-

ical microstates. Here the conditional probability P(i | j) of
molecular microstate (i) given morphological microstate ( j)
is defined as

P(i | j) ≡ P(i, j)

P( j)
, (2.3)

with P( j) ≡ ∑

i∈ j P
(i, j) the probability of the morpho-

logical microstate ( j). We shall identify the equilibrium
probability distributions P(i | j)

eq and P( j)
eq by maximising IT

subject to appropriate constraints.

2.2 Separation of timescales

In order to develop the appropriate constraints on the sys-
tem, we note that the molecular microstates of the system
evolve driven by a range of biochemical processes includ-
ing (but not restricted to) cytoskeletal processes such as
actin polymerisation, myosin power strokes driving stress-
fibre contractility and diffusion of species such as unbound
cytoskeletal proteins within the cell. These processes are
relatively fast and limited by the diffusion rate (McGrath
et al. 1998) of species such as unbound actin within the
cell (chemical reactions and mechanical processes such as
wave propagation are typically much faster and thus not
the rate-limiting processes). Themolecular macrostate there-
fore evolves on the order of a few seconds. By contrast,
transformation of morphological microstates involves cell
shape changes, and consequently, these microstates evolve
by co-operative cytoskeletal processes within the cell such
as actin polymerisation and treadmilling (Ponti et al. 2004;
Alberts et al. 2014) as well as dendritic nucleation (Pol-
lard et al. 2000). As these processes require coordinated
cytoskeletal reactions, they are much slower and the mor-
phological macrostate evolves on the order of minutes with
the equilibriummorphological macrostate (over which cellu-
lar homeostasis is maintained) being attained on a timescale
of hours. The evolution of the molecular and morphological
macrostates is thereby temporally decoupled.
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2.2.1 Equilibrium on the order of seconds

Over a timescale of seconds, the morphological macrostate
(i.e. P( j)) of the cell is invariant and we proceed to maximise
IT by taking variations with respect to P(i | j) (i.e. dP(i | j) ��
0) but with dP( j) � 0while simultaneously imposing appro-
priate constraints. Even over this short timescale, there is an
exchange of species between the cell and the nutrient bath
and the only known constraints on the system are that it is
maintained at a constant temperature and pressure by the sur-
rounding nutrient bath in a given morphological microstate
( j). Then, analogous to an isobaric-isothermal ensemble, the
total enthalpy of the isolated setup comprising the system
plus the nutrient bath remains constant. Importantly in this
open system, we cannot impose constraints of a fixed num-
ber of species in the isolated setup. This is because metabolic
processes within the cell such as the hydrolysis of glucose
result in a change in the total number of individual species in
the setup (e.g. the number of glucose molecules decreases,
but carbon dioxide increases). Nevertheless, since we are
restricting ourselves to a fixed morphological microstate ( j),
we can define equilibrium in the sense of amaximum IT over
the conditional molecular macrostates P(i | j). At this equilib-
rium,while therewill be nonet exchangeof enthalpy between
the system and the nutrient bath, a net exchange of species
is not prohibited.

The maximisation of IT is then analogous to an isobaric-
isothermal ensemble with two constraints enforced while
performing the entropy maximisation: (a) the sum of
the conditional probabilities

∑

i∈ j P
(i | j) � 1 and (b)

∑

i∈ j P
(i | j)h(i) � H ( j) where h(i) is the enthalpy ofmolecu-

lar microstate (i) belonging to the morphological microstate
( j), while H ( j) is defined as the enthalpy of morphologi-
cal microstate ( j). Since a particular molecular microstate
(i) only belongs to a single morphological microstate ( j), it
suffices to denote its enthalpy by h(i) without explicit refer-
ence to ( j). Here the constraint (b) is imposed in the usual
isobaric-isothermal ensemble to ensure that total enthalpy
of the system plus nutrient bath remains constant. This con-
straint is imposed here for each morphological microstate
( j) over short timescales on the order of seconds. We impose
constraints (a) and (b) via Lagrange multipliers (λ0 − 1) and
λ, respectively, such that the equilibrium distribution P(i | j)

eq

satisfies

d

⎡

⎣

∑

j

P( j) I ( j)
M + I� − λ

⎛

⎝

∑

i∈ j

P(i | j)
eq h(i) − H ( j)

⎞

⎠

−(λ0 − 1)

⎛

⎝

∑

i∈ j

P(i | j)
eq − 1

⎞

⎠

⎤

⎦ � 0, (2.4a)

which simplifies to

∑

j

P( j)d I ( j)
M − λ

∑

i∈ j

d P(i | j)
eq h(i) − (λ0 − 1)

∑

i∈ j

d P(i | j)
eq � 0.

(2.4b)

Now recall that d I ( j)
M is independent of ( j) which implies

∑

j P
( j)d I ( j)

M � d I ( j)
M since

∑

j P
( j) � 1. Then, Eq. (2.4b)

reduces to

ln P(i | j)
eq + λh(i) + λ0 � 0 ∀(i) ∈ ( j), (2.5)

where we have used the fact that the variations dP(i | j)
eq are

independent and arbitrary. The equilibrium distribution then
follows as

P(i | j)
eq � exp

(−λh(i)
)

Z ( j)
M

, (2.6)

where Z ( j)
M ≡ ∑

i∈ j exp
(−λh(i)

) � exp(λ0) is the molec-
ular partition function of morphological microstate ( j) and
the equilibrium enthalpy of morphological microstate ( j) is
given by

H ( j) � 1

Z ( j)
M

∑

i∈ j

h(i)exp
(

−λh(i)
)

� −∂ ln Z ( j)
M

∂λ
. (2.7)

It now remains to determine the distribution constant λ.
The maximised molecular entropy S( j)

M ≡ max
P(i | j)

[

I ( j)
M

]

fol-

lows by substituting Eq. (2.6) into the definition of I ( j)
M such

that

S( j)
M � −

∑

i∈ j

P(i | j)
eq

[

−λ0 − λh(i)
]

� ln Z ( j)
M + λH ( j).

(2.8)

Then, using Eq. (2.7) we have ∂S( j)
M /∂H ( j) � λ. How-

ever, recall that the system is maintained at the constant
temperature T , and using the definition ∂H ( j)/∂S( j)

M � kT
of the thermodynamic temperature, we have λ � 1/(kT ).
For purposes of the calculation of the equilibrium mor-
phological microstate, it is convenient to define the Gibbs
free-energy G( j) ≡∑i∈ j P

(i | j)h(i) −kT I ( j)
M of the morpho-

logical microstate ( j), i.e.

G( j) ≡
∑

i∈ j

P(i | j)h(i) + kT
∑

i∈ j

P(i | j) ln P(i | j). (2.9)
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Noting that
∑

i∈ j P
(i | j) � 1 with λ � 1/(kT ), it fol-

lows from Eq. (2.4b) that equilibrium is attained at G( j) ≡
min
P(i | j)

[G( j)
]

when P(i | j) � P(i | j)
eq and the molecular entropy

of the equilibrium morphological microstate ( j) can be re-
written as

S( j)
M � − 1

kT

[

G( j) − H ( j)
]

. (2.10)

With ℘ and V denoting pressure and volume, respectively,
the internal energy U ( j) of morphological microstate ( j) is
given by1 U ( j) � kT S( j)

M − ℘V +
∑

α χ
( j)
α N ( j)

α , where χ
( j)
α

is the chemical potential of species (α) in the system in mor-
phological microstate ( j) and N ( j)

α �∑i∈ j P
(i | j)
eq n(i)

α is the
average number of molecules of species (α) in the system
in morphological microstate ( j) with n(i)

α the corresponding
number in molecular microstate (i). The enthalpy H ( j) ≡
U ( j) + ℘V then follows as H ( j) � kT S( j)

M +
∑

α χ
( j)
α N ( j)

α ,
while from Eq. (2.10) the corresponding Gibbs free-energy
of morphological microstate ( j) is given by the familiar rela-
tionship

G( j) �
∑

system(α)

χ( j)
α N ( j)

α . (2.11)

The calculation of the Gibbs free-energy G( j) (and cor-
respondingly G( j)) is a boundary value problem with the
specified mapping of material points on the cell membrane
to the ECMand constant pressure boundary conditions on the
remainder of the cell and ECM surfaces. Given an appropri-
atemodel of the cellular processes (e.g. themodel of Vigliotti
et al. (2016)), the equilibriumGibbs free-energyG( j) is given
by the state that satisfies mechanical and chemical equilib-
rium as described in detail in Sect. 3.

2.2.2 Equilibrium on the order of hours

Weproceed now to investigate equilibriumover the timescale
of hours when the morphological macrostate P( j) evolves
towards a stationary/equilibrium state. On this timescale,
the conditional probabilities P (i | j) attain their equilibrium
state P (i | j)

eq , and thus, the entropy function given by Eq. (2.2)
reduces to

I
′
T � − 1

kT

∑

j

P( j)
(

G( j) − H ( j)
)

−
∑

j

P( j) ln P( j),

(2.12)

1 This expression follows by integrating the complete differential
dU ( j) ≡ kT dS( j)

M − ℘dV +
∑

α χ
( j)
α dN ( j)

α of internal energy using
Euler’s homogenous function theorem.

where we replaced the molecular entropy I ( j)
M with its equi-

librium value S( j)
M given by Eq. (2.10). The equilibrium

distribution P( j)
eq is then given by maximising I

′
T subject to

appropriate constraints.We of course have the constraint that
the sum of the probabilities

∑

j P
( j) � 1. If no additional

constraints were imposed, it would follow that

P( j)
eq (dead) � exp

[(

G( j) − H ( j)
)

/kT
]

∑

j exp
[(

G( j) − H ( j)
)

/kT
] , (2.13)

which is the grand canonical distribution of the morphologi-
cal microstates (or more appropriately the grand isothermal-
isobaric distribution), i.e. at equilibrium the grand potential
� ≡ −kT ln Z�, where Z� ≡ ∑ j exp

[(

G( j) − H ( j)
)

/kT
]

is fixed. This equilibrium state would be achieved by a dead
cell with the chemical potential of all mobile species within
the system equal to those in the surrounding bath. How-
ever, what indeed differentiates living cells from dead matter
is the fact that living cells actively regulate the intercellu-
lar concentrations of all species to maintain a homeostatic
state. We shall show in Sect. 2.3 that this translates to
an additional constraint that the Gibbs free-energy of the
system, averaged over all the morphological microstates it
assumes, is maintained at a given value Ḡ specified by the
homeostatic cellular processes, i.e.

∑

j P
( j)G( j) � Ḡ. We

then proceed by maximising Eq. (2.12) subject to the con-
straints (a)

∑

j P
( j) � 1, (b)

∑

j P
( j)G( j) � Ḡ and (c)

∑

j P
( j)H ( j) � H̄ . The constraint (c), on the ensemble

average enthalpy H̄ of the morphological microstates, is
required since we are imposing the constraint (b) on the free-
energy and hence need to explicitly ensure that temperature
constraint imposed at the shorter timescales carries through
to the longer timescales. We impose these constraints via
Lagrange multipliers (λ1 − 1), ζ1 and λ2 for the constraints
(a), (b) and (c), respectively. Maximisation of Eq. (2.12) then
reduces to

− d

⎡

⎣

1

kT

∑

j

P( j)
eq

(

G( j) − H ( j)
)

+
∑

j

P( j)
eq lnP( j)

eq

+ ζ1

⎛

⎝

∑

j

P( j)
eq G( j) − Ḡ

⎞

⎠ + λ2

⎛

⎝

∑

j

P( j)
eq H ( j) − H̄

⎞

⎠

+ (λ1 − 1)

⎛

⎝

∑

j

P( j)
eq − 1

⎞

⎠

⎤

⎦ � 0. (2.14)
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Again, noting that the variations dP( j)
eq are independent

and arbitrary, the equilibrium distribution follows as

P( j)
eq � exp

[

−λ1 − ζ1G
( j) − λ2H

( j) −
(

G( j) − H ( j)
)

kT

]

.

(2.15)

Upon defining ζ ≡ ζ1 +1/(kT ), we can rewrite Eq. (2.15) as

P( j)
eq � 1

Z
exp

[

−ζG( j) −
(

λ2 − 1

kT

)

H ( j)
]

, (2.16)

with the partition function Z of the morphological
microstates defined as

Z ≡
∑

j

exp

[

−ζG( j) −
(

λ2 − 1

kT

)

H ( j)
]

� exp(λ1),

(2.17)

so that
∑

j
P( j)
eq � 1. This partition function gives the average

Gibbs free-energy and enthalpy via

Ḡ � −∂ ln Z

∂ζ
, (2.18a)

and

H̄ � −∂ ln Z

∂λ̄
� −∂ ln Z

∂λ2
, (2.18b)

respectively, where λ̄ ≡ λ2 − 1/(kT ) and the maximised

entropy ST ≡ max
P( j)

[

I
′
T

]

follow by substituting Eq. (2.16)

into Eq. (2.12) as

ST � ζ1Ḡ + λ2 H̄ + ln Z . (2.19)

Now, noting Ḡ is independent of H̄ , and using Eqs. (2.18),
it then follows from Eq. (2.19) that ∂ST/∂ H̄ � λ2. However,
recall that the temperature constraint that is active at the short
timescales is also active at these longer timescales and this
implies that λ2 � 1/(kT ) such that λ̄ � 0. It therefore fol-
lows that P( j)

eq is independent of H ( j) and the equilibrium
probability distribution of the morphological microstates is
given by

P( j)
eq � 1

Z
exp
[

−ζG( j)
]

, (2.20a)

with Z ≡∑ j exp
[−ζG( j)

]

. This defines the distribution of
morphological microstates at homeostatic equilibrium. It is
often useful to rewrite Eq. (2.20a) in terms of the equilibrium
probability Peq

(

Gp
)

of Gibbs free-energy level Gp, viz.

Peq
(

Gp
) � 1

Z
w
(

Gp
)

exp
[−ζGp

]

, (2.20b)

where w
(

Gp
)

is degeneracy of Gibbs free-energy level Gp,
i.e. the number of morphological microstates with Gibbs
free-energy Gp and Z is again the normalising constant
that ensures that the sum of Peq

(

Gp
)

over all Gibbs free-
energy levels equals unity. When the equilibrium probability
is expressed as a probability density function p(G), w(G) is
referred to as the density of states.

2.3 The homeostatic constraint

A key characteristic of living cells that differentiates them
from dead matter is that dynamic homeostatic processes
actively maintain the various molecular species within the
cell at a specific average number that is dependent on the
cell type but largely independent of the environment. These
processes are a combination of passive processes such as
osmosis and diffusion but importantly also active processes
such as ion pumps (e.g.Na+ andK+ pumps) that help tomain-
tain the cell at a resting potential with respect to the nutrient
bath (Keener and Sneyd 2009; Weiss 1996). The nutrient
bath supplies the various species to the cell, but the active
processes such as the ion pumps are driven mainly by the
hydrolysis of ATP: it is the availability of glucose from the
nutrient bath that enables the phosphorylation of the ADP
back to ATP within the mitochondria and ultimately pro-
vides the energy for the continuation of these biochemical
processes. Thus, the supply of nutrients and other species
from the nutrient bath is what permits the maintenance of the
homeostatic state of the cell. In the homeostatic state, there
is a net flux of species between the cell and the nutrient bath
with the homeostatic processes constraining the states that
the system can attain. We now proceed to show that this con-
straint is readily expressed in terms of theGibbs free-energies
of the morphological microstates.

First consider a free-standing cell (i.e. a cell in suspen-
sion). Unlike for cells in an ECM, which can assume a
multitude of equilibrium morphological microstates equili-
brated by tractions exerted by the ECM on the cell, a cell
in suspension admits a unique equilibrium morphological
microstate. This is because a cell in suspension implies spa-
tially uniform pressure boundary conditions (or traction-free
boundary conditions in case atmospheric pressure is defined
as zero pressure) over the entire cell membrane. This defines
a unique boundary value problem with a unique equilibrium
state and corresponding Gibbs free-energy. This is consis-
tent with most reported observations that fluctuations in cell
shapes are negligible for cells in suspension. It is, however,
worth emphasising here that the shape of suspended cells
need not be spherical but rather depends on the cell type (e.g.
neurons are expected to have elongated shapes while fibrob-
lasts and SMCs spherical when they are in suspension). We
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label the equilibriumGibbs free-energy of the cell in suspen-
sion as GS such that

GS �
∑

cell(α)

χS
α N

S
α , (2.21)

where χS
α are the chemical potentials of species (α)2 in the

cell in the free-standing state and NS
α the corresponding num-

ber of each of those species again in the free-standing state
of the cell. The elastic ECM isolated from the cell has a free-
energy GS

ECM. When the cell is brought into contact with the
ECM, material points on the cell membrane adhere to the
ECM with the resulting morphological microstate specified
by themapping ofmaterial points on the cellmembrane to the
ECM (Fig. 1c). In morphological microstate ( j), the Gibbs
free-energy of the system is given by Eq. (2.11) as

G( j) �
∑

system(δ)

χ
( j)
δ N ( j)

δ � GS + GS
ECM + �G( j), (2.22)

where �G( j) is the change in free-energy resulting from the
interaction of the cell and the ECM. This interaction energy
is a result of, among other things, changes in the surface
energy of the cell (i.e. adhesion) and tractions exerted by
the cell on the ECM. In a constant temperature and pressure
environment, the Gibbs–Duhem relation dictates that

�G( j) �
∑

cell(α)

χS
α�N ( j)

α +
∑

ECM(β)

χS
β�N ( j)

β , (2.23)

where χS
β is the chemical potential of species (β) in the

ECM isolated from the cell, while �N ( j)
α and �N ( j)

β are
the changes in the number of molecules of species (α) and
(β) in the cell and ECM, respectively, from the free-standing
state to morphological microstate ( j). The average Gibbs
free-energy of the ensemble of morphological microstates
then follows as

Ḡ ≡
∑

j

P( j)
eq G( j) � GS + GS

ECM +
∑

j

P( j)
eq �G( j). (2.24)

We now restrict the ECM to be purely elasticwhich imme-
diately implies that �N ( j)

β � 0 as there is no change in the
numbers of each chemical species in a purely elasticmaterial.

2 Chemical potential of species here is defined in the manner analogous
to the Gibbs definition for a grand canonical ensemble, viz. a chemical
potential of species is an ensemble of chemically identical molecular
entities that can explore the same set of molecular energy levels on the
timescale of amorphologicalmicrostate. Thus, in themodel described in
Sect. 3 bound and unbound cytoskeletal proteins are different chemical
species even though they might be comprising the same elements.

Upon substituting Eq. (2.23) into Eq. (2.24) and using the
expression (2.21) for GS, we get

∑

j

P( j)
eq G( j) � GS

ECM +
∑

cell(α)

χS
α

∑

j

P( j)
eq

(

NS
α + �N ( j)

α

)

� GS
ECM +

∑

cell(α)

χS
α N̄α, (2.25)

where N̄α �∑
j
P( j)
eq N ( j)

α is the average number ofmolecules

of species (α) in the cell over the ensemble of morpholog-
ical microstates and N ( j)

α � NS
α + �N ( j)

α are the number
of molecules of species (α) in the cell in morphological
microstate ( j). Cellular homeostasis dictates that N̄α are
independent of the environment. Then, recalling that the
ensemble of morphological microstates corresponding to a
cell in suspension comprises a single microstate, we have
N̄α � NS

α . It then follows that
∑

α

χS
α N̄α � ∑

α

χS
α N

S
α � GS

so that

∑

j

P( j)
eq G( j) � GS

ECM + GS, (2.26)

i.e. the Gibbs free-energy of the system averaged over the
homeostatic ensemble is equal to the sum of the Gibbs free-
energy of the cell in suspension and that of the isolated ECM.
Given a model for the Gibbs free-energy of the cell in a
particular morphological microstate such as that described in
Sect. 3, GS can be readily calculated, while the calculation
of the free-energy GS

ECM of the isolated elastic ECM is a
standard problem in elasticity (without loss of generality, we
can set GS

ECM � 0 for an ECM isolated from the cell and
subject to no external loading).

Thus, ζ can be determined via the ensemble average

∑

j

P( j)
eq G( j) ≡ 1

Z

∑

j

G( j) exp
(

−ζG( j)
)

� GS, (2.27)

for the case of the system subject to no external loading other
than the constant pressure exerted by the nutrient bath. It is
worth emphasising here that at the shorter timescales the
distribution constant that imposes the constraint of the aver-
age enthalpy is thermodynamic temperature T and hence
known a priori. At these longer timescales, the situation
is reversed with the average Gibbs free-energy known (i.e.
� GS

ECM +GS), while the distribution constant ζ needs to be
computed.

2.4 Homeostatic ensemble and temperature

On a fundamental level, the second law of thermodynamics
requires the molecular entropy of an isolated setup compris-
ing the system plus the nutrient bath to remain constant or
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increase. In the coarse-grained model developed here, all
the homeostatic processes and their associated variables are
not explicitly followed. Hence, there is a loss of information
resulting in the production of morphological entropy. Here,
we have used the outcome of the homeostatic processes (i.e.
the maintenance of the number of members of all species
within the cell to be constant) to directly provide a constraint
for maximising this entropy. Of course if we were to fol-
low all the homeostatic process variables, there would be no
morphological entropy production and the evolution of the
system would follow an increasing molecular entropy trajec-
tory subject to the usual temperature and pressure constraints
only. However, given the large number of homeostatic pro-
cess variables and the fact that a detailed knowledge of all
homeostatic processes is missing, this is not currently fea-
sible. Moreover, Brownian motion of ions and other species
associated with the homeostatic processes coupled to com-
plex feedback loops in the metabolic reactions adds a level of
unpredictability to the homeostatic variables. Thus, it ismuch
more desirable to take a coarse-grained approach by defin-
ing a morphological entropy to represent the uncertainty in
homeostatic process variables. This allows us to characterise
the probable states that the system assumes much like that
reported in experiments in terms of the statistics of observ-
ables.

The application of the constraint
∑

j P
( j)G( j) � Ḡ

is what ultimately results in the homeostatic statistical
mechanics framework with the morphological entropy I�
parameterising the information lost by not modelling all
the variables associated with the homeostatic processes
(especially those associated with processes such as mesh-
work actin polymerisation that effect the transformation of
morphological microstates). It is therefore useful to make
explicit the critical assumption in this homeostatic statis-
tical mechanics framework. The usual a priori assumption
of statistical mechanics relies on the fact that Hamiltonian
mechanics provides the mechanisms for the system to access
all molecular microstates. Here, we additionally assume that
the myriad homeostatic processes (such as meshwork actin
polymerisation and dendritic nucleation that enable the cell
to transform its shape) provide mechanisms for the sys-
tem to access all morphological microstates. We therefore
employ an extended version of the a priori assumption,
which states that the systemequilibrates in themorphological
macrostate with the overwhelming majority of morphologi-
cal microstates.

The collection of all possible morphological microstates
that the system assumes while maintaining its homeostatic
equilibrium state, i.e. the equilibrium distribution P( j)

eq speci-
fiedbyEq. (2.20a), is referred to as thehomeostatic ensemble.
The homeostatic ensemble can therefore be viewed as a large
collection of copies of the system, each in one of the equi-

librium morphological microstates. The copies ( j) are then
distributed in the ensemble such that the free-energies G( j)

follow an exponential distribution P( j)
eq with the distribution

parameter ζ . We emphasise here that while it may initially
seem appealing to draw a direct analogy with the canon-
ical ensemble with energy replaced by Gibbs free-energy,
this analogy is flawed. This is because we cannot define the
equivalent of the microcanonical ensemble (i.e. the micro-
homeostatic ensemble) where the total Gibbs free-energy of
an isolated setup comprising our system (cell plus ECM)
and the nutrient bath is conserved, while the cell is in its
homeostatic state. Hence, it is preferable to just view the
homeostatic ensemble as the entire collection of equilibrium
morphological microstates that the system attains over the
homeostatic state of the cell. A consequence of the inabil-
ity to define a microhomeostatic ensemble is that unlike the
canonical ensemble where T is a property of the thermal
bath, ζ of the homeostatic ensemble is not a property of the
nutrient bath. Rather, ζ is set by the homeostatic state that
the system attains, i.e. a property of the cell plus ECM.

The equilibrium morphological entropy S� �
−∑ j P

( j)
eq ln P( j)

eq (i.e. maximum value I�) is related
to ζ via the conjugate relation ∂S�/∂GS � ζ (see “Ap-
pendix A”). Thus, analogous to 1/T that quantifies the
increase in the uncertainty of the molecular microstates (i.e.
equilibrium molecular entropy S( j)

M ) with average enthalpy,
ζ specifies the increase in the uncertainty of the morpho-
logical microstates (i.e. equilibrium morphological entropy
S�) with the average Gibbs free-energy. We therefore refer
to 1/ζ as the homeostatic temperature with the under-
standing that it quantifies the fluctuations on a timescale
much longer than that characterised by T and is conjugated
to the morphological entropy. Effective temperatures at
longer timescales have been used to describe the motion
of grains in a granular medium (Edwards and Oakeshott
1989; Song et al. 2008; Sun et al. 2015) but never before has
the homeostatic equilibrium of living cells been formalised
in this manner. In fact, there is growing experimental
evidence that non-thermal forces drive large fluctuations
in a range of filaments in cells. For example, microtubules
are observed (Brangwynne et al. 2007) to have an effective
temperature of 100 kT, while hair bundles (Nadrowski et al.
2004) also display an effective temperature that differs
from that based on thermal activity. Such measurements are
based on interpreting temperature as an energy fluctuation
with the effective temperature backed out, for example,
from persistence length measurements (Brangwynne et al.
2007). The entropy conjugated to the effective temperatures
calculated in this manner remains undefined, and thus, it
is unclear whether these effective temperatures define a
statistical equilibrium state. By contrast, we have proposed
a statistical mechanics theory for the (dynamic) equilibrium

123



S. S. Shishvan et al.

of cells in which the effective (homeostatic) temperature
emerges as the Lagrange multiplier that enforces the home-
ostatic constraint for the maximisation of morphological
entropy, i.e. the homeostatic temperature is conjugated to
the morphological entropy (see “Appendix A”). This is com-
pletely analogous to the manner in which thermodynamic
temperature enforces the energy conservation constraint in a
canonical ensemble and thus puts the homeostatic ensemble
on par with the traditional statistical ensembles. We note in
passing that given the concept of a homeostatic ensemble, it
follows that similar to the Helmholtz free-energy (potential)
of a canonical ensemble or the Gibbs free-energy of the
isobaric-isothermal ensemble, there exists a homeostatic
potential defined as

M ≡ −1

ζ
ln Z , (2.28)

that is a constant for the homeostatic ensemble.
Analogous to T that characterises the thermal state of

matter, the homeostatic temperature 1/ζ serves as a gauge
for the overall biochemical state of the cell. High values of
1/ζ correspond to more uniform distributions Peq and larger
diversity of observed morphological microstates (i.e. typi-
cally more variability in observations), while a lower 1/ζ
gives more peaked Peq distributions and typically a lower
variability in the observables. We shall subsequently show
that this temperature depends on the extracellular environ-
ment (the elastic ECM in this case) and unlike previously
measured/inferred effective temperatures (Nadrowski et al.
2004; Brangwynne et al. 2007) emerges naturally from our
calculations. For example, for a cell in suspension, 1/ζ � 0
(i.e. zero homeostatic temperature) as the cell assumes a
unique morphological microstate with traction-free surfaces,
i.e. no uncertainty in the morphological microstates.

The critical element of the homeostatic statisticalmechan-
ics framework is that while we do not require explicit
knowledge of the myriad homeostatic processes for defin-
ing the homeostatic ensemble, the smallest biological unit
required for maintenance of these intertwined homeostatic
processes is a cell. Removal of any subpart of the cell (e.g.
nucleus andmembrane)will result in some of these processes
being excludedwith the remaining system unable tomaintain
a homeostatic state. Thus, the notion of homeostatic equi-
librium defined here cannot be extended to any unit below
an entire cell. However, the homeostatic processes can be
disturbed so as to change the homeostatic state or even com-
pletely disrupted which will ultimately result in cell death.
Examples include addition of reagents to the nutrient bath
such as cytochalasin D (CytoD) which is a mycotoxin that
inhibits actin polymerisation or removal of insulin from the
serum in the nutrient bath so as to disrupt glucose transport
across the cell membrane via the insulin-mediated trans-

porterGLUT4.Addition ofCytoD is a common experimental
protocol used to study the role of stress-fibres. In the con-
text of the homeostatic equilibrium framework, CytoD will
influence the free-energy GS of the cell in suspension and
therebymodify the distribution of states that the cell assumes
under homeostatic conditions.By contrast, removal of insulin
is typically not conducted in experiments as it presumably
results in premature cell death by depriving cells of glucose.

3 The equilibrium Gibbs free-energy
of a morphological microstate

Similar to conventional statistical mechanics calculations
that require a model for the energy of the system (typically
specified via an interatomic potential), the homeostatic sta-
tistical mechanics framework requires a model for the equi-
librium Gibbs free-energy G( j) of morphological microstate
( j). Mathematical models of varying degrees of complexity
(Deshpande et al. 2006; Sanz-Herrera et al. 2009; Vigliotti
et al. 2016; Shenoy et al. 2016; McEvoy et al. 2017) have
been developed for cells subjected to specified boundary con-
ditions and can be used to determine G( j). The aim of the
numerical investigation in this study is to illustrate the pre-
dictive capabilities of the statistical mechanics framework.
Here, we choose to focus on the role of mechanotransduc-
tion in governing cellular response and functionality (Tan
et al. 2003; Discher et al. 2005; Engler et al. 2006; Dis-
cher et al. 2009; Wozniak and Chen 2009; Fu et al. 2010;
Vogel and Sheetz 2006) and in particular the sensitivity of
cell behaviour to its mechanical environment.

Engler et al. (2004) investigated the response of SMCs
on flat elastic substrates with analogous studies for other
cell types (Prager-Khoutorsky et al. 2011; Pelham andWang
1997; Wang et al. 2000; Deroanne et al. 2001) reporting
qualitatively similar results. All these studies confirmed the
crucial role of the actin/myosin cytoskeleton in governing the
observed mechanosensitive responses. Thus, here we choose
to calculate G( j) using the free-energy model of Vigliotti
et al. (2016) that includes contributions from cell elastic-
ity, the actin/myosin stress-fibre cytoskeleton and the ECM.
Since the main aim of the numerical study is to demonstrate
the applicability of the new statistical mechanics framework,
we restrict ourselves to a numerical approach that minimises
the computational cost. Thus, we model the substrates as
linear elastic half-spaces with the cells approximated as
two-dimensional (2D) bodies in the x1 − x2 plane with the
through-thickness stress Σ33 � 0 (Fig. 2a). The state of
the system changes as the cell moves, spreads and changes
shape on the substrate, and in this 2D setting, the connection
of material points of the cell to the surface of the substrate
specifies each morphological microstate ( j) of the system.
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Fig. 2 Analysed problem of a cell on a flat elastic substrate. a Sketch
of the two-dimensional (2D) morphological microstate boundary value
problem comprising a 2D cell on an elastic half-space (substrate) used
in the calculation ofG( j). The co-ordinate system employed is indicated
with the cell lying in the x1− x2 plane with the through-thickness stress
Σ33 � 0. The inset shows the cylindrical RVE along with the definition

of the orientation φ of stress-fibres. b The finite element (FE) mesh of
the 2D cell (blue) and the boundary element (BEM) spatial discretisa-
tion of the surface of the substrate used in the calculation ofG( j). While
the triangular FE mesh is relatively uniform, the BEMmesh is very fine
in the vicinity of the cell but coarsens further away where the spatial
gradients in the substrate are relatively mild

The boundary value problem of a morphological
microstate in the problem considered here is specified by the
connection ofmaterial points on the cellmembrane to an elas-
tic substrate with no external tractions being applied on the
system (without loss of generality, the constant atmospheric
pressure condition is set to zero, and hence, all pressures
referred to subsequently are gauge pressures). The Gibbs
free-energy of the system in morphological microstate ( j)
can then be written in terms of the specific internal energy e
and entropy s by integrating over the volume V of the system
as3

G( j) �
∫

V

e dV − T
∫

V

s dV −
∫

S
Ti ui dS, (3.1)

where Ti and ui are the tractions and displacements, respec-
tively, on the surface S of the system with equilibrium of the
morphological microstate occurring at the value G( j) such
that dG( j) � 0. The substrate is elastic, and therefore, e

3 Since the model in Sect. 3 is for a specific morphological microstate
( j), all variables should carry the superscript ( j). However, for sake of
brevity of notation, we omit this superscript for all variables except for
the free-energies and observables defined subsequently.

within the substrate is only a function of the substrate strain
Ei j :we denote the strain energy density of the substratemate-
rial as e ≡ �

(

Ei j
)

. Moreover, since elastic deformations are
isentropic, without loss of generality, we can set s � 0 in the
substrate. The volume integral in Eq. (3.1) can then be sim-
plified by recalling that the external pressure on the system
is zero, i.e. Ti � 0 so that Eq. (3.1) can be split over the cell
and the substrate such that

(3.2)

G( j) �
∫

Vcell

e dV − T
∫

Vcell

s dV +
∫

Vsub

e dV

�
∫

Vcell

f dV +
∫

Vsub

e dV ,

where V � Vcell + Vsub with Vcell and Vsub denoting the vol-
ume of the cell and substrate, respectively, and f ≡ e − T s
denoting the specific Helmholtz free-energy of the cell. The
model of Vigliotti et al. (2016) assumes only two elements
within the cell: (i) a passive elastic contribution from ele-
ments such as the cell membrane, intermediate filaments and
microtubules and (ii) contractile acto-myosin stress-fibres
that are modelled explicitly. We proceed to describe the
model and thereby detail the calculation of f in the 2D set-
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Fig. 3 Sketches showing the structure of stress-fibres and the remod-
elling of a stress-fibre subjected to a nominal tensile strain εnom. a
A single stress-fibre comprising an arrangement of functional units in
series. The detailed structure of a single functional unit of the stress-
fibre is included. b The change in the structure of the functional unit
subjected to a stretch and contraction. cThe remodelling of the stretched

stress-fibre by the contraction of two functional units and the breaking of
the bond between these two units. d The remodelled stress-fibre where
an additional functional unit is inserted into the fibre such that the fibre
is now in its low-energy state with each functional unit strained to ε̃ssnom.
Adapted from Vigliotti et al. (2016)

ting. Readers are referred to Vigliotti et al. (2016) for further
details.

3.1 Constitutive model for a cell accounting
for the stress-fibre cytoskeleton

Contractile stress-fibres comprising proteins such as α-
actinin, actin, myosin and tropomyosin and showing an
alternating periodic arrangement similar to that seen in
muscle sarcomeres have been observed in a range of cells
including endothelial cells (De Bruyn and Cho 1974), retinal
cells (Gordon et al. 1982) and fibroblasts (Byers and Fuji-
wara 1982). Vigliotti et al. (2016) used these observations
to describe the structure of stress-fibres. Consider a single
stress-fibre of cross-sectional area A0 as sketched in Fig. 3a.
The fibre comprises actin filaments,myosin bipolar filaments
and other proteins such asα-actinin. These proteins assemble
in a serial repeating manner similar to a stack of poker chips
with the smallest functional unit of a stress-fibre shown in
Fig. 3a. This functional unit has a length �0 in its ground state
(defined subsequently) and changes structure as illustrated in

Fig. 3b when subjected to a stretch/contraction. Immunoflu-
orescence experiments by Langanger et al. (1986) suggest
that �0 ≈ 0.4 μm in chicken fibroblasts.

In order to develop a continuum description for the stress-
fibre distributions, Vigliotti et al. (2016) defined volume-
averaged quantities over a representative volume element
(RVE). The RVE in the undeformed state (i.e. when pas-
sive elastic strains are zero) is assumed to be a cylinder
of radius nR�0/2 and thickness b0 as illustrated in Fig. 2a
with stress-fibres emanating from the centre of this cylinder.
In this 2D setting, we assume that the RVE comprises ns
identical stress-fibre layers through the thickness with each
layer comprising fibres at orientation φ (−π/2 ≤ φ ≤ π/2)
such that each stress-fibre within the undeformed RVE com-
prises nR functional units of length �0 (i.e. the ground
state is defined as the state where there are nR functional
units in the undeformed RVE). The RVE by definition is
required to be large compared to the functional unit length
�0 so as to smooth over statistical fluctuations. Moreover,
the properties at each material point xi within the cell are
representative of those of the RVE, and thus, this contin-
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uum model implicitly assumes that the property variations
over the cell are occurring over wavelengths larger than
nR�0.

Now, consider a material point located at xi with the RVE
describing the details of the stress-fibre structure at this point.
Recall that stress-fibres crisscross the RVE such that they all
pass through the centre of the RVE. The unit outward normal
to an infinitesimal area dA on the surface of the undeformed
RVE is given by mi ≡ [cosφ sinφ], where the orientation φ

is defined in the inset in Fig. 2a. We then define an angular
stress-fibre concentration η(φ) such that dΠ ≡ ηdφ is the
number of stress-fibres passing through dA. The total number
of stress-fibres at location xi follows as

Π �
π/2
∫

−π/2

ηdφ. (3.3)

Next, it is convenient to define the material strains and the
strains that the stress-fibre functional units are subjected to
relative to their ground state. Assume that a nominal tensile
strain εnom(φ) is imposed instantaneously on the undeformed
RVE in direction φ (i.e. a step change in the strain). This
imposed strain causes the functional units to extend so that the
functional units of the stress-fibre are now no longer in their
ground state. Experimental observations (Langanger et al.
1986) suggest that at steady state the length of the functional
units is independent of the state of the cytoskeleton, i.e. stress-
fibres remodel (see Fig. 3c) such that each of the functional
units achieves its optimal length �ss. In the case of an imposed
stretch (tensile), the remodelling will normally involve the
addition of functional units in an attempt to decrease the
length of each functional unit to optimal length �ss as illus-
trated schematically in Fig. 3d. The opposite effect occurs
if εnom(φ) is a compressive strain with the stress-fibre now
undergoing remodelling, involving the dissociation of func-
tional units, such that the functional units can elongate back
to near their optimal length. Thus, when all the functional
units within each stress-fibre in the bundle with orientation
φ have a length �0, there are n0 ≡ nR[1 + εnom(φ)] func-
tional units within the RVE in direction φ. Based on this
discussion, we define two strain quantities at orientation φ:
(i) the material nominal strain εnom(φ) which directly gives
the overall change of length of a stress-fibre in direction φ

and (ii) the nominal strain ε̃nom(φ) of the stress-fibre func-
tional unit relative to its ground state. The strains ε̃nom and
εnom are related via the number of functional units n within
a stress-fibre in the RVE as

ε̃nom � nR[1 + εnom]

n
− 1, (3.4)

so that ε̃nom � 0 corresponds to a functional unit in its ground
state of length �0. Hence, at steady state the stress-fibre com-
prises

nss � nR[1 + εnom]

1 + ε̃ssnom
(3.5)

functional units where ε̃ssnom ≡ (�ss/�0 − 1) is the value of
ε̃nom at steady state.

To complete the description of the continuum quantities
used to define the stress-fibre structure, we note that the total
number of functional units within stress-fibres in the RVE at
location xi is given by

Nb �
π/2
∫

−π/2

ηnss dφ, (3.6)

where ηnss are the number of bound functional units in the
φ direction. Further, at xi are also present unbound actin,
myosin and other proteins that can combine to form Nu func-
tional units. Therefore, the number of stress-fibre functional
units that can exist within the RVE at xi if all the available
proteins combined to form functional units is NT � Nb +Nu.
It is then convenient to define

N0 � 1

V0

∫

Vcell

NT dV , (3.7)

where V0 is the volume of the undeformed cell such that
N0V0/VR are the total number of functional units that can
form within the cell with VR ≡ πb0

(

nR�0/2
)2

the volume
of the undeformed RVE. Over the timescales being mod-
elled here, we assume that there is negligible production or
destruction of the stress-fibre proteins, and thus, N0 is a con-
served quantity. It is therefore useful to define the normalised
quantities N̂u ≡ Nu/N0, N̂T ≡ NT/N0 and N̂b ≡ Nb/N0

with

N̂b �
π/2
∫

−π/2

η̂n̂ssdφ, (3.8)

where η̂ ≡ ηnR/N0 and n̂ss ≡ nss/nR. At any given loca-
tion xi within the cell, kinetic processes allow stress-fibres to
form and dissociate such that the local conservation of pro-

teins (i.e. no spatial transport of proteins) implies ˙̂NT � 0.
However, while the bound proteins N̂b are immobile, the
unbound proteins N̂u can be transported via diffusion over
the volume of the cell. Readers are referred to Vigliotti et al.
(2016) for the details of these kinetics: in the context of the
analysis required here,we are only interested in thefinal equi-
librium state, and hence, we shall not discuss these kinetics
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but rather proceed to detail the relevant chemical potentials
and the stress states as required to calculate the equilibrium
Gibbs free-energy of the morphological microstate.

At equilibrium in a given morphological microstate, the
cell is not changing shape with all the stress-fibres being at
steady statewith the strain rate of each functional unit ˙̃εnom �
0. Thus, each stress-fibre is under isometric conditions and
generates a tensile stress σmax via acto-myosin cross-bridge
cycling. The chemical potential of the bound stress-fibre pro-
teins (in the dilute limit) was derived byVigliotti et al. (2016)
by assuming a specific path for the clustering of the unbound
packets driven by ATP hydrolysis. Here, we have extended
this idea to a non-dilute concentration of stress-fibres; see
“Appendix B” for the derivation.With N̄L denoting the angu-
lar concentration of available lattice sites for the unbound
stress-fibre proteins and N̂L ≡ N̄L/N0 the corresponding
normalised value, the chemical potential of a single bound
functional unit is given by

χb � μb

nR
+ kT ln

⎡

⎢

⎣

⎛

⎝

πη̂n̂ss

N̂u

(

1 − η̂

η̂max

)

⎞

⎠

1
nss (

N̂u

π N̂L

)

⎤

⎥

⎦
, (3.9)

where η̂max is the maximum normalised angular stress-fibre
concentration corresponding to full occupancy of all avail-
able sites and μb the enthalpy of nR bound stress-fibre
proteins. This enthalpy is written in terms of the internal
energy μb0 of nR functional units as

μb � μb0 − σmax�
(

1 + ε̃ssnom
)

, (3.10)

where � ≡ A0nR�0 is the volume of nR functional units in
their ground state. On the other hand, the chemical potential
of the unbound proteins that form a single functional unit is
given as

χu � μu

nR
+ kT ln

(

N̂u

π N̂L

)

, (3.11)

where μu is the internal energy of unbound proteins that can
form nR functional units.

For a fixed configuration of the cell (i.e. a fixed strain
distribution εnom(xi , φ)), the contribution to the specific
Helmholtz free-energy of the cell from the stress-fibre
cytoskeleton then follows as

fcyto � ρ0

⎛

⎜

⎝N̂uχu +

π/2
∫

−π/2

η̂n̂ssχbdφ

⎞

⎟

⎠, (3.12)

where ρ0 ≡ N0/VR is the number of protein packets per unit
volume available to form functional units in the cell. How-
ever, we cannot yet evaluate fcyto as N̂u(xi ) and η̂(xi , φ) are

unknown. Moreover, the strain distribution εnom(xi , φ) also
needs to be independently evaluated. These will be specified
by the equilibrium conditions described in Sect. 3.1.1.

The total stress Σi j within the cell includes contribution
from the passive elasticity provided mainly by the intermedi-
ate filaments of the cytoskeleton attached to the nuclear and
plasmamembranes and themicrotubules as well as the active
contractile stresses of the stress-fibres. The total Cauchy
stress is written in an additive decomposition as

Σi j � σi j + σ
p
i j , (3.13)

where σi j and σ
p
i j are the active and passive Cauchy stresses,

respectively. In the 2D setting with the cell lying in the x1 −
x2 plane (Fig. 2a), the active stress is given in terms of the
volume fractionF0 ≡ ns(A0�0)ρ0 of the stress-fibre proteins
as

[

σ11 σ12
σ12 σ22

]

�

F0σmax

2

π/2
∫

−π/2

η̂[1 + εnom(φ)]

[

2cos2φ∗ sin2φ∗
sin2φ∗ 2sin2φ∗

]

dφ,

(3.14)

whereφ∗ is the angle of the stress-fibremeasuredwith respect
to xRVEi and is related to φ by the rotation with respect to the
undeformed configuration. We note here that in Eq. (3.14)
we have assumed that the cell is incompressible, but this
constraint can be readily relaxed as discussed in (Vigliotti
et al. 2016). The passive elasticity in the 2D setting is given
by a 2D specialisation of the Ogden-type hyperelastic strain
energy density function (see “AppendixC” for the derivation)

Φelas ≡ 2μ

m2

[

(

λI

λI I

)m
2

+

(

λI I

λI

)m
2 − 2

]

+
κ

2
(λIλI I − 1)2

− κ̄H (Jc − λIλI I ) ln (λIλI I + 1 − Jc) ,

(3.15)

with λI and λI I the principal stretches, μ and κ the shear
modulus and in-plane bulk modulus, respectively, and m a
material constant governing the nonlinearity of the devia-
toric elastic response. The third term in Eq. (3.15) is added
to Φelas to include an elastic penalty (modulated by κ̄) when
the areal stretch λIλI I drops below Jc with H(·) denoting
the Heaviside step function. These elastic penalty parameters
associated with a large reduction in the cell area are taken
to be κ̄ � 1GPa and Jc � 0.6 (numerical investigations
showed that this choice restricted the sampling of unrealis-
tic configurations). Moreover, since the cell is assumed to
be incompressible, we set the principal stretch in the x3-
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direction λI I I � 1/(λIλI I ). The (passive) Cauchy stress
then follows as

σ
p
i j p

(k)
j � σ

p
k p

(k)
i , (3.16)

given in terms of the principal (passive) Cauchy stresses
σ
p
k ≡ λk∂Φelas/∂λk and the unit vectors p(k)

j (k � I , I I )
in the principal directions. The total specific Helmholtz free-
energy of the cell is then f � fcyto + Φelas.

3.1.1 Determination of the equilibriummorphological
microstate

Denote the internal energy of the cell as e
(

Ei j , s, Nu, ηn
)

while that of the elastic substrate as e � �(Ei j ) where
for convenience we have written these energies in terms of
the Green–Lagrange strain Ei j . The equilibrium condition
dG( j) � 0 then follows from Eq. (3.2) as

dG( j) �
∫

Vcell

[

∂e

∂Ei j
δEi j +

∂e

∂s
δs +

∂e

∂Nu
δNu +

∂e

∂(ηn)
δ(ηn)

]

dV

− T
∫

Vcell

δsdV +
∫

Vsub

∂e

∂Ei j
δEi jdV � 0. (3.17)

Upon using the definitions for the second Piola–Kirchhoff
stress Si j , thermodynamic temperature and chemical poten-
tials, i.e.

Si j ≡ ∂e

∂Ei j
, T ≡ ∂e

∂s
, χu ≡ ∂e

∂Nu
andχb ≡ ∂e

∂(ηn)
,

the condition dG( j) � 0 reduces to

∫

V

Si jδEi jdV +
∫

Vcell

χuδNudV +
∫

Vcell

π/2
∫

−π/2

χbδ(ηn)dφdV � 0.

(3.18)

Since the variations δEi j are arbitrary, Eq. (3.18) splits into
two independent equations
∫

V

Si jδEi jdV � 0, (3.19a)

and

∫

Vcell

χuδNudV +
∫

Vcell

π/2
∫

−π/2

χbδ(ηn)dφdV � 0. (3.19b)

Upon using the divergence theorem along with the defini-
tions of the second Piola–Kirchhoff stress and the Green–La-
grange strain, Eq. (3.19a) gives the strong form of the

mechanical equilibrium statement in terms of the Cauchy
stress, i.e. Σi j, j � 0 with traction-free boundary conditions
on the surface of V . In order to reduce Eq. (3.19b) to the
strong form, we note that the conservation of stress-fibre pro-
teins over the cell volume implies

∫

Vcell

δNudV +
∫

Vcell

π/2
∫

−π/2

δ(ηn)dφdV � 0, (3.20)

which upon combining with Eq. (3.19b) requires that at
equilibrium χu(xi ) � χb(xi , φ) � constant, i.e. the chem-
ical potentials of bound and unbound stress-fibre proteins
are equal throughout the cell. These two equilibrium con-
ditions are sufficient to solve for N̂u(xi ), η̂(xi , φ) and
εnom(xi , φ) and thereby calculateG( j). Numerically, this typ-
ically involves two steps as explained subsequently.

First, we assume a compatible strain distribution Ei j

within the system that satisfies the boundary conditions of
the morphological microstate (i.e. that gives the appropriate
displacements to obtain the mapping of points on the cell
membrane to the substrate surface for the given morpho-
logical microstate). This implies that we know εnom(xi , φ)

within the cell and we then first solve for chemical equilib-
riumwithin the cell. Since, at equilibrium,χu is constant over
the cell volume, it follows from Eq. (3.11) that N̂u is constant
over the entire cell volume. Using Eqs. (3.9) and (3.11), the
condition χu � χb implies that η̂(xi , φ) is given in terms of
N̂u by

η̂(xi , φ) �
N̂uη̂maxexp

[

n̂ss(μu−μb)
kT

]

π n̂ssη̂max + N̂uexp
[

n̂ss(μu−μb)
kT

] , (3.21)

and N̂u follows from Eqs. (3.7) and (3.8) as

N̂u +
1

V0

∫

Vcell

π/2
∫

−π/2

η̂n̂ssdφdV � 1, (3.22)

where we have used the fact that the total number of func-
tional units that can form in the cell is fixed at N0V0/VR
(conservation of proteins). Knowing N̂u and η̂(xi , φ), the
stress Σi j can now be evaluated via Eqs. (3.14) and (3.16).
These stresses within the system (i.e. cell and substrate) need
to satisfy mechanical equilibrium, i.e. Σi j, j � 0, and as sec-
ond step, we evaluate a residual out-of-equilibrium force and
update the strain distribution Ei j in an attempt to reduce this
residual and repeat the first step. This iterative procedure
is continued until mechanical equilibrium is attained to the
required numerical tolerance.
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Given N̂u and Ei j satisfying chemical and mechanical equi-
librium, the equilibrium value of G( j) denoted by G( j)

follows as G( j) � F ( j)
cell + F ( j)

sub where

F ( j)
cell ≡ ρ0V0χu +

∫

Vcell

ΦelasdV , (3.23a)

and

F ( j)
sub ≡

∫

Vsub

�dV . (3.23b)

Here, χu is given by Eq. (3.11) with the equilibrium value
of N̂u from Eq. (3.22), while Φelas and � are directly given
from the equilibrium distribution of Ei j . For the purposes
of further discussion, we shall label the equilibrium values
F ( j)
cyto ≡ ρ0V0χu and F ( j)

passive ≡ ∫
Vcell

ΦelasdV to denote the

cytoskeletal and passive free-energies of the cell in morpho-
logical microstate ( j).

It is worth clarifying the relation between G( j) as given
here and that in Eq. (2.11) where it is written as the sum
over the all species in the cell. While the formal definition in
Eq. (2.11) is of course complete, in proposing a phenomeno-
logical model for G( j), it is more convenient to separate out
chemical terms (defined as contributions wherein entropies
differ between morphological microstates) and elastic terms
involving no entropy changes. Different species are explic-
itly accounted for in the chemical terms, but the elastic
contributions are calculateddirectly fromstrainwithout spec-
ifying the elastic species. Moreover, while only two species
(bound and unbound stress-fibre proteins) have been explic-
itly accounted for to calculate F ( j)

cyto, the model implicitly
includes the effect of a number of proteins. In particular: (i)
what is labelled as stress-fibre proteins represents an aggre-
gate ofmany proteins such as actin,myosin andα-actinin that
contribute to form stress-fibres and (ii) the term involving
σmax in Eq. (3.10) captures the contributions to the enthalpy
of the ATP/ADP molecules associated with the stress-fibres.
These ATP/ADP molecules are the source of the energy
for cross-bridge cycling between the actin and myosin fil-
aments and generate the isometric tension σmax. Thus, this
phenomenological model captures contributions from mul-
tiple species within the cell without explicitly calculating a
sum as stated in Eq. (2.11).

3.2 Material parameters for SMCs

All simulations are reported for SMCs at a reference thermo-
dynamic temperature T � T0, where T0 � 310K. Most of
the parameters of the model are related to the properties of
the proteins that constitute stress-fibres. These parameters are

thus expected to be independent of cell type. Notable excep-
tions to this are: (i) the stress-fibre protein volume fractionF0

that, for example, is expected to be higher in SMCs compared
to fibroblasts and (ii) the passive elastic properties. Here, we
use parameters calibrated for SMCs (McGarry et al. 2009;
Ronan et al. 2012). The passive elastic parameters of the cell
are taken to be μ � 1.67 kPa, κ � 35 kPa and m � 6. For
SMCs, the maximum contractile stress σmax � 240 kPa con-
sistent with a wide range of‘ measurements on muscle fibres
(Lucas et al. 1995) and the density of stress-fibre proteins
was taken as ρ0 � 3 × 106 μm−3 with the volume fraction
of stress-fibre proteinsF0 � 0.032. Following Vigliotti et al.
(2016), we assume that the steady state functional unit strain
ε̃ssnom � 0.35withμb0−μu � 2.3kT0,� � 10−7.1 μm3. The
Vigliotti et al. (2016) model assumed a dilute concentration
of bound stress-fibre proteins and hence did not include the
parameter η̂max. Here, we have taken it to be η̂max � 1 based
on the assumption that the local density of bound stress-fibre
proteins cannot exceed ρ0. All results are presented for a cell
that is assumed to be circular with a radius R0 and thickness
b0 in its undeformed state with b0/R0 � 0.2.

3.3 Competition between the elastic
and cytoskeletal free-energies of the cell

Prior to presenting numerical simulations using the home-
ostatic statistical mechanics framework, it is illustrative to
understand the critical features of the Vigliotti et al. (2016)
constitutive model. In particular, inherent in this model is a
competition between the (passive) elastic free-energy F ( j)

passive

and the cytoskeletal free-energy F ( j)
cyto of the cell that governs

the mechanosensitive response on elastic substrates detailed
in Sect. 4. To illustrate this competition, we consider here a
highly simplified problem of a circular cell on a rigid sub-
strate and constrain ourselves to morphological microstates
wherein the strain distribution within the cell is spatially uni-
form (and axisymmetric so as to constrain the cell to remain
circular).We emphasise here that this is an unrealistic restric-
tion of the phase space of the morphological microstates, and
in Sect. 4, we present results without such constraints. How-
ever, for the purposes of illustrating the basic physics we
present this restrictive analysis here in which a morpholog-
ical microstate is described by one scalar variable, e.g. the
area A of the circular cell.

It is instructive to introduce non-dimensional measures
of various quantities of interest. In particular, note that
the free-energy G( j) of a morphological microstate can
be decomposed as G( j) � ϒ( j) +ϒ0, where ϒ0 �
ρ0V0

[

μu/nR − kT ln
(

π N̂L

)]

is independent of themorpho-

logical microstate. It is thus natural to subtract out ϒ0 and
define a normalised Gibbs free -energy as
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Ĝ( j) ≡ ϒ( j)

|GS − ϒ0| � G( j) − ϒ0

|GS − ϒ0| , (3.24)

where GS is the equilibrium Gibbs free-energy of a free-
standing cell (i.e. a cell in suspension with traction-free
surfaces). Analogously, we define the normalised passive
and cytoskeletal free-energies of the cell in morphological
microstate ( j) as

F̂ ( j)
passive ≡ F ( j)

passive

|GS − ϒ0| , (3.25)

and

F̂ ( j)
cyto ≡ F ( j)

cyto − ϒ0

|GS − ϒ0| , (3.26)

respectively. It then immediately follows that the distribu-
tions of states are not influenced by the values of nR, N̂L and
V0 and these parameters do not need to be specified so long
as energies are quoted in terms of the normalised energies
Ĝ( j). For the SMCs with volume V0 � πR2

0b0 modelled
here, the equilibrium free-standing microstate is a spatially
uniformcircular cell 4 with (GS−ϒ0)/(V0kT0) ≈ −5.6×106

μm−3. It is worth emphasising here that for the case of a cell
on a rigid substrate, there is no contribution to the Gibbs free-
energy of the system from the substrate and so Ĝ( j) � F̂ ( j)

cell.
The normalised free-energy of the system Ĝ is plotted

in Fig. 4a as a function of the area A normalised by the
undeformed area πR2

0, i.e. normalised cell area Â is defined
as

Â( j) ≡ A( j)

πR2
0

, (3.27)

where A( j) is the area ofmorphologicalmicrostate ( j). There
is a clearminimumof Ĝ at Â ≈ 1.44. To understand thismin-
imum, the variations of the free-energies F̂passive and F̂cyto
with Â are included in Fig. 4a. The elastic energy increases

with increasing
∣

∣

∣ Â − 1
∣

∣

∣ as strain energy builds up in the cell

as it is strained away from its undeformed configuration. By
contrast, F̂cyto decreases monotonically with increasing Â
and this competition with increasing Â between F̂passive and
F̂cyto gives rise to the minimum in Ĝ. Since morphologi-
cal microstates with lower free-energy are more likely to
be observed (Eq. (2.20a)), we can say that the stress-fibre
cytoskeleton drives cell spreading. This is consistent with a

4 The free-standing cell is a standard boundary value problem with
traction-free boundary conditions. An iterative FE scheme as described
in Sect. 3.1.1 is used to solve this boundary value problem and calculate
GS. This solution predicts that the free-standing state is circular cellwith
radius ∼ 0.92R0.

large number of observations (Cramer and Mitchison 1995;
Sanders et al. 1999) that indicate that inhibiting stress-fibres
via reagents such as CytoD and blebbistatin reduces cell
spreading. In fact, this model predicts that decreasing the
cytoskeletal contribution (e.g. by decreasing ρ0 and σmax)
will bring the value of area at which the Gibbs free-energy
is minimised closer to the undeformed state Â � 1: these
calculations are omitted here for the sake of brevity.

At face value, stress-fibres driving cell spreading is a rather
counter-intuitive as stress-fibres exert contractile forces, and
hence, one would expect them to contract the cell rather
than promote spreading. To understand this apparent con-
tradiction, recall that the number of functional units in the
bound state increases with increasing strain as quantified in
Eq. (3.5). This decreases the number of unbound stress-fibre
proteins N̂u that in turn decreases χu and therefore reduces
F̂cyto. Another way to view this is to recall that the enthalpy
of functional units in the bound state is lower than their cor-
responding enthalpy in the unbound state due to the tensile
stress σmax within the stress-fibres; see Eq. (3.10). Chem-
ical equilibrium dictates that all stress-fibres proteins are
at equal chemical potentials. This immediately implies that
the cytoskeletal free-energy decreases with increasing strain
as the bound protein numbers rise with increasing strain.
Thus, it is the formation of stress-fibres with tensile stresses
that tends to reduce the Gibbs free-energy of the cell and
drives cell spreading. Adding reagents such as CytoD that
inhibit the formation of stress-fibres will have the effect of
diminishing the reduction in F̂cyto with increasing strain and
therefore tend to reduce cell spreading. We emphasise that
cell spreading requires kinetic processes such as polymeri-
sation of meshwork actin along the cell periphery and in
lamellipodia. These processes are not accounted for here, but
rather we argue that the overall driving force for spreading
is the reduction in the Gibbs free-energy of the system and
the availability of kinetic pathways is the means of achieving
this reduction in the Gibbs free-energy.

A second consequence of spreading is the increase in trac-
tions exerted by the cell on the substrate. To illustrate this,
we again first construct normalised tractions as follows. The
normalised resultant traction at location xi in the cell is given
by

T̂
( j)

(xi ) ≡
√

T2
1 + T2

2

μ
, (3.28)

with Ti (xi ) the traction distributions in morphological
microstate ( j) (the superscript ( j) has been omitted for
brevity of notation). From these traction distributions, we
then define a normalised average traction as

T̂
( j)
T ≡ 1

A( j)

∫

A( j)

T̂
( j)

dA. (3.29)
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Fig. 4 Predictions of the
constitutive model for SMCs on
rigid substrates. a The
normalised Gibbs free-energy
Ĝ, passive energy F̂passive and
cytoskeletal free-energy F̂cyto as
a function of the normalised
area Â of the cell. b The
normalised average traction T̂T,

passive traction T̂
passive
T and

traction T̂
cyto
T resulting from the

stress-fibres as a function of the
normalised area Â of the cell.
The morphological microstates
are constrained to only comprise
uniformly strained circular cells
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Predictions of the normalised average tractions5 T̂T as
a function of the normalised cell area Â are included in
Fig. 4b. We observe that tractions T̂T scale approximately

as T̂T ∝
∣

∣

∣ Â − 1
∣

∣

∣. To clarify the source of this scaling, we

define T̂
passive
T and T̂

cyto
T in a manner analogous to T̂T except

that now the tractions are calculated from the stresses σ
p
i j

and σi j , respectively, rather than from Σi j as for T̂T. For this
rather special subset of morphological microstates compris-
ing uniformly strained circular cells, the rise in T̂T is mainly

due to an increase in the traction T̂
passive
T . These larger trac-

tions for cells of a larger area have little consequence for cells
on rigid substrates. However, the larger tractions increase
the substrate elastic energy for soft substrates and thereby
constrain the diversity of morphological microstates that the
system attains as will be predicted in Sect. 4.

4 Homeostatic statistical mechanics
predictions for cells on elastic substrates

We now present predictions of the homeostatic statistical
mechanics framework for SMCs on flat elastic substrates
motivated by the experiments reported in Engler et al. (2004).
The substrates are assumed to be linear elastic half-spaces
(Fig. 2a) with a Young’s modulus Esub ranging over 5kPa ≤
Esub ≤ 70kPa and Poisson ratio νsub � 0.5 (i.e. the substrate
is assumed to be incompressible), while the cells are approx-
imated as two-dimensional (2D) bodies in the x1 − x2 plane
with the through-thickness stress Σ33 � 0 (Fig. 2a). We
employ Markov chain Monte Carlo (Brooks et al. 2011) to

5 For this highly restrictive case of circular cells with spatially uniform
strains, the entire surface of the cell is traction free except for a line force
along the periphery of the cell. The tractions T̂T are therefore simply
defined from this line force.

construct aMarkov chain that is representative of the homeo-
static ensemble. This involves three steps: (i) a discretisation
scheme to represent a morphological microstate ( j), (ii) cal-
culation ofG( j) for a givenmorphologicalmicrostate ( j) and
(iii) constructing the Markov chain comprising these mor-
phological microstates. We shall now proceed to describe
each of these steps.

4.1 Characterisation of amorphological microstate

In the general setting of a three-dimensional (3D) cell, a mor-
phologicalmicrostate is definedby the connection ofmaterial
points on the cell membrane to the surface of the substrate
(Fig. 1c). In the 2D context, this reduces to specifying the
connection of all material points of the cell to the substrate
(Fig. 2a), i.e. a displacement field u( j)(X) is imposed on the
cell with X denoting the location of material points on the
cell in the undeformed configuration and these are then dis-
placed to x( j) � X + u( j) in morphological microstate ( j).
These material points located at x( j) are then connected to
material points on the substrate at the same location x( j), and
this defines the morphological microstate in this 2D setting.
This morphological configuration can then be relaxed to its
equilibrium state as described in Sect. 3.1.1 to provide G( j).
We emphasise that in general the location of material points
in the equilibrium state differs from x( j) with the physical
significance of x( j) restricted to the specification of morpho-
logical microstate ( j).

The cell is modelled as a continuum, and thus, u( j) is a
continuous field. To calculate the density of the morpholog-
ical microstates, we define u( j) via Non-Uniform Rational
Basis Splines (NURBS) (Piegl and Tiller 1997) such that the
morphological microstate is now defined by M weightsU ( j)

L
(L � 1, . . . , M). TheNURBS employ third-order base func-
tions for both the x1 and x2 directions, and the knots vector
included two nodes each with multiplicity three, located at
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the extrema of the interval. In all the numerical results pre-
sented here, we employ M � 32 with 4 × 4 weights. These
weights of the basis functions govern the displacements in
the x1 and x2 directions, respectively.We emphasise here that
this choice of representing the morphological microstates
imposes restrictions (mainly on the wavelengths of the defor-
mations) on the sampled fields u( j) and thus affects the
calculated density of morphological microstates. Therefore,
the choice of the discretisation used to represent u( j) needs
to be chosen so as to be able to represent the microstates we
wish to sample, e.g. the choice can be based on the minimum
width of a filopodium that one expects for the given cell type.
The NURBS enforce smooth fields (hence commonly used
in computer-aided design (CAD)) and thus typically will not
give rise to multi-valued (or interpenetrating) deformation
fields. Nevertheless, we ensure that the probability of such
fields (or equivalently morphological microstates) is vanish-
ingly small by imposing a large elastic penalty for states
wherein the local Jacobians become smaller than a critical
value Jc; see Eq. (3.15).

4.2 Numerical procedure to evaluate G(j)

The evaluation of G( j) using the procedure outlined in
Sect. 3.1.1 is numerically expensive as it involves iterations
over the strain distribution E in order to ensure mechanical
equilibrium of the system. In the Markov chain Monte Carlo
(MCMC) simulations performed in this study, we employed
an approximation in order to reduce the computational cost
of evaluating G( j) and thereby improve the efficiency of the
MCMC algorithm.

The substrate is a half-space (Fig. 2a) made from a linear
elastic material with Young’s modulus Esub and Poisson’s
ratio νsub. We assume that it is sufficient to model the
deformation of the substrate using the so-called small strain
assumption (i.e. linear kinematics). The problem of calcu-
lating the equilibrium strain energy density � within the
substrate then reduces to a linear elasticity problem that is
readily solved using well-known Green’s functions via the
boundary element method (BEM): the advantage of using
BEM to solve the elastic half-space problem is that we only
require to mesh the surface of the substrate (Fig. 2b), while a
finite element (FE) calculation would require a 3D meshing
of the half-space. However, while it is reasonable to assume
small deformations within the substrate, the cell undergoes
large deformation and full nonlinear kinematics along with
the nonlinear constitutive model needs to be employed to
analyse the cell. We thus analyse the cell and the substrate
separately and connect the two analyses by ensuring dis-
placement and traction continuity along the portion of the
substrate surface connected to the cell.

The cell in its undeformed configuration is discretised by
a FE mesh (see Fig. 2b for the mesh in a deformed con-
figuration) comprising three-noded triangular elements (i.e.
constant strain triangles). The morphological microstate ( j)
is specified by the weights U ( j)

L so that nodal displacements
of the FE mesh are evaluated from the NURBS. This now
uniquely specifies E within the cell that enables the calcu-
lation of stresses Σ and the free-energy of the cell F ( j)

cell at
equilibrium as detailed in Sect. 3.1.1. The linear shape func-
tions of the FE mesh are then used to calculate the residual
forces at each node from Σ and thereby estimate the trac-
tion distribution T( j)(x) on the cell surface: this traction
is exerted on the cell by the substrate at equilibrium. We
then apply −T( j)(x) on the surface of the substrate (with
the remainder of the substrate surface being traction free)
and calculate the equilibrium strain distribution within the
substrate using BEM. This gives the substrate free-energy
F ( j)
sub , and thereby, we have the Gibbs free-energy G( j) as

G( j) � F ( j)
cell + F ( j)

sub . The cell is discretised using constant
strain triangles of size e � R0/10 (i.e. 800 elements), while
the BEM mesh for the substrate surface comprised ∼ 2600
elements (Fig. 2b). Mesh convergence studies revealed that
increasing mesh density resulted in changes in G( j) of less
than 3% which translates to an error in the estimation of the
probability of a morphological microstate of about 1% for
typical values of the homeostatic temperature 1/ζ .

4.3 Iterative Metropolis algorithm

We construct, via MCMC, a Markov chain that serves as
a sample of the homeostatic ensemble. This is done using
the Metropolis (Metropolis et al. 1953) algorithm that gives
a sequence of random samples from the exponential equi-
librium distribution (2.20a). The Metropolis et al. (1953)
algorithm, as used here, samples shapes of cells by varying
the displacement field via the weights of the NURBS. These
weights can be thought of as atomic positions in line with
the typical application of this algorithm. Thus, even though
the spatial domain of the cell is not bounded, recall that
rigid motions of the cell result in morphological microstates
of equal probability (they all will have equal Gibbs free-
energies) with identical observables such as cell area and
arrangement of cytoskeletal proteins. Thus, if the aim is to
predict the distribution of such observables, a significantly
reduced space of states can be sampled with the Metropo-
lis et al. (1953) algorithm used to construct a Markov chain
that is representative of the homeostatic ensemble. However,
unlike inmost standard applications of this algorithm in tradi-
tional statistical mechanics, the homeostatic temperature 1/ζ
is not known a priori here.We therefore apply theMetropolis
algorithm in an iterative manner so as to enforce the homeo-
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Fig. 5 Predictions of the
probability density functions of
the normalised a Gibbs
free-energy Ĝ and b
cytoskeletal free-energy F̂cyto of
SMCs for selected choices of
the substrate stiffness Esub. Both
Gibbs and cytoskeletal
free-energies become more
negative and more uniform with
increasing substrate stiffness. c
Corresponding predictions of
the normalised homeostatic
temperature 1/ζ̂

a b

c

static constraint derived in Sect. 2.3 as specified by Eq. (2.7).
This iterative scheme is summarised here:

(i) Assume a value of ζ and use the undeformed cell con-
figuration as the starting configuration and label it as
morphological microstate j � 0 with equilibrium free-
energy G(0) calculated as described above.

(ii) Randomly pick two of the M weightsU ( j)
L and perturb

themby two independent randomnumbers picked from
a uniform distribution over the interval [−�,�].

(iii) Compute the new free-energy G( j) of this perturbed
state and thereby the change in free-energy �G �
G( j) − G( j−1).

(iv) Use the Metropolis criterion to accept this perturbed
state or not, i.e.

a. if �G ≤ 0, accept the perturbed state;
b. if �G > 0, compute Pacc � exp(−ζ�G) and

accept the perturbed state if Pacc > R, whereR is a
random number drawn from a uniform distribution
over [0, 1].

(v) If the perturbed state is accepted, add it to the list of
samples as a newmorphological microstate, else repeat

the configuration prior to step (ii) in the sample list and
return to step (ii).

(vi) Keep repeating this procedure until a converged distri-
bution is obtained. Here, we typically use the criterion
that the average ofG( j) within the generated sample list
(labelled 〈G( j)〉) changes by less than 1% over 100,000
steps of theMarkov chain. TypicalMarkov chains com-
prised in excess of 1 million samples.

(vii) If 〈G( j)〉 is within ±2% of the homeostatic value GS,
we accept this distribution, else wemodify ζ and repeat
from step (i).

In the above method, we emphasise that we used a “run-
in” of 50,000 steps, i.e. the first 50,000 morphological
microstates of any sample list are not used in the distribu-
tions (or calculations) so as to avoid any bias introduced
by the assumed initial state. Moreover, in line with typical
MCMC calculations, we attempted to achieve an acceptance
rate of about 35% in the Metropolis criterion and adjusted
� in order to ensure that we stayed with ± 5% of this tar-
get acceptance rate. We emphasise that in line with typical
MCMC calculations, we carried out a large number of con-
vergence checks to confirm the accuracy of theMarkov chain
generated to represent homeostatic ensemble. These included
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Fig. 6 The degeneracy of the free-energy levels is illustrated by showing
selected configurations of the cell at the mode of the distribution for the
Esub � 70 kPa substrate (see Fig. 5a). The configurations show a large
diversity of cell shapes (and sizes) as well as diversity of the stress-fibre
distributions as parameterised by contours of N̂b. A quiver plot showing
the local directions of the stress-fibres is added to the cell configurations
(line lengths scaled by N̂b). The scale bar indicates the radius R0 of the
undeformed cell

trace plots (Brooks et al., 2011) to confirm adequate mixing,
changing the number of weights perturbed from 2 to 6 as
well as checking convergence with respect to the lengths of
the Markov chains. These checks confirmed that the choices
reported abovewere sufficiently accuratewith all observables
reported subsequently predicted to within 2–4%.

4.4 Predictions for cells on elastic substrates

The equilibrium probability distribution given by Eq. (2.20a)
can be re-written in terms of normalised quantities (see
Sect. 3.3) as

P( j)
eq � 1

Ẑ
exp
[

−ζ̂ Ĝ( j)
]

, (4.1)

where Ẑ ≡ ∑

j exp
[

−ζ̂ Ĝ( j)
]

and ζ̂ ≡ ζ |GS − ϒ0|.
Predictions of the probability density functions p

(

Ĝ
)

∝
w
(

Ĝ
)

exp
(

−ζ̂ Ĝ
)

of the normalised Gibbs free-energy Ĝ

are shown in Fig. 5a for selected values of the substrate stiff-

ness Esub with w
(

Ĝ
)

denoting the density of states (i.e. the

fraction of total number of morphological microstates that
have a normalised free-energy in the range Ĝ to Ĝ + dĜ).
Two key features emerge: (i) probability of low free-energy
states decreases with decreasing substrate stiffness, and (ii)
the probability density functions become more peaked with
decreasing substrate stiffness (see Fig. 5b for the associated
distributions of the cytoskeletal free-energy). The normalised
homeostatic temperature 1/ζ̂ associated with these distribu-
tions is plotted in Fig. 5c: consistent with the more uniform

distributions p
(

Ĝ
)

for the stiffer substrates, 1/ζ̂ increases

with increasing Esub. These results can be understood in
terms of the competition between cytoskeletal and elastic
energy discussed in Sect. 3.3. With increasing cell area, the
concentration of bound stress-fibres increases, and there-
fore, the concentration of the unbound proteins reduces. This
increases the entropy of the stress-fibre proteins (the reduc-
tion in the entropy of the bound species is more than that
compensated for by the increase in the entropyof the unbound
species) and reduces their contribution to Ĝ (i.e. contribution
from the cytoskeleton becomes more negative). On the other
hand, the elastic energy of the cell increases with increasing
area and this gives rise to a minimum free-energy of the cell
(Fig. 4a). Associated with the large cell areas are larger trac-
tions exerted by the cell on the substrate (Fig. 4b). For stiff
substrates, these tractions introduce small elastic energies in
the substrate, and consequently, the minimum system free-
energy Ĝmin for spread cells on stiff substrates is relatively
low. By contrast, these same spread configurations introduce
large elastic energies in soft substrates with the consequence
that Ĝmin of the system with a compliant substrate is higher
than that for a stiff substrate. This implies that the system
with a stiff substrate has to also explore free-energy configu-
rations with a higher Ĝ so as to compensate and maintain the
average free-energy to be equal to GS. A wider distribution

p
(

Ĝ
)

with a high 1/ζ̂ and a mode at lower Ĝ then ensues

for stiff substrates. We emphasise that 1/ζ � |GS − ϒ0|/ζ̂
is much greater than kT0 for the higher stiffness substrates,
and thus, the homeostatic ensemble permits bigger fluctua-
tions than the conventional statistical ensembles. Consistent
with the observations of Engler et al. (2004), our simula-
tions show that cells are unable to detect changes in substrate
stiffness for Esub ≥ 100 kPa: cell tractions are on the order
of 100 kPa, and hence, mechanosensitivity is lost for stiffer
substrates (this is also indicated by the homeostatic tempera-
ture plateauing out as seen in Fig. 5c). Thus, the results here
are restricted to the range of substrate stiffnesses reported in
Engler et al. (2004).

To illustrate the multiplicity of morphological microstates
with the same free-energy, we include in Fig. 6 some select
configurations of the cells on the Esub � 70 kPa substrate,
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Fig. 7 The probability density functions of a normalised cell area Â and
b aspect ratio As of the best-fit ellipse for SMCs on elastic substrates
with modulus Esub. The degeneracy of states in terms of these observ-
ables is illustrated with selected examples of cell shapes shown at the

mean values of Â and As in a and b, respectively, for the Esub � 70 kPa
and 5 kPa substrates. In b, the best-fit ellipses used to calculate As are
also indicated. In both a and b, the scale bar indicates the radius R0 of
the undeformed cell

all with free-energies at the mode of the distribution. For
each configuration, we have also included the distributions
of the stress-fibre concentrations N̂b along with a quiver plot
showing their local directions. It is clear that even for this
fixed free-energy, the cells can attain a large diversity of cell
shapes, areas and distributions of cytoskeletal proteins. Thus,
even though we have only shown a very small sample of
highly probable states for cells cultured on stiff substrates,
these results are verymuch in line with the diversity of obser-
vations in experiments (Fig. 1a).

While the distributions p
(

Ĝ
)

provide some physical

insight, they are not directly observable as Ĝ typically cannot
be directly measured. Common observables in such exper-
iments include cell area and shape as characterised by the
aspect ratio of a best-fit ellipse (Engler et al. 2004; Prager-

Khoutorsky et al. 2011). Probability density functions p
(

Â
)

and p(As) for the normalised cell area Â and cell aspect
ratio As are included in Fig. 7a, b, respectively, for a range
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Fig. 8 Distributions of the normalised tractions T̂ for selected mor-
phological microstates of the SMCs chosen from the mode of the
Ĝ distribution for the a Esub � 70 kPa (different morphological
microstates with the same cell outline are boxed together) and b
Esub � 5 kPa substrates. In both a and b, the scale bar indicates the
radius R0 of the undeformed cell. Note the difference in the scales
used to depict tractions in a and b: consistent with the well-known
mechanosensitive response of cells, we predict that cells exert smaller
tractions on the softer substrates

of substrate stiffnesses Esub. Here, the aspect ratio A( j)
s is

inferred by best fitting an ellipse to the outline of the cell in
morphologicalmicrostate ( j) using a least-squares algorithm
(Fitzgibbon et al. 1999) and then defining A( j)

s as the ratio

of the major to minor axis of the ellipse. Similar to p
(

Ĝ
)

,

p
(

Â
)

becomes more peaked with decreasing substrate stiff-

nesswith themode of the distribution simultaneously shifting
to a lower Â. Thus, in line with experimental measurements
(Engler et al. 2004) we predict that not only do the observed
cell areas decreasewith decreasing substrate stiffness but also
the increasingly peaked distributions with decreasing Esub

imply smaller standard errors in measurements. The overall
reason for this is similar to that discussed above whereby
cells on stiff substrates can spread more to lower their free-

energy without introducing a large elastic penalty from the
substrate and thus can sample a wider variety of morphologi-
cal microstates. The degeneracy of states in terms of cell area
is also illustrated in Fig. 7a for the Esub � 70 kPa and 5 kPa
systems: even though all these configurations have an area
equal to the mean area for the respective choice of substrate
stiffness, clearly a fixed cell area does not imply a fixed cell
shape. The aspect ratio distributions in Fig. 7b confirm that,
in line with observations (Prager-Khoutorsky et al. 2011),
the probability of observing cells with a large aspect ratio
increases with increasing Esub. This follows from the fact
that large aspect ratios require significant tensile straining
of the cell that in turn increases the tractions exerted by the
cell on the substrate. These tractions increase the Gibbs free-
energy of these configurations on softer substrates and make
them less likely to be observed. We emphasise here that, like
in experiments, cells on elastic substrates assume complex
configurations, and therefore, aspect ratio as parameterised
by the best-fit ellipse does not fully characterise the shape
of the cells. This is clearly illustrated in Fig. 7b where select
configurations with the same aspect ratio are shown for the
systems with Esub � 70 kPa and 5 kPa.

Traction force microscopy measurements are typically
used to quantify the mechanical force interactions between
cells and their ECM (Legant et al. 2010; Maskarinec et al.
2009). Predictions of the spatial distributions of the trac-
tions T̂ for cells on substrates of stiffness Esub � 70 kPa
and 5 kPa are included in Fig. 8 for selected morpholog-
ical microstates near the mode of their respective Gibbs
free-energy distributions (cf. Figure 5a). In line with the
well-known mechanosensitive response of cells, we predict
significantly smaller tractions on the softer substrates. This is
directly related to the fact that for soft substrates,morphologi-
calmicrostateswith high tractions have large substrate elastic
energies. This in turn increases Ĝ and reduces the prob-
abilities of these morphological microstates. By contrast,
morphologicalmicrostateswith high tractions introduce neg-
ligible elastic energies in stiff substrates and in fact can
have low Ĝ values as they are typically associated with
large spread areas and high levels of cytoskeletal polymeri-
sation.

An intriguing feature highlighted in Fig. 8a is that mor-
phological microstates with the same cell outline can have
rather different traction distributions. This is because a mor-
phological microstate is not uniquely specified by the cell
outline but rather by the mapping of material points on the
cell membrane to the ECM (in this 2D case, the mapping is
uniquely specified by the strain distribution within the cell).
In fact, large variations in forces that cells exert on sub-
strates have been reported even when ECM micropatterns
are employed to control overall cell shape (Mandal et al.
2014; Oakes and Gardel 2014; Schiller et al. 2013). These
observed variations have been attributed to the molecular
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Fig. 9 Box-and-whisker diagrams of: a normalised cell area Â, b cell
aspect ratio As, c normalised average traction T̂T and d average stress-
fibre fluorescence as parameterised by r̂ for SMCs on elastic substrates.

The boxes show the median and quartiles, while the square marker indi-
cates the mean. The whiskers represent the 5th and 95th percentiles of
the distributions

force generation mechanism (Kurzawa 2017) and linked to
the noisy biochemical circuits (Elowitz et al. 2002)within the
cell. However, within our homeostatic statistical mechanics
framework, the cell biochemistry is described by conven-
tional thermodynamics and thus is not directly the source of
the variations seen in Fig. 8. Rather, the observed variabili-
ties in apparently identical cells (in Fig. 8a, average tractions
T̂T for two states with the same cell outlines can vary by
∼ 5%) are related to the fact that cells assume different mor-
phological microstates even when their shape is precisely
controlled. This of course ultimately stems from the fact that
the homeostatic processes within the cell are not being pre-
cisely regulated.

The MCMC calculations used in the simulations are able
to determine the entire probability distribution functions
(Fig. 7) by sampling in excess of few million equilibrium
morphological microstates. On the other hand, experiments
typically report statistics based on observations of 10–100

cell configurations (Engler et al. 2004; Prager-Khoutorsky
et al. 2011) and are therefore unable to generate distributions
of the type in Fig. 7. Rather, experimentalists commonly plot
the so-called box-and-whisker diagrams to show themedians
and quartiles of their data. To make more definitive con-
tact with measurements, the data in Fig. 7 are re-plotted in
the form of box-and-whisker diagrams in Figs. 9a and 9b
for the cell area and aspect ratio, respectively. Similar to
observations (Engler et al. 2004; Prager-Khoutorsky et al.
2011), not only do we predict that the median cell area and
aspect ratio decrease with decreasing substrate stiffness but
also their diversity reduce with decreasing substrate stiff-
ness. This reduction in the dispersion in the observables is
most clearly seen in the tighter bunching of the whiskers
with decreasing Esub. Similarly, predicted box-and-whisker
diagrams of the average tractions T̂T exerted by the cell on
the substrate included in Fig. 9c are consistent with mea-
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surements where the median average traction decreases with
decreasing Esub.

Another common observable reported in experiments is
the stress-fibre fluorescence (Legant et al. 2010; Solon et al.
2007; Chan and Odde 2008; Byfield et al. 2009). To make
contact with these observations, we introduce a scalar mea-
sure of the stress-fibre activation level given by

N̂
( j) ≡ 1

V0

∫

Vcell

N̂ ( j)
b dV . (4.2)

Next, to determine a perception of the visual intensity
of stress-fibre fluorescence as reported in experiments, we
invoke the Weber–Fechner law (Fechner et al. 1966) with
N̂

( j) defined as the visual stimulus. Then, with the free-
standing state of the cell assumed to be the state below
which no stress-fibres are perceived, the perception r ( j) of
the stress-fibre intensity in morphological microstate ( j) is
given by

r ( j) � � ln

(

N̂
( j)

N̂S

)

, (4.3)

where N̂
S is the value of N̂( j) in the free-standing cell and

� is a proportionality constant. A non-dimensional percep-
tion that parameterises the level of stress-fibre fluorescence
is then defined as r̂ ( j) ≡ r ( j)/� . Predicted box-and-whisker
diagrams of stress-fibre fluorescence as parameterised by r̂
are included in Fig. 9d: the median r̂ decreases with decreas-
ing substrate stiffness confirming the ability of the model to
capture the well-known mechanosensitive response of cells
for a wide range of observables.

5 Discussion

In the context of conventional statistical thermodynamics,
cells are quintessential examples of non-equilibrium sys-
tems. By recognising that in the interphase period of the cell
cycle, cells fluctuate over a homeostatic state, we have devel-
oped a homeostatic statistical mechanics framework and
thereby rationalised Schrödinger’s (1944) negentropy view
within amaximumentropy ansatz. In doing so,we introduced
the concept of a homeostatic ensemble aswell as temperature
and developed the formalism for the (dynamic) homeostatic
equilibrium that intervenes to allow cells to evade thermo-
dynamic decay. The differences between homeostatic and
thermodynamic equilibrium can be summarised as follows.
At thermodynamic equilibrium of an open system, there is no
net transfer of energy or species between the system and the
bath with the total number of each of the species and energy
remaining fixed for the isolated setup comprising the sys-
tem plus bath. Conversely, at homeostatic equilibrium there

is also no net energy transfer between the system and the
nutrient bath, but there is a net transfer of species such that
the morphological microstates in the homeostatic ensemble
have a Gibbs free-energy distribution set by the parameter ζ ,
i.e. the system is maintained at the homeostatic temperature
1/ζ . This implies that at homeostatic equilibrium the sys-
tem has random fluctuations in the equilibrium free-energies
G( j) of the morphological microstates (related to fluctua-
tions in themorphologicalmicrostates) of averagemagnitude
1/ζ with a constant homeostatic potential; see Eq. (2.28).
This contrasts with the majority of models for cells (Desh-
pande et al. 2006; Sanz-Herrera et al. 2009; Vigliotti et al.
2016; Shenoy et al. 2016; McEvoy et al. 2017) that assume
(implicitly or explicitly) that even on a timescale of hours
the system evolves towards equilibriumwith amonotonically
decreasing Gibbs free-energy. On the other hand, models for
phenomena such as motility recognise the stochastic nature
of cell behaviour and describe the temporal evolution of the
morphological microstates by applying Langevin (and other
random) dynamics (Schienbein andGruler 1993; Stokes et al.
1991; Dunn and Brown 1987). However, these models are ad
hoc in the sense that they employ an arbitrarily chosen large
stochastic term to account for the substantial fluctuations in
the observed cell response. By contrast, using the ideas intro-
duced here, we can develop Langevin dynamics that recovers
the homeostatic ensemble and thereby naturally includes the
stochastic contribution via 1/ζ .

The pitfalls of modelling the observed configurations of
cells as a Gibbs free-energy minimisation problem are also
clearly illustrated by comparing the homeostatic statistical
mechanics predictions of Sect. 4 with the minimisation pre-
dictions in Sect. 3.3. The Ĝ values in Fig. 4a are comparable
to the minimum values over all possible configurations on
stiff substrates (Fig. 5a), i.e. the restriction to uniformly
strained circular morphological microstates does not add a
significant error in the estimation of the minimum Gibbs
free-energy. However, the predicted average tractions T̂T

in Fig. 4b are below even the 5th percentiles of the actual
distributions on stiff substrates (Fig. 9c). This is because
even though the probability of these uniformly strained
microstates is appreciable (as their free-energies are low), the
number of suchmicrostates is vanishingly small compared to
the entire homeostatic ensemble. Thus, traction distributions
with a line force around the cell periphery have a vanishingly
low probability of being observed. Rather, consistent with
traction force microscopy measurements (Maskarinec et al.
2009; Legant et al. 2010; Franck et al. 2007), the homeostatic
statisticalmechanics framework predicts highly non-uniform
traction distributions (Fig. 8) though of course the tractions
are generally higher near the periphery of the cell.

A critical element to validation of the current framework
is of course design of appropriate experiments and compari-
son with observations. In the current study, we have reported
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predictions of observables such as cell area, aspect ratio and
tractions which can be directly compared with observations.
A critical novel feature of this framework is that it not only
predicts mean values of observables but also their distribu-
tions for observations over a large number of cells. Thus, any
experiment designed to examine thefidelity of the predictions
will involve making a large number of measurements so as
to gain information on the distribution of the observables.
Of course, this will include measurements on how observ-
ables change not only with mechanical cues such as stiffness
(investigated here) but also topological and chemical cues.
The chemical cuesmight include the effect of adding reagents
such as CytoD and/or Taxol that inhibit actin polymerisation
andmicrotubule activity, respectively. Such experiments will
enable the calibration of specific parameters of the model for
the Gibbs free-energy of the cell and thereby enable more
quantitative comparisons. (e.g. the effect of CytoD on actin
polymerisation can be directly included through η̂max). How-
ever, it is worth emphasising that the current implementation
of the model is in 2D for reasons of computational cost:
detailed comparisons between predictions and observations
will require extension of the numerical methods to 3D. The
homeostatic statistical mechanics framework and the model
for the Gibbs free-energy of the cell are of course in full 3D,
but applying these in a full 3D setting will require consid-
erable advances to be made in the associated computational
methods.

6 Concluding remarks

We have developed a homeostatic statistical mechanics
framework for cells and the corresponding formalism for
their (dynamic) homeostatic equilibrium that intervenes to
allow them to evade thermodynamic decay. The framework
introduces the concept of a homeostatic ensemble and an
associated homeostatic temperature that: (i) quantifies the
inherent variability of experimental observations while also
serving as a gauge for the overall biochemical state of the
cell and (ii) for a given cell type is set by the extracellu-
lar environment (e.g. mechanical, chemical and topological).
Our simulations have confirmed the fidelity of the framework
with respect to experimentalmeasurements by predicting that
both themean values and diversity of observables such as cell
area and aspect ratio decrease with decreasing stiffness of the
environment.We thus argue that the diversity of observations
in nominally identical in vitro experiments, which is hugely
important to understanding critical cell functionality such as
differentiation and proliferation, is inherent to the entropic
nature of the homeostatic equilibrium of cells and not a result
of “experimental variability”.

While we have presented results for cells on elastic sub-
strates, the homeostatic framework can equally well be

applied to analyse cells in a range of environments (e.g. adhe-
sively or topologically patterned environments). The only
requirement for the application of the framework is the abil-
ity to determine the Gibbs free-energy of a morphological
microstate in that environment. A key feature of the for-
mulation is that it does not require a detailed knowledge or
explicit modelling of the complex biochemical homeostatic
processes with the missing information on these processes
coarse-grained into the homeostatic temperature. Rather, the
framework only requires, as an input, the Gibbs free-energy
of morphological microstates. Similar to interatomic poten-
tials that are improved by fitting to new experimental data or
more fundamental simulations, the model for the Gibbs free-
energy of the cell too can be changed/enhanced to incorporate
the appropriate level of complexity of cellular processes
(e.g. the nucleus, adhesion proteins and other components of
the cytoskeleton such as microtubules), independent of the
underlying homeostatic statistical mechanics framework.
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Appendix A: Conjugates to the entropies

Since we have defined entropies at different timescales, it
is worth explicitly stating the conjugates to these entropies.
With the equilibrium morphological entropy given as S� ≡
max
P( j)

[I�] � −∑ j P
( j)
eq ln P( j)

eq , these conjugates are sum-

marised as follows. The thermodynamic temperature is
conjugated to the molecular and total entropies such that

∂S( j)
M

∂H ( j)
� 1

kT
, (A.1a)

and

∂ST
∂ H̄

� 1

kT
, (A.1b)

where H ( j) is the enthalpy of morphological microstate ( j)
and H̄ the average enthalpy of the ensemble ofmorphological
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microstates. On the other hand, the distribution parameter ζ

is conjugated to the morphological and total entropies via the
relations

∂S�

∂Ḡ
� ζ , (A.2a)

and

∂ST
∂Ḡ

� ζ1 � ζ − 1

kT
, (A.2b)

where Ḡ is the average Gibbs free-energy of the ensemble of
morphological microstates. Thus, analogous to the inverse
thermodynamic temperature 1/T that relates entropy and
enthalpy, ζ specifies the rate of change of the morphological
entropy S� with the ensemble average Gibbs free-energy.

Equivalently, the chemical potential of species (α) in the
cell that is conjugated to N̄α (i.e. average number of species
(α) over the homeostatic state of the system) follows from
Eqs. (A.2a) and (2.25) as

χS
α � 1

ζ

∂S�

∂ N̄α

. (A.3)

Note that this is the relation for the chemical potentials
of cellular species in the homeostatic ensemble and hence
defined through the homeostatic temperature. We emphasise
that the maximisation of I

′
T (Sect. 2.2) could have equiva-

lently been performed by specifying the chemical potentials
χS

α as done in a grand canonical ensemble. However, none
of available models for a morphological microstate (see, for
example, Sect. 3.1) consider all the cellular species explicitly.
Rather, the models typically lump contributions of species
into phenomena such as elasticity and contractility and then
directly calculate the Gibbs free-energy of a morphological
microstate. Hence, it is more convenient to express the home-
ostatic constraints through the Gibbs free-energies as done
in Sect. 2.2.

Appendix B: Chemical potential of the stress-
fibre proteins in the bound state

Vigliotti et al. (2016) derived the entropy of the functional
units in their bound state by assuming a dilute concentration
of bound functional units. This assumption is invalid for the
vast majority of morphological microstates as morpholog-
ical microstates with larger numbers of bound functional
units typically have a lower G( j) and thus a higher P( j)

eq

(see Eq. (2.20a)). Here, we generalise the derivation of
Vigliotti et al. (2016) to non-dilute bound functional unit
concentrations.

Consider the formation of a bundle of stress-fibres at an
orientation φ. The N̄u ≡ Nu/π aggregates of unbound pro-
teins per unit angle cluster into N̄u/n packets with each
packet forming a stress-fibre comprising n functional units.
Also, there exist η � ξ/n stress-fibres (each compris-
ing n functional units) per unit angle at the orientation φ

such that N̄u + ξ is fixed by the local conservation of the
stress-fibre proteins. To calculate the chemical potentials
of the bound proteins within stress-fibres and the unbound
proteins in the intermediate stage, consider the following
two mixing processes. First consider the mixing between
N̄u/n identical packets of unbound proteins, ξ/n identical
packets of bound proteins and ξ0/n sites for bound pro-
teins where ξ0 is the number of available lattice sites for
bound functional units per unit angle. Using Boltzmann’s
entropy formula, the entropy of mixing in this process
is

�Sb � kln

⎡

⎣

(

ξ0/n + N̄u/n
)

!

(ξ/n)!
(

N̄u/n
)

!
(

ξ0−ξ
n

)

!

⎤

⎦, (B.1)

which simplifies using Stirling’s approximation to

�Sb � −k

[(

N̄u

n

)

ln

(

N̄u

n

)

+

(

ξ

n

)

ln

(

ξ

n

)

+

(

ξ0 − ξ

n

)

ln

(

ξ0 − ξ

n

)

−
(

ξ0 + N̄u

n

)

ln

(

ξ0 + N̄u

n

)]

.

(B.2)

With μb the enthalpy of nR bound stress-fibre proteins, the
chemical potential of the bound proteins and unbound pro-
teins after this first step is

(B.3)

χb1 ≡ μb

nR
− T

∂�Sb
∂ξ

� μb

nR
+ kT

⎡

⎣ln

(

ξ

N̄u

) 1
n

+ ln

(

1 + N̄u/ξ0

1 − ξ/ξ0

)
1
n

⎤

⎦ ,

whereweused the fact that ξ0 is a constant and ∂ N̄u/∂ξ � −1
as the mixing is done with a constant number (N̄u + ξ ) of
stress-fibre proteins. We proceed by assuming that N̄u/ξ0 �
1 (which is reasonable given that the unboundprotein concen-
trations are low). Recall that at equilibrium we have n � nss

functional units per stress-fibre, and therefore, we define
ξ0 ≡ ηmaxnss where ηmax is the maximum angular stress-
fibre concentration. Using the definitions N̂u ≡ Nu/N0,
η̂ ≡ ηnR/N0, η̂max ≡ ηmaxnR/N0 and n̂ss ≡ nss/nR,
Eq. (B.3) reduces to

χb1 � μb

nR
+ kT ln

[

πη̂n̂ss

N̂u
(

1 − η̂/η̂max
)

] 1
nss

. (B.4)
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As a second step note that the unbound aggregate of pro-
teins occupies lattice sites, and thus, we mix the N̄u unbound
protein aggregates with N̄L lattice sites while not mixing the
N̄u/n and ξ/n packets. Here, N̄L are the number of lattice
sites for the unbound proteins per unit angle (i.e. angular con-
centration of lattice sites for unbound proteins). The entropy
of mixing �Su of N̄u unbound aggregates of proteins with
N̄L lattice sites is

�Su � kln

[

N̄L!

N̄u!
(

N̄L − N̄u
)

!

]

, (B.5)

which using Stirling’s approximation reduces to

�Su � −k
[

N̄ulnN̄u + (N̄L − N̄u)ln(N̄L − N̄u) − N̄LlnN̄L
]

.

(B.6)

In this step, we do not change the number of bound and
unbound molecules with respect to each other but rather cal-
culate the variation in the entropywhile changing the number
of stress-fibre protein molecules with respect to the fixed
number of lattice sites. Thus, ∂ N̄u/∂ξ � 1 and therefore

∂�Su
∂ξ

� ∂�Su
∂ N̄u

� kln

⎡

⎣

N̂u

π N̂L

(

1 − N̄u
N̄L

)

⎤

⎦, (B.7)

with N̂L ≡ N̄L/N0. Using N̄u � N̄L (i.e. dilute assumption),

χb ≡ χb1 − T
∂�Su
∂ξ

� μb

nR
+ kT ln

⎧

⎨

⎩

[

πη̂n̂ss

N̂u
(

1 − η̂/η̂max
)

] 1
nss
(

N̂u

π N̂L

)

⎫

⎬

⎭

,

(B.8)

which is the generalisation of the Vigliotti et al. (2016)
expression for χb to non-dilute concentrations of bound
stress-fibre proteins.

Appendix C: Derivation of a 2D Ogden-type
hyperelastic strain energy density function

Vigliotti et al. (2016) used the usual 3DOgden (1972) hyper-
elastic model for the passive elasticity of the cell. To be
consistent with the 2D cytoskeletal model employed here,
we wish to use a hyperelastic law wherein the in-plane (pas-
sive) stresses

(

σ
p
11, σ

p
12, σ

p
22

)

are not affected by stretch λI I I

in the x3-direction. Here, we detail the derivation of an anal-
ogous 2D hyperelastic model.

Consider a 2D solid deforming in the x1 − x2 plane. The
decomposition of the deformation gradient Fi j into its distor-

tional component F̃i j and dilatational components is written
as

Fi j �
[

(λIλI I )
1/2δik

]

F̃k j , (C.1)

where λI and λI I are the principal stretches in the x1 − x2
plane and δi j the Kronecker delta. We define a distortional
right Cauchy–Green tensor as C̃i j � F̃ki F̃k j and thenwithout
loss of generality can assume that x1 − x2 are aligned with
the eigenvectors of C̃i j . It then follows from Eq. (C.1) that

F̃k j �
(

λ̄I 0
0 λ̄I I

)

, (C.2)

where λ̄I ≡ √
λI /λI I and λ̄I I ≡ √

λI I /λI . The Seth–Hill
family of strains (Hill 1968) associated with C̃i j are

ẽ(i)
k � 1

αi

(

λ̄
αi
k − 1

)

, (C.3)

with the i th strain associated with the constant αi (this def-
inition is valid for αi �� 0) and k � I , I I . The invariant of
ẽ(i)
k then reads

Ĩ �
N
∑

i�1

1

αi

(

λ̄
αi
I + λ̄

αi
I I − 2

)

. (C.4)

In this 2D setting, we can set λI I I arbitrarily, and here, we
assign λI I I � 1/(λIλI I ) so as to ensure overall volumetric
incompressibility. The strain energy density functionΦelas is
then written in terms of the two invariants Ĩ and λIλI I as

(C.5)

Φelas ≡
N
∑

i�1

2μi

α2
i

[

(

λI

λI I

)
αi
2

+

(

λI I

λI

)
αi
2 − 2

]

+
κ

2
(λIλI I − 1)2

− κ̄H (Jc − λIλI I ) ln (λIλI I + 1 − Jc) ,

in a manner analogous to a compressible Ogden hyperelastic
model. The third term in Eq. (C.5), which includes the Heav-
iside step function H(·), is not present in usual hyperelastic
expressions. It is added here so as to penalise reduction in
the area of the cell by a penalty modulus κ̄ when λIλI I falls
below a critical value Jc, where 1 − Jc � 0. The exponents
αi govern the nonlinearity of the distortional response, while
μi and κ are related to the 2D shear and bulk moduli. This
can be shown as follows. Recall that under incompressible
conditions, the Cauchy principal stresses are given by

σ
p
k ≡ λk

∂Φelas

∂λk
. (C.6)
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Then, writing λI � 1 + εI and λI I � 1 + εI I where εI
and εI I are the respective principal nominal strains, we have

σ
p
I + σ

p
I I

2
� κ(εI + εI I ) and

σ
p
I − σ

p
I I

2
� (εI − εI I )

N
∑

i�1

μi ,

(C.7)

under small strain conditions, i.e. |εI | � 1 and |εI I | � 1.
From Eq. (C.7), it is clear that κ is the 2D bulk modulus,
while the 2D shear modulus μ �∑N

i�1 μi . In this study, we
use a simple version of this strain energy density function
with N � 1 so that the shear modulus μ � μ1 and there is a
single exponent governing the nonlinearity with m � α1.
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