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Abstract—In this paper, we investigate channel sensing and
power control problems in a cluster-based cognitive radio wire-
less sensor network (CRWSN). We first propose three channel
sensing algorithms to solve the channel sensing problem including
availability constraints. Then a joint channel sensing and power
control scheme (JCSPCS) is proposed to solve the power control
problem including quality of service (QoS) constraints. We prove
that all our algorithms are probably approximately correct (PAC)
algorithms that can correctly identify a bad channel with high
probability. We show that our algorithms are suitable for QoS-
constrained applications as they all terminate in a finite time
with a finite error rate. The performance of our channel sensing
algorithms and the joint channel sensing and power control
scheme is shown in the simulation results.

I. INTRODUCTION

In a traditional wireless sensor network (WSN), sensors
usually operate in the Industrial, Scientific and Medical (ISM)
unlicensed bands and have a limited energy supply. However,
the development of the internet of things (IoT) and the high
demand in the unlicensed bands has given rise to the problem
of coexistence of heterogeneous systems. It is thus challenging
to deploy WSN in busy unlicensed bands, especially for QoS-
constrained applications. On the other hand, most licensed
spectrum is underutilized and stays unoccupied for most of the
time [1]. Cognitive radio (CR) is thus considered as a method
to improve the spectrum efficiency for QoS-constrained appli-
cations in a WSN [2].

CR allows secondary users (unlicensed users) to oppor-
tunistically access the vacant channels of primary users (li-
censed users). However, secondary users must not interfere
with the primary users. Since the channel availability statistics
are generally unknown to the secondary users, they have to
sense the available vacant channels before transmitting any
data. The problem of channel sensing and access in cognitive
radio networks has been widely investigated. Some of the
literature has modeled the channel sensing problem as a multi-
armed bandit problem [3]. In [4], the author models the
opportunistic spectrum access problem as a restless multi-
armed bandit problem and propose a regenerative cycle al-
gorithm to track the best channel, i.e., that with the best
availability statistics. A traditional exploration and exploitation
problem is thus investigated. In [5], a decentralized online
learning algorithm is proposed to find available channels for
multiple users. The algorithm is designed based on the well
known Upper Confidence Bound (UCB) [3] policy that yields
logarithmic regret over time without requiring any information
on channel availability statistics.

Cognitive wireless sensors can only afford to sense part
of the spectrum at a time. Cooperative sensing is thus needed
for joint channel sensing. In addition, the detected available
channels in a CRWSN must be coordinated to avoid collisions.
Therefore, a cluster-based CRWSN architecture is proposed.
For a QoS-constrained application in a CRWSN, a channel
must be assigned as soon as possible if a node makes a data
transmission request. Instead of tracking the good channels,
sensor nodes in our model sense their pre-assigned part of the
spectrum and only eliminate the bad channels, but with high
confidence. We show that our algorithms can always assign an
available channel to a sensor node that has a data transmission
request. Furthermore, our channel sensing algorithms terminate
in a finite time and with a limited error rate. In order to
maximize the lifetime of each sensor nodes and meet the QoS
constraints such as maximum delay and minimum data rate, a
joint channel sensing and power control scheme (JCSPCS) is
proposed in this paper that can improve the energy efficiency
of sensors in the network without violating the QoS contraints.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the cluster-based CRWSN in Fig. 1 with K
licensed orthogonal channels allocated to PUs for slotted
transmission. Cognitive radio wireless sensors can transmit
their data to the corresponding cluster head through licensed
channels that are sensed idle in each time slot. In each cluster,
each channel is pre-assigned to a sensor for channel sensing.
Let S = {S1, S2, . . . , SK} and C = {C1, C2, . . . , CK} denote
the set of sensors and the corresponding pre-assigned channels
in one cluster respectively. We use T = {T1, T2, . . .} to
represent the set of time slots in the network. At the beginning
of each time slot, the wireless sensors in S sense their pre-
assigned channels and report the sensing results as well as
their data transmission request (if any) to the cluster head via a
control channel. The cluster head then notifies the sensors with
their assigned channels for transmission. Note that for each
sensor with a data transmission request, the assigned channel
for transmission is selected from the available channels and
does not necessarily have to be the same as the pre-assigned
one.

For sensor Si sensing Ci at time slot Tj , we use a random
variable θi,j to represent whether Ci is idle (θi,j = 1) or not
(θi,j = 0). We also use ωi,j to represent the data transmission
request of sensor Si at time slot Tj , where ωi,j = 1 represents
that Si has data to send and ωi,j = 0 otherwise. A message
containing (θi,j , ωi,j) is sent to the cluster head via a control
channel after channel sensing.



Fig. 1: Cluster-based cognitive radio wireless sensor network

A. Channel Sensing with Availability Constraints

In the CRWSN, sensors are only allowed to access the
idle channels. The availability of the licensed channels is
determined by the primary users’ behavior. Therefore, we can
improve the channel sensing efficiency if we can predict the
channel availability by utilizing the channel sensing history.
As each channel only has two states (busy or idle), we assume
that the availability of channels in C follows independent
identical Bernoulli distributions over different time slots with
parameters μ = {μ1, μ2, . . . , μK} which are unknown to the
sensors. The empirical mean availability of channel Ci after
the channel sensing in time slot Tn is expressed as

μ̂i,n =
1

n

n∑
j=1

θi,j . (1)

Assuming that we have a channel availability requirement
μ∗ for all channels, we define the good channel set as
CG = {Ci ∈ C : μi ≥ μ∗} and the bad channel set as CB =
{Ci ∈ C : μi < μ∗} respectively. Sensors have to estimate the
mean availability via (1). We assume that sensor Si use energy
ηiEi for channel sensing where Ei is the total energy of Si and
ηi ∈ [0, 1] is the fraction of energy used for channel sensing.
For simplicity and without loss of generality, we assume that
all sensors have the same total energy E and ratio η.

With the sensing energy constraint ηE, we use an arbitrary
algorithm ρ ∈ Ω to classify the channels into an empirical good
set (ĈG (ρ, η)) and bad set (ĈB (ρ, η)) based on the past chan-
nel sensing results where Ω is the set of algorithms we use. We
define the set of misclassified channels with algorithm ρ and

energy ratio η as CE (ρ, η) =
{
Ci ∈ ĈG (ρ, η) : μi < μ∗

}
.

The error rate is thus defined as ε (ρ, η) = |CE(ρ,η)|
|C| .

We aim at finding an algorithm ρ∗ ∈ Ω that can find the
good and bad channels in a limited time with high confidence
and with a minimum error rate which is expressed as

ρ∗ = argmin
ρ∈Ω

ε (ρ, η)= argmin
ρ∈Ω

( |CE (ρ, η)|
K

)
, (2)

s.t. (Pi,c + Pi,s)αTNi,max ≤ ηE, ∀i ∈ {1, 2 . . . ,K} .
where Pi,c is the circuit power consumption of Si, Pi,s is the
channel sensing power consumption of Si, T is the length
of each time slot, α is the fraction of time used for channel

sensing in each time slot and Ni,max is the maximum number
of time slots for Si to spend on channel sensing. According
to (2), the maximum number of time slots N is expressed as

N = min
i

Ni,max = min
i

(⌊
ηE

αT (Pi,c + Pi,s)

⌋)
. (3)

B. Power Control with QoS Constraints

Although increasing the transmission power level generally
increases the data rate, it also decreases the lifetime of the
sensor node. In this paper, we aim at finding the transmission
power level that can maximize the total number of transmitted
bits for QoS-constrained applications. We assume that all
sensors have the same set of transmission power levels denoted
by P = {P1, P2, . . . , PM} in ascending order.

We use Ri,j,k = fi (Pj , Ck) to denote the maximum
data rate of sensor Si with power Pj at channel Ck. For
simplicity, we assume that the maximum data rate of sensor
Si ∈ S with power Pj at channel Ck is a logarithmic function
denoted as fi (Pj , Ck) = W log2 (1 + Pjgi,k) where W is the
channel bandwidth and gi,k is the instantaneous channel gain
to noise ratio of Ck for Si. The total number of transmitted
bits for sensor Si with transmission power Pj at channel Ck

is expressed as

Li,j,k =
(1− η)EW log2 (1 + Pjgi,k)

(Pj + Pi,c)
. (4)

Assuming that Si has a minimum data rate requirement de-
noted by R∗

i , the optimal transmission power for Ck that can
maximize the total number of transmitted bits is expressed as

P ∗
i,k = argmax

Pj∈P
Li,j,k = argmax

Pj∈P

(
Ri,j,k(1−η)E

Pj+Pi,c

)
,

s.t. Ri,j,k ≥ R∗
i , ∀Si ∈ S,Ck ∈ C; η ≥ η∗;

(5)

where η∗ is the minimum energy ratio for reliable channel
sensing. We use L∗

i,k to denote the optimal total number of
transmitted bits for Si on Ck using power P ∗

i,k. Let λi,k = 1
if Ck is accessed by Si and λi,k = 0 otherwise. The maximum
number of transmitted bits in the each cluster is expressed as

L∗ = max
K∑
i=1

K∑
k=1

λi,kL
∗
i,k,

s.t.
m∑

k=1

λi,k = 1, ∀i;
n∑

i=1

λi,k ≤ 1, ∀k.
(6)

III. ALGORITHMS

In this section we introduce algorithms to solve the channel
sensing problem with availability and power constraints.

A. Passive Rejection Algorithm

Under a passive rejection algorithm, sensor Si always
senses its corresponding channel Ci until it has high confi-
dence that μi is less than the minimum channel availability
requirement μ∗. We first propose a simple reject algorithm
(SRA) denoted by ρSRA as detailed in Algorithm 1. SRA is
an ε-PAC algorithm that can correctly identify a bad channel
with probability at least 1− ε. An algorithm is an ε-probably
approximately correct (PAC) algorithm if it outputs the correct
result with probability at least 1− ε. The proof is omitted due
to the space limit.



Algorithm 1 Simple Reject Algorithm (SRA)

Input the value of μ∗, η and T . Calculate N based on (2)
and (3).
Initialization: ĈG (ρSRA, η) ← C, ĈB (ρSRA, η) ← 0.
for 1 ≤ n ≤ N do

for each Ci ∈ ĈG do
Calculate μ̂i,n based on (1).

if γi,n = μ∗ − μ̂i,n ≥
√

1
2n ln

(
1
ε

)
then

ĈG ← ĈG − {Ci}, ĈB ← ĈB ∪ {Ci}.
end if

end for
end for
Output ĈG (ρSRA, η).

We also propose an improved reject algorithm (IRA) de-
noted by ρIRA as detailed in Algorithm 2, which is also an
ε-PAC algorithm.

Algorithm 2 Improved Reject Algorithm (IRA)

Input the value of μ∗, η and T . Calculate N based on (2)
and (3). Let Bε (n, p) denote the quantile of order ε for the
binomial distribution with parameter n and p.
Initialization: ĈG (ρIRA, η) ← C, ĈB (ρIRA, η) ← 0.
for 1 ≤ n ≤ N do

for each Ci ∈ ĈG do
Calculate μ̂i,n based on (1).
if nμ̂i,n ≤ Bε (n, μ

∗) then
ĈG ← ĈG − {Ci}, ĈB ← ĈB ∪ {Ci}.

end if
end for

end for
Output ĈG (ρIRA, η).

B. Active Elimination Algorithm

Although passive rejection algorithms can identify bad
channels with high confidence, classifying channels with mean
value close to μ∗ still remains non-trivial. In addition, it is not
energy efficient to sense most channels every time slot if there
are only a small amount of sensors having data transmission
requests. Thus, we propose an active elimination algorithm
(AEA) denoted by ρAEA that can find the m best channels in
C with a finite time horizon and low error rate.

Without loss of generality, we assume that μ is ordered and
μ1 > μ2 > . . . > μK . Let μm = μ∗. We use Δi,j = μi − μj

to denote the gap between μi and μj . For the m best channels
in C we define Δm

i as

Δm
i =

{
Δi,m+1,
Δm,i,

1 ≤ i ≤ m
m+ 1 ≤ i ≤ K.

(7)

At round i, the probability that Cn ∈ CG is eliminat-

ed is at most 6 exp
(
− (Δm

m)2

2 t
)

where t =

⌊
N

�log2(K
m )	

⌋
.

AEA is thus an ε-PAC algorithm that can correctly identify
the m best channels with probability at least 1 − ε where

ε = 6mN
t exp

(
− (Δm

m)2

2 t
)

. The proof is omitted due to the

space limit.

Algorithm 3 Active Elimination Algorithm (AEA)

Input the value of μ∗, η, m and T . Calculate N based on (2)
and (3).
Initialization: G0 ← C.
for round i, 1 ≤ i ≤

⌈
log2

(
K
m

)⌉
do

Sensing each channel Cj ∈ Gi−1 for t =

⌊
N

�log2(K
m )	

⌋
time slots. Let Gi be the set of

⌈
|Gi−1|

2

⌉
channels in Gi−1

with largest empirical mean value.
end for
Output ĈG (ρAEA, η) ← G�log2(K

m )	.

C. Joint Channel Sensing and Power Control Scheme

We now propose the joint channel sensing and power con-
trol scheme (JCSPCS) to maximize the amount of transmitted
data of each sensor. With channel availability constraints and
data transmission requests, we use the AEA to find the m best
channels for n sensors (n ≤ m ≤ K) to regularly transmit
their data. Let ε∗ be the maximum acceptable error rate of

AEA. We have ε = 6mN
t exp

(
− (Δm

m)2

2 t
)
≤ ε∗. We assume

t = N

log2(K
m )

for simplicity. Thus, we have

N ≥ 2log2
(
K
m

)
(Δm

m)
2 ln

(
6mlog2

(
K
m

)
ε∗

)
. (8)

We also assume that each sensor Si ∈ S has the same circuit
power consumption Pi,c = Pc and channel sensing power
consumption Pi,s = Ps. According to (2), (3), (5) and (8), the
minimum energy ratio for reliable channel sensing denoted as

η ≥ 2αT (Pc + Ps) log2
(
K
m

)
(Δm

m)
2
E

ln

(
6mlog2

(
K
m

)
ε∗

)
= η∗. (9)

From (5), we know that
(1−η∗)E
Pj+Pc

is bounded and inversely

proportional to Pj while log2 (1 + Pjgi,k) is bounded and
logarithmically proportional to Pj . According to the extreme
value theorem, for each Si transmitting data on Ck, there exists
a P ∗

i,k that maximizes the total number of transmitted bits.

We propose the joint channel sensing and power control
scheme (JCSPCS) shown in Algorithm 4.

Algorithm 4 Joint Channel Sensing and Power Control
Scheme

Input the value of n, m, K, T , Δm
m and ε∗.

Initialization: Find the m best channels using AEA. Calcu-
late η∗ according to (9).
for 1 ≤ i ≤ n do

for 1 ≤ k ≤ m do
Calculate P ∗

i,k and L∗
i,k based on (5). L ← L∗

i,k.
end for

end for
Solve (6) using the Hungarian algorithm [6].
Output λ∗ and L∗, where λ∗ is the n × m matrix with
element λi,k that maximizes L∗ in (6).



IV. SIMULATION RESULTS

In our simulation, we assume that the channels are slow
fading channels. The channel state information (CSI) is avail-
able to the transmitter and receiver. The transmission power
ranges from 0 to 100 mW and is equally divided into M = 10
levels. For channel Ck assigned to sensor Si, the normalized
channel gain gi,k is randomly generated. Some parameters in
the simulation are given in TABLE I.

TABLE I: Parameters for simulation

Symbol Description Value

Pc circuit power consumption 10 mW

Ps sensing power consumption 30 mW

T length of each time slot 1 s

α fraction of time for channel sensing 0.1

E total energy 500 J

W channel bandwidth 200 kHz
M transmission power levels 10

R∗ minimum data rate requirement 100 kbps
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Fig. 2: Channel identification accuracy (CIA)

We first consider the channel sensing problem with avail-
ability constraints. We set K = 16, m = 5, N = 100, and
μ∗ = 0.7. Elements in μ = {μ1, μ2, . . . , μK} are ordered and
equally spaced in the interval [0.05,0.95]. In the beginning,
all channels are assumed to be good channels. We compared
our algorithms with a threshold detection algorithm (TDA). In
TDA, we say a channel Ci is bad if in any time slot Tn we have
μ̂i,n < μ∗. The performance of algorithms is averaged over
1000 simulation runs. Fig. 2a shows that all our algorithms
correctly identify the good channels with higher accuracy
(above 90%) compared to that of TDA (82%). For the final
error rate, we have ε (ρSRA, η) > ε (ρIRA, η) > ε (ρAEA, η).
Unlike SRA and IRA that gradually identify bad channels
with high confidence, AEA achieves the lowest error rate
as it keeps sensing channels until it has high confidence
to eliminate at most half of the existing channels. We then
investigate how Δi,j affects the error rate ε for our channel
sensing algorithms. According to the definition in (7), we have
Δm

m = Δm
m+1 = min

i
Δm

i . We set K = 16, m = 5, N = 30,

and μ∗ = 0.7. We gradually change Δm
m from 0.05 to 0.45.

We compare the error rates of our algorithms with different
values of Δm

m. From Fig. 2b, we show that for all algorithms
the error rates ε decrease with increasing Δm

m. Under the same
parameter settings, AEA always has the lowest error rate.
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Fig. 3: Maximum number of transmitted bits in the cluster vs.
different number of sensors with data transmission requests.

Finally, we show the efficiency of JCSPCS in Fig. 3. Here,
we investigate JCSPCS with different n. We set K = 16,
m = 5, ε∗ = 0.1, Δm

m = 0.06 and μ∗ = 0.7. Fig. 3 shows
that JCSPCS outperforms the random channel access scheme
(RCAS) with different n in our simulation and JCSPCS is
the optimal solution. Note that Hungarian algorithm [6] has
O
(
n4

)
time complexity. However, this is not a problem in

practice since the number of sensors with data transmission
requests in each cluster is small (n ∼ 101).

V. CONCLUSION

In this paper, we considered power control and channel
sensing problem in a CRWSN. We proposed three ε-PAC
algorithms to solve the channel sensing problem with avail-
ability constraints. Then we considered the power control
problem with QoS constraints and aimed at maximizing the
total number of transmitted bits in the cluster. A joint channel
sensing and power control scheme (JCSPCS) is proposed to
optimize the total data transmission. Simulation results showed
that our ε-PAC algorithms can correctly identify good channels
with low error rate. We also showed that JCSPCS maximized
the number of transmitted bits in the cluster.
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