
VISIBILITY OF 4-COVERS OF ELLIPTIC CURVES

NILS BRUIN AND TOM FISHER

Abstract. Let C be a 4-cover of an elliptic curve E, written as a quadric
intersection in P3. Let E′ be another elliptic curve with 4-torsion isomorphic to
that of E. We show how to write down the 4-cover C ′ of E′ with the property
that C and C ′ are represented by the same cohomology class on the 4-torsion.
In fact we give equations for C ′ as a curve of degree 8 in P5.

We also study the K3-surfaces fibred by the curves C ′ as we vary E′. In
particular we show how to write down models for these surfaces as complete
intersections of quadrics in P5 with exactly 16 singular points. This allows us
to give examples of elliptic curves over Q that have elements of order 4 in their
Tate-Shafarevich group that are not visible in a principally polarized abelian
surface.

1. Introduction

Let E and E ′ be elliptic curves over a field k that are n-congruent, meaning
that there is an isomorphism of k-group schemes σ : E[n] → E ′[n]. We suppose
that the characteristic of k does not divide n. We may use σ to transfer certain
interesting arithmetic information between E and E ′. For instance let k be a
number field. An n-torsion element of the Tate-Shafarevich group X(E/k) may
be represented by a class ξ ∈ H1(k,E[n]). Let σ∗ : H1(k,E[n]) → H1(k,E ′[n])
be the isomorphism induced by σ. It might happen that while ξ maps to a non-
trivial element in X(E/k)[n], represented say by a curve C, the image of σ∗(ξ)
in H1(k,E ′), represented say by a curve C ′, could be trivial. This is an example
of Mazur’s concept of visibility (see [10, 16]): the graph ∆ ⊂ E[n] × E ′[n] of the
n-congruence σ provides an isogeny E × E ′ → (E × E ′)/∆ and a model for C
arises as the fibre of (E × E ′)/∆ over a point in E ′(k) that bears witness to the
triviality of C ′.

The case n = 2 is relatively special, because quadratic twists have isomorphic
2-torsion. It is true, however, that given any ξ ∈ H1(k,E[2]), one can find an-
other elliptic curve E ′ with isomorphic 2-torsion such that σ∗(ξ) ∈ H1(k,E ′[2])
represents a trivial homogeneous space under E ′; see [4, 15].
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In order to determine if a given class ξ ∈ H1(k,E[n]) can be made visible using
an n-congruence, one can proceed in three steps. We assume n > 2.

(i) One parametrizes the elliptic curves n-congruent to E. This amounts to
determining an appropriate twist XE(n) of the modular curve of full level
n. (We make no reference to the Weil pairing in the definition of XE(n), so
geometrically this curve has φ(n) components, where φ is Euler’s totient
function.)

(ii) If n > 2 then XE(n) is a fine moduli space and there is a universal elliptic
curve Et over XE(n). One constructs a fibred surface SE,ξ(n) → XE(n)
whose fibres are the n-covers of Et corresponding to ξ ∈ H1(k,Et[n]).

(iii) If one can find a rational point P on SE,ξ(n), and none of the cusps of
XE(n) are rational points, then ξ can be made visible by taking E ′ to be
the elliptic curve corresponding to the moduli point on XE(n) below P .
On the other hand, if SE,ξ(n) has no rational points then ξ cannot be made
visible using an elliptic curve n-congruent to E.

One can classify the n-congruence σ by the effect it has on the Weil pairing. If
n = 3, 4, it can either preserve or invert it. Correspondingly, the modular curve
XE(n) has two components X+

E (n) and X−E (n). Note that there is a tautological
point on X+

E (n) corresponding to E itself, and the fibre of S+
E,ξ(n)→ X+

E (n) above

this point represents the image of ξ in H1(k,E). If this image lies in X(E/k)
then the fibre, and hence also S+

E,ξ(n) itself, has points everywhere locally. Mazur
uses this in [16] to show that any element of X(E/k) of order 3 can be made
visible using an elliptic curve 3-congruent to E. Indeed he shows that S+

E,ξ(3) is a

blow-up of a twist of P2, and hence satisfies the local-to-global principle.
From a computational point of view, it is attractive if (E×E ′)/∆ can be realized

as a Jacobian, or more generally, admits a principal polarization. It naturally does
so if we start with σ inverting the Weil pairing. Again taking n = 3, one can show
that S+

E,ξ(3) is birational to P2 over k if and only if the same is true for S−E,ξ(3). It
follows (see [5]) that any element of X(E/k) of order 3 is visible in the Jacobian
of a genus 2 curve.

For larger n there are major obstacles to this kind of visibility over number
fields. Once n ≥ 6 the components of XE(n) have positive genus, and so rational
points are rare: the set of candidate elliptic curves E ′ is sparse for n = 6 and finite
for n ≥ 7. See [14] for explicit examples over Q of non-existence of such E ′ for
n = 6, 7.

In this article we consider the case n = 4. This case is particularly interesting
for several reasons:

(i) The curve X+
E (4) is of genus 0, but the surface S+

E,ξ(4) is a K3-surface.
Much is conjectured, but little is known about the rational points on K3-
surfaces.
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(ii) Given ξ ∈ H1(k,E[n]), representing a genus 1 curve of degree n, there is
another fibred surface TE,ξ(n) → XE(n) whose fibres are n-covers of Et,
but now sharing the same action of E[n] on a suitable linear system. For
n = 3, 4, 5, explicit invariant-theoretic constructions of these surfaces are
given in [12], [13]. When n is odd the surfaces S±E,ξ(n) and T±E,ξ(n) are the
same, but when n is even a correction to this idea is needed.

Taking n = 4, we may identify X±E (4)∼=P1. We start with D = {Q1 = Q2 =
0} ⊂ P3 a quadric intersection representing ξ ∈ H1(k,E[4]). The invariant theory
in [12] allows us to write down T±E,ξ(4) → P1 as a family of quadric intersections

in P3. However the fibres of S±E,ξ(4) → P1 cannot always be written as quadric
intersections. In this article we show how to write down a singular model for
S±E,ξ(4) as a complete intersection of quadrics in P5. On this model, the non-
singular fibres are genus 1 curves of degree 8.

In fact the surfaces S±E,ξ(4) and T±E,ξ(4) are twists of surfaces S(4) and T (4)
that may be defined as follows. Let X(n) be the modular curve whose non-
cuspidal points parametrize elliptic curves E together with a symplectic isomor-
phism E[n]∼=Z/nZ× µn. We write

Et : y2 = x(x− 1)(x− (1− t2)2

(1 + t2)2
)

for the universal elliptic curve over X(4)∼=P1. The Shioda modular surface of
level 4 is the minimal fibred surface S(4)→ X(4) with generic fibre Et. The theta
modular surface of level 4 is the minimal fibred surface T (4)→ X(4) with generic
fibre

Dt :

{
t(x2

0 + x2
2) + 2x1x3 = 0

t(x2
1 + x2

3) + 2x0x2 = 0

}
⊂ P3.

The relation between the fibres is that Dt has Jacobian Et.
We refer to [1] for many interesting facts about the geometry of the surfaces

S(4) and T (4). For example, they are both K3-surfaces (in fact Kummer surfaces)
with Picard number 20. Working over C, the surface T (4) is isomorphic to the
diagonal quartic surface in P3. Moreover the surfaces S(4) and T (4) are related
by generically 2-to-1 rational maps (in either direction) but are not birational.

1.1. Outline of the article. In Section 2 we review some of the interpretations
of H1(k,E[n]), most notably in terms of n-covers and theta groups. We also define
the (twisted) Shioda and theta modular surfaces.

In Section 3 we look at methods for computing 4-covers of elliptic curves. A
central notion is that of a second 2-cover : any 4-cover D → E factors through a
2-cover C → E. The cover D → C is referred to as a second 2-cover. In terms of
Galois cohomology this corresponds to the sequence

H1(k,E[2])→ H1(k,E[4])→ H1(k,E[2]),
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where the first H1(k,E[2]) classifies the cover D → C and the second H1(k,E[2])
classifies C → E.

In Section 3.1 we review classical 4-descent. It has the drawback for us that it
only gives those 4-covers with a degree 4 model in P3. In Section 3.2 we describe a
variant of this method. In particular, given D → C → E where D has a degree 4
model in P3, we show how to twist the second 2-cover D → C by an arbitrary
element of H1(k,E[2]). The new 4-cover has a degree 8 model in P7. However, for
our purposes, it is convenient to project this to a curve in P5, still of degree 8.

In Section 4 we quantify the difference between S±E,ξ(n) and T±E,ξ(n) for arbitrary
n. Indeed the fibres differ by a cohomology class ν = ν(t), which we call the shift.
It was already shown in [8, Lemma 3.11] that the shift is trivial when n is odd.
We show that when n is even the shift takes values in H1(k,E[2]).

Section 5 reviews the geometry of the surfaces S(4) and T (4). In Section 6 we
describe how to compute the twists of these surfaces so that a prescribed 4-cover
D → E appears as a fibre. We assume that D is given as a quadric intersection
in P3. We use the invariant theory in [12] to write down the required twist of
T (4). By finding an explicit formula for the shift, and then using the method in
Section 3.2, we are then able to compute the required twist of S(4).

The methods in Section 6 for computing S+
E,ξ(4) and T+

E,ξ(4) are modified in

Section 7 to compute S−E,ξ(4) and T−E,ξ(4). The arguments here are somewhat
simplified by the observation that an elliptic curve and its quadratic twist by its
discriminant are reverse 4-congruent.

In Section 9 we give several examples. We exhibit some elliptic curves E/Q
such that for the elements ξ ∈ H1(Q, E[4]) representing elements of order 4 in
X(E/Q), the surface S−E,ξ(4) has no rational points. We show this by computing
an explicit model of the surface and checking that the surface has no p-adic points
for some prime p. If E(Q)/2E(Q) is trivial, it follows that visibility in a surface
can only happen via a rational point on S+

E,ξ(4). We prove in Proposition 8.2 that
if the Galois action on E[4] is large enough, then the resulting abelian surface does
not admit a principal polarization.

We note that if ξ ∈ H1(k,E[4]) represents an element in X(E/k) then S+
E,ξ(4)

has points everywhere locally. Thus, any failure for S+
E,ξ(4) to have rational points

constitutes a failure of the Hasse Principle. We plan to investigate this possibility
further in future work.

2. Preliminaries

2.1. Notation. For a field k, we write ksep for its separable closure. We write t
for the generic point on various modular curves we consider. When these curves
are isomorphic to P1, then t will instead denote a co-ordinate on P1. The identity
element on an elliptic curve E will be written as either 0 or 0E.
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2.2. Geometric interpretations of H1(k,E[n]). Let k be a field of character-
istic not dividing n and let E be an elliptic curve over k.

Definition 2.1. An n-cover of E over k is a pair (C, π), where C is a nonsingular
complete irreducible curve over k and π : C → E is a morphism such that there
exists an isomorphism ψ : (C ×k ksep) → (E ×k ksep) satisfying π = [n] ◦ ψ. Two
n-covers (C1, π1) and (C2, π2) are isomorphic over k if there is an isomorphism
α : C1 → C2 over k such that π1 = π2 ◦ α.

The isomorphism classes of n-covers are naturally parametrized by H1(k,E[n]).
This means that given ξ ∈ H1(k,E[n]) there is an n-cover CE,ξ → E, any n-cover
is isomorphic to one of this form, and two n-covers are isomorphic if and only if
they arise from the same class ξ. Restriction of cocycle classes corresponds to base
extending the cover.

If (C, π) is an n-cover of E then C itself is a twist of E (as a curve, not as an
elliptic curve). In fact C has the structure of homogeneous space under E, and
so represents an element in H1(k,E). The map H1(k,E[n]) → H1(k,E) may be
interpreted as forgetting the covering map π. In particular its kernel consists of
those n-covers (C, π) for which C(k) is non-empty.

Definition 2.2. A theta group for E[n] is a central extension 0 → Gm → Θ →
E[n]→ 0 of k-group schemes such that the commutator pairing on Θ agrees with
the Weil-pairing on E[n]. An isomorphism of theta groups is an isomorphism of
central extensions as k-group schemes.

The lift of the (translation) action of E[n] on the linear system |n.0E| to the
Riemann-Roch space L(n.0E) gives a theta group ΘE. If n ≥ 3 then L(n.0E) is
the space of global sections of a very ample line bundle LE,n. Choosing a basis for
this space provides a map E → Pn−1 that gives a model for E as an elliptic normal
curve of degree n. The theta group ΘE is then the full inverse image in GLn of
the group of projective linear transformations describing the action of E[n] on E
by translation.

As observed in [8, Sections 1.5 and 1.6], there is an action of E[n] on ΘE

by conjugation, and every automorphism of ΘE arises in this way. Therefore
the isomorphism classes of theta groups for E[n], viewed as twists of ΘE, are
parametrized by H1(k,E[n]).

Since an n-cover CE,ξ (as a curve) is a twist of E by a cocycle taking values
in E[n], we see that CE,ξ comes equipped with a degree n line bundle LE,ξ with
a theta group ΘE,ξ acting on it. It may be checked that ΘE,ξ is indeed the twist
of ΘE by ξ (in the sense of the last paragraph). The line bundle LE,ξ provides a
model of CE,ξ, but now only in an (n − 1)-dimensional Brauer-Severi variety, i.e.
a possibly non-trivial twist of Pn−1. The k-isomorphism class of the Brauer-Severi
variety gives a class in Br(k)[n].
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Definition 2.3. We write ObE,n : H1(k,E[n]) → Br(k) for the map that sends
ξ ∈ H1(k,E[n]) to the class of the Brauer-Severi variety corresponding to the
global sections of LE,ξ. In particular ObE,n(ξ) is trivial if and only if CE,ξ admits
a degree n model in Pn−1 with LE,ξ the pull back of O(1). In later sections we
write Obn(CE,ξ) = ObE,n(ξ).

It is shown in [8] that ObE,n(ξ) is determined by the isomorphism class of ΘE,ξ

(as a theta group for E[n]) without reference to E itself.

2.3. Twists of full level modular curves. An n-congruence between two ellip-
tic curves E,E ′ over k is an isomorphism of k-group schemes σ : E[n]→ E ′[n]. We
only concern ourselves with the case that the characteristic of k does not divide
n. The torsion subgroup scheme E[n] of an elliptic curve comes equipped with a
Weil pairing

en : E[n]× E[n]→ µn.

When classifying n-congruences one should take into account what happens to
the Weil pairing. The following proposition is trivial to prove and shows that
Aut(µn)∼= (Z/nZ)× classifies the possible types of n-congruences.

Proposition 2.4. Let σ : E[n] → E ′[n] be an n-congruence. Then there exists
τσ ∈ Aut(µn) such that

en ◦ (σ × σ) = τσ ◦ en.
We say that σ is a direct n-congruence if τσ is the identity and that σ is a reverse
n-congruence if τσ is inversion.

In our case, for n = 4, any n-congruence is either direct or reverse.
Fixing an elliptic curve E, we consider the moduli space Y +

E (n)(k) of pairs
(E ′, σ), where σ : E[n] → E ′[n] is a direct n-congruence. This moduli space is
represented by a curve Y +

E (n) over k, whose non-singular completion X+
E (n) is

a twist of the modular curve X(n) of full level n. Similarly, we write X−E (n)
for the twist of X(n) corresponding to the moduli space of pairs (E ′, σ) where
σ : E[n]→ E ′[n] is a reverse n-congruence.

If σ is a direct or reverse n-congruence, then the automorphism τσ from Propo-
sition 2.4 can be extended to an automorphism Gm → Gm. In this case, we see
that σ provides a way of comparing theta groups.

Definition 2.5. Let σ : E[n]→ E ′[n] be a direct or reverse n-congruence. Given
theta groups Θ,Θ′ for E[n] and E ′[n], we say a morphism ψ : Θ→ Θ′ (as k-group
schemes) is a σ-isomorphism if it makes the diagram below commutative.

0 // Gm
//

τσ

��

Θ

ψ

��

// E[n]

σ

��

// 0

0 // Gm
// Θ′ // E ′[n] // 0
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If σ is a direct n-congruence, this is the normal notion of isomorphism for theta
groups upon identifying E[n] and E ′[n] via σ.

2.4. Shioda modular surfaces. For n ≥ 3, the moduli space Y +
E (n) is fine, so

there is a universal elliptic curve Et with a direct n-congruence σt : E[n]→ Et[n]
over Y +

E (n). The relevant property for us is that any direct n-congruence between
E and another elliptic curve can be obtained by specializing t at the relevant
moduli point on Y +

E (n). We write S+
E (n)→ X+

E (n) for the minimal fibred surface
with generic fibre Et. This is a twist of Shioda’s modular surface of full level n.

Given ξ ∈ H1(k,E[n]), we can twist this surface further. Writing kt for the
function field of X+

E (n), we view ξ as an element of H1(kt, Et[n]) and take the
n-cover Ct,ξ → Et representing it. Let S+

E,ξ(n) → X+
E (n) be the minimal fibred

surface with generic fibre Ct,ξ. This is again a twist of Shioda’s modular surface,
and is isomorphic to S+

E (n) over the splitting field of ξ. In [16], the surfaces S+
E (n)

and S+
E,ξ(n) are called first and second twists.

We define S−E,ξ(n) similarly, by using a universal reverse n-congruence σt.

2.5. Theta modular surfaces. Alternatively, given an elliptic curve E over k
and ξ ∈ H1(k,E[n]), we base extend ΘE,ξ to a theta group over kt, the function
field of X+

E (n). Then ΘE,ξ ×k kt = ΘEt,ξt for some ξt ∈ H1(kt, Et[n]). Just as
in Section 2.4, we take the n-cover Ct,ξt → Et representing ξt. Then we define
the theta modular surface to be the minimal fibred surface T+

E,ξ(n)→ X+
E (n) with

generic fibre Ct,ξt .
By construction, the fibers of T+

E,ξ(n) → X+
E (n) are n-covers with a prescribed

theta group. Since ObE,n(ξ) is a function of ΘE,ξ, we see that ObEt,n(ξt) is the
base change of ObE,n(ξ) to kt. In particular, if ObE,n(ξ) = 0 then Ct,ξt admits a
degree n model in Pn−1, with a linear action of Et[n]. In that case, it follows that
T+
E,ξ(n) is birational to a surface in Pn−1, with an action of E[n] through ΘE,ξ.

This allows us to use invariant theory to write down models of T+
E,ξ(n).

Interestingly enough, ν(t) = ξt−ξ is not necessarily trivial. In fact, Theorem 4.1
proves that ν(t) is 2-torsion (as is seen by applying the result to the elliptic curves
E ×k kt and Et). In particular, if n is odd then ν(t) = 0 and the surfaces S+

E,ξ(n)

and T+
E,ξ(n) are isomorphic.

We define T−E,ξ(n) similarly, by reversing the order of multiplication on ΘE,ξ.

Since (Z/4Z)× = {±1}, this is sufficient to define TE,ξ(4).

3. Computing 4-covers

Let E be an elliptic curve and let ξ ∈ H1(k,E[4]). In this section, we write DE,ξ

for the corresponding 4-cover of E. We have 2ξ ∈ H1(k,E[2]) and write CE,2ξ for
the corresponding 2-cover of E. Note that the 4-cover DE,ξ → E naturally factors
as DE,ξ → CE,2ξ → E. It turns out to be advantageous to study 4-covers via this
intermediate structure.
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Definition 3.1. Let C → E be a 2-cover. A 2-cover of C is a cover D → C such
that the composition of covers D → C → E is a 4-cover. If we want to emphasize
that D is a 2-cover of a 2-cover, and not of an elliptic curve directly, we say that
D → C is a second 2-cover.

In this section we are concerned with finding models of second 2-covers. We fix
a 2-cover C → E over a field k with char k 6= 2, 3. We assume ObE,2(C) = 0, so
that C has a model

(1) C : Y 2 = G(X,Z),

where G is a binary quartic form, say

G(X,Z) = aX4 + bX3Z + cX2Z2 + dXZ3 + eZ4.

The classical invariants of G are

(2)
I = 12ae− 3bd+ c2,

J = 72ace− 27ad2 − 27b2e+ 9bcd− 2c3.

As observed by Weil, a model for E is given by

(3) E : y2 = x3 + Ax+B where A = −I/48 and B = −J/1728.

In the next two sections we assume for simplicity that ae 6= 0.

3.1. Models of 2- and 4-covers with trivial obstruction. In this section
we review classical 4-descent, as described in [11, 17, 20, 21] and implemented in
Magma [2].

If D → C is a second 2-cover such that Ob4(D) = 0 then D admits a degree 4
model in P3, say

D : Q1 = Q2 = 0,

where Q1, Q2 ∈ k[x] = k[x1, x2, x3, x4] are quadratic forms. Conversely, any such
smooth quadric intersection is a 4-cover of an elliptic curve.

Let Ai be the symmetric matrix such that Qi(x) = 1
2
xTAix. Then the inter-

mediate 2-cover has a model (1) in weighted projective space, with G(X,Z) =
det(XA1 + ZA2). In particular Ob2(C) = 0. Let T1, T2 ∈ k[x] be the quadratic
forms given by Ti(x) = 1

2
xTBix where

adj((adjA1)X + (adjA2)Z) = a2A1X
3 + aB1X

2Z − eB2XZ
2 + e2A2Z

3.

Then the covering map D → C is given by (X : Z : Y ) = (T1 : T2 : J) where

J = (1/4)
∂(Q1, Q2, T1, T2)

∂(x1, x2, x3, x4)
.

Let F = k[θ] be the étale algebra over k generated by a root θ of g(x) = G(x, 1).
A generic calculation shows that the quadratic form

(4) Ξ = θ−1eQ1 + T1 − θT2 + θ2aQ2
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in F [x] has rank 1 and satisfies aNF/k(Ξ) = J2. Specialising at any sufficiently
general x ∈ k4 shows that there exist α ∈ F× and r ∈ k× with NF/k(α) = ar2.
Moreover the class of α in F×/F×2k× only depends on the isomorphism class of
the 2-cover D → C.

Conversely, given a 2-cover C of the form (1), we can construct its 2-covers D
with Ob4(D) = 0 in the following way. Let F = k[θ] as above, and suppose that
α ∈ F× and r ∈ k× satisfy NF/k(α) = ar2. We consider the equation

(5) α(X − θZ) = (x1 + x2θ + x3θ
2 + x4θ

3)2.

Expanding in powers of θ gives 4 equations of the form

(linear form in X and Z) = (quadratic form in x1, . . . , x4).

Taking the norm NF/k and then extracting a square root gives, upon choosing the
sign of r, a further equation

rY = NF/k(x1 + x2θ + x3θ
2 + x4θ

3).

Taking linear combinations of these equations gives expressions forX, Y, Z in terms
of x1, . . . , x4, and two further quadratic equations in x1, . . . , x4 only. These define
a 2-cover Dα → C. Moreover the isomorphism class of this 2-cover only depends
on the class of α in F×/F×2k×.

The two constructions just presented are inverse to one another. We thus obtain
the following proposition. In stating it we use our freedom to multiply G(X,Z)
by a square to reduce to the case r = 1.

Proposition 3.2. Let C → E be a 2-cover. If there is a second 2-cover D → C
with Ob4(D) = 0 then C has a model of the form Y 2 = NF/k(α(X−θZ)). Moreover
if C takes this form then the collection of all 2-covers D of C with Ob4(D) = 0 is
given by

(6) ker(NF/k : F×/F×2k× → k×/k×2)

via the map δ 7→ Dαδ.

Remark 3.3. (i) Strictly speaking we should specify a choice of square root of
NF/k(δ), otherwise the 2-covers DE,ξ and DE,−ξ of CE,2ξ, differing by the automor-
phism Y 7→ −Y of CE,2ξ, cannot be distinguished.
(ii) Let g′(x) be the derivative of g(x) = G(x, 1). It is sometimes convenient to
write the equations for Dα as

(7) trF/k

(
x2

αg′(θ)

)
= trF/k

(
θx2

αg′(θ)

)
= 0,

where x = x1 + x2θ + x3θ
2 + x4θ

3.
(iii) The group (6) may be identified with a certain subgroup of H1(k,E[2])/〈2ξ〉
where 2ξ is the class of the 2-cover C → E. See [11] for further details.
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3.2. Models for twists of second 2-covers. Let D → C be a second 2-cover
with Ob4(D) = 0. By Proposition 3.2 we may assume that C has a model

(8) C : Y 2 = G(X,Z) = NF/k(α(X − θZ)),

and that D = Dα. In this section we are interested in models for any 2-cover
of C; not just the ones with trivial obstruction (as a 4-cover). These covers are
parametrized by H1(k,E[2]).

We recall that C is a 2-cover of the elliptic curve E : y2 = f(x) = x3 + Ax+ B
given by (3). Let L = k[ϕ] be the étale algebra over k generated by a root ϕ of
f(x). It is well known that

(9) H1(k,E[2])∼= ker(NL/k : L×/L×2 → k×/k×2).

In fact this is the special case of Remark 3.3(iii) with C = E.
The algebra L is related to F in the following way. We have that g(x) =

(x − θ)h(x), for some cubic h(x) ∈ F [x]. Then F [x]/(h(x)) = L ⊗k F , which we
denote by LF . As an algebra over k, it is obtained by formally adjoining two
roots, say θ and θ̃, of g(x). Let σ ∈ Autk(LF ) be the involution that swaps θ and

θ̃. We write M for the subalgebra of LF fixed by σ. This is the étale algebra of
unordered pairs of roots of g(x) and it has degree [M : k] = 6. We may identify L
as a subalgebra of M via

(10) ϕ = −(aθθ̃ − c/3 + e/(θθ̃))/4.

We fix a basis m1, . . . ,m6 for M over k, and put α̃ = σ(α). Let ν ∈ L× with
NL/k(ν) = s2 for some s ∈ k×. We show how to construct a twist Dν → C
of D → C. This will turn out to be the twist by the element of H1(k,E[2])
corresponding to ν under the isomorphism (9).

We consider the equation

(11) NLF/M(α(X − θZ)) = αα̃(X − θZ)(X − θ̃Z) = ν(y1m1 + . . .+ y6m6)2.

Expanding and taking coefficients of m1, . . . ,m6 gives 6 equations of the form

(quadratic form in X and Z) = (quadratic form in y1, . . . , y6).

Taking the norm NM/L and then extracting a square root gives

(12) Y = ν NM/L(y1m1 + . . .+ y6m6)

and hence 3 equations of the form

(linear form in Y ) = (quadratic form in y1, . . . , y6).

Taking linear combinations to eliminate X2, XZ,Z2 and Y leaves 5 quadratic
forms in y1, . . . , y6. These define Dν ⊂ P5, a genus 1 curve of degree 8. In fact
Dν is a 2-cover of C. Equations for the covering map Dν → C may be computed
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as follows. Again starting from (11), we take the norm NLF/F and then extract a
square root to give

±α(X − θZ)Y = sNLF/F (y1m1 + . . .+ y6m6).

The sign choice here may be absorbed into the cubic norm. Using (12) to eliminate
Y and then cancelling the common factor y1m1 + . . .+ y6m6 gives 12 equations of
the form

(bilinear form in X,Z and y1, . . . , y6) = (quadratic form in y1, . . . , y6).

These equations together with (12) define the covering map Dν → C.

Remark 3.4. (i) If we just eliminate Y from the 6+3+12 equations listed above,
then we get 20 quadrics in X,Z, y1, . . . , y6. These define a genus 1 curve embedded
in P7 via a complete linear system of degree 8. However we will see that working
with Dν ⊂ P5 has some advantages.
(ii) Taking ν = 1 gives a 2-cover D1 → E that is isomorphic to D → C. Indeed
on comparing (5) and (11) we see that an isomorphism is given by

y1m1 + · · ·+ y6m6 = (x1 + x2θ + x3θ
2 + x4θ

3)(x1 + x2θ̃ + x3θ̃
2 + x4θ̃

3).

In fact the yi span the same space as the 2×2 minors of the 2×4 matrix of partial
derivatives of the quadratic forms defining D.
(iii) A generic calculation shows that Dν ⊂ P5 has degree 8 and its homogeneous
ideal is (minimally) generated by 5 quadrics and 2 cubics. However the 5 quadrics
are sufficient to define the curve set-theoretically.
(iv) Let z ∈ L× correspond under the isomorphism (9) to the class of C → E.
By [7, Equation (3.1)] we have z ∈ M×2, and so z is a Kummer generator for
the quadratic extension M/L. Absorbing z into the squared factor on the right
of (11) we see that Dν and Dνz are isomorphic as curves. However as 2-covers of
C they differ by the automorphism Y 7→ −Y .

We prove an analogue of Proposition 3.2.

Proposition 3.5. Let C be the 2-cover (8). Then the collection of all 2-covers of
C is given by ker(NL/k : L×/L×2 → k×/k×2) via the map ν 7→ Dν.

Proof: Let η ∈ H1(k,E[2]) map to the class of ν ∈ L× under the isomor-
phism (9). To prove the proposition, we show that Dν → C is the twist of
D1 → C by η.

Let L = L ⊗k ksep. Note that L is the co-ordinate ring of E[2] \ {0E}, so
L = Map(E[2](ksep) \ {0E}, ksep). There is a homomorphism of Galois modules

w : E[2]→ µ2(L)

S 7→ (T 7→ e2(S, T )).
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Noting that M is an L-algebra and a 6-dimensional k-vector space, we see that
L× acts linearly on P(M) = P5. In particular S ∈ E[2] acts on P5 via w(S) and
this action restricts to D1.

If g(x) has roots θ1, . . . , θ4 then ksep(D1) = ksep(C)(
√
f12,
√
f13) where fij =

(X − θiZ)(X − θjZ)/Z2. Since D1 is a homogeneous space under E, there is an
action of E[2] on D1. This is given by

√
f12 → ±

√
f12 and

√
f13 → ±

√
f13. It

follows from the definition of the Weil pairing that this action agrees with the one
defined in the last paragraph.

Let η be represented by the cocycle σ 7→ ησ. Then we have w(ησ) = σ(γ)γ−1

and ν = γ2 for some γ ∈ L. There is a commutative diagram

Dν
·γ //

��

D1

��
C C

Therefore Dν → C is the twist of D1 → C via the cocycle σ 7→ σ(γ)γ−1, and this
completes the proof. �

4. Theta groups and the shift

In this section we prove the following theorem. We work over a field k of
characteristic not dividing n.

Theorem 4.1. Let E,E ′ be elliptic curves over k with a direct or a reverse n-
congruence σ : E ′[n] → E[n]. Then there exists ν ∈ H1(k,E[n]), depending only
on E,E ′, σ, such that for any ξ ∈ H1(k,E[n]) and ξ′ ∈ H1(k,E ′[n]) we have

(i) 2ν = 0 (in particular, if n is odd then ν = 0).
(ii) ξ = σ∗(ξ

′) + ν if and only if ΘE,ξ and ΘE′,ξ′ are σ-isomorphic.

Proof: We start by comparing the trivial theta groups ΘE,ΘE′ ⊂ GLn. There
is an isomorphism ψ defined over ksep making the following diagram commute

(13)

0 // Gm
//

τσ

��

ΘE′
//

ψ

��

E ′[n] //

σ

��

0

0 // Gm
// ΘE

// E[n] // 0.

Then ΘE′ is the twist of ΘE by the cocycle ρ 7→ ρ(ψ)ψ−1. This cocycle takes
values in Aut(ΘE)∼= Hom(E[n],Gm)∼=E[n], and so gives a class ν ∈ H1(k,E[n]).
If n is odd then ν = 0 by [8, Lemma 3.11]. We now adapt the argument to the
case where n is even.

The automorphism [−1] of E lifts to ι ∈ GLn(k). For each T ∈ E[n](ksep) we
pick a matrix MT ∈ ΘE(ksep), representing translation by T , such that

(14) ιMT ι
−1 = M−1

T .
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This condition determines the scaling of MT up to a choice of sign. If MS+T =
λMSMT then conjugating by ι shows that λ2 = en(S, T ) and so

(15) MS+T = ±en(S, T )1/2MSMT for all S, T ∈ E[n](ksep).

We claim that Mn
T = 1. Indeed for a suitable choice of co-ordinates x0, . . . , xn−1,

defined over ksep, we have MT : xi 7→ αζ ixi and ι : xi 7→ βxn−i for some α, β ∈ ksep

and ζ ∈ µn. By (14) we have α2 = 1. Since n is even it follows that Mn
T = 1. This

proves the claim.
In exactly the same manner we pick M ′

T ∈ ΘE′(k
sep) for all T ∈ E ′[n](ksep). We

can then choose ψ so that ψ(M ′
T ) = ±Mσ(T ) for all T ∈ E ′[n](ksep). Indeed if we

make this true on a basis for E ′[n], then the rest follows by (15) and its analogue
for E ′.

Let ρ ∈ Gal(ksep/k). Since ι is defined over k, it follows from (14) that

ρ(MT ) = ±Mρ(T ) for all T ∈ E[n](ksep).

Likewise

ρ(M ′
T ) = ±M ′

ρ(T ) for all T ∈ E ′[n](ksep).

The cocycle ρ 7→ ρ(ψ)ψ−1 now takes values in Hom(E[n], µ2) = E[2]. Therefore ν
is in the image of the natural map H1(k,E[2])→ H1(k,E[n]), and this proves (i).

It also follows that ΘE′ is σ-isomorphic to ΘE,ν . For the general statement, we
choose a ksep-isomorphism ψ′ : ΘE′,ξ′ → ΘE′ . Then the cocycle ρ 7→ ρ(ψψ′)(ψψ′)−1

represents the class σ∗(ξ
′) + ν. It follows that ΘE′,ξ′ is σ-isomorphic to ΘE,σ∗(ξ′)+ν .

Since, as we noted in Section 2.2, the twists of ΘE are parametrized by H1(k,E[n]),
this proves (ii). �

5. Geometry of the Shioda and theta modular surfaces

In this section we give two particular models of the Shioda and theta modular
surfaces of level 4. Any other Shioda or theta modular surface of level 4 will be
a twist of one of these, so these particular models are convenient for studying
the geometry of these surfaces. For the remainder of the paper, we revert to our
assumption that char k 6= 2, 3.

5.1. The universal elliptic curve of level 4. The Legendre form

y2 = x(x− 1)(x− λ)

provides a family of elliptic curves Eλ with a prescribed isomorphism (Z/2Z ×
µ2)→ Eλ[2]. The parameter λ gives an isomorphism Y (2) ' P1\{0, 1,∞}. Setting
λ = (1 − t2)2/(1 + t2)2 we obtain a family of elliptic curves Et with a prescribed
isomorphism (Z/4Z×µ4)→ Et[4]. The parameter t gives an isomorphism Y (4) '
P1 \ {0,∞,±1,±i} and the expression for λ in terms of t is an explicit realisation
of the map Y (4)→ Y (2).



14 NILS BRUIN AND TOM FISHER

5.2. The theta modular surface of level 4. The quadric intersection

(16) Dt :

{
t(x2

0 + x2
2) + 2x1x3 = 0

t(x2
1 + x2

3) + 2x0x2 = 0

}
⊂ P3

is a 4-cover of Et. By varying t these curves give a genus 1 fibration on the surface

(17) x0x2(x2
0 + x2

2)− x1x3(x2
1 + x2

3) = 0.

The action of Et[4] on Dt is generated by the transformations xν 7→ xν+1 and
xν 7→ iνxν , where we read the subscripts mod 4. (One convenient way to check an
automorphism of a genus 1 curve is geometrically a translation map, is to check
it has no fixed points.) The quadric intersections Dt therefore all have the same
theta group, and so (17) is a model for the theta modular surface T (4).

The surface T (4) is isomorphic to the Fermat quartic {u4
0−u4

1+u4
2−u4

3 = 0} ⊂ P3

via the change of co-ordinates

(u0 : u1 : u2 : u3) = (x0 + x2 : x0 − x2 : x1 − x3 : x1 + x3).

5.3. Shioda’s modular surface of level 4. The relative elliptic curve Et/Y (4)
provides us with an open part of the Shioda modular surface. In order to find a
suitable completion, we construct Et as a (trivial) 4-cover of itself. The interme-
diate 2-cover is

(18) Ct : Y 2 = XZ(X − Z)(X − λZ) with λ =
(1− t2)2

(1 + t2)2
.

A small adaptation (needed since here a = e = 0) of the construction in Section 3.2
leads to the second 2-cover given by

(19)

(X − Z)(X − λZ) = y2
1 (1− λ)XZ = y2

2

X(X − λZ) = y2
3 λ(X − Z)Z = y2

4

(X − λZ)Z = y2
5 X(X − Z) = y2

6

and

Y =
1 + t2

2t
y1y2 =

1 + t2

1− t2
y3y4 = y5y6.

Taking linear combinations to eliminate X2, XZ,Z2 and Y gives 5 quadrics that
define a smooth curve of degree 8 in P5:

(20) Dt :



y2
1 + y2

4 − y2
6 = 0

y2
2 − y2

3 + y2
6 = 0

y2
2 + y2

4 − y2
5 = 0

(1− t2)y1y2 − 2ty3y4 = 0

(1 + t2)y1y2 − 2ty5y6 = 0


⊂ P5
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The first 3 quadrics in (20) define a surface S0 ⊂ P5 of degree 8 with exactly
16 ordinary double points as singularities (8 defined over Q and the remaining 8
over Q(i)). Each curve Dt passes through all 16 singular points. Furthermore,
these are the points with Y = 0, and so make up the fibre of Dt → Et above 0Et .
In particular, Dt has a rational point over 0Et , so Dt → Et is indeed the trivial
4-cover. Blowing up the singular points gives Shioda’s modular surface S(4).

The action of Et[2]∼=Z/2Z× µ2 on Ct is generated by

(X : Z : Y ) 7→ (X − λZ : X − Z : (λ− 1)Y ),

(X : Z : Y ) 7→ (λZ : X : −λY ),

and the action of Et[4]∼=Z/4Z× µ4 on Dt is generated by

(21)
(y1 : y2 : y3 : y4 : y5 : y6) 7→ (−y2 : y1 : −y3 : y4 : −y6 : y5),

(y1 : y2 : y3 : y4 : y5 : y6) 7→ (iy1 : −iy2 : y4 : y3 : y6 : y5).

The subgroup of PicS(4) invariant under the action (21) was computed in [1],
and shown to be free of rank 2 generated by divisor classes I and F , where F is
the class of a fibre, and 2I is linearly equivalent to the sum of the 16 sections (i.e.
the blow-ups of the 16 singular points on S0). Our surface S0 is the image of S(4)
under the morphism to P5 given by the complete linear system |I + F |.

More generally there is a natural action of the affine special linear group G =
ASL2(Z/4Z) on S(4). The corresponding automorphisms of S0 are again given by
changes of co-ordinates on P5. The surfaces S±E,ξ(4) are twists of S(4) by cocycles
taking values in G, and so each must admit a model in a 5-dimensional Brauer-
Severi variety. Our calculations in Sections 6 and 7 show that if ObE,4(ξ) = 0 then
this Brauer-Severi variety is trivial. Indeed we show how to write down a model
for S±E,ξ(4) as a complete intersection of quadrics in P5.

Remark 5.1. Our calculations also give the genus 1 fibration, but in fact this
may be recovered directly from the equations for the surface. Indeed, if we take
a complement to the 3-dimensional space of quadrics vanishing on the surface,
inside the 6-dimensional space of quadrics vanishing at the singular points, then
this defines a map to P2 with image a conic. For example, with S0 as above,
the map is given by (X1 : X2 : X3) = (y1y2 : y3y4 : y5y6) and the conic is
X2

1 +X2
2 = X2

3 . Parametrising this conic gives the required map to P1.

6. Computing twists of S(4) and T (4) in the direct case

In this section we take ξ ∈ H1(k,E[4]) with ObE,4(ξ) = 0 and compute models
for S+

E,ξ(4) and T+
E,ξ(4).

6.1. The twisted universal elliptic curve of level 4. Let E/k be the elliptic
curve y2 = f(x) = x3 + Ax + B. If P = (xP , yP ) is a point on E then the
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x-co-ordinate of 2P is γ(xP ) where

γ(x) = (x4 − 2Ax2 − 8Bx+ A2)/(4(x3 + Ax+B)).

The elliptic curves directly n-congruent to E are parametrized by the non-cuspidal
points of X+

E (n). This is a twist of the usual modular curve X(n).

Lemma 6.1. The elliptic curves directly 4-congruent to E are

Et : y2 = −f(t)(x− γ(t))(x3 + Ax+B)

with base point (x, y) = (γ(t), 0), where t is a co-ordinate on X+
E (4)∼=P1, and the

original curve E corresponds to t =∞. Moreover the cusps of X+
E (4) are the roots

of d(t) = 0 where

d(x) = x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− A3 − 8B2

is the 4-division polynomial of E (divided by 2).

Proof: Putting Et in Weierstrass form, and making a change of co-ordinates on
X+
E (4), gives the family of curves computed by Silverberg. Indeed our parameter

t on X+
E (4) and the parameter t, here denoted by tSilverberg, in [19, Theorem 4.1]

are related by

t =
−(4A3 + 27B2)

18ABtSilverberg

− 3B

2A
.

An alternative proof, also treating the cases j(E) = 0, 1728, and leading to the
lemma as stated here, is given in [3, Proposition 7.2]. See also Remark 6.4(i). �

6.2. The twisted theta modular surface of level 4. Let D = {Q1 = Q2 =
0} ⊂ P3 be a quadric intersection with Jacobian E. Then D = DE,ξ for some
ξ ∈ H1(k,E[4]) with ObE,4(ξ) = 0. We use invariant theory to compute a model
for T+

E,ξ(4) as a quartic surface in P3, together with its genus 1 fibration over

X+
E (4).
We identify the quadratic forms Q1 and Q2 with 4 × 4 symmetric matrices A1

and A2 via Qi(x1, . . . , x4) = 1
2
xTAix. We then define G(X,Z) by

(22) G(X,Z) = det(XA1 + ZA2) = aX4 + bX3Z + cX2Z2 + dXZ3 + eZ4,

so that D is a 2-cover of C : Y 2 = G(X,Z). As in Section 3, we assume ae 6= 0
and let F = k[θ] where θ is a root of g(x) = G(x, 1).

Let T1, T2 ∈ k[x] be the quadratic forms defined in Section 3.1. The Hessian,
as defined in [12], is an SL2× SL4-equivariant map from the space of quadric
intersections to itself. It is given by

(Q1, Q2) 7→ (Q′1, Q
′
2) = (6T2 − cQ1 − 3bQ2, 6T1 − cQ2 − 3dQ1).
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Lemma 6.2. The quadric intersection

(23) Dt : {12tQ1 +Q′1 = 12tQ2 +Q′2 = 0} ⊂ P3

has intermediate 2-cover (after cancelling a factor 124)

Ct : Y 2 = Gt(X,Z) = aNF/k

(
(t+ µ)X − (θt+ λ)Z

)
,

where

(24)
λ = (6g′(θ)− θg′′(θ))/24 = −(cθ2 + 3dθ + 6e)/(12θ),

µ = −g′′(θ)/24 = −(6aθ2 + 3bθ + c)/12.

Proof: In principle this may be checked by a generic calculation. To make the
calculation practical we consider the case Q1 =

∑4
i=1 ξix

2
i and Q2 = −

∑4
i=1 ξiθix

2
i .

Then g(X) = 24(
∏4

i=1 ξi)
∏4

i=1(X − θi), and (Q1, Q2) has Hessian (Q′1, Q
′
2) where

Q′1 = 12
∑4

i=1 ξiµix
2
i and Q′2 = −12

∑4
i=1 ξiλix

2
i . Computing the intermediate

2-cover, by the method used in (22), gives the equation for Ct as stated. �

Corollary 6.3. Let ξ ∈ H1(k,E[4]) with DE,ξ = {Q1 = Q2 = 0} ⊂ P3. Then the
surface T+

E,ξ(4) has a model

{Q1Q
′
2 −Q2Q

′
1 = 0} ⊂ P3

with genus 1 fibration Dt as given in Lemma 6.2.

Let I and J be the invariants (2) of the binary quartic G(X,Z). Then E has
Weierstrass equation y2 = x3 +Ax+B where A = −I/48 and B = −J/1728. Let
Et be the family of elliptic curves directly 4-congruent to E, as given in Lemma 6.1.

Remark 6.4. (i) The genus 1 curves Ct and Dt have Jacobian Et. As observed
in [12], this gives an alternative proof of Lemma 6.1.
(ii) The family of quartics Gt(X,Z) has constant (meaning independent of t)
level 2 theta group. It should therefore be possible to write Gt(X,Z) as a linear
combination of the binary quartic G(X,Z) and its Hessian

H(X,Z) = (8ac− 3b2)X4 + (24ad− 4bc)X3Z + (48ae+ 6bd− 4c2)X2Z2

+ (24be− 4cd)XZ3 + (8ce− 3d2)Z4.

We find that Gt(X,Z) = (t3 + At+B)
(
4γ(t)G(X,Z) + 1

12
H(X,Z)

)
.

We can also use Proposition 3.2 to describe the family of 4-covers Dt. Let
α ∈ F×/F×2k× such that D = Dα. We may compute α from D by evaluating
the rank 1 quadratic form (4) at any point x ∈ k4 where it is non-zero (in each
constituent field of F ).

Theorem 6.5. The family of 2-covers Dt → Ct such that each 4-cover Dt → Et
has the same theta group as our original 4-cover D → E, is obtained by the
procedure in Section 3.1, starting in place of (5) with

(25) α
(
(t+ µ)X − (θt+ λ)Z

)
= (x1 + x2θ + x3θ

2 + x4θ
3)2.
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Proof: We show that the family of curves Dt is identical to that considered in
Lemma 6.2. In particular, the theta groups are not just constant up to isomor-
phism, but constant as subschemes of GL4. The quartic gt(x) = Gt(x, 1) has root
θt = (θt+λ)/(t+µ). Following (7), the quadric intersection obtained from (25) is

trF/k

(
x2

α(t+ µ)g′t(θt)

)
= trF/k

(
θtx

2

α(t+ µ)g′t(θt)

)
= 0,

where x = x1 + x2θ + x3θ
2 + x4θ

3. Since

(26) g′t(θt) = g′(θ)d(t)/(t+ µ)2

this may be re-written as

trF/k

(
(t+ µ)x2

αg′(θ)

)
= trF/k

(
(θt+ λ)x2

αg′(θ)

)
= 0.

The formula for the Hessian used in the proof of Lemma 6.2 now shows that the
fibre with t = ∞ has Hessian the fibre with t = 0. The proof is completed by
noting that the fibre with t =∞ is our original 4-cover D = Dα. �

Remark 6.6. Expanding (25) in powers of θ gives 4 equations of the form

(linear form in X, Z, tX, tZ) = (quadratic form in x1, . . . , x4).

Eliminating X,Z, t, we obtain a single quartic equation in x1, . . . , x4, describing
the twist of (17) that has Dt as fibres. This provides an alternative way of arriving
at the equation for T+

E,ξ(4) in Corollary 6.3.

6.3. The twisted Shioda modular surface of level 4. As in Section 3.2, let
L = k[ϕ] where ϕ is a root of x3 + Ax+ B = 0, and write σ for the involution of

LF swapping θ and θ̃. We write λ̃ = σ(λ) and µ̃ = σ(µ). By the construction in
Section 3.2, alternative equations for the curves Dt in Theorem 6.5 are given by

αα̃
(
(t+ µ)X − (θt+ λ)Z

)(
(t+ µ̃)X − (θ̃t+ λ̃)Z

)
= (y1m1 + . . .+ y6m6)2.

We now modify this by introducing a factor ν(t) representing the shift from
Theorem 4.1.

Theorem 6.7. The family of 2-covers Dt → Ct such that each 4-cover Dt → Et
has the same fibre above 0 (as an E[4]-torsor) as our original 4-cover D → E, is
obtained by the procedure in Section 3.2, starting in place of (11) with

(27) αα̃
(
(t+µ)X− (θt+λ)Z

)(
(t+ µ̃)X− (θ̃t+ λ̃)Z

)
= ν(t)(y1m1 + . . .+y6m6)2

where

(28) ν(t) =
d(t)

t2 − 2tϕ− 2ϕ2 − A
.
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Proof: We first note that

(29) NL/k(t
2 − 2tϕ− 2ϕ2 − A) = d(t),

and so ν(t) does indeed correspond to an element of H1(k,E[2]) via the isomor-
phism (9).

In Section 5.3 we exhibited another family of 4-covers Dt → Et. This had
constant fibre above 0, as could be checked by substituting (X : Z) = (0 : 1),
(1 : 0), (1 : 1) or (λ : 1) into the equations (19), and observing that in each case
the 4 solutions for (y1 : . . . : y6) ∈ P5(ksep) do not depend on λ. The argument
here is similar.

A calculation using (2), (3), (10) and (24) shows that

(30) (t+ µ̃)(θt+ λ)− (t+ µ)(θ̃t+ λ̃) = (θ − θ̃)(t2 − 2ϕt− 2ϕ2 − A).

Let ˜̃θ be another root of g. Substituting X = ˜̃θt + ˜̃λ and Z = t + ˜̃µ into the left
hand side of (27), gives a quartic polynomial in t, which by (29) and (30) is a
constant times ν(t), as defined in (28). Therefore the 16 points on Dt mapping
to the points on Ct with Y = 0, are independent of t. This shows that the fibre
above 0 is constant (with respect to t) as a k-scheme. In Section 5.3 we saw that
the action of Et[4] on Dt is given by formulae independent of t. Therefore the fibre
above 0 is also constant as an E[4]-torsor.

Finally we note that taking t = ∞ gives the cover (11) with ν = 1, which by
Remark 3.4(ii) is isomorphic to D. Of course, setting t = ∞ in (28) does not
literally make sense. However after homogenising, and rescaling by a square, we
do indeed have ν(∞) = 1. �

Corollary 6.8. Suppose that ξ ∈ H1(k,E[4]) and DE,ξ is given by (5). Then
the surface S+

E,ξ(4) has a singular model in P5 defined by 3 quadrics. These
quadrics are obtained from the [M : k] = 6 equations in k(t)[X,Z, y1, . . . , y6]
coming from (27), by taking linear combinations to eliminate X2, XZ and Z2.

Proof: The key point is that the 3 quadrics are independent of t. Again the
argument is best understood by comparing with the situation in Section 5.3. The
same calculation as mentioned in the proof of Theorem 6.7 shows that the linear
combinations of the left hand sides in (19) that vanish at (X : Z) = (0 : 1), (1 : 0),
(1 : 1) and (λ : 1), and therefore vanish identically, do not depend on t. This
explains why the first 3 quadrics in (20) do not depend on t. The same idea works
here. �

Remark 6.9. In Theorem 6.7 we not only made the fibre above 0 constant as a
k-scheme, we made it constant as a subscheme of P5. For this, and the application
to Corollary 6.8, we needed to know ν(t) mod L×2, not just mod L(t)×2.

The genus 1 fibration is given either by using (12) (which gives two further
quadratic forms in y1, . . . , y6, now depending on t) or by using Remark 5.1.
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7. Computing twists of S(4) and T (4) in the reverse case

In this section we take ξ ∈ H1(k,E[4]) with ObE,4(ξ) = 0 and compute models
for S−E,ξ(4) and T−E,ξ(4).

Let E/k be an elliptic curve y2 = f(x) = x3+Ax+B, and ∆ = −16(4A3+27B2)
its discriminant. We write E∆ for the quadratic twist of E by ∆. Likewise if
C → P1 is a double cover, then we write C∆ for its quadratic twist (over P1) by
∆. We may summarise the results of this section by saying that everything carries
over from Section 6 with the following changes.

• We replace Et by E∆
t and Ct by C∆

t .
• The family Dt is computed using the contravariants instead of the covari-

ants (these were the identity map and the Hessian).
• In Theorem 6.5 we multiply one side of the equation by g′(θ). This is an

element of F whose norm is ∆ (up to squares).

• In Theorem 6.7 we multiply one side of the equation by (θ − θ̃)2∆.

We now go through the changes in detail.

7.1. Reverse twists of the universal elliptic curve. Let

E∆ : y2 = ∆ f(x)

be the quadratic twist of E by ∆. Then by [3, Corollary 7.4], or Remark 7.3
below, there is a reverse 4-congruence σ : E[4] → E∆[4]. We may thus identify
X−E (4) = X+

E∆(4). It is immediate from Lemma 6.1 that

E∆
t : y2 = −∆ f(t) (x− γ(t))(x3 + Ax+B),

with base point (x, y) = (γ(t), 0), is the universal elliptic curve over X−E (4).

7.2. Reverse twists of the theta modular surface. Let ξ ∈ H1(k,E[4]) with
ObE,4(ξ) = 0. Then the 4-cover DE,ξ has a model as a quadric intersection D ⊂ P3

with theta group Θ = ΘE,ξ ⊂ GL4. Let Θ∨ ⊂ GL4 be the subgroup of matrices
inverse transpose to those in Θ. Let π : Θ∨ → E∆[4] be the map that makes the
following diagram commute (where the superscript −T denotes inverse transpose)

0 // Gm
//

.−1

��

Θ //

.−T

��

E[4] //

σ
��

0

0 // Gm
// Θ∨

π // E∆[4] // 0

Since σ reverses the Weil pairing, the second row gives Θ∨ the structure of theta
group for E∆[4]. The diagram then shows that Θ and Θ∨ are σ-isomorphic (see
Definition 2.5).

We have Θ∨ = ΘE∆,ξ′ for some ξ′ ∈ H1(k,E∆[4]). By [8, Theorem 5.2] there
is a unique model for the 4-cover DE∆,ξ′ as a quadric intersection D∨ ⊂ P3 with
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theta group Θ∨. The contravariants, introduced in [12], give a way of computing
equations for D∨. The details are as follows.

Let D = {Q1 = Q2 = 0} ⊂ P3, and let A1 and A2 be the corresponding
symmetric matrices. Let a, b, c, d, e and I, J and A,B be as defined in Section 3.
Let S0, . . . , S3 be the quadratic forms corresponding to the matrices C0, . . . , C3

defined by

adj(XA1 + ZA2) = C0X
3 + C1X

2Z + C2XZ
2 + C3Z

3.

The contravariants are defined by

R1 =
1

12

(
∂I

∂a
S0 +

∂I

∂b
S1 +

∂I

∂c
S2 +

∂I

∂d
S3

)
,

R2 =
1

12

(
∂I

∂b
S0 +

∂I

∂c
S1 +

∂I

∂d
S2 +

∂I

∂e
S3

)
,

R′1 =
1

122

(
∂J

∂a
S0 +

∂J

∂b
S1 +

∂J

∂c
S2 +

∂J

∂d
S3

)
,

R′2 =
1

122

(
∂J

∂b
S0 +

∂J

∂c
S1 +

∂J

∂d
S2 +

∂J

∂e
S3

)
.

The quadric intersection D∨ then has equations

(31) D∨ : {−9BR2 + 2AR′2 = 9BR1 − 2AR′1 = 0} ⊂ P3.

Indeed the invariant theory shows that Θ∨ acts on D∨, and that D∨ has Jacobian
E∆. Strictly speaking, to show that D∨ has theta group Θ∨, we need that the two
actions of E∆[4] on D∨ (one arising from the identification Θ∨/Gm = E∆[4] and
the other from the structure of D∨ as a homogeneous space) agree. Since they
agree up to an automorphism of E∆[4] that respects the Weil pairing, the desired
agreement may be achieved by adjusting our choice of σ.

Remark 7.1. It is convenient to fix our choice of σ once and for all. Following
the proof of [3, Corollary 7.4] we let σ correspond to the non-trivial element in
the centre of GL2(Z/4Z)/{±1}, represented by the matrices

±
(

1 2
2 3

)
.

One way of seeing that this σ and the one from the previous paragraph agree (up
to sign) is by observing that both are defined for the elliptic curve E : x3 + a2x

2 +
a4x+a6 over k(a2, a4, a6), which is a sufficiently general elliptic curve not to admit
other σ. But then any elliptic curve over k can be obtained by specializing this
E, and σ specializes with it.

The following lemma follows from (31) by direct calculation.
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Lemma 7.2. If D ⊂ P3 has intermediate 2-cover C : Y 2 = G(X,Z) then D∨ ⊂ P3

has intermediate 2-cover C∆ : Y 2 = ∆G(X,Z).

Remark 7.3. Since C∆ is a 2-cover of E∆, it follows that D∨ has Jacobian E∆.
As observed in [12], this gives an alternative proof that E and E∆ are reverse
4-congruent.

Let u1, . . . , u4 and v1, . . . , v4 be a pair of bases for F as a k-vector space, that
are dual with respect to the trace form, i.e. trF/k(uivj) = δij. For example we
could take ui = θi−1 and vj = βj−1/g

′(θ) where

g(X)

X − θ
= β3X

3 + β2X
2 + β1X + β0.

Lemma 7.4. The theta groups for the quadric intersections obtained from

(32) α(X − θZ) = (x1u1 + . . .+ x4u4)2

and

(33)
1

αg′(θ)
(X − θZ) = (x1v1 + . . .+ x4v4)2,

are the inverse transpose of each other.

Proof: Extending our field we may assume F = k4. It then suffices to prove the
lemma in the case where u1, . . . , u4 and v1, . . . , v4 are the standard bases.

Following (7), the quadric intersections obtained from (32) and (33) are

trF/k

(
x2

αg′(θ)

)
= trF/k

(
θx2

αg′(θ)

)
= 0,

and

trF/k
(
αx2
)

= trF/k
(
αθx2

)
= 0.

The lemma reduces to showing that if D ⊂ P3 is defined by

4∑
i=1

ξix
2
i =

4∑
i=1

ξiθix
2
i = 0,

then D∨ ⊂ P3 is defined by

4∑
i=1

x2
i

ξig′(θi)
=

4∑
i=1

θix
2
i

ξig′(θi)
= 0.

where g(θ) =
∏4

i=1(X − θi). This follows by direct calculation using the con-
travariants. �

We obtain the following analogue of Theorem 6.5. Let λ and µ be as defined in
Lemma 6.2. We identify E[4] = E∆[4] via σ as specified in Remark 7.1.
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Theorem 7.5. The family of 2-covers D∨t → C∆
t such that each 4-cover D∨t → E∆

t

has theta group the inverse transpose of that for our original 4-cover D → E, is
obtained by the procedure in Section 3.1, starting in place of (5) with

(34) αg′(θ)
(
(t+ µ)X − (θt+ λ)Z

)
= (x1 + x2θ + x3θ

2 + x4θ
3)2.

Proof: According to Lemma 7.4 we need to add a factor g′t(θt) to the formula
in Theorem 6.5. However, since we only care about the image of this element in
F×/F×2k× we see by (26) that we can use g′(θ) instead. �

The analogue of Corollary 6.3 is that the surface T−E,ξ(4) fibered by D∨t is given
by

{R1R
′
2 −R2R

′
1 = 0} ⊂ P3.

Alternatively, an equation for this surface may be obtained from (34), exactly as
in Remark 6.6.

7.3. Reverse twists of Shioda’s modular surface. Let σ : E[4] → E∆[4] be
the reverse 4-congruence specified in Remark 7.1. Given ξ ∈ H1(k,E[4]) with
ObE,4(ξ) = 0 we would like to write down a model for S−E,ξ(4) = S+

E∆,σ∗(ξ)
(4).

If ObE∆,4(σ∗(ξ)) = 0, i.e. σ∗(ξ) is represented by a quadric intersection (and
we have these equations explicitly) then Theorem 6.7 gives equations for S−E,ξ(4).
Unfortunately this condition is not always satisfied.

Since ObE,4(ξ) = 0 we have a model D = DE,ξ ⊂ P3. The work in Section 7.2
gives us D∨ = DE∆,ξ′ ⊂ P3. It remains to determine κ = σ∗(ξ) − ξ′. If D is a
2-cover of C then Lemma 7.2 shows that D∨ is a 2-cover of C∆. Since the matrix
in Remark 7.1 is congruent to the identity mod 2, we see that DE∆,σ∗(ξ) is also a

2-cover of C∆. Therefore 2ξ′ = 2σ∗(ξ), and so κ is 2-torsion.

Lemma 7.6. Suppose we have a 4-cover D = DE,ξ with ObE,4(ξ) = 0 and let
D∨ = DE∆,ξ′. Then σ∗(ξ) = ξ′ + κ, where

κ = (3ϕ2 + A)/(4A3 + 27B2)

under the isomorphism (9).

Proof: By the same argument as in the proof of Theorem 4.1, we see that κ only
depends on σ : E[4] → E∆[4], and not on ξ itself. Thus it suffices to show that
the inverse transpose of ΘE is the twist of ΘE∆ by κ.

Let E have Weierstrass equation y2 = x3 + Ax + B. We embed E → P3 via
(x1 : . . . : x4) = (1 : x : y : 3x2 + A). The image is D ⊂ P3 defined by

Ax2
1 − x1x4 + 3x2

2 = 0,

3Bx2
1 + 2Ax1x2 + x2x4 − 3x2

3 = 0.
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Then by (31), D∨ ⊂ P3 has equations

(35)
3Ax2

1 − 9Bx1x2 − A2x2
2 + 6(4A3 + 27B2)x2

4 = 0,

9Bx2
1 + 4A2x1x2 − 3ABx2

2 + (4A3 + 27B2)(x2
3 + 4x2x4) = 0.

On the other hand the 2-cover of E∆ corresponding to κ is given by

x+ (4A3 + 27B2)ϕ = κ(u+ vϕ+ wϕ2)2.

Expanding and taking the coefficients of ϕ and ϕ2 gives equations

(36)
3u2 − 2Av2 − 4Auw − 6Bvw + 2A2w2 = 0,

−4Auv − 3Bv2 − 6Buw + 4A2vw + 5ABw2 = s2.

The curves (35) and (36) are isomorphic via

(x1 : x2 : x3 : x4) = (18Bv − 4A2w : 12Av + 18Bw : 6s : 3u− 2Aw). �

Using the construction in Section 3.2, alternative equations for the curves D∨t
in Theorem 7.5 are given by

(37) NLF/M

(
αg′(θ)

(
(t+ µ)X − (θt+ λ)Z

))
= (y1m1 + . . .+ y6m6)2.

We now modify this by introducing a factor ν(t)κ representing the shift from
Theorem 4.1. We identify E[4] = E∆[4] via σ as specified in Remark 7.1.

Theorem 7.7. The family of 2-covers D∨t → C∆
t such that each 4-cover D∨t → E∆

t

has the same fibre above 0 (as an E[4]-torsor) as our original 4-cover D → E, is
obtained by the procedure in Section 3.2, starting in place of (11) with

(38) NLF/M(α
(
(t+ µ)X − (θt+ λ)Z

)
) = ν(t)(θ − θ̃)2∆(y1m1 + . . .+ y6m6)2

where ν(t) is given by (28).

Proof: We introduce an extra factor ν(t)κ to the right hand side of (37). Since
the factors g′(θ) and κ do not depend on t, the proof that we obtain a family of
curves with constant fibre above 0 is exactly the same as for Theorem 6.7.

If D = DE,ξ then by Lemmas 7.4 and 7.6 the fibre above t =∞ is DE∆,σ∗(ξ).
Finally we simplify our modified version of (37). A calculation along the same

lines as the proof of (30) shows that

g′(θ)g′(θ̃) = −16(θ − θ̃)2(3ϕ2 + A).

Therefore

g′(θ)g′(θ̃)κ ≡ (θ − θ̃)2∆ mod L×2,

and this gives the equation (38) as required. �

Exactly as in Section 6.3, we obtain the following.
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Corollary 7.8. Suppose that ξ ∈ H1(k,E[4]) and DE,ξ is given by (5). Then
the surface S−E,ξ(4) has a singular model in P5 defined by 3 quadrics. These
quadrics are obtained from the [M : k] = 6 equations in k(t)[X,Z, y1, . . . , y6]
coming from (38), by taking linear combinations to eliminate X2, XZ and Z2.

For the purposes of Corollary 7.8 we may ignore the factor ∆ ∈ k in (38). So

compared to the direct case, we only need to multiply ν(t) by a factor (θ − θ̃)2.
This is a Kummer generator for the quadratic extension LF/M .

8. Polarizations

Let A be an abelian surface over a field k of characteristic 0. We write A∨ for
the dual abelian surface. As is described in, for instance, [18, Section 13], there
is an injective group homomorphism NS(A) → Hom(A,A∨). A polarization is a
homomorphism that lies in the image of the ample cone. These are isogenies. A
principal polarization is a polarization that is an isomorphism.

If an abelian variety A has a principal polarization λA, then the map λ 7→ ψλ =
λ−1
A λ identifies the set of polarizations with a special semigroup in End(A).
Elliptic curves E have a natural principal polarization λE : E → E∨ and on a

product of elliptic curves E × E ′, the product of these gives a principal product
polarization.

If E,E ′ are two non-isogenous elliptic curves without complex multiplication
(CM) then End(E×E ′) = End(E)×End(E ′) = Z×Z. For such a surface one has
NS(E×E ′) ' Z×Z, the semigroup of ample classes is Z>0×Z>0, and polarizations
correspond to the endomorphisms [n]E × [n′]E′ , with n, n′ ∈ Z>0.

An abelian surface A is called decomposable if it admits a non-constant map
to an elliptic curve. In that case the Poincaré reducibility theorem [18, Propo-
sition 12.1] gives us that there are two elliptic curves E,E ′ ⊂ A, such that the
natural map φ : E × E ′ → A is an isogeny. We call such an isogeny an optimal
decomposition.

In this section we are interested in determining when such a surface A may admit
a principal polarization λA. If it does, we have a polarization φ∗(λA) = φ∨λAφ on
E × E ′ of degree deg(φ)2.

On a principally polarized abelian variety A we write en for the Weil pairing
on A[n] and eA[n] if we want to emphasize the abelian variety. We paraphrase
[18, Proposition 16.8].

Proposition 8.1. Let φ : E × E ′ → A be an isogeny and ∆ = kerφ. Let λ be a
polarization on E × E ′. Suppose that ∆ ⊂ kerλ ⊂ (E × E ′)[n]. Then λ = φ∗(λ′)
for some polarization λ′ on A if and only if the Weil pairing en on (E × E ′)[n]
restricts to the trivial pairing on ∆× ψλ( 1

n
∆).

Proposition 8.2. Let A be a principally polarized decomposable abelian surface,
with optimal decomposition φ : E×E ′ → A. Suppose that E,E ′ are non-isogenous
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and have no CM. Then the kernel of φ is the graph of a reverse n-congruence,
where deg(φ) = n2.

Proof: Since kerφ intersects trivially with E × {0} and {0} × E ′, we have that
kerφ∼=Z/d1Z × Z/d2Z for some positive integers d1 and d2. The principal po-
larization on A pulls back to a polarization λ of degree d2

1d
2
2. It follows that ψλ

must be an endomorphism of the same degree. Therefore ψλ = [n]E × [n′]E′ for
some positive integers n and n′ with nn′ = d1d2. Let pr1 : E × E ′ → E be the
first projection. Since kerφ ⊂ kerλ we have kerφ∼= pr1(kerφ) ⊂ E[n]. Therefore
d1 | n and d2 | n. The same argument shows that d1 | n′ and d2 | n′. Since
nn′ = d1d2 it follows that d1 = d2 = n = n′. Hence we have that ∆ = kerφ is the
graph of an isomorphism σ : E[n]→ E ′[n].

We see that ∆ ⊂ ψλ(
1
n
∆), so Proposition 8.1 implies that en(∆,∆) = 1. In

particular, if we have points T1 = (t1, σ(t1)) and T2 = (t2, σ(t2)) belonging to ∆
then by Proposition 2.4 we have that

1 = en(T1, T2) = eE[n](t1, t2)τσ(eE[n](t1, t2)).

Therefore τσ(ζ) = ζ−1, i.e. the n-congruence σ is indeed a reverse n-congruence.
�

Lemma 8.3. If σ : E[n] → E ′[n] is a reverse n-congruence, then the restriction
σ′ : E[d]→ E ′[d] for any d | n is also a reverse congruence.

Proof: Let n = dm. If t1, t2 are generators of E[n], then mt1,mt2 are generators
of E[d]. The result follows from the basic property of Weil pairings that

edm(t1, t2)m = ed(mt1,mt2). �

9. Examples

We first give an example showing how our methods improve on [12]. We then
give an example where X(E/Q)[4] is made visible by a second elliptic curve E ′,
but our methods are needed to find E ′. Finally we give some examples of 4-
torsion in X(E/Q) that cannot be made visible in a principally polarized abelian
surface. We do this by exhibiting some twists of S(4) that are not everywhere
locally soluble.

We refer to elliptic curves by their labels in Cremona’s tables [6].

Example 9.1. Let E and E ′ be the elliptic curves 96266a1 and 96266b1. We
have E(Q) = 0 and E ′(Q)∼=Z2. In this case there is a direct 4-congruence, and
the Mordell-Weil group of E ′ explains a subgroup (Z/4Z)2 ⊂X(E/Q). We verify
this for one element of X(E/Q) of order 4, the other cases being similar. The
element we consider is represented by C = {Q1 = Q2 = 0} ⊂ P3 where

Q1 = x2
1 + 3x1x2 + x1x3 + x1x4 − x2

2 + 2x2x3 + 2x2x4 − 2x2
3 − x3x4 − 3x2

4,

Q2 = x2
1 − 3x1x2 + 2x1x3 − 6x1x4 + 3x2

2 − 4x2x3 + 2x2x4 − 4x2
3 − 2x3x4 − 2x2

4.
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One of the elements of E ′(Q)/4E ′(Q) of order 4 maps to the 4-covering C ′ =
{Q′1 = Q′2 = 0} ⊂ P3 where

Q′1 = x1x2 + 2x1x3 + x2x3 − x2x4 + 2x3x4 + 6x2
4,

Q′2 = x1x2 + x1x3 + 3x1x4 + 2x2
2 − 2x2x3 − x2x4 + 2x2

3 − 3x3x4 + 4x2
4.

Starting from either C or C ′, and computing a twist of Shioda’s modular surface
using the method described in Corollary 6.8, we obtain

S :



2y1y4 − 2y1y5 − 2y2y6 + y2
3 − y2

5 + y2
6 = 0

2y2
1 − 2y1y3 − y1y5 + y1y6 − 2y2y3

+2y2y4 − y2y5 + y2y6 − y2
3 + y3y5 + y4y6 + y5y6 − y2

6 = 0

y2
1 + 4y1y3 − 2y1y4 − 2y1y5 + 2y1y6 + 2y2

2 + 2y2y3 + 2y2y4

−2y2y5 + y2
3 + 2y3y4 − 2y3y6 + 2y4y5 − 2y2

5 + 2y5y6 + y2
6 = 0


⊂ P5.

The embeddings C → S and C ′ → S are given by
y1

y2

y3

y4

y5

y6

 =


30 16 12 22 10 8
−3 −12 2 −23 −33 −14
−7 −4 −6 37 −13 6
41 −4 −38 21 3 6
22 40 −36 30 −14 4
10 24 −28 2 −18 28




f12

f13

f14

f23

f24

f34


and 

y1

y2

y3

y4

y5

y6

 =


−2 −10 −4 6 2 0
10 3 3 −2 0 −5
−20 1 −1 4 2 1
−16 −11 7 8 −6 1
−20 −16 −4 0 −4 −2
−8 −16 4 −2 2 0




f ′12

f ′13

f ′14

f ′23

f ′24

f ′34


where

fij =
∂(Q1, Q2)

∂(xi, xj)
and f ′ij =

∂(Q′1, Q
′
2)

∂(xi, xj)
.

It may be checked that these maps send the flex points on C and C ′ to the
singular points of S. In particular C and C ′ correspond to the same element of
H1(Q, E[4]) = H1(Q, E ′[4]).

Suppose instead that we use invariant theory. Let (Q′1, Q
′
2) have Hessian (Q′′1, Q

′′
2).

Then the quadric intersection {−281Q′1 + Q′′1 = −281Q′2 + Q′′2 = 0} ⊂ P3 is a 4-
covering of E. However this 4-covering is not locally soluble at 2. Therefore the
method in [12] for computing visible elements of X(E/Q) of order 4 does not
apply. This is because the shift is not locally soluble at 2.
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The equations for C, C ′ and S in Example 9.1 were simplified by making careful
choices of co-ordinates. This was achieved by a combination of minimisation
and reduction. For quadric intersections (such as C and C ′) these processes are
described in [9]. We make some brief comments on how this works for S.

The minimisation step relies on defining a suitable invariant. The discriminant
of a binary cubic form f(x, y) = ax3 + bx2y + cxy2 + dy3 is

∆(f) = −27a2d2 + 18abcd− 4ac3 − 4b3d+ b2c2.

Let q1, q2 ∈ k[z1, z2, z3] be a pair of quadratic forms with corresponding 3 × 3
symmetric matrices B1, B2. Then f(x, y) = det(B1x + B2y) is a binary cubic
form. We define ∆(q1, q2) = ∆(f). Now let Q1, Q2, Q3 be quadratic forms defining
a twist of the surface S0 in Section 5.3. Writing A1, A2, A3 for the corresponding
6× 6 symmetric matrices we find that

(39) det(A1z1 + A2z2 + A3z3) = f(q1, q2)

where f is a binary cubic and q1, q2 ∈ k[z1, z2, z3] are quadratic forms. We define
∆(Q1, Q2, Q3) = ∆(f)∆(q1, q2). This definition is independent of the choices of
f, q1, q2, provided that they satisfy (39).

Now let S ⊂ P5 be a twist of S0 defined over Q. Clearing denominators we may
assume that S is defined by Q1, Q2, Q3 ∈ Z[y1, . . . , y6]. Then the discriminant
∆ = ∆(Q1, Q2, Q3) is a non-zero integer. Using the natural action of GL3(Q) ×
GL6(Q) we seek to minimise |∆|, while preserving that the coefficients of the Qi

are integers. This process is carried out one prime at a time, the idea being that
for each prime p dividing ∆ we consider the scheme defined by the reductions of
the Qi mod p. We did not work out algorithms guaranteed to minimise |∆|, but
rather implemented some methods that seem to work reasonably well in practice.

The reduction step relies on defining a suitable inner product. Specifically we
take the inner product (unique up to scalars) that is invariant under the action of
ASL2(Z/4Z). For the surface S0 in Section 5.3 this is the standard inner product.
For general S we reduce to this case by finding a change of co-ordinates over C
relating S and S0. Performing lattice reduction on the Gram matrix of the inner
product then gives a change of co-ordinates in GL6(Z) that may be used to simplify
our equations for S.

In preparing Example 9.1 we also had to find the change of co-ordinates relating
the surfaces constructed from C and C ′. However it was easy to solve for this as
the unique change of co-ordinates defined over Q taking the singular points to the
singular points.

Example 9.2. Let E be the elliptic curve 31252a1. We have E(Q) = 0 and
X(E/Q)[4]∼= (Z/4Z)2. One of the elements of order 4 in X(E/Q) is represented
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by the 4-covering {Q1 = Q2 = 0} ⊂ P3 where

Q1 = 2x1x2 + 2x1x3 + x2
3 + 2x2

4,

Q2 = 6x2
1 + 6x1x2 − 14x1x3 + 9x1x4 + 11x2

2 + 10x2x3 − 31x2x4 + 3x2
3 + 22x3x4 + 7x2

4.

Corollary 7.8 gives the following reverse twist of Shioda’s modular surface.

S :



2y1y3 + 2y1y5 + 2y1y6 + 2y2
2 − 2y2y4 − 2y3y4 + y2

5 = 0

y2
1 − 2y1y2 − y1y4 + 2y1y5 + y2

2 + y2y3

−y2y4 + y2y5 + y2y6 − y3y5 + y3y6 − y2
4 − y4y6 = 0

y2
1 − y1y3 + 2y1y4 − y1y5 − y1y6 + 2y2y3

+3y2y4 + y2
3 + y3y5 + y4y5 + y4y6 − y2

5 − y5y6 = 0


⊂ P5.

A useful check on our calculations is that the flex points on C and the singular
points of S have the same field of definition. The genus 1 fibration on S may be
computed as described in Remark 5.1. We searched for rational points on S of
small height. Among the points we found were

(3 : 0 : −1 : −2 : −2 : 3), (1 : −8 : 3 : −22 : −6 : 31),

(−33 : 13 : −25 : 23 : 34 : 22), (21 : −10 : −17 : −26 : −14 : 55),

all lying on a fibre isomorphic to E ′ : y2 = x3 + 10609x+ 58646 with E ′(Q)∼=Z3.
The elliptic curves E and E ′ are reverse 4-congruent. It turns out that all of
X(E/Q)[4] is explained by E ′(Q). The conductors of E and E ′ are 31252 =
22 · 13 · 601 and 2468908 = 22 · 13 · 79 · 601. In particular E ′ is beyond the range of
any current tables of elliptic curves. (In fact E is 2-congruent to a rank 2 elliptic
curve of the same conductor, but these curves are not 4-congruent.)

Finally we give some examples where our twists of S(4) are not locally soluble.
As explained in the introduction, this can only happen in the reverse case. In Ta-
ble 1 we list some elliptic curves E/Q with E(Q) = 0 and X(E/Q)[4]∼= (Z/4Z)2.
In each case, for some of the elements ξ ∈ H1(Q, E[4]), representing an element
of X(E/Q) of order 4, the surface S−E,ξ(4) has no points locally at p, where p is
the prime indicated.

Proposition 9.3. Each of the elliptic curves E/Q in Table 1 has an element of
order 4 in X(E/Q) that cannot be made visible in a principally polarized abelian
surface over Q.

Proof: By construction, there exists ξ ∈ H1(Q, E[4]) such that [CE,ξ] ∈X(E/Q)
has order 4, yet S−E,ξ(4)(Qp) = ∅. Let us now assume that [CE,ξ] is visible in an
abelian surface A, i.e., that there is an injection E → A such that [CE,ξ] lies in
the kernel of the induced map on Galois cohomology H1(Q, E)→ H1(Q, A).
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Table 1. Some elliptic curves E for which there exists ξ ∈
H1(Q, E[4]) with [CE,ξ] ∈X(E/Q), yet S−E,ξ(4)(Qp) = ∅. Proposi-
tion 9.3 establishes that [CE,ξ] is not visible in a principally polarized
abelian surface.

p = 2 21720c1, 26712e1, 32784c1, 32816j1, 33536e1, 34560o1, 37984e1,
40328b1, 47664p1, 49176b1, 59248g1, 62328bj1, 69192f1, 69312ch1,
69312dp1, 73600bn1, 73840a1, 74368b1, 77440cl1, 77440cr1, 77600p1

p = 5 23950g1, 60725j1, 63825g1, 64975e1, 72600df1, 76175e1, 90450bs1,
105350z1, 120300n1, 121950ca1, 129850r1, 133950cy1, 137025s1,
141200bf1, 146700p1, 153425u1, 153425bd1, 154850m1, 154850m2

p = 13 56446n1, 62192t1, 70135c1, 100386g1, 104442w1, 124384g1,
132496df1, 172042o1, 200772u1, 216151f1, 226629g1, 256880dn1,
294060j1, 306735z1, 321945v1, 331240cy1, 335296dj1, 337155x1

p = 29 220342v1, 277530bc1, 277530bs1, 323785n1, 364994k1
p = 37 370999a1
p = 61 301401k1, 260470l1, 260470l2
p = 101 306030bg1, 306030bg2

As described in Section 8, there is an elliptic curve E ′ ⊂ A and an optimal
decomposition φ : E × E ′ → A. In particular, the kernel of φ is the graph of an
isomorphism between finite subgroups of E and E ′.

For each of the elliptic curves on our list we have E(Q)/2E(Q) = 0, equivalently
rankE(Q) = 0 and E[2] is irreducible as a Galois module. By [14, Theorem 3.1],
there exists, for some l ≥ 2, a congruence σ : E[2l] → E ′[2l] such that the graph
of σ is contained in kerφ, and [CE,ξ] = π(P ′) for some P ′ ∈ E ′(Q), where π is the
diagonal map in the following commutative diagram

E(Q)/2lE(Q) // H1(Q, E[2l]) // H1(Q, E)[2l] // 0

E ′(Q)/2lE ′(Q) //

π

33

H1(Q, E ′[2l]) // H1(Q, E ′)[2l] // 0

Since E(Q)/2lE(Q) = 0, we see that P ′ ∈ E ′(Q)/2lE ′(Q) has order 4. Since
E ′(Q)[2] = 0 it follows that rankE ′(Q) > 0 and P ′ ∈ 2l−2E ′(Q). Therefore ξ is
explained (via a 4-congruence) by an element of E ′(Q)/4E ′(Q).

Since rankE(Q) = 0 and rankE ′(Q) > 0, it is clear that E and E ′ are not
isogenous. Computation shows that the 4-division polynomial of E is irreducible
with Galois group of order 48. Since the largest abelian subgroup of GL2(Z/4Z)
has order 16, it follows that Gal(Qsep/Q) acts on E[4] via a large enough group to
ensure that E has no CM. It follows that any elliptic curve 4-congruent to E, in
particular E ′, has no CM.
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Proposition 8.2 and Lemma 8.3 show that for A to be principally polarized, the
congruence σ must be reverse.

However, as noted at the start of the proof, S−E,ξ(4) does not have any rational
points. Therefore the 4-congruence induced by σ is not reverse, and hence neither
is σ itself. This is the required contradiction. �

Remark 9.4. A curious fact about the examples in Table 1 is that the odd primes
p at which we find local obstructions satisfy p ≡ 5 (mod 8). Indeed, for any one
p, there are only finitely many Qp-isomorphism classes for the surface S−E,ξ(4), so
determining which ones have local obstructions is in principle a finite amount of
work. Proposition 9.5 provides one description of an insolvability criterion, that
appears to explain all the examples in Table 1 with p odd. Specifically, we have
checked in each of these cases that the elliptic curve E is directly 4-congruent over
Qp to an elliptic curve of the form considered in the proposition.

Proposition 9.5. Let p be a prime with p ≡ 5 (mod 8). Let E be the elliptic
curve y2 = x3 + Ax for some A ∈ Q×p with vp(A) odd. Let ξ be the image of
P = (0, 0) under the connecting map

E(Qp)/4E(Qp)−→H1(Qp, E[4]).

Then the surface S−E,ξ(4), which is defined over Qp, has no Qp-points.

Proof: We use Corollary 7.8 to show that S−E,ξ(4) has equations

0 = y2y3 − Ay5y6

0 = y1y4 + 2y2y5 + y2
3 − Ay2

6

0 = (y2
1 − 2y2

2) + A(y2
4 + 2y2

5) + 4Ay3y6

Since multiplying A by a 4th power gives the same elliptic curve we may suppose
vp(A) = ±1. We consider the case vp(A) = 1. Suppose (y1 : . . . : y6) is a Qp-point,
with y1, . . . , y6 ∈ Zp, not all in pZp. Since (2/p) = −1 we have y1 ≡ y2 ≡ y3 ≡ 0
(mod p). Then since (−2/p) = −1 we have y4 ≡ y5 ≡ y6 ≡ 0 (mod p). This is
the required contradiction. The case vp(A) = −1 is similar. �

Remark 9.6. We also found 4 examples (225336k1, 271800bt1, 329536y1, 368928bj1)
where for every ξ ∈ H1(Q, E[4]), representing an element of X(E/Q) of order 4,
the surface S−E,ξ has no points locally at 2, and a further 4 examples (271800bj1,

352800md1, 378400bv1, 378400by1) where each S−E,ξ(4) is locally insoluble either
at 2 or 5.

Example 9.7. Let E/Q be the elliptic curve 225336k1 with Weierstrass equation

y2 = x3 − x2 − 453476x− 197032572.
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One of the elements of X(E/Q) of order 4 is represented by D = DE,ξ ⊂ P3 with
equations

3x1x2 + 2x1x3 + 4x1x4 − 3x2x3 − 3x2x4 + 2x2
3 + x3x4 + 3x2

4 = 0

4x2
1 + 2x1x2 + x1x3 + x1x4 + 4x2

2 + 2x2x3 + 4x2
3 − 2x2

4 = 0

In the reverse case we get a surface S = S−E,ξ(4) ⊂ P5 with equations

7y1y2 − 7y1y3 − y1y4 + 19y1y5 + y1y6 − 4y2
2 + y2y3 + 5y2y4 − 11y2y5

−9y2y6 + 2y2
3 + 4y3y5 + 10y3y6 + 13y2

4 − 10y4y5 + 2y4y6 − 4y2
5 − 22y5y6 + 8y2

6 = 0,

4y2
1 − 8y1y3 − 6y1y4 + 11y1y5 − 18y1y6 − y2

2 + 17y2y3 − 8y2y4 − 11y2y5 − y2y6

−5y2
3 + 17y3y4 + 3y3y5 + 18y3y6 − 15y2

4 + 4y4y5 − 21y4y6 − 12y2
5 − 13y5y6 + 3y2

6 = 0,

3y2
1 + 4y1y2 + 16y1y3 + 4y1y4 − 11y1y5 + 6y1y6 − 11y2

2 + 3y2y3 − 4y2y4 + 15y2y5

+y2y6 + 10y2
3 + 19y3y4 + 7y3y5 + 28y3y6 + 2y2

4 − 23y4y6 − y2
5 + 31y5y6 + 20y2

6 = 0.

As a check on our calculations we verified that the flex points on D and the
singular points on S are defined over the same degree 16 number field.

We find that S(Q2) = ∅. As indicated in Remark 9.6, exactly the same happens
for the other elements of order 4 in X(E/Q). The argument in Proposition 9.3 now
shows that none of the elements of X(E/Q) of order 4 are visible in a principally
polarized abelian surface.
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