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Abstract

Automatic syntactic analysis is essential for extracting useful information from large-scale
learner data for linguistic research and natural language processing (NLP). Currently, re-
searchers use standard POS taggers and parsers developed on native language to analyze
learner language. Investigation of how such systems perform on learner data is needed
to develop strategies for minimizing the cross-domain effects. Furthermore, POS taggers
and parsers are developed for generic NLP purposes and may not be useful for identifying
specific syntactic constructs such as subcategorization frames (SCFs). SCFs have attracted
much research attention as they provide unique insight into the interplay between lexical and
structural information. An automatic SCF identification system adapted for learner language
is needed to facilitate research on L2 SCFs.

In this thesis, we first provide a comprehensive evaluation of standard POS taggers and
parsers on learner and native English. We show that the common practice of constructing
a gold standard by manually correcting the output of a system can introduce bias to the
evaluation, and we suggest a method to control for the bias. We also quantitatively evaluate
the impact of fine-grained learner errors on POS tagging and parsing, identifying the most
influential learner errors. Furthermore, we show that the performance of probabilistic POS
taggers and parsers on native English can predict their performance on learner English.

Secondly, we develop an SCF identification system for learner English. We train a
machine learning model on both native and learner English data. The system can label
individual verb occurrences in learner data for a set of 49 distinct SCFs. Our evaluation
shows that the system reaches an accuracy of 84% F1 score. We then demonstrate that the
level of accuracy is adequate for linguistic research. We design the first multidimensional
SCF diversity metrics and investigate how SCF diversity changes with L2 proficiency on a
large learner corpus. Our results show that as L2 proficiency develops, learners tend to use
more diverse SCF types with greater taxonomic distance; more advanced learners also use
different SCF types more evenly and locate the verb tokens of the same SCF type further
away from each other. Furthermore, we demonstrate that the proposed SCF diversity metrics
contribute a unique perspective to the prediction of L2 proficiency beyond existing syntactic
complexity metrics.
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Chapter 1

Introduction

Automatic syntactic analysis is essential for extracting useful information from large-scale
learner corpora for linguistic research and natural language processing (NLP). While re-
searchers mainly use standard syntactic analysis systems developed on native language data
to analyze learner data, research that investigates the cross-domain effect on the performance
of the systems has been limited. Furthermore, there is a lack of systems for automatic
identification of subcategorization frames, syntactic constructs important to second language
(L2) research. In this study, we provide a comprehensive evaluation of standard POS taggers
and dependency parsers on learner data. We also develop an SCF identification system for
learner data and propose novel SCF-diversity metrics, which prove to be useful for profiling
L2 development.

This introductory chapter first identifies the need for automatic syntactic analysis of
large-scale corpora. We then discuss automatic syntactic analysis on the specific domain
of learner language, identifying two major problems in the area (section 1.2). Section 1.3
summarizes our contribution to research in this area. The list of external resources used in
our research is given in section 1.4. Section 1.5 includes an overview of the organization of
this thesis.

1.1 Automatic syntactic analysis

Recent decades have seen the emergence of increasingly large collections of machine-
readable texts of natural language, i.e., corpora. Such corpora provide exciting opportunities
for both linguistic research and applications of natural language processing (NLP). For
linguistic research, large datasets can help to improve the empirical basis of conclusions,
and can support the discovery of linguistic phenomena that have escaped human intuition
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before (Cai and Liu, 2017). For NLP, a large amount of data can facilitate the use of machine
learning models to build powerful and accurate applications.

To fully exploit the power of corpora, it is essential to analyze corpora linguistically.
Particularly, syntactic analysis is important. Syntax describes how words are combined
into sentences. Such structural information has close interrelation with the other aspects of
language including morphology, lexicon, semantics, and pragmatics. Syntax has been an
important subject for investigation in corpus linguistics and theoretical linguistics (Gilquin
and Gries, 2009). Syntactic analysis provides not only indices to syntactic phenomena in
corpora, but also clues for retrieving lexical, semantic and pragmatic information (Meurers,
2015). Syntactic analysis has also been widely used to develop NLP techniques such as
lemmatization (Bird and Loper, 2004), semantic analysis (Roth and Lapata, 2016) and dis-
course analysis (Wang et al., 2017), as well as NLP applications such as machine translation
(Meng et al., 2015), automatic summarization (Cheung and Penn, 2014), sentiment analysis
(Choi and Cardie, 2008), and question answering (Andreas et al., 2016). Even though recent
development of deep learning models has enabled researchers to build some state-of-the-
art NLP applications without using explicit syntactic information, such NLP applications
are restricted in the area where large-scale annotations of target information are available.
Syntactic information remains vital to NLP applications where annotated data is limited.

As corpora become larger, manual marking of syntactic information is infeasible. As a
result, automatic techniques are required. In the present thesis, we use “annotation” to refer to
the manual marking of linguistic information, and we use “analysis” to refer to the automatic
marking of linguistic information. Existing syntactic analysis systems mainly focus on
parts-of-speech (POS) tagging and syntactic parsing. Early POS taggers and syntactic parsers
were developed by hand-crafted rules, while recent systems resort to increasingly powerful
probabilistic models trained on syntactic annotation, which has led to increased accuracy.

However, two problems exist in the automatic syntactic analysis. First, state-of-the-art
POS taggers and parsers are mostly trained on a particular domain of native language, e.g.,
the newswire domain for English. Such POS taggers and parsers might not generalize well to
other domains, where their accuracy can drop extensively. Second, POS taggers and parsers
are developed for generic NLP purposes. They may not be useful for extracting some specific
syntactic phenomena of interest to linguistic research.
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1.2 Syntactic analysis of learner language

Learner language represents a domain which is quite different from native language. Learner
language includes un-canonical syntactic structures and shows more variation than native
language due to factors such as first language (L1) background and L2 proficiency.

The syntax of learner language has long been an important factor in L2 research, educa-
tion, and NLP applications. L2 researchers have used syntactic information in learner corpora
to investigate the acquisition of syntactic features and structures (Crosthwaite, 2016; Kyle,
2016; Lu, 2010; Murakami and Alexopoulou, 2015; Römer et al., 2014; Vyatkina, 2013).
Learner corpora also allow L2 educators to extract syntactic observations for identifying
typical stages and common problems in L2 teaching (Díaz-Negrillo et al., 2010). In NLP, the
syntactic analysis of learner language has been used to support L2 educational applications
such as automatic error correction (Ng et al., 2014), automatic essay scoring (Tetreault et al.,
2010) and intelligent language tutoring systems (Meurers, 2012). The syntactic analysis
of learner corpora has also been used to support the development of NLP applications for
non-educational purposes such as automatic native language identification techniques (Jiang
et al., 2018; Tetreault et al., 2013), which can be useful in author profiling and forensic
analysis (Perkins, 2015).

The most commonly used syntactic analysis systems in L2 research are POS taggers
(Gries and Berez, 2017), followed by syntactic parsers for dependency structure or constituen-
cy structure (e.g., Kyle, 2016; Lu, 2010). Based on the results of POS taggers or syntactic
parsers, researchers have developed techniques for analyzing abstract syntactic features, such
as syntactic structural similarity (Graesser et al., 2011) and syntactic complexity (Biber,
1988; Kyle, 2016; Lu, 2010). These techniques are also used to analyze learner language.

Automatic syntactic analysis of learner language is also challenged by the cross-domain
problem. The systems that have been used to analyze learner data were developed based on
native language data (hereafter referred to as standard systems). However, learner language
is significantly different from native language. Standard systems may not perform well on
learner data due to learner errors and un-canonical structures. A small number of studies have
evaluated the accuracy of POS taggers (Geertzen et al., 2013; Rehbein et al., 2012; Van Rooy
and Schäfer, 2002) and parsers (Geertzen et al., 2013; Krivanek and Meurers, 2011; Ott and
Ziai, 2010) on learner data. However, most evaluations employed gold-standard annotations
which were obtained by manually correcting the results of a POS tagger or parser. Such
annotations might have biased towards the reference POS taggers or parsers, making the
evaluation results inaccurate (See section 2.3.2). Furthermore, there has been no systematic
investigation of how fine-grained learner errors influence standard syntactic analysis systems.
Such information would be important for L2 researchers to get an in-depth understanding of



4 Introduction

how standard systems perform on learner data, and what preprocessing techniques should be
used to minimize the unwanted impact of learner errors on syntactic analysis. Also, there has
been no systematic comparison of the performance of multiple syntactic analysis systems on
learner English. Neither has there been any comparison of how standard systems perform
on native data as opposed to learner data. Such information would be important for L2
researchers to know which syntactic analysis systems, among the many that are available,
should be chosen for analyzing learner data. For example, if the accuracy of parsers on native
data and learner data is correlated, L2 researchers can predict the accuracy of a parser on
learner data based on its accuracy on native data.

Another problem has been the lack of systems for identifying more specific syntactic
constructs necessary for L2 research. One such syntactic construct is subcategorization
frame (SCF). SCF denotes the number and types of syntactic complements required by a
predicate (Chomsky, 1965). SCF requires distinction between complements and adjuncts.
For example, the prepositional object on the chair in sentence (a) is a complement of put,
whereas the other prepositional object in a hurry is an adjunct. Recent decades have seen an
increasing interest in investigating SCF phenomena in L2 research (Bley-Vroman and Joo,
2001; Ellis and Ferreira–Junior, 2009; Gries and Wulff, 2005; Juffs, 1998; Kim et al., 2017;
McDonough and Trofimovich, 2016; Römer et al., 2015, 2014; Tono, 2004; White, 1987).
SCFs link lexis and morphosyntax, providing unique insight to the interplay between lexical
and structural information in L2 acquisition, the ways in which learners might generalize
syntactic patterns from individual lexical realizations, and how the properties of individual
verbs might constrain the acquisition of morphosyntax.

(a) Sam put the pen [on the chair] (in a hurry).

Some L2 studies on SCFs have used corpora to extract empirical evidence. However, they
relied on manual post-edition of the output of a POS tagger (Ellis and Ferreira–Junior, 2009;
Römer et al., 2014) or syntactic parser (Meurers et al., 2013; Römer et al., 2015; Tono, 2004).
Manual post-edition is costly and time-consuming (Römer et al., 2015), and has restricted
the amount of SCF data available for research. As a result, previous studies investigated
only a limited number of SCF types. The number of learners, as well as their range of L2
proficiency levels and L1 background, is also limited. Developing a system for automatic
identification of SCFs can help researchers to save effort in post-edition and achieve SCF
information at an unprecedented scale.

Automatic SCF identification is also important for developing linguistic complexity
metrics. Measures that gauge linguistic complexity, accuracy, and fluency (CAF) in learner
production are fundamental to L2 research (Norris and Ortega, 2009). Research within CAF
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has identified a variety of measures, such as lexical diversity, the mean length of clause, the
frequency of subordination and coordination (Housen et al., 2012). No research to date has
investigated SCFs from the perspective of linguistic complexity. Kyle (2016) points out that
independent indices are used to measure lexical and syntactic complexity even though they
are actually interrelated, and SCF-based complexity metrics may be useful in measuring this
interrelation. However, a large amount of SCF annotation is a pre-condition for calculating
SCF-based syntactic complexity measures. Kyle (2016) developed a tool which processes
the output of a dependency parser and extracts a syntactic construct called verb argument
construction (VAC) to calculate frequency-based linguistic complexity. However, while
VAC was intended to be SCF in theory, it was operationally defined as including all direct
dependents of a verb. In other words, VAC does not distinguish between complements and
adjuncts.

1.3 Our contribution

The aim of the present thesis is to provide some solutions to the cross-domain problem in
automatic syntactic analysis and the lack of an SCF identification system for L2 research.
We focus on learner English, as English is the most widely learned and used L2 in the world
(Lewis et al., 2009). Our study consists of three parts: the evaluation of standard POS taggers
and dependency parsers on learner English, the development of an SCF identification system
for learner English, and the investigation of SCF diversity during L2 development1

1.3.1 Evaluating standard POS taggers and parsers on learner English

The first part of our study evaluates the performance of multiple probabilistic POS taggers
and parsers on learner English. We first evaluate the accuracy of the POS taggers and parsers.
During this evaluation, we control for annotation bias in the gold standard, and investigate
the extent to which annotation bias may affect the evaluation. We also evaluate the impact of
fine-grained learner errors on the performance of a POS tagger and a parser, identifying the
most influential learner errors. Furthermore, we compare the performance of the POS taggers
and parsers on learner English with their performance on native English, and investigate
whether the performance of the POS taggers and parsers on native English can predict their
performance on learner English.

1We release the SCF identification system and a gold standard annotation of POS tags, dependencies, SCFs
and learner errors for learner English at https://github.com/cambridgeltl/subcategorization-frames-and-learner-
English-data. Some native English SCF recourses are also available in the repository.
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Our results have rich implications with regard to syntactic annotation and analysis of
learner data. Firstly, we demonstrate that the common practice of constructing a gold standard
– by manually correcting the output of a single parser – can introduce bias to the evaluation of
the POS taggers and parsers. We propose an alternative annotation method which can control
for the annotation bias. Secondly, We find that learner errors do have an impact on POS
tagging and parsing output, and that learner errors on punctuation, spelling, capitalization,
argument structures, determiners and prepositions cause most POS tagging and parsing
errors. Correcting these learner errors will be an effective pre-processing technique to reduce
POS tagging and parsing errors for downstream linguistic research and NLP applications on
learner English. Thirdly, we demonstrate that the performance of probabilistic parsers on
learner English can be predicted by their performance on native English. This implies that
when we want to choose a probabilistic parser for learner English, the most accurate parser
on native English can be a good candidate.

1.3.2 Automatic SCF identification for learner English

As a second part of the study, we develop the first SCF identification system for learner
English. We adopt a supervised classification approach, training a machine learning model
to classify the SCFs of individual verb tokens according to lexical, syntactic and semantic
information of the verbs and the context. We solve the cross-domain problem by training the
classifier on learner data as well as native language data, both of which are annotated with
SCFs. The resulting system can label individual verb occurrences in learner corpora for a
set of 49 distinct SCFs ranging from basic transitive and intransitive frames to complicated
frames that involve prepositional, verbal or clausal complements. We evaluate the accuracy
of the SCF identification system on learner data, and conduct an error analysis. Results show
that the system reaches an accuracy of 84.2% in general.

1.3.3 Application of the SCF identification system to linguistic re-
search

To illustrate the usefulness of the SCF identification system, we design the first metrics for
SCF diversity. Our metrics are multidimensional, following the suggestion of Jarvis (2013)
for a more varied approach to complexity metrics. We then investigate how SCF diversity
changes along the full span of L2 proficiency on a large learner corpus. We also compare the
prediction power of L2 proficiency between SCF diversity and existing syntactic complexity
metrics. Our results shed light on the L2 development of SCF diversity. We quantitatively
demonstrated that as L2 learners become more proficient, they tend to use more diverse
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SCF types with larger taxonomic distance. Also, more advanced learners use different SCF
types more evenly, and locate the verb tokens of the same SCF type further away from each
other. Meanwhile, Our results show that the proposed SCF diversity metrics can be a useful
measure of linguistic complexity, contributing to the prediction of L2 proficiency beyond
existing syntactic complexity metrics.

1.4 External resources

Corpora For learner English data, we employ EF-Cambridge Open Language Database
(EFCAMDAT) (Geertzen et al., 2013). For native English data, we employ Penn
Treebank (Marcus et al., 1993), and an SCF dataset (Quochi et al., 2014) developed
by annotating native language data sampled from British National Corpus (Aston and
Burnard, 1998).

Software For parser evaluation, we employ Stanford unlexicalized (Klein and Manning,
2003a) and lexicalized (Klein and Manning, 2003b) parsers, BLLIP parser (Charniak
and Johnson, 2005), Berkeley parser (Petrov and Klein, 2007), Turbo parser (Martins
et al., 2013) and MaltParser (Nivre et al., 2007). We also employ the Stanford tool for
converting constituency structure to dependency structure (De Marneffe and Manning,
2008a). We develop the SCF identification system with Python and SyntaxNet parser
(Andor et al., 2016).

1.5 Overview of subsequent chapters

The remaining chapters of this thesis are organized as follows:

Chapter 2 (Background to syntactic analysis of learner language) introduces the back-
ground and motivation for our work. We review the theoretical concepts and existing
taxonomies of POS, syntactic structure, and subcategorization. We then review L2
research on SCFs and syntactic complexity to establish why evaluation of standard
POS taggers and parsers on learner language and automatic identification of SCFs are
needed. We then survey previous research on evaluating POS taggers and dependency
parsers. We also review existing NLP systems related to SCFs. Finally, we summarize
the issues that this study intends to solve.
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Chapter 3 (Data) introduces the datasets used in the experiments of this study. These
datasets include learner English data from the EFCAMDAT, native English data from
Penn Treebank, and a subset of BNC annotated with SCFs.

Chapter 4 (Evaluation of POS taggers and parsers) presents our evaluation of the per-
formance of standard POS taggers and dependency parsers on learner English. We
introduce the design of three experiments and then report the result of each experiment.
The first experiment involves two rounds of annotation for POS tags and dependency
structures on learner data. We compare the accuracy of multiple parsers on the two
annotations, confirming the existence of annotation bias in the first annotation. We
then analyze and discuss various reasons for the annotation mistakes. The second
experiment involves annotation of the impact of learner errors on the output of a
parser. We find that learner errors have a substantial impact on parsing output, and
we summarize the most influential learner errors. The third experiment compares the
accuracy between standard parsers on native language data as opposed to learner data.
We find that the performance of a parser on native language data is predictive of its
performance on learner data.

Chapter 5 (Automatic SCF identification) presents an automatic SCF identification system
for learner language. We describe the annotation of SCFs on the learner data, and
introduce the machine learning model that we use to develop the system. We train the
system in two settings, one using learner SCF data only and the other with additional
native SCF data. The second setting proves to be more accurate. We then report the
fine-grained accuracy of each SCF type of the system. We also present an error analysis
of the system.

Chapter 6 (Application of automatic SCF identification: investigating L2 SCF diversity)
demonstrates the usefulness of our SCF identification system. First, we design mul-
tidimensional SCF diversity metrics. We then use the SCF identification system to
analyze learner English data, based on which we extract the SCF diversity measures of
the data. We analyze the relation between SCF diversity and L2 proficiency, and find
that more advanced learners tend to use more diverse SCFs. Furthermore, we compare
the SCF diversity metrics with existing syntactic complexity metrics, and find that
the SCF diversity metrics can contribute a unique perspective to the prediction of L2
proficiency.

Chapter 7 (conclusions) summarizes the contributions of this study and points out future
directions for research on syntactic analysis of learner data.



Chapter 2

Background to syntactic analysis of
learner language

In this chapter, we first review the theoretical definitions of relevant syntactic constructs and
introduce the existing taxonomies of these constructs. The purpose is to establish the basic
syntactic concepts that are used throughout the thesis. During the theoretical review, we
discuss the difficulty of defining the syntactic constructs, which reveal inherent ambiguity in
the boundary areas of these concepts. This theoretical discussion provides an explanation
for the ambiguous cases in the annotation practice in Chapter 4. We then review studies
on the L2 acquisition of SCFs and syntactic complexity. The purpose is to establish the
importance of automatic syntactic analysis of learner language in L2 research, and to point
out the need for automatic SCF identification techniques in the research of L2 SCFs and
syntactic complexity. Finally, we review syntactic analysis of learner language. We first
discuss the major challenges in analyzing the syntax of learner language. We then survey
existing POS taggers and parsers, and review previous evaluations of how standard POS
taggers and parsers developed on native language perform on learner language. We then
review existing NLP systems regarding SCFs.

2.1 Theoretical review of syntax

Syntax describes the way in which words of a language may be strung together to form
sentences (Culicover, 1982). The basic building blocks of all syntactic theories are the
syntactic categories of words, or parts of speech (POS). POS makes it possible to describe
syntax at an abstract level without enumerating all the word combinations for the same
syntactic pattern. The syntactic structure of a sentence is described with structural relations
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between the POS of the words in the sentence. Subcategorization frame (SCF) describes
the syntactic structure conventionally used with a lexical item, connecting syntax with the
lexicon. This paper focuses on the analysis of the three syntactic constructs mentioned above,
i.e., POS, syntactic structure, and SCF. The following sections review the theoretical concepts
of these constructs and their taxonomies in computational linguistics.

2.1.1 Parts of speech

A syntactic category is a group of words that have similar grammatical properties in a
given language (Schachter and Shopen, 1985). Traditional grammar uses POS to refer to
the syntactic categories of words, and the POS system developed by traditional grammar
has largely fed into modern linguistic theories. For example, the first extant grammar of
Greek classified POS into eight categories, i.e., nouns, verbs, participles, article, pronouns,
prepositions, adverbs, and conjunctions (Davidson, 1874), which are more or less followed
by modern linguistic theories.

In fact, POS is so fundamental to syntax that many modern linguistic theories directly
build on commonly-used POS without rigorously defining them at the beginning (Langacker,
1987). Traditionally, POS is defined in terms of the semantic classes of words. For example,
a noun denotes “the name of a person, place or thing”; an adjective denotes “a modifying
property”; and a verb denotes “an event, action, process or state” (Tallerman, 2013). Such
definitions can help to identify the central members of a syntactic category, but fail to provide
an adequate basis for classifying many boundary cases. For example, running expresses an
action, but is used as a noun in during the running and an adjective in the running man.

Contrastingly, Schachter and Shopen (1985) propose that the primary criteria for POS
classification are grammatical rather than semantic. More specifically, the grammatical
criteria can be derived from three aspects: the distribution of the word in sentence structure,
the inflectional features of the word, and the grammatical relations that the word can perform
in a sentence (e.g., subject, object, and indirect object). Such grammatical criteria provide a
more workable basis for classifying POS. For example, running in during the running can be
classified as a noun according to the distributional criterion that the determiner the usually
co-occurs with a noun to express the reference of the noun in context. However, such criteria
cannot identify whether a category is a POS – which is normally reserved for “major classes”
– or a subclass within a POS class. The grammatical criteria alone can only serve the purpose
of distinguishing words apart and provide no principles as to what criteria are central to a
category or what categories are actually substantive rather than “a matter of terminology”
(Schachter and Shopen, 1985).
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Table 2.1 Prototypical syntactic categories

Noun Adjective Verb
Semantic class Object Property Action
Pragmatic function Reference Modification Predication

Croft (1991) argues that grammatical criteria are internal criteria for classifying POS,
and more substantive POS categories can be established by considering external criteria in
lexical semantics and pragmatics. He proposes that syntactic categories can be considered
as typological variation centered around different prototypes, and that three prototypes –
nouns, verbs, and adjectives – can be established by pairing typical lexical semantic class and
pragmatic function for each category as in Table 2.1, for which the definitions of pragmatic
functions are as follows:

Reference to get the hearer to identify an entity as what the speaker is talking about;

Predication to say something about the referent;

Modification to fix the identity of the referent or provide a secondary comment on the
predication.

Moreover, the existence of these prototypical syntactic categories can be proved by
a typological pattern of markedness (Greenberg, 2005) in terms of lexical roots (e.g., an
unmarked lexical root has no more morphemes than a marked one), inflection (e.g., an
unmarked lexical item has no less inflectional options than a marked one) and textual
features (e.g., an unmarked lexical root appear in higher frequency than a marked one). The
prototypes are unmarked, whereas intermediate categories are marked. The prototypical
syntactic categories may be universal, as Croft (1991) finds consistent typological markedness
patterns for the three syntactic categories across twelve languages which are diverse in terms
of language families and regions. Table 2.2 illustrates the typological pattern of markedness
in terms of morphosyntax for English. When a lexical root is a member of prototypical
syntactic categories, the surface realization of the lexical root has no more monosynaptic
features than the marked ones. For example, run, a prototypical verb that semantically
denotes an action and is pragmatically used to talk about how a referent moves, is unmarked;
contrastingly, running, which still semantically denotes an action but pragmatically refers to
that action, requires an additional gerundial morpheme.

The consistency in the typological markedness patterns across different languages sup-
ports the substantive status of the POS categories of nouns, verbs, and adjectives. In other
words, these major syntactic categories exist not just because they are grammatically different
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Table 2.2 Typological markedness pattern in morphosyntax for English

Reference Modification Predication
Objects unmarked nouns genitive, adjectivaliza-

tions, PPś on nouns
predicate nominals

Properties deadjectival nouns unmarked adjectives predicate adjectives
Actions action nominals, com-

plements, infinitives,
gerunds

participles, relative
clauses

unmarked verbs

from each other within a language, but also because they have a distinct basis in human
cognition and communication.

Further analysis of fine-grained semantic features and diachronic factors can distinguish
other commonly-used POS, which are either the subclasses of or intermediate classes between
the major syntactic categories. For example, one notable semantic feature that distinguishes
adjectives from nouns is gradability: prototypical adjectives are gradable as they can be
manifested in degrees (e.g., very happy vs. mildly happy), while prototypical nouns are not
gradable (Croft, 1991). Cognitively, there is also a spectrum of conceptualizations ranging
from describing (denoting a property, which is strictly adjectival), classifying (denoting an
object that has the properties of a stereotypical kind such as thieves in they are thieves, which
is nominal but also has some characteristics of adjectives) to individualizing (denoting an
individual object, which is strictly nominal)(Bolinger, 1980). Croft (1991) finds markedness
pattern showing that pronouns are a subclass of nouns which are more prototypical nouns
than common nouns: more varied inflectional options (e.g., gender and case difference
in English)and higher textual frequency. He offers an explanation from the semantic and
cognitive aspects: pronouns are always cognitively used to individualize, i.e., refer to an
object, rather than to classify, whereas common nouns are often used to classify.

Meanwhile, Croft (1991) shows that numerals and quantifiers have markedness pattern
intermediate between those of prototypical nouns and prototypical adjectives. The can be
explained from the semantic and cognitive perspectives: quantities fall on a gradable scale
like adjectives, but are more discrete so that they can also refer to units as an object. Whether
quantities are more like nouns or adjectives depends on the scale of the quantities: when the
units are smaller, the individual unit is cognitively more salient and the quantities are more
likely to be conceived of as describing the property of the individual(s) (e.g., three people),
otherwise the aggregate of the units is cognitively more salient and can be considered as
a whole (e.g., thousands of people). Similarly, mass nouns, which are sometimes used as
modifiers, are intermediate between prototypical nouns and prototypical adjectives. This is
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because mass nouns are similar to properties in terms of being unbounded, homogeneous
and not individuatable.

Diachronic changes have also contributed to the intermediate syntactic categories. For
example, auxiliaries are changing from full verbs to verb affixes. Moreover, adpositions
are changing from verbs and relational nouns to case affixes (Heine and Reh, 1984). These
theories on the causes of intermediate syntactic categories can help to explain why some
syntactic categories are more prone to annotation bias, as we will see in Chapter 4.

While Croft (1991) provides a promising framework for determining syntactic categories,
there is on-going discussion and disagreement on this issues among theoretical linguists
and cognition scientists (Evans and Levinson, 2009). Corpus linguists and computational
linguists, nevertheless, have come up with extensive POS tagsets for practical purposes. The
first POS tagset, developed for the Brown corpus of English, contains 87 POS tags (Francis,
1964). Subsequent English POS tagsets expand further, e.g., to 197 tags for the London-Lund
corpus of spoken English (Svartvik, 1990). The goal of the extensiveness was to provide
distinct coding for all classes of words that have distinct grammatical behavior (Garside et al.,
1988). The English POS tagset developed for the Penn Treebank (PTB) (Marcus et al., 1993),
however, reduces to 36 tags for the purpose of avoiding data sparsity issue – some infrequent
POS categories may involve very few cases in the corpus, which can cause problems to
statistical machine learning models for automatic POS tagging. The POS tags eliminated
during the reduction are mostly lexically or syntactically recoverable. For example, the
Brown corpus tagset assigns distinct POS tags to auxiliaries like have and do, whereas the
PTB tagset merges the auxiliaries with verbs; these auxiliaries can be easily recovered by
their surface forms. Ever since its release, PTB has become an influential benchmark dataset
for automatic POS tagging and syntactic parsing of English. As a result, the POS tagset of
PTB is widely used in both computational linguistics and corpus linguistics.

There are also POS tagsets for languages other than English (e.g., Ejerhed et al., 1992;
Hardie, 2003; Khoja, 2001; Przepiórkowski and Woliński, 2003; Xia, 2000). However,
designing POS tagsets and annotating POS resources are costly. The lack of POS annotation
resources for some minor languages has driven some NLP researchers to investigate cross-
lingual POS projection from resource-rich languages like English to resource-poor languages
(Das and Petrov, 2011; Xi and Hwa, 2005; Yarowsky and Ngai, 2001). Alternatively,
some researchers developed unsupervised techniques for inducing POS tags from multiple
languages (Naseem et al., 2009; Snyder et al., 2009). To tackle the increasing need of
comparative evaluation during cross-lingual and multilingual natural language processing,
Petrov et al. (2012) proposes a universal POS tagset of twelve POS tags, providing a mapping
between the universal tagset and language-specific POS tagsets for 25 languages. The
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Fig. 2.1 Constituency structure

Universal Dependencies (UD) project (Nivre et al., 2016) further expands the tagset to 17
tags. While these tags are intended to describe the similarity between languages, UD also
provides a tagset of morphological features (e.g., Number, which can take values like singular
and plural, etc.) to capture detailed and possibly language-specific lexical information.

2.1.2 Syntactic structure

There are two major approaches to describing syntactic structure: the constituency-based
approach and the dependency-based approach. While the basic ideas of both approaches
can be found in early linguistic theories (e.g., Jespersen, 1924), the concrete ideas of the
constituency-based approach were first developed by Chomsky (1957). Subsequently, the
constituency approach has underlined many modern syntactic theories including Transfor-
mational Grammar (Chomsky, 1965), Lexical Functional Grammar (Kaplan et al., 1982),
Generalized Phrase Structure Grammar (Gazdar, 1985) and Head-driven Phrase Structure
Grammar (Pollard and Sag, 1994). The constituency approach basically combines words
into constituents and recursively combine smaller constituents into larger ones, forming a
hierarchical sentential structure. For example, a clausal constituent consists of a subject
(noun phrase) and a predicate (verb phrase). Figure 2.1 illustrates the constituency structure.

The dependency approach, on the other hand, was developed by Tesnière (1965) who
insisted that verbs should be the root of clauses. The dependency approach establishes
pairwise functional relations between words: each relation defines the dependence of a word
over the other, i.e., the head. Figure 2.2 illustrates the dependency structure.

Since the dependency-based approach does not involve non-terminal nodes, i.e., nodes
beyond the word level, in the tree structure (compare Figure 2.1 and 2.2), dependency
representation is minimal compared to constituency representation. Nevertheless, dependency
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Fig. 2.2 Dependency structure

structure also allows for analysis of sentences into constituents e.g., a noun phrase is a
constituent headed by a noun. Hudson (1980b) argues that dependency is necessary for
syntax while constituency is unnecessary, because dependency can represent any information
presented by constituency, and can easily represent a number of cross-category linguistic
constraints which are difficult to describe in terms of constituency. For example, many
languages tend to position dependents on one side of their heads (Heine, 1975): head-initial
languages like English tend to put heads before their complement dependents (e.g., verbs
precede objects and nouns precede relative clauses), whereas head-final languages like
Japanese presents the opposite order. This cross-categorical syntactic phenomenon can be
succinctly described in terms of the relative positioning of heads and dependents, whereas
many more rules are needed to describe in terms of consistency relations (e.g., separate
rules for verb phrases and noun phrases). Similarly, there is a general tendency that heads
determine the position of their dependents. In English, for example, any word except a finite
verb can be positioned at the beginning of a sentence as long as all the modifiers of the word
move with it (e.g., we can say In that car you can go faster but not *In you can go faster
that car). Furthermore, dependency also provides a succinct cross-categorical explanation of
SCFs: the dependents provide fillers to the syntactic frame of the heads.

Furthermore, Evans and Levinson (2009) argue that constituency is not universal because
many languages (e.g., Latin and Czech) exhibit free word order in which functionally-related
words (e.g., a noun and its modifier) may be non-contiguous and thus unsuitable to be
combined into constituents. For these languages, dependency can better describe the syntax.

Nevertheless, for languages (e.g., English) which exhibit relatively fixed word order
and naturally group words into functional constituents, constituency is a useful notion. In
fact, some syntacticians have used constituency to characterize the head of a dependency
relation. For example, Robinson (1970) identifies the head as the word which characterizes
the constituent involving the two words. Similarly, Schubert (1987) describes the head as the
word whose syntactic properties determines the behavior of the combination of the two words.
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Meanwhile, it is sometimes difficult to decide whether a dependency relation exists between
two words, or if a relation exists which word should be the head. In this case, grouping the
words together as a constituent can avoid forced assignment of a head.

While the basic notions of constituency and dependency seem straightforward, determi-
nation of specific syntactic relations can be complicated and debatable. In the constituency
framework, there is a tension between the introducing concept of constituent and the defi-
nition of constituent based on syntactic trees: the former usually equates constituents with
phrases (e.g., speak English in I can speak English) whereas the latter tends to equate con-
stituents with tree nodes which include sub-phrasal elements (e.g., can in the aforementioned
example). A number of tests involving omission, insertion, substitution or permutation on
sentence structure have been proposed to determine whether part of a sentence is a con-
stituent. Commonly used constituent tests include topicalization (e.g., Speak English, I can),
proform substitution (e.g., I can do so where do so substitutes for speak English) and answer
fragments (e.g., What can you do? Speak English.) etc. (see Osborne, 2015, for a full survey
of constituent tests). These tests sometimes yield inconsistent results and tend to recognize
phrasal constituents more than sub-phrasal constituents.

Similarly, determination of dependency relations can be difficult. Tesnière (1965) de-
scribes the dependency relations between four word categories – nouns are the dependents of
verbs, adjectives the dependents of nouns, and adverbs the dependents of adjectives – but
provides no justification for the existence and directionality of these relations. Schubert
(1987) defines that a dependency relation exists between two words co-occurring in the
same sentence where one word makes the occurrence of the other syntactically possible; the
category of the dependency relation is decided distributionally by grouping interchangeable
dependents (e.g., many people and they) into a class and observing what definitively charac-
terizes the relation between the class and the head. However, in some cases, it can be difficult
to decide which word makes the occurrence of the other word syntactically possible. Hudson
(1980a) proposes a rule to distinguish the dependent from the head: the dependent is optional
in the presence of the head. For example, adjectives are optional in the presence of nouns; for
the total class of verbs, the object is also optional. The rule, nevertheless, cannot distinguish
the relation between demonstratives, numerals, and nouns, each of which can be a subject
alone without the others in many languages including English (e.g., Those/Three/Men came.
Owens, 1984). This problem may be partly solved by introducing another rule, which is
to maintain the cross-categorical consistency in putting dependents on one side of heads.
According to this rule, demonstratives are the head of nouns, and auxiliaries the head of
main verbs (see Hudson, 1984, for analysis). However, such relation between auxiliaries
and main verbs seem to contradict the first rule about optionality. Alternatively, Owens
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(1984) proposes a semantic rule: the head is the item referentially central in a construction.
Accordingly, demonstrative and numerals are the dependents of nouns, whereas auxiliaries
are the dependents of main verbs. However, the relation between demonstrative and nu-
merals remains unsolved. To date, linguists have different stances on the directionality of
the relation between content words on one hand, and function words including auxiliaries,
complementizer, coordinators, and prepositions on the other hand. Dependency theories
including Meaning-Text Theory (Mel’čuk, 1988) and Word Grammar (Hudson, 1984) insist
that function words should be the head, whereas the Functional Generative Description
of the Prague School (Sgall et al., 1986) subordinate auxiliaries to content verbs. In face
of the difficulties in defining directed dependency relation, Owens (1984) proposes that a
dependency relation is primitively bilateral, and the head is a derivational concept for the
word which has more bilateral dependency relation in general.

In fact, there is a general agreement on the syntactic relations between prototypical
syntactic categories of words, e.g, nouns, verbs, and adjectives. Contrastingly, the syntactic
relations involving non-prototypical syntactic categories of words are more debatable, which
may be partly attributable to the intermediacy in the grammatical behavior and semantic
content of the non-prototypical syntactic categories of words, as has been reviewed in Section
2.1.1.

Despite the theoretical disagreement mentioned above, computational linguists have
come up with extensive marking schemes for syntactic structure. The English PTB, the
first large-scale corpora annotated with syntactic structure (Taylor et al., 2003), follows
a constituency scheme which includes 14 non-terminal constituency types (e.g., “ADJP”
for adjective phrases, and “SBAR” for clauses introduced by subordinating conjunctions)
(Marcus et al., 1993). A number of algorithms have been developed to convert constituency
structure to dependency structure (e.g., De Marneffe and Manning, 2008b; Johansson and
Nugues, 2007; Yamada and Matsumoto, 2003). The resulting dependency schemes vary in
the inventory size and the directionality of the dependency relations between function words
and content words. For example, the Stanford typed dependencies (SD) scheme (De Marneffe
and Manning, 2008b) has the largest inventory of 49 dependency labels, whereas the LTH
scheme (Johansson and Nugues, 2007) has only 22; the SD scheme subordinates function
words to content words (e.g., auxiliaries are the dependents of verbs, and coordinators the
dependents of conjuncts), whereas the LTH scheme assumes the opposite. The SD scheme
has also been used to annotate the English Web Treebank corpus (Silveira et al., 2014). Partly
due to the popularity of PTB and the Stanford parser which provides a convenient converter
from constituency to the SD dependency scheme, SD has become a de facto standard for
annotating English dependencies.
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There are also many treebanks for languages other than English. To facilitate cross-lingual
comparison and multilingual processing, NLP researchers have been trying to come up with
universal syntactic schemes. Due to the descriptive power and flexibility of dependency
structure, much effort has been focused on developing universal schemes for dependency
structure. Based on the SD scheme for English, researchers developed the Universal Depen-
dency scheme (Nivre et al., 2006). UD includes 37 universal dependency relations and a
number of language-specific relations. The scheme has been used to annotate 102 treebanks
for 60 languages so far (https://universaldependencies.org).

2.1.3 Subcategorization

Subcategorization specifies the syntactic contexts in which a word of a particular category
may appear (Culicover, 1982). More specifically, the constituency framework defines a
subcategorization frame (SCF) as the number and types of syntactic complements required
by a predicate (Chomsky, 1965). This definition does not consider subjects as part of an SCF.
Contrastingly, the dependency framework defines an SCF as valency which includes subjects
as complements (Tesnière, 1965). The distinction between the frameworks, nevertheless, is
unimportant for languages where the presence of subjects is unrelated to SCFs. In English,
for example, the presence of subjects is determined by whether the clauses are imperative
or not. As a result, the rest of the thesis does not include subjects in SCFs. To illustrate, in
(b), the SCF of put consists of a direct object the pen and a prepositional complement on the
chair.

(b) She put [the pen] [on the chair].

(c) She walked (in a hurry).

(d) She can sing [the song].

(e) She fought [her corner].

(f) She opened the door (with the key).

(g) She likes writing, (as you know).

SCF requires distinction between complements and adjuncts. Complements are expected
to complete the meaning of the predicate, while adjuncts are more peripheral and complete
the meaning of the whole predication. The most common test for distinguishing complements
and adjuncts is the elimination test (Helbig and Schenkel, 1991): an element is eliminated
from the sentence; if the remaining sentence is ungrammatical, the element is a complement;
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otherwise, the element is an adjunct. For example, the prepositional object on the chair in
(b) is a complement of put because it cannot be eliminated; contrastingly, the prepositional
object in a hurry in (c) is an adjunct because it can be eliminated. In the examples, we
boldface the predicates, indicating the complements with square brackets and the adjuncts
with round brackets.

The elimination test, however, cannot distinguish complements and adjuncts in all cases.
For example, in (d) the nominal object the song can be eliminated, but is not an adjunct
because the song essentially completes the meaning of the predicate, and there is a slight
difference in the meaning of the predicate sing between the sentences with and without
the object: the former restricts the referred ability of singing with regard to a particular
song, whereas the latter refers to the general ability of “singing well”. This illustrates that
a complement can be optional, and its presence or absence can affect the meaning of the
predicate.

To better distinguish complements and adjuncts, a number of other tests that involve
insertion, substitution or permutation on sentence structure have been proposed (Brinker,
1972; Emons, 1974; Engel and Schumacher, 1978; Herbst, 1984; Somers, 1984; Steinitz and
Lang, 1973). These tests may be applicable to different types of elements (e.g., distinguishing
complements and adjuncts for prepositional phrases only), and sometimes yield inconsistent
results. This is related to the complicated nature of the relation among a predicate and the
co-occurred elements, which is affected by semantic relation as well as structural restriction
imposed during the conceptualization of real-world events (Croft, 1991). In fact, comple-
ments and adjuncts are more like prototypes on a spectrum, where intermediate cases, as
well as more extreme cases on both ends, can be found. For example, Somers (1984) further
distinguishes six categories along the complement-adjunct spectrum. The first category is
integral complements, as illustrated in (e) where the complement corner is lexically deter-
mined and cannot be replaced by even its synonym such as nook. The second category is
obligatory complements such as (b). The third category is optional complements such as
(d). The fourth category is middles, as illustrated in (f). The prepositional phrase with the
key can be eliminated without affecting the meaning of the predicate open; however, with
the key is compatible with one semantic aspect of open – to move an object so as to change
access to a space, and can be used with other verbs that have the same semantic aspect ( e.g.,
close and unlock), but not with the verbs without this semantic aspect (e,g., kick). The fifth
category is adjuncts such as (c). The final category is extraperipherals, which are usually
discourse markers such as as you know in (g). The first three categories can be considered as
complements in the traditional sense. The fine-grained distinction helps to explain why some
tests fail to deliver consistent results, especially for middles which are neither complements
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nor adjuncts. Nevertheless, Somers (1984) cautioned that there are still grey areas between
the six fine categories.

Meyers et al. (1996) summarize previous studies and come up with a set of sufficient
conditions and rules of thumb for distinguishing English complements and adjuncts. These
criteria involve some of the previous tests (e.g., elimination test), semantic consideration
(e.g., thematic roles and selectional restriction), syntactic features (e.g., “subordinate clauses
headed by before are usually adjuncts”) as well as co-occurrence frequency of the predi-
cate and the elements, i.e., complements tend to occur with the particular predicate more
frequently, whereas adjuncts tend to occur with many predicates at a similar frequency.
Among these criteria, the rules on selectional restriction are debatable. Meyers et al. (1996)
defines selectional restriction as presupposition associated with one constituent of a phrase
about the nature of the other constituents. He then proposes that the selectional restriction
can be observed by assuming semantically incompatible sentences to be correct, e.g., in a
metaphorical way, and see how the meaning of the predicate and the target element changes.
If the meaning of the element changes, the predicate imposes selectional restriction on the
element and the element is a complement; otherwise, the element is an adjunct. Meyers et al.
(1996) illustrates the selectional restriction of predicates on complement with (h), assuming
that only the meaning of idea is changed when understanding the sentence in a semantically
acceptable way. However, it can also be the case that the meaning of the predicate tickled
changes, e.g., to “found some funny faults of the idea”. Similarly, Meyers et al. (1996)
illustrates the selectional restriction of adjuncts on predicates with (i), assuming that only
the meaning of learned is changed to make the sentence acceptable. However, one can also
assume that the meaning of hammer is changed, e.g., to “a hammer that has some math
equations on its surface”. Consequently, the operationalization of the rules on selectional
restriction does not seem to work. The problem might lie in the fact that the semantic relation
between predicates and co-occurred elements is complicated and the presupposition can be
bi-directional between them (Owens, 1984).

(h) *John tickled [the idea].

(i) *Mary learned math (with a hammer).

Nevertheless, the other criteria proposed by Meyers et al. (1996) are operationally feasible
and comprehensive. Meyers et al. (1996) conducted an annotation experiment about these
criteria on four annotators. The result was promising: on average, 91% of the complements
classified by an annotator was classified the same by the other annotators. This means that
the criteria can help to distinguish complements and adjuncts consistently.
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Table 2.3 Examples of English diathesis alternations

Alternation Sentence SCF
Transitivity alternation She can sing [the song]. V-O

She can sing. V
dative alternation She gave [a book] [to me]. V-O-P

She gave [me] [a book]. V-O-O
causative/inchoative alternation She broke [the vase]. V-O

The vase broke. V
locative alternation She sprayed [paint] [on the wall]. V-O-P(on)

She sprayed [the wall] [with paint]. V-O-P(with)

Note that the tests for distinguishing complements and adjuncts are conducted for specific
predicates. In other words, an element can be a complement to one predicate, and an adjunct
to another predicate. For example, in Cambridge is a complement for lives in (j) but an
adjunct for plays in (k). This reveals a close connection between complements and the
semantics of the predicate.

(j) She lives [in Cambridge].

(k) She plays badminton (in Cambridge).

In fact, many modern linguistic theories have analyzed SCFs as a phenomenon of linking
between syntax and the semantic representation of the predicate (Croft, 1991; Jackendoff,
1992; Levin and Hovav, 1995; Pinker, 1989; Pustejovsky, 1991). From this projectionist
perspective, the predicate is responsible for the form and meaning of SCFs, and the semantics
of the predicate can be decomposed into a structure of elementary features, e.g., an argument
structure involving AGENT, THEME, and RECIPIENT etc., or a semantic structure involving
ACT, CAUSE, HAVE, MOVE, etc. Moreover, predicates that share similar semantic structure
have similar SCFs. For example, verbs that share the semantic structure of “X acts on Z for
Z to have Y” such as send and pass can be used with the same double-object SCF (“V-O-O”,
e.g., She sent me the card and she passed me the ball). Furthermore, Levin (1993) argues
that diathesis alternation, the appearance of the same verb in different SCFs, reflects the
semantics of the verbs and that verbs can be grouped by diathesis alternation behavior. Table
2.3 shows some typical diathesis alternations in English.

Contrastingly, Goldberg (1995, 2006) argues that SCFs are constructions that have
meaning in themselves. A construction is a surface form that has a direct mapping to
semantic and pragmatic content which cannot be derived from the components of the surface
form. Table 2.4 illustrates the SCF constructions which encode the meaning of basic event
types in human experience (Goldberg, 1999). Each SCF construction is illustrated with an
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Table 2.4 English SCF construction (Based on Goldberg, 1999)

Construction SCF Meaning Example
Intransitive motion V-P X moves to Y They buzzed [into the room].
Transitive V-O X acts on Y She eyebrowed [her surprise].
Resultative V-O-X X causes Y to become Z She kissed [him] [unconscious].
Double object V-O-O X causes Y to receive Z She overnighted [him] [the book].
Caused-motion V-O-P X causes Y to move Z Pat sneezed [the foam] [off the coffee].

example of which the predicate verb is used in an unusual way. For example, eyebrow is
usually a noun but can be understood as a verb which means “using eyebrow to express” in
the transitive construction. In this case, the SCF is unlikely to derive from the semantics of
the predicate. Such examples demonstrate that SCF constructions have independent meaning
and can cause the meaning of the predicate to change.

Apart from the semantic source of SCF, modern syntactic theories also have varied ideas
about the taxonomy of SCFs. For example, lexicalist syntactic theories (e.g., HPSG and LSG)
encode more syntactic information about SCFs in the lexicon than syntactocentric theories
(e.g., Transformational Grammar) (Korhonen, 2002). Furthermore, SCFs can be classified
with varied granularity, e.g., whether the SCFs are lexically parameterized for prepositions
and particles or not.

Computational linguists have developed varied SCF schemes when constructing large-
scale lexicons for real-world NLP applications. Representational works include the manually
constructed computational lexicon Comlex (Grishman et al., 1994), which has 92 SCF
categories for verbs, and the Alvey Natural Language Tools dictionary (ANLT) (Boguraev
and Briscoe, 1987), which is manually adapted from the electronic version of Longman
Dictionary of Contemporary English (Procter, 1978). By merging and supplementing the
SCF schemes of Comlex and ANLT, Briscoe and Carroll (1997) developed a detailed scheme
of 163 SCF categories for verbs (See Appendix A of Korhonen, 2002, for details); this
scheme is subsequently extended to 168 SCF categories by Preiss et al. (2007).

2.2 Second language acquisition of syntax

Second language (L2) researchers are interested in investigating how humans acquire the
syntax of language, and how this L2 acquisition process is affected when the learner has
the pre-knowledge of a different language. Analysis of L2 syntactic acquisition provides
a gateway to testify and develop theories in linguistics and psychology, and has important
implication for L2 education. This section reviews two important aspects of L2 syntactic
acquisition: SCFs and syntactic complexity.
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2.2.1 L2 acquisition of subcategorization

The syntactic construct of SCF has attracted much attention in L2 research. This is due to the
central role of SCF in many syntactic theories and the close connection between SCF and
semantics. Studying L2 acquisition of SCFs can not only reveal how L2 learners develop
SCFs, but also provide empirical insights into human linguistic capacity and cognitive mech-
anism. For example, research on L2 SCF acquisition has helped to testify claims about innate
knowledge of argument structure (Pinker, 1989) in the framework of Universal Grammar
(UG, Chomsky, 1965), and to explore what specific rules might be included in the innate
knowledge and whether they can be reset in L2 acquisition (Bley-Vroman and Yoshinaga,
1992; Joo, 2003; Juffs, 1998; Montrul, 1998; White, 1987, 1991). Research on L2 SCF acqui-
sition has also helped to testify the psychological reality of construction in the framework of
constructional grammar (Gries and Wulff, 2005), and to examine usage-based theory about
constructional learning (Ellis and Ferreira–Junior, 2009; McDonough and Nekrasova-Becker,
2014). Furthermore, researchers have examined whether cognitive constructs such as work-
ing memory and statistical learning can account for L2 SCF acquisition (McDonough and
Trofimovich, 2016).

Meanwhile, studies of L2 SCF acquisition can have practical implications for L2 e-
ducation. Researchers have investigated how learner SCFs develop over time (Ellis and
Ferreira–Junior, 2009; Tono, 2004), whether there is difference between L1 and L2 acqui-
sition of SCFs (Bley-Vroman and Yoshinaga, 1992), and how various factors including L1
background (Bley-Vroman and Yoshinaga, 1992; Joo, 2003; Juffs, 1998; Montrul, 1998;
White, 1987, 1991), L2 input (Ellis and Ferreira–Junior, 2009; McDonough, 2006; Mc-
Donough and Nekrasova-Becker, 2014), and verb semantics (Bley-Vroman and Yoshinaga,
1992; Ellis and Ferreira–Junior, 2009; Gries and Wulff, 2005; Römer et al., 2015, 2014)
affect L2 acquisition of SCF (Tono, 2004). These results can inform the development of
educational materials, curricula and pedagogical strategies for L2 education.

Most research on L2 acquisition of SCFs rely on experiments with humans. These
experiments include grammaticality judgment (Bley-Vroman and Yoshinaga, 1992; Inagaki,
1997; Juffs, 1996, 1998; Souza, 2011; White, 1987, 1991) multiple-choice interpretation
(Joo, 2003; Montrul, 1998), self-paced reading (Juffs, 1998), elicited production (Juffs, 1996;
McDonough, 2006), sentence completion (Gries and Wulff, 2005) and sentence sorting
(Gries and Wulff, 2005; Kim et al., 2017; Kim and Rah, 2016; White, 1991). While these
experiments allow for control over various factors, they are highly restricted in scope. First of
all, the number and L1 background of the learners are limited. Most experiments involve only
dozens of L2 learners and investigate only one or two L1s; the few exceptions that involve
learners across several L1s (Juffs, 1998; White, 1987; Zobl, 1989) group the limited number
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of learners together during analyses rather than investigate the distinct effect of the different
L1s on the L2 acquisition of SCFs. Second, the target SCFs are limited. Some studies
investigate SCFs in only one or two types of diathesis alternations – the most researched one
being dative diathesis (Bley-Vroman and Yoshinaga, 1992; Inagaki, 1997; McDonough, 2006;
McDonough and Nekrasova-Becker, 2014; McDonough and Trofimovich, 2016; Montrul,
1998; White, 1987, 1991), followed by locative alternation (Bley-Vroman and Joo, 2001;
Joo, 2003; Juffs, 1996), transitivity diathesis and causitive/inchoative diathesis (Juffs, 1998).
Other studies investigate some of the constructions listed in Table 2.4 (Gries and Wulff,
2005; Kim et al., 2017; Kim and Rah, 2016; Souza, 2011; Zobl, 1989). In these experiments,
the SCFs are instantiated with only a few verbs and prepositions – if the SCFs involve
prepositions.

Recent years have seen an increasing use of the corpus-based approach to investigating
the L2 acquisition of SCFs, which has enlarged the research scope. The development of
such approach is partly driven by the increasing popularity of Construction Grammar (CG)
– the usage-based theory from CG posits a close relation between the frequency of an SCF
construction and its acquisition, and corpora provide a good way to examine this relationship.
Nevertheless, it should be noted that the corpus-based approach is theory-neutral (Tono
and Díez-Bedmar, 2014), and can be used to testify theoretical claims in other linguistic
frameworks. To date, the corpus-based approach to the L2 acquisition of SCFs mainly
obtains SCF information from L2 texts by manual or semi-manual annotation. Semi-manual
annotation is conducted by tagging or parsing corpora with a POS tagger or parser, searching
for potential patterns with the POS tags (Ellis and Ferreira–Junior, 2009) or syntactic labels
(Meurers et al., 2013; Tono, 2004), and manually editing the results. Such approach allows
for the utilization of more naturalistic data (Gilquin and Gries, 2009) at a larger scale than
human experiments. As a result, corpus-based studies have enlarged the research scope
in terms of the variety of SCFs and the instantiations of the SCFs than experiment-based
research: for example, Tono (2004) investigated various SCFs used with the top ten most
frequent verbs by Japanese learners of English; Meurers et al. (2013) investigated SCFs
involved in 21 binary diathesis; Ellis et al. (2014) and Römer et al. (2015, 2014) investigated
the instantiation of the SCF of “V-P” lexicalized by around 20 different prepositions and
associated with a large number of verbs.

However, the current methods of SCF annotation are time-consuming, which have
restricted the power of the corpus-based approach. Even with the help of general NLP
tools, annotators still need to spend a long time in searching and annotating SCFs. Meurers
et al. (2013) point out that only 22 out of the many diathesis pairs defined by Levin (1993)
can be readily searched by parse information. Furthermore, human effort is required to
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distinguish arguments and adjuncts. The time-consuming process of semi-manual annotation
is illustrated by the study of Römer et al. (2015): Römer et al. (2015) parsed BNC with the
RASP dependency parser, and defined search rules for the “V-P” type of SCFs based on
POS tags and the dependency labels. The search rules were initially defined according to
COBUILD (Francis et al., 1996) descriptions of target SCFs, but these rules were not enough
for distinguishing between adjuncts and complements; furthermore, the search accuracy
suffered due to the parsing errors. To improve the search accuracy of SCFs, Römer et al.
(2015) conducted three rounds of search refinement, each round involves the definition of
search rules, the post-edition of the search results (1,500 sentences for each SCF pattern) and
the evaluation of the precision and recall of the search. After the painstaking effort, Römer
et al. (2015) achieved an average of 78% precision, 53% recall and 61.2% F1 score across
all SCF types. The time-consuming effort has restricted the amount of SCF data available
for research. As a result, the number of learners and their L1s, as well as the types of the
SCFs that have been investigated by the corpus-based studies, are still limited. Much power
of corpora stays untapped, which has prevented a data-driven approach to discovering laws
that might underlie L2 SCF acquisition at a macro level (Cai and Liu, 2017).

The problem can be alleviated by developing an automatic analysis tool for SCFs. Cur-
rently, the only attempt to exploit SCF information in a completely automatic manner was
made by Kyle (2016), who developed Tool for the Automatic Analysis of Syntactic Sophis-
tication and Complexity (TAASSC) to calculate the syntactic sophistication of English L2
texts based on the reference frequency of verb argument constructions (VACs), i.e., SCFs, in
the Corpus of Contemporary American English (COCA) (Davies, 2008). However, TAASSC
uses a dependency parser, and operationalizes VAC as all the direct dependents of a main verb.
This means VAC is operationalized in a way that does not distinguish between arguments
and adjuncts. For example, the prepositional phrase in a hurry in sentence (c) would be taken
as part of the VAC of the predicate walked. Note that the complement-adjunct distinction is
not only important for the theoretical definition of SCF, but also vital to any L2 study of SCF
that concerns the relation between predicates and verbs, or concerns the meaning of a SCF
construction. This is because complements have a close relation to the predicate, and strongly
indicate the meaning of the predicate and the SCF; contrastingly, adjuncts can be used with
many predicates freely, and have no such indication. Meanwhile, the operationalized VAC of
TAASSC captures the surface structure rather than the deep structure. For example, a passive
structure is considered as a different VAC from its active equivalent.
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2.2.2 L2 syntactic complexity

Syntactic complexity is another important construct in L2 research. Complexity, along with
accuracy and fluency (CAF), has emerged as a principal angle for defining or characterizing
language proficiency (Norris and Ortega, 2009). Due to the central role of language proficien-
cy in L2 research and education, numerous studies have been conducted on what cognitive
processes or mechanism may underlie the development of L2 syntactic complexity (Robinson,
2005; Skehan, 1998; Wolfe-Quintero et al., 1998), and how various learner and educational
factors may affect the development of L2 syntactic complexity (Bulté and Housen, 2012).

A fundamental issue of research on L2 syntactic complexity concerns how to opera-
tionalize and measure syntactic complexity (Bulté and Housen, 2012). Syntactic complexity
is multi-dimensional, which follows naturally from the fact that syntax can be analyzed
into different layers and involves different components. Syntactic complexity is commonly
defined as the ability to use a wide range of sophisticated structures in L2 (Bulté and Housen,
2012; Wolfe-Quintero et al., 1998). Accordingly, there are two basic and complementary
aspects of syntactic complexity: the breadth (or diversity) of linguistic structures, and the
depth (or sophistication) of linguistic structures. The breadth aspect of syntactic complexity
is usually measured by the number of the discrete components of a linguistic unit. According
to the size of linguistic units for consideration, the syntactic diversity measures that have been
used in L2 research can be roughly classified into sentential, clausal, and phrasal complexity
(Bulté and Housen, 2012; Kyle, 2016). Examples of such measures include clauses per
sentences, i.e., the average number of clauses in a sentence, and the mean length of clauses
(MLC), i.e., the average number of words in a clause. The exact definitions of different levels
of linguistic units may differ. For example, the sentence may be replaced by the T-unit, which
is defined as a main clause plus any subordinate clause or nonclausal structure attached to
or embedded in the main clause (Hunt, 1970). The sentence may also be replaced by the
utterance, which is defined as a continuous piece of speech beginning and ending with a
clear pause (Brown, 1973). The linguistic units vary according to the purposes and context
of syntactic complexity analysis – as Norris and Ortega (2009) point out, the T-unit may
be more suitable for intermediate or advanced written data, whereas the utterance is more
appropriate for speech data. Furthermore, the linguistic unit and its components may be
specified, e.g., the number of adjectival modifiers in a noun phrase (Kyle, 2016).

The depth aspect of syntactic complexity is measured by the difficulty of syntactic struc-
tures. The difficulty is defined in relation to language users, e.g., in terms of how they perceive
a structure or when they acquire the structure. For example, American learners of German
L2 acquire relative clauses later than coordinate clauses (Sinicrope and Byrnes, 2009), which
indicate that relative clauses are more difficult than coordinate clauses. However, since
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the definition of syntactic sophistication depends on language users, the sophistication of a
syntactic structure may vary across different language users, subject to influence from L1
background, language aptitude, memory capacity, and motivation, etc. (Housen and Simoens,
2016). It is therefore important to clarify what group of language users are involved in inves-
tigating syntactic sophistication. Meanwhile, syntactic sophistication involves some factors
which are independent of language users, such as the perceptual saliency, the frequency
of the structure in the input, and the communicative load etc. (Bulté and Housen, 2012).
These factors can be taken as partial indicators of syntactic sophistication. For example,
Kyle (2016) approximates the input frequency of syntactic structures with their frequency in
COCA, using the frequency as an indicator of syntactic sophistication: the higher frequency
the frequency, the lower the sophistication.

The information provided by a syntactic complexity measure depends on the size, speci-
ficity, and nature of the linguistic unit and its components. Large-grained measures con-
cerning the generic word components of the sentence level linguistic unit (e.g., the mean
length of sentence, T-unit or utterance, i.e., MLS, MLT and MLU), provide a holistic view
of syntactic complexity – longer sentences generally correlate with higher syntactic com-
plexity. However, what exactly contributes to the length of sentences remain concealed.
The contributing factors might be the use of more elaborate noun phrases, and/or extensive
use of subordination, etc. To understand the specific dimensions of syntactic complexity,
more specific measures are needed. This is especially important because different aspects
of syntactic complexity do not necessarily develop linearly during L2 development. For
example, Norris and Ortega (2009) mention that the amount of coordination increases at the
beginner level of L2 development and subsides at the intermediate level; this makes coordi-
nation a powerful indicator of the syntactic complexity at the early stage of L2 development.
Similarly, subordination and phrasal elaboration are most powerful for characterizing the
intermediate level and the advanced level respectively. Furthermore, the most indicative
syntactic complexity measures also differ across various types and genres of production.
For example, clausal indices (e.g., frequency of that clauses) are more discriminative for
informal speech, while phrasal elaboration indices (e.g., frequency of prepositional phrases
as nominal postmodifiers) are more discriminative for academic writing (Biber et al., 2011).
As a result, developing syntactic complexity measures that tap into different syntactic aspects
are important for gaining a comprehensive view of L2 syntactic complexity and achieving a
better discrimination for L2 proficiency in different situations.

Meanwhile, whether a syntactic complexity measure is widely used in research and
educational practices depends on the availability of automatic tools for calculating the mea-
sures. Syntactic complexity measures are essentially statistical and require annotation of



28 Background to syntactic analysis of learner language

the target syntactic constructs. Manual annotation of the syntactic constructs is costly and
becomes almost infeasible for large data. Partly due to the ease of automation, word-based
large-grained measures such as MLS and MLT have been most widely used. Recent de-
velopment in computational tools has helped to popularize other syntactic measures. Lu
(2010) developed Syntactic Complexity Analyzer (SCA) which can calculate 14 traditional
sentential and clausal measures; some of these measures are related to subordination or coor-
dination (e.g., dependent clauses per T-unit and coordinate phrases per clause). Kyle (2016)
developed TAASSC which can calculate 372 syntactic complexity measures. The expanded
categories mainly include the measures of fine-grained clausal and phrasal complexity, as
well as the measures of syntactic sophistication based on the frequency of verbs and VACs
(operationalized as not distinguishing between adjuncts and complements), and verb-VAC
contingency (i.e., the probability that a verb and a VAC co-occur). Both tools use standard
parsers developed for native English to extract information of syntactic structure.

At a first glance, there are numerous complexity measures available for researchers at the
moment, covering various aspects of syntactic structure. A closer examination would reveal
that some important syntactic phenomena are not captured yet. SCFs, which have important
theoretical and practical values in L2 research (as reviewed in section 2.2.1), have not been
examined. This is partly due to the lack of analysis tools for SCFs. Kyle (2016) tried to
approximate SCFs with VACs that do not distinguish between adjuncts and arguments, and
calculated VAC-based syntactic sophistication measures. While his research attempt has
contributed to the investigation of syntactic complexity from the perspective of SCFs, more
accurate tools for analyzing SCFs are needed to explore SCF-based syntactic complexity
measures.

2.3 Syntactic analysis of learner language

As exemplified in research on the L2 acquisition of SCFs and syntactic complexity, the
syntactic analysis of learner language is important for L2 research. Two problems are
prominent in the syntactic analysis practices. First, L2 researchers resort to generic syntactic
analysis systems such as POS taggers and parsers to annotate SCFs, which require extensive
human post-edition. The costly post-edition has restricted the amount of SCF annotation
available, leaving much power of the corpus-based approach untapped. Second, the POS
taggers and parsers used by L2 researchers to analyze learner language were developed
on native language data. Since learner language is different from native language, the
performance of standard systems on learner language might suffer, which can influence the
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accuracy of the empirical evidence for L2 research. It is therefore important to evaluate how
standard systems perform on learner language.

This section first reviews important issues to consider for the syntactic analysis of learner
data. To narrow the scope of this thesis, we point out the analysis approach and the type of
syntactic structure (i.e., dependency structure) focused in this thesis. We then survey existing
standard POS taggers and parsers, and review previous evaluation of standard POS taggers
and dependency parsers on learner data. Finally, we survey existing NLP systems with regard
to SCFs.

2.3.1 Challenges in analyzing L2 syntax

Syntactic analysis of learner language is challenging. As mentioned earlier, learner language
is more variable than native language due to differences in the L2 proficiency of learners,
their L1 background and learner errors. As a result, it is difficult to develop a comprehensive
syntactic framework to describe learner language (Meurers and Dickinson, 2017). Crucially,
learner errors may give rise to contradictions between morphosyntactic and semantic cues
for syntactic analysis, causing syntactic ambiguity. Consider the learner sentence (l) as an
example. This sentence can be regarded as a well-formed sentence, where live is an adjective
referring to the state of being broadcasting. This interpretation relies on the morphosyntactic
clue that live should be an adjective before a copula. However, if the context of the sentence
indicates that the learner was introducing his or her hometown, then the intended meaning is
closer to I live in Manaus, in which case live is a verb.

(l) I am live in Manaus.

To address such challenges posed by learner errors, it is necessary to analyze the ambigu-
ous syntactic structures consistently and expressively: contradictory cues should be handled
by consistent principles, whilst the syntactic scheme should be expressive in reflecting non-
canonical syntactic structures. Researchers have tried to achieve consistency in two ways:
the first one is to design some rules to weigh different cues and disambiguate the syntactic
structures (Berzak et al., 2016b; Nagata and Sakaguchi, 2016). For example, if we decide
that contextual clues should be prioritized over morphosyntactic clues, live in sentence (l) is
disambiguated as a verb. The second way is to develop separate analysis layers for different
cues (Ragheb and Dickinson, 2012, 2014). For example, we can define two analysis layers
for contextual and morphosyntactic clues respectively, and analyze live as an adjective and
a verb in each layer. The multi-layer method can provide richer information about learner
language. Nevertheless, how to design the layers remains a challenge. In their attempt to
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develop multi-layer parsing schemes for learner language, Ragheb and Dickinson (2012,
2014) found that some ambiguous structures may allow for many possible analyses, and it is
infeasible to set a layer for each analysis; furthermore, some layers might be redundant while
there can be conflicting clues to consider within a layer.

Another important issue concerns whether native language terminology can be used to
analyze learner language. Some researchers argue that learner language (or interlanguage, IL)
is a system different from the native language (or target language, TL), and learner language
should be analyzed with a scheme developed for itself (Bley-Vroman, 1989; Ragheb and
Dickinson, 2011). However, it seems impossible to abandon the syntactic terminology of
native language completely when analyzing the syntax of learner language. Since learner
language develops with native language as a goal and has many characteristics similar to
native language (Ellis, 1994), even if one developed a syntactic scheme for learner language
from scratch, the resulting scheme may turn out similar to the native language syntactic
scheme. In fact, most research on developing unique syntactic schemes for IL follow native
language terminology; the uniqueness of syntactic schemes mostly lie in the design of
multiple analysis layers (Dickinson and Ragheb, 2015; Ragheb and Dickinson, 2012; Rosen
et al., 2014).

Meanwhile, existing native language syntactic schemes can be flexible and expressive in
reflecting many non-canonical structures. To illustrate, the Stanford typed dependencies (SD)
(De Marneffe and Manning, 2008a) scheme have dependency labels for describing loose
structure, e.g., “parataxis”, which can be used to analyze the common un-canonical learner
structure of comma splice. For the description of learner SCFs, our annotation practice
(Section 5.1) also reveals that most learner SCFs, including those with learner errors, can
be described by the native language syntactic scheme. In fact, even though native language
syntactic schemes may not explicitly present all levels of information about non-canonical
structures in learner data, by defining the analysis rules clearly (e.g., what clues should be
prioritized when conflicting clues are present), analysis in native language schemes can still
be useful for L2 researchers who are aware of the analysis rules and tailor the analysis results
to their own research goals accordingly (Meurers and Dickinson, 2017). This is proved
by the fact that some L2 researchers have successfully extracted information from learner
data using syntactic analysis in native language schemes (Crosthwaite, 2016; Murakami and
Alexopoulou, 2015; Römer et al., 2014; Vyatkina, 2013).

To summarize, researchers need to decide the analysis approach and scheme for syntactic
analysis of learner language. To narrow the subsequent discussion, we describe our choice
here. We adopt native language syntactic schemes and specify rules to disambiguate structures
on one analysis layer. Specifically, we prioritize semantic cues, using the semantic context
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Fig. 2.3 Tabular text format of dependency structure

of learner errors to hypothesize the intended meaning for structural disambiguation. Paying
attention to the intended meaning helps alleviate the problem of forcing native syntax on
learner language (Bley-Vroman, 1989; Ragheb and Dickinson, 2012), achieving expressive
representation of non-canonical structure. Furthermore, this thesis follows the principle of
not over-interpreting learner errors (Nicholls, 2003; Ragheb and Dickinson, 2014). In other
words, we localize learner errors and choose the analyses closest to hypothetically correct
structures according to the principle of minimal edit distance (Nagata and Sakaguchi, 2016).

Researchers also need to decide the framework of syntactic structure, i.e., constituency or
dependency. Both the constituency (Nagata and Sakaguchi, 2016) and dependency (Berzak
et al., 2016b; Dickinson and Lee, 2013; Dickinson and Ragheb, 2009; Geertzen et al., 2013;
Krivanek and Meurers, 2011; Ott and Ziai, 2010; Ragheb and Dickinson, 2011) frameworks
have been used to annotate learner data. As reviewed in Section 2.1.2, the two frameworks
provide different syntactic information and are useful for different purposes. Nevertheless,
they are correlated and can transform into one another by rules.

This thesis focuses on dependency structure, because it allows for a succinct way to
achieve consistent and expressive analysis of learner structure. Firstly, the dependency
structures of learner errors and their correct hypotheses tend to involve fewer differences in
syntactic relations, which reduces the possibility of analysis errors. For example, when a
learner erroneously adds a progressive auxiliary to the sentence in Figure 2.1 (I am learn
English), the dependency analysis requires the addition of only one relation (a dependence
relation labelled as “aux” pointing from learn to am). By contrast, the constituency analysis
requires one relation deleted (VP -> VBP) and two relations (VP -> VP, VP -> AUX VB)
added. Secondly, the word-level dependency relations allow for a tabular text representation
format (Figure 2.3), which does not need special software to display, and is easy and fast to
index and search by regular expressions. This makes navigating and editing documents simple
for annotators. Note that dependency relations can also be transformed to other formats (e.g.,
XML), and searched by more sophisticated search engines, such as the graph-based engine
ANNIS3 (Krause and Zeldes, 2016).
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2.3.2 POS tagging and dependency parsing

In this section, we first review existing POS taggers and parsers. Due to the vast amount of
NLP research on POS taggers and parsers, and the focus of the present thesis on evaluating
rather than developing POS taggers and parsers for learner language, we provide a very
general overview of these syntactic analysis systems. Readers who are interested in technical
details can see the reference in this section for more information. We then review previous
studies on evaluating automatic POS taggers and dependency parsers on learner language.

Overview of POS taggers and parsers

Early POS taggers were developed with hand-crafted rules. The first POS tagger, TAGGIT
(Greene and Rubin, 1971), was developed to analyze the Brown corpus. TAGGIT uses
co-occurrence rules to disambiguate POS tags. For example, an article can be followed by
a noun but not a verb. The most well-known and still widely used rule-based tagger is the
Brill Tagger (Brill, 1992). The Brill Tagger operates in two steps. It first tags all words with
their most frequent POS tag according to a dictionary, and then uses context rules to change
the tags iteratively. The Brill Tagger achieves an accuracy of 95% when tested on 5% of the
Brown corpus. While a rule-based system can achieve an accurate result, it requires extensive
human effort in defining the rules.

Subsequent research on POS taggers has shifted to the statistical-based approach. This
change is partly driven by the release of the large-scale corpus of English PTB (7 million
words annotated with POS tags, Taylor et al., 2003), which allows for the more efficient
development of POS taggers based on machine learning models. Most statistical POS taggers
use variants of hidden Markov model (HMM), which treats POS tags as the hidden states
that generate the word sequences. HMM calculates the probability of a POS tag based on the
transition probability between adjacent POS tags and the emission probability of the word
given the POS tag. The state-of-the-art POS tagger combines dynamic feature induction with
HMM, achieving an accuracy of 97.64% on the English PTB test set (Choi, 2016). Other POS
taggers have also used machine learning models such as Maximum Entropy model (Tsuruoka
et al., 2005), Support Vector Machine (Giménez and Marquez, 2004), Conditional Random
Field model (Sun, 2014) and Long Short-term Memory neural network model (Huang et al.,
2015).

Similar to POS taggers, research on the development of syntactic parsers has gone
through a transition from the rule-based approach to the statistical-based approach. Early
research focused on the development of constituency parsing algorithms, applying hand-
crafted rules of context-free grammar (CFG) in a bottom-up or top-down manner (Allen,
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1995). Later on, statistical parsers were developed to derive CFG rules and their probability
from constituency corpora. The integration of lexical information into the probabilistic CFG
grammar tremendously boosted the accuracy of constituency parsers (e.g., 88% F1 score
on the English PTB test set by Collins, 1997); the accuracy has continued to increase by
utilization of other fine-grained information and complicated mechanism such as re-ranking
preliminary parses (e.g.,91% F1 score by Charniak and Johnson, 2005).

Recent years have seen increasing interest in multilingual processing and universal depen-
dency, which has made dependency parsing a more active research topic than constituency
parsing. Current dependency parsers mainly fall into two categories: graph-based parsers
which build all possible parse trees for a sentence and find the parse tree with the highest
scoring (e.g., Martins et al., 2010; McDonald et al., 2005; McDonald and Pereira, 2006),
and the transition-based parsers which decompose the tree building process into elementary
actions and find the sequence of actions with the highest scoring (e.g., Andor et al., 2016;
Nivre et al., 2006). There are also hybrid parsers which combine graph-based and transition-
based methods (e.g., Zhang and Clark, 2008). Apart from using dependency parsers directly,
researchers have also tried to obtain dependency structure automatically by converting the
results of constituency parsers using definitive rules (De Marneffe and Manning, 2008a;
Johansson and Nugues, 2007; Yamada and Matsumoto, 2003). Kong and Smith (2014) term
the method that uses dependency parsers directly as ‘d-parsing’, and the method that extracts
dependency structure by converting constituency parsing as ‘c-parsing’. Since the English
PTB uses constituency structure, both c-parsing and d-parsing have been used to obtain
English dependency structure.

While we review POS taggers and parsers separately, POS tags are important for parsing
and many publicly available parsers actually include a POS tagger as a preprocessing
component (Charniak and Johnson, 2005; Klein and Manning, 2003a,b; Petrov and Klein,
2007). Furthermore, there is much research effort to jointly train and implement POS tagging
and syntactic parsing (Bohnet and Nivre, 2012; Hatori et al., 2011; Li et al., 2011).

Evaluation on Learner data

Since syntactic annotation is costly and even impractical for large corpora, automatic POS
taggers and parsers are increasingly used to analyze learner corpora (Geertzen et al., 2013;
Granger et al., 2009; Tono and Díez-Bedmar, 2014). However, due to the absence of POS
taggers and parsers specifically developed for learner data, standard taggers and parsers
developed for native language data are used to analyze learner data. Understanding how these
standard syntactic analysis systems perform on learner data is important for downstream
research and application related to learner language.
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Nevertheless, few studies have investigated the performance of standard taggers and
parsers on learner data in a systematic way. In general, limited research to date shows that
standard POS taggers can achieve high accuracy on learner data. Van Rooy and Schäfer
(2002) found that the accuracy scores of the TOSCA-ICLE tagger (Aarts et al., 1998), the
Brill tagger (Brill, 1992), and the CLAWS tagger (Garside et al., 1997) on a 2,159-word
subset of Tswana Learner English Corpus were 87%, 89%, and 96% respectively. Moreover,
Geertzen et al. (2013) reported that the Stanford POS Tagger (Klein and Manning, 2003a)
obtained 96.1% accuracy on an 11,067-word subset of learner English from EF-Cambridge
Open Language Database (EFCAMDAT). Similarly, Rehbein et al. (2012) found that the
RFTagger (Schmid and Laws, 2008) was 93.8% accurate on a 124,512-word sample of
learner German.

Previous research also found that standard dependency parsers may perform with relative-
ly high accuracy on learner data. The accuracy of a dependency parser is usually measured
by the unlabeled attachment score (UAS) and the labeled attachment score (LAS). UAS
refers to the percentage of words that have correct head indices, whereas LAS refers to the
percentage of words whose head indices and dependency labels are both correct. Geertzen
et al. (2013) found that the Stanford Probabilistic Context-Free Grammar (PCFG) parser
(Klein and Manning, 2003a) obtained 92.1% UAS and 89.6% LAS on the 11,067-word
subset of EFCAMDAT. Moreover, Ott and Ziai (2010) showed that MaltParser (Nivre et al.,
2007) scored 79.15% LAS and 84.81% UAS on a 900-word dataset of learner German, in
contrast to 83.12% LAS and 86.38% UAS on native German. Krivanek and Meurers (2011)
replicated the study of Ott and Ziai (2010) and reported similar results from the WCDG
parser (Foth and Menzel, 2006) as well as MaltParser.

However, in most of the studies above, the POS taggers or parsers were evaluated on the
gold standards which were obtained by manually correcting the output of exactly the same
POS taggers or parsers (Geertzen et al., 2013; Rehbein et al., 2012; Van Rooy and Schäfer,
2002). It is possible that the human annotation may have been biased towards the results
of the analysis systems (e.g., accepting some incorrect tags produced by the systems). If
present, such bias may have inflated the accuracy scores. Annotation bias may artificially
increase inter-annotator consistency (Dandapat et al., 2009; Marcus et al., 1993) as a result
of a shared acceptance of incorrect analysis choices (Berzak et al., 2016a; Skjærholt, 2013).
Also, it has been shown that unintentional bias towards incorrect analysis choices reduces the
quality of the POS annotation on native English (Fort and Sagot, 2010) as well as dependency
annotation on native English and upper-intermediate learner English (Berzak et al., 2016a).
As a result, it is important to investigate the extent to which human annotation bias is present
and its potential impact on parser evaluation on learner data across all L2 proficiency levels.
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Meanwhile, few studies have compared the performance of different POS taggers or
parsers on learner data. Van Rooy and Schäfer (2002) tested three POS taggers on learner
English, but the tagsets of the POS taggers were different, which made the accuracy scores
of different POS taggers incomparable. The only valid comparison was made by Krivanek
and Meurers (2011) between the WCDG parser and MaltParser on learner German. They
found that the WCDG parser slightly outperformed the other by 1.16% UAS and 1.80% LAS.
Furthermore, the WCDG parser performed better in identifying core predicate-argument
relations, while the MaltParser was more successful in establishing adjunct relations. Never-
theless, no such comparison has been carried out on learner English. Moreover, there has
been no attempt to investigate the potential correlation between the performance of a parser
on native language and learner language.

There have been some preliminary attempts in investigating the influence of learner errors
on POS tagging. Van Rooy and Schäfer (2002) found that when spelling errors were removed
from learner English, the absolute accuracy scores of the POS taggers increased by 2-3%.
Similarly, Rehbein et al. (2012) found that the accuracy of the RFTagger increased by 4.9%
when all learner errors were removed from learner German. Furthermore, Ott and Ziai (2010)
qualitatively observed that for learner German, the omission of verbs was detrimental to
parsing performance, whereas learner errors on linguistic agreement or word order seldom
caused parsing errors. Nevertheless, there has been no systematic investigation into the effect
of fine-grained learner errors on the performance of standard parsers on learner English.

2.3.3 SCF systems

We move on to review existing NLP systems regarding SCFs. Brent (1991) proposed the
first automatic SCF extraction method which can acquire six SCFs from a corpus. Since
then, many NLP systems regarding SCFs have been developed. However, most of these
systems are aimed to acquire SCF lexicons for native language. The entry of an SCF lexicon
is usually a list or a probability distribution of SCFs for a verb form (e.g., Table 2.5 shows
that the probability for use to take up the SCF with a direct object, i.e., “V-O”, is 68%).
However, these systems cannot analyze SCFs for individual verb tokens, such as the SCF of
use in the particular sentence I use a carrot for the snowman’s nose (“V-O-P”). The SCFs for
individual verb tokens is the type of linguistic information needed in L2 research.

There are two categories of SCF acquisition systems. The first category extracts SCF
patterns from either by hand-crafted rules (Briscoe and Carroll, 1997; Han et al., 2004;
Korhonen et al., 2000; Manning, 1993; Preiss et al., 2007; Przepiórkowski, 2009) or co-
occurrence statistics (Altamirano, 2010; Chesley and Salmon-Alt, 2006; Dȩbowski, 2009;
Ienco et al., 2008; Kawahara and Kurohashi, 2010; Lenci et al., 2008; Messiant et al.,
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Table 2.5 An example SCF lexicon entry

use

V-O 0.68
V-O-P 0.20
V-O-X(to) 0.12

2008; O’Donovan et al., 2005), and often uses rule-based or statistical filters to remove
erroneous SCFs from the output. The input to these systems is either raw corpora or corpora
preprocessed by POS taggers or parsers. These techniques perform at 60-70% F-score.
F-score is the harmonic mean of the percentage of correct SCFs among all the SCFs assigned
by the technique and the percentage of correct SCFs that the technique recovers in the gold
standard. Note that due to differences in the SCF inventories and experimental settings, the
F-scores of different SCF acquisition techniques are usually not directly comparable.

The second category treats SCF acquisition as a clustering problem, using unsupervised
methods including, for example, Latent Dirichlet Allocation (Lippincott et al., 2012), multi-
way tensor factorization (Van de Cruys et al., 2012), Determinantal Point Processes (Reichart
and Korhonen, 2013) and Markov Random Field modeling (Baker et al., 2014). When
evaluated so that unlabeled SCF clusters were mapped to traditional SCFs via rules, the best
of these systems also achieved F-scores between 60-70%.

There are only two NLP systems which can analyze SCFs for verb tokens. Baker
et al. (2014) proposed an unsupervised method that can cluster verb tokens according to
information about SCFs. The clusters are regarded as the SCFs of the verbs. However, the
labels of the SCFs are unknown. Dušek et al. (2014) developed a system that can assign SCF
labels to verb tokens. This system achieves 85% F-score on newswire English. However, the
system applies to only a limited number of verb lemmas, because the system uses separate
SCF classification models for different verb lemmas.

Meanwhile, all previous SCF systems were developed for native language data. The SCF
lexicon extracted from native language data may not describe the distribution of SCFs in
learner data properly, and the performance of an SCF identification system trained on native
language data may drop on learner data. This is because learner language is quite different
from native language. Learner language contains un-canonical structures and possibly more
simple SCFs.

In sum, there is a need to develop an SCF identification system which can analyze SCFs
for unlimited individual verb tokens in context and is adapted for learner data.
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2.4 Summary

In this chapter, we reviewed the theoretical concepts of POS, syntactic structure, and SCF, as
well as the major taxonomies of these syntactic constructs used by computational linguists.
We then reviewed L2 research on SCF and syntactic complexity to establish the importance
of syntactic analysis of learner language in L2 research. We also pointed out that evaluation
of standard POS taggers and parsers on learner language as well as an automatic SCF
identification system is needed for L2 research. We then reviewed existing POS taggers and
parsers, and surveyed previous evaluations of standard POS taggers and dependency parsers
on learner language. Finally, we reviewed existing NLP systems related to SCFs.

As we can see from the literature review, there is a need to investigate whether annotation
bias exists in the common practice of constructing a gold standard by manually correcting the
pre-annotation of a single parser. There is also a need to systematically analyze the impact
on fine-grained learner errors on parser performance, as well as a need to compare between
multiple parsers on learner data and native data. Furthermore, we pointed out a need to
develop an SCF identification system for L2 research, and the need to develop SCF-based
complexity measures. The rest of this thesis will report how we address the aforementioned
issues.





Chapter 3

Data

This chapter describes the datasets used in the thesis. We employ learner English and native
English datasets. We investigate three types of syntactic constructs, i.e., POS, dependency
structure and SCFs, using native English datasets that have been annotated with these
constructs. We then annotate a subset of the learner English dataset for these constructs,
learner errors, and the relation between learner errors and POS tagging or parsing errors.
These annotations are used to evaluate the performance of multiple standard POS taggers
and dependency parsers on learner data, and develop an SCF identification system for learner
language.

Section 3.1 introduces our learner English data, the EF-Cambridge Open Language
Database (EFCAMDAT, Geertzen et al., 2013). In section 3.2, we first introduce the native
English POS and constituency data, the Penn Treebank of Wall Street Journal (PTB-WSJ,
Marcus et al., 1993). We then introduce our native English SCF data (Quochi et al., 2014)
which was constructed with sentences sampled from the British National Corpus (BNC,
Aston and Burnard, 1998).

3.1 Learner English Data

We used EFCAMDAT 1 (Geertzen et al., 2013) as our learner data. We chose EFCAMDAT
because it had data from learners that covered a wide range of proficiency levels and national-
ities (see details below). This allowed for the extraction of the learner data samples that were
representative of the full proficiency spectrum and diverse L1 background. The sampled
learner data, after annotated, provided a comprehensive gold standard for evaluating the
performance of standard POS taggers and dependency parsers on learner English (Chapter

1http://corpus. mml.cam.ac.uk/efcamdat2
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Table 3.1 Alignment between EFCAMDAT proficiency and common standards

Englishtown 1-3a 4-6 7-9 10-12 13-15 16

Cambridge Main Suite Exams - KET PET FCE CAE -
IELTS - <3 4-5 5-6 6-7 >7
TOEFL iBT - - 57-86 87-109 110-120 -
TOEIC Listening & Reading 120-220 225-545 550-780 785-940 945 -
TOEIC Speaking & Writing 40-70 80-110 120-140 150-190 200 -
CEFR A1 A2 B1 B2 C1 C2
a The tasks of each proficiency level were aligned with the can-do statements for the relevant CEFR level, as

well as vocabulary and grammatical structures that were appropriate for the level. These alignments were
based on the CEFR documentation of the Council of Europe, criterial feature research, and the experience of
the content developers.

4), and for training our SCF identification system (Chapter 5). Furthermore, the large size of
EFCAMDAT allowed for statistical analysis of learner English across various proficiency
levels and writing tasks. This was useful for our quantitative investigation into how SCF
diversity changed with L2 proficiency, a linguistic research we conducted to demonstrate the
usefulness of the SCF identification system (Chapter 6).

EFCAMDAT was built at Cambridge through a collaboration between Linguistics and
EF Education First, an international school of English. EFCAMDAT contained writings
submitted to Englishtown, the online school of EF Education First. It had more than 47 million
words written by nearly 109,000 learners. The writings covered 128 different topics and a
variety of writing types such as narrative (e.g., “writing a movie plot”) or descriptive (e.g.,
“describing your house”). The writings spanned across 16 proficiency levels covering the
whole spectrum of A1-C2 in the Common European Framework of Reference for Languages
(CEFR, Council of Europe, 2001). Table 3.1 shows the alignment between the proficiency
levels of EFCAMDAT and common standards, which include Cambridge Main Suite Exams
ranging across Key English Test (KET), Preliminary English Test (PET), First certificate
in English (FCE) and Certificate of Advanced English (CAE), the International English
Language Testing System (IELTS), the Test of English as a Foreign Language (TOEFL),
and the Test of English for International Communication (TOEIC). Each writing task had
expected length, ranging from 20-40 words for Level 1 to 150-180 words for Level 16. Figure
3.1 illustrates learner texts at the two ends of the proficiency spectrum. Because of the global
reach of EF, there was considerable diversity in learner background, with Brazilian being
the most dominant group (35% of the writings), followed by Chinese (21%), Mexican (7%),
Russian (7%), German (5%), French(4%) and Italian (4%). Table 3.2 shows more details
about the distribution of texts and words for the top ten nationalities of EFCAMDAT.
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1. LEARNER 40663, LEVEL 1, UNIT 1, MEXICAN

Hello Anna, Great!!! thank you for ask me . Today I received a
good news in my work. How are you ? But first my name’s Luis.
I’m 29, I’m from Mexico City and I like go out to dance and also
go to the movie. What do you like to do ? See you !!

2. LEARNER 39433, LEVEL 16, UNIT 8, GERMAN

The creature that is wideley called ‘Bigfoot’ has been described
by many researchers as a large ape-like creature with much hair
growing from his body. It seems as if it measures between 2 and 3
metres in height, and weighs at least 200 to 250 kg and is covered
with dark brown, sometimes, dark reddish hair. Witnesses have
also been describing the creature as having large, deep-sitting
eyes, a pronounced browridge, and a large, low-set forehead. The
top of its head was pitctured by several witnesses as crested
and rounded. The creature is often reported to have a stinging,
unfavourable smell by those who claim to have sighted and,
of course in only a few cases, encountered it. Its enormous
footprint from which it got its name measures as large as 60 cm
long and 20 cm wide. Altough most stamps have five toes - similar
to all known apes - some have shown footprints with toes ranging
from two to six. Some included also claws as they are known from
bears.

Fig. 3.1 Two texts from EFCAMDAT

Table 3.2 Distribution of words and texts for the top ten nationalities in EFCAMDAT

Nationality % text # text # word

Brazilians 35.3 232,265 15,400,784
Chinese 20.8 136,917 9,931,905
Mexicans 7.1 46,794 3,095,187
Russians 6.9 45,229 3,635,775
Germans 4.8 31,788 2,820,837
French 3.6 23,938 1,901,787
Italians 3.6 23,609 1,996,150
Saudi Arabians 2.9 19,282 1,152,950
Taiwanese 2.2 14,664 1,152,751
Japanese 1.7 11,177 829,566
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For the annotation of POS tags, dependency structure, SCFs, learner errors, and the
relation between learner errors and POS tagging or parsing errors, we adopted a subset
used by Geertzen et al. (2013) which contained 1,000 sentences (11,067-word tokens) from
EFCAMDAT. The dataset was extracted by first automatically segmenting EFCAMDAT
into sentences, and then pseudo-randomly sampling the sentences with equal representation
from all 16 proficiency levels and five of the best-represented nationalities (i.e., Chinese,
Russian, Brazilian, German, and Italian). Nevertheless, some sentences in the original
dataset contained segmentation errors. To prevent these segmentation errors from introducing
artificial learner errors into the sentences, we manually corrected the segmentation of these
sentences. Moreover, some sentences suffered from comma splice, i.e., the phenomenon of
using a comma to connect two independent clauses such as The ship was not new, it was not
a cruise ship. In the original dataset, such sentences were truncated at the commas. However,
comma splice was a prominent learner error that required attention. To investigate how
comma splice affected parsing accuracy, we manually changed the segmentation of these
sentences, following the legitimate end of a sentence such as a full stop. In sum, 68 sentences
were changed, which led to an increase of the word tokens to 12,003. We hereafter refer to
the dataset as EF1000.

We syntactically annotated EF1000 for the evaluation of standard POS taggers and
dependency parsers on learner English (Chapter 4), and for the development and evaluation
of the SCF identification system (Chapter 5). We use the whole EFCAMDAT for the
investigation of the relation between SCF diversity and L2 proficiency (Chapter 6).

3.2 Native English Data

We used two native English datasets: the part of PTB which included the annotation of POS
tags and constituency structure for the articles from Wall Street Journal, and a general-domain
SCF corpus which included the annotation of SCFs for the sentences sampled from BNC.

3.2.1 Penn Treebank

We used the WSJ part of PTB (Marcus et al., 1993, PTB-WSJ) as our native English dataset
in the evaluation of POS taggers and dependency parsers, because PTB-WSJ has been
widely used in the field of NLP to train standard English parsers. PTB-WSJ had one million
words annotated with POS tags and constituency structure. The constituency structure was
presented in a bracketed format as in Fig 3.2. The POS tagset had 36 tags for words, and 12
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Fig. 3.2 Bracketed format of constituency structure in Penn Treebank

tags for currency symbols and punctuation. The constituency tagset had 14 tags for phrases
and clauses.

A number of tools were available to convert the constituency structure into dependency
structure (e.g., De Marneffe and Manning, 2008b; Johansson and Nugues, 2007; Yamada and
Matsumoto, 2003). We followed the conventional segmentation of PTB-WSJ for training
and testing the parsers (Andor et al., 2016): we used Sections 2-21 of PTB-WSJ as the native
English training data for some parsers (see Chapter 4 for more details), and Section 23 for
parser evaluation.

3.2.2 SCF corpus

We used a general-domain native English SCF corpus for the development of the SCF
identification system. The purpose was to examine whether including the native English SCF
corpus as part of the training data can help to increase the accuracy of SCF identification
(Chapter 5). Even though native English was different from learner English, they still
resembled each other in some way. From the machine learning perspective, the increase of
training data may increase the coverage of the model features for unseen data.

The SCF corpus contained 6,133 sentences (186,534 word tokens) sampled from BNC
for 24 verb lemmas. The verb lemmas were chosen by a linguist to represent a wide range
of subcategorization behaviors. In each sentence, only one verb was annotated for SCF.
The SCFs were annotated by the linguist following the same guidelines and procedure in
producing two published domain-specific SCF corpora (Quochi et al., 2014).

The SCF corpus was originally annotated with the SCF inventory of Preiss et al. (2007)
which contained 168 SCF types. We mapped the fine-grained SCFs to a coarse-grained one
defined on the popular Stanford typed dependencies (De Marneffe and Manning, 2008a). We
conducted the mapping for three reasons: first, the distribution of SCFs is Zipfian (Korhonen,
2002), and many fine-grained SCFs rarely appear in real-world data. Second, learners tend
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to use simple SCFs, and a coarse-grained inventory provided appropriate granularity for
analyzing the SCFs of learner language. Third, a coarse-grained SCF inventory also provided
a suitable level of specificity for many downstream NLP tasks (Van de Cruys et al., 2012).

Our mapping basically abstracted over some lexicalized adverbs and prepositions in the
original frames. For example, the fine-grained inventory regarded the SCF of bought in
She bought a book for him as different from the SCF of sent in I sent him as a messenger
(“V-O-for” vs. “V-O-as”), while the course-grained inventory regarded both SCFs as the same
(“V-O-P”). The course-grained inventory also merged cases that involved formal subjects or
clausal subjects with cases that involved nominal subjects. For example, the SCF of seems in
It seems that they left was considered the same as the SCF of complained in He complained
that they were coming, and the SCF of annoys in That she left annoys them was considered
as the same in This annoys them. The course-grained inventory also ignored differences
in control. For example, the difference between the object control of sent in I sent him as
a messenger and the subject control of serves in She serves the firm as a researcher was
ignored, and the SCFs in both cases were considered as “V-O-P”. Our final SCF inventory
contained 70 SCF types (See Appendix B).

In the rest of the present thesis, we use the terminology of our SCF inventory to refer to
SCFs. The SCF types were named by the complements involved. For example, “dobj_N”
(direct object) was used to refer to the SCF of “V-O” mentioned in the previous chapters. Mul-
tiple complements were joined by colons. For example, “dobj_N:pobj” had two complements:
“dobj_N” and “pobj” (prepositional object). Meanwhile, “_” denoted the broad POS tag of
the head word of the complement or whether the complement was introduced by a wh-word.
For example, “ccomp_VTENSED” meant that the head word of the clausal complement was
a finite verb. Moreover, “=>” denoted the dependent of a complement, and the dependent
may be lexicalized and denoted by “-”. For example, “ccomp_VTENSED=>mark-that” (e.g.,
the SCF of indicated in It indicated that he left) meant that the clausal complement had a
dependent of marker (a word that introduced a subordinate finite clause), and the marker was
lexicalized by “that”.

The native English SCF corpus had 43 types of SCFs, indicated by “N” in Appendix B.
Table 3.3 shows the distribution of the ten most frequent SCFs in the corpus, illustrating
each SCF type with an example from the corpus. The first column of Table 3.3 denotes the
number of an SCF in Appendix B, where the guideline examples of the SCFs are available.
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Table 3.3 Distribution of the ten most frequent SCFs in the native English SCF corpus

#a SCF % Example (native English SCF corpus)

23 dobj_N 40.4 Then we can help [each other].
65 su 10.0 Aunt Violet tried to help.
32 dobj_N:pobj 8.9 You will help [me] [with my English].
68 xcomp_VBARE=>aux_TO 6.0 It did help [to convince him].
50 pobj 5.9 ... to help [with energy conservation].
42 dobj_N:xcomp_VBARE=>aux_TO 5.7 Helping [the patient] [to move around].
9 ccomp_VTENSED 3.8 [“He’ll be fine,”] she said.
40 dobj_N:xcomp_N 2.5 We call [this] [a calendar year].
1 acomp 2.2 To me, she just seemed [kind].
24 dobj_N:iobj 2.2 She gave [him] [an enquiring glance].
a # denotes the number of an SCF in Appendix B.





Chapter 4

Evaluation of POS taggers and parsers

In this chapter, we evaluate how standard POS taggers and parsers perform on learner English.
Since some parsers include a POS tagging component and we evaluate only such POS taggers,
we regard POS tagging as an integrated part of parsing. In other words, we use parsers to refer
to automatic syntactic analysis systems that produce syntactic relations and possibly POS
tags. According to the research gaps pointed out in Chapter 2.3.2, we guide our evaluation
with the following research questions:

1. What is the accuracy of different standard parsers on learner English?

2. Is there annotation bias in the gold standard created by manually correcting the output
of a single parser? If there is, how does the annotation bias influence the accuracy
scores?

3. What is the impact of fine-grained learner errors on parsing?

4. What is the relation between the performance of standard parsers on learner English
and native English?

We conduct three evaluations. Firstly, we evaluate the accuracy of multiple parsers on
learner English. During this evaluation, we also investigate the potential of annotation bias
and its impact on the evaluation results. In the second part, we evaluate the effect of learner
errors on parsing. Finally, we compare the accuracy scores of the parsers on learner English
and native English, and examine the correlation between the two sets of scores. The following
section describes our manual annotation of the learner dataset for the evaluations. We then
report the evaluation results and summarize our findings.
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4.1 Manual annotation of learner English

We manually annotated the learner dataset (EF1000) for POS tags, dependencies, learner
errors, as well as the relations between learner errors and parsing errors. We introduce the
annotators below, and describe the annotation of each aspect in the following sections.

Two researchers participated in the annotation of POS tags, dependencies and learner
errors. They independently annotated 30 sentences for training, and 200 sentences for
calculating inter-annotator agreement. It turned out that their inter-annotator agreement on
both annotation tasks was sufficiently high (see Chapters 4.1.1 and 4.1.2), which meant that
the two annotators were consistent and the annotation was reliable. As a result, only one
annotator continued to annotate the rest of the learner dataset, i.e., the remaining 770 learner
sentences. This annotator also annotated the relations between learner errors and the parsing
errors of a single parser (Chapter 4.1.3).

4.1.1 POS tags and dependencies

For the purpose of investigating annotation bias, we annotated two versions of POS tags
and dependencies. Firstly, the dependency structure of EF1000 was annotated by manually
correcting the output of a single parser. We refer to this parser as the pre-annotation parser,
and the manual annotation as the single-parser-based (SPB) annotation throughout the rest of
this paper. Secondly, the SPB annotation was compared to the output of several other parsers
and, where differences existed, the SPB annotation was reviewed (see details below). The
reviewed annotation is hereafter referred to as the multiple-parser-based (MPB) annotation.
We then evaluated the parsers on both annotations. We considered the MPB annotation to
represent the accurate annotation of the learner data, whilst the comparison of accuracy scores
on the MPB and SPB annotations showed whether annotation bias existed and influenced the
parser evaluation.

POS and dependency schemes

We used Penn Treebank POS tagset (Marcus et al., 1993) and Stanford typed dependencies
(SD) (De Marneffe and Manning, 2008a), the most widely-used dependency scheme for
English in the field of computational linguistics. Having evolved over time, SD was not
only mature in describing well-formed language, but also flexible in describing language
errors. SD included dependency relations for loose structures (e.g., “parataxis”, “discourse”)
and words that were erroneously separated (“goes-with”). These relations were useful for
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describing learner errors. For example, when furthermore was misspelled as further more,
more can be annotated as being a dependent of further in the relation of“goes-with”.

Our SD scheme varied slightly from that of Geertzen et al. (2013). Firstly, their scheme
was older and did not include the dependency relations of “discourse” and “goes-with”. There
were also other minor changes which made our version more concise. For example, “vmod”
was introduced to generalize over non-finite verbal modifiers that were participial (formerly
“partmod”) or infinitival (formerly “infmod”) (see De Marneffe and Manning, 2008b, for
details). Secondly, Geertzen et al. (2013) used the default setting of SD, which treated
copulas as the dependents of their complements. This caused inconsistency in representing
the dependency relations between verbs and their complements (e.g., for the similar sentences
They look like flowers and They are flowers, flowers was regarded as a complement in the
first sentence but the root in the second sentence). Contrastingly, we treated copulas as the
heads of their complements (i.e., flowers was still a complement in They are flowers).

Parsers

Since rule-based parsers required extensive human effort to define rules and their parsing
schemes were difficult to change, our evaluation focused on probabilistic parsers. A proba-
bilistic parser computed the most likely parse of a sentence according to a statistical syntactic
model which associated syntactic rules with probabilities. The statistical model was trained
on a corpus of POS tags and syntactic relations. As such, the probabilistic parsers can be
tailored to the scheme of the training corpus.

As mentioned in Section 2.3.2, there were two approaches to obtaining SD automatically:
the c-parsing approach (Kong and Smith, 2014) converted the output of a constituency parser
to dependency relations by definitive rules (De Marneffe et al., 2006), while the d-parsing
approach extracted the dependency relations directly. We chose three constituency parsers
for c-parsing and two dependency parsers for d-parsing. These parsers were well-known
and had been frequently used in NLP (Cer et al., 2010; Kong and Smith, 2014). Moreover,
we tested two different settings for each of the two constituency parsers. As a result, seven
different parsing settings were tested in total. Meanwhile, each constituency parser included
a POS tagger as a preprocessing component, so we tested five different POS tagging settings.

The constituency parsers were as follows:

• Stanford parser (Version 3.5.1): We tested two ready-made syntactic models, both of
which had been trained on a number of treebanks 1 in addition to PTB-WSJ Sections
2-21. The first syntactic model (hereafter referred to as SU) followed a probabilistic

1The training data for the Stanford parsers are listed in http://nlp.stanford.edu/software/parser-faq.shtml.
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context-free grammar (PCFG) (Klein and Manning, 2003a), whilst the second model
(SL) followed a lexicalized PCFG which integrated head words into the syntactic rules
(Klein and Manning, 2003b). Since Geertzen et al. (2013) showed that the SU parser
setting achieved high accuracy on learner data, we selected SU as the pre-annotation
parser for the construction of the gold standard, and provided the POS tags produced
by SU to dependency parsers which required POS tag input;

• BLLIP parser (The latest version retrieved from the official repository on March 25,
2015) (Charniak and Johnson, 2005): We tested two ready-made syntactic models
trained on different datasets. The first one (hereafter referred to as BS) on OntoNotes-
WSJ and the Google Web Treebank; the second one (BW) on PTB-WSJ and about two
million sentences from Gigaword.

• Berkeley parser (Version 1.7) (Petrov and Klein, 2007) (BK): We used a ready-made
syntactic model called “eng_sm6”, which had been trained on PTB-WSJ Sections
2-21.

We used the Stanford typed dependency converter (version 3.5.1) (De Marneffe and
Manning, 2008a) to convert the constituency structures produced by the aforementioned
parsers to collapsed SDs. The converter required the constituency structures in the Penn
Treebank (PTB) format. Since the POS tags of auxiliary verbs (“AUX”) in the constituency
output of BLLIP parser differed from the PTB format, we replaced these POS tags with their
counterparts produced by the pre-annotation parser SU.

For d-parsing, we used Turbo parser version 2.1.0 (Martins et al., 2013) (TB) and
MaltParser version 1.8 (Nivre et al., 2007) (MT). We converted Sections 2-21 of PTB-
WSJ to the basic SD format, and trained both dependency parsers with default settings on
the dataset. When training the MaltParser, we followed the feature template used in the
ready-made “engmalt” model. Since these dependency parsers contained no POS taggers,
we provided the POS output of the pre-annotation parser SU to these parsers during the
evaluation. The original outputs of these dependency parsers followed the basic SD format.
We converted them to collapsed SDs using the converter (De Marneffe and Manning, 2008a)
again.

Annotation procedure

The training process for POS and dependency annotation was as follows. First, the annotators
learned the PTB annotation guideline for POS tagging (Santorini, 1990) and the Stanford
typed dependencies manual (De Marneffe and Manning, 2008a) for dependency parsing.
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They then independently annotated 30 sentences randomly selected from the learner dataset.
During the annotation, the annotators had access to the converted dependency relations from
PTB-WSJ. If uncertain about how to annotate a word, they could search the word in the
database to find out how it was usually annotated. The two annotators then discussed and
resolved their annotation disagreement on the 30 sentences.

Two annotations were produced for each sentence. First, the annotators corrected the
output of the pre-annotation parser SU to generate a single-parser-based (SPB) annotation.
During this annotation, the annotators had access to the gold standard of Geertzen et al.
(2013) for reference. Despite some aforementioned differences in the sentences (Section
3.1) and the annotation schemes (Section 4.1.1), the gold standard of Geertzen et al. (2013)
provided additional human annotation information that may help to improve the annotation
accuracy. The annotators could also check the context of the sentence, i.e., the learner essay
that contained the sentence.

After completing the SPB annotation, the annotators generated a multiple-parser-based
(MPB) annotation by reviewing the SPB annotation according to alternative annotations
provided by the other parsers. Specifically, we extracted the words where the outputs of
at least one of the other six parser settings disagreed with the pre-annotation parser SU
(hereafter referred to as annotation mismatches), and displayed all the disagreements as
well as the SPB annotation to the annotators. The annotators then re-annotated these cases.
When an annotation (i.e., POS tag, head index or dependency label) provided by one of
the six parser settings was correct and that of the SPB annotation was incorrect, the correct
annotation was marked with “C” (correction). When an annotation of one of the six parser
settings was different from that of the SPB annotation but both annotations were acceptable,
the annotation provided by the parser setting was marked with “M” (multiple options).
Furthermore, if both the annotation of SPB and those of the other parsers were incorrect, the
annotation of SPB was corrected and marked with “N” (non-replacement correction). We
then generated the MPB annotation by substituting the annotations marked with “C” and
“N” for their counterparts in the SPB annotation, and including the alternative annotations
marked with “M”.

To illustrate the MPB annotation procedure, consider Figure 4.1: the columns from left to
right correspond to word indices, words, POS tags, head indices, dependency labels, marks
for the aforementioned three annotation types (# by default), and parser settings. As we can
see, in this example SL annotated the head index as 8 and the dependency label as “rcmod”
(relative clause), while the SPB annotation annotates the head index as 2 and the dependency
label as “advcl” (adverbial clause). The annotator decided that both annotations of the head
index were incorrect and that the correct head index was 4. He, therefore, marked the head
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Fig. 4.1 Format of the re-annotation based on annotation mismatches

index of SPB with “N” and provided the correct head index in parentheses “(4)”. By contrast,
the annotation of SL on the dependency label was correct while that of SPB was not, so the
annotator marked the dependency label of SL with “C”.

As mentioned earlier, the two annotators annotated another 200 sentences after the
training. We measured the inter-annotator agreement on the MPB annotations. According to
the kappa metric, the inter-annotator agreement on the annotation of POS tags, head indices,
and dependency labels was 0.961, which was similar to the inter-annotator agreement
achieved by Geertzen et al. (2013) (0.971). Alternatively, according to the conventional
parsing evaluation metrics, our inter-annotator agreements were 97.03% on POS accuracy,
94.46% on UAS, and 91.69% on LAS, which were close to those achieved by Ragheb and
Dickinson (2013) (around 99% on POS accuracy, 97% on UAS and 95% on LAS; note
that their scores were not directly comparable to ours due to differences in the annotation
schemes). These results showed that the inter-annotator agreement between our annotators
was sufficiently high. One annotator then completed the remaining 770 sentences of the
annotation.

4.1.2 Learner errors

To investigate the impact of learner errors on parsing, we first annotated the learner errors
in EF1000. The following section describes the learner error annotation scheme. We then
present the annotation procedure.

Learner error scheme

The annotation of any learner error required the assumption of a correct form, i.e., the
target hypothesis (Ellis, 1994). Since different target hypotheses may be assumed for the
same learner error, it was difficult to achieve consistent annotation (Reznicek et al., 2013).
Nevertheless, there were several ways to improve the consistency of learner error annotation:
firstly, using a learner error scheme with predefined learner error types (Fitzpatrick and
Seegmiller, 2004); secondly, designing the taxonomy of learner errors properly; thirdly,
setting rules for typical ambiguous cases and training the annotators with these rules.

We used the learner error scheme of the Cambridge Learner Corpus (CLC-FCE) (Nicholls,
2003). The scheme included over 80 learner error types. The majority of the learner errors
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were defined along two dimensions: the deviation of the learner error from the target
hypothesis and the syntactic category of the target hypothesis word. For example, the learner
error “MV” represented a missing (M) verb (V). These two dimensions were most descriptive
for learner errors (James, 2013); combining them helped to achieve a fine-grained annotation
scheme that allowed for consistent annotation of learner errors. The scheme had been applied
to CLC-FCE, which provided a large number of consistent annotation examples2. As a
result, CLC-FCE can be used as a reference to resolve ambiguous cases during learner error
annotation.

Nevertheless, in addition to the original taxonomy, we added two learner error types:
“C” (Capitalization error) for capitalization errors, and “SP” (Space error) for wrongly split
or concatenated words. In CLC-FCE, these two types of learner errors were somewhat
inappropriately annotated as “RP” (punctuation needs replacement) (see Appendix A for the
full taxonomy of learner errors used in this study).

The annotation of learner errors used the format of XML markup illustrated as follows:

I <ns type=“TV”><i>graduate</i><c>graduated</c></ns> in 1983 .

where the erroneous sentence segment graduate was marked by <i>, while the target hypoth-
esis graduated was marked by <c>; the learner error type was indicated by <ns type=“TV”>,
which means wrong verb tense.

Annotation procedure

The annotation of a learner error involved three steps: identifying a sentence segment that
contained a learner error, marking the learner error type, and providing a correction. The
annotators went through a training before the annotation. First, the two annotators learned
the CLC-FCE learner error taxonomy (Nicholls, 2003). They then independently annotated
the 30 training sentences, during which they had access to the learner error annotation of
CLC-FCE for reference. The two annotators then discussed and resolved their annotation
disagreement on the 30 sentences.

After the training, the two annotators annotated 200 sentences. We calculated two types
of inter-annotator agreements which have been used in previous research on learner error
annotation (Fitzpatrick and Seegmiller, 2004; Rosen et al., 2014). The first one was a global
measure based on the percentage of overlapping learner errors in both annotations (Fitzpatrick
and Seegmiller, 2004). The formula was as follows:

2While there was no proof of the consistency of the learner error annotation of CLC-FCE in terms of
reliability metrics, the experience of our annotators and the fact that CLC-FCE had been widely used in
automatic error correction where consistent training examples were required suggested that the annotation of
CLC-FCE was consistent.
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noverlapping
n1+n2

2
(4.1)

where noverlapping referred to the number of overlapping learner errors in the two annotations;
n1 and n2 denoted the number of learner errors in the two annotations respectively.

As mentioned before, the goal of checking the inter-rater agreement was to find out
whether the annotators were reliable in identifying learner errors so that we can entrust the
rest of the annotation to only one annotator. Since there might be multiple ways to correct an
identified learner error, which was unavoidable and should be allowed, we did not require the
corrections to be the same for the overlapping learner errors. We first defined the overlapping
learner errors as the learner errors annotated with the same beginning word and the same
learner error type. This definition allowed for automatic calculation. We also proposed a
less stringent definition of the overlapping learner errors: the learner errors that targeted a
similar range of text even though the actual annotation might be different. For example, for
the sentence segment we are in* the necessary step, one annotator corrected it as we are
[at] the necessary stage, while the other one corrected it as we are [taking a] necessary step.
Even though the annotations of learner error types were different, they were considered to
be overlapping under the less stringent definition because such variances were caused by
the inherent ambiguity of the target hypothesis rather than oversight or inability to detect a
learner error. This definition of overlapping learner errors required manual calculation.

The inter-annotator agreement was 70.9% under the stringent definition of the overlapping
learner errors, and 86.3% under the less stringent one. Fitzpatrick and Seegmiller (2004)
achieved a much lower inter-annotator agreement at 60%. This was mainly due to the absence
of predefined learner error types in their annotation scheme. In other words, they required
the correction to be the same when calculating the overlapping learner errors. When we
changed the stringent definition of overlapping learner errors as having the same correction
rather than learner error type, the inter-annotator agreement was 63.5%. The higher figure
demonstrated the improvement in consistency presumably brought by our annotation scheme
and the application of CLC-FCE as a reference during the annotation.

We also analyzed the inter-annotator agreement of specific errors in terms of the kappa
metric (Rosen et al., 2014). Table 4.1 shows the kappa inter-annotator agreement of the
learner errors that appeared at least three times on average between the annotations of both
annotators.

Table 4.1 indicates that most learner errors were annotated consistently, especially the
spelling error (“S”), capitalization error (“C”), missing a determiner (“MD”), wrong form of
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Table 4.1 Kappa inter-annotator agreement of learner errors

Learner error Kappa Avg. # tags
S 0.897 44
C 0.877 21
MD 0.841 19
MT 0.787 17
MP 0.665 15
RP 0.623 15
RT 0.614 12
RD 0.699 10
AGV 1.000 10
UD 0.699 10
FN 0.823 9
MV 0.624 8
SP 0.705 7
FV 0.615 7
AS -0.003 7
M 0.152 6
RA 0.909 6
MC 0.909 6
AGN 1.000 5
W 0.213 5
UT 0.889 5
RV 0.666 5
RJ 0.666 5
CE -0.001 4
DJ 0.750 4
DN 0.571 4
RN 0.333 3
R 0.000 3
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a noun (“FN”), a pronoun needed replacing (“RA”), missing a conjunction (“MC”) and an
unnecessary preposition (“UT”) (κ > 0.8).

However, learner errors of incorrect argument structure (“AS”), something missing (“M”),
incorrect word order (“W”), something needed replacing (“R”), a noun needed replacing
(“RN”) and complex error (“CE”), were not consistent between the two annotators (κ < 0.4).
Further analysis shows that these errors were subject to more varied target forms, and were
therefore not easy to annotate in the same way among different annotators. The finding was
similar to that of Rosen et al. (2014) on the annotation of learner Czech: they found that
learner errors like incorrect morphology, whose target forms were easy to establish, can be
annotated consistently, whereas learner errors like incorrect complex verb forms or wrong
lexis cannot be annotated consistently due to varied target forms.

In general, the inter-annotator agreement was high, which showed that the two annotators
were reliable in identifying learner errors. As a result, one annotator continued to annotate
the rest of the learner dataset for learner errors. This annotator also annotated the effect of
learner errors on POS tagging and parsing errors of all learner sentences (see the following
section).

4.1.3 Relations between learner errors and parsing errors

To investigate the impact of learner errors on parsing, we then annotated the relations between
learner errors and parsing errors. We operationally defined that a learner error caused a
parsing error if the removal of the learner error led to the disappearance of the parsing
error. Since learner errors may jointly affect parsing (i.e., some parsing errors may be
caused by the co-occurrence of two or more learner errors), it was important to annotate
the effect of both individual and the combinations of learner errors. However, the number
of learner error combinations increased exponentially with the number of learner errors in
a sentence. For example, a sentence that contained five learner errors had 25 – 1 (i.e., 31)
combinations of learner errors. Observing whether the correction of these combinations
led to the disappearance of a parsing error was time-consuming. To limit the scale of our
problem, we evaluated the effect of learner errors only on the pre-annotation parser SU.

The annotation procedure was as follows. Since we needed to annotate the relations
between learner errors and parsing errors, we first extracted the learner sentences that
contained both learner errors and parsing errors (344 sentences). Secondly, we corrected
various combinations of the learner errors to produce partly or totally corrected sentences.
Thirdly, we parsed the corrected sentences with SU. Fourthly, we extracted parsing errors by
contrasting the parsing output to the MPB annotation. The annotator then annotated the effect
of the learner errors in the following way: for any parsing error, if the correction of a learner
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error combination resulted in the disappearance of the specific parsing error in the corrected
sentence, we annotated the parsing error as related to all the learner errors in that combination.
Only the minimum combination of learner errors was annotated; any other learner error
combinations which included these learner errors and caused the disappearance of the same
parsing error were not annotated. For the sentences that contained less than 6 learner errors
(332 sentences), the annotators examined all their corrected sentences, i.e., checked the
effect of each learner error combination on parsing. The rest of 12 sentences contained too
many learner errors; examining all corrected sentences was impractical. Nevertheless, the
annotation on the 332 sentences showed that most learner error combinations that affected
parsing errors involved fewer than four learner errors. Therefore, the annotator examined
only the correction of fewer than four learner errors for the 12 sentences.

4.2 Evaluation

We evaluated the performance of the parsers on the annotated learner English dataset (E-
F1000) and the gold standard dataset of POS tags and dependency structure of native English
(PTB-WSJ). We report our investigation in the annotation bias and the accuracy of multiple
parsers on learner English in the following section. We then report the impact of learner
errors on the performance of the baseline parser. Finally, we report the comparison between
the performance of the parsers on learner English and native English.

4.2.1 Annotation bias on learner English

Firstly, we evaluated the parsers against the SPB annotation. Table 4.2 shows the accuracy
scores of the parsers. The accuracy was measured by the proportions of the words that
received correct POS tags (POS), unlabeled attachments (UAS), labeled attachments (LAS),
and the combination of POS tags and labeled attachments (All), as well as the proportions of
the sentences that were free of the errors in each of the aforementioned aspects. The parsers in
the d-parsing category had no POS accuracy scores because they did not include a POS tagger.
It turned out that the pre-annotation parser performed the best on all criteria, even though
the word-based accuracy scores, except on POS tags, were slightly lower than the results of
Geertzen et al. (2013), in which the corresponding figures of the word-based POS, UAS, LAS
and All were 96.1%, 92.1%, 89.6% and 88.6% respectively. The maximum performance
gaps between the parsers were smaller on POS tags than on dependency relations (see the
“Max. Diff.” row of Table 4.2).
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Table 4.2 Accuracy of the parsers on the SPB annotation

Parsing
approach

Parsera Accuracy by word (%) Accuracy by sentence (%)
POS UAS LAS All POS UAS LAS All

c-parsing

SU 96.31 91.49 88.03 87.1 72.0 59.70 49.8 46.7
SL 95.25 89.25 85.06 83.66 62.3 50.3 40.5 36.5
BS 94.95 90.53 86.88 84.88 59.4 55.0 43.5 35.9
BW 95.00 90.64 86.96 85.10 59.7 56.3 45.2 37.8
BK 94.81 90.26 86.36 84.40 61.2 54.9 43.3 36.9

d-parsing
TB – 89.88 86.32 – – 54.1 43.0 –
MT – 88.38 84.67 – – 48.4 38.5 –

Max. Diff. 1.50 3.11 3.36 3.46 12.6 11.3 11.3 10.8
a SU: Stanford PCFG (unlexicalized) parser; SL: Stanford lexicalized parser; BS: BLLIP parser

trained on OntoNotes-WSJ and Google Web Treebank; BW: BLLIP parser trained on PTB-WSJ
and Gigaword; BK: Berkeley parser; TB: Turbo parser; MT: MaltParser.

The coincidence that the pre-annotation parser performed the best on the SPB annotation
seemed to suggest the presence of an annotation bias in the SPB annotation towards the
pre-annotation parser. We then evaluated the parsers against the MPB annotation. The results
(Table 4.3) confirmed the hypothesis about annotation bias. In this evaluation, the BLLIP
parser turned out to be the best in all aspects except the sentence-based POS accuracy, on
which the Berkeley parser performed the best. Specifically, BW, the parsing setting where
the BLLIP parser was trained on Gigaword and PTB-WSJ, achieved the best results. On the
other hand, the rank of the pre-annotation parser SU dropped to the third on the accuracy
of word-based POS, the fifth on word-based UAS and LAS, and even the sixth on sentence-
based UAS and LAS. The changes in the accuracy scores of the pre-annotation parser and
the word-based accuracy scores of the best-performing parser between the two evaluations
were significant according to chi-squared tests. These differences demonstrated that the
SPB annotation was indeed biased towards the pre-annotation parser. The bias changed
the ranking of the parsers, affecting the accuracy scores of the pre-annotation parser and
the best-performing parser most. Furthermore, the maximum performance gaps between
the parsers diminished, especially on POS (from 1.50% to 0.40% on the word level, and
from 12.6% to 2.1% on the sentence level). This meant that the annotation bias in the SPB
annotation also artificially increased the performance gaps between the parsers. In fact, the
performance of various parsers on POS tagging was similar.

To better understand the annotation bias, we quantitatively and qualitatively investigated
the re-annotations that produced the MPB annotation. First, we identified the annotation
mismatches with respect to each parser (i.e., cases where the annotation of the particular
parser disagreed with the pre-annotation parser SU) and all parsers (i.e., cases where the



4.2 Evaluation 59

Table 4.3 Accuracy of the parsers on the MPB annotation

Parsing
approach Parsera Accuracy by word (%) Accuracy by sentence (%)

POS UAS LAS All POS UAS LAS All

c-parsing

SU 95.41***b 89.77*** 86.05*** 84.67*** 64.7*** 52.6** 42.5** 37.9***

SL 95.38 89.70 85.46 84.06 62.6 53.7 42.9 36.9
BS 95.63* 91.43* 87.77* 86.09** 63.7* 59.6* 47.7* 39.5
BW 95.64* 91.53* 87.84* 86.28** 63.6* 60.5* 48.4 40.8
BK 95.24 90.65 86.76 85.03 64.7 56.3 44.6 37.8

d-parsing TB – 90.53* 86.77 – – 57.2 44.3 –
MT – 88.85 85.06 – – 51.7 41.1 –

Max. Diff. 0.40 2.68 2.78 2.22 2.1 8.8 7.3 3.9
a SU: Stanford PCFG (unlexicalized) parser; SL: Stanford lexicalized parser; BS: BLLIP parser trained on

OntoNotes-WSJ and Google Web Treebank; BW: BLLIP parser trained on PTB-WSJ and Gigaword; BK:
Berkeley parser; TB: Turbo parser; MT: MaltParser.

b The marks of significance (chi-squared tests): *: p < 0.05; **: p < 0.01; ***: p < 0.001.

annotation of at least one parser disagreed with SU), and further classified these cases into
two groups: one where the SPB annotation agreed with the pre-annotation parser SU, and the
other where the SPB annotation disagreed with SU. Table 4.4 shows the number of annotation
mismatches with regard to each non-SU parser setting and the proportion of the cases that
were marked with correction (“C”) or multiple options (“M”) due to the correct reference
provided by that parser setting.

In Table 4.4, the correction rates on the cases where the SPB annotation agreed with SU
were much higher than where they disagreed. In the former situation, around 20% of the
annotation mismatches with respect to individual parsers on the POS tag and head index
required corrections. The correction rate on the dependency label varied across different
parser settings but also went beyond 10% in most cases. By contrast, the correction rates on
the cases where the SPB annotation disagreed with SU dropped to less than 0.5% on POS
tags, 1.1% on head indices and 0.6% on dependency labels for each parser setting. This
contrast meant that during the SPB annotation, the precision of correcting parsing errors was
high (i.e., when a parsing error was corrected, the correction was accurate), but the recall of
parsing errors was relatively low (i.e., the annotator accepted some wrong parsing choices
during the SPB annotation).

The results also indicate that displaying the different output of various parsers helped the
annotator to detect annotation errors. The contrast provided more information for reference
during annotation, and helped to promote awareness of annotation errors. Nevertheless, the
quality of the reference provided by different parsers varied. Table 3 shows that for the cases
where the SPB annotation disagreed with SU, the correction rates with respect to the BLLIP
parser (BS or BW) were highest. As revealed earlier, the BLLIP parser was most accurate on
the learner dataset. Therefore, the annotation of BLLIP parser provided the best reference.
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Table 4.4 Analysis of the annotation mismatches

Cases
Parsing
approach

Parserb POS Head Dependency label
# C M # C M # C M

SPB an-
notation
agreed
with SUa

c-parsing

SL 252 19.8 5.2 668 15.1 5.4 556 6.8 4.7
BS 362 22.7 6.4 584 20.9 8.4 424 13.7 7.8
BW 352 22.7 6.8 544 22.4 8.1 409 13.4 8.3
BK 332 18.4 6.6 581 17.0 5.0 450 11.6 4.2

d-parsing
TB – – – 530 20.8 7.7 383 12.0 5.5
MT – – – 709 14.1 5.2 525 9.0 2.1

All parsers 647 16.4 6.3 1,644 11.7 5.5 1,351 7.3 4.3

SPB an-
notation
disagreed
with SU

c-parsing

SL 200 0.5 0.5 579 1.0 0.7 594 0.2 0.2
BS 274 0.0 0.0 642 0.8 0.9 682 0.3 0.9
BW 274 0.0 0.0 610 0.8 1.3 664 0.5 1.1
BK 229 0.4 0.9 610 1.1 1.1 650 0.0 0.6

d-parsing
TB – – – 494 0.8 0.6 530 0.6 0.2
MT – – – 515 0.4 0.2 544 0.6 0.6

All parsers 338 0.6 0.6 893 1.2 1.2 969 0.6 0.9
a SU: Stanford PCFG (unlexicalized) parser.
b SL: Stanford lexicalized parser; BS: BLLIP parser trained on OntoNotes-WSJ and Google Web Treebank;

BW: BLLIP parser trained on PTB-WSJ and Gigaword; BK: Berkeley parser; TB: Turbo parser; MT:
MaltParser.

Other parsers also contributed useful reference, even though at lower accuracy. Meanwhile,
since there was overlap in the correct references provided by different parsers (e.g., two or
more parsers provided the same correct pre-annotation which led to the correction of an
SPB annotation), the correction rates with respect to all parsers (i.e., the proportion of the
annotation mismatches where at least one parser was correct) were generally lower than
the correction rates with respect to individual parsers. This indicated that as the number of
parsers adopted in the contrast-based annotation grew, the marginal benefit of adding a parser
diminished.

We split the re-annotations with regard to the types of annotation, i.e., POS tags, head
indices, and dependency labels, and summarized the linguistic structures that were prone to
annotation bias.

Annotation errors on POS tags

Table 4.5 lists the types of POS annotation errors that occurred more than four times.
Throughout this paper, we use the format of “wrong tag - correct tag” to refer to an annotation
error or parsing error. Apart from the annotation error of “VBD-VBN” (past tense verb -
past participle verb), all other annotation errors involved POS tag pairs which were listed as
“easily confused” in the PTB annotation guideline (Santorini, 1990). In other words, most
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Table 4.5 Annotation errors on POS tags (named by “wrong tag-correct tag”)

Error type Freq.
VB-VBP 21
RP-IN 11
RP-RB 7
NNP-NN 7
VBN-JJ 6
RB-NN 6
RB-IN 5
IN-WDT 5
VBD-VBN 4
VBG-NN 4
JJ-NN 4
IN-RB 4

of the annotation bias with respect to POS tags was related to choices between inherently
confusing POS tag pairs. Further qualitative analysis revealed some prominent causes of the
confusions as follows.

• Overlap between inflectionally defined and functionally defined POS tags

For example, this factor contributed to the annotation errors of “VBN-JJ” (past partici-
ple verb - adjective), “VBG-NN” (gerund or present participle verb - singular or mass
noun) and “VBG-JJ”. VBN and VBG were defined by verbal inflection, whereas JJ
and NN were defined by the function of words in context. The two sets of POS tags
were not mutually exclusive. For instance, in joy of learning, learning can be either a
noun or a verb. This overlapped domain was caused by the fact that VBN and VBG
were intermediate syntactic categories between prototypical verbs and prototypical
adjectives or nouns, as we have discussed in the theoretical review of POS classification
in Chapter 2.1.1.

• Overlap between POS tags in a containment relation

For example, annotation errors involving RP (particle) and RB (adverb) or IN (preposi-
tion) were related to this factor. RP was a subclass of RB and bore some functional
characteristics of IN as well. Basically, RB or IN seemed plausible for many cases
where RP was annotated. The PTB annotation guideline (Santorini, 1990) defined
rules and diagnostic tests for distinguishing between RP, RB and IN. However, these
rules and tests may not apply to all cases. For instance, two websites will be compared
with* included the redundant word with. According to the PTB annotation guideline,
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with should be tagged as IN. Nevertheless, the learner error here seemed to indicate
that the learner used with as an RP.

• Same word forms with different POS tags

An example of the annotation errors related to this factor was “JJ-NN”. If the word
forms of a mass noun NN and an adjective JJ were the same, confusion can occur when
the words were used as prenominals or predicatives. For instance, in plastic bottles
and they are fun, plastic and fun can be either NN or JJ.

Annotation errors involving the same word forms with different POS tags can also
arise with ambiguous structures. For example, VB (base-form verb) was not usually
confused with NN. However, in go to work, work can be regarded as a VB, with to
as an auxiliary; on the other hand, work can also be regarded as a NN, with to as a
preposition.

Annotation errors on head indices

The annotation errors regarding head indices mostly occurred in the following linguistic
structures:

• Prepositional phrases

In (m), the prepositional phrase with the head teacher can be regarded as dependent
on build; this was syntactically acceptable and semantically plausible (i.e., the head
teacher was involved in building up the cooperation). However, from the context, we
can see that the intended meaning of the construction was “to cooperate with the head
teacher”. Therefore, the prepositional phrase should be annotated as dependent on
cooperation rather than build.

• Modifiers

For a sequence of nouns where one noun headed the others, selecting which noun for
the head can be challenging. For example, for a locational phrase in the form of “city,
country” like in Manus, Brazil, it was plausible to analyze the city as a modifier that
specified an area of the country. On the other hand, the comma between the two nouns
can indicate post modification, in which the country was the modifier of the city.

• Coordinating conjuncts

The SD scheme determined that in a coordination the first conjunct should be the head
of all the other conjuncts. However, if a parser failed to identify the first conjunct,
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attaching a conjunct to e.g., the second conjunct should not be regarded as a parsing
error, because the conjunct relation was established. For instance, in (n), normally
raincoat, flash light, clothes, and sleeping bags should be attached to umbrella with the
dependency label of “conj_and”. However, if a parser attached flash light to raincoat
by “conj_and”, the conjunct relation was also established and should not be regarded
as a parsing error.

(m) I will build up a better cooperation with the head teacher which will ensure a better
relation between those who make decisions and us students who are mainly affected
by them.

(n) I need to take my umbrella, my raincoat, my flash light, my clothes and my sleeping
bag.

Annotation errors on dependency labels

The annotation errors on dependency labels were usually related to the following linguistic
structures:

• Linguistic structures subject to annotation errors on POS tags or head indices

Since dependency relations were established based on POS tags, the errors in the latter
may affect the former. For example, the dependency error of “amod-nn” (adjectival
modifier - noun compound modifier) was related to the POS error of “JJ-NN”. Similarly,
“prt-prep” (phrasal verb particle - prepositional modifier) was related to “RP-IN”,
and “prt-advmod” (phrasal verb particle - adverb modifier) was related to “RP-RB”.
Furthermore, since the assignment of dependency labels correlated with the assignment
of head indices during parsing, the errors in the latter may also affect the former.
For example, the confusion of “nn-prep_in” (noun compound modifier - prepositional
modifier with the preposition in) was caused by the attachment errors on noun modifiers
as mentioned in the previous section.

• Prepositional phrases and infinitive clauses (adjunct vs. complement)

Sometimes adjuncts and complements were difficult to disambiguate, which led to the
annotation error of “vmod-xcomp” (reduced non-finite verbal modifier - open clausal
complement). For instance, in (o) the purpose clause to raise fund can also be taken as
a complement clause in the absence of subcategorization information for individual
verbs.
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• Conjuncts (multiple dependencies)

The SD dependency scheme dictated that each word can have only one head. However,
sometimes a word may be dependent on multiple words. This happened most frequently
in conjunct structures. When a conjunct involved elliptical material, the dependents of
the elided element may have multiple heads. For instance, in (p), year may be seen as
either an object of the verb have, or a modifier of the word warranty at the end of the
sentence. It was hard to choose between these two heads: choosing one dependency
led to the loss of information for the other dependency. Of course, it is worth noting
that the ellipsis in (p) was ungrammatical, which added to the annotation challenge.

Summarized above are the linguistic structures that were prone to annotation bias mostly
because of the inherent ambiguity in the linguistic structures and the parsing scheme. Another
major source of annotation bias was learner errors. Since there were various learner errors
and the same learner error can cause different types of ambiguity in different contexts,
the linguistic structures that were subject to annotation bias because of learner errors vary.
For example, in I hope this help* you, the word help should be corrected as helps or will
help. When we annotated the dependency relation between help and its head hope, two
options seemed acceptable: if we assumed that the learner had incorrect knowledge of the
subcategorization frame of hope, regarding this as the object of hope rather than the subject of
help (i.e., confusing the frame of hope as that of let in let somebody do something), “xcomp”
(open clausal complement) should be chosen; however, if we assumed that the learner used
the right frame but made a mistake in the tense or number, “ccomp” (clausal complement)
should be chosen. Furthermore, (q) shows a sentence that was unintelligible due to learner
errors. There were many ways to interpret the sentence, each of which led to a different
dependency structure. For example, if demand was intended to be demanded, professional
should be annotated as “nsubjpass” (passive nominal subject). Alternatively, if is demand
was intended to be demands, professional should be annotated as “nsubj” (nominal subject).

(o) I’d lead the student council to raise fund

(p) Our notebooks have a 1 year*, our pens two weeks warranty

(q) My professional is demand to one teach in the idiom English*.

In summary, this section showed the accuracy of standard parsers on the EF1000 learner
data (Table 4.3). We also confirmed the existence of annotation bias in the SPB annotation
setting, and identified the linguistic structures that were prone to annotation bias. The next
section moves on to evaluate the effect of learner errors on parsing.
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Table 4.6 Distribution of parsing errors caused by learner errors

Level PE # containing PEs LE-caused PEs (%)

Sentence

Generala 626 41.4
POS 359 38.7
Head index 478 40.2
Dependency label 473 46.3

Word

General 1866 39.2
POS 568 37.5
Head index 1243 40.4
Dependency label 1232 43.2

a In the category of “general”, a word was counted as containing a parsing error if any
annotation type of the word, i.e., the POS tag, the head index or the dependency label,
was incorrect.

4.2.2 Impact of learner errors on parser performance

The reasonably high accuracy of the parsers on the learner data may create the impression
that, after all, the learner errors did not have a significant impact on parser performance. It
was, therefore, crucial to understand if the parsers were indeed robust to learner errors.

Firstly, we analyzed the overall effect of learner errors on parsing from two aspects: the
proportion of the parsing errors that were caused by learner errors (hereafter referred to
as “LE-caused PEs”), and the proportion of the learner errors that caused parsing errors.
Secondly, we analyzed the effect of individual learner errors on parsing, summarizing the
most frequent types of the parsing errors that were caused by learner errors, and the most
frequent types of the learner errors that caused parsing errors.

Table 4.6 summarizes the proportion of the parsing errors that were caused by learner
errors. As we can see, among the words that contained PEs, 39.2% had at least one LE-caused
PE. Furthermore, when categorizing the PEs by the annotation types, we can see that the
percentage of the LE-caused PEs increased across POS tags (37.5%), head indices (40.4%)
and dependency labels (43.2%). This meant that among the three annotation types of the
parser, dependency labels were most vulnerable to learner errors. A similar trend can be
observed on the sentence level.

Table 4.7 summarizes the number of LEs and the proportion of LEs that caused PEs. In
our learner English dataset, 53.5% of the sentences contained at least one LE. Among all the
LEs, 63% caused at least one PE. The high percentages of LE-caused PEs among PEs and
LEs showed that learner errors had a great impact on the parsing of learner English.

We then investigated the most frequent LE-caused PEs on a fine-grain level. Table 4.8
shows the types of LE-caused POS errors that occurred more than five times in our dataset
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Table 4.7 Distribution of learner errors which caused parsing errors

Level # (containing) LEs # (containing) LE-caused PEs (%)
Sentence 535 48.4
LE 1,131 63.0

(see Appendix A for an explanation of the learner error types). These POS errors made up
39.8% of all the LE-caused POS errors.

One of the most frequent LE-caused POS errors was “JJ-NN” (adjective - noun). The
causes of this parsing error included wrong derivation of nouns (“DN”, e.g., in some different
the correct form of different should be differences), missing a determiner (“MD”, e.g., missing
a in I’m a pensioner) or spelling errors (“S”).

Another frequent POS error was “NNP-NN” (proper noun - noun). The main causes were
missing a determiner (“MD”) at the beginning of a sentence or inaccurate capitalization of a
common noun (“C”). Verbs were sometimes misrecognized as nouns (“NN-VB”) because of
erroneous argument structure (“AS”, e.g., are over love their own babies should be corrected
as love their own babies very much), missing a preposition (“MT”, e.g., missing to in like to
play badminton) or using a wrong verb form (“FV”, e.g., think about change my career), etc.

The errors of misrecognizing proper nouns as common nouns (“NNP-NN”) and pronouns
as foreign words (“FW-PRP”) were exclusively caused by capitalization errors. Specifically,
“FW-PRP” was caused by using the lower-case i for the first-person singular pronoun I.
Except for these two types of POS errors, most LE-caused POS errors involved varied learner
errors; sometimes more than one learner error contributed to an LE-caused POS error.

Table 4.9 shows the LE-caused dependency label errors that occurred more than five
times in our dataset. These errors made up 28.1% of the LE-caused dependency label errors:
compared to LE-caused POS error, LE-caused dependency label errors were more varied.
The two most frequent types of dependency label errors concerned the core structure of
the sentences: “ccomp-root” referred to misjudging a root as a clausal complement, and
“root-parataxis” referred to misrecognizing a parataxis clause (i.e., a coordinate or subordinate
clause without an explicit link verb) as a root. The major cause of these errors was comma
splice. This learner error was marked by the learner error code “RP” (punctuation needs
replacing), as the commas should be replaced by semi-colons or full-stops. Apart from
the aforementioned two dependency label errors, other dependency label errors had no
dominantly related learner errors, and may be caused by different types of learner errors.

We ranked the learner errors according to the frequency of the parsing errors they caused.
Table 4.10 shows the top learner error types. It turned out that erroneous punctuation caused
most parsing errors. This can also be observed from Table 4.8 and Table 4.9. Apart from
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Table 4.8 Most frequent types of LE-caused POS errors (named by “wrong tag-correct tag”)

POS error Most frequent relevant LEs Freq.
JJ-NN DNa(4)b, MD(3), S(3), FA, UY, CN, AS 11
NNP-NN MD(6), C(4), S, DN, W 11
NN-VB AS(3), MT(2), FV(2), MD, MC, DN, DA 10
FW-PRP C(8) 8
NN-NNP C(7) 7
VBG-NN S(2), FN(2), RP, UN, MD, MC, AS 7
NN-RB S(3), RP(2), UT 6
NN-VBP RP(3), DA(2), TV, FV 6
VB-VBP S(3), RP(2), M 6
NNP-JJ MD(3), W, C 5
RB-IN S(2), UC, M, FV 5
a DN: wrongly derived noun; MD: determiner missing; S: spelling error;

C: capitalization error; AS: incorrect argument structure; MT: preposition
missing; FV: wrong form of verb; FN: wrong form of noun; RP: punctua-
tion needs replacing; DA: wrongly derived pronoun. For the description
of the other LEs, please refer to Appendix A.

b The bracketed numbers denote the frequencies of the LE-caused PEs that
were caused by a particular learner error more than once. Since some PEs
were related to more than one learner error, the sum of the learner errors
relating to a PE may be larger than the frequency of the PE.

the comma splice, another major punctuation error was substituting a backtick (`) for an
apostrophe in the contracted forms of verbs (e.g., I’m, I’ve), negations (e.g., don’t), and the
possessive form of nouns (e.g., Asia’s), which caused problems including misjudging present
tense verbs as common nouns (“NN-VBP”) and misjudging the possessive morpheme ’s as a
root (“root-erased”).

To conclude, this section confirmed that learner errors did have an impact on dependency
parsing. The question then became why the parsers still achieved high performance if learner
errors did have a significant impact. We turn to this issue in the next section where we
compare the performance of the parsers on learner and native data.

4.2.3 Parser performance on learner English and native English

We evaluated the parsers on the native English dataset and compared the results to the
evaluation on the MPB annotation of the EF1000 learner dataset. The gold standard of native
dependency structures was achieved by converting Section 23 of the PTB-WSJ (Marcus et al.,
1993) to the collapsed SD format.

Table 4.11 presents the evaluation results of the standard parsers on learner English (MPB
annotation) and native English (PTB-WSJ section 23) on the word level. The accuracy scores
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Table 4.9 Most frequent types of LE-caused dependency label errors (named by “wrong
label-correct label”)

Dependency label error Most frequent relevant LEs Freq.
ccomp-root RPa(21)b, MP(3), S(2), UA, MC, FV, DA, CN 29
root-parataxis RP(24), MP(3), MC, DV 29
nsubj-dobj AS(4), MP(3), RP(2), MC(2), C 13
amod-nn S(3), FN(2), C(2), UN, RP, MD, MC, AS 12
dep-parataxis MP(4), AS(4), RP(3), DA(2), C(2), RT, CE 10
appos-conj_and MC(3), RC(2), AS 6
vmod-root RP(4), SP, MV 6
nn-amod MD(2), W, S, RJ, C 6
advmod-erased S(3), W, UN, M, FV, AS 6
root-erased RP(2), MD, M, AS 5
aux-root W, S, RP, MD, C, AGV 5
dep-dobj UV, RP, M, DV, DA, C, AS 5
nn-conj_and AS (2), SP, S, RC, MT 5
rcmod-parataxis MP(3), RP(2) 5
acomp-xcomp MD(3), MA, RC 5
root-aux UV, UT, UA, S, FV 5
a RP: punctuation needs replacing; MP: punctuation missing; S: spelling error; AS: incorrect

argument structure; MC: conjunction missing; FN: wrong form of noun; C: capitalization error;
DA: wrongly derived pronoun; RC: conjunction needs replacing; MD: determiner missing. For
the description of the other LEs, please refer to Appendix A.

b The bracketed numbers denote the frequencies of the LE-caused PEs that were caused by a
particular learner error more than once.

Table 4.10 Learner errors that caused parsing errors most frequently

LE Description # LE-caused PEs
RP Punctuation error 100
S Spelling 76
C Capitalization 55
AS Wrong argument structure 54
MP Missing a punctuation 47
MD Missing a determiner 44
MT Missing a preposition 43
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of each standard parser were significantly lower (p < 0.001 according to chi-squared tests) on
learner English than on native English. On average, the parsers achieved 95.46% vs. 96.69%
on POS accuracy, 90.35% vs. 92.48% on UAS, 86.53% vs. 90.09% LAS, and 85.23% vs.
88.66% on the accuracy of all tags. The average performance gap between learner English
and native English increased across the POS tag (1.23%), unlabeled attachment (2.13%),
and labeled attachment (3.43%). This indicated that compared to POS tagging, dependency
parsing might be subject to more influence from the difference between learner English and
native English.

Even though the accuracy gaps between learner English and native English may seem
small to human eyes, it did not mean that the parsers were robust to learner errors, as
demonstrated in the previous section. Geertzen et al. (2013) argued that the seemingly high
accuracy scores of a standard parser on learner English might result from the prevalence of
short and simple sentences in learner English. To testify whether parsers performed better on
shorter sentences than on longer ones, we grouped the native English sentences by sentence
length, calculating the average parsing accuracy scores of each group that had more than five
sentences, and computing the Pearson correlation between the accuracy scores and sentence
length. It turned out that the UAS and LAS were significantly and negatively correlated
with the sentence length (UAS: r = −0.776, p < 0.01; LAS: r = −0.603, p < 0.01). This
meant that the performance of the parsers was indeed better on shorter sentences. Since the
average sentence length of our learner English dataset was 13.5 whereas that of the native
one was 23.5, the UAS and LAS gaps between learner English and native English were partly
offset by the differences in sentence length. Nevertheless, POS tagging showed a positive
correlation with sentence length (r = 0.415, p < 0.01); careful examination showed that this
was because POS tagging was already quite accurate; when few POS errors occurred, shorter
sentences had fewer words in total, which dragged down their POS accuracy scores.

On the other hand, the performance of the parsers on learner English seemed to correlate
with their performance on native English. The best parser setting for learner English,
the BLLIP parser trained on PTB-WSJ and Gigaword, also performed the best on native
English except on POS tagging where it came second following the Berkeley parser. To
verify the correlation, we ranked the parsers according to their performance on each dataset
and computed the Spearman’s rho correlation between the two rankings. It turned out
that the correlation was significant on UAS (r = 0.857, p < 0.05), LAS (r = 0.821, p <

0.05) and the combination of all tags (r = 0.900, p < 0.05). Nevertheless, there was no
significant correlation between the rankings on POS tags alone; this was possibly because
the performance of the parsers on POS tagging was similarly high (maximum performance
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Table 4.11 Accuracy of the parsers on learner English data and native English data

Parsing
approach

Parsera MPB annotation (learner) PTB-WSJ section 23 (native)
POS UAS LAS All POS UAS LAS All

c-parsing

SU 95.41 89.77 86.05 84.67 96.37 90.70 88.11 86.49
SL 95.38 89.70 85.46 84.06 96.65 90.98 88.16 86.61
BS 95.63 91.43 87.77 86.09 96.71 94.09 91.89 90.12
BW 95.64 91.53 87.84 86.28 96.76 94.22 92.08 90.33
BK 95.24 90.65 86.76 85.03 96.98 93.44 91.32 89.76

d-parsing
TB – 90.53 86.77 – – 92.67 90.20 –
MT – 88.85 85.06 – – 91.26 88.85 –

Average 95.46 90.35 86.53 85.23 96.69 92.48 90.09 88.66
Max. Diff. 0.40 2.68 2.78 2.22 0.61 3.52 3.97 3.84
a SU: Stanford PCFG (unlexicalized) parser; SL: Stanford lexicalized parser; BS: BLLIP parser

trained on OntoNotes-WSJ and Google Web Treebank; BW: BLLIP parser trained on PTB-WSJ and
Gigaword; BK: Berkeley parser; TB: Turbo parser; MT: MaltParser.

difference was 0.40 on learner English, and 0.61 on native English) which made the ranking
on the POS tag less meaningful.

The aforementioned correlation between the performance of dependency parsing on
learner English and native English seemed to contradict the result of Krivanek and Meurers
(2011), who showed that the MaltParser performed better on native German but worse on
learner German than the WCDG parser. However, their study only compared two parsers,
which made it impossible to identify a reliable correlation between the performance on
learner data and native data. Furthermore, their study compared a rule-based parser to a
probabilistic parser, whereas our study compared a number of probabilistic parsers. Last
but not least, they investigated learner German. German has a different word order and
morphological cues on nouns and verbs compared to English; as a result, the impact of
learner errors on the dependency parsing of German may well be different. Nevertheless,
based on our study, we can safely conclude that the performance of a probabilistic parser on
native English can predict its performance on learner English3.

3There was also a difference in both the genre and the topic between the native English training data for the
parsers (newswire, and mostly about finance) and the learner data (essay, and mostly about daily life). This
did not affect our conclusion about the existence of the correlation between the parser performance on native
English and learner English, because a parser was less likely to perform consistently (i.e., showed correlated
performances) on datasets with larger differences, whereas the correlation existed despite such differences in
the genre and the topic. Meanwhile, the result seemed to indicate that the parser performances across different
genres and topics might also be correlated. However, the number of genres and topics here was limited – more
research is needed before we can testify the general existence of such correlation.
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4.3 Summary

In this chapter, we investigated the performance of multiple standard probabilistic parsers on
learner English, the annotation bias in the evaluation, the effect of learner errors on parsing
and the correlation between the performance of the standard parsers on native English and
learner English. Our answers to the research questions posed at the beginning of this chapters
were as follows.

1. What is the accuracy of different standard parsers on learner English?

We found that on average, current standard parsers achieved around 95% on POS accuracy,
90% on UAS, 87% on LAS, and 85% on the accuracy of all tags on learner English. The
performance differences between the parsers were smaller on POS tags than on dependency
relations.

2. Is there annotation bias in the gold standard created by manually correcting the output
of a single parser? If there is, how does the annotation bias influence the accuracy
scores?

We showed that there was annotation bias when the gold standard for evaluation was
annotated by manually correcting the output of a parser. This annotation bias arose from the
inherent ambiguity of some linguistic structures, the annotation schemes, and learner errors.
The annotation bias reduced the recall of parsing errors during annotation; using the gold
standard that contained the annotation bias can significantly influence the result of the parser
evaluation in favor of the pre-annotation parser.

The annotation bias can be reduced in several ways. Firstly, displaying the annotation
mismatches of several parsers can help annotators reduce the annotation bias. The effective-
ness of the reference provided by a parser depends on its accuracy. Nevertheless, the marginal
benefit of adding a reference parser diminishes as the number of reference parsers increases,
because the correct references provided by the parsers may overlap whereas the reference
from the additional parser needs more time to review. Therefore, one should weigh reducing
annotation bias against maintaining annotation efficiency when using the contrast-based
annotation method. Secondly, the annotation bias may be controlled for by improving the
annotation scheme for parsing. In particular, we need principles that can help to distinguish
the ambiguity arising from learner errors. Multi-layered annotation (Dickinson and Ragheb,
2009) which uses different layers of features to describe the contradictory aspects of learner
errors may be a way forward. However, as our results show, learner errors may lead to
ambiguity where many interpretations of the structure are possible. This ambiguity poses a
challenge to the design of appropriate layers for annotation.
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3. What is the impact of fine-grained learner errors on parsing?

We found that learner errors did have an impact on parsing output. More than one-third
of the parsing errors were caused by learner errors, and over 60% of the learner errors
caused at least one parsing error. These results indicated that the parsers were not very
robust to learner errors. Learner errors on punctuation, spelling, capitalization, argument
structures, determiners and prepositions caused most parsing errors. Correcting these learner
errors can be an effective pre-processing technique to reduce parsing errors for downstream
linguistic research and NLP applications based on learner English data 4. Given the impact of
learner errors on parsing, it was surprising that the accuracy scores of the parsers on learner
English were lower than those on native English by only small margins. As we showed,
this was because the average sentence length of learner English was shorter than that of
native English. The impact of learner errors was therefore offset by the simplicity of learner
language. Furthermore, not every learner sentence contained learner errors, and when a
sentence did contain a learner error, it only affected the parses of a limited number of words
in the sentence. The accurate parses of short learner sentences that had no learner errors
helped maintain a high face value of the parsing accuracy for learner English.

4. What is the relation between the performance of standard parsers on learner English
and native English?

We demonstrated that the performance of probabilistic parsers on learner English can
be predicted by their performance on native English. The implication is that when it comes
to choosing a probabilistic parser for learner English, the most accurate parser evaluated on
native English is a good choice. Alternatively, if one wants to apply a probabilistic parser on
a specific learner English dataset, he or she can roughly predict the accuracy of the parser
according to its accuracy evaluated on native English.

4We propose that only the learner errors irrelevant to downstream research or application goals can be
corrected. However, correcting learner errors can influence the authenticity of learner data. Future research
may look into what degree of pre-processing is appropriate for learner data.



Chapter 5

Automatic SCF identification

In this chapter, we present an SCF identification system for learner language. As we have
mentioned in Chapter 2, the acquisition of SCFs has been a long-standing interest in L2
research, and learner corpora can provide useful insight on SCF acquisition (Ellis and
Ferreira–Junior, 2009; Meurers et al., 2013; Römer et al., 2014; Tono, 2004). However,
existing corpus-based research on SCF acquisition relies on SCF annotation obtained by
manually annotating the output of standard POS taggers and parsers. The output of such
generic syntactic analysis systems requires discrimination between complements and adjuncts
by humans. Furthermore, as we have demonstrated in the previous chapter, the performance
of standard POS taggers and parsers drops on learner data, which adds to the burden of the
manual edition. An SCF identification system is needed to facilitate efficient analysis and
annotation of SCFs on large-scale learner corpora.

We propose an SCF identification system that can analyze the SCFs of individual verb
tokens contextualized in sentences. We approach the task as a supervised classification
problem, training a classifier on SCF annotation. This chapter first describes our annotation
of SCFs on learner data. We then present the model, features and technical details of the
system. Finally, we report on the training, evaluation and error analysis of the system.

5.1 SCF annotation on learner English

We annotated EF1000 for SCFs. To extract verb tokens for the annotation, we identified verbs
based on the gold standard POS tags and dependencies of EF1000 (i.e., the MPB annotation
in Chapter 4), choosing the verbs that were not auxiliaries, adjective modifiers or gerunds
with the following criteria:

1. The POS tag of the word contained “VB”;
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2. The dependency relation of the word was not “aux” (auxiliary, e.g., has in he has
left), “auxpass” ( passive auxiliary, e.g., been in he has been understood), “amod”
(adjectival modifier, e.g., frozen in frozen food), or “nn” (noun compound modifier,
e.g., the swimming pool).

In total, 1,987 verbs were identified. We then used the SCF inventory of native English to
annotate the learner data. SCF learner errors were annotated based on surface evidence. For
example, in the sentence I waited John, the SCF of waited was annotated as “dobj_N” (a
direct object). For a learner SCF that was not in the SCF inventory (e.g., the SCF of dream in
I dream about travel around the world contained a prepositional complement erroneously
headed by a base-form verb, which can be termed as a new frame called “pcomp_VBARE”),
we annotated it as “new frame”.

Two Linguistics PhD students participated in the annotation of SCFs. The annotators
first learned the SCF inventory and an annotation guideline developed based on the work
of Meyers et al. (1996) and a previous SCF annotation project (Quochi et al., 2014). The
annotators then went through two training sessions. In each session, they annotated 100 verb
tokens independently. The author of this thesis also annotated the training sentences. At
the end of each training session, the annotators and the author compared their annotations,
discussing and resolving disagreements. After the training, the two annotators continued
to annotate the rest of 1,787 verb tokens independently. 83.7% of their annotations agreed
with each other. The author reviewed the disagreements and decided the final annotation.
The final annotation showed that the incidence of SCF learner errors was low: 12 (0.6%)
verb tokens were annotated as “new frame”; 68 (3.4%) verb tokens had wrong SCFs (e.g., I
waited John instead of I waited for John) and 20 verb tokens (1.0%) had fine-grained errors
in the choice of prepositions or particle. Since new frames were rare and varied, they cannot
be reliably classified by a machine learning model. We, therefore, removed the verb tokens
annotated as “new frame” from the dataset. As a result, the SCF learner corpus contained
1,966 verb tokens.

Table 5.1 shows the number of verb lemmas, verb types, verb tokens (i.e., the number
of sentences), corpus word tokens, SCF types and overlapping SCF types between the two
corpora. Note that the number of word tokens in the SCF learner corpus (32,196) was larger
than the number of word tokens in EF1000 (12,003), because more than one verb may be
identified in a sentence and the sentences of such verbs were duplicated in the SCF learner
corpus. Moreover, the native and learner datasets had different scales in the numbers of
verb lemmas and verb types, because these two datasets were created by using different
approaches to select the verb tokens: The native dataset was created by sampling from BNC
around 250 sentences for each of the 24 verb lemmas; these verb lemmas were chosen by
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Table 5.1 Statistics of the SCF datasets

BNC(native) EF1000(learner)
# verb lemma 24 360
# verb type 99 568
# verb token 6,133 1,966
# corpus word token 186,534 32,196
# SCF type 43 38
# Overlapping SCF type 32

Table 5.2 Distribution of the ten most frequent SCFs in the learner English SCF corpus

#a SCF % Example (learner English SCF corpus)

23 dobj_N 32.7 If you follow [this advice], ...
50 pobj 11.8 At 7 o’clock I go [to work].
1 acomp 10.8 So it became [well-known] , worldwide.
66 xcomp_N 9.8 I want to become [the new president].
32 dobj_N:pobj 6.0 You can bring [them] [to the back entrance].
68 xcomp_VBARE=>aux_TO 5.6 John is going [to tell Isabella about that] .
65 su 4.9 I would like to cook on Saturday .
9 ccomp_VTENSED 3.1 I think [you should buy these].
42 dobj_N:xcomp_VBARE=>aux_TO 1.8 Can I force [them] [to fix the house]?
60 prt 1.4 I was ... and fell [down].

a # denotes the number of an SCF in Appendix B.

a linguist to represent a wide range of subcategorization behaviors (Quochi et al., 2014).
Contrastingly, the learner dataset was created by identifying verb tokens from sentences
without restriction on the verb lemmas. As a result, the learner dataset had a higher number
of verb lemmas and verb types.

As we can see from Table 5.1, only about half of the SCF types in the inventory actually
appeared in the datasets: the native English dataset had 43 SCF types (indicated by “N” in
Appendix B), while the learner dataset had 38 SCF types (indicated by * or � in Appendix
B). SCF distributions tend to be Zipfian (Korhonen et al., 2000), and the SCF types absent
in the data are rare in real-world situations. This was proved by the distribution of the ten
most frequent SCFs in the learner English data (Table 5.2) and the native English data (Table
3.3). Table 5.1 also shows the overlap of SCF types across the two datasets (32 types). Since
each dataset contained SCF types that were absent in the other dataset, using both of them as
training data can increase the coverage of the SCF types.
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5.2 Model

Selecting an appropriate machine learning model is important for realizing accurate classifica-
tion. Recent years have seen a great success of neural network models on many classification
tasks. However, these tasks tend to have a large amount of annotated training data, where-
as the annotated training data available for our task was limited (8,099 instances at the
maximum, see Table 5.1). Indeed, we experimented with various neural network models,
ranging from stacks of Long Short-term Memory (Hochreiter and Schmidhuber, 1997) re-
current neural networks or convolutional neural networks (LeCun et al., 1989) to variants of
attention-based sequence-to-sequence architecture (Bahdanau et al., 2014). Results showed
that even the best of these neural network models performed slightly worse than a simple
maximum entropy (MaxEnt) model (Berger et al., 1996). We also experimented with the
Support Vector Machine (SVM) model (Cortes and Vapnik, 1995), which was very useful for
classification in high dimensional space. Results showed that SVM also performed slightly
worse than MaxEnt. This meant that MaxEnt was most suitable for our case. MaxEnt has
proved to be useful in automatic syntactic analysis such as POS tagging (Ratnaparkhi, 1996)
and parsing (Charniak and Johnson, 2005). Furthermore, MaxEnt can handle mixtures of
boolean, integer and real-valued features, and can distribute weights to correlated features.
This suited the characteristics of our features (which are introduced below). As a result, we
employed MaxEnt as our classifier for SCF identification.

The MaxEnt model was defined as follows: given an SCF inventory S = s1,s2, ...,sn , the
probability of assigning an SCF si(i = 1,2, ...,n) to a verb token v was

p(si|v) =
exp(θ T

si
f(v))

∑
n
i=1 exp(θ T

si
f(v))

(5.1)

where f(·) was a feature function, and θ T
si

was the parameter of si. The formula basically
calculated a score for si based on a linear combination of the features, and divided the score
with the sum of the scores of all SCFs to obtain a probability score. The SCF of the highest
probability score was assigned to the verb token.

We used four types of linguistic information to create our features: words, POS tags,
dependency relations, and word embeddings. Words, POS tags, and dependency relations
have proved to be useful in capturing SCF information (Baker et al., 2014), and word embed-
dings have been playing a key role in the recent improvement of many automatic syntactic
annotation systems such as dependency parsers (Andor et al., 2016). A word embedding is a
distributional vector representation of a word (Mikolov et al., 2013). Semantically similar
words tend to have similar word embeddings. For example, the word embedding of reply
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is more similar to that of respond than that of stay. Since semantically similar verbs tend
to have similar SCFs (Levin, 1993), the word embeddings of predicates can be useful for
identifying SCFs.

More specifically, we extracted the following features for a given predicate:

1. The combinations of the word, POS tag, and dependency relation of a child, a grand-
child, or a great-grandchild that was whether, if, or a wh-word. These features were
intended to capture the potential complements of the predicate. Take the predicate
thought in Figure 5.1 for example. Its child about, grandchild go, and the great-
grandchild whether were considered for feature extraction. The features extracted
for the child about, of which the POS tag was IN and the dependency relation was
“prep”, included seven combinations: “ch_about”, “ch_IN”, “ch_prep”, “ch_about_IN”,
“ch_about_prep”, “ch_IN_prep” and “ch_about_IN_prep” (“ch” denoted that the fea-
tures were related to a child).

2. The full combination of the word, POS tag and dependency relation of a parent, a
grandparent or a sibling of the predicate. These features were intended to capture
information in the head words and conjuncts of the predicate which may be use-
ful for inferring SCF. For example, the feature extracted for the sibling smiled was
“sb_thought_VBD_root” (“sb” denoted that the feature was related to a sibling).

3. The n-grams of the lexicalized or unlexicalized combinations of the word, POS tag,
and dependency relation of the neighboring words of the predicate. These features
were intended to capture the context of the predicates. At most one word to the left,
and at most three words to the right of the predicate were considered. This imbalanced
window was designed following the observation that most SCF information was located
to the right of a predicate. We extracted unigram and bigram within the window.
The lexicalized features involved both words and dependency relations, whereas the
unlexicalized ones involved the dependency relation and the position of the word with
regard to the predicate. For example, the unlexicalized bi-gram feature for the two
neighbouring words about and whether was “du_1_prep_2_mark” (“du” denoted that
the feature was related to the neighbouring words and was unlexicalized). The word
position information was excluded from the lexicalized features to avoid data sparsity
issue for machine learning.

4. The word and word embedding of the predicate. These features were intended to
capture information about the predicate. For example, we extracted “tg_thought” (“tg”
denoted that the feature was related to the predicate) and the word embedding of
thought as a feature.
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Fig. 5.1 POS tags and dependency structure of an example sentence

5.3 Technical details

As our parser evaluation in Chapter 4 shows, if a parser achieves better accuracy than other
parsers on native English, this parser also tends to be more accurate on learner English. As
a result, we used SyntaxNet – a state-of-the-art syntactic parser for native English (Andor
et al., 2016) – to extract POS tags and dependency relations. SyntaxNet achieved an accuracy
of 97.4% in POS tagging and 92.8% LAS in dependency parsing on PTB-WSJ1.

We used a word embedding model trained on the English Polyglot Wikipedia corpus
(Al-Rfou et al., 2013) with skip-gram negative sampling in the bag-of-word context with
the embedding dimensionality of 300 and the window size of 2 (Gerz et al., 2016, hereafter
referred to as the PW model). Out-of-vocabulary words were mapped to vectors of zeros.
Although the PW model was not trained on the same domains as all of our SCF corpora,
it was strong for our study: we also experimented with training word embedding models
on each SCF corpus domain, performing grid search across various hyper-parameters of
word2vec (Mikolov et al., 2013) to determine the best settings for SCF classification. None
of these in-domain word embedding models outperformed the PW model, possibly because
the SCF domain corpora were much smaller than the English Polyglot Wikipedia corpus.
While future work can look into developing good in-domain word embedding models, the
PW model sufficed for the purposes of this study.

5.4 Training and evaluation

We trained the model in two data settings. The first setting used learner data only. We
conducted a 10-fold cross-validation on the learner data. In other words, we partitioned
the learner data into ten subsets; we trained the model on nine subsets at a time and tested
the model on the remaining subset; this process was repeated ten times so that all subsets

1SyntaxNet was absent in the parser evaluation on learner data in Chapter 4 because it was released after the
evaluation.
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have been used for testing. The average accuracy of this setting was 82.1%. In the second
setting, we added native data to training. The average accuracy of this setting was 84.2%.
This meant that adding native data during training helped to improve the accuracy of SCF
identification on learner data 2. As a result, we trained our model on both learner and native
data. Furthermore, we conducted a leave-one-out experiment with 10-fold cross-validation
on the model, i.e., we removed one type of information (words, POS tags, dependency
relations or word embedding) from the features at a time during the training. All experiments
led to decreased accuracy, which meant all types of information were important for SCF
identification. As a result, we used the full features to train the model. The final model was
regarded as the SCF identification system.

In the following sections, we report a more detailed evaluation of the SCF identification
system. We evaluated the accuracy statistics of the system on individual SCFs. We also
analyzed the SCF errors made by the system.

5.4.1 SCF identification accuracy

We evaluated the precision, recall and F1 score of individual SCF types during the 10-fold
cross-validation of the SCF identification system. The system was able to classify 49 SCF
types, which were the union of the SCF types that occurred in both learner data and native
data. However, 11 SCF types appeared only in native data (indicated by “N” alone in
Appendix B), which meant we cannot evaluate their accuracy on the learner data. Moreover,
some SCFs were rare in the learner data, which made their evaluation unreliable. For example,
when an SCF type had only two verb tokens, the training set might include none of the verb
tokens, which made it impossible for the model to classify the SCF type correctly; even if
the training set and testing set had one verb token each, the accuracy scores of this SCF
type would be either a hundred or zero per cent, depending on whether the verb token in
the testing set was classified correctly or not. Such accuracy rates were uninformative. As a
result, we omitted 14 SCFs that had less than five verb tokens in the learner data (indicated by
� in Appendix B). Table 5.3 lists the remaining 24 SCF types. The first column denotes the
number of an SCF in Appendix B, where the guideline examples of the SCFs are available.

2It will be useful to evaluate how the accuracy increases with more training data gradually, as the result can
help to predict whether annotating more learner data can improve the accuracy. We leave this to future work.
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Table 5.4 SCF confusion pairs during testing

Target Prediction Freq.
dobj_N dobj_N:pobj 22
dobj_N:pobj dobj_N 19
xcomp_N acomp 19
dobj_N su 12
dobj_N:pobj pobj 11
su pobj 10
pobj dobj_N:pobj 7
dobj_N:iobj dobj_N 6
dobj_N ccomp_VTENSED 5
su dobj_N 5
dobj_N dobj_N:iobj 5
pobj su 5
pobj:pobj pobj 5

As we can see, the majority of the SCF types were classified accurately. Eight SCF
types, which accounted for 77% of the learner data, were identified with an F1-score of over
85%. Contrastingly, six SCF types, which accounted for only 3% of the learner data, were
identified with an F1-score of less than 60%. To some extent, the low accuracy of the rare
SCF types was caused by the scarcity of their training data for the model.

5.4.2 SCF error analysis

We analyzed the SCF identification errors during testing to find out what SCF types were
challenging for our system, and to diagnose the cause of the SCF identification errors. Table
5.4 lists the SCF misanalysis pairs that occurred at least five times during testing.

The most frequent misanalysis was found between “dobj_N” (a direct object) and “dob-
j_N:pobj” (a direct object and a prepositional object), which related to a decision on whether
a prepositional object should be considered as part of an SCF or not (i.e., a complement or
an adjunct). Similarly, the misanalysis pair of “su” (intransitive) and “pobj”, as well as the
misanalysis pair of “pobj:pobj” (two prepositional objects) and “pobj” involved a decision
about a prepositional object. Further analysis revealed that there were two main causes of the
misidentification of SCFs with regard to prepositional objects as follows.

Distinction between arguments and adjuncts

The SCF identifier erroneously considered the temporal prepositional object in (s) as an
adjunct, misidentifying “dobj_N:pobj” as “dobj_N” (we highlight the predicate with square



82 Automatic SCF identification

brackets and denote the SCF assigned by the identifier in subscript). Even though the verb
do rarely takes a prepositional object as a complement, and a temporal prepositional object
is usually an adjunct, the phrase in 1874 was a complement of done due to the criterion of
obligatoriness (Meyers et al., 1996): sentence (s) would be ungrammatical if the temporal
prepositional object was removed. Sentence (t) illustrates an SCF misanalysis in the opposite
direction: the SCF identifier erroneously included the locational prepositional object on her
birthday party in (t) as a complement, misidentifying “dobj_N” as “dobj_N:pobj”.

(s) It’s an oil painting [done]dobj_N* in 1874.

(t) Jane would like to [see]dobj_N:pobj* you on her birthday party.

Sentence (s) illustrates that the boundary between complements and adjuncts is not
straightforward. As a result, the difficulty in distinguishing between a complement and an
adjunct for a prepositional object was caused not only by the limitation of our model, but
also the inherent fuzziness between complements and adjuncts (Somers, 1984).

Prepositional attachment

Misidentification errors regarding prepositional objects were often caused by prepositional
attachment errors. For example, the prepositional object in sentence (u) should be attached to
(i.e., be a dependent of) the noun phrase sales figure. However, the SCF identification system
erroneously considered the prepositional object as a complement of the predicate provides,
resulting in the misidentification of “dobj_N” as “dobj_N:pobj”. This problem was mainly
caused by the dependency parser. Prepositional attachment is a notoriously difficult task in
NLP.

(u) The graph [provides]dobj_N:pobj* sales figures for international sales and ...

(v) As you can [see]pobj* on my CV ...

(w) What do I wish to [do]su*?

The SCF identifier also misidentified “xcomp_N” (a nominal complement) as “acomp”
(an adjectival complement) sometimes. Further analysis showed that most of such errors
happened on nominal complements headed by proper nouns (e.g., Werner in My name is
Werner was misidentified as an adjectival complement). These errors might be caused by the
scarcity of cases where a nominal complement was headed by a proper noun in the training
sets during the cross-validation. Furthermore, the SCF identifier sometimes omitted a direct
object, misidentifying “dobj_N:pobj” as “pobj”, e.g., in (v), and misidentifying “dobj_N” as
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“su” (intransitive), e.g., in (w). Such errors were mainly found when a direct object preceded
the predicate. This problem was also caused by the scarcity of such structures in the training
sets during the cross-validation.

5.5 Summary

In this chapter, we described the development of the first SCF identification system for
learner language. The system can label individual verb occurrences in learner corpora for a
set of 49 distinct SCFs ranging from basic transitive and intransitive frames to complicated
frames that involve prepositional, verbal or clausal complements. The system included a
MaxEnt model trained on both learner English data and general-domain native English data,
achieving an accuracy of 84.2%. Although direct comparison of different SCF systems
was difficult because of the varying degree of supervision involved, the differences in SCF
inventories, and the use of different training and evaluation sets, this level of accuracy was
among the highest reported among contemporary systems (see Chapter 2.3.3) and was likely
to be sufficient for benefit in downstream tasks. In the next chapter, we will illustrate how
the system can be useful for L2 research 3.

Furthermore, the development of our SCF identification system provided useful implica-
tions for linguistics, the annotation of non-native language data and the development of NLP
techniques for such data. First, the usefulness of our features for the model proved that words,
syntactic categories, syntactic relations, and distributional semantics were all important
for the identification of SCFs. Second, our annotation practice demonstrated that native
language schemes can be used to annotate non-native language data, as our native English
SCF inventory proved to cover 99.4% of the learner SCFs. Third, our results demonstrated
that for machine learning on a small training dataset, a simple MaxEnt model can perform
better than deep neural network models. Furthermore, we showed that when the non-native
data was limited, including native language data can help to improve the accuracy of the
classification.

3In the next chapter, we present a study of some general linguistic phenomena over a large amount of
data. For such studies, the SCF identification system can be used without any human correction, because it is
infeasible to annotate the large amount of data, and the scale of such data guarantees that the observed linguistic
phenomena is statistically robust despite some noise in the data. However, for the tasks that require completely
accurate linguistic information, the system can only be used as a preprocessing technique and human correction
is needed.





Chapter 6

Application of automatic SCF
identification: investigating L2 SCF
diversity

In this chapter, we illustrate how automatic SCF identification can be useful for L2 research.
The major advantage of the SCF identification system lies in the scale of SCF data it can
produce. The system can facilitate SCF annotation, and can support searching and analyzing
SCFs on large-scale corpora. To illustrate the interesting studies we can do with a large
amount of SCF data, we investigate how L2 learners diversify their use of SCFs in text and
how this diversity changes with L2 proficiency.

No research has been conducted to investigate the diversity of SCF use in L2 learning, as
it requires a large amount of SCFs data. Nevertheless, such research has potential value for
L2 research and education. First, while it is intuitive to hypothesize that L2 learners can use a
wider range of SCFs as their L2 proficiency develops, it is unclear how L2 learners diversify
their use of SCFs in text and how this diversity changes across different proficiency levels.
For example, do L2 learners repeat fewer SCFs in text when their proficiency improves? How
about their distribution of SCFs in text – do L2 learners distribute different SCFs more evenly
as their proficiency improves? Answers to such questions can help researchers to better
understand L2 SCF learning, and can assist L2 educators to teach and develop educational
material for L2 learners at different stages.

Second, the diversity of SCF use may reflect an aspect of linguistic complexity, and has
the potential to contribute to linguistic complexity research. Linguistic complexity is the
ability to use a wide range of sophisticated elements in L2 (Bulté and Housen, 2012), in
which the diversity of the elements is an important factor. Previous studies have shown that
lexical diversity indices are useful predictors of language proficiency (Jarvis, 2013). It is
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possible that the diversity of morphosyntactic behaviors such as SCFs may also reflect an
important aspect of language proficiency. Furthermore, researchers are calling for more
specific and multidimensional metrics of linguistic complexity, as different dimensions of
linguistic complexity may not increase linearly with proficiency and it is more informative
to portrait them separately (Norris and Ortega, 2009). While SCF diversity may relate to
existing syntactic complexity to some extent (e.g., larger SCF diversity may be related to
more varied use of subordination), we hypothesize that, as a construct that links lexis and
morphosyntax, SCF has its unique properties and SCF diversity may contribute a new aspect
to linguistic complexity. To test this hypothesis we design a number of SCF diversity metrics,
and investigate two research questions based on analysis on EFCAMDAT1:

1. How does SCF diversity change with English L2 proficiency in general?

2. Does SCF diversity contribute to the prediction of English L2 proficiency beyond
current syntactic complexity measures?

In this chapter, we first design multi-dimensional SCF diversity metrics. We then measure
the SCF diversity of the learner essays in EFCAMDAT, and investigate the relation between
SCF diversity and L2 proficiency.

6.1 Design of SCF diversity

We drew inspiration from the work of Jarvis (2013) about lexical diversity to design the
SCF diversity metrics. Jarvis (2013) argues that while the linguistic community mainly uses
variants of the type-token ratio as lexical diversity metrics, these metrics reflect only one
aspect of lexical diversity, i.e., word repetition, and lack construct validity. He suggests that
a construct-valid measure of lexical diversity should include a composite of metrics gauging
different dimensions of lexical distribution; such metrics can be established by analogy to
species diversity metrics in ecology such as size (the number of tokens), richness (the number
of types), effective richness (the number of types adjusted by the number of tokens for each
type), evenness (the degree to which the tokens are portioned equally among the types),
disparity (the taxonomical difference of the types), importance (the relative frequency of a
type in a general corpus), and dispersion (the average distance between the tokens of the
same type).

1To maintain a narrow focus for the thesis, our investigation of SCF diversity is preliminary. We leave an
in-depth theoretical exploration of the relation between SCF diversity and linguistic complexity to future work.
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We believed that SCF diversity was also multidimensional, and designed the SCF diversity
metrics from various angles. The following section introduces the basic concept of each
metric. We then introduce how to control these metrics for text length in the next section.

6.1.1 The basic concepts of SCF diversity metrics

We introduce the basic concepts of SCF diversity metrics and illustrate the calculation of
the metrics with an example learner text below (extracted from the EF-Cambridge Lan-
guage Database (EFCAMDAT) (Geertzen et al., 2013)). The text contains nine verbs (we
highlight the predicate with square brackets and denote the SCF in subscript). These verbs
instantiate a range of SCFs. Two verbs instantiate the intransitive SCF (“su”, subject): pro-
gressing and married. Three verbs instantiate the transitive SCF (“dobj_N”, direct object):
moved, love, find. Two verbs take a prepositional object (“pobj”): break, fall, while break
additionally takes a particle up; one verb, decided, takes an infinitive complement clause
(“xcomp_VBARE=>aux_TO”) and one verb, feeled (a learner spelling error), takes a tensed
clausal complement (“ccomp_VTENSED”).

After some time, the affection between them is [progressing]su

well. John’s personality deeply [moved]dobj_N Isabella. So Isabella
[decided]xcomp_VBARE=>aux_TO to [break]pobj:prt up with Tom and [fell]pobj in
love with John. John also [feeled]ccomp_VTENSED=>mark-that that Isabella was the
woman he [loved]dobj_N deeply. To his joy, he could [find]dobj_N his true love
during his travel. In the end, they [married]su together.

(Level 6; Unit 1; Lesson aim: Writing a Movie Plot)

We designed 13 SCF diversity metrics from varied diversity angles as follows.

SCF size: SCF size referred to the number of SCF tokens or verb tokens. The SCF size of
the example text was 9.

SCF richness: SCF richness referred to the number of SCF types. This concept reflected
the SCF types at the command of a learner. The SCF richness of the example text was
6.

SCF type-token ratio (SCF TTR): SCF TTR referred to the ratio between SCF richness
and SCF size. SCF TTR reflected the degree of repetition of SCFs. The SCF TTR of
the example text was 66.7% (6/9), as the learner used “dobj_N” three times and “su”
twice.



88 Application of automatic SCF identification: investigating L2 SCF diversity

SCF entropy: SCF entropy reflected the level of uncertainty in deciding the SCF type of
a verb token. Entropy, or Shannon’s index, was defined as the negative sum of the
product between the proportion of each individual type and the natural logarithm of the
proportion (Shannon, 1948). For now and the rest of the chapter, we use pi to denote
the proportion of the i-th SCF type among all SCF types, and we use R to denote SCF
richness. The formula for SCF entropy was:

Entropy =−
R

∑
i=1

pi log(pi) (6.1)

To illustrate, the proportion of “dobj_N” in the example text was 33.3 (3/9), and the
SCF entropy of the text was 1.68. When we calculated the entropy using logarithms
to base two, the entropy was the minimum number of yes/no questions required on
average (Jost, 2006) to determine the type of an SCF. SCF Entropy was affected by
SCF richness and the evenness of the proportions of individual SCF types: higher SCF
richness and more even proportions of individual SCF types led to higher SCF entropy.

SCF Gini-Simpson index (SCF GS): SCF GS referred to the probability that two SCFs
randomly sampled in succession had different SCF types. Similar to SCF TTR and
SCF entropy, SCF GS reflected the degree of SCF repetition. The formula of SCF GS
was:

GS = 1−
R

∑
i=1

p2
i (6.2)

The SCF GS of the example text was 0.79.

Effective SCF richness: Effective SCF richness referred to the number of equally-abundant
SCF types required for an SCF repetition index. In the field of ecology, effective
richness is considered to reflect ‘true diversity’, because it depends on both richness
and evenness, assigning less weight to rare species which does not effectively contribute
to the diversity of a community (MacArthur, 1965). Effective SCF richness can be
calculated from either SCF entropy or SCF GS. When the SCF repetition index was
SCF entropy, the effective SCF richness was calculated by the exponential of SCF
entropy, e.g., 5.35 (e1.68) for the example text. When the SCF repetition index was
SCF GS, the effective SCF richness was calculated by subtracting SCF GS from unity
and inverting the value, e.g., 4.76 ( 1

1−0.79) for the example text. The entropy-based
effective SCF richness weighted each SCF type according to the number of the verb
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tokens of the SCF type, whereas the GS-based effective SCF richness biased even
more towards frequent SCF types. More specifically, let us look at the formula for
effective SCF richness:

qD = (
R

∑
i=1

pq
i )

1
1−q (6.3)

The parameter q reflected the relative weight placed on frequent SCF types versus rare
SCF types: the higher q was, the higher the weight was put on frequent SCF types.
When q approached one, the formula corresponded to the entropy-based effective
SCF richness, while q = 2 corresponded to the GS-based SCF effective richness.
Furthermore, q = 0 corresponded to SCF richness, which assigned an equal weight to
every SCF type.

SCF evenness: SCF evenness referred to how evenly verb tokens were allocated among
different SCF types. We evaluated SCF evenness from two angles. The first one was
to divide SCF entropy by the maximum value of SCF entropy given the same SCF
richness:

Evenness_entropy =
H ′

H ′
max

=
H ′

−∑
R
i=1

1
R log( 1

R)
=

H ′

lnR
(6.4)

SCF entropy reached the maximum when all SCF types had the same number of verb
tokens, i.e., the probability of each SCF type was 1

R . The entropy-based SCF evenness
ranged between zero and one: the higher it was, the more evenly the SCFs were
allocated among different SCF types. The entropy-based evenness of the example text
was 0.94. Note that the denominator of the equation became zero when the text had
only one SCF type. In this case, the entropy-based SCF diversity was inapplicable.

The second metric for SCF evenness was based on the standard deviation of the
numbers of verb tokens among different SCF types (SD-based evenness):

Evenness_SD =

√
∑

R
i=1(ni − n̄)2

R−1
(6.5)

where ni was the number of verb tokens for the i-th SCF type, and n̄ was the average
number of verb tokens across all SCF types. Opposite to the entropy-based SCF
evenness, the SD-based evenness became lower when the SCFs were allocated more
evenly among different SCF types. The SD-based evenness of the example text was
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0.84. SD-based evenness also required the existence of more than two SCF types,
otherwise, the denominator in the formula became zero.

SCF dispersion: SCF dispersion referred to the average distance between the verb tokens
of the same SCF type. We calculated SCF dispersion as follows:

Disp =
∑

R
j=1

∑
M j−1
i=1 |positioni, j−positioni+1, j|

M j

R
(6.6)

where positioni, j referred to the position of the i-th verb token of the j-th SCF type
which had M j(M j >= 2) verb tokens in total. Note that this formula was inapplicable
when every SCF type in the text had only one verb token. We used two kinds of
positions: one was the word position in the text, and the other was the position among
verbs. To illustrate, the word distance between [loved]dobj_N and [find]dobj_N was 9 (we
calculated words by segmented units, and punctuation was considered as a segmented
unit), while the verb distance was 1. The word-based SCF dispersion reflected the
word distance between verb tokens, which was affected not only by how far away
these verb tokens were located across different verbs, but also by the number of words
of other syntactic categories, e.g., nouns, between the verbs. The verb-based SCF
dispersion, by contrast, focused on only the relative distance by verbs.

SCF disparity: SCF disparity reflected the degree of taxonomic difference between the
SCF types. Some SCF types were taxonomically closer than others. For example,
“pobj” (a prepositional object) was similar to “pcomp” (a prepositional complement of
which the dependent was a phrase or a clause) since they both involved a complement
introduced by a preposition, whereas “dobj_N” was more different. We vectorized
SCF types according to their complements, and calculated SCF disparity by analogy to
ecological disparity (Novack-Gottshall, 2007). To vectorize SCF types, we classified
the complements into eight major types: “acomp” (adjectival complement), “adv-
mod” (adverbial complement), “ccomp” (clausal complement), “dobj” (direct object),
“iobj” (indirect object), “pp” (prepositional object or complement), “prt” (particle),
“xcomp” (non-finite complement). We further classified four subtypes for “ccomp”
(i.e., “VBARE=>mark-that”, “VTENSED”, “VTENSED=>mark-that”, “WHCOM-
P”), three subtypes for “pp” (i.e., “pobj”, “pcomp”, “pcomp_VING”) and seven
subtypes for “xcomp” (i.e., “N”, “ADJ”, “VBARE”, “VBARE=>aux_TO”, “VEN”,
“VING”, “WHCOMP”). Each complement type and subtype became a dimension in a
vector space. As a result, the vector space had 22 dimensions.
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The taxonomic distance between two SCF types was calculated as follows: first, the
absolute value of the difference between the major complement type was calculated.
If the two SCF types had the same major complement type that had some subtypes,
the absolute value of the difference between the subtype dimensions, weighted by a
parameter 0.25, was added to the total distance. For example, the difference between
“dobj_N” and “ccomp_VTENSED” (a clausal complement headed by a finite verb)
was 2, whereas the difference between “ccomp_VTENSED” and “ccomp_WHCOMP”
(a wh-clausal complement) was 0.5.

We calculated two SCF disparity metrics based on the taxonomic distance: the max-
imum and the average of the pairwise taxonomic distance between SCF types. To
illustrate, the max-based disparity of the example text was 3, due to the taxonomic
distance between “pobj:prt” (a preposition and a particle) and e.g., “su” (intransitive).

6.1.2 Controlling SCF diversity metrics for text length

The SCF diversity metrics were susceptible to text length. For example, as the text became
longer, SCF TTR tended to decrease, because the number of SCF tokens increased whereas
the increase of SCF types slowed down and stopped when the writer had used all the types
he or she knew. To compare the SCF diversity of texts with different length, we controlled
the SCF diversity metrics for text length.

We standardized each SCF metric by calculating its average over a moving window of
a fixed number of verbs. For example, if we set the window size to be five verbs, the first
window step for the example text spanned from the predicate progressing to the predicate
fell. The window then moved by one verb, with the second step spanning from the predicate
moved to the predicate feeled (a learner spelling error). The window moved until it reached
the last predicate in the text. This standardization method was inspired by the calculation
of mean moving-average type-token ratio (MATTR) for words (Covington and McFall,
2010). MATTR is more informative than the commonly used mean segment TTR (MSTTR)
(Johnson, 1944) due to the following reason:

MSTTR is computed on successive non-overlapping segments of the text whereas
MATTR uses a smoothly moving window. Thus MATTR yields a value for every
point in the text except for those less than one window length from the beginning,
while MSTTR is only a stepwise approximation to this. Thus MATTR is better
for tracking changes within texts, and MATTR is not affected by accidental
interactions between segment boundaries... (Covington and McFall, 2010)
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In our experiments, we standardized all SCF diversity metrics over the window sizes
of 5, 10 and 20 verbs respectively. We never went beyond a text to get a larger window.
When a text had fewer verbs than the window size, the standardized metrics were considered
as inapplicable for the text (i.e., the text was excluded from analysis). Naturally, a larger
window size applied to fewer texts. We avoided window sizes of more than 20 verbs because
the number of applicable texts would be too small. The window size also determined other
properties of standardized SCF diversity metrics. First, the window size corresponded to the
size of linguistic unit for observation. A small window size might be close to the sentence
level, whereas a large window size captured a piece of discourse. Second, a small window
size made it easy for a standardized metric to “saturate”, i.e., reach the maximum possible
value, whereas a large window size resulted in the opposite. For example, it was easier to
find completely different SCF types for 5 verbs than for 10 verbs. Third, a larger window
size led to a finer granularity. For example, the SCF TTR for a window size of 5 verbs can
take values of only 0.2, 0.4, 0.6, 0.8, and 1, which corresponded to 1, 2, 3, 4 and 5 SCF types
within the window, whereas the SCF TTR for a window of 10 verbs can take values of 0.1,
0.2, 0.3,..., and 1.

For an SCF diversity metric that had requirements on the SCF distribution within a
window, e.g., entropy-based SCF evenness required that the window of text had more than
two SCF types, we considered only the window steps which met the requirement; if no
window step met the requirement, the metric was considered as inapplicable for the text.

6.2 Data selection

We applied our SCF identifier to the whole EFCAMDAT, and calculated the SCF metrics for
each text. The L2 proficiency was operationalized as the 16 proficiency levels of EFCAMDAT.
To facilitate comparison between different dimensions of SCF diversity, we selected the
texts on which all SCF metrics standardized at a window size were applicable, resulting in
508,192, 301,255 and 51,719 texts for the window sizes of 5, 10 and 20 verbs respectively.
The three text groups are hereafter referred to as DAT5, DAT10 and DAT20 (see Table 6.1
for the detailed statistics of the datasets). While the number of applicable texts decreased as
the window size increased, even the smallest dataset (DAT20) had more than 323 texts for
each L2 proficiency level. The size of each group of applicable texts was large enough for
statistical analysis.
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Table 6.1 Distribution of words and texts in the learner datasets across L2 proficiency levels

Proficiency level
DAT5 DAT10 DAT20

# text avg. # word # text avg. # word text # avg. # word
1 97,446 42 15,563 72 404 133
2 70,186 50 25,079 65 659 125
3 45,810 52 14,850 74 323 126
4 102,117 71 76,976 77 7,532 118
5 47,705 75 37,216 79 2,294 132
6 26,051 74 20,016 77 1,517 126
7 49,318 99 45,091 102 8,504 136
8 17,446 94 16,027 96 2,523 126
9 12,054 104 11,379 106 3,322 143
10 20,414 129 19,828 130 11,205 144
11 7,215 137 7,028 138 4,305 151
12 4,103 135 4,041 136 2,443 153
13 4,674 172 4,562 175 3,610 184
14 1,949 171 1,925 173 1,662 179
15 929 175 918 177 829 182
16 775 172 756 174 587 182
All 508,192 71 301,255 90 51,719 142

6.3 Statistical analysis methods

We explored the first research question by checking the scatter plots and the line graphs
of the SCF diversity metrics versus L2 proficiency. When it turned out that there were
linear relations between the SCF diversity metrics and L2 proficiency (see Section 6.4.1), we
conducted correlation analysis. We then conducted multiple regression analysis to investigate
how much the combined SCF metrics accounted for the variances in L2 proficiency level.

We studied the second research question by comparing our SCF metrics with current
syntactic complexity metrics (Kyle, 2016) on EFCAMDAT, investigating how well these
metrics predicted L2 proficiency, and whether the inclusion of SCF diversity metrics added
to the accuracy of the prediction. The existing syntactic complexity metrics were extracted
by TAASSC (Kyle, 2016). We used 14 traditional large-grained indices that were related
to sentence length or clausal subordination (Lu, 2010), 32 clausal complexity indices, 132
phrasal complexity indices, and 38 syntactic sophistication indices for which the reference
frequencies were calculated from the whole COCA.

Our procedure for conducting multiple regression analysis was as follows: first, we
ensured a linear relation between each independent variable and the dependent variable
by choosing the metrics that showed an absolute correlation of |r| > 0.1 (the threshold
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for showing a small effect, Cohen, 1988) with L2 proficiency. Second, we prevented
multicollinearity between the independent variables by conducting a pairwise correlation
test on all the selected metrics. For each pair of metrics that had an absolute correlation
of more than |r| > 0.7, we kept the metric that had the highest absolute correlation with
L2 proficiency. We then conducted stepwise multiple regression analysis on the selected
indices, setting the probability of F to enter at p <= 0.05 and the probability of F to remove
at p >= 0.1. When the Variance Inflation Factor of a variable was higher than 5 (Rogerson,
2001), we removed that variable.

Note that the texts were distributed unevenly across L2 proficiency levels (Table 6.1).
More specifically, each L2 proficiency level corresponded to 8 writing tasks and the texts
were distributed unevenly across the writing tasks. In order to realize balanced contribution
of residuals across different proficiency level in the statistical analyses, we weighted each
data point by the inverse of the frequency of the writing task.

6.4 Results

In this section, we report the results of our experiments on EFCAMDAT with regard to
the relation between SCF diversity and L2 proficiency, and whether SCF diversity metrics
can contribute to the prediction of L2 proficiency beyond the existing syntactic complexity
metrics.

6.4.1 SCF diversity metrics and L2 proficiency

Figure 6.1 shows how the mean (and its 95% confidence interval) of each SCF metric
standardized at the window size of 5 verbs changed with L2 proficiency on DAT5. The
relations between the repetition-based SCF diversity metrics and L2 proficiency were similar
so we display only the relation between SCF TTR and L2 proficiency here. Also, the figures
for the SCF diversity metrics standardized at other window sizes and/or applied to other
datasets were similar. As we can see, there was a near-linear relation between each SCF
diversity metric and L2 proficiency.

We then analyzed the correlation between the SCF diversity metrics and L2 proficiency.
Table 6.2 shows the Pearson correlation between the SCF diversity metrics and L2 proficiency.
All correlations were significant at the level of p < 0.001. We do not report standardized
SCF size and standardized SCF richness because these metrics were the same as the window
size and standardized SCF TTR respectively. Furthermore, the SCF richness, effective SCF
richness, SCF repetition, and SCF disparity metrics standardized on a smaller window size
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Fig. 6.1 Relation between the average of some SCF diversity metrics and L2 proficiency
(DAT5)
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can apply to the datasets prepared for a larger window size, because these metrics required
a text to have verbs no fewer than the window size, and the datasets prepared for a larger
window size automatically satisfied this requirement. However, SCF evenness and SCF
dispersion metrics may not apply to a dataset prepared for a larger window size. This was
because in addition to the same requirement of the other SCF metrics, SCF evenness metrics
required the existence of at least two verb tokens for one SCF type in a window step, while
SCF dispersion metrics required the existence of at least two SCF types in a window step.
When these additional requirements were satisfied at a larger window, the requirements may
not be satisfied at a smaller window. In our case, the SCF dispersion metrics standardized at
the window size of 5 verbs were inapplicable to DAT10.

As we can see from Table 6.2, SCF richness, effective SCF richness and SCF repetition
metrics showed positive medium correlation (r > 0.3) with L2 proficiency. This meant that
more advanced learners tended to use more varied SCF types, or repeat SCF types less
frequently.

The strength in reflecting the increase in L2 proficiency differed across different metrics.
SCF TTR or SCF richness showed stronger correlation than entropy-based SCF effective
richness, which in turn showed stronger correlation than GS-based SCF effective richness.
This meant that the effective richness metrics calculated with higher weight on rare SCF types
can better reflect the increase in L2 proficiency (See Equation 6.3). Furthermore, effective
SCF richness metrics showed stronger correlation than their corresponding repetition indices.

Meanwhile, on DAT10 and DAT20, SCF TTR showed increasing correlation as the win-
dow size for standardization became larger. For example, on DAT20, SCF TTR standardized
at the window size of 5 verbs showed a correlation at 0.315, whereas SCF TTR standardized
at the window size of 20 verbs showed a higher correlation at 0.355. This might be attributed
to the following factors: First, the SCF TTR or SCF richness of a larger linguistic might
reflect the increase in L2 proficiency better. Second, a larger window size showed better
correlation possibly due to their lower rate of saturation and finer granularity. Nevertheless,
effective SCF richness and their related repetition metrics showed a decreasing correlation
as the window size became larger. Since these metrics placed lower weight on rare SCF
types than SCF richness or SCF TTR, this opposite trend indicated that the higher weight
SCF TTR placed on rare SCF types was important for the increasing strength of a larger
standardization window size for SCF TTR in reflecting L2 proficiency change.

SCF disparity also showed medium or close-to-medium positive correlation with L2
proficiency. This meant more advanced learners used SCFs that were taxonomically more
different. Max-based SCF disparity showed stronger correlation with L2 proficiency than
AVG-based SCF diversity. The former reached r = 0.389 when standardized by the window
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Table 6.2 Correlation between standardized SCF diversity metrics and L2 proficiency

Metrics Window size
(# of verbs)

DAT5 DAT10 DAT20

SCF TTR / SCF
richness

5 .368 .353 .315
10 – .357 .352
20 – – .355

SCF entropy
5 .349 .339 .301
10 – .329 .322
20 – – .317

SCF GS
5 .319 .317 .278
10 – .284 .276
20 – – .247

Entropy-based effective
SCF richness

5 .363 .346 .307
10 – .333 .325
20 – – .313

GS-based effective SCF
richness

5 .367 .342 .303
10 – .305 .295
20 – – .250

Max-based SCF
disparity

5 .364 .389 .369
10 – .376 .380
20 – – .281

AVG-based SCF
disparity

5 .275 .288 .267
10 – .257 .272
20 – – .238

Entropy-based SCF
evenness

5 .267 .259 .224
10 – .189 .185
20 – – .141

SD-based SCF
evenness

5 -.306 -.292 -.256
10 – -.240 -.235
20 – – -.223

Word-based SCF
dispersion

5 .248 – .331
10 – .314 .310
20 – – .290

Verb-based SCF
dispersion

5 .183 – .139
10 – .190 .153
20 – – .159
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size of 5 verbs and applied to DAT10. However, the correlation of max-based SCF diversity
metrics with L2 proficiency dropped by almost 0.1 when they were standardized by the
window size of 20 verbs rather than 10 verbs, which meant that the maximum taxonomic
difference between SCF types at the larger window size was less indicative of the change
in L2 proficiency. This might be related to the fact that in a much larger size of text, the
chance of having taxonomically different SCF types was higher and the maximum taxonomic
difference between these SCF types became more similar across different L2 proficiency
levels.

As for SCF evenness, most metrics had positive small absolute correlation (0.1 < |r|<
0.3) with L2 proficiency, except the SD-based SCF evenness standardized at the window size
of 5 verbs, which reached a positive correlation at 0.307. (Note again that a lower SD-based
SCF evenness figure meant higher SCF evenness.) This meant more advanced learners used
different SCF types more evenly than beginner learners. SD-based SCF evenness showed
a stronger correlation than the entropy-based one. Moreover, on DAT10 and DAT20, the
absolute correlation between all SCF evenness metrics and L2 proficiency decreased as the
metrics were standardized on a larger window size. This meant that unlike SCF TTR, SCF
evenness reflected the increase in L2 proficiency better at a smaller window size. Meanwhile,
the absolute correlation of entropy-based SCF evenness dropped much more dramatically
than SD-based SCF evenness as the window size grew. This meant that the ability of entropy-
based SCF evenness to reflect the increase in L2 proficiency was much more sensitive to the
window size.

We now come to SCF dispersion. Word-based SCF dispersion generally showed medium
positive correlation with L2 proficiency, whereas verb-based SCF dispersion showed small
positive correlation. This meant that more advanced learners located the verb tokens of
the same SCF types further away from each other. The effect was more obvious when the
distance was evaluated by words rather than verbs, which meant that advanced learners also
used more words between the verbs, a result in line with the previous findings that the mean
length of utterance increased with proficiency. This result could also reflect the findings that
more advanced learners used more elaborate noun phrases, e.g., using more modifiers for
nouns (Biber et al., 2011; Kyle, 2016; Taguchi et al., 2013).

6.4.2 Comparing SCF diversity and current syntactic complexity mea-
sures in predicting L2 proficiency

We conducted multiple regression analysis on the SCF diversity metrics, current syntactic
complexity (SC) metrics, and the combination of both to predict L2 proficiency on each
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Table 6.3 Model statistics of multiple regression analysis

Metrics DAT5 DAT10 DAT20
# MEM Adjust r2 # MEM Adjust r2 # MEM Adjust r2

SCF diversity 4 .188 4 .203 5 .251
Current SC 61 .660 57 .633 59 .534
Both 60+4a .667 56+3 .639 60b+5 .542
a The number of current SC metrics + the number of SCF diversity metrics.
b While 59 current SC metrics alone entered the modal for DAT20, 60 current SC metrics entered

the model when the SCF diversity metrics were included. This was because we used stepwise
multiple regression analysis, which selected a different set of current SC metrics when the SCF
diversity metrics were also considered.

dataset. Table 6.3 shows the number of metrics entering each model (# MEM) after we
pruned the metrics following the procedure in Section 6.3, and how well the models predicted
L2 proficiency.

As we can see, SCF diversity metrics can explain from 18.8% to 25.1% of the variance
in L2 proficiency. Furthermore, while the numerous current syntactic complexity metrics
already explained a large proportion of the variance in L2 proficiency, SCF diversity metrics
can complement current syntactic complexity metrics in the prediction, improving the
model effect by 0.5% to 0.8%. This proved that the SCF diversity metrics contributed a
unique perspective to syntactic complexity which had not been captured by current syntactic
complexity metrics.

Moreover, the SCF diversity metrics that always entered a model were SCF TTR, max-
based SCF disparity, and word-based SCF dispersion. These metrics represent the most
important aspects that SCF diversity can contribute to the prediction of L2 proficiency.

6.5 Summary

In this chapter, we illustrated the usefulness of the SCF identification system with an L2
linguistic research based on a large-scale learner corpus. We proposed the first SCF diversity
metrics, and investigated how SCF diversity changed with L2 development. Our answers to
the research questions posed at the beginning of this chapters were as follows.

1. How does SCF diversity change with English L2 proficiency in general?

We found that as their L2 proficiency developed, learners tended to use more diverse
SCF types which were taxonomically more different from each other. Also, more advanced
learners tended to use different SCF types more evenly, and locate the verb tokens of the
same SCF type further away from each other.
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2. Does SCF diversity contribute to the prediction of English L2 proficiency beyond
current syntactic complexity measures?

We empirically showed that the SCF diversity metrics made a unique contribution to the
measurement of syntactic complexity. We also found that the design of the SCF metrics and
the standardization window affected the ability of the SCF metrics in reflecting the increase
of L2 proficiency.

These empirical findings on SCF diversity not only shed light on L2 SCF acquisition, but
also provided useful implications for L2 education. For example, L2 educators can consider
the factor of SCF diversity in L2 assessment and curriculum development. SCF diversity can
also be useful for developing educational NLP applications such as automatic essay scoring
and intelligent language tutoring systems.

The empirical study demonstrated the power of the SCF identification system in helping
researchers to gain insights into L2 SCF acquisition from large-scale learner corpora. Based
on the automatical analysis of SCFs, L2 researchers can investigate how lexical and syntactic
knowledge develops in L2 acquisition and look into other questions such as whether and
how SCF use change across different first language backgrounds, and whether there is task
effect on SCF use in L2 writing, etc. The SCF identification system can also serve as a
preprocessing technique for finding or filtering useful patterns for linguistic research.

Furthermore, the SCF system can facilitate the development of NLP applications which
involve SCF information. For example, SCFs can be useful for automatic summarization,
which requires discrimination between complements and adjuncts to decide what information
is important for the summary. SCFs can also be useful for semantic role labeling. Furthermore,
our SCF system was adapted to learner English, and can be useful for NLP applications that
process non-native English data, such as native language identification.



Chapter 7

Conclusion

In this concluding chapter, we summarize the contributions of the thesis and outline directions
for future research.

7.1 Contributions of the thesis

In the automatic analysis of learner language, researchers mainly use standard POS taggers
and parsers developed for native language to analyze learner language. There has been the
need to investigate the performance of such systems on learner language, and to develop
an SCF identification system for analyzing the SCFs of learner language. Previous studies
had evaluated the accuracy of some standard POS taggers or parsers on learner English, and
investigated the effect of some learner errors on POS tagging. However, these studies obtained
the gold standards by manually correcting the output of a system, probably introducing bias
to the evaluations. Meanwhile, more comprehensive research was needed to support the
development of strategies for minimizing the cross-domain effects, such as evaluating how
fine-grained learner errors influence the performance of standard parsers on learner English,
comparing the performance of multiple parsers on learner English, and investigating the
relation between the performance of a parser on native language and learner language.

As for automatic SCF analysis, previous research had developed many NLP systems
regarding SCFs. However, most systems were intended to acquire SCF lexicons, and cannot
identify SCFs for individual verb tokens. Meanwhile, all previous systems were developed
for native language, producing results which can be inaccurate for learner language. An
SCF identification system adapted for learner language was needed for L2 SCF research and
downstream NLP applications.

This thesis fulfilled the aforementioned research gaps. First, we provided an in-depth
evaluation of how standard POS taggers and dependency parsers performed on learner English.
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Second, we developed an SCF identification system for learner English. We demonstrated the
usefulness of the SCF identification system in linguistic research by investigating how SCF
diversity developed in L2 acquisition. Our work resulted in various experimental findings
and methodological proposals which we summarize as follows.

1. Annotation bias in creating gold standard syntax

The evaluation of syntactic analysis systems required human annotation of gold standard
syntax. Previous parser evaluations commonly obtained gold standards by manually cor-
recting the output of a parser. We empirically demonstrated that such an annotation method
can lead to annotation bias, which significantly influenced the result of parser evaluation in
favor of the pre-annotation parser. More specifically, the annotation bias reduced the recall
of parsing errors during annotation. Our analyses showed that the annotation bias arose from
the inherent ambiguity of some linguistic structures, the annotation schemes, and learner
errors.

Our annotation experiment suggested an effective way to reduce the annotation bias
– contrast-based annotation, wherein the annotation mismatches of several parsers were
displayed to annotators. We also found that the effectiveness of the reference provided by a
parser depended on its accuracy. Nevertheless, the marginal benefit of adding a reference
parser diminished as the number of reference parsers increased, because the correct references
provided by the parsers may overlap whereas the reference from the additional parser needed
more time to review. Therefore, the contrast-based annotation method requires one to
strike a balance between the reduction of annotation bias and the maintenance of annotation
efficiency.

Our investigation into the causes of the annotation bias also suggested that the annotation
bias can be reduced by improving the annotation scheme for parsing. Clearer distinctions
need to be made for some intermediate syntactic categories, such as in what situations
the present and past particle of verbs should be regarded as adjectives rather than verbs.
Furthermore, our results indicated that nominal modifiers, prepositional phrases, infinitive
clauses, and conjuncts were difficult cases that frequently gave rise to annotation bias. As
a result, special attention is required to distinguish the syntactic relations involving these
structures.

Our findings and suggestions on annotation may be extensible to the annotation of any
other information that involves automatic analysis systems. For example, when annotating
medical entities based on the result of a named-entity recognizer, annotation bias may also
arise. In such situations, our suggestions on the contrast-based annotation method and
improving annotation schemes may also be useful for reducing the annotation bias.



7.1 Contributions of the thesis 103

2. The performance of standard parsers on learner English

We found that on average, current standard parsers achieved around 95% on POS accuracy,
90% on UAS, 87% on LAS, and 85% on the accuracy of all tags on learner English. The
performance gaps between these figures and the accuracy of the standard parsers on native
English were 1.2%, 2.1%, 3.5% and 3.4 % respectively. Meanwhile, the performance gaps
between different parsers were smaller on POS tags than on dependency relations. This
meant that the performance of different parsers on POS tags was higher and more similar
than on dependency relations.

We quantitatively investigated the relations between fine-grained learner errors and
parsing errors. Our results showed that learner errors did have an impact on parsing output.
More than one-third of the parsing errors were caused by learner errors, and over 60% of the
learner errors caused at least one parsing error. These results indicated that the parsers were
not very robust to learner errors. Our analyses showed that learner errors on punctuation,
spelling, capitalization, argument structures, determiners and prepositions caused most
parsing errors. Correcting these learner errors can be an effective pre-processing technique
to reduce parsing errors for downstream linguistic research and NLP applications based on
learner English data.

While the large impact of learner errors on parsing seemed to contradict the small
performance gaps between the accuracy scores of the parsers on learner English and native
English, we empirically testified that this was because the impact of learner errors was
offset by the simplicity of learner language. Parsers performed better on shorter sentences,
and the average sentence length of learner English was shorter than that of native English.
Furthermore, not every learner sentence contained learner errors, and when a sentence did
contain a learner error, it affected only the parses of a limited number of words in the sentence.
The accurate parses of short learner sentences that had no learner errors helped maintain a
high face value of the parsing accuracy for learner English.

Finally, we demonstrated that the performance of standard probabilistic parsers on learner
English can be predicted by their performance on native English. The implication was that
when it comes to choosing a probabilistic parser for learner English, the most accurate
parser evaluated on native English is a good choice. Alternatively, if one wants to apply a
probabilistic parser to a specific learner English dataset, he or she can roughly predict the
accuracy of the parser on learner English according to its accuracy on native English.

While our evaluation was conducted on learner data, our conclusions and implications
may apply to the syntactic analysis of non-standard data in general. For example, recent
years have seen increasing interests in developing NLP applications based on language data
from social media, where many users are non-native speakers and the language is informal
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(Rijhwani et al., 2017). Our results on the most influential language errors for parsing and the
correlation between the performance of standard parsers on learner data and native English
data may provide useful implications on how to choose appropriate preprocessing techniques
and proper parsers for such non-standard data.

3. SCF identification system for learner English

We developed the first SCF identification system for learner English. The system can label
individual occurrences of verbs in learner corpora for a set of 49 distinct SCFs ranging from
basic transitive and intransitive frames to complicated frames that involve prepositional,
verbal or clausal complements. The system includes a MaxEnt model based on features of
words, POS tags, dependency relations, and word embeddings. We adapted the model to
learner English by training the model on learner English data, and improved the accuracy
of the model by including general-domain native English training data. Our 10-fold cross-
validation showed that the system achieved an accuracy of 84.2%. This level of accuracy
was among the highest reported among contemporary systems and was likely to be sufficient
for benefit in downstream tasks.

Our development of the SCF identification system provided useful implications on lin-
guistics, the annotation of non-native language data and the development of NLP techniques
for such data. First, the usefulness of our features for the model proved that words, syntactic
categories, syntactic relations, and distributional semantics were all important for the identifi-
cation of SCFs. Second, our annotation practice demonstrated that native language schemes
can be used to annotate non-native language data, as our native English SCF inventory
proved to cover 99.4% of the learner SCFs. Third, our results demonstrated that for machine
learning on a small training dataset, a simple MaxEnt model can perform better than deep
neural network models. Furthermore, we showed that when the non-native dataset was small,
including native language datasets can help to improve the accuracy of the classification.

4. SCF diversity metrics in L2 research

To illustrate the usefulness of the SCF identification system, we proposed the first multi-
dimensional SCF diversity metrics and investigated how SCF diversity changed with L2
development. Our results shed interesting light on L2 SCF acquisition: We found that more
advanced learners tended to use more diverse SCF types which were taxonomically more
different from each other. Meanwhile, more advanced learners tended to use different SCF
types more evenly, and locate the verb tokens of the same SCF type further away from each
other.
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We also empirically showed that the proposed SCF diversity metrics can be a useful
measure of linguistic complexity, at the interface between lexicon and syntax. The SCF
diversity metrics can improve the prediction of L2 proficiency on top of existing syntactic
complexity metrics. Furthermore, we identified how the design of the SCF metrics and the
standardization window affected the ability of the SCF metrics in predicting L2 proficiency:
SCF TTR, max-based SCF disparity, and word-based SCF dispersion represented the most
important aspects that SCF diversity can contribute to the prediction of L2 proficiency;
SCF TTR showed an increasing correlation with L2 proficiency as the window size for
standardization became larger, while max-based SCF diversity metrics showed the opposite
trend. This provided important implications on how to choose SCF diversity metrics and
appropriate standardization units to gauge L2 development.

The SCF diversity metrics can be useful for L2 education. For example, L2 educators
can consider the factor of SCF diversity in L2 assessment and curriculum development. SCF
diversity may also be useful for developing educational NLP applications such as automatic
essay scoring and intelligent language tutoring systems.

Our linguistic research demonstrated the power of the SCF identification system in
helping researchers to gain insights into L2 SCF acquisition from large-scale learner corpora.
Based on the automatical analysis of SCFs, L2 researchers can investigate how lexical and
syntactic knowledge develops in L2 acquisition and look into other questions such as whether
and how SCF use change across different first language backgrounds, and whether there is
task effect on SCF use in L2 writing, etc. The SCF identification system can also serve as a
preprocessing technique for finding or filtering useful patterns for linguistic research.

Furthermore, the SCF system can be useful for NLP applications which involve SCF
information. For example, automatic summarization (Cheung and Penn, 2014) requires
discrimination between complements and adjuncts to decide what information is important
for the summary; SCFs are also closely related to semantic role labeling (Roth and Lapata,
2016). Meanwhile, our SCF system was adapted to learner English, and can be useful for
NLP applications that process non-native English data, such as native language identification
(Jiang et al., 2018).

7.2 Directions for future research

We identified some directions for future research as follows.
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1. Evaluation of standard parsers on learner English

This thesis investigated how fine-grained learner errors influenced the performance of s-
tandard parsers on learner essays that spanned across the full learner English proficiency
spectrum. Further research can be conducted to investigate how standard parsers are impacted
by learner errors at each proficiency level and how the impact changes across these levels.
This information will be useful for downstream linguistic research and NLP applications.
For example, syntactic complexity metrics have been used to gauge L2 proficiency levels,
and the automatic analysis of these metrics rely on standard parsers (Kyle, 2016; Lu, 2010).
If the impact of the learner errors on standard parsers changes dramatically with proficiency
levels, the efficacy of the automatically analyzed syntactic complexity metrics in predicting
L2 proficiency will be undermined (Meurers and Dickinson, 2017).

2. Improving SCF identification

Further research can be conducted to improve the accuracy of SCF identification. While
this thesis focused on a supervised training method, future research can look into semi-
supervised methods which can utilize a large amount of un-annotated data. More specifically,
it will be interesting to investigate how to improve the identification of relatively rare SCFs.
Meanwhile, our error analysis of the SCF system showed that most errors made by our SCF
identification system were related to prepositional phrases. Future research can investigate
solutions to this problem. Moreover, we can explore multi-task learning (Collobert and
Weston, 2008) which combines SCF identification with potentially relevant NLP tasks such
as prepositional attachment disambiguation (Gelbukh and Calvo, 2018) and semantic role
labeling (Roth and Lapata, 2016) during training.

3. Development of SCF complexity metrics

In this thesis, we developed some SCF diversity metrics, focusing on the breadth aspect of
linguistic complexity. Future research can be conducted to develop SCF-related linguistic
complexity metrics from the depth aspect. For example, we can develop SCF sophistication
metrics following the design of VAC sophistication metrics (VAC includes all dependents
of a predicate verb) (Kyle, 2016), and compare the two sets of metrics, investigating how
the discrimination between complements and adjuncts affects the properties of the metrics.
Meanwhile, we standardized the SCF diversity metrics by verb windows. It will be interesting
to investigate whether other standardization units, such as word windows, will be a better
unit in some situations.



7.2 Directions for future research 107

4. Downstream applications of the SCF system and the SCF diversity metrics

Our SCF identification system opens up a lot of opportunities for linguistic research, language
education, and NLP applications involving SCFs. For linguistic research, L2 researchers
can investigate how lexical and syntactic knowledge develops in L2 acquisition based on the
automatically analyzed SCFs. Researchers can also investigate how SCF use changes across
different L1 backgrounds, and whether there is any L1 transfer on L2 SCF use from the
typological aspect. Furthermore, task effects are widely recognized as an important aspect of
learner language analysis (Alexopoulou et al., 2017), and it will be interesting to investigate
how writing tasks affect SCF use. For education, researchers can include SCFs or SCF
diversity into the design of course materials and language assessment. For NLP applications,
researchers can investigate whether SCFs or SCF diversity metrics can be useful features or
a sub-task in a joint-learning scenario for NLP applications such as automatic summarization
and semantic role labeling.

5. Extension to other learner languages

This thesis focused on automatic syntactic analysis for learner English. Future research can
be conducted on other learner languages, investigating whether the conclusions we have
reached on learner English also hold for other learner languages. For example, how does
SCF diversity change across the different proficiency levels of other L2s? This requires the
construction of other resources, research into relevant NLP techniques and corresponding
linguistic studies.

In summary, the advances reported in our thesis contribute to the automatic analysis
of learner English, making it possible to design strategies for improving the performance
of standard parsers on learner English, and identify SCFs for large-scale learner English
efficiently. Our experiments also provide useful implications on the annotation and modeling
of small non-standard datasets in general. The advances in our thesis bring in the potential to
improve L2 research, education, and NLP applications.
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Appendix A

Taxonomy of learner errors

Table A.1 Taxonomy of learner errors

Tag Explanation

AGA pronoun agreement error
AGD determiner agreement error
AGN noun agreement error
AGV verb agreement error
AS incorrect argument structure
C capitalization error
CD wrong determiner for noun countability
CE compound error
CL collocation error
CN countability of noun error
CQ wrong quantifier for noun countability
DA wrongly derived pronoun
DC wrongly derived conjunction
DD wrongly derived determiner
DJ wrongly derived adjective
DN wrongly derived noun
DQ wrongly derived quantifier
DT wrongly derived preposition
DV wrongly derived verb
DY wrongly derived adverb
FA wrong form of pronoun



128 Taxonomy of learner errors

Tag Explanation

FC wrong form of conjunction
FD wrong form of determiner
FJ wrong form of adjective
FN wrong form of noun
FQ wrong form of quantifier
FT wrong form of preposition
FV wrong form of verb
FY wrong form of adverb
IA Incorrect formation of pronoun
ID idiom error
IJ incorrect formation of adjective
IN incorrect formation of noun plural
IQ incorrect formation of quantifier
IV incorrect verb inflection
IY Incorrect formation of adverb
L inappropriate register (label)
M something missing
MA pronoun missing
MC conjunction missing
MD determiner missing
MJ adjective missing
MN noun missing
MP punctuation missing
MQ quantifier missing
MT preposition missing
MV verb missing
MY adverb missing
R something needs replacing
RA pronoun needs replacing
RC conjunction needs replacing
RD determiner needs replacing
RJ adjective needs replacing
RN noun needs replacing
RP punctuation needs replacing
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Tag Explanation

RQ quantifier needs replacing
RS wrong split/concatenation
RT preposition needs replacing
RV verb needs replacing
RY adverb needs replacing
S spelling error
SX spelling confusion error
TV wrong tense of verb
U something unnecessary
UA pronoun unnecessary
UC conjunction unnecessary
UD determiner unnecessary
UJ adjective unnecessary
UN noun unnecessary
UP punctuation unnecessary
UQ quantifier unnecessary
UT preposition unnecessary
UV verb unnecessary
UY adverb unnecessary
W incorrect word order
X incorrect formation of negative





Appendix B

SCF inventory and examples

Table B.1 shows the SCF inventory. The symbol * indicates that an SCF has identification
accuracy statistics on our learner data in Table 5.3; the symbol � indicates that an SCF appears
in the learner data less than 5 times and therefore has no informative accuracy statistics;
“N” indicates that the SCF appears in our native data. The column of “FS #” denotes the
fine-grained SCF type of Preiss et al. (2007) for each example, demonstrating the mapping
between the fine-grained and coarse-grained SCFs.
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