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ABSTRACT 
 

Immune Transcriptome and B cell receptor repertoire in COVID-19 
 

Prasanti Kotagiri 
 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulting in Coronavirus 

disease 2019 (COVID-19) was declared by the World Health Organization a global pandemic 

on March 11, 2020. SARS-CoV-2 primarily infects respiratory epithelial cells, and results in a 

range of clinical manifestations from asymptomatic disease to multi-organ failure.  

 

We studied the immune response of SARS-CoV-2-infected individuals with a range of 

severities followed over 2- 6 months from symptom onset. We undertook deep immune-

phenotyping and transcriptomic analysis. We demonstrated that an early robust immune 

response, without systemic inflammation, was characteristic of asymptomatic or mild 

disease. Immune recovery was complex, with profound persistent cellular abnormalities 

correlating with a change in the nature of the inflammatory response, where signatures 

characteristic of increased oxidative phosphorylation and reactive-oxygen species-

associated inflammation replace those driven by TNF and IL-6.  

 

In addition, we performed B cell receptor repertoire analysis of SARS-CoV-2 infected 

individuals and recipients of SARS-CoV-2 vaccine.  B cells play a central role in the immune 

response to both SARS-CoV-2 infection and vaccination. We found marked differences in the 

global BCR repertoire after natural infection compared to vaccination. Following infection, 

the proportion of BCRs bearing IgG1/3 and IgA1 isotypes increased, somatic hypermutation 

(SHM) was markedly decreased and, in patients with severe disease, expansion of IgM and 

IgA clones were observed. In contrast, after vaccination the proportion of BCRs bearing 

IgD/M isotypes increased, SHM was unchanged and expansion of IgG clones was prominent.  

 

Infection generated a broad distribution of SARS-CoV-2-specific clones predicted to target 

the spike protein whilst vaccination produced a more focused response mainly targeting the 

spike’s receptor-binding domain. These findings offer insights into how different immune 

exposure to SARS-CoV-2 impacts upon BCR repertoire development, potentially informing 

vaccine strategies.  
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1. Introduction 
 
1.1 Foreword  
 
The main aims of this thesis are threefold:  

 

Aim One: Understand the immune transcriptome in SARS-CoV-2  

Aim Two: Understand the BCR repertoire in SARS-CoV-2  

Aim Three: Understand the BCR repertoire in Crohn’s disease 

 

I have organised the material such that each results chapter contains its own introduction to 

the relevant concepts, studies, and literature that it is concerned with. In contrast, this 

introductory material is of a more general nature covering key concepts and technologies 

that form a foundation for subsequent chapters.  

 

In Section 1.3, to provide background to aims one and three, I provide an overview of B 

cells. 

In Section 1.4, to provide background to aims one and two, I provide an overview of SARS-

CoV-2.  

 
1.2 Overview of the immune system  
 
The role of the immune system is to protect the body against infectious organisms and their 

toxins. It can be divided into two broad categories, the innate and adaptive immune system. 

The innate immune system mounts a rapid, non-specific response to pathogens. The 

adaptative immune system mobilises antigen-specific lymphocytes and can generate 

immunological memory. The two major lymphocytes are T and B lymphocytes, and antigen-

specificity is conferred through the presence of surface receptors. T cells contain T cell 

receptors (TCR) on their surface whilst B cells contains B cell receptors (BCR) on their 

surface.  
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T cells have three functional types: cytotoxic T cells, helper T cells and regulatory T cells. 

Cytotoxic T cells kill infected cells. Helper T cells facilitate the function of immune cells 

including B cells and macrophages. Regulatory T cells dampen the immune response. 

Immunoglobulins are proteins that are produced by B cells.  

 

When immunoglobulins are membrane bound, they are known as BCR (Fig 1.1). When 

antigen successfully binds to the BCR, the cell is activated and undergoes clonal expansion 

and eventual differentiation into effectors cells which secrete antibodies with a specificity 

identical to the surface receptors. This is known as clonal section theory, coined by F. 

Macfarlane Burnet1. Terminally differentiated effector B cells are plasmablasts and plasma 

cells2.  

 

1.3 B cells 
 

1.3.1 B cell receptor 
 
The human BCR repertoire contains over 1013 sequences. This is achieved through DNA 

recombination2–4. An immunoglobulin is comprised of two heavy and light chains, giving it a 

‘Y’ shape. The two heavy chains are linked by a disulfide bond at the stem and each to light 

chain at the ends. The immunoglobulin is divided into two Fab segments and a single Fc 

segment. The variable regions (V regions), present in Fab, binds to antigen. The strength of 

the interaction between a single antigen binding site and its antigen is called affinity5. The 

heavy chain variable region is encoded by V, D and J genes off Chromosome 14, whilst the 

light chain is only encoded by a V and J gene. There are two classes of light chains- lambda 

encoded off Chromosome 22 and kappa encoded off Chromosome 26,7. The Fc region of the 

antibody is the constant region (C region), it interacts with effector molecules and cells. The 

constant region of the heavy chain determines the class of the antibody and falls under the 

broad grouping of immunoglobulin M (IgM), immunoglobulin D (IgD), immunoglobulin G 

(IgG), immunoglobulin A (IgA), and immunoglobulin E (IgE)8. When membrane bound, the 

carboxy terminus is hydrophobic, when secreted it is hydrophilic2. 
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Fig 1.1 B cell receptor structure. Heavy and light chains depicted. The variable region is coloured in red and the constant 
region is coloured in blue2. 

 

The heavy and light chains are constructed from two beta pleated sheets which fold over, 

forming the immunoglobulin fold. Both the heavy and light chain variable regions contain 

three hypervariable regions (HV), with the heavy chain HV3 the most diverse and thought to 

dictate antigen binding properties9–11. The HV regions are flanked by 4 framework regions 

(Fig 1.2). The framework regions are heavily conserved between different antibodies. The 

framework regions form the beta pleated sheets whilst the HV regions spill out and take on 

loop structures, allowing the diversity to be localised to a region, forming a single 

hypervariable site. These sites are termed complementarity-determining regions (CDR), 

CDR1, CR2 and CR3 representing the three HV region of the heavy and light chains2. 

Fig 1.2 Variability in Heavy and light framework regions. The level of variability is presented on the y axis2 

 

  
 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
   

   
 

        
 

 

  
 

 
  

 
 

 

 
 
 

 

 



 4 

The combination of the CDRs of the heavy and light chain determines antigen binding and 

reflects the sequence and three-dimensional structure of the BCR5.  Antibodies bind antigen 

whose surfaces are complementary with non-covalent bonds keeping antigen and antibody 

together12. Antibodies recognise only a small portion of the antigen; this is termed the 

antigenic determinant or epitope.  Any chemical structure can be recognised by an 

antibody, but the usual antigens are proteins, glycoproteins, and polysaccharides. 

Conformational/discontinuous epitopes are where the segments of the epitope are 

discontinuous in the amino acid sequence but are brought together by the three-

dimensional structure. Continuous/linear epitopes refers to the epitope representing a 

continuous single segment.  

 

The binding between the BCR and antigen is a reversible non-covalent bond. The forces 

involved include13: 

• Electrostatic forces, such as the bond between positively charged NH3 and 

negatively charged C02 

• Hydrogen bonds- the sharing of hydrogen between two electronegative atoms 

• Van der Waals forces  

• Hydrophobic forces 

• Cation-pi interaction- this is the bond formed between a cation and an electron 

cloud. 

 

1.3.1.1 V, D and J rearrangement 
 
V(D)J recombination allows for diversity of the BCR and T cell receptor 14. This large 

combination along with insertion and deletions of nucleotides at junctional joining creates 

diversity. During somatic recombination of the heavy chain, the D – J regions are first re-

arranged and then joined with the V region to form the primary transcript15. RNA splicing 

then occurs, removing introns separating the leader region and the constant region from 

the VDJ sequence. The leader peptide directs the protein to the endoplasmic reticulum (Fig 

1.3).  
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The heavy chain encoded on chromosome 14, has 38-46 variable genes, 23 diversity genes 

and 6 joining genes. The kappa light chain encoded on chromosome 2 has 34-48 variable 

genes and 5 joining genes whilst the lambda light chain encoded on chromosome 22 has 29-

33 variable genes and 4-5 joining genes16. V genes are commonly grouped into 7 big families 

based on sharing a minimum of 80% DNA sequence identity2.  

 

 
Fig 1.3  V(D)J recombination of heavy and light chains2 

 

DNA rearrangement is guided by recombination signal sequences (RSS)3. This process needs 

to be finely tuned to prevent events such as V genes combining with each other. These 

noncoding DNA sequences are located at points of recombination and are comprised of a 

heptamer-spacer-nonamer15. The heptamer 5ʹCACAGTG3ʹ is contiguous with the coding 

sequence, followed by the spacer, which is non-conserved and can be 12 or 23 base pairs 

long. This is subsequently followed by a conserved block of nine nucleotides knows as a 

nonamer 5ʹACAAAAACC3ʹ16. A gene segment flanked with an RSS with a 12 base pair spacer 

can only be joined to a fellow gene flanked by a 23 base pair spacer RSS. This rule prevents 
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the mis-binding of VDJ genes. (Fig 1.4). CDR1 and CDR2 are encoded by the V segment. 

CDR3 is encoded by the combination of the V, D and J segments3.  

 
 

 
Fig 1.4 Recombination signal sequence overview for heavy and light chains 2. 

 

V(D)J recombinase, a complex of enzymes carries out this recombination.  In lymphocytes, 

Recombination Activating Gene (RAG) 1 and 2 are components of the recombinase complex 

that initiate recombination17. Double strand break repair proteins are also members of the 

recombinase complex. Their role is to imprecisely rejoin the ends of DNA post double break 

repair18. The imprecise joining results in junctional diversity19. 

RAG1 and 2 work together with high-mobility-group (HMG) proteins, they bind to the RSS 

and make a precise single-stranded cut to the DNA backbone (Fig 1.5) 17. Cleavage occurs 

between the RSS and coding segment. The free 3ʹ-OH group at the end of the cut strand 

immediately forms a phosphodiester bond with the opposite strand causing a double break 

and forming a hairpin coding end and blunt signal end. Post cleavage, the four DNA ends 

form a complex with the RAG proteins.  The hairpin end is subsequently opened up by the 

DNA-PK:Artemis complex at random sites. This results in short single stranded extensions 

generating palindromic P-nucleotides. The cut end is then modified by terminal 

deoxynucleotidyl transferase which randomly delete and insert nucleotides. DNA ligase IV 

and XRCC4, components of the classical nonhomologous end joining(cNHEJ) repair pathway, 

ligate the two ends3.  

   
23  

 

 
 
 

 

 

23 

 

12 

 

  

 
    JH DH VH 

Jκ Vκ 

Jλ Vλ 

 

nonamer nonamer heptamer 
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Fig 1.5 Recombination signal sequence illustrating hairpin formation3 

 
1.3.1.2 Junctional diversity 

CDR3 is formed by the junction of the V, D and J genes in the heavy chain and by the 

junction of the V and J genes of the light chain. The imprecise joining and addition and 

insertion of nucleotides adds to increased diversity16. After hairpin formation, Artemis 

catalyses a single-stranded break at a random point20. When this point is at a different 

position to the initial break, a single-stranded tail results consisting of a palindromic 

sequence. It is palindromic as it consists of nucleotides of the template sequence plus 

nucleotides from the complementary strand. Non-template encoded nucleotides, “N-
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nucleotides” are added by enzyme TdT21,22. After the addition of 20 nucleotides, 

complementary basepairs from the single strands overlap. Repair enzyme remove non-

complementary base pairs and further synthesize complementary basepairs for the unfilled 

gaps. From the addition of nucleotides, frameshift can occur leading to non-productive 

rearrangements (Fig 1.6).  

 

Fig 1.6 Recombination signal sequence illustrating P and N nucleotides 18. 

 

Diversity occurs from the following: 

- Combinatorial diversity: 

o Combination V/D/J genes 

o Combination of heavy chain with light chain 

- Junctional diversity: 

o Imprecise joining 

- Somatic hypermutation 
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1.3.1.3 Constant Region 
 
All 5 classes of immunoglobulins can be membrane bound or secreted. IgG has four further 

subclasses, IgG1, 2, 3 and 4, named in order of serum abundance and IgA has two further 

subclasses IgA1 and 2. IgM and IgE have an extra C domain2. 

 

Post activation, IgM is the first immunoglobulin produced. IgM and IgD are both transcribed 

along the primary transcript23,24. Cleavage and polyadenylation at pA1 or pA2 lead to 

expression of IgM and IgD respectively. Similarly, transmembrane, and secreted forms of 

immunoglobulins undergo alternative RNA processing of the same heavy chain sequence25.  

IgA and IgM when secreted undergo polymerization which increases the avidity. IgA can 

form a dimer and IgM a pentamer2. Monomeric IgA1 is prominent in the serum whilst 

dimeric IgA2 is prominent in the gut26. Antibodies play three key roles, neutralization, 

opsonization and complement activation. 

 

The Fc portion of the constant region has three main effector functions: Fc receptor binding, 

complement activation and secretion27. The Fc region of IgG1, 2 and 3 and IgM bind with 

C1q to activate the classical complement pathway28,29. Lastly, the Fc portion can bind to 

receptors enabling transport through cells such as in mucosal cells or across the placenta30. 
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1.3.2 Development of B cells 
 

 
Fig 1.7 Stages of B cell development 2   
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B and T lymphocytes are produced in the bone marrow31. B cells complete their maturation 

in the bone marrow whilst T cells migrate to the thymus to do so. New B cells are 

continually produced whilst T cell numbers are maintained by mature T cells in the 

periphery as the thymus atrophies with age. B cells are derived from common lymphoid 

progenitor cells. The stages of B cell development are early pro-B cell, late pro-B cell, large 

pre-B cell, small pre-B cell, immature B cell, and mature B cell (Fig 1.7)2.  

 

Heavy chain D-J rearrangement occurs during the early pro-B cell stage and occurs in both 

alleles14,32. As most D gene segments can be translated in all three reading frames and not 

generate a stop codon, this joining is mostly successful, and no special mechanism is in place 

to check. The V-DJ rearrangement occurs at the late pro-B cell stage and occurs initially in 

one chromosome. If successful, a µ heavy chain is formed, and the cell progresses to a pre-B 

cell. If this re-arrangement fails, rearrangement of the other chromosome occurs. Overall, 

there is a 55% chance of progressing to a pre-B cell. To test whether a functional µ chain has 

been formed, a temporary “surrogate” light chain is formed and assembles only with a 

successful µ chain33. The surrogate chain is encoded by lambda 5 and VpreB genes. Lambda 

5 protein is a surrogate for the constant region of the light chain whilst protein VpreB is the 

variable gene surrogate34–37. Adjacent amino-terminal tails of VpreB and lambda 5 bind with 

each other from neighbouring BCRs leading to phosphorylation of Igb and Iga (discussed 

further below)38,39. 

 

Heavy chain locus rearrangement halts by the pre-B-cell stage through the reduction in 

levels of RAG-1 and 240. Pre-B cells are sensitive to IL-7 and in this environment undergo 

proliferation, expanding the population 30-60 fold41. Light chain rearrangement begins with 

re-expression of RAG-1 and 2. Thus a given heavy chain may have multiple different light 

chain pairs. Light chain re-arrangement also exhibits allelic exclusion42. If the initial 

rearrangement is non-functional, additional re-arrangement occurs on the same allele 

before re-arrangement occurs on the other allele. Isotypic exclusion also occurs in light 

chains where per cell either a k or l chain is expressed but not both43. The k light chain in 

humans is the first to undergo rearrangement with initiation in the l light chain 5 times less 

likely44.  
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The now paired immunoglobulin chain- IgM is expressed on the cell surface and the cell 

becomes an immature B cell. B cells are tested for self-reactivity within the bone-marrow45. 

If there is no reaction, they will migrate to the periphery becoming mature B cells. If self-

reactive, they may undergo clonal deletion, receptor editing, anergy or immunological 

ignorance45,46. RAG1-2 are still expressed in the immature B cell and if the B cell is self-

reactive, further rearrangement of the light chain can occur46. Where the B cell remains self-

reactive, clonal deletion occurs. When a B cell is self-reactive but only has weak cross-

linking, anergy occurs. Anergic B cells are unreactive even in the presence of antigen and T 

cell help. Peripheral tolerance is a further checkpoint in place- where when self-antigen is 

encountered deletion, anergy or survival can occur47. The final maturation of B cells occurs 

in the spleen. Immature B cells express high levels of surface IgM and low levels of surface 

IgD whilst the converse is true for the mature naïve B cells48.  

 

The bone-marrow produces 5-10% of the total B lymphocyte population on a daily level. 

However, the size of the pool remains constant because of death of the immature B cells 

which have very short half-lives. The secondary lymphoid follicle is essential for immature B 

cell survival with the abundant production of BAFF by follicular dendritic cells promoting 

survival49. Lack of access to the follicle results in death after 2-3 days50.  

 

On entry to the spleen, an immature B cell transitions to a T1 and then T2 B cell51. A T2 B cell 

is defined by the presence of co-receptor CD2152. Weak activation of the BCR and BAFF-R 

simulation promotes B cell maturation.  T2 B cells differentiate into either follicular (B-2) or 

marginal B cells, which are a much smaller population. Marginal B cells reside at the junction 

of the red and white pulp in the spleen and are poised to respond to pathogens present in 

the blood, thus acting as an early defence53. 

 

 

1.3.3 B cell receptor activation 
 
Knowledge of successful antigen binding to receptor needs to be transduced into the cell. In 

the B cell, this is achieved through invariant protein chains, Iga and Igb 54,55. These proteins 

are single chained and consist of three portions, an extracellular immunoglobulin like 
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domain, a transmembrane domain and a cytoplasmic tail containing immunoreceptor 

tyrosine-based activation motifs (ITAMs). Iga and Igb form a dimer and associate with the 

BCR. When the BCR is activated, tyrosine residues on the ITAM portion of Iga and Igb are 

phosphorylated by Src-family kinases Lyn and spleen tyrosine kinase (Syk). This leads to 

recruitment of kinases including Syk, Bruton tyrosine kinase (Btk), and Lyn and proteins 

including Vav, Grb2 and B-cell linker (BLNK). The recruited kinases amplify the signal of 

activation. Src-family kinase Lyn also phosphorylates tyrosine residues on CD19 thus 

decreasing the activation threshold.  All this combined leads to activation of 3 pathways 

including phosphatidalyinositol-3-kinase (PI3-Kinase), Btk and phospholipase C-γ2 (PLC-γ2). 

Syk and Lyn are recruited to the phosphorylated ITAM of Iga and Igb whilst BLNK binds to 

non-ITAM portion of Iga via Src homology 2 (SH2) domain. BLNK is phosphorylated by Syk 

thus acting as a scaffold protein. PLC-y2 now in close contact is phosphorylated by both Btk 

and Syk producing diacylglycerol (DAG) and inositol-1,4,5-triphosphate (IP3). DAG activates 

protein kinase C. IP3 generation leads to calcium influx from the endoplasmic reticulum and 

the extracellular compartment resulting in activation of NF-Kb, Jun and nuclear factor of 

activated T cells (NFAT). PI3K pathway is also activated. PI3K catalytic subunit p110 is held in 

check at rest by PI3K subunit p85. On BCR activation, p85 is recruited elsewhere including 

binding to CD19. PI3K facilitates continued BCR activation by recruiting more kinases to the 

site. The mitogen-activated protein kinase (MAPK) pathway is important in cell survival and 

proliferation and is activated post BCR receptor ligation 56.  

 

For effective B cell activation, an additional activation signal is required beyond antigen. This 

is achieved with CD4 T cells. CD4 CD40 ligand binds with CD40 receptor on B cells. CD40 is a 

TNF receptor superfamily member. Activation leads to the recruitment of adaptor proteins 

termed TRAFs. These lead to the activation of the non-canonical nuclear factor kappa B 

(NFKB)-pathway. Receptors on B cells containing Immunoreceptor tyrosine-based inhibitory 

motif (ITIM) can inhibit activation such as FcgRIIB by inhibiting the functions of PI 3-kinase as 

discussed below. 
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1.3.4 Fcg receptors 

Fc receptors bind to the Fc portion of antibodies.  They have two main purposes when not 

inhibitory. One is to remove the antibody/antigen complex via phagocytosis. This is led by 

macrophages, dendritic cells and neutrophils. The other is the release of cytokines and 

stored cellular components as seen with natural killer (NK) cells, eosinophils, basophils and 

mast cells57.  

Type 1 Fcg receptors can be activating or inhibitory. Activating receptors include FcgRI, 

FcgRIIa, FcgRIIc, and FcgRIIIa. FcgRIIb is the sole inhibitory receptor. When activating FcgR are 

activated, this results in phosphorylation of their ITAM domains and activation of 

cytoplasmic kinases such as Src and Syk family58. When inhibitory receptors are activated, 

their ITIM domains undergo phosphorylation and SHIP phosphatases are recruited which 

inhibit the activation of Src kinases and Phospholipase C. Type II Fcg receptors include DC-

SIGN and CD23 and these interact with the CH2-CH3 interface59.  

Receptor Constitutive Expression Induced Expression 

FcgRI Monocytes Neutrophils, eosinophils, Dendritic cells 

FcgRIIa Neutrophils, Monocytes, Eosinophils, 

Macrophages, Dendritic cells, 

Platelets 

 

FcgRIIb Neutrophils, Monocytes, Eosinophils, 

Macrophages, Dendritic cells, B cells, 

Plasma cells 

 

FcgRIIc NK cells  

FcgRIIIa Macrophages, NK cells, Monocytes Dendritic cells 

FcgRIIIb Neutrophils Eosinophils 

DC-SIGN Dendritic cells, macrophages  

CD23 B cells Neutrophils, Monocytes, Eosinophils, Macrophages, 

T cells 

Table 1.1  Summary of Fcg receptors 

Most leucocytes co-express activating and inhibitory type I FcgRs and thus the outcome is 

determined by the dominant signal. IgG1 and IgG3 unlike IgG2 and IgG4 have high affinity 

for type 1 FcgRs58. 
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FcRn modulates IgG half-life via endosomal recycling 60. A large proportion of IgE is bound to 

mast cells via FceR161. When cross-linking occurs, degranulation results. IgA binds to the 

polymeric receptor of epithelial cells enabling translocation to the lumen62. 

 

1.3.5 Thymus dependent antigens 
 
Naïve B cells are activated after binding of antigen to BCR. Accessory signalling is required 

which can be provided by T cells or the pathogen itself. Both pathways lead to activation of 

PI 3-kinases and activation of the Activator protein 1 (AP-1) pathway leading to cell 

proliferation and differentiation. 

Protein antigens require T-cell help to induce an antibody response. T cell help is provided in 

the form of T follicular helper (TFH) cells. TFH cells are derived from naïve CD4+ T cells, reside 

in lymph nodes and express the chemokine receptor CXCR563,64. IL-6 and ICOSL facilitate 

differentiation to TFH whilst IL-2 is a potent inhibitor via its downstream induction of Blimp-1 

and STAT565.   

The BCR initiates a signalling cascade post activation by antigen. Protein antigen binds to a 

receptive BCR and is subsequently internalised. The protein is degraded, and peptide 

components are displayed on the MHCII complex.  B cells act as antigen presenting cells by 

upregulating MHCII and co-stimulatory molecules such as CD80 and CD86 further 

stimulating TFH differentiation. The peptide:MHC II complex is recognised by already primed 

(by the same antigen) TFH. The TFH cells are activated by the same antigen but likely different 

epitope in a process known as “linked recognition”66.  

For linked recognition to occur, shared antigen specific B and T cells need to meet, this 

occurs at the T-B junction67. When no antigen is encountered, B cells exit the lymphoid 

tissue after sensing sphingosine-1-phosphate (S1P). Upon encounter and binding of protein 

antigen, B cells upregulate CD69 which promotes retention in the lymph node. B cells then 

further upregulate Epstein-Barr virus-induced molecule 2 (EBI2), CXCR5 and CCR7 and 

downregulate SP1R1 which helps with the migration to the T-B border(Gatto et al., 2009; 

Pereira et al., 2009). Post priming by dendritic cells, CD4 T cells upregulate BCL-6 which 

leads to increased expression of CXCR5 and repression of CCR7 which enables migration to 
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the T-B border70. B cells express ICOSL which binds to ICOS on TFH completing its 

differentiation71. TFH cells subsequently increase their expression of BCL-6 and internalise 

SAP which facilitates sustained contact with B cells72.  

 

TFH cell ligand, CD40L binds with CD40 on B cells activating the non-canonical NFKB pathway 

and release of anti-apoptotic molecules BCL-273. Activated B cells can proliferate and either 

differentiate along the extrafollicular or follicular routes74. Activated B cells may migrate to 

the outer follicle and form the “primary focus” where they undergo differentiation and 

proliferation with some forming plasmablasts. These extra-follicular B cells give rise to short 

lived plasma cells which can undergo class-switching and carry fewer somatic 

hypermutations74. Other activated B cells along with activated germinal centre cells migrate 

to a primary lymphoid follicle forming a germinal centre.   CXCR5+BCL-6+PD-1+TFH produce IL-

21, IL-4, CD40L, and CXCL13 which support germinal centre B cells. IL-21 and CD40L are 

required for B cell proliferation both in the germinal centre and extrafollicularly with IL-21 

activating STAT3 resulting in proliferation and differentiation into plasma and memory B 

cells.  The germinal centre ultimately produces high affinity long lived plasma cells. Germinal 

centre B cells express transcription factors BCL-6 and G-protein-coupled receptor S1P2.  

 

BCL-6 has an important role in germinal centre formation, performing the following four 

roles49,75: 

• Silencing the anti-apoptotic molecule BCL-2 thus promoting a pro-apoptotic state 

• Reducing the expression p53 and ATR which increases the tolerance to DNA damage 

which occurs secondary to rapid proliferation.  

• Represses Blimp-1 thus preventing exit from the germinal centre and differentiation 

into plasma cells. 

• Downregulating mediators of BCR and CD40 signalling 

 

1.3.5 Germinal centre  
 
The germinal centre is a histological structure formed in the setting of a T dependent 

response. It is a site where affinity maturation and class-switching occur with the eventual 
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formation of memory B cells and long-lived plasma cells. Germinal centres can persist for 

months 75.  

 
1.3.5.1 Affinity maturation 
 
In the germinal centre, V region somatic hypermutation occurs (Fig 1.8)49,76. This is where 

random mutations at a rate of one base pair change per 103 base pairs occurs per cell 

division with the aim of improving antibody affinity. Most mutations are ill fated resulting in 

apoptosis either from the inability to make a functional BCR or the inability to compete for 

antigen with sibling B cells leading to negative selection. During every B cell division, there is 

a 50% chance that an amino acid will be altered.  Positive selection results in replacement 

mutations in the CDR regions as this determines antigen affinity whilst silent mutations 

resulting in no amino acid change are scattered throughout the V region. 

 

The germinal centre is split into a dark and light zone77. Dark zone B cells are 

CXCR4hiCD83lowCD86low cells whilst light zone B cells are CXCR4lowCD83hiCD86hi cells78,79. In 

the dark zone, B cells proliferate. In the light zone, B cells exit the cell cycle, and their affinity 

is tested by follicular dendritic cells. B cells compete for TFH help where B cells with higher 

affinity for antigen can internalise greater amounts of antigen presented by follicular 

dendritic cells and in turn present it to TFH cells. Germinal centre B cells that do not receive 

help die80,81. In addition, germinal centre B cells express low levels of VLA4. VLA4 binds with 

VCAM1 on follicular dendritic cells which stabilises the interaction. Thus, low levels of 

expression require higher affinity for downstream signalling to occur. Expression of VCAM-1 

on follicular dendritic cells occurs via activation of the NF-KB signalling pathway. Follicular 

dendritic cells have complement receptors CD21/CD35 which are critical in the trapping of 

CD3-tagged antigen and immune complexes whilst FcRIIB is dispensable82. 

 

Furthermore, a process of “antigen-masking” occurs where antibodies secreted by plasma 

cells generated early in the immune response bind to antigen of follicular dendritic cells 

and thus, only germinal centre B cells with high affinity BCRs are able to out compete for 

antigen acquisition, further enabling the selection of high-affinity B cells83. Masking of 

epitopes also encourages the generation of new clones that bind other epitopes. Integrins 
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also play an important role in cell-cell interaction. With Lymphocyte function-associated 

antigen 1 engaging Intercellular Adhesion Molecule (ICAM) 1 and 2 on B cells. 

 

In the light zone, TFH express CD40L and bind with high affinity B cells84.  CD40 deficiency 

results in hyper IgM syndrome in humans with failure to form germinal centres85,86. In the 

germinal centre, B cell CD40 signals are transduced through NFKB whilst BCR signals are 

transduced through Forkhead Box O1 (FOXO1). When combined these activate c-Myc which 

promotes cell survival and cell cycle re-entry87. This is dissimilar to naïve B cells where these 

pathways are not siloed and Myc transmission can be induced by either BCR signalling or 

CD40. Inhibition of MYC leads to loss of established germinal centres. 

 

 
Fig 1.8 Germinal centre illustrating dark and light zones and affinity maturation88. 

 
CD40 stimulation of germinal centre B cells result in upregulation of IRF4 via NFKB pathway 

activation89. This leads to repression of BCL-6 transcription and terminates dark zone B cell 

transcriptional profiles. Germinal centre B cells have altered morphology compared with 

naïve B cells with a dendritic appearance potentially increasing ability to interact with 

antigen and have a stronger “tugging” ability when bound to antigen90. Germinal centre B 

cells may differentiate into long lived memory B cells which reside in the outer zones of 

secondary follicles or migrate to the marginal zones or differentiate into long-lived plasma 

cells that migrate to the bone marrow or gut. Long lived memory B cells reside in secondary 

lymphoid organs where they can be exposed to antigen on re-infection91. 
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Long-lived plasma cells in the bone marrow secrete large amounts of antibody in the 

absence of antigen. It is important to note that although the primary aim of the germinal 

centre is to increase antibody affinity, it is also to increase diversity. This increases the 

breadth of the antibody response thus also allowing an effective response when mutations 

occur to the antigen. This breadth is in the B cells that differentiate into memory B cells, 

which are often low affinity and broadly reactive91,92. B memory cells are generated early in 

the germinal centre response contributing to diversity. In contrast, long lived plasma cells 

are less diverse and of a higher affinity. Germinal centre B cells favoured to differentiate 

into long lived plasma cells are BCL-6lowCD69hi93. In mouse models, it has been shown that 

IgM+ memory B cells re-entered the germinal centre whilst IgG+ memory B cells were more 

likely to differentiate into plasma cells94,95. Germinal centre B cells reduce BCL-6, increase 

IRF4 and Blimp1 in order to differentiate into plasma cells96. Memory B cell generation 

requires BACH2 and CCR6 and occurs in the setting of “moderate” help from TFH cells (thus 

not as high affinity). Upon exiting the germinal centre, plasmablasts continue to proliferate 

and eventually stop as they reach the medulla of the lymph node or the splenic red pulp. 

 

1.3.5.2 Activation-induced cytidine deaminase  

Activation-induced cytidine deaminase (AID) plays a key role in somatic hypermutation 

(SHM) and class switching97,98. AID deaminates cytidine, converting it to uridine. When this 

occurs in the V-region, SHM occurs and when this occurs in the switch regions, class 

switching occurs. Given AID can only work on single DNA strands, it acts during transcription 

when the DNA helix is unwound. When uridine is present in DNA it triggers mismatch or 

base excision repair resulting in somatic hypermutation99.  

In mismatch repair, MSH2 and 6 detect the error and recruit nucleases to remove the 

basepair and neighbouring nucleotides. This is subsequently repaired by error prone DNA 

polymerase100. In base-excision repair, uracil-DNA glycosylase (UNG) removes the uracil 

from uridine leaving an “abasic” nucleotide and subsequent insertion of a random 

nucleotide during DNA replication into the new DNA strand opposite the abasic site101.  

For SHM to occur higher amounts of AID are required compared with class-switching and 

thus is largely restricted to the germinal centre49. 
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1.3.5.3 Class switching 

Class-switching only occurs post stimulation by antigen. Cytokines produced by TFH cells 

determine isotype switching. Different antibody isotypes have different effector functions, 

with IgG1 and 3 being effective against viruses, IgG3 against encapsulated bacteria, IgG4 and 

IgE against parasites and IgA1/2 against mucosal infections. IgG is the most prominent 

isotype in serum and IgA in the mucosa2. 

IgM antibodies are produced first post infection and are often of low affinity. The ability to 

form pentamers results in great avidity. IgM is prominent in the blood but less so in tissue 

due to its size. Most IgM antibodies are produced by marginal zone B cells. IgA is not 

activated by complement, acts on epithelial surfaces, and acts as a neutralising antibody. 

The ratio of IgA1: IgA2 is 10:1 in the blood and 2:3 in the gut. Each constant region has a 

promoter which is sensitive to multiple inputs including the BCR, CD40, TLRs and cytokines 

which determines its transcription2. 

In class switch recombination, AID targets designated “switch regions” which flank each 

constant gene with exception of the IgD constant region102. Switch regions contain WGCW 

(A/T-G-C-A/T) motifs which are favoured targets of AID103. In this process, DNA is 

permanently deleted. Similar to somatic hypermutation, AID deaminates cytidine, 

converting it to uridine stimulating UNG to remove the uracil from uridine leaving an 

“abasic” nucleotide. Instead of a random nucleotide replacing the abasic nucleotide as seen 

with SHM, apurinic/apyrimidinic endonuclease 1 (APE1), excises the abasic nucleotide, 

causing a single stranded nick which is then converted into double stranded breaks. This 

occurs at both switch regions. Given switch regions are intronic, random deletions do not 

result in a frameshift. Similar to VDJ recombination, DNA recombination occurs via NHEJ104.  

After RNA is transcribed, the intron RNA segment containing the switch regions are spliced 

out. The sequence is G-rich and forms a G-quadruplex105. This complex associates with the 

DNA sequence from which it was transcribed from as it is complementary. It also binds with 

AID and thus guides AID to the switch region. 
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1.3.6 Thymus independent antigens 
 
Thymus-independent (TI) antigens can be grouped into TI-1 and 2 antigens. TI-1 antigens 

can induce activation and proliferation of B cells regardless of their antigen specificity. Such 

antigens include Lipopolysaccharide (LPS) and bacterial DNA and high concentration of 

antigen is required to induce this polyclonal response.  TI-2 antigens have highly repetitive 

structures and can activate mature B cells, especially marginal zone B cells106. Activation 

occurs through cross-linking of BCRs and antigen specificity enhances activation. Such 

antigens are often from capsular polysaccharides which have repetitive structures. Co-

stimulation of TLRs have a synergistic effect on B cell activation107.  

 

 
1.3.7 Extrafollicular B cell responses 
 
The extrafollicular response can be T dependent and T independent. It is where naïve B cells 

are activated and generate short lived plasmablasts outside of the follicle(MacLennan et al., 

2003). Antibodies are rapidly produced within 3 days whilst a germinal response takes 7 

days109.  

 

The T dependent response, similar to the germinal centre response, relies on BCL-6 + PD-1- 

TFH cells 110,111. These pre-germinal centre TFH cells play an important role in class-switch 

recombination outside the germinal centre. It’s unclear what determines whether a B cell 

enters the extrafollicular or germinal centre pathway with identical B cells clones (given they 

can proliferate prior to cell-fate decisions) found downstream of both pathways. Marginal 

zone B cells are key cells recruited to the extrafollicular pathway53. 

 

Extrafollicular B cells continue to express EBI2 and increase their expression of CXCR4 which 

results in localisation to the bridging channels of the spleen or the medullary cords of lymph 

nodes69. Extra-follicular B cells upregulate their expression of BLIMP-1 which leads to the 

direct suppression of PAX5, required for germinal centre formation112. Extrafollicular TFH 
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cells mediate their interaction with B cells via CD40-CD40L and ICOS-ICOSL in the setting of 

IL-21. These interactions lead to plasma cell differentiation and class-switching109. 

 

Extra-follicular plasma cells are often but not always low affinity from a lack of SHM and are 

commonly short lived113. Memory cells can also be generated from this response and are 

commonly IgM and lowly mutated. AID expression in extrafollicular sites has been observed.  

 

 

1.3.8 Humoral Memory 
 
On antigen re-exposure, pre-existing protective antibodies which are secreted by long lived 

plasma cells are the first line of defence91. If antibody levels are not sufficiently high, 

pathogen-experienced memory B cells are mobilised as a second line of defence. Memory B 

cells on antigen re-exposure can differentiate into plasma cells and also re-enter the 

germinal centre undergoing further rounds of affinity maturation. Memory B cells can be 

germinal centre derived and germinal centre- independent and can be switched and 

unswitched75. 

 

 

1.3.9 Bone marrow homing 
 
The process of antibody secreting cells leaving the lymph nodes, entering the blood and 

homing to bone marrow is incompletely understood.  Activation of SP1R1 facilitates 

antibody secreting cells to the leave secondary lymphoid organs and enter the blood. 

CXCL12 and its receptor CXCR4 in turn facilitate recruitment to the bone marrow114. In 

contrast, inflammatory cytokines including CXCL9, CXCL10 and CXCL11 signal via receptor 

CXCR3 driving homing of antibody secreting cells to areas of inflammation115. Long lived 

plasma cells in the bone marrow are CD19−CD38hiCD138+116. Long term survival of plasma 

cells in the bone marrow is dependent on the expression of antiapoptotic protein Mcl-1. It is 

unclear if plasmablasts are just short-lived secreting antibodies during acute infection or 

post vaccination or also contribute to the long-lived plasma cell pool. Post infection, the 

majority of plasmablasts undergo apoptosis. Plasmablasts are detected in the blood during 
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“steady state” and are likely secondary to mucosal immune reactions. IgA also represents a 

large percentage of long lived plasma cells in the bone marrow at 40%113.  

 

 

1.3.10 Marginal Zone B cells 
 
Marginal zone (MZ) B cells reside in the spleen, GALT, lymph nodes and tonsillar crypts117. 

Both the spleen and the gut associated lymphoid tissue have an anatomically defined region 

called the MZ118. In the spleen, this region is at the interface of the circulation and the white 

pulp117. This location is strategically placed to provide the first line of defence against 

microbial antigens through the rapid production of IgM, IgG and IgA antibodies. MZ B cells 

have a lower threshold for activation and class-switching and are polyreactive119.  

MZ B cells express high levels of toll-like receptors (TLR) facilitating T cell independent 

activation120. MZ B cells recirculate with IgMhiIgDlowCD1c+CD21hiCD23−CD27+ CD5− cells 

found in the periphery121. Upon antigen exposure, MZ B cells can rapidly differentiate into 

plasmablasts and unlike in mice, human MZ B cells are mutated118. 

 

MZ B cells have distinguishing features from class-switched and non-class-switched memory 

B cells including expression of IgD, distinct IgV gene repertoire and fewer mutations122. MZ B 

cells are pre-diversified (not secondary to antigen exposure) utilising less VH1 and more 

VH3. The origin of MZ B cells is not clear. They may represent memory B cells derived at an 

early stage of germinal centre differentiation, memory B cells generated by T-independent 

responses resulting in fewer somatic hypermutations or a separate B cell lineage 

altogether118. MZ B cells express high levels of Blimp1 and low levels of Pax5 and Bcl6 aiding 

easy differentiation into antibody secreting cells118,119. In patients with hyperIgM syndrome 

secondary to a CD40 or CD40L deficiency resulting in lack of germinal centre, somatic 

mutation is still apparent in IgM+IgD+CD27+ B cell subsets suggestive of a germinal centre 

independent reaction. MZ B cells accrue mutations with time reaching the levels of adults by 

age 2-4 years old. MZ population can be replenished post depletion (e.g. bone marrow 

grafting)118 
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1.3.11 B-1 Cells 
 
B-1 cells arise during fetal development and are present in peritoneal and pleural cavities in 

mice123. The BCR is germline-encoded, polyreactive, restricted in V-gene usage and of class 

IgM and IgA. These cells are activated by both T-1 and T-2 antigens. B-1 cells are further 

divided into B-1a (CD5+) and B-1b cells (CD5-). B-1a cells produce natural auto-antibodies 

and play a role in removing apoptotic debris as well as protect against streptococcus 

pneumonia and influenza124. B-1b cells generate IgM memory B cells, important in 

preventing recurrence of Borrelia hermsii, S. pneumoniae, and Salmonella125.  

 

1.3.12 Clonal redemption 
 
Self-reactive B cells are present in the periphery. This occurs due to failure in identification 

during central tolerance and can occur because of reactivity to only monovalent antigen or 

weak binding to self-antigen126. Peripheral tolerance is the second line of defence with self-

reactive B cells undergoing anergy. Anergic characteristics include down-regulated surface 

IgM but not surface IgD and decreased response to BCR stimulation127,128. The constant 

occupancy of the BCR by self-antigen is required for maintenance of anergy126. However, 

some auto-reactive B cells do enter the germinal centre and are redeemed, or self-reactivity 

is enhanced in the setting of an inflammatory milieu. T cell help is only provided to cross-

reactive autoreactive B cells which leads to cross-reactive autoreactive memory and plasma 

cells. 

 

Polyreactive naïve antibodies allow a broader coverage against potential antigens despite 

the increased risk of self-reactivity. Nemazee calculated that a minimum of 1/3 of nascent B 

cells that are self-reactive need to undergo anergy and not be deleted/edited to achieve 

optimal coverage against a range of pathogens. Cross-reactive B cells (against self and 

antigen) may play an important role in an initial pathogen specific antibody response or 

where a pathogen specific-non-self-reactive response is impossible129.  

 

Autoantibodies with IGHV4-34*01 heavy chains bind to poly-N-acetyllactosamine 

carbohydrates (I/i antigen) which is present on erythrocytes and B lymphocytes and can 

result in cold agglutinins disease130. This heavy chain is present in 5% of anergic B cells and is 
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autoreactive regardless of light chain pairing. Auto-reactivity is dependent on FWR1 where a 

hydrophobic patch (AVY) is recognised by anti-idiotype antibody 9G4126. These BCRs are 

under-represented in the germinal centre and memory compartment in health whilst over-

represented in SLE131. Defective clonal redemption appears to occur in SLE. 9G4+ IGHV4-34 

B cells are mutated away from binding to self-poly-N-acetyl-lactosamine but rather react 

against autoantigens such as dsDNA and other self-nuclear antigens. This failure to select 

progeny with removed self-reactivity may be due to plentiful TFH cells or an intrinsic defect 

in the B cells.  

 

Whereas Reed et al., illustrate that IGHV4-34*01 IgG antibodies generated post 

immunisation, no longer bound to I/i antigen, whilst the unmutated germline sequence did 

so. Self-reactivity was thus removed via somatic hypermutation. In addition, they illustrate 

that somatic hypermutation not only facilitated increased affinity to antigen but also 

reduced self-reactivity was prioritised at the expense of antigen-specificity. The benefit of 

decreasing self-reactivity is a decreased occupancy by self-antigen allowing increased 

binding to foreign antigen 132.  

 

Similarly, IGHV1-69 is a poly-reactive antibody. Its long hydrophobic loop in the CDR2 

segment allows it to bind to many structurally unrelated antigens including the Fc domain of 

self-IgG and hemagglutinin stalk of Influenza A virus133. This antibody is mobilised on initial 

infection but in the memory pool, somatic hypermutation alters this idiotype preventing 

long term auto-immune complications134.  
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1.4 SARS-CoV-2 
 
1.4.1 Background 
 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 was 

declared a pandemic by the World Health Organisation on March 11, 2020 

(https://covid19.who.int/). The origin of the virus was traced back to the Huanan Seafood 

Wholesale Market in Wuhan city, Hubei Province, China. Key clinical features include 

pneumonia with fever, cough, dyspnea and bilateral lung infiltrates135.   

 

The causative virus, SARS-CoV-2 is a novel betacoronavirus. Phylogenetic analysis shows 

that SARS-CoV-2 clusters with SARS-CoV, bat and pangolin coronaviruses placing it in the 

subgenus Sarbecovirus 136. Although phylogenetically related, SARS-CoV-2 has likely 

undergone 20 years of sequence evolution and bats are unlikely the direct progenitor.  

Genomic analysis reveals ~96% nucleotide sequence similarity with the Rhinolophus affinis 

bat virus137. Despite the apparent similarity, Rhinolophus affinis bat virus lacks a polybasic 

cleavage site, a key component in increasing the infectivity of SARS-CoV-2, as discussed 

below138. In addition, this bat resides in the Yunnan province, over 1,500 km from Wuhan139. 

In contrast, HCoV-HKU1 which clusters in a different clade, contains a similar polybasic 

cleavage site137. Similarly, the Rhinolophus bat is divergent, sharing only ~72% sequence 

similarity but has high similarity of the long replicase gene at ~97% nucleotide sequence 

similarity. The Malayan pangolin imported to the Guangdong and Guangxi provinces have 

97% RBD amino acid homology in the receptor binding domain region 140.  

 

Human to human transmission of SARS-CoV-2 became evident with its rapid spread in 

people with no history of exposure to the Huanan Seafood Wholesale Market 141. 

Coronaviruses have caused two previous large scale out breaks in the last 20 years with the 

SARS outbreak of 2002-2003 and the MERs outbreak since 2015142. In comparison, SARS-

CoV-2 is less lethal but more infectious with transmission occurring during 

asymptomatic/pre-symptomatic phases 143. With a higher case-fatality rate compared with 

seasonal influenza, it has resulted in a global pandemic 140.  
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Coronaviruses are enveloped, positive-sense single stranded RNA viruses144,145. These 

viruses have a lower mutation rate compared with other RNA viruses due to proof-reading 

ability via 3’-to-5’ exoribonuclease146.  

 

The SARS-CoV-2 genomic sequence bears 79% homology to the SARS-COV sequence and 

50% homology to the MERS sequence147.  

 

The SARS-CoV-2 genome has 14 open reading frames and encodes three classes of protein 

(Fig 1.9)148.  

• Polyproteins pp1a and pp1b which are cleaved into 16 non-structural proteins (nsp 

1-16). These are vital for viral RNA synthesis.  

• 9 accessory proteins which mitigate host defences 

• 4 structural proteins: spike, envelope, membrane, and nucleocapsid. These are 

involved in viral entry and viral assembly. 

 

Of the 4 structural proteins, the spike protein is the most dissimilar to its SARS-CoV 

counterpart with ~73% nucleotide sharing147. The spike protein mediates access to the cell 

via the ACE2 receptor. The spike protein is divided into S1 and S2 subunits. The S1 unit 

contains the c-terminal domain, also termed the receptor binding domain (RBD) and the n-

terminal domain (NTD). The spike protein is trimeric, thus containing three RBDS. The S2 

subunit is divided into an upstream helix (UH) region, fusion peptide (FP), connecting region 

(CR), heptad repeat 1 (HR1) and HR2 and a central helix (CH). The FP region is shielded by 

the UH domain. At the junction of the S1 and S2 protein are four amino acid residues 

(PRRA). This region plays an important role in ACE2 binding (discussed below) and is absent 

in SARS-CoV149. In addition, the ORF8 protein is functionally different between SARS-CoV 

and SARS-CoV-2 with only 40% amino acid homology. ORF8 of SARS-CoV-2 has the potential 

survival advantage of not triggering intracellular stress pathways in the host due to lacking 

motif VLVVL147. 
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Fig 1.9  SARS-CoV-2 schematic A) Structure- S1/S2 protease cleavage site b) Cryo-EM structure showing the open and closed 
formation150 

 
 

1.4.2 Receptor binding  
 
Coronaviruses can enter a host cell via a membrane receptor, receptor-mediated plasma 

membrane fusion or endocytosis or by antibody dependent viral entry144. Angiotensin-

converting enzyme II (ACE2) is the cell surface receptor for both SARS-CoV151 and SARS-CoV-

2152,153. 

 

RBD on the spike protein binds with the angiotensin-converting enzyme 2 (ACE2) on the cell 

surface, gaining entry into the cell152,153. The RBD takes on a closed and open conformation 

and not all three RBDs are synchronised in conformation (Fig 1.9)154,155 . When in a closed 

conformation, RBD cannot interact with ACE2 receptor due to steric hindrance. This has the 

benefit of the RBD site not being constantly exposed to the adaptive immune system. A 

spike protein can bind 1-3 ACE2 receptors. Post binding to ACE2, S1 and S2 are cleaved at 

the S1-S2 and S2’ cleavage site. This releases FP from its original conformation allowing it to 

protrude out and facilitate either cytoplasmic or endosomal membrane fusion. SARS-CoV-2 

has a significantly higher affinity to ACE2 compared with SARS-CoV156.  
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Furin proteases cleave S1 from S2 at the multibasic (presence of arginine) site at the S1/S2 

boundary (Fig 1.10).  The boundary has a furin cleavage site- proline-arginine-arginine-

alanine.  Furin is ubiquitously expressed. The multibasic cleavage site is present in MERs-

COV but not SARS-CoV and its presence enables more efficient proteolysis138. 

 

Transmembrane protease serine 2 (TMPRSS2), a serine protease cleaves S1/S2 facilitating 

entry via endocytosis. TMPRSS2 similarly plays an important role in SARS-CoV. TMPRSS2 is 

co-expressed with ACE2 in nasal epithelial cells, lungs and bronchi helping to explain the 

virus’ tissue tropism157. The TMPRSS2 cleavage site is within the S2 domain, termed the S2’ 

site. This removes the UH domain which shields FP152,153. 

 

 
Fig 1.10 SARS-CoV-2 cleavage sites 140 
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After viral attachment to ACE2, Furin cleaves the multibasic site and subsequently TMPRSS2 

cleaves at the S2’ site resulting in the freeing of the internal fusion protein. This is then 

followed by HR1 and HR2 interacting with one another forming a six-helix bundle (6-HB) 

fusion core. This combined draws the viral envelope and host membrane close to one 

another and finally membrane fusion138(Fig 1.11). 

 

 
Fig 1.11 SARS-CoV-2 role of TMPRSS2 and Furin140 

 

Cathepsin is localised in lysosomes and induces proteolysis post endocytosis153. It is an 

alternative to TMPRSS/Furin for viral entry into the host cell. Both entry mechanisms are 

utilised by SARS-CoV-2 with a preference for the endosomal pathway. Antibody- mediated 

SARS-CoV-2 cell entry is another form of potential viral entry although unproven unlike in 

SARS-CoV144. This process involves the binding of antigen to the Fab region and the Fc 

region interacting with the FcR leading to endocytosis. 

 

Once the viral genome gains entry into the cell, ORF1a and b are translated into viral 

replicase proteins and are cleaved into individual NSPs thus forming RNA polymerase 

(nsp12). The endoplasmic reticulum is reorganised into double-membrane vesicles and is 

where replication occurs. The double membrane vesicle shield RNA from pattern 

recognition receptors. The positive strand serves as the template to generate the full length 
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negative-strand RNA and the subgenomic RNA are translated to structural and accessory 

proteins. In the ER-Golgi intermediate compartment, virion assembly occurs and is 

subsequently secreted from the plasma membrane. The nucleocapsid protein is important 

for viral packing into new virions145. 

 
 

  



 32 

1.4.3 Immune response 
 
1.4.3.1 Innate response 
 
A robust and regulated immune response is essential for control of SARS-CoV-2 (Fig 1.12).  

 

 

 
Fig 1.12 Potential immune responses to SARS-COV-2159 

 

The innate immune system can control a virus by three key mechanisms: 

1. Restriction of viral replication 

2. Creating a hostile environment in local tissue 

3. Priming of the adaptive immune system 

 

SARS-CoV and MERs are both associated with a delayed Type 1 IFN response resulting in 

rapid viral replication, a heightened cytokine response and delayed adaptive immune 

response160. In some patients with SARS-CoV-2, there is evidence of a delayed/absent IFN-I 

and III response161,162. 
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1.4.3.1.1 Interferon response in viral infection 
 
Interferons are divided into three broad families, type I, II and III. Type I IFN consists of IFN-

a, IFN-b, IFN-e, IFN-w and IFN-k. Type II IFN includes IFN-g. Type III IFN includes IFN-l. Type I 

and III IFN play an important role in viral infection. Type I IFN receptors are widely expressed 

whilst type III IFN receptor expression is restricted to macrophages, dendritic cells, 

neutrophils and respiratory epithelial cells163. 

 

Post respiratory viral infection, the primary produces of IFNa/b are epithelial cells, 

endothelial cells, alveolar macrophages, NK cells, dendritic cells and inflammatory 

monocyte-macrophages. Type 1 IFN is produced in response to stimulation of pattern 

recognition receptors by microbials. The dsRNA of SARS-CoV-2 which is generated during 

replication is recognised by retinoic acid-inducible gene I (RIG-I) and/or melanoma 

differentiation gene 5 (MDA5) in the cytoplasm as well as TLRs in the endosome164. MDA5 

and RIG-1 engage downstream receptors such as mitochondrial antiviral signalling (MAVS) 

protein leading to the activation of TRAF3, TBK1 and IKK. These phosphorylate IRF3/7. TLRs 

stimulate myeloid differentiation primary response 88 (MyD88) and TRIF. This similarly leads 

to the phosphorylation of IRF3 and 7. IRF3 and 7 bind IFN genes leading to the transcription 

of Type I IFN165. Type I IFN bind to IFNAR1/2 and activates TYK2 and JAK1. These 

phosphorylate STAT1/2 leading to the assembly of the IFN-stimulated gene factor 3 (ISGF3) 

complex, a trimeric complex containing IRF9 and STAT1/2. ISGF3 enters the nucleus binding 

to IFN-stimulated response elements and broad ISG production166.  

 

1.4.3.1.2 SARS-CoV-2 evasion of IFN 
 
Accessory proteins generated by both SARS-CoV-1/2 virus aid in IFN production delay 

through evasion and antagonism. N and M protein, nsp10, nsp14, nsp15 and nsp16 prevent 

RIG-1/MDA-5 stimulation. ORF3b and ORF9b interfere with MAVS. ORF3a protein decreases 

IFNAR expression. Nsp1 inhibits STAT1 whilst ORF6 interferes with ISG production167.  

 

Study of the transcriptional response to SARS-CoV-2 after infecting normal human bronchial 

epithelial cells using gene enrichment analyses revealed a poor IFN-I response despite 

having a strong chemotactic and inflammatory response. Treatment with IFN did not 
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increase ISG expression suggesting that it is both IFN production and downstream function 

that is being antagonised(Blanco-Melo et al., 2020). In keeping with this, a study of 50 

patients with COVID-19 at a median of 10 days from symptom onset of varying disease 

severity, identified a robust IFN response in patients with mild to moderate disease but was 

reduced in severe disease162. Arunachalam et al, similarly described a reduction in pDCs 

which was coupled with reduced expression of phosphorylated ribosomal protein S6, a 

canonical target of mTOR activation which is required in the production of IFN-a in pDCS in 

response to TLR stimulation. This was functionally confirmed with reduced generation of IFN 

in response to TLR stimuli161. In support, a weaker IFN-I signature was reported in the more 

severe COVID-19. This was associated with downregulation of translation and ribosome 

genes potentially due to suppressed protein translation seen in the setting of IFN. The low 

IFN response was attributed to reduced pDCs secondary to apoptosis169. Similarly, a 

diminished IFN-l and type I IFN response in COVID-19 patients who become critically ill was 

reported170. Neutralising type I anti-IFN antibodies were detected in patients with severe 

COVID-19 at a rate of 10% and were absent in patients with mild and moderate disease. 

These auto-antibodies were present prior to disease suggesting that these patients 

represented an at-risk group171. Focusing on monogenic inborn errors affecting TLR3, IRF7, 

and IRF9 known to cause severe pneumonia and a further 10 loci associated with viral 

illnesses and connected to core loci, Zhang et al., showed an increase in variant predicted to 

cause a loss of function in a greater proportion of patients with severe COVID-19 compared 

with mild disease171. However, a defective interferon response has not been universally 

found. Schulte-Shrepping et al., reported an increase in ISG expression early in disease172. 

Lucas et al., did a longitudinal analysis of 113 COVID-19 patients illustrating a robust IFN 

response with elevated levels of IFN-a and IFN-l in patients compared with healthy controls 

with duration correlating with length of hospitalisation and mortality173.  

 

1.4.3.1.3 Cytokine and chemokine response 
 
Patients with severe COVID-19 have features of hyper-inflammation174. Heightened 

expression of IL-6, IL-8, IL-10, TNF, CCL2, CCL3 and CCL8 are frequently reported in the 

literature in association with severe disease173,175. SARS-CoV-2 enters and infect type II 

pneumocytes inducing a pro-inflammatory state with elevations in IL-1B, IL-6, CXCL8, 
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CXCL10, MIP1a/1b, VEGF, IFN-g and TNF176. These cytokines promote migration of 

inflammatory neutrophils, CD4 and CD8 T cells and macrophages in the lung leading to 

severe lung pathology with the development of acute respiratory distress syndrome, 

pulmonary oedema and vascular damage177. Activated neutrophils produce ROS and 

neutrophil extracellular traps (NETs) promoting death of both virus and epithelial cells. NET 

formation may have a contributory role to immunothrombosis.  

 

Immunosuppression with glucocorticoids has a survival benefit when administered in 

patients requiring oxygen178. In addition, anakinra an IL-1a/b inhibitor when administered in 

a select group of COVID-19 patients at risk of developing hypercytokinemia as determined 

by an elevated soluble urokinase plasminogen activator receptor (suPAR) serum level 

improved survival and decreased hospital stay. suPAR is a biomarker in early disease that 

predicts progression and is superior to CRP, IL-6, ferritin and D-dimers179. However, 

Canakinumab, an inhibitor in IL-1B did not show a survival benefit when an elevated CRP or 

ferritin was used as criteria for enrolment180. IL-6 blockade, on metanalysis is associated 

with a lower 28-day all-cause mortality181. 

 

1.4.3.2 Adaptive Immune system 
 
The adaptive immune system consists broadly of CD4, CD8 and B cells. Due to its targeted 

approach in containing infection, its response takes time. 

 

1.4.3.2.1 T cells 
 
T cell lymphopenia, observed in COVID-19 is not secondary to redistribution to tissue with 

no evidence of T cell lymphocytosis on bronchioalveolar lavage or on quantitative analysis of 

lung imaging182,183. 

 

SARS-CoV-2 specific T cells target Spike, M, and nucleopcapsid proteins159. Grifoni et al., 

generated megapools based on predicted SARS-CoV-2 epitopes that were independent of 

ethnicity and HLA polymorphism. Using TCR dependent activation induced marker (AIM) 

assays, they found that spike specific CD4+ T cell responses were present in 100% of 

convalescent cases. Of the detected response, 50% was directed against spike and the 
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remainder against the other proteins. Given the important role CD4+ T cells play in 

providing “help” to B cells including promoting clonal expansion, as predicted, a correlation 

was present between spike-specific CD4+ T cell responses and anti-spike RBD IgG titres. 

SARS-CoV-2 specific CD4+ T cells associated most strongly with milder disease.  

Evidence of cross-reactivity was present with non-spike CD4+ T cell reactivity in healthy 

controls. In CD8+ T cells, given there is substantially less overlap between HLA class I allelic 

variants, only the 12 most prominent HLA class A and B alleles were targeted. These 

represent >85% of the general population. CD8 T cells responses using AIM were detected in 

70% of cases. In the acute setting only 53% of cases had SARS-CoV-2 specific CD8 T+ cells. 

These T cells were IFN-g producing. Similar to SARS-CoV-2 specific CD4 T+ cells, a robust 

SARS-CoV-2 specific CD8 T+ cell response was associated with milder disease184.   

 

1.4.3.2.2 B cells 
 
Post infection with SARS-CoV-2, a rapid extrafollicular B cell response occurs, and short-lived 

antibody secreting cells are produced185. In parallel, a germinal centre response occurs, 

producing somatically hypermutated long lived plasma cells and class-switched B cells186. An 

increase in plasmablasts occurs within 7 days of hospitalisation, returning to baseline at 3-6 

months187. B cell receptor repertoire sequencing reveals a polyclonal B cell population with 

minimal SHM 185. This suggests that the early B cell response is generated predominantly 

from naïve B cells that differentiate into class-switched plasmablasts 188. Woodruff et al., 

conducted an in-depth phenotypic analysis of B cell responses in COVID-19. They reported 

higher frequencies of activated naïve b cells and double negative B cells (CD27-IgD-

CD11c+CD21-) compared with health which they surmised differentiated into lowly mutated 

plasmablasts extrafollicularly189. There was evidence of a small fraction of cross-reactive 

human coronavirus antibodies at 3 months post SARS-CoV-2 infection, identified by a high-

level of SHM compared with other clones186. In severely ill patients, on post-mortem 

analysis, there was evidence of a decrease in germinal centres and in the number of BCL-6+ 

germinal centre B cells suggesting impairment of germinal centre formation and a sequela 

of impaired generation of long-lived memory B cells and plasma cells190. However, 

longitudinal studies on patients who have recovered from severe COVID-19 demonstrate 
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the generation of persisting high levels of SARS-CoV-2 specific antibodies and the generation 

of class-switched memory B cells with accumulating SHM191,192.  

 

Neutralising antibody titres positively correlate with disease activity193. This is the converse 

to what is seen in CD4 and CD8 SARS-CoV-2 specific responses184. Patients with more severe 

disease also have greater epitope spreading with evidence of a stronger and broader SARS-

CoV-2 antibody response, using phage-display immunoprecipitation and sequencing 

technology194. The higher titres and complexity of antibodies in severe disease may be a 

function of time and persisting viral disease, giving rise to extended antibody evolution 

compared that seen in mild disease. 

 

Seroconversion occurs in most people within 5-15 days of symptom onset195. The spike 

protein is target for neutralising antibodies with >90% targeting the receptor binding 

domain component185. Antibodies targeting the N-terminal domain can also be 

neutralising196. Antibodies are also formed against the nucleocapsid, an important 

component in virion replication and packing which is expressed heavily during active 

infection.  

 

Instead of the usual temporal relationship between the formation of IgM and IgG 

antibodies, spike IgG, IgA and IgM develop simultaneously. IgM and IgA titres wane at 7-10 

weeks whilst IgG titres remain elevated for 3-8 months before declining195,197. Antibodies 

patterns in serum appear similar with saliva with IgG titres remaining stable over serval 

months whilst IgM and IgA decline. IgM and IgG levels correlated well in serum and saliva 

whilst IgA does not198. 

 

1.4.3.2.3 B cell memory 
 
Antibody titres in SARS-CoV and MERS appears to wain within 2-3 years199.  Studies to date 

on SARS-CoV-2 are promising with evidence of RBD memory specific B cells in patients with 

all degrees of disease severity at 150 from symptom onset186,192. Dan et al., demonstrated 

the presence of S, RBD, and N memory B cells out at 8 months and further showed that the 

titres increased for the first 4 months before plateauing200.  
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1.4.3.2.4 Pre-existing cross-reactivity 
 
A small proportion of pre-existing antibodies, generated post human coronavirus infections 

can bind to SARS-CoV-2. <1% IgG antibodies can bind to SARS-CoV-2 RBD, 4-5% can bind to 

the full-length SARS-CoV-2 spike protein and 10-16% are able to bind to the N protein. Of 

the antibodies that can bind to the full-length SARS-CoV-2 spike protein, the main target is 

the S2 which has the greatest sequence homology to the human coronavirus infections 201. 

Antibodies that bind to the N protein are non-neutralising. During SARS-CoV-2 infection, 

titres of these cross-reactive antibodies are boosted. It’s unclear if cross-reactive antibodies 

play a key role in immune defence with Anderson et al., finding no correlation between pre-

pandemic cross reactive antibodies and outcome202. Sagar et al., on the other hand found a 

correlation between previous reports of human coronavirus infections.  
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1.5 Aim and objectives  
 
SARS-CoV-2 causing COVID-19 has resulted in a world-wide pandemic. The aim of this study 

was to better understand the virus and its impact on the immune system and disease 

severity. Specifically, the objectives were as follows: 

 

I. To perform a deep immune-phenotyping and transcriptomic analysis to 

understand cellular changes; 

II. To perform a BCR repertoire analysis to understand changes in clonality, class-

switching and v gene usage.  
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2. Materials and Methods 
 

This chapter contains a description of patient recruitment, immunophenotyping and of the 

concepts and techniques used in bulk RNAseq and B cell receptor sequencing. 

 

2.1 Participant recruitment  

 
2.1.1 COVID-19 participants 

Study participants were recruited over a period between 31/3/2020 and 20/7/2020. 

Patients were recruited from Addenbrooke’s and Royal Papworth Hospital with a confirmed 

positive nucleic acid amplification test (NAAT) COVID-19 test. In addition, Health Care 

Workers identified through staff screening as PCR positive for SARS-CoV-2203 were included.  

 

Recruitment of inpatients at Addenbrooke’s Hospital and Health Care Workers was 

undertaken by the NIHR Cambridge Clinical Research Facility outreach team and the NIHR 

BioResource research nurse team. Ethical approval was obtained from the East of England – 

Cambridge Central Research Ethics Committee (“NIHR BioResource” REC ref 17/EE/0025, 

and “Genetic variation AND Altered Leucocyte Function in health and disease - GANDALF” 

REC ref 08/H0308/176). All participants provided informed consent. 

 

Inpatients were sampled at study entry, and then at regular intervals whilst in hospital 

(approximately weekly up to 4 weeks, and then every 2 weeks up to 12 weeks). Discharged 

patients were invited to provide a follow-up sample 4-8 weeks after study enrolment. 

Health care workers were sampled at study entry, and subsequently after approximately 2 

and 4 weeks. At each time-point, blood samples were drawn in EDTA, sodium citrate, serum 

and PAXgene Blood RNA tubes (BD Biosciences) and processed by the CITIID-NIHR COVID 

BioResource Collaboration group. 
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2.1.2 Vaccine Participants 

 

2.1.2.1 SARS-CoV-2 

Community participants or health care workers receiving the first dose of the BNT162b2 

vaccine between the 14th of December 2020 to the 29th of January 2021 were 

consecutively recruited at Addenbrookes Hospital into the COVID-19 cohort of the NIHR 

Bioresource. The study was approved by the East of England – Cambridge Central Research 

Ethics Committee (17/EE/0025).   

 

2.1.2.2 Influenza  

Community participants receiving a dose of Adjuvanted Trivalent Influenza Vaccine (Surface 

Antigen, Inactivated) Adjuvanted with MF59C.1 (2020/2021 SEASON) were recruited. The 

study was approved by the East of England – Cambridge Central Research Ethics Committee 

(REC ref: 20/SW/0134, IRAS id: 287814, CBR#: 213). Samples were taken at baseline and 

subsequently day 7 and day 30 from vaccination. Paired analysis was performed with day 0 

samples used as a healthy comparison. 

 

2.1.3 Healthy controls 

SARS-CoV-2 negative controls were recruited during Health Care Worker health screening 

after confirmation of negative NAAT and serology. Additional healthy control samples were 

obtained under the Gandalf ethics (08/H0308/176) and had been recruited prior to 2020. 

Thus, before the existence of COVID-19. 

 

2.1.4 Inflammatory Bowel disease 

 

2.1.4.1 Peripheral Blood BCR repertoire 

Patients with inflammatory bowel disease were recruited from a specialist clinic at 

Addenbrooke’s Hospital prior to starting treatment. Diagnosis was made based on 

endoscopic findings, histology, radiology and clinical history. Ethical approval was obtained 

from the Cambridge Local Research Ethics Committee (reference numbers 04/023, 
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08/H0306/21, 08/H0308/176) and Eastern NHS Multi Research Ethics Committee 

(07/MRE05/44).  

 

2.1.4.2 Lymph Node BCR repertoire 

Lymph nodes were collected from patients with Crohn’s disease who required surgery 

secondary to disease complications including stenosis and fistula formation. A mesenteric 

lymph node was taken adjacent to an area of inflamed bowel (Medical University of 

Vienna’s Institutional Review Board (EK number: 1480/2016). 

 

2.2 Clinical data collection 

 

Clinical data were retrospectively collected by review of medical files, laboratory test results 

and in-patient medications using Epic electronic health records (Addenbrooke’s Hospital) 

and from MetaVision ICU (RPH ITU). Health care workers were classified into 2 groups (A 

and B) according to whether they were asymptomatic (group A) or had possible COVID-19 

symptoms (group B) at the time of PCR testing. Symptomatic disease was defined as new-

onset fever (> 37.8 C), cough, loss of sense of smell, hoarseness, nasal discharge/congestion, 

shortness of breath, wheeze, headache, muscle aches, nausea, vomiting and/or diarrhoea. 

 

Participants in group A were further sub-grouped according to whether they were 

completely asymptomatic (n = 8) or had had any of the above COVID-19 symptoms before 

PCR testing (n = 10, median time from symptoms to COVID-19 PCR test 26 days, range 9-

42 days). 

Group B participants included both staff who were self-isolating because of COVID-19 

symptoms (n = 30), and staff members who reported fit for duty but had symptoms that did 

not reach the threshold for self-isolation at the time (n = 10). 

Hospital patients were assigned to 3 severity groups, reflective of the maximal intensity 

of respiratory support received during their hospital stay: 

 

• group C: did not receive any supplemental oxygen. 
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• group D: received supplemental oxygen using low flow nasal prongs, simple face 

mask, Venturi mask or non-rebreather face mask. 

• group E: received non-invasive ventilation (NIV), mechanical ventilation or ECMO. 

Deceased patients requiring supplemental oxygen (not ventilation) were also assigned to 

group E (see Table 2.1). 

Oxygen requirements that were not related to COVID-19 were not considered during 

classification. In particular, 2 patients who received low flow supplemental oxygen for non-

COVID-19 indications (ascitic splinting in decompensated cirrhosis in one case, and recovery 

from anaesthesia after orthopaedic surgery in the other) were assigned to group C. Cases in 

group C were further sub-classified according to chest radiology results (X-ray and, if 

available, CT scan), as: 

 

• abnormal radiology: chest X-ray/ CT scan with changes compatible with COVID-19 

• normal radiology: chest X-ray/ CT scan without abnormalities compatible with 

COVID-19 (reported as normal or showing lung changes diagnostic of conditions 

other than COVID-19). 

 

Immunological parameters were analysed according to time since onset of symptoms, or 

otherwise time since positive SARS-CoV-2 NAAT (group A). Seven cases admitted to hospital 

for COVID-19 had no date of onset of symptoms documented in the medical records. In 

these cases, the date of onset of symptoms was estimated as follows: hospital admission 

date - median time from symptoms to hospital admission in patients admitted for COVID-19. 
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Table 2.1 Clinical features of study participants. Participants are grouped according to disease severity. Table made by 
F.Mescia. 
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2.3 Peripheral blood mononuclear cell preparation  

 

Each participant provided 27 mL of peripheral venous blood collected into 9 mL sodium 

citrate tube. Peripheral blood mononuclear cells (PBMCs) were isolated using Leucosep 

tubes (Greiner Bio-One) with Histopaque 1077 (Sigma) by centrifugation at 800xg for 15min 

at room temperature. PBMCs at the interface were collected, rinsed twice with autoMACS 

running buffer (Miltenyi Biotech) and cryopreserved in FBS with 10% DMSO. All samples 

were processed within 4 hours of collection. 

 

2.4 Flow immunophenotyping 

 

Five distinct antibody cocktails were used to label approximately 106 PBMCs using standard 

methods. T regulatory cells were fixed and permeabilized following surface staining prior to 

the addition of intracellular antibodies. Samples were stored at 4°C and acquired within 4 h 

using a 5-laser BD Symphony X-50 flow cytometer. Single colour compensation tubes (BD 

CompBeads) or cells were prepared for each of the fluorophores used at the start of each 

flow cytometer run. 

 

For direct enumeration of T, B and NK cells, an aliquot of whole blood (50 μl) was added to 

BD TruCount tubes with 20μl- BD Multitest 6-color TBNK reagent (BD Biosciences) and 

processed as per the manufacturer’s instructions. 

 

Samples were gated in FlowJo v10.2 according to the schema set out below (Fig 2.1). The 

number of cells falling within each gate were recorded. For analysis, these were expressed 

as an absolute concentration of cells per ml, calculated using the proportions of daughter 

populations present within the parent population determined using the BD 

TruCountsystem. 
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Fig 2.1 Gating strategy used to define cell populations. A) B cell, B) non-conventional T cell, C) DCs and monocyte, D) T 
regulatory cells, and E) conventional T cell panels. Fig made by L.Turner. 
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2.5 CyTOF 

 

Mass cytometric analysis was performed on a subgroup of patients and healthy controls 

(249 samples). Whole blood samples (270μl) were stained using the Fluidigm Maxpar® 

Direct Immune Profiling Assay according to the manufacturer’s instructions. Samples were 

cryopreserved at −80°C following staining and thawed for analysis within 4 weeks. Samples 

were acquired using a Fluidigm Helios mass cytometer and normalized using the CyTOF 

Software v6.7.1016. FCS files generated were analyzed using the Maxpar® Pathsetter 

software v2.0.45 (Verity Software House, Topsham, ME). Standard settings were used to 

generate immune cell frequencies for 37 immune cell populations. Absolute cell numbers 

were calculated using the proportions of these immune cell populations within the parent 

populations determined by BD TruCount. 

 

2.6 Reticulocyte counts 

 

Reticulocyte numbers were measured using a Sysmex XN-1000 hematology analyzer 

according to manufacturer instruction and as previously described204. Briefly, Sysmex 

technology uses three signals to define the physiological and structural properties of cells 

and to distinguish reticulocytes from the other blood cells: forward scatter, side scatter and 

side fluorescent light. These measurements rely on the similar electromagnetic 

radiation and fluid dynamics concepts of a flow cytometer; reticulocyte specific fluorescent 

probes are covered by a patent deposited by Sysmex Corporation (i.e., Fluorocell RET, cat# 

BN-337-547). 

 

2.7 Complement 

 

Complement activation was assessed by measuring C3 activation products (C3a and C3c) 

together with the terminal complement complex (TCC) as an end product of the 

complement cascade. Concentrations of these complement components were measured in 

EDTA plasma from patients using commercially available enzyme-linked immunosorbent 
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assays (ELISA) kits (HK354 (C3a), HK368 (C3c), HK328 (TCC), Hycult Biotech, Uden, the 

Netherlands) according to the manufacturer’s protocols. 

 

2.8 CRP 

 

High sensitivity CRP was measured using the standard assay by the Core Biochemical Assay 

Laboratory (CBAL) at Cambridge University Hospitals NHS Foundation Trust. 

 

2.9 Cytokines 

 

IL-6, IL-10, IL-1β, TNF-α and IFN-γ were measured in serum from patients and healthy 

controls by high sensitivity Base Kit HS Cytokine A Mag (cat# LHSCM000, R&D Systems / 

Biotechne) on a Luminex analyzer (Bio-Plex, Bio-Rad, UK) as standard clinical assay 

performed by the Clinical Immunology Laboratory at the Department of Biochemistry and 

Immunology, Addenbrooke’s Hospital Cambridge. 

 

2.10 SARS-CoV-2 serology 

 

Quantification of Spike SARS-CoV-2 specific antibodies was performed by ELISA as described 

by Xiong X et al. 205. Serum samples collected at time of enrolment and at 4-8 weeks follow-

up with an AUC calculated.  
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2.11 SARS-CoV-2 neutralisation assays 
 

2.11.1 SARS-CoV-2 neutralisation assay 

The clinical isolate SARS-CoV-2/human/Liverpool/REMRQ0001/2020 was used (received 

from Ian Goodfellow, University of Cambridge), isolated by Lance Turtle (University of 

Liverpool) and David Matthews and Andrew Davidson (University of Bristol) 206,207. Sera 

were heat-inactivated at 56°C for 30 min, then frozen in aliquots at −80°C. Neutralising 

antibody titers at 50% inhibition (NT50s) were measured 208. HEK293T reporter cells 

expressing Renilla luciferase (Rluc) and SARS-CoV-2 Papain-like protease-activatable 

circularly permuted firefly luciferase (FFluc) were seeded in flat-bottomed 96-well plates. 

The following day, SARS-CoV-2 viral stock (MOI = 1) was pre-incubated with a 3-fold dilution 

series of each serum for 2 hours at 37°C, then added to the cells. After 24 hours, cells were 

lysed in Dual-Glo Luciferase Buffer (Promega) diluted 1:1 with PBS and 1% NP-40. Lysates 

were transferred to white half-area 96-well plates, and infectious virus quantitated as the 

ratio of FFluc/Rluc activity measured using the Dual-Glo kit (Promega) according to the 

manufacturer’s instructions. Experiments were conducted in duplicate. To obtain NT50s, 

FFluc/Rluc ratios were analyzed using the Sigmoidal, 4PL, X is log(concentration) function in 

GraphPad Prism. 

 

2.11.2 Pseudotyped virus neutralization assays used post SARS-COV-2 vaccination 

Virus neutralization assays were performed on 293T cells transiently transfected with ACE2 

and TMPRSS2 using SARS-CoV-2 spike pseudotyped virus expressing luciferase209. 

Pseudotyped virus was incubated with serial dilutions of heat-inactivated human serum 

samples or sera from vaccinated individuals in duplicate for 1 h at 37 °C. Virus and cell-only 

controls were also included. Then, freshly trypsinized 293T ACE2/TMPRSS2-expressing cells 

were added to each well. Following 48 h incubation with 5% CO2 at 37 °C, luminescence was 

measured using the Steady-Glo Luciferase assay system (Promega). Neutralization was 

calculated relative to virus-only controls. Dilution curves were presented as a mean 

neutralization with s.e.m. ID50 values were calculated in GraphPad Prism. The limit of 

detection for 50% neutralization was set at an ID50 of 20. The ID50 within groups were 
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summarized as a geometric mean titre (GMT) and statistical comparison between groups 

were made with Mann–Whitney or Wilxocon ranked sign tests. 

2.12 Bulk RNA-Sequencing 

 

2.12.1 Library preparation  

RNA was isolated from blood samples stored in Paxgene tubes and quantified using the RNA 

HS assay on the Qubit. Libraries were prepared using SMARTer® Stranded Total RNA-Seq it 

v2 - Pico Input Mammalian (Takara) using 10ng of RNA as starting input. Library quality and 

quantity were validated by capillary electrophoresis on an Agilent 4200 TapeStation. 

Libraries were subsequently pooled at equimolar concentrations and paired-end sequenced 

(75bp) on 4 lanes of the Hiseq4000 (Illumina) to achieve 10 million reads per samples. 

 

2.12.2 Reads mapping and quantification 

The quality of raw reads was assessed using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). SMARTer adaptors were 

trimmed, along with sequencing calls with a Phred score below 24 using Trim_galore v.0.6.4 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/.) Residual rRNA reads 

were depleted in silico using BBSplit 

(https://github.com/BioInfoTools/BBMap/blob/master/sh/bbsplit.sh). 

Alignment was performed using HISAT2 v.2.1.0210 against GRCh38 genome achieving more 

than 95% alignment rate. A count matrix was generated in R using featureCounts 

(Rsubreads - packages) and converted into a DGEList (EdgeR package) for downstream 

analysis. The analysis pipeline is depicted below in Fig 2.2.  
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Fig 2.2  Bulk RNAseq processing and analysis pipeline. 

 

2.13 Downstream analytical approaches in transcriptomics 

 

2.13.1 Overview  

In the following section we discuss the data analysis tools used in the analysis. These include 

machine learning and data mining tools. 

 

2.13.1.1 Machine learning 

Machine learning refers to computer-generated algorithms that model data without being 

explicitly programmed.  In transcriptomics, machine learning can be used as a predictive 

tool or to aid in understanding biological processes.  

 

2.13.1.2 Generative and Discriminative models 

A generative model is used where the primary goal is interpretability whilst a discriminative 

model is used for higher prediction accuracy. The generative approach uses the full extent 

of information available to build a model and requires a large amount of data for accurate 



 54 

modelling whilst a discriminative approach focuses on information at the boundary of the 

outcomes, as seen in support vector machines (see below). 

 

2.13.1.3 Validation 

Once a model is generated, validation is imperative. A model is generated on a “training set” 

and subsequently validated on a “test set”. The test set may be an independent data set or a 

partition of the primary data set that is not used in the training. Partitioning can be achieved 

using cross-validation (no replacement of samples) or bootstrapping (replacement occurs).  

 

High bias refers to underfitting of the data whilst high variance refers to overfitting of the 

data. If there is high bias, the algorithm will inadequately model the complexity of the data 

and will perform poorly in both the training and test set. If there is high variance, random 

noise in the training set will have influenced the training of the model resulting in a far more 

complex model and lead to poor fitting in the test data. Limiting the complexity of the 

model by reducing features or using regularisation can help prevent overfitting.  

 

2.13.1.4 Dimension Reduction 

Transcriptomics are high-dimensional data.  It has the problem of p >> n where n refers to 

the number of samples and p the number of features.   

 

Dimension reduction refers to projecting high dimensional data to a low dimensional space 

by reducing datasets to the features of greatest influence. Principal component analysis 

(PCA) and multi-dimensional scaling (MDS) are techniques used to visualise data in lower 

dimensions. For example, Principal component 1 (PC1), aligns the data along the axis of 

greatest variance and PC2 creates an orthogonal axis which accounts for the direction of the 

second greatest variance. Visualising the data along the primary axis of variance allows for 

more intuitive interpretation of the data.  

 

2.13.1.5 Supervised Learning  

Supervised learning involves the analysis of labelled data. That is, a model is built to 

understand the relationship between an input (e.g., samples’ feature values) and a known 
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output (e.g., disease). Supervised learning can be grouped into two main problems, 

“regression” and “classification”. Regression is where the outcome that is being predicted is 

continuous, such as age or height. Linear modelling is a common approach. A classification 

problem is where the predicted outcome is discrete, such as sex. Logistic regression is a 

technique employed when the outcome is binary. A sigmoid curve is applied to a linear 

function to fit the data. K nearest neighbour can be used in both regression and 

classification. In regression, a continuous outcome is estimated from a data point’s ‘k’ 

nearest neighbours. The nearest neighbours are determined using a distance metric. The 

most used is Euclidean distance. In classification, group membership of an unlabelled 

sample is determined by the majority membership of its ‘k’ nearest neighbours. Other 

examples of supervised learning include, support vector machines, elastic net, decision trees 

and random forests. Supervised learning requires optimising the bias and variance trade off 

typically by using regularization.  

 

2.13.1.6 Unsupervised Learning 

Unsupervised learning is where an algorithm is used to find structure in the data with no 

specific outcome variable. Clustering is a technique used and in broad terms can be divided 

into a hierarchical approach where trees are built based on a distance metric and a 

partitioning approach which separates samples into non-overlapping groups as seen with k-

means clustering and density-based spatial clustering of applications with noise. 

 

2.13.1.7 Data Integration 

Multi-omics, as the name suggests, describes a data set where for a given sample there are 

multiple ‘omic’ layers of information. This data can be analysed layer by layer, for example, 

analysing the neutrophil transcriptome across healthy and diseased. An alternative is using 

an integrative approach where multiple layers of information are simultaneously analysed.  

For example, in a data set incorporating transcriptomes, DNA methylation and chromatin 

accessibility, a shared axis of variation across all datasets can be used to give a more 

comprehensive view of biology. 
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2.13.2 Linear regression 

Linear regression determines the linear relationship between an independent variable and 

one or more dependent variables. A simple example is shown below (Fig 2.3): 

 

 
Fig 2.3 Linear Regression. Modelling of linear relationship of two variables.  

 

The aim is to use a linear model to explain the relationship between x and y.  

 

 
 

The value of the parameters is determined by what gives the lowest residual values (errors), 

where the residual value is y(x)-hq(x). This is the difference between the actual y value and 

the predicted y value. The cost function models the average residual for different values of 

q0 and q1.   

 

 

 

 

The goal is to minimise J(q0 ,q1) which can we achieved using a mathematical method called 

gradient descent, an iterative optimisation algorithm. Gradient descent takes the partial 

derivative of the cost function to find the local minima as shown in Fig 2.4. 
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Fig 2.4 Gradient descent. Illustration of local minima (https://www.andrewng.org/).  

 

Gradient descent algorithm 

 

q𝑗 ∶= 	q𝑗		 −
ad
dq𝑗 𝐽(q0, q1) 

 

  

 

a is the learning rate. If a is too small, the computational time is long whilst if too big, can 

miss the minima. The rate of learning values for q0 and q1 is determined by a. The change in 

values q0 and q1 in any given iteration step is computed by the product of the corresponding 

partial derivative (gradient) and a. If the gradient is large, a large change in the value of q 

occurs whilst if small, a small change occurs allowing fine tuning of the local minima.   

 

 

 

(simultaneously update 
j = 0 and j =1) 

derivative 

learning rate 



 58 

2.13.3 Clustering 

Clustering is a method to group samples that are similar together. Similarity is measured 

using a distance metric. The distance metric is symmetrical where the distance from a to b is 

the same as b to a, it is positive and obeys triangle inequality. Triangle inequality is where 

the distance between a and c is equal or shorter than the sum of the distances between 

points a and b and b and c, i.e., the distance from a to c is the shortest route. 

 

2.13.3.1 Distance 

Euclidean distance is commonly used and is derived from Pythagorean theorem (Fig 2.5).  

 

 
 

Manhattan distance takes the absolute value between values on a shared plain.  

 
 

Outlier distances will be larger when calculated using Manhattan distance versus Euclidean 

distance (Fig 2.5). 

 

Fig 2.5 Distance metrics used in clustering. Distance between points A and B. Red line represents Euclidean distance, green 
line represents Manhattan distance.  

A 

\ 

B 



 59 

 

Squared Euclidean distance, as the name suggests squares the distance. Thus, outliers are 

given more weight. Standardised Euclidean distance equalises the variance on each axis. 

Whilst Mahalanobis is an extension of the standardised Euclidean distance, but 

standardisation of variance is not limited by perpendicular axes. The Pearson Correlation 

distance is a measure of how well two features change under different conditions.  

 

The distance metric used can greatly influence clustering.  

For example,  

P1= (1,2,3,4,5) 

P2= (5,4,3,2,1)  

P3= (100,200,300,400,500) 

 

P1 and P2 will be clustered together if Euclidean distance is used whereas if Pearson 

correlation distance is used, P1 and P3 will we clustered together.  

 

2.13.3.2 K means clustering 

In K means clustering, a pre-determined number of clusters “K” are chosen. K random points 

are then selected to represent the centre of clusters. Samples are assigned to each cluster 

based on their distance to the centre of the cluster. New centres are then assigned based on 

the new cluster and samples are reassigned. This process is repeated multiple times until 

the clustering is stable. The quality of a cluster can be determined by comparing its intra-

cluster distance versus inter-cluster distance. Larger inter-cluster distances are indicative of 

a good quality clustering.  

 

2.13.3.3 Hierarchical clustering 

In hierarchical clustering, a tree is formed representing a hierarchy of similarity between 

samples. The top-down approach is also known as a “divisive” approach as it works by 

splitting larger clusters into smaller clusters. Whereas the bottom-up approach known as 

the “agglomerative” method works by combining smaller clusters into larger clusters. Inter-

cluster distances can be calculated using different methods including single linkage where 
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the distance is calculated between the two closest neighbours, complete linkage where the 

distance is calculated between the two farthest neighbours, centroid where the distance is 

calculated between the centre of two clusters and average linkage which is the average 

distance between all samples between clusters. Clusters are generated by “cutting the tree” 

which can be cut at different heights.  

 

2.13.4 Singular Value Decomposition 

Singular value decomposition (SVD) is used to construct key projections (Principal 

Components) that summarise the dataset.  

 

2.13.4.1 Vectors 

A vector is denoted as <a,b,c,,,,n>, it has a direction and a length. The unit vector of vector V 

is denoted as 𝑉-  and has a magnitude of 1.  

|𝑉-| = 1 and is in direction of V 

𝑉-  = !
|!|

 

The dot product of two-unit vectors gives the cos of the angle between vectors. 

 

cos (q) = 𝑉-1. 𝑉-2 

 

Where two vectors are perpendicular to each other, the dot product = 0.  

 

2.13.4.2 Projections 

Vector V1 can be projected in the direction of V2. The resulting projection value ‘p’ is a 

scalar value in the direction of V2.  

 

V1.	𝑉20  =  V1.	 !#
|!#|

  = |V1|*  !$.!#
|!$|∗|!#|

 =  !$.!#
|!#|

  = |V1| cos(q)  = p 

where q is the angle between V1 and V2. 

When V1 and V2 are perpendicular to one another, p = 0. 
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2.13.4.3 SVD 

A is an n x m matrix. It contains gene-expression data with samples in rows and genes in 

columns.  

 

 Gene1 Gene2 Gene3 

Sample1 3 4 2 

Sample2 4 5 3 

Sample3 8 9 2 

 

Matrix A can be decomposed to a product of U, S and V matrices as shown below.  

 

A = U*S*VT  

 

U is a n x n orthonormal matrix with real numbers 

S is a n x m diagonal matrix with elements of real numbers ordered from largest to smallest.  

V is a m x m orthonormal matrix with real numbers 

When a matrix is orthonormal the multiplication of it by its transverse gives an identity 

matrix.  

 

UT*U = I 

U*UT = I 

VT*V = I 

V*VT = I 

 

If matrix A is projected into the eigen space V, where each column of vector V is a distinct 

eigenvector and the eigenvectors are ordered according to greatest importance. The 

projection matrix P is, 

 

P = A*V = U*S*VT *V = U*S  
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Given S is a diagonal matrix, it acts as a scalar and thus P and U are very similar to one 

another. Thus, the U matrix is a surrogate of the projection matrix P into the eigen space of 

V.  

 

2.14 Downstream Analysis of Bulk RNAseq 

All downstream analysis was performed in R. Counts were filtered using filterByExpr (EdgeR 

package) with a gene count threshold of 10CPM counts and the minimum number of 

samples set at the size of smallest disease group. Library counts were normalised using 

calcNormFactors (EdgeR package) using the method ‘weighted trimmed mean of M-values’. 

The function ‘voom’ (limma package) was applied to the data to estimate the mean-variance 

relationship, allowing adjustment for heteroscedasticity. 

  

2.14.1 Differential Expression 

Assessment of differential gene expression was performed using the Limma package.  A 

corrected p value cut-off of 0.05 (Benjamini-Hochberg) was used to assess significant genes 

that were upregulated or downregulated compared with healthy controls, with data 

grouped in time bins. The UpSetR package was used to visualise differentially expressed 

genes.  

 

2.14.2 Clustering 

To assess whether clinical severity was reflected on a transcriptional level in an 

unsupervised fashion, K-means clustering was utilised. Heat maps were created using the 

ComplexHeatmap package, with data scaled and centred prior to visualisation.  

 

2.14.3 Gene set enrichment analysis  

Gene set enrichment analysis (GSEA) was used to assess if specific biological pathways were 

enriched in disease and how this changed with time 211.  A list of ranked genes, determined 

by Signal-To-Noise ratio was generated. This is the difference of means of the two 

phenotypes after scaling for standard deviation. The greater the difference, the more 

distinct the given gene expression is between the two groups.  
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  µ(()*µ(+)
d((),	d(+)

 

where a and b are distinct phenotypes and µ = mean and d= standard deviation. 

 

An enrichment score was calculated, determined by how often genes from the geneset of 

interest appeared at the top or the bottom of the pre-ranked set of genes with the 

enrichment score representing the maximum deviation from zero. To assess statistical 

significance, an empirical phenotype- based permutation test was run where a collection of 

enrichment scores was generated from the random assignment of phenotype to samples 

and used to generate a null distribution (Fig 2.6). To account for multiple testing, an FDR 

rate q < 0.20 was deemed significant. HALLMARK gene sets from the Molecular Signatures 

Database (http://www.broadinstitute.org/gsea/msigdb) were used in analysis. 

 

 
 

Fig 2.6 Scheme of GSEA. A, Ranked gene list comparing phenotypes A and B. B Gene set S used for assessment. There is 
enrichment of genes from Gene set S in the top ranked genes211.  
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2.14.4 Weighted gene co-expression network analysis 

To better understand the relationship between gene expression and clinical traits we used 

the weighted gene co-expression network analysis (WGCNA) package in R 
212–214. WGCNA overcomes the problem of multiple testing by grouping co-correlated genes 

into modules and then relating them to clinic traits. Modules are not comprised of a priori 

defined gene sets but rather are generated from unsupervised clustering.  

 

Modules are summarized using singular value decomposition with the left singular vector (U 

matrix) used to represent the eigenvalues for a given eigenvector determined by matrix V. 

The eigengene of the module is then correlated with the sample traits. Significance of 

correlation between a given clinical trait and a modular eigengene is assessed using linear 

regression with Bonferroni adjustment to correct for multiple testing (Fig 2.7). Modules are 

then annotated using Enrichr (https://maayanlab.cloud/Enrichr/). 
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Fig 2.7 Scheme of WGCNA212,213. 

 

2.1.14.1 Module construction 

First the correlation between gene pairs was quantified using a bi-weight mid correlation 

(See Fig 2.8). Bi-weight mid correlation uses the median instead of the mean when 

calculating co-variance. Weights are assigned to observations, with a higher value given to 

observations closer to the median. This method is less influenced by outliers.  The gene pair 

correlations were not dichotomised (hard thresholding) but instead remained continuous 

(soft thresholding). Thus, avoiding loss in information.  
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Fig 2.8 Gene expression correlation. Each line represents a single gene. The genes outlined in green are co-correlated and 
the genes outlined in blue are co-correlated212,213.  

 

In an unsigned network, only the absolute values are retained and thus a positive and 

negative correlation are treated the same, with genes ending up in the same module. 

 

 

A signed correlation network preserves the nature of the correlation with strongly 

negatively correlated genes resulting in a correlation matrix value close to 0 (Fig 2.9).  

 

 
 

 
Fig 2.9 Correlation Networks. a) Unsigned correlation network raised to the power b. b) Signed correlation network raised 
to the power b212,213. 
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A signed network was used in the analysis to provide more biologically interpretable 

modules. To create the adjacency matrix(aij), the correlation matrix was raised to a power 

(b). Without raising the correlation matrix to the power b, genes with no correlation are 

given an adjacency value of 0.5. By raising it to power b, only strong correlations remain and 

all else is down weighted.  

 

The value of b is chosen to impose approximate scale-free topology. A “scale free topology” 

represents a network where a large number of nodes have a connectivity close to zero and a 

small number have a high connectivity. Gene connectivity, is defined as the sum of the 

elements in a row of the adjacency matrix, excluding the diagonal elements. It represents 

the gene’s connection strength to all other genes. Genes with high connectivity are termed 

hub genes (Fig 2.10).  

 
Fig 2.10 Frequency distribution of connectivity. Bar graph of frequency distribution of connectivity. A large number of nodes 
have low connectivity whilst a small number have high connectivity212,213.  

 

 

WGCNA imposes an ‘approximate’ scale free topology on the data, by raising the correlation 

matrix to a power, b. b is chosen by trialling various powers and choosing the smallest value 

that approximates scale free topology, i.e. results in a linear relationship when comparing 

the log(gene connectivity) versus log(frequency of gene connectivity) (Fig 2.11). This is 

determined using Pearson’s correlation, aiming for an R2 >0.9.  
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Fig 2.11 Scale free topology. Scatter plot illustrating scale free topology212,213. 

 

 

The topological overlap matrix measure (TOM) assesses the interconnectedness of the 

network. It is a similarity measure. It combines the adjacency measure of two genes (i,j) 

with the connection strengths that they shared with third party genes. This is subsequently 

converted to a dissimilarity measure (1- TOM). 

k= connectivity  

 

The dissimilarity measure is combined with clustering techniques including partitioning 

around medoids (PAM) measure and average linkage hierarchical clustering to create a 

cluster tree, with each branch representing a potential module. The hybrid dynamic tree cut 

method is then used to determine modules. 
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2.1.14.2 Module correlations 

The module eigengene, broadly represents the first PCA of a given module. Each gene is 

standardised such that its expression has a mean of 0 and a variance of 1. The singular value 

decomposition (left singular vector) is used to calculate eigenvalues. Sample module 

eigenvalues are correlated with clinical traits and FDR corrected using the BH method, with 

an FDR p value <0.1 deemed significant.  

The strength of a gene’s module membership (kME) is determined by the following, 

kME(i)= cor(module eigengene, gene) 

This method is superior to using intermodule connectivity (kIN), as kIN is influenced by 

module size. 

kIN(i)=  S aij j e module set 

 

2.14.5 Linear mixed Effects model 

Longitudinal mixed modelling of log transformed absolute cell count changes over time 

(𝑦./) was conducted using the nlme package in R, including time (𝑡./) with a quadratic trend 

and disease severity category or unsupervised cluster ids (𝑋/) as fixed effects, and sampled 

individuals as random effects (𝑢/): 

 

𝑦./ = β0/ + β$/𝑡./ + β#/𝑡./# + ε./ , 	 ε12 ∼ 𝒩(0, 𝜎#), 

β0/ = γ00 + γ0$𝑋/ + 𝑢/ , 	 β$/ = γ$0 + γ$$𝑋/ , 	 β#/ = γ#0 + γ#$𝑋/ , 	 𝑢/ ∼ 𝒩(0, 𝜏#), 

I.e., using the lme formula: 

module_eigenvalue ~ (time + I(time^2)) * category, random = ~ 1|subject. 
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2.14.6 Multi-omics Factor analysis 

Multi-omics Factor analysis (MOFA) is a dimension reduction method, used to assess data 

across multiple modalities, for the same or overlapping set of patients215. It learns ‘factors’ 

that represent major sources of variation across modalities and can be used to identify 

shared axes of variation. Unlike PCA components which are orthogonal, latent factors are 

oblique and perhaps better able to model biological data (Fig 2.12). 

 

 
Fig 2.12 Multi-Omics Factor Analysis.  Matrix decomposition of Y matrices into shared Z matrix of latent factors and M 
weight (W) matrices215 

 

M data matrices, representative of different omics are decomposed into a shared Z matrix 

of latent factors and M weight (W) matrices. Data may be continuous, binary or count data. 

The Z matrix represents latent factors. The W matrices represent the weight of a feature for 

a given factor in an omic. The higher the weight, the more the sample expresses the latent 

factor. Features with large positive or negative weights are key components of the factor 

whilst features with no association have a weight of zero.  

 

2.14.7 Pathway-level information extractor 

Pathway-level information extractor (PLIER) (http://gobie. 
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csb.pitt.edu/PLIER), was used to perform cell subset deconvolution of the whole blood 

rnaseq dataset. Unlike MOFA, PLIER leverages off the pre-existing knowledge of cell specific 

pathways to generate pre-annotated pathways. 

 

 

2.15 B Cell Receptor Repertoire  

 
2.15.1 Background  

There are 1010-1011 B cells in a person4. The aim of B cell receptor (BCR) repertoire 

sequencing is to gain as much information of the BCR repertoire through exhaustive 

amplification whilst minimising sequencing error and bias. Two starting materials can be 

used in BCR repertoire generation, genomic DNA and mRNA. Genomic DNA is stable, and 

the gene copy is constant between cells. This is unlike mRNA where B cell subpopulations 

produce vastly different amounts of mRNA per cell, e.g., Plasmablast versus a naïve B cell. In 

addition, mRNA needs to be converted to cDNA creating a further opportunity for 

transcription error. mRNA however enables concurrent information of both the variable and 

constant regions to be gained, as the transcript is intronless and thus not prohibitively 

long216.  

 

Sequencing methods include forward/reverse primers where Vh family primers covering 

framework region 1 are employed as forward primers and J or constant segment primers 

are used as reverse primers. The use of multiple primers may lead to biases in priming, 

amplification and/or mask areas of somatic hypermutation. 5’ RACE sequencing is an 

alternative where 5’ rapid amplification of cDNA ends enables downstream PCR 

amplification of the known sequence and only requires one set of gene specific primers at 

the constant end. This method is limited by poor efficiency compared with direct priming. 

Lastly, a bait capture method can be used to specifically isolate Ig mRNA. Streptavidin 

magnetic beads are attached to a sequence of interest and used to bind to Ig sequences. 

Beads are then washed, and hybridized fragments are sequenced216–218. 

 

Unique Molecular Identifiers (UMI) are randomly generated sequences which can be used to 

tag individual sequences. It allows correction of PCR repeats and error. All PCR copies of a 
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sequence will have the same UMI. A UMI is usually between 8 to 22 nucleotides. If too 

short, insufficient variability will be present to enable the unique labelling of individual 

sequences. If too long, there is an increase chance of transcriptional error and primer-dimer 

formation.  All sequences with the same UMI are collapsed to one in downstream 

processing and a consensus sequence is generated based on the majority. UMI therefore 

also allow correction of late PCR errors216,218. Early PCR errors cannot be corrected as they 

will affect the majority of sequences. Duplex sequencing is where UMIs are tagged to 

adaptors on both ends and both strands are sequenced. This allows sequencing errors to be 

distinguished from true mutations as a true mutation will be present on both strands. A less 

common technique involves utilising a Tn5 transposase attached to a primer which results in 

random insertions and subsequent Tn transposase-foreshortened sequences which can be 

overlapped to get the overall sequence. Errors due to incorrect base calling can be reduced 

with paired end sequencing which overcomes poor quality sequencing at the tail end216. 

An ideal sequencing platform allows accuracy, adequate read length and depth and is cost 

effective.  

 

The BCR repertoire was generated from mRNA with UMI tagging and libraries sequenced 

using Illumina miseq which allows long reads at 250-300bp along with paired end 

sequencing (Fig 2.13). 

 

 
Fig 2.13 Cartoon of BCR sequencing method. UMI denoted in blue, patient barcode in red, forward variable gene primer in 
green and reverse constant primer in yellow. Region used to assess somatic hypermutation, clone identity and isotype 
marked.  
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2.15.2 BCR Library Preparation 

 
PBMC were lysed and RNA extracted using Qiagen AllPrep® DNA/RNA mini and micro kits 

according to the manufactures protocol. RNA was extracted from PAXgenes using Qiagen 

PAXgene Blood RNA kit. The RNA was quantified using a Qubit.  

 

B cell receptor repertoire libraries were generated using the protocol described by 

Bashford-Rogers et al217.200ng of total RNA from PAXgenes/PBMCs (14ul volume) was 

combined with 1uL 10mM dNTP and 10uM reverse primer mix219 (2uL) and incubated for 5 

min at 70°C. The mixture was immediately placed on ice for 1 minute and then subsequently 

combined with 1uL DTT (0.1 M), 1uL SuperScriptIV (Thermo Fisher Scientific), 4ul SSIV Buffer 

(Thermo Fisher Scientific) and 1uL RNAse inhibitor. The solution was incubated at 50 °C for 

60 min followed by 15 min inactivation at 70 °C. cDNA was cleaned with AMPure XP beads 

and PCR-amplified with a 5ʹ V-gene multiplex primer mix219 and 3ʹ universal reverse primer 

using the KAPA protocol and the following thermal cycling conditions: 1cycle (95°C, 5min); 

5cycles (98°C, 20s; 72°C, 30s); 5cycles (98°C, 15s; 65°C, 30s; 72°C, 30s); 19cycles (98 °C, 15s; 

60°C, 30s; 72°C, 30s); 1 step (72°C, 5 min). Sequencing libraries were prepared using Illumina 

protocols and sequenced using 250 or 300-bp paired-end sequencing on a MiSeq. 

 
 

2.15.3 Sequence Processing Theory 

 

Fastq files are generated to assess the quality of base calling in the sequence and is 

represented in the form of a Phred score. The Phred score is an estimate of the probability 

of miscalling a nucleotide at each position and are encoded as ASCII characters. A Phred 

score of 20 means 1 error per 100 base pairs (p=10-Q/10). A high confidence in base pair 

calling in required in BCR analysis in order to accurately assess somatic hypermutation.  As 

the length increases from the 5’ toward the 3’ prime end, the confidence in base calling 

declines. Thus pre-processing includes filtering out low quality reads and trimming 

sequences of low quality bases. Paired end reads are overlapped and where reads do not 

overlap, they are removed. This biases sequences with a shorter CDR3 length. 

 



 74 

High quality merged reads are then grouped based on UMI. This corrects for PCR repeats 

and allows a consensus sequence to be created utilising all reads with the same UMI. An 

additional requirement may be a minimum number of reads required to construct a 

consensus sequence. In addition, a minimum number of unique UMIs may be required for a 

sequence to be retained. The constant region is initially annotated based on reverse primers 

used and then further isotype subgroups identified using kmer matching downstream of the 

primer.  

 

The V primer is masked (base pairs changed to N) post identification and the VDJ region 

annotated using public available reference germline data. The IMGT database is the most 

comprehensive220.  The difficulty with alignment arises from differentiating between allelic 

variation and somatic hypermutation in highly homologous V gene segments. The D gene 

due to its size and location makes identification very difficult. In addition, although 

comprehensive, the IMGT database is not complete. Efforts have been made to derive a 

germline sequence for a patient and use this as a reference to determine somatic 

hypermutation. Ideally, this would be from naïve b cells. Genomic DNA from a non-B cell 

lineage cell would contain the germline sequence but the length required for sequencing is 

too long and due to the presence of repetitive sequencing, short sequence alignment is not 

possible. Bio-informatics tools such TIgGER address this221. Determining haplotypes allows 

the restriction of V-J pairings, further increasing the accuracy of annotation. 

 
 

2.15.4 Sequence Processing Pipeline 
 
Raw reads were filtered for base quality using a median Phred score of >32 

(http://sourceforge.net/projects/quasr/). Forward and reverse reads were merged where a 

minimum 8bp identical overlapping region was present. Sequences were retained where 

over 80% base sequence similarity was present between all sequences with the same UMI. 

The constant-region allele with highest sequence similarity was identified by 10-mer 

matching to the reference constant-region genes from the IMGT database. Sequences 

without complete reading frames and non-immunoglobulin sequences were removed and 

only reads with significant similarity to reference IGHV and J genes from the IMGT database 
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using BLAST were retained. Immunoglobulin gene use and sequence annotation were 

performed in IMGT V-QUEST220. 

 

2.15.5 BCR metrics 
 
A summary of the key BCR metrics used in analysis is shown in Fig 2.14.  
 

 
 
Fig 2.14 BCR metrics used in analysis. Illustration of isotype, variable region, clonality and class-switching.  

 
 
2.15.5.1 Isotype and variable gene usage 
 
The variable and junction genes and isotype can be recorded for each read. To determine 

for a given patient if there is skewing to a certain gene or isotype, the proportion of the 

repertoire taken up by each gene and isotype is determined per sample and can be 

compared between samples. Each unique VDJ region is counted only once to ensure results 

are not skewed by the differential mRNA content of B cell subsets (in particular plasmablasts 

which have increased immunoglobulin mRNA content). 

 

2.15.5.2 Clonal grouping 
 
A clone is defined as a group of cells descended from a common ancestor. Determining 

clones in BCR repertoire analysis is more complicated as somatic hypermutation introduces 

variability. Clones can be grouped based on identical V and J segments and junctional length 

and similarity of nucleotide sequence in the junction region. Similarity is determined by 

“hamming distance”. Hamming distance is a count of the number of positions that are 

Isotype use Variable gene use

Clonality Class switching
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different between two strings of identical length. Clonal grouping is different to convergent 

evolution (discussed below) which is where independent clonal variants produce similar 

amino acid sequences. Clonality is based on nucleotide similarity. Using the Hamming 

distance measure, clustering of sequences is performed.  

 

2.15.5.3 Somatic hypermutation 
 
Mutational differences from germline sequence arise from VDJ recombination and somatic 

hypermutation. During SHM, RGYW/WRCY motifs (R = A/G, Y = C/T, W = A/T) are mutational 

hot-spots targeted by AID whilst SYC (S = C/G, Y = C/T) is a cold-spot motif. CDR regions have 

a larger number of mutational hotspots than FWR regions4. Given FWR regions have a 

structural role they are less likely to benefit from SHM. SHM uncommonly causes insertion 

and deletions as these are most likely to cause structural instability and thus such B cells are 

negatively selected. Somatic hypermutation levels are calculated based on divergence from 

the baseline and are corrected for length of the sequence assessed. Somatic 

hypermutations can be silent or replacement mutations. A silent mutation results in no 

amino-acid change whilst a replacement mutation results in the encoding of a different 

amino-acid. An increase in replacement/silent ratio may represent antigen driven selection 

pressure driving an increase in mutations that result in new amino-acids.   

 

 

2.15.5.4 Stereotypic sequences, public clones and convergent evolution 
 
The CDR3 region is the junction of the V, D and J genes and is thus the most variable. CDR3 

length, hydrophobicity and aliphatic indexes are used in comparisons.  

Public clones may also be identified, these are defined as shared clones present between 

individuals. A common definition of sharing is a clone with the same V and J gene, CDR-H3 

length with a minimum 85% CDR-H3 amino acid sequence identity. These B cells are 

expected to respond to the same antigen and are termed “Stereotypic BCRs”. Clustering 

algorithms including CD-HIT can be used to cluster such sequences together. A “greedy 

algorithm” is where instead of the most optimal condition being chosen; the order the 

sequences are presented in determines how grouping occurs. To overcome this, and find 

the optimal clustering, multiple iterations are performed.  
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2.15.5.5 Subsampling 
 
Subsampling, also known as rarefaction, is important when comparing certain metrics in 

BCR repertoire analysis which are influenced by library depth, in particular diversity. 

Subsampling is where a portion of reads are sampled with the lowest sample library depth is 

used. Subsampling has the limitations of not using all the available data and potentially 

limiting findings. Running multiple iterations is used to ensure generalisability. An 

alternative is to calculate metrics for a given library size and then extrapolate the 

asymptotic values222,223.  

 

2.15.5.6 Diversity 
 

Richness 
 
Richness refers to the number of unique clones in a repertoire. It is the most direct measure 

of diversity but does not consider the abundance of a given clone and hence does not 

reflect evenness/homogeneity. Library depth greatly influences this number, but 

subsampling reduces the ability to identify rare clones. Chao1 attempts to account for the 

unsampled clones224.  

 

Chao1 = Sobs + n1
2/2n2 

 

where Sobs is the observed number of species, n1 is the number of singletons (species with 

count = 1), and n2 is the number of doubletons (species with count = 2). 

 

Shannon’s index  
 
Shannon’s index is a measure of both “evenness” (the distribution of reads amongst clones) 

and “richness” whereby a dual increase in richness and evenness increases the index. It 

assumes that all species are present in the sample, and it assesses the proportion of total 

reads represented by each clone.  
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Where H is entropy, pi = ni/N; ni is the number of individuals of the ith species; N is the total 

number of individuals and s is the total number of species225.  

 

Equitability = H/ Hmax where Hmax (maximal entropy) = log(S)  

 

Equitability is not influenced by the number of unique of clones but rather the distribution 

of size of clones in the repertoire. 

 

Simpson’s index 
 
The Simpson’s index assesses the probability of two randomly sampled reads belonging to 

the same clone, the more expanded clones within the population, the greater the chance of 

clonal sharing. It increases as the dominance of clones increase and is not impacted by rare 

populations226. 

  
where ni is the number of individuals of the ith species and N is the total number of 

individuals, and s is the total number of species. 

 

D50 index 
 
The D50 index refers to the number of unique CDR3 sequences that are present in the top 

50% of sequences. A small D50 index is suggestive of large dominant clones. Similar to the 

Simpson’s index, D50 is not affected by rare populations. 

 

The Hill indices 
 
Hill indices models diversity as a function of a continuous parameter, q. q=0 corresponds to 

richness, q=1 is the exponential of Shannon index, q=2 is the reciprocal of Simpson’s index 
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and as q approaches infinity, the y value approaches the reciprocal of the largest clone 

frequency227.  

 

Class switching 
 

Class switching between isotype classes was quantified by assessing the frequency of unique 

VDJ regions that were shared amongst two different isotypes, having corrected for read 

depth by subsampling. 

 

2.15.6 B cell Repertoire Analysis 
 

BCR clones were assigned using the Change-O package using the single-nucleotide Hamming 

distance model228. The Alakazam package was used to analyse the BCR sequencing data for 

diversity estimation of CDR3 sequences; the diversity estimates were adjusted for 

sequencing depth by subsampling with multiple iterations 228. Somatic hypermutation levels 

(including silent and non-silent mutations) per unique IGHV-D-J region per isotype were 

calculated over the CDR1/2 and FWR regions for each individual sample using the 

observedMutation function within the SHazaM package228. Lineage trees were generated 

using the buildPhylipLineage function within the Alakazam package after merging sequences 

from paired time points (Gupta et al., 2015). VDJtools was used to analyse the BCR 

sequencing data for diversity estimation of CDR3 sequences (Chao1); the diversity estimates 

were adjusted for sequencing depth via subsampling with 2,000 random iterations229. 

 

Convergent IGH clones were identified based on matching V and J gene and CDR-H3 length 

with a minimum 85% CDR-H3 amino acid sequence identity. CDR-H3 amino acid sequence 

clustering was performed using CD-HIT230 with options -c 0.85 -l 4 -S 0 -g 1 -b 1. Clusters 

were identified as COVID-19 specific if they co-clustered with sequences from the CoV-

AbDab database 231.  

 

This summarises the techniques used in the analysis of bulk RNAseq and BCR repertoire in 

the subsequent chapters.  
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3. Whole blood transcriptomics and deep immunophenotyping in 
COVID-19 

 

3.1 Introduction 
 
COVID-19 caused by SARS-CoV-2 is a complex condition with a broad spectrum of disease 

severity (Wang et al., 2020; Zhou et al., 2020). Most patients are able to mount an adequate 

response and achieve viral control but in a minority of patients end-organ damage, and 

often death results173. 

 

Severe COVID-19 is associated with major perturbations in circulating immune cells with 

profound leukopenia affecting both the innate and adaptive immune cells161,162,172,175,232–234. 

The cause of these profound changes is unknown, with little evidence of virus directly 

infecting immune cells in the periphery. The combination of IFN-γ and TNF-α robustly 

induces cell death via STAT1/IRF1 axis, key cytokines involved in SARS-CoV-2 235 and the 

presence of splenic atrophy may contribute to lymphopenia190. However, it is unclear 

whether leukopenia plays an active role in disease pathogenesis or whether it is simply a 

biomarker of severity.  

 

SARS-CoV-2 is typified by the presence of elevated inflammatory cytokines juxtaposed with 

a comparatively lower IFN response, in contrast with other respiratory viruses(Blanco-Melo 

et al., 2020). Elevated cytokines include IL-1, IL-6, IL-8, TNFa and CXCL10173,175 and may 

contribute to the predominant extra-follicular B cell response 189,190,237. Low interferon is 

achieved through inhibition of the host innate interferon response via NSP1, NSP3, NSP12, 

NSP13, NSP14, ORF3, ORF6 and M proteins 238,239and additionally, SARS-CoV-2 infected pDCs 

appear functionally impaired with reduced expression of phosphorylated ribosomal protein 

S6, a canonical target of mTOR activation, required in IFN production161.  

 

Severe COVID-19 is associated with higher viral titres 240, despite this, patients appear to 

have an initial lower IFN response and subsequent shorter duration of expression, 

compared in those with moderate disease162. Further illustrating the importance of host IFN 

response, a candidate gene approach revealed mutations in genes involved in the regulation 
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of type I and III IFN response in patients with severe COVID-19, with recapitulation of the 

variants resulting in decreased type I IFN gene and protein levels171. Additionally, in 10% of 

patients with severe COVID-19 pneumonia, neutralizing autoantibodies against interferon 

were detected whilst none were detected in mild disease171. 

 

Successful control of SARS-CoV-2 is achieved through the co-ordinated efforts of the 

immune response, with combined SARS-CoV-2-specific CD4+ and CD8+T cell responses 

resulting in milder disease 242. A sustained anti-SARS-CoV-2-specific IgG response results in 

shorter duration of illness243, however recovery is still achieved in the absence of a humoral 

response 244,245. Pre-existing adaptive immunity may protect against severe disease with T 

cell reactivity present against SARS-CoV-2 in unexposed individuals 246 and evidence of 

antibody cross-reactivity between seasonal coronavirus and SARS-CoV-2201.  

 

The relationship between the initial immune response to SARS-CoV-2, viral clearance, and 

development of the ongoing inflammatory disease that drives severe COVID-19 is not clearly 

established, nor have the kinetics of the immune changes seen in COVID-19 been fully 

assessed as disease progresses. By analysing longitudinal samples from COVID-19 patients 

with a range of disease severities, for up to 3 months from symptom onset, we were able to 

address two important questions regarding the immune response to SARS-CoV-2: (i) How 

does the very early immune response in patients who cleared virus and recovered from 

disease with few or no symptoms, compare with those who progressed to severe 

inflammatory disease. This provided insight into what constitutes an effective versus an 

ineffective immune response, and whether systemic inflammation is an early or later 

development in those who progress to severe disease. (ii) How rapidly do the profound 

immune defects that accompany severe COVID-19 recover, and do the kinetics of recovery 

relate to ongoing inflammation and clinical status.  
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3.2 Results  
 
3.2.1 Patient Cohort 
 
SARS-CoV-2 positive participants were recruited between 31st March and 20th July 2020 

from the routine screening of healthcare workers (HCW) at Addenbrooke’s Hospital (Rivett 

et al., 2020) and from patients who presented to Addenbrooke’s or Papworth hospitals. 

SARS-CoV-2 was confirmed by quantitative reverse transcription PCR (RT-qPCR). After 

recruitment patients were bled approximately weekly, and then at outpatient follow-up 

visits 4-12 weeks after study enrolment. HCWs were sampled at study entry, and then 

approximately 2 and 4 weeks later. Disease severity was graded into five categories, 

according to symptoms and oxygen requirements.  

 
These were:  

• A) asymptomatic HCWs. 

• B) HCWs who either were still working with mild symptoms insufficient to meet the 

criteria for self-isolation (Rivett et al., 2020), or who were symptomatic and self-isolating.  

• C) patients who presented to hospital but never required oxygen supplementation.  

• D) patients who were admitted to hospital and whose maximal respiratory support was 

supplemental oxygen.  

• E) patients who at some point required assisted ventilation. Three patients who died 

without admission to intensive care were also included in this severe group. 

 

45 healthy controls were also recruited across a range of age and sex. Time is measured 

since the first positive swab for cohort A, and since the onset of symptoms for other 

cohorts. In total 605 blood samples were collected from 246 participants out to 90 days 

from the onset of symptoms (Fig 3.1A). Sex and age analysis revealed an increase in age in 

the more severe groups along with a bias towards the male sex (Fig 3.1B and C), as 

previously shown247. 
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A high-sensitivity C reactive protein (CRP) assay, a marker of inflammation was performed. 

This demonstrated an increase in levels with increased disease severity as defined by 

maximal respiratory support (Fig 3.1D). A lower PCR cycle threshold indicative of higher viral 

titres was present in group E compared with other severity groups. Most patients cleared 

virus within 24 days from symptom onset regardless of severity group (Fig 3.1D). Of the 6 

patients who remained positive out at 30 days, four were overtly immunosuppressed (3 

solid organ transplants with recent induction/rejection treatment, 1 myeloma on B-cell 

depletion therapy) and one was a peritoneal dialysis patient admitted with peritonitis.  

 

 
 

Fig 3.1 Cohort characteristics. A) Study participant and sample numbers split by severity categories and 12-day time bins 
post screening (group A) or symptom onset (group B-E). Distribution of participant age B) and gender C) across severity 
categories. D) Boxplots showing measured CRP (mg/L), complement proteins, cytokines and SARS-CoV-2 PCR cycle threshold 
(CT) for samples collected within 12-day time bins. Grey band indicates the interquartile range of the corresponding 
measure in HCs, or the SARS-CoV2 negative swab cycle threshold (CT > 38). Points are coloured based on asymptomatic or 
symptomatic classification for categories A and B respectively, normal or abnormal chest radiology (group C), and mode of 
respiratory support at sampling (group D and E); time points missing respiratory status are coloured grey. Fig generated by 
A.H. 

 
 
3.2.2 Cytokines and complement components  
 
Cytokine and complement components were measured from plasma at each time point. The 

heatmap in Fig 3.2 compares levels in severity groups at various time points with health. 

Asymptomatic HCWs in group A had no evidence of cytokine or complement dysregulation. 

Patients in group B similarly showed no increase in CRP or cytokine levels but rather an 

initial but only transient increase in C3c and the terminal complement complex (TCC).  
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Patients with more severe symptoms resulting in presentation to hospital showed 

elevations in CRP, cytokines and complement components with groups C, D and E having 

significantly raised CRP, IL-6, IL-1B, IL-10, TNFa, C3a and TCC. These abnormalities were 

maximal at the first bleed, and largely persisted in groups D and E. Interferon-gamma (IFN-g) 

was raised in only groups D and E and this resolved within 12 days from symptom onset (Fig 

3.2). 

 

 
Fig 3.2 Markers of disease activity. Heatmap showing log2 fold change in median measure between COVID-19 cases and 
HC, within severity categories and across 12-day time bins. Wilcoxon test FDR adjusted p-value: *<0.05, **<0.005, 
***<0.0005 Fig generated by A.H. 

 
 

3.2.3 Immune cellular abnormalities  
 
To understand immune cellular changes according to disease severity and over time, we 

used standardised flow cytometry panels (Fig 3.3). Trucount analysis enabled calculation of 

absolute cell numbers. Cellular changes were assessed across time “bins” of 12 days (using 

the earliest measure per patient per bin in instances of repeat sampling). Fig3.3A illustrates 

absolute cell numbers of plasmablasts and pDCs according to disease severity and time. 

Plasmablasts were markedly increased whilst pDCs were markedly suppressed 

proportionate to disease severity at the early time points. The outcomes for 30 cell types 

are summarised in a heat map, showing changes in cell population size relative to the 

median for healthy controls (Fig 3.3B) in terms of absolute counts as well as proportions. 
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CyTOF, which uses whole blood rather than peripheral blood mononuclear cells (PBMCs), 

was also used in a subset of patients to enable quantification of granulocytes (largely absent 

in PBMCs) and non-classical and intermediate monocytes. In keeping with CRP, cytokine and 

complement component findings, groups A and B patients had minimal cellular 

abnormalities when compared with health. The only aberration was an initial and transient 

increase in plasmablast numbers in group A. In group B, plasmablasts were also increased 

along with CD8+ CD38+ HLADR+ cells whilst memory B cells, pDCs, basophils and non-

classical monocytes were decreased.  Widespread abnormalities were seen in groups C, D 

and E and were more marked when absolute counts were examined compared with cellular 

proportions (Fig 3.3B). Almost all CD4 T cells subsets were reduced, as were many CD8 T cell 

subsets and both naive and memory B cells. A number of innate lymphoid subsets were also 

reduced, including MAIT cells, various γδ T cell subsets, and NK cells. The myeloid 

compartment was also affected, with a reduction in myeloid dendritic cells, and both non-

classical and intermediate monocytes.  
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Fig 3.3 Cellular changes over time. A) Boxplots showing absolute counts (cells/uL) for four representative cell populations, 
split by severity categories and 12-day time bins post screening (group A) or symptom onset (group B-E). Grey band 
indicates the interquartile range of the corresponding population in HC. Points are coloured based on asymptomatic or 
symptomatic classification for categories A and B respectively, normal or abnormal chest radiology (group C), and type of 
respiratory support at time of sampling (group D and E). B) Heatmap showing the log2 fold change in median absolute cell 
count between COVID-19 cases and HCs, within severity categories and across 12-day time bins. Wilcoxon test FDR adjusted 
p-value: *<0.05, **<0.005, ***<0.0005. Population hierarchy and associated cell surface markers are shown to the left. 
PBMC, peripheral blood mononuclear cells, analysed by flow cytometry; WB, whole blood, analysed by CyTOF. Fig 
generated by A.H. 
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3.2.4 Blood transcriptomic inflammation-related signatures.  
 
To examine changes in transcriptional signatures with disease severity and with resolution 

of inflammation, RNA was isolated, and whole blood transcriptomes generated by RNA-

sequencing at select bleeds. The distribution of samples according to time intervals is shown 

in Fig 3.4. Due to minimal representation of samples after 48 days, for severity groups A-D, 

the analysis focused largely on the first 48 days from symptom onset.  

 

 
Fig 3.4 Distribution of samples according to disease severity and symptom onset.  
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3.2.41 Cell subset deconvolution 
We first analysed the transcriptome data using Pathway-Level Information ExtractoR (PLIER) 

which performs matrix factorization to identify interpretable latent factors. Factors were 

learned using cell type specific pathways (Fig 3.5).  

 

 
Fig 3.5 PLIER annotation of latent factors according to cell type specific pathways. 

 
 
The contribution to each latent factor by immune cell subsets was then calculated across 

the severity groups and time points (Fig 3.6). These RNAseq-derived latent factors were 

broadly aligned with the pattern observed in the cell count data (Fig 3.3) with an elevation 

in the plasma cell signature (mirroring plasmablasts cellular findings) and a suppression of B 

cell memory and NK/T cells signatures. An exception to this was the pronounced neutrophil 

signature seen at day 0 to 24 across groups C to E, and persisting at day 25-48 in group E. 
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This transcriptomic analysis shows more pronounced neutrophil dysregulation across 

severity categories than is suggested by increasing neutrophil number alone. An erythrocyte 

gene expression-driven latent factor was also seen, and was prominent in group E at late 

times. This may be associated with heme metabolism, and is discussed below.  

 

 

 
Fig 3.6 PLIER latent factor enrichment. Cell subset deconvolution performed using PLIER, leveraging off prior knowledge of 
cell specific pathways. COVID-19 cases split by severity categories and 24-day time bins. Latent factor expression compared 
with HC, FDR adjusted p-value: *<0.0005. 

 
 
3.2.42 Principal component analysis and differential gene expression 
 

Principal component Analysis (PCA) was performed to assess if disease severity explained a 

large proportion of variance. PCA revealed separation of healthy controls from SARS-CoV-2 

patients at both 0-12 and 13-24 days from symptom onset (Fig 3.7) with PCA2 being the axis 

of greatest separation.   
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Fig 3.7 PCA at 0-12 and 13-24 days from symptom onset. HC in purple, A in yellow, B in dark blue, C in green, D in light blue 
and E in red. 
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Differential gene expression at 0-24 days from symptoms onset showed an increase in the 

number of differentially expressed genes according to disease severity with group E having 

the greatest number of differentially expressed genes and group A showing no differential 

gene expression. 

 

Examining sharing of differentially expressed genes, we found 1070 downregulated genes 

shared between groups D and E. This was the greatest number shared downregulated genes 

in all pairwise comparisons with only 204 genes shared between C and D, 164 genes shared 

between C and E, 81 genes shared between B and D and 13 genes shared between B and C. 

1753 genes were shared and downregulated between hospitalised groups C, D and E. 384 

genes were shared amongst all 4 groups and 108 genes were downregulated in groups B, C 

and D. These findings highlight an overlapping transcriptomic signature between 

hospitalised groups C, D and E and a further similarity between the groups requiring oxygen 

support, D and E (Fig 3.8). 

 

Once again, group E had the greatest number of differentially upregulated genes compared 

with healthy controls at just over 4000 genes. Similar to the pattern seen in downregulated 

genes, groups D and E had the greatest pairwise sharing of upregulated genes at 789 genes. 

The hospitalised groups C, D and E had the greatest overlap of genes at 1886 genes. A 

shared COVID-19 transcriptional signature was present with sharing of 231 genes between 

all 4 severity groups (Fig 3.8).  
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Fig 3.8 Differential gene expression 0-24 days from symptom onset. Blue represents genes downregulated and red 
represents genes upregulated.  
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We then examined the PCA plots at later time points to assess for signs of recovery. PCA 

revealed separation of healthy controls from group E patients at only 25-36 days from days 

from symptom onset (Fig 3.9) with PCA2 separating the two groups. PCA1 appeared to 

separate a portion of the SARS-CoV-2 infected patients. By 37-48 days from symptom onset, 

there was no clear pattern present (Fig 3.9). 

 

Differential gene expression showed as expected, differentially expressed genes in group E 

with 5124 genes differentially downregulated and 3631 genes upregulated when compared 

with health (Fig 3.10). 
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Fig 3.9 PCA at 25-36 and 37-48 days from symptom onset. HC in purple, A in yellow, B in dark blue, C in green, D in light blue 
and E in red. 
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Fig 3.10 Differential gene expression 25-48 days from symptom onset. Blue represents genes downregulated and red 
represents genes upregulated.  
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3.2.43 Clustering 
 
We then performed a clustering analysis at both 0-24 (Fig 3.11) and 25-48 (Fig 3.12) days 

from symptom onset to see how well health separated from disease and if grades of 

severity caused a further separation. At 0-24 days from symptom onset, using K means 

clustering, samples were divided into 4 big groups reflective of disease severity as seen with 

the annotation bars. Healthy controls contributed prominently to a single cluster with a 

smattering of group A patients (right most). Following this from right to left, the next cluster 

contained groups A, B and C. The third cluster predominantly contained group E whilst the 

final last cluster contained predominantly group D patients (Fig 3.11). Three transcriptional 

groups were formed with cluster 1 (row) enriching for TNFa, IL-6, and ISG pathways. 

 

 
Fig 3.11 Kmeans clustering at 0-24 days from symptoms onset. K-means clustering of 18357 whole blood transcripts from 
COVID-19 samples. 

 

At 25-48 days from symptom onset, using K means clustering, samples were divided into 6  

big groups once again reflective of disease severity as seen with the annotation bars. 

Healthy controls contributed prominently to a single cluster (right most) with a smattering 

of group A, B, C and D patients likely reflecting recovery. A further three clusters contained 

groups A, B, C and D. The final two clusters contained group E (left most). The annotation 
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bar demonstrates ongoing disease activity in the two leftmost clusters with ongoing 

elevated CRP and the requirement of oxygen support (Fig 3.12).  

 
 

 
Fig 3.12 Kmeans clustering at 25-48 days from symptoms onset. K-means clustering of 18357 whole blood transcripts from 
COVID-19 samples. 

 
 
Lastly, we wanted to assess if the pattern of inflammation changed in group E with time or 

remained the same. We performed Kmeans clustering with healthy controls and groups D 

and E at 0-24 and 25-48 days from symptom onset. From the analysis thus far, we expected 

to find markers of disease activity in groups D and E at 0-24 days from symptom onset and 

in group E at 25-48 days from symptom onset with signs of resolution in group D at 25-48 

days from symptom onset. 

 

Four large patient cluster groupings were generated. The central cluster (second from the 

right) contained healthy controls and recovered patients from group D at 25-48 days from 

symptom onset. Interestingly, two large clusters were present which associated with high 

levels of CRP but clustered away from each other. One cluster contained groups D and E at 

0-24 and was driven by Interferon and TNFa whilst the other cluster contained groups D and 

E at 25-48 days from symptom onset and was driven by Haem metabolism and oxidative 
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phosphorylation transcriptional signatures (Fig 3.13A). A difference in respiratory support 

was apparent between these two clusters with the “early severe” cluster mostly on low flow 

oxygen and the “late severe” cluster mostly on ECMO. This difference in inflammatory 

patterns was further examined using geneset enrichment analysis and weighted gene 

correlation network analysis. 

 

                                  
Fig 3.13 Kmeans clustering at 0-84 days from symptoms onset. A. K-means clustering of 18357 whole blood transcripts from 
COVID-19 samples. B. Distribution of respiratory support between “early severe” and “late severe” groups. 

 
 
 
 
 
 

A 

B 
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3.2.44 Weighted gene correlation network analysis 
 
We then used weighted gene correlation network analysis (WGCNA) to identify, in an 

unbiased fashion, modules of co-regulated genes in the whole blood transcriptome data, 

where each module can be summarised as an “eigengene”. Clustering of WGCNA modules 

was visualised (Fig 3.14) showing that some modules were closely correlated such as the 

lightgreen and magenta modules. Thus, even though these are treated as separate entities 

they are likely to enrich for similar or related pathways and have similar patterns of 

correlations with clinical traits. 
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Fig 3.14 WGCNA module formation and clustering 



 101 

 

WGCNA modules eigenvalues were then correlated with clinical traits (Fig 3.15). Age and 

hsCRP were recorded as a continuous variable whilst sex and steroids were treated as binary 

(sex: F=0, M=1, steroids: no=0, yes=1). COVID-19 categories were split according to disease 

severity groups and then further into time bins. Comparisons were made with health and 

the categories given binary values (Healthy=0, Disease=1). Group E at >48 days from 

symptom onset was included in this analysis to try and ascertain if recovery had occurred 

within this time window. 

 
 

Fig 3.15 WGCNA module and trait correlations. Heatmap derived from WGCNA, illustrating the correlation of whole blood 
co-expression gene modules (coloured blocks, y axis) with COVID-19 severity groups (x axis) split by 24-day time bins. 
Boxplots displaying eigengene of key transcriptomic modules according to disease severity and time. Boxes are coloured by 
strength of correlation. 

 
 
WGCNA modules were annotated using EnrichR and grouped according to correlation 

patterns. Prominent gene expression modules were observed, that correlated with both 

disease severity and time (Table 3.1). Gene modules that were upregulated in disease 
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compared with health within the first 24 days from symptom onset included histones, 

TNFa/IL-6, complement, coagulation, neutrophil degranulation, platelet activation, 

ferroptosis, glycolysis, interferon stimulated genes and immunoglobulins. Gene modules 

that remained elevated after 24 days in group E included histones, TNFa/IL-6, complement, 

coagulation, neutrophil degranulation, platelet activation, ferroptosis, glycolysis. Modules 

that became elevated at this later time point were heme metabolism and oxidative 

phosphorylation.  
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1.Positively correlated in all severity groups during early disease and remains 
positively correlated in group E in all later time bins.  
MEcyan: Histones 

MEblue: TNFa/IL-6 

MEpink: Complement/Coagulation/Neut degranulation 

MEmidnightblue: Platelet activation 

MEgrey60: Ferroptosis 

MEroyalblue: Glycolysis 

2.Positively correlated at all time points except late severe 
MEgreenyellow: Immunoglobulins 

MEgreen: Interferon Stimulated Genes 

3.Positively correlated in late mod/severe groups 
MEbrown: Heme metabolism 

4.Positively correlated in late severe group 
MEyellow: Oxidative Phosphorylation 

5.Negatively correlated with disease especially in early mod/severe disease 
MEdarkgrey: GPCR 

MElightgreen: Ribosomal proteins 

MEmagenta: MYC targets 

6.Negatively correlated with disease especially in late severe group 
MEturquoise: Gene transcription 

MEpurple: Splicesome 

MElightyellow: BCR signalling 

MElightcyan: IL-2/NK 

 

Table 3.1 Annotation of WGCNA modules with further grouping according to correlation patterns. 

 
 

Using bi-weighted correlation to model the relationship between a continuous and binary 

variable can be inaccurate. Logistic regression is a more appropriate method or a group 

comparison analysis. Thus, we compared eigenvalues between disease groups according to 

time windows as well as using a mixed effects model (Fig 3.16).  This highlighted the 

increased expression of TNFa/Il-6, neutrophil activation and glycolysis early in disease in the 

hospitalised group which persisted in group E at the later time window. Interferon 

stimulated genes was upregulated in groups B, C, D and E only in early time windows. Lastly 
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oxidative phosphorylation and Heme metabolism were increased most prominently in group 

E at the later time window.  

 

 
 
 

 
Fig 3.16 WGCNA eigen values across time and severity groups. Mixed-effects model with quadratic time trend showing the 
longitudinal expression of key eigengene over time, grouped by severity. Grey band indicates the interquartile range of the 
corresponding eigengene in HCs. Nominal and adjusted p-values for the time x severity group interaction term are reported. 
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The module enriching for TNF-a /IL-6 genes correlated well with the cytokine levels 

determined in Fig 3.2 – rising early in groups C-E and then largely resolving by 25-48 days. A 

neutrophil activation module was also prominent early across groups C to E and remained 

prominent in group E at 25-48 days, similar to what was found using PLIER. Thus, there is 

clear transcriptional evidence of activation of broad inflammatory pathways at early time 

points, and these largely recover in most patient groups (with the exception of group E, in 

which many patients have persistent disease).  

 

In contrast, an interferon-related module is upregulated prominently in groups B-E at day 0 

to 24 from symptom onset, but declines at later time points. As previously described248, the 

relative contributions to this module by Type I, II and III interferons cannot be easily 

distinguished at the transcriptome level. Analysis of the kinetics of this interferon-

stimulated gene module shows that, while expression peaks at different levels in each 

severity group it then declines in all of them by around 30 days coincident with viral 

clearance and occurring irrespective of clinical and inflammatory state (Fig 3.17).   

 

 
 
Fig 3.17 Mixed-effects model showing longitudinal expression of eigengene capturing interferon-stimulated genes (ISG) (A) 
and equivalent mixed-model showing changes in SARS-CoV-2 PCR cycle threshold (viral load) by time and severity (B). y axis 
inverted in (B). 

 

 
 
 
 

A 

B 
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There was a weak, non-significant correlation between viral clearance and the 

transcriptional signature of neutrophil activation which remained particularly prominent in 

the later time window for group E (Fig 3.18).  

 

 
Fig 3.18 Correlation between module eigenvalues and PCR Cycle threshold 

 

Mounting a sufficient Interferon response is necessary in viral control. We hypothesized that 

the strength of this early antiviral response may help govern outcome and thus an initial 

higher interferon response may be associated with a better prognosis. We stratified patients 

in group E at 0-24 days from symptom onset into two subgroups based on interferon 

expression. We found that those in group E with low interferon signatures in early disease 

were more likely to have persistently high and ongoing respiratory support. (Fig 3.19). 
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Fig 3.19 Interferon expression and recovery. Stratification of group E samples taken <24 days post symptom onset into high 
and low expression of interferon stimulated genes (ISG), with persisting and resolving CRP status and final respiratory status 
reported within 12 weeks shown by bar charts. 

 

3.2.45 Geneset Enrichment Analysis 
 
To further understand these transcriptional signatures, we performed a supervised gene set 

enrichment analysis (GSEA) using publicly available Hallmark gene signatures (Fig 3.20)249. 

These findings were largely consistent with those generated from the unbiased approaches 

above. At 0-24 days from symptom onset, there was enrichment of pathways; TNFa, 

Interferon alpha and gamma, IL6-Jak-stat, complement and coagulation in groups C, D and E 

groups. At the later time points, the nature of inflammation changed in groups C, D and E, 

moving from enrichment in interferon to a late upregulation of genes associated with 

reactive oxygen species, oxidative phosphorylation and heme metabolism.  
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Fig 3.20 GSEA using select hallmark genesets. GSEA assessing enrichment for HALLMARK genesets against HC in COVID-19 
cases split by severity categories and 24-day time bins, FDR adjusted p-value: *0.2, **0.1, ***0.01 and ****0.001. 

 

3.2.5 Correlation between transcriptomics and immunophenotyping 
 
In order to understand the relationship between transcriptional signatures, 

immunophenotyping, cytokines and viral load, we examined the correlation between these 

metrics at two time windows, 0-24 and 25-48 days from symptom onset. At 0-24 days from 

symptom onset, the following relationships were apparent (Fig 3.21). 

 

• Gene modules TNFa, Neutrophil degranulation, Platelet activation, Ferroptosis, 

Glyclyosis, Immunoglobulins, Interferon and Heme metabolism positively correlated 

with one another. These modules in turn positively correlated with hsCRP, IgA, IgM 

and IgG spike titres, C3a, C3c and inflammatory cytokines IL6, IL1B, IL10, TNFa and 

IFNg. These modules had a negative correlation with CD4 and CD8 T cell subsets. This 

relationship is likely a readout of the level of disease severity and inflammation. 

• Transcription signatures oxidative phosphorylation, GPCR, Ribosomal proteins and 

MYC targets positively correlate with CD4 and CD8 subsets, gd T cells and NK cells 

with a weaker relationship with B cells and a negative correlation with inflammatory 

cytokines. This relationship is once again likely a readout of the level of disease 

severity and inflammation.  
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At 25-48 days from symptom onset. The overall patterns of correlation appeared 

macroscopically similar although less marked.  Of note, oxidative phosphorylation at this 

time point correlated with inflammatory cytokines and complement activation and is 

discussed further below (Fig 3.22).  

 

 
Fig 3.21 Correlation heatmaps at 0-24 days from symptom onset. Heatmap showing the correlation between gene 
expression eigenvalues derived from whole blood RNA-Seq, absolute cell counts and inflammatory characteristics in COVID-
19 patients collected within 0-24 days post screening (group A) or symptom onset (groups B-E). Pearson correlation p-
values: *p<0.05, **p<0.01and ***p<0.001,  
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Fig 3.22 Correlation heatmaps at 25-48 days from symptom onset. Heatmap showing the correlation between gene 
expression eigenvalues derived from whole blood RNA-Seq, absolute cell counts and inflammatory characteristics in COVID-
19 patients collected within 25-48 days post screening (group A) or symptom onset (groups B-E). Pearson correlation p-
values: *p<0.05, **p<0.01and ***p<0.001,  
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3.2.6 Multi-omic analysis 
 

Beyond just using linear correlations to understand how the data may relate to one another, 

we also employed a multi-omic factor analysis (MOFA). MOFA uses a Bayesian Group Factor 

Analysis framework to decompose data into a small number of latent factors. These latent 

factors capture the global source of variability and are oblique to one another.  

 

Five data sets were layered, RNAseq, cell immunophenotyping and evolving datasets of 

small metabolites, lipoproteins and amino acids. These metabolomic/proteomic datasets 

were not individually analysed as they were still in their infancy at the time of analysis. 

 

The latent factors produced by MOFA are influenced by the data set size. Given RNAseq has 

a much larger number of features, we applied a higher variance filter, reducing the gene 

universe to 4000 genes. This still resulted in RNAseq dominating the factors built so further 

dimensional reduction was required. We therefore applied MOFA to the RNAseq dataset on 

its own. Thus from 4000 genes, we condensed the features to 86 (latent factors) (Fig 3.23). 

 

Fig 3.23 MOFA applied to RNAseq. Applied LF analysis to reduce RNAseq bulk features from 4000 genes to 86 latent factors. 
The purple grading indicates the level of variance explained by each factor with Factor 1 and 2 explaining the largest 
proportion represented by the darkness in purple. 

 
Below is a graphical representation of datasets used in the analysis. The labels on the Y axis 

represent the omic and the number of features per omic. The x axis represents samples 
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used in the analysis. Where a continuous line of colour is present across all the omics, this 

indicates data present from all the omics for a given sample. Missing data for a given sample 

are coloured grey in a given omic (Fig 3.24). 

 

 
Fig 3.24 Representation of omics used in MOFA. Grey represents missing data for a given patient. N denotes the total 
number of samples across all omics. D denotes the number of features used per omic.  

 
 

Using MOFA, we generated eight latent factors. For whole blood RNAseq, the eight latent 

factors explained less than 10% of the variance. However, given the 86 features themselves 

are latent factors and each do not carry equal variance weighting, this percentage is not an 

accurate representation of the total variance explained. The eight latent factors explained 

80% of the variance for lipoprotiens, 60% of the variance of amino acids and 50% of the 

variance of flow data (immunophenotyping)(Fig 3.25 and Fig 3.26). This illustrates that the 

latent factors capture a large amount of variance in the data and thus adequately models 

the data.  
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Fig 3.25 Total variance explained post factor decomposition. Variance on y axis and omics on x axis. 

 

 
Fig 3.26 Shared variance across omics post factor decomposition. Factors on y axis and omics on x axis. 
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Fig 3.26 Illustrates the latent factors across the omics. Latent factor 1 explains a large 

proportion of the variance of lipoproteins. Latent factor 3 explains a large proportion of the 

variance for amino acids whilst latent factor 2 explains a large proportion of the variance for 

the immunophenotyping data. Latent factor 4 explains the large proportion of the variance 

for all omics at 2.19% for whole blood RNAseq (although inaccurate), 11.2% for lipoproteins, 

5.7% for amino acids and 9.9% for immunophenotyping and is a shared axis of variance 

(Table 3.2). 

 
 
 

 
Table 3.2 Variance explained per omic and latent factor 

 
 
Latent factor 4 expression appeared reflective of disease severity with it being upregulated 

at 0-12 days and 13-24 days from symptom onset in groups C, D and E and remaining 

upregulated in group E at 25-36 and 37-48 days from symptom onset. A linear mixed effects 

model similarly illustrated the heighted expression of latent factor 4 within the first 24 days 

from symptom onset with it most marked in groups D and E. There was a marked decline in 

group D and ongoing heightened expression in group E (Fig 3.27). 
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0-12  13-24  25-36         37-48 

                       
 

 
Fig 3.27 Latent Factor 4 represented in time bins and as a linear mixed effects model. The grey band in the linear mixed 
model is the interquartile range of healthy controls. 
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We then examined the top weighted features of latent factor 4 for each omic. For whole-

blood RNAseq the top weighted feature was latent factor 2 which on initial matrix 

decomposition explained 9.5% of the variance and enriched for genes in keeping with 

neutrophil activation. This latent factor had a strong positive correlation with latent factor 4 

eigenvalues (Fig 3.28 and Fig 3.29). This pattern of inflammation was mirrored in the 

WGCNA and PLIER analysis where the module representative of neutrophil activation was 

elevated post infection and remained so in group E at later timepoints whilst resolving in the 

other severity groups. 

 
Fig 3.28 RNAseq Latent Factor 4 top weights. On initial dimensional reduction, latent factor 2 explained 9.52% of variance 
and was representative of neutrophil activation. 

 

 
Fig 3.29 Correlations between top RNAseq Latent Factor 4 weights and Latent Factor 4 eigenvalues 
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For lipoproteins, the top weighted features were H4CH, H4A2, L5CH, L4CH, H4AL, H4PL, 

V1F2 and H4FC and were tightly negatively correlated with latent factor 4 eigenvalues with 

the level of correlation (R) ranging from -0.44 to -0.72 (Fig 3.30 and Fig 3.31). 

 

 
Fig 3.30 Lipoprotein LF4 top weights 

 

 
 

Fig 3.31 Correlations between top lipoproteins LF4 weights and LF4 eigenvalues 
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For amino acids the top weighted features were quinolinic acid, tryptophan and kynurenine 

for latent factor 4 (Fig 3.32). Quinolinic acid had a strong positive correlation with an R = 

0.56 and tryptophan had a strong negative correlation at -0.56 (Fig 3.33). 

 

 
Fig 3.32 Amino-acids LF4 top weights 

 

 
Fig 3.33 Correlations between top amino acids Latent Factor 4 weights and Latent Factor 4 eigenvalues 

 
 
For cellular immune markers the top weighted features were Vg9Vd2(hi) gd T cells, pDC, 

CD8 HLA DR+CD38+ T cells and MAIT cells (Fig 3.34). Vg9Vd2(hi) gd T cells, pDC and MAIT 

cells had a strong negative correlation whilst CD8 HLA DR+CD38+ T cells had a strong 

positive correlation (Fig 3.35).  
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Fig 3.34 Immunophenotyping LF4 top weights 

 

 
 

Fig 3.35 Correlations between top immunophenotyping LF4 weights and LF4 eigenvalues 
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We lastly created a UMAP using information derived from all 5 omic datasets. Samples were 

coloured according to disease severity and time from symptom onset (Fig 3.36). The UMAP 

illustrates the close clustering of healthy control samples and patients from group A at 25-

36 weeks from symptom onset. This may suggest disease recovery and thus the co-

clustering with health. The next closest neighbour to healthy control were samples from 

group B at 37-48 days from symptom onset and group A at 0-12 days from symptom onset. 

Peak severity occurs within the first 12 days of symptom onset for group A whilst 37-48 days 

from symptom onset was a point of recovery for group B. Group E remained far from 

healthy controls at all time windows. Group D at 0-12 and 13-24 days from symptom onset 

and group C at 0-12 days from symptom onset co-clustered with group E, likely 

representative of ongoing disease. 
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Fig 3.36 UMAP of all samples. UMAP illustrating spatial distribution of samples utilizing data from all 5 omics. Samples are 
coloured according to disease severity and time from symptom onset.  
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3.2.7 Transcriptional changes in persisting disease 
 
We wished to further explore the changes in transcriptional signatures with time. At late 

time points, whole blood transcriptome analysis showed a change in inflammation-related 

signatures distinct from those that were prominent early in the disease course, particularly 

in severity groups C-E. These signatures were characteristic of oxidative phosphorylation, 

reactive oxygen species generation and heme. This contrasted with the neutrophil signature 

which persists in group E at both time points in patients with ongoing inflammation. These 

pathways were demonstrated in an un-biased fashion using WGCNA, where modules 

characterised by oxidative phosphorylation and heme metabolism signatures were 

prominent in samples analysed at days 25 to 48 post symptom onset, with oxidative 

phosphorylation most prominent in group E, and heme metabolism in C, D and E (Fig 3.16). 

Enrichment of Hallmark signatures in RNA-seq datasets confirmed the association of 

oxidative phosphorylation and heme metabolism in groups C, D and E, and also found 

association of a reactive oxygen species generation signature (Fig 3.37 and 3.38). 

Examination of leading edge genes showed the highest expression of the key genes in group 

E (Fig 3.38). 
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Fig 3.37 GSEA curves at 24-48 DPSO. Enrichment score for HALLMARK genesets capturing heme metabolism, oxidative 
phosphorylation and ROS related genes (as determined by GSEA) in group A-E samples taken 25-48 days post screening or 
symptom onset.  
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Fig 3.38 Leading edge genes. Heatmap showing enrichment for the intersection of GSEA leading edge genes from groups C, 
D and E, across all severity groups in samples taken 25-48 days post screening or symptom onset. 

 

As previously mentioned, in the first 24 days after symptom onset, there was a strong 

association between TNF-a /IL-6, neutrophil degranulation and interferon signatures with 

most of the lymphoid cell types whose numbers fell in severe disease. However, at 24 and 

48 days after symptom onset, these associations changed. While TNF-a /IL-6 and neutrophil 

degranulation signatures were still associated with many cell subsets that continue to be 

reduced, the interferon signature was no longer a significant player. Strikingly, the 

persistent increase seen in effector lymphocytes, both CD4 and CD8 activated T cells (HLA-

DR+, CD38+) and plasmablasts, were now associated with the oxidative phosphorylation 

signature which, having become more prominent later in disease, has a much more 

restricted and specific association with immune dysfunction than other inflammatory 

signatures. It is thus clear that, for some cell types, the association with the inflammatory 

milieu changes over time, but for others it is more consistent. It is interestingly the 
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inflammatory signatures which appear late in disease, in particular oxidative 

phosphorylation, are specifically associated with persistent derangement of cell types of 

potential pathological importance, such as increased HLA-DR+CD38+ T cells and 

plasmablasts, and reduced pDCs (Fig 3.39). In addition, the heme module negatively 

correlated with hemoglobin and positively correlated with D.Dimer (Fig 3.40). At 25-48 days 

from symptom onset, group E showed a negative correlation between reticulocytes (Fig 

3.41). 

 
 
Fig 3.39 Heatmap showing correlation between transcriptional eigengenes and absolute cell counts, at 25-48 days post 
symptom onset. Boxes are coloured by strength of correlation, Pearson correlation pvalues: *<0.05, **<0.01,***<0.001,  

 

 

 
 
 
Fig 3.40 Heatmap of heme module correlations. Heatmap showing correlation between heme transcriptional eigenvalues 
and blood counts and cytokines. Boxes are coloured by strength of correlation, Pearson correlation.  
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Fig 3.41 Correlation between reticulocyte counts and heme module at 25-48 DPSO. 

 
 
3.3 Discussion 
 

In this study, we compared the immune responses in 5 cohorts of patients with varying 

disease severity and tracked immunological changes over time by studying 

immunophenotyping, transcriptomics, cytokines and antibody responses.  

 

In groups A and B, there was no evidence of systemic inflammation with normal levels of 

CRP, circulating TNF-a, IL-6 and no enrichment in transcriptional signatures associated with 

neutrophil activation. This is in stark contrast to groups C-E where marked derangement 

was noted with elevations in inflammatory markers, cytokines and profound leucopenia.  

 

Transcriptionally, groups C-E clustered apart from healthy controls and enriched in gene 

signatures associated with TNFa, neutrophil activation and IL-6. Multi-omic factor analysis 

using data from all timepoints shows that neutrophil activation explained a large proportion 

of the variance in the transcriptional data and was associated with ongoing severe disease 

activity. Markers of ongoing disease activity on a cellular level were elevations in CD8 HLA 
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DR+CD38+ T cells and depression in Vg9Vd2(hi) gd T cells, pDC, and MAIT cells at all time 

points. An increase in quinolinic acid and kynurenine and decrease in tryptophan were top 

weighted features associated with disease activity on a metabolomic level. Derangement of 

tryptophan metabolism and the kynurenine pathway have previously been reported in 

COVID-19 with levels correlating with IL-6250. 

 

Interferon was only an early transcriptional marker of disease activity with levels resolving 

despite ongoing inflammation in patients in group E suggestive of viral clearance and of a 

different immunopathology driving inflammation. Ribosomal transcriptional pathways were 

downregulated in severe disease at the early time point and had a negative correlation with 

interferon stimulated genes expression. This has also been reported in the literature and has 

been surmised to relate to interferon stimulated genes suppressing protein translation and 

thus viral replication169. 

 

Three transcriptional signatures arose late in those with severe COVID-19 and were not 

present in early severe, nor mild disease. These included activation of oxidative 

phosphorylation, reactive oxygen species and heme related metabolic pathways. Although 

these pathways were enriched on GSEA for groups C, D and E at 25-48 days from symptom 

onset, the leading edge genes illustrated marked increased expression in group E at this late 

point supported also by WGCNA findings. 

 

Activation of immune cells results in metabolic reprogramming that supports cell growth, 

proliferation and differentiation. Disruption of metabolic pathways can result in 

bioenergetic, anabolic, epigenetic or redox cellular crises – culminating in immune 

dysfunction251. It is unlikely that the metabolic signatures observed here simply reflect 

heightened bioenergetic requirements of activated immune cells, as one would expect that 

similar requirements are present also at early stages in the disease. The reactive oxygen 

species transcriptional signature may relate to more abundant production of reactive 

oxygen species inevitably accompanying increased oxidative phosphorylation. The oxidative 

phosphorylation and reactive oxygen species gene signatures may be associated with ECMO 

given at the early time window, 0-24 days from symptom onset, very few patients were on 
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ECMO whilst at 24-48 days from symptom onset, almost all patients in group E were on 

ECMO where this finding is most apparent.  

 

Oxidative Phosphorylation is an aerobic form of cellular respiration taking place in the inner 

membrane of the mitochondria. It is the final step post glyocolsyis, pyruvate oxidation and 

the citric acid cycle. Electron carriers (NADH and FADH2) are oxidised, passing their 

electrons down the transport chain. Energy released during this process is used to pump H+ 

ions into the intermembrane space forming an electrochemical gradient. H+ ions move 

through the inner mitochondrial membrane via the ATP synthase channel which causes the 

ATP channel to rotate, catalysing the addition of a phosphate to ADP and thus forming ATP. 

At the end of the transport chain, electrons are transferred to oxygen which combines with 

H+ to form water. Reactive oxygen species are formed during oxidative phosphorylation. 

This occurs secondary to the leakage of electrons from electron transport chains resulting in 

the partial reduction of oxygen to form superoxide252. ECMO results in oxidative stress by 

multiple mechanisms. Exposure to the extracorporal circuit leading to an increase in IL-1B, 

TNFa and IL-B. Activation of the coagulation and complement cascade. Platelet and 

neutrophil activation (occurs in the oxygenator). Hemolysis occurs secondary to the circuit 

exacerbated by ROS driving damage to the cell membrane and thus altering permeability 

and deformability leading to lysis.  As expected, patients have a large transfusion burden 

which may contribute to the heme metabolism finding further discussed below. Hyperoxia 

commonly occurs. The antioxidant ability is overwhelmed during hyperoxia resulting in the 

production of superoxide.  This is especially so when it is preceded by a period of prolonged 

hypoxia as this causes damage to the mitochondrial electron chain transport. Continuous 

renal replacement therapy also exacerbates this through loss of anti-oxidants during 

filtering. Sequestering of antioxidants into the ECMO circuit causing increase in reactive 

oxygen species253.  

 

Mitochondria are also critically involved in heme biosynthesis. Heme serves as a prosthetic 

group for haemoglobin as well as many other proteins – including several that constitute the 

respiratory chain of mitochondria. While free heme can act as damage-associated molecular 

pattern and promote reactive oxygen species formation, the role of heme biosynthesis vs. 

catabolism in balancing cellular sensitivity to oxidants is complex and context dependent254. 
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Here, given correlated regulation of heme and oxidative phosphorylation pathways in the 

clinical categories C, D and E, activity of these modules may be interrelated and possibly 

jointly reflective of dysfunctional mitochondria. How heme and oxidative phosphorylation 

transcriptional programmes are linked on a molecular level cannot be inferred from our 

data. Erythroid cell activation has recently been detected in severe COVID-19255 and could 

also contributes to a heme transcriptional signature. However, the increase in heme 

metabolism in our cohort correlates strongly with a falling haemoglobin, and reticulocytes – 

suggesting suppression rather than activation of erythropoiesis in these individuals.  

 

Hemophagocytic lymphohistiocytosis (HLH) secondary to SARS-CoV-2 has been reported in 

the literature. HLH is a life threatening, inflammatory syndrome associated with 

hypercytokinemia. The cardinal features are high fever, hepatomegaly, splenomegaly, 

anaemia, thrombocytopenia and neutropenia. Respiratory symptoms as severe as ARDS can 

occur256,257. These features were present in patients in group E whom enriched for the heme 

module with clinical features of requiring ECMO and laboratory findings of anaemia and 

thrombocytopenia and ongoing raised CRP. In addition, a positive correlation with D-Dimer, 

evidence of hypertriglyceridemia and a negatively albeit non-significant correlation was 

present with fibrinogen suggestive of a coagulopathy. A strong correlation was present at 

>24 days from symptom onset with inflammatory cytokines.  A key feature of secondary 

HLH is hyperferritenemia with 90–100% of patients having this feature258. 

Hyperferritenemia is due to increased secretion of ferritin by macrophages and/or 

hepatocytes. A positive but non-significant relationship was present in our data and 

hyperferritenemia has been widely reported in the literature in severe COVID-19257. 

 

Many of the abnormalities we have observed in COVID-19 might also be features of other 

severe viral infections. To identify which are COVID specific will require a comparison with 

an appropriate disease control group. Continued follow-up of patients will be needed to 

determine the persistence of abnormalities still observed at late time points. Finally, 

because our patients were recruited during the first pandemic wave, a follow-up study 

examining the immune response to new SARS-CoV-2 strains with different virulence could 

be informative. 
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An analysis of the effects of hypoxia on B cells in SARS-CoV-2 is discussed in Appendix A.  
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4. B cell receptor repertoire kinetics after SARS-CoV-2 infection 
and vaccination 

 

4.1 Introduction 
 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulting in coronavirus 

disease 2019 (COVID-19) has caused over 4.5 million deaths as of September 2021 

(https://covid19.who.int/).  It primarily infects respiratory epithelial cells, and results in a 

range of clinical manifestations from asymptomatic disease to multi-organ failure. B cells 

play a vital role in anti-viral defence259. B cell depletion can result in persisting 

viremia(Buckland et al., 2020; Kemp et al., 2021a), SARS-CoV-2 neutralizing monoclonal 

antibodies and convalescent plasma may have a therapeutic role 262,263 and neutralising 

antibodies may prevent re-infection and transmission264. 

 

These observations make a strong case for a central role for B cells in the defence against 

SARS-CoV-2. There is strong evidence that neutralising SARS-CoV-2-specific antibodies can 

protect against disease onset and progression193,265,266 and potentially also through non- 

SARS-CoV-2 specific “natural” antibodies, or antibodies generated in response to other 

coronaviruses which may also cross-react with SARS-CoV-2186,267–269. It is also likely that B 

cells play a role through other functions, including antigen presentation to T cells, cytokine 

production and other regulatory mechanisms. 

 

Severe COVID-19 is typified by major perturbations in circulating immune 

cells161,172,175,233,234,242,270–272. Together with other groups, we have shown that COVID-19 has 

a profound impact on B cell subsets. Increased numbers of recently generated circulating 

plasmablasts are seen early in disease irrespective of severity, and indeed is one of the few 

cellular abnormalities observed in asymptomatic SARS-CoV-2 infection270. 

 

Absolute numbers of almost all other B cell sub populations are reduced, including naive B 

cells, both switched and unswitched memory B cells, transitional B cells, and more recently, 
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marginal zone-like B cells. All of these B cell subsets are maximally reduced soon after 

symptom onset, with most gradually resolving thereafter (with the exception of transitional 

B cells, which continue to decline over the first two months after infection)270. Early 

histology reports also demonstrated reduced germinal centres in secondary lymphoid 

organs in COVID-19, and consistent with this, circulating TFH-like cells are markedly 

reduced190. Most initial reports have underestimated the impact of COVID-19 on the B cell 

immune response, having examined proportions rather than absolute numbers of B cell 

subsets270. Changes between these subsets, as well as within them, will be reflected in the B 

cell receptor (BCR) repertoire.  

 

The BCR repertoire refers to the range of individual BCRs that collectively provide the 

diversity of antigen receptors required by B cells to recognise new antigens, to minimise 

interaction with autoantigens, and, when certain specificities are expanded, to provide 

increased protection in the context of B cell memory. BCR diversity is driven by the 

rearrangement of the immunoglobulin receptor genes during B cell development in the 

bone marrow. During B cell development single variable (V), diversity (D) and joining (J) 

genes are selected from multiple distinct copies and imprecisely joined to create a BCR 273. 

To prevent self-reactivity, B cells go through both central and peripheral tolerance 

checkpoints274,275. Further diversification of the BCR repertoire occurs post antigen exposure 

through somatic hypermutation (SHM) and subsequent selection of high affinity 

clones49,76,92. B cells may undergo a process termed immunoglobulin class-switching where, 

through stepwise DNA deletion and recombination of the constant region, downstream 

isotypes are generated276. During this process, the antigen binding region remains the same, 

and so therefore does antigen affinity but isotype switching confers a range of different 

effector functions277. High-throughput bulk RNA sequencing of BCR heavy chain genes 

allows us to assess isotype use, SHM, V gene usage and clonality. 

 

The study of the repertoire has been illuminating in immune-mediated disease, infection 

and vaccination. In previous work, we described increased clonality, IgA proportion and 

shared IGHV gene usage in Systemic lupus erythematosus and Crohn’s disease278. Early 

reports have similarly revealed substantial changes in the BCR repertoire in severe COVID-

19. An increased representation of IgG1 and reduced IgM isotypes is seen, as is the over 
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representation of some specific heavy chain genes (such as the VH3 family). A global 

reduction in SHM has also been observed when compared with health172,188,232,237,279,280. 

Analysis of SARS-CoV-2-specific B cells has demonstrated some changes consistent with 

those seen in the global BCR repertoire, in particular low SHM early in disease with a 

subsequent increase in the memory population186,187,191,192.  

 

Reduced SHM levels in BCR repertoires have been seen early after Ebola 281, and Dengue 

infection282, with the pattern of early low SHM followed by a late increase in SHM-high 

clones being seen in other infections (for example vesicular stomatitis virus –283. This has 

been attributed to an early extrafollicular response characterised by the initial rapid 

secretion of lowly mutated antibodies from naive unmutated B cells interacting with 

cognate T cells and differentiating into short-lived antibody secreting cells; followed by the 

generation of germinal centres and the production of long-lived plasma and memory B cells.  

 

Increasingly more work is being conducted on the BCR repertoire post SARS-CoV-2 

vaccination. Studies show that SARS-CoV-2 mRNA vaccination induces antibodies against 

NTD, RBD and S2284 with anti-RBD clones showing high use of IGHV3-30 and IGHV3-53, 

similar to that seen in natural infection285. However, neutralising ability post vaccination 

appears targeted to the RBD domain with removal of RBD-specific antibodies abolishing 

neutralization of Wuhan-Hu-1 virus286. Vaccine-elicited antibodies appear more broadly 

distributed across the RBD compared with natural infection potentially preventing loss of 

efficacy when point mutations occur in the virus 287.  

 

Increasing our understanding of the B cell immune response in the context of COVID-19 is 

important given its role in defence against SARS-CoV2 infection, and potentially in the 

prevention of secondary infection, re-infection and autoimmunity. We have some 

understanding of this early after SARS-CoV2 infection: little is known about how the BCR 

repertoire changes over time, varies with disease severity, or compares to that generated by 

vaccination. Studying the global BCR repertoire allows us to not only study antigen specific B 

cells but also "bystander" viral-associated clones that are often mobilised post infection and 

vaccination288. We have analysed the BCR repertoire in a large cohort of patients with 

varying disease severity, sampling at several timepoints to six months post symptom onset 
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and comparing these to BCR repertoire changes following vaccination with the BNT162B2 

SARS-CoV-2 vaccine289, and the Trivalent Influenza Vaccine (specific for influenza A (H3N2), 

A (H1N1) and B). Exploring how the BCR repertoire post mRNA SARS-CoV-2 vaccine 

compares with that seen in natural infection and post influenza vaccination allows us to gain 

insight into the nature of the vaccine response. A decrease in SHM may suggest a prominent 

extrafollicular response, as commonly seen with polysaccharide vaccines290, leading to the 

generation of low-affinity and short lived plasmablasts. Alternatively, an increase in SHM is 

suggestive of a germinal centre response as seen post influenza vaccination291 and is 

indicative of the generation of affinity matured, long lived plasma cells. In addition, the 

route that an antigen enters the body determines the class-switching patterns and thus 

systemic versus mucosal routes as seen in vaccination and natural infection may 

differentially influence the repertoire. 

 
4.2 Results 
 
4.2.1 Patient cohort 
 

SARS-CoV-2 PCR-positive subjects (n = 171) were recruited between 31st March and 20th 

July 2020 and divided into five categories according to peak clinical severity.  

 

A) asymptomatic healthcare workers (HCWs) recruited from routine screening.  

B) HCWs either still working with mild symptoms, or symptomatic and self-isolating.  

C) patients who presented to hospital but never required oxygen supplementation. 

D) admitted patients whose maximal respiratory support was supplemental oxygen. 

E) patients who required assisted ventilation (56) or died without ventilation (3). 

 

Patients were bled weekly while inpatients, and less frequently thereafter. Patient time 

courses are measured since symptom onset for groups B to E, and from the first positive 

swab for group A (not having symptoms to trigger presentation, patients in group A were 

likely sampled, on average, later after infection than B-E). Recipients (n = 63) of the 

BNT162B2 (Pfizer/BioNTech) SARS-CoV-2 vaccine were bled post initial dose and before 

boosting. Recipients (n = 14) of the Trivalent Influenza Vaccine (TIV) were bled before 
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vaccination, and then at 7- and 30-days post. Heathy controls were recruited across a range 

of ages and included the TIV recipients prior to vaccination (Fig 4.1). 

 

Fig 4.1 Study participants. Study participant and sample numbers split by severity categories and time bins post screening 
(cat. A), symptom onset (cat. B-E) or vaccination (cat. VC and VI). The number of samples are listed along with individuals in 
brackets where different.   

 
For groups A-D, patients were well represented in the first 50 days from symptom 

onset/swab positive and then from 100 days onwards. Group E were well represented in the 

first 75 days from symptom onset and then from 125 days onwards (Fig 4.2).  

 

 

Fig 4.2  Sample distribution. Sample distribution according to days from symptom onset/swab or vaccination split according 
to disease severity group. Circles represent individual donors. 
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A skewing in age distribution was apparent in patients infected with SARS-CoV-2 with an 

older distribution in the hospitalised group. Similarly, an older age distribution was also 

notable in the SARS-CoV-2 vaccinated group, representative of the prioritisation of the 

elderly in vaccinating at the time of the study. A marked skewing in sex was also apparent 

with a great proportion of patients in group D and E being male (Fig 4.3).  

 

 
Fig 4.3 Distribution of participant across age, gender and severity categories. 

 
To account for the potential effect of ageing on the BCR repertoire, all comparisons to 

health used age-matched controls. This was achieved by examining the age distribution of 

participants after grouping according to both disease severity/vaccination and time and 

then randomly selecting a subset of healthy controls to mirror this distribution for each time 

window and severity group (Fig 4.4). 

 

VI

VC

E

D

C

B

A

HC

20 40 60 80

Age

0.00 0.25 0.50 0.75 1.00

F

M

Sex



 137 

 
Fig 4.4 Age matched healthy controls. Age matched healthy controls used in analysis per time-window per disease group. 

 
 
4.2.2 BCR repertoire reproducibility  
 
Only a small portion of a person’s BCR repertoire is sampled. Using 200ng of start RNA from 

blood, we generated libraries ranging from 5000-20000 reads per person.  

 

In a recent study that deeply sequenced three individuals, starting from 13-30 billion PBMCs 

per person on average 5.5 X 108 BCR sequences (12.5 X 106 unique clones) were generated 

per person. Even at this depth, the rarefaction curves did not plateau indicating that not all 

clonotypes had been identified but was instead estimated at 50-60% coverage (Soto et al., 

2019). Given BCR repertoire analysis is sensitive to sampling depth and does not fully 

capture the entirety of a patients’ repertoire, we analysed the BCR generated from 

biological replicates to confirm the reproducibility of our data at the library depth we were 

generating. We compared BCR repertoire metrics from bleeds taken from patients on the 

same day with the libraries generated from both PBMC and whole blood (from Paxgene 

tubes). Fig 4.5 shows a strong correlation between isotype proportions generated from 

PBMCs versus whole blood. Only IGHG4 showed a weak correlation which is likely due to 
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the very few reads captured from this isotype compared with all other isotypes (proportion 

of total repertoire: 0.005-0.03).  We similarly demonstrated a strong correlation between 

diversity metrics and SHM between PBMCs and Paxgenes (Fig 4.6 and Fig 4.7).  

 

 
 
Fig 4.5 Isotype BCR repertoire reproducibility. Correlation between isotype proportions between paired samples with BCR 
repertoire generated from PBMC versus whole blood (Paxgene). 

 
 
 
 

 
 
Fig 4.6 Diversity BCR repertoire reproducibility. Correlation between diversity metrics between paired samples with BCR 
repertoire processed from PBMC versus whole blood. 
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Fig 4.7 SHM BCR repertoire reproducibility. Correlation between SHM metrics between paired samples with BCR repertoire 
processed from PBMC versus whole blood. 

 

Lastly, we use hierarchical clustering to groups samples according to CDR3 amino-acid 

sequence. This illustrated close clustering of samples from the same individual (Fig 4.8).  

 

 
 

Fig 4.8 Hierarchical clustering of samples according to CDR3 amino-acid region. 

 
 
4.2.3 B cell composition  
 
To understand how compositional changes in B cell subsets might influence the global BCR 

repertoire, we compared B cell proportions in patients within 25 days from symptom onset 

to healthy controls (Fig 1C). The proportion of plasmablasts were increased in all severity 
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groups and in addition marginal zone, transitional and memory B cells were decreased in 

group E (Fig 4.9). 

 
Fig 4.9 B cell subsets. Boxplots showing B cell subset proportions according to disease severity at 0-25 days from symptom 
onset. Naïve (CD19+IgD+CD27-), Marginal Zone B cells (MZ) (CD19+IgD+CD27+), Double negative B cells (DN) (CD19+IgD-
CD27-), Transitional (CD19+IgD+ CD27+CD24+CD38+), Memory (CD19+IgD-CD27+CD24+CD38+) and Plasmablasts 
(PB)(CD19-CD20-CD27+CD24+CD27+CD38+). Comparison with HC, unadjusted wilcox test p-value: *<0.05, **<0.005, 
***<0.0005. 

 
 
To further illustrate the change in B cell composition with infection, we calculated the 

proportion of plasmablasts, memory, marginal zone, double negative, transitional and naïve 

B cells per person in the healthy control group and group E. We then summed up the 

proportions before recalculating the proportion. This is illustrated in the pie charts. This 

highlights the major proportional increase in plasmablasts and double negative B cells (Fig 

4.10). 

 
 
Fig 4.10 B cell proportions. Pie chart comparing B cell proportions between HC and group E at 0-25 days from symptom 
onset. 
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4.2.4 Isotype use 
 
We assessed the proportion of unique B cell clones of different isotypes, counting each 

unique VDJ region only once to ensure results were not skewed by the differential mRNA 

content of B cell subsets (in particular plasmablasts which have increased immunoglobulin 

mRNA content). IGHG1 and IGHG3 proportions were increased across all severity groups, 

and were the only isotypes increased in the asymptomatic group A. IGHA1 was increased in 

a similar pattern, although changes were less pronounced. IGHA2 was only elevated in 

group E. Serum IGHA2 is more pro-inflammatory than IGHA1 with an increased ability to 

induce NET formation and the release of cytokines by neutrophils and macrophages292. This 

is keeping with our previous finding of increased neutrophil activation in group E 270. The 

increase in IGHE seen in the hospitalised groups C, D and E is most reflective of an increase 

in IGHE plasmablasts given IGHE memory B cells are a transient cell type in the germinal 

centre response and most IGHE plasmablasts are derived from class switching IgG1 memory 

cells293. IGHE antibodies are known to be generated in other respiratory illness such as 

influenza A294. IGHD and IGHM were reduced, particularly in those with severe disease. All 

isotype proportions returned to normal over time, with recovery being delayed in more 

severe groups (Fig 4.11). 

 

  

Fig 4.11 Isotype Usage. Heatmap showing log2 fold change in mean proportion between SARS-CoV-2 and vaccine cases and 
HC, within severity categories and across 25-day time bins. Wilcoxon test FDR adjusted p-value: *<0.05, **<0.005, 
***<0.0005.  
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These changes in isotype proportion were illustrated assessing time as a continuous variable 

using a linear mixed effects model analysis (Fig 4.12). This once again highlights the 

decrease in proportion of IGHD and IGHM likely mirroring the decrease in naïve B cells with 

a concurrent increase in IGHG1 (Fig 4.12). 

 

 
 
Fig 4.12 Linear mixed-effects model of isotype usage. Linear mixed-effects model showing the longitudinal expression of 
IGHD, IGHM and IGHG1 proportions over time, grouped by severity. Grey band indicates the interquartile range of the 
corresponding isotype in HCs. Nominal p-values for the time x severity group interaction term are reported. 

 

 

Isotype changes in response to BNT162B2 SARS-CoV-2 vaccine were very different to those 

seen in SARS-CoV-2 infection. Increase in IGHD and M isotype proportions were apparent 

only after 25 days from vaccination with concurrent decreases in IGHG2/4, IGHA1/2 and 

IGHE (Fig 4.11). Similarly, isotype changes were only seen in response to the TIV beyond 25 

days after vaccination. The prominent increase in IGHG1, IGHG3 and IGHA1 proportions 

mirrored that of SARS-CoV-2 infection (Fig 4.11). IGHG1 and IGHG3 are the key antibodies 

formed post viral infection295. 

 

Correlation of BCR isotype use derived from BCR repertoire sequencing with B cell subset 

numbers and with serum immunoglobulin titres was performed (Fig 4.13).  

The strongest positive correlations were seen between IGHG1, IGHG3 and IGHA1 and 

plasmablast numbers and the strongest negative correlation between IGHM levels and 

plasmablast numbers, suggesting the increased proportion of these switched isotypes was, 

in large part, driven by an increase in clonally distinct plasmablasts (Fig 4.9 and 4.10). 

Consistent with this was the increased IGHG1 and IGHG3 proportions seen in group A, in 

which an early rise in plasmablasts is the only prominent change in B cell subpopulations 

seen (Bergamaschi et al., 2021). IGHD and IGHM correlate strongly with naive B cell number, 
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suggesting that their decline is in part a reflection of reduced naive and transitional B cell 

numbers in moderate to severe COVID-19. Correlation between IGHA1 isotype use and 

serum IgA was seen, but no such correlation was seen between the IgG isotypes and serum 

IgG (Fig 4.13). The lack of correlation is likely reflective of the extended half-life of IgG 

compared with other immunoglobulins. IgG takes time to build up in serum in the immune 

responses, lagging behind the cellular response, and then has a serum half-life of 21 days, so 

will persist after cellular resolution begins. In addition, antibody titres and isotype BCR 

proportions may not always correlate. “Steady state” serum immunoglobulin is made 

predominantly by long-lived plasma cells in the bone marrow. In the acute setting its rapid 

increase is driven largely by extrafollicular plasmablasts. In contrast, immunoglobulin 

transcripts in the blood, measured in our repertoire analysis, will be derived from not only 

plasmablasts in transit but also non-antibody secreting cells such as memory B cells. Thus, 

levels may not always correlate. 

 

Fig 4.13 Correlation between BCR isotype proportions and B cell metrics. Heatmap depicting correlation between cell 
number, serum immunoglobulins and BCR isotypes at 0-25 days from symptom onset/swab. p-value: *<0.05, **<0.005, 
***<0.0005. 
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4.2.5 Class switching 
 

We quantified the level of switching between classes in different disease subsets, by 

assessing the frequency of unique VDJ regions that shared two different isotypes, having 

corrected for read depth by subsampling. This demonstrated increased switching to IGHG1 

and IGHA1 in all severity groups and post influenza vaccination in the first 25 days after 

symptom onset/swab positivity/vaccination (Fig 4.14).  

 

 
Fig 4.14 Class-switching at 0-25 days from symptom onset. Boxplots showing class-switching per patient in the first 0-25 
days from symptom onset, swab or vaccination split according to severity. Circles represent individual donors. 

 

Beyond 25 days, increased switching was prominent only to IGHA1, and predominantly in 

those with more severe disease (Fig 4.15). This is unlikely to be due to persisting virus, as 

clearance occurs within the first 25 days as measured by nasal/throat swab but rather could 

be associated with ongoing inflammation in group E evidenced by continued elevation in 

CRP(Bergamaschi et al., 2021a). In keeping with this, group E also demonstrated an ongoing 

class switching to IGHG1. Both vaccine groups demonstrated an increase in class switching 

to IGHA1 and IGHG1.  

 
Fig 4.15 Class-switching at 26-50 days from symptom onset. Boxplots showing class-switching per patient at 26-50 days 
from symptom onset, swab or vaccination split according to severity. Circles represent individual donors. 
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4.2.6 Somatic hypermutation  
 
SHM is the mechanism by which the BCR repertoire is diversified during the GC reaction, 

with the subsequent selection of high affinity mutants resulting in “affinity maturation”, and 

potentially also in an increased breadth of the memory B cell repertoire(Smith et al., 1997; 

Tonegawa, 1983; Victora and Nussenzweig, 2012). Reduced SHM has been seen in SARS-

CoV-2 infection by others (Galson et al., 2020; Kreer et al., 2020; Kuri-Cervantes et al., 2020; 

Nielsen et al., 2020; Schultheiß et al., 2020; Seydoux et al., 2020), and this is confirmed in 

our cohort (Fig 4.16). Reduced SHM is most pronounced in IGHG1, IGHG3, IGHA1, and to a 

lesser extent IGHA2 and IGHE. This is most prominent early after symptom onset, occurs 

across all severity groups, and recovers over time. SHM is reduced in the isotypes most 

increased in the BCR repertoire, suggesting that most expansion occurs outside the GC. 

 

 
Fig 4.16 Somatic Hypermutation. Heatmap showing the log2 fold change in mean frequency of replacement mutations 
covering regions CDR1 and CDR2 between SARS-CoV-2 and vaccine cases and HC, within severity categories and across time 
bins post screening (cat. A), symptom onset (cat. B-E) or vaccination (cat. VC and VI). Wilcoxon test FDR adjusted p-value: 
*<0.05, **<0.005, ***<0.0005.  

 

A mixed effects model of SHM illustrates the overall lower levels of SHM in IGHD and IGHM 

compared with IGHA1 and IGHG1 as expected. Modelling with time as continuum, IGHD and 

IGHM show an initial increase in SHM which normalises whilst IGHA1 and IGHG1 show the 

reverse with an initial decrease which normalises (Fig 4.17). 
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Fig 4.17 Linear mixed-effects model of SHM. Linear mixed-effects model showing the longitudinal levels of SHM over time, 
grouped by severity and isotype. Grey band indicates the interquartile range of the corresponding isotype in HCs. Nominal 
p-values for the time x severity group interaction term are reported. 

 

When the kinetics of SHM reduction are considered in more detail, SHM reaches its nadir 

between 11 and 20 days after symptom onset in most groups (Fig 4.18).  

 

 
Fig 4.18 IGHG1 SHM. Boxplots showing the mean frequency of replacement mutations covering regions CDR1 and CDR2 in 
IGHG1 split by severity categories time bins. Circles represent individual donors. Lines connect matching patients.  

 

A density plot of SHM split according to HC, disease severity and days from symptom onset, 

highlights the bi-modal distribution of SHM marked at 11-20 days from symptom onset 

which resolves out at 100-200 days from symptom onset (Fig 4.19 and Fig 4.20). 
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Fig 4.19 Density plot modelling IGHG1 SHM. Density plot modelling IGHG1 SHM across HC, infection and vaccination at 11-
20 and 101-200 days from symptom onset. 

 

 
Fig 4.20 Distribution of SHM. Boxplots showing the proportion of clones per patient with a mean level of SHM <0.05nt 
across HC and infection and vaccination at 11-20 and 101-200 days from symptom onset. 

 

Reduced SHM could reflect the relative increase in the proportion of unmutated B cell 

clones, highest in early time points compared to late ones (Fig 4.19), although less 

pronounced in group E (Fig 4.20). 

 

In contrast, a marked increase in SHM in IGHD and to a lesser extent IGHM, is present in 

those with moderate to severe COVID-19 (Fig 4.16 and Fig 4.17). This may be reflective of a 

cellular compositional change in IgM and IgD positive cells. When compared with HC, severe 
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COVID-19 patients have a proportional increase in IgM+ plasmablasts and memory B cells 

which are expected to have a higher mutational load compared with naïve B cells (Fig 4.21).  

 

 
Fig 4.21 IgM+ cells according disease status. Density plot comparing cellular IgM+ cells proportions in HC and group E 
within 25 days from symptom onset.  

 
 
This was confirmed with levels of SHM in IGHM/D clones having a negative correlation with 

CD19 naïve B cell numbers and a positive correlation with IgM memory and plasmablast 

proportions (Fig 4.22).  

 

 
Fig 4.22 Correlation between SHM and B cell subset proportions. Heatmap of correlations between isotype somatic 
hypermutations and B cell subset proportions within 25 days from symptom onset. p-value: *<0.05, **<0.005, ***<0.0005. 

 

To determine if SHM differed between expanded and unexpanded clones, we defined 

clones as expanded if they were >0.5% of the total repertoire and focused on groups C, D 
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and E within 25 days from symptom onset. There was also a comparative increase in SHM in 

expanded compared to unexpanded clones (Fig 4.23) consistent with generation in the 

germinal centre.  

 

 
 
Fig 4.23 SHM in the first 25 days from symptom onset. SHM in the first 25 days from symptom onset in groups C, D and E 
compared with HC split according to isotype and expansion, defined as >0.5%. 

 

 

SARS-CoV-2 vaccination did not appreciably alter SHM whilst Influenza vaccination showed 

an increase at 25-50 days in IGHG3 (Fig 4.16). Although not significant, IGHD and IGHM 

showed an increase in SHM post Influenza vaccination compared with healthy controls, 

similar to that seen in groups C, D and E. 

 

Finally, the acquisition of anti-SARS-CoV-2 spike IgG antibodies was temporally associated 

with reduced global IGHG1 SHM and appeared independent of the time post symptom 

onset (Fig 4.24). Splitting samples into 10 day time windows according to IgG spike status 

consistently showed a decrease in SHM in the IgG spike seropositive group compared with 

the seronegative group within a given time window. Fig 4.25 is a visual representation of 

SHM, illustrating a decrease in SHM when going from seronegative status to seropositive 

status. 
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Fig 4.24 IgG SHM according to disease status. Boxplots showing mean IGHG1 SHM per patient split according to days from 
symptom onset/swab and IgG spike serostatus. Circles represent individual donors.  

 
 

 
Fig 4.25 IgG SHM according to serostatus. Boxplots showing mean IGHG1 SHM per paired patient pre and post 
seroconversion. Visual representation of change in somatic hypermutation post seroconversion. Points represent B cell 
clones. Top row represents seronegative patients. Bottom row represents paired patient post seroconversion. IGHV gene is 
represented on the x axis, CDR3 length on the y axis and point colour represents level of SHM.  

 

This observation also held true for serum neutralisation activity which showed a decrease in 

SHM upon positive neutralising activity (Fig 4.26).  
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Fig 4.26 IgG SHM according to neutralising status. Boxplots showing mean SHM per patient split according to neutralising 
activity. Circles represent individual donors. 

 

Increased switching to IgG1 with seroconversion was also seen within 25 days from 

symptom onset. When further split according to disease severity, this increase in switching 

was driven by groups C, D and E (Fig 4.27).  These observations are consistent with recent 

evidence suggesting that the early neutralising anti-spike SARS-CoV-2 antibody response is 

not mutated 188,191,280 – with this antigen-specific observation reflected in the BCR repertoire 

as a whole.  

 

 
Fig 4.27 Class-switching between IGHD/M and IGHG1. Level of class switching from IGHD/M to IGHG1 at 25 days from 
symptom onset initially grouped and then split according to disease category 

 

4.2.7 Clonal expansion  
 

We next assessed clonal diversity and expansion, using a number of standard measures, 
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repertoire richness, Simpson’s, Shannon’s and D50 indices. “Richness” refers to the 

abundance of unique clones in a repertoire (Chao1). The inverse Simpson’s index assesses 

the probability of two randomly sampled reads belonging to the same clone, the more 

expanded clones within the population, the greater the chance of clonal sharing. The D50 

index refers to the number of unique CDR3 sequences that are present in the top 50% of 

sequences. A small D50 index is suggestive of large dominant clones. Shannon’s index is a 

measure of “evenness”, whereby the proportion of total reads represented by each clone is 

assessed. This metric is not influenced by the number of unique of clones but rather the 

distribution of size of clones in the repertoire. Thus, a decrease in BCR repertoire diversity, 

corresponding to an increase in expanded clones, will usually be reflected in a decrease in 

all four indices. 

 

There were no changes in BCR repertoire diversity in groups A, B and C. In contrast, there 

was a profound reduction in diversity in groups D and E. In both groups this was most 

pronounced in the first 25 days, but in group E the reduction persisted out to 100 days. By 

200 days, diversity had been restored in all severity groups (Fig 4.28 and Fig 4.29). The 

persistence of reduced clonality in group E is most likely a product of severe disease and is 

associated with the persistence of SARS-CoV-2 specific clones (discussed below). It is 

unlikely to be driven by ongoing overt infection, as in severe disease viral clearance with 

broadly similar kinetics to milder disease is the rule in most patients270. More likely 

increased initial viral load297 makes more antigen available on follicular dendritic cells which, 

in the context of ongoing systemic inflammation, results in a prolonged GC reaction and 

thus increased clonal expansion. The secondary infections commonly seen in the ICU setting 

would also contribute to increased B cell clonality. After a single dose of SARS-CoV-2 vaccine 

a decrease in diversity was similarly observed but was delayed until after 26 days after 

vaccination and persisted out to 100 days. Post Influenza vaccination, a similar trend was 

noted although not statistically significant (Fig 4.28 and Fig 4.29). 
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Fig 4.28 Simpson’s index and Chao1 diversity metrics. Heatmap showing log2 fold change in mean diversity indices between 
SARS-CoV-2 and vaccine cases and HC, within severity categories and across time bins post screening (cat. A), symptom 
onset (cat. B-E) or vaccination (cat. VC and VI). Wilcoxon test FDR adjusted p-value: *<0.05, **<0.005, ***<0.0005.  

 
Fig 4.29 Shannon’s index and D50 diversity metrics. Heatmap showing log2 fold change in mean diversity indices between 
SARS-CoV-2 and vaccine cases and HC, within severity categories and across time bins post screening (cat. A), symptom 
onset (cat. B-E) or vaccination (cat. VC and VI). Wilcoxon test FDR adjusted p-value: *<0.05, **<0.005, ***<0.0005.  

 

 

Post SARS-CoV-2 infection, reduced diversity is most prominent in the severe groups in the 

IgM and IgA subgroups, and appears less pronounced for IgG, while in contrast, vaccination 

induces this reduction in IgM and IgG, and not IgA, perhaps reflecting the fact that 

vaccination does not engage mucosal immunity (Fig 4.30).  

 

 
Fig 4.30 Diversity metrics according to isotype. Heatmap showing log2 fold change in mean Simpson’s diversity between 
SARS-CoV-2 and vaccine cases and HC, within severity categories and across isotypes and time bins. Wilcoxon test FDR 
adjusted p-value: *<0.05, **<0.005, ***<0.0005.  
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The kinetic recovery of diversity is shown for different isotypes using the Simpson’s index 

(Fig 4.31) in patients infected with SARS-CoV-2. This highlights the heterogeneity of group E 

with a portion showing no change in diversity.  

 

 
Fig 4.31 Linear mixed-effects model of Simpson’s diversity index. Linear mixed-effects model showing Simpson’s diversity 
index over time, grouped by severity and isotype. Grey band indicates the interquartile range of the corresponding isotype 
in HCs. Nominal p-values for the time x severity group interaction term are reported. 

 

 

In keeping with IGHA displaying a decrease in diversity post SARS-CoV-2 infection and IGHG 

displaying a decrease in diversity post SARS-CoV-2 vaccination, there were significantly 

higher levels of IgG spike specific antibodies compared with IgA in patients post vaccination 

whilst in natural infection, levels were comparable (Fig 4.32). 
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Fig 4.32 Anti-SARS-CoV-2 spike antibody level. Boxplots showing anti-SARS-CoV-2 spike antibody levels split according to 
isotype in COVID-19 patients (C,D and E) and post vaccination.   

 

 
4.2.8 Variable gene usage 
 
An examination of the contribution to the repertoire of various VH genes was then 

performed, with healthy controls matched by age with each of the severity groups (Fig 

4.33).  

 

 
Fig 4.33 Variable gene usage. Heatmap showing the difference between V gene proportion between SARS-CoV-2 and 
vaccine cases and HC, within severity categories and time bins. Difference calculated using the following, mean Vgene 
proportion of disease - mean Vgene proportion of HC/ mean Vgene proportion of disease + mean Vgene proportion of HC. 
Wilcoxon test FDR adjusted p-value: *<0.05, **<0.005, ***<0.0005.  
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Two broad features were apparent. The first was that the majority of statistically significant 

changes in the VH gene usage were seen only in groups C, D and E, which were most 

prominent early. These were thought to be most likely a consequence of the major changes 

in B cell subsets which occur in those with severe disease. In contrast, one IGVH gene, VH1-

24, was increased in all severity groups in the first-time window. VH1-24 was notably 

increased in IGHG1, IGHA1 and IGHM reads (Fig 4.34). 
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Fig 4.34 Variable gene usage according to isotype. Heatmap showing the difference between V gene proportion between 
SARs-CoV-2 and vaccine cases and HC, within severity categories, isotypes and time bins. Difference calculated using the 
following, mean Vgene proportion of disease - mean Vgene proportion of HC/ mean Vgene proportion of disease + mean 
Vgene proportion of HC. Wilcoxon test FDR adjusted p-value: *<0.05, **<0.005, ***<0.0005.  

 

 

VH1-24 has been shown to be strongly associated with antibodies which recognise the N-

terminal Domain (NTD) of the SARS-CoV-2 spike protein, conferring neutralisation even in 

the germline state196. Consistent with this VH1-24 proportion was strongly associated 

seroconversion and the development of neutralising antibodies (Fig 4.35 and 4.36), an 

observation not confounded by disease duration (Fig 4.37).  

 
Fig 4.35 IGHV1-24 positive clones. Boxplots showing proportion of IGHV1-24 positive clones/per patient split according to 
days from symptom onset/swab and IgG spike serostatus.  p-value: *<0.05, **<0.005, ***<0.0005. 
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Fig 4.36 IGHV1-24 positive clones according to neutralising activity. Boxplots showing proportion of IGHV1-24 positive 
clones/per patient split according to neutralisation ability. p-value: *<0.05, **<0.005, ***<0.0005. 

 

 
Fig 4.37 IGHV1-24 positive clones according to neutralising activity and time.  
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but at this time there was no evidence of a concurrent increase in SHM or clonal expansion 

(Fig 4.38). There was a significant difference in VH1-24 proportion between groups D and E 

(Wilcox test, p value: 4.8e-03) at 0-25 days from symptom onset. No increase in VH1-24 was 

seen after SARS-CoV-2 vaccination. 
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Fig 4.38 IGHV1-24 metrics. Boxplots showing IGHV1-24 proportions, mean SHM and expanded IGHV1-24 clones per person 
by severity categories and time bins. p-value: *<0.05, **<0.005, ***<0.0005. Circles represent individual donors. 

 

 

4.2.9 Clonal convergence  
 
We looked for overlap between BCR clones present in our study with the CoV-AbDab 

database, a resource detailing all published and patented antibodies shown to bind SARS-

CoV-2 and other coronaviruses231. Convergent clones were defined by sharing of IGHV and 

IGHJ genes, having identical CDR-H3 region length and having CDR-H3 sequences that show 

85% amino acid homology, and thus likely to have a similar antigen specificity to the 

reference antibodies.  
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We found clonotype convergence in both IGHD/IGHM clones in COVID-19 as well as in 

patients vaccinated against SARS-CoV-2, within the first 25 days from symptom 

onset/vaccination (median proportion of convergent clones in HC: 0, A: 0.00016, B: 

0.000088, C: 0.00023, D: 0.00057, E: 0.00043, VC: 0, VI:0) and class-switched clones (median 

proportion HC: 0, A: 0.00039, B: 0.00047, C: 0.00047, D: 0.00048, E: 0.00046, VC: 0, VI:0). At 

26-50 days clonal convergence decreased in all isotypes but most markedly in IGHD/IGHM 

(median proportion HC: 0, A: 0, B: 0.000037, C: 0, D: 0, E: 0.000059, VC: 0, VI:0) consistent 

with class-switching of antigen specific clones (Fig 4.39). Overall, there appeared to be an 

increase in convergence in groups C, D and E, compared with groups A and B, consistent 

with greater convergence being related to disease severity.  

 

 
Fig 4.39 Clonal convergence according to isotype. Convergent clone frequency between COVID-19 and vaccinated patients 
with the CoV-AbDab database. This represents the % of unique clones in each patient that are also found in the COV-AbDab 
database Samples split by severity categories and time bins post screening (cat. A), symptom onset (cat. B-E) or vaccination. 
One-sided Wilcoxon test FDR adjusted p-value: *<0.05, **<0.005, ***<0.0005. Circles represent individual donors. 
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With infection, there was a significant convergence of class-switched and non-class-

switched clones described to be neutralising and targeting the RBD and NTD of spike.  In 

contrast, after SARS-CoV-2 vaccination, COVID-19 specific clones were mainly class-switched 

and targeted the RBD (Fig 4.40). 
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Fig 4.40 Clonal convergence according to isotype and spike region. Convergent clone frequency of neutralising, RBD-specific 
and NTD-specific clones between COVID-19 and vaccinated patients with the CoV-AbDab database. Samples split by severity 
categories and time bins post screening (cat. A), symptom onset (cat. B-E) or vaccination. One-sided Wilcoxon test FDR 
adjusted p-value: *<0.05, **<0.005, ***<0.0005. Circles represent individual donors. 
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Increased convergence with the CoV-AbDab database was present in patients who had 

seroconverted (Fig 4.41) as well as in patients with neutralizing antibodies (Fig 4.42).  

 
Fig 4.41 Clonal convergence according to serostatus. Boxplots showing convergence per patient split according to days from 
symptom onset and IgG spike serostatus.  Circles represent individual donors. 

 

 
Fig 4.42 Clonal convergence according to neutralising activity.  Boxplots showing convergence per patient split according to 
neutralisation ability. Circles represent individual donors. 
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In order to assess if there was an increase in somatic hypermutation with time, in clones 

that were convergent with the CoV-AbDab database, we created phylogenetic trees. We 

tracked the level of somatic hypermutation at serial time points of a given clone, sampled at 

multiple time points, for a given patient (Fig 4.43). Clone tracking showed progressive 

somatic hypermutation with time. Trees on the left that show that clones from the bleed 

taken early post symptom onset (blue) are close to the germline, denoted in black, whilst 

are more distal from the germline at later time points. The Figs on the right annotate the 

clones according to isotype. Patient CV0069 shows increased SHM but ongoing IGHM clones 

whilst patient CV0071 shows increased SHM with class switching to IGHG1 and IGHA1. 

 

 
 

 

Fig 4.43 a CoV-AbDab convergent clone. Phylogenetic trees tracking a CoV-AbDab convergent clone across serial bleeds in a 
given patient. 
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To assess if there was increased clonal sharing within COVID-19 patients (0-25 from 

swab/symptom onset), vaccinated patients (26-50 days from vaccination) or health, we 

calculated the number of shared clusters pairwise up until 5 patients. We performed this in 

9 patients to accommodate for the smallest group size. We performed 200 permutations 

where we randomly selected 9 patients within a disease group, and then 4000 unique 

clusters per person. This showed greater sharing in COVID-19 patients, suggestive of 

increased BCR overlap driven by shared antigen through exposure (Fig 4.44). Similarly, post 

SARS-CoV-2 vaccination, there was increased convergence, with a greater number of shared 

clusters amongst 4 or more people compared with natural infection or health (Fig 4.44). 

 

 
Fig 4.44 Shared clonotypes. Boxplot representing the number of clonotypes shared by patients in HC, COVID patients within 
25 days from symptom onset/swab and within 25-50 post vaccination.   

 

In order to identify new clones that might be COVID-19 specific, we looked for convergent 
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45 were also present in the CoV-AbDab database and 480 were also present at 26-50 days 

from symptom onset. To further understand these clones, cloning would need to be 
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bystander antibody response. The number of clones decreased at 26-50 days from symptom 
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of shared clones were especially low at 51-100 days from symptom onset. This is due to a 

decrease in clone size as well as the lower number of patients recruited at this time window. 

There were 50 clones that were present in at least three time windows. There was minimal 

sharing of clones in the vaccine groups and no overlap between SARS-CoV-2 infection and 

vaccination.  

 
Fig 4.45 Convergent IGH clusters.  Convergent IGH clusters among disease groups represented by the horizontal bars and 
shared across disease groups represented by the lines. A dot indicates no sharing and the total summated by the vertical 
histogram bars.  

 

The convergence of clonotypes was consistent with shared antigen driving selection of 
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Fig 4.46 Clones present in 10 or more patients. Representation of the clones shared in ten or more COVID-19 patients and 
present in the CoV-AbDab database. 

 

Examining the top 20 convergent IGH clusters from the first 25 days from symptom revealed 

a clones present in over 30 patients and not present in health. This level of sharing was 

highly suggestive of a shared antigen driven response (Fig 4.47). 
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Fig 4.47 Top 20 Convergent IGH clusters. Top 20 Convergent IGH clusters in the first 25 days from symptom/swab. Number 
of patients that clusters are shared in is represented by the horizontal bars. 

 
 
Assessing V gene usage of these disease-associated clones at 0-25 days from symptom 

onset, revealed an increase in representation of IGHV4-34 and IGHV1-24 compared with 

health (Fig 4.48 and Fig 4.49).  

 

 
 

Fig 4.48 V gene usage in convergent clusters in health. Pie chart comparing V gene usage of convergent clusters in HC  
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Fig 4.49 V gene usage in convergent clusters in COVID-19.. Pie chart comparing V gene usage of convergent clusters in 
COVID-19 within 25 days from symptom onset.  
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similarities in extrafollicular pathway activation and expansion of double negative B cells 

and the presence of lowly mutated clones 189,219,279,300.  
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Fig 4.50 Isotype usage according to age. Isotype usage according to unique VDJ sequence comparing <80 year (n= 22) vs > 
80 years old (n= 28). Differences between groups were calculated using Mann-Whitney U test. 

 

Fig 4.51 Isotype usage according to neutralising status. Boxplots showing Isotype usage according to unique VDJ sequence 
comparing participants <80 (n= 22) vs > 80 years old (n= 28) and association with neutralisation of spike pseudotyped virus. 
Neutralisation cut-off for 50% neutralisation was set at 20. Differences between groups were calculated using Mann-
Whitney U test. 
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We found an increase in usage of the immunoglobulin heavy variable 4 (IGHV4) family in the 

younger age group, with an increased proportion of IGHV4-34, IGHV4-39, IGHV4-59 and 

IGHV4-61, whereas in the older age group there was an increase in usage of the IGHV1 

family, with increases in IGHV1-18 and IGHV1-69D (Fig 4.52). IGHV4-34 is associated with 

autoimmunity as previously stated whilst IGHV1-69D is a paralog of IGHV1-69. IGHV1-69 is a 

common IGHV gene present broadly neutralizing antibodies against influenza virus, HCV, 

and HIV 301 

Fig 4.52 V gene usage according to age. Heat map showing V gene usage, comparing participants <80 with >80 years old. 
Differences between groups were calculated using Mann-Whitney U test. A Benjamini Hochberg FDR correction was used, 
*P < 0.1.  

 

There were no significant differences in V gene usage associated with neutralization (Fig 

4.53). 
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Fig 4.53 V gene usage according to neutralising status. Boxplots showing V gene usage as a proportion, comparing 
neutralisation of spike pseudotyped virus. Neutralisation cut-off for 50% neutralisation was set at 20. Differences between 
groups were calculated using Mann-Whitney U test. 

 

Differences in somatic hypermutation could affect neutralization through antibody affinity 

maturation. We found that participants aged 80 years or more had a lower level of somatic 

hypermutation in class-switched B cell receptors (BCRs) than the younger group, and that 

the difference was driven by the IGHA1/2 isotype (Fig 4.54).  
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Fig 4.54 SHM according to age. Boxplots showing mean somatic hypermutation comparing participants <80 vs > 80 years 
old, grouped according to isotype class. Differences between groups were calculated using Mann-Whitney U test. 

 

We also did not find any relationship between measures of diversity and age (Fig 4.55).  

 

Fig 4.55 Diversity according to age. Diversity Indices comparing < 80 year olds vs > 80 year olds. The inverse is depicted for 
the Simpson's index and the Shannon-Weiner index is normalised.  Differences between groups were calculated using a t 
test. 

 

We next examined the B cell repertoire for public clones known to be associated with SARS-

CoV-2 neutralization. We explored the convergence between BCR clones in our study and 

the CoV-AbDab database and found that participants under 80 years of age had a higher 

frequency of convergent clones, in keeping with increased neutralization, when compared 

with the older group (Fig 4.56). 
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Fig 4.56 Convergent clones according to age. BCR comparison of patients in the first 50 days from vaccination <80 (n= 27 ) 
vs > 80 years old (n= 5) with public clones known to be associated with SARS-CoV-2 using the CoV-AbDab database. Clones 
from participants and the database were co-clustered based on matching IGHV and IGHJ segments, same CDR-H3 region 
length and 85% CDR-H3 sequence amino acid homology. Differences between groups were calculated using a one-sided t 
test. 
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memory B cells are not a major source. They may also be generated rapidly by isotype 

switching and differentiation of naive B cells to plasmablasts outside the germinal centre303. 

Given both the reduction in germinal centres and circulating as well as tissue CD4 TFH cells 

observed in patients with severe covid-19, this seems a more likely source of plasmablasts 

than switching in early germinal centres190,270,271. Evidence of clonal evolution in the form of 

an increase in SHM, potency and broadening of the repertoire is however observed at 6 

months post infection186,191,192, which together with the detection of SARS-CoV-2 specific 

long lived plasma cells in bone marrow aspirates at 11 months post infection304 suggests 

that a germinal centre response does occur post infection albeit delayed.” 

 

In those with more severe disease (groups D and E), increased clonal expansion, as 

evidenced by a reduction in repertoire diversity, is seen. The clonal expansion is most 

prominent in IgM and IgA, and not in IgG. This highlights the important role that IgA B cell 

memory may play post mucosal infection with SARS-CoV-2 first mainly infecting the upper 

respiratory tract. In addition, dimerised IgA antibodies, the form predominantly found in 

mucosal tissues, are highly potent against SARS-CoV-2 and are more so than IgG and 

monomeric IgA 305 and IgA-virus-immune complexes are potent induces of netosis via 

engagement of Fc-αRI on neutrophils306. 

 

Across all severity groups, VH1-24 was the dominant VH gene expanded after SARS-CoV-2 

infection. Antibodies bearing this VH gene have been noted to make up the majority of 

neutralising IgG antibodies arising after SARS-CoV-2 infection, with a specificity for the NTD 

component of the spike antigen, rather than the receptor binding domain (RBD) which had 

been first assumed to be the main target of neutralising antibodies196. Given these 

observations, the fact that the proportional increase in VH1-24 in group E is substantially 

lower than all less severe groups raises the possibility that a robust early VH1-24 response 

might help prevent severe disease. 

 

Changes in the repertoire following SARS-CoV-2 vaccination were less pronounced than in 

COVID-19 infection. Isotype usage showed an increase in IGHM and D and a decrease in 

IGHA1/2 which is reciprocal to that seen in natural infection. There were no changes in SHM 

or specific heavy chain usage. The lack of global changes to SHM rates, unlike the increase 
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seen post Influenza vaccine, likely highlights the lack of mobilisation of pre-existing memory 

B cells, which rapidly differentiate into plasmblasts on antigen re-exposure. Similarly, the 

pronounced decrease in SHM seen in infection is not apparent. This highlights how natural 

infection has a more overwhelming effect on the immune response that is both detectable 

at a global level and which potentially results in a more sustained memory response. This 

illustrates the important role of adjuvants in vaccination which are employed to increase the 

potency and longevity of the antigen specific immune response by prolonging exposure 

through a depot like affect and activating the innate immune system. Despite this, 

convergence analysis with the CoV-AbDab database revealed the generation of SARS-CoV-2 

spike specific clones post vaccination and significantly increased clonal sharing compared to 

healthy controls. There was a larger number of clones shared post SARS-CoV-2 vaccination 

compared with any other group when looking at clonal overlap in a minimum of 5 people. 

This suggests a focusing of the immune response on a narrow range of antigens post SARS-

CoV-2 vaccination. In contrast, Influenza vaccination resulted in clear global changes in the 

repertoire with isotype changes mirroring SARS-CoV2 infection and an increase in SHM, 

likely reflecting an expansion of cross-reactive antibodies from previous exposures and 

vaccinations 307. Clonal expansion is, however, seen post SARS-CoV-2 vaccination and occurs 

with similar kinetics to that seen in response to natural infection. This appears to be driven 

primarily by expansion of clones bearing IgM and IgG isotypes rather than IgA that 

predominates in natural infection. A finding further supported by higher spike specific IgG 

antibody titres compared with IgA. This is reflective of the different anatomical 

compartments being mobilised in the early immune response with systemic vaccination 

being poor at generating a mucosal response185. The inability of systemic vaccine to induce 

mucosal IgA or tissue resident memory T cell responses limits efficacy against respiratory 

pathogens 308–310. Given mucosal immune responses are compartmentalised with intra-nasal 

vaccines inducing a response in the upper and lower respiratory tracts, a vaccine utilising 

this approach would neutralise pathogens at the site of entry308,309. In support of this, a 

chimpanzee adenovirus-vectored vaccine administered in   

Syrian hamsters intranasally resulted in less viral load and lung pathology upon challenge 

compared with intramuscular administration311.   
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Vaccination elicited COVID-19 specific clones that were class-switched, likely neutralizing 

and mainly targeted the RBD of the spike protein. However, the level of convergence with 

CoV-AbDab database was far lower than that seen in severe disease, with minimal 

formation of antibodies targeting NTD compared to natural infection. The reason for the 

under-representation of NTD-specific clones is unclear given that the BNT162B2 SARS-CoV-2 

vaccine utilises the sequence of the full-length SARS-CoV-2 spike protein, including the NTD. 

The lack of NTD convergent clones may represent a limitation of the database or that NTD 

targeting clones are rarer and thus less likely to be sampled. If a true difference in 

vaccination and infection is present, it might be that future vaccine design strategies might 

be developed to increase the immunogenicity of the NTD, but it is also worth bearing in 

mind that there is a divergence of views on the importance of this antigen in the generation 

of neutralising antibodies286,287. 

 

Global repertoire analysis is a useful adjunct to antigen specific B cell responses and can 

inform vaccine strategies. We show temporal changes in the BCR repertoire in response to 

natural SARS-CoV-2 infection and generation of antigen-specific B cell response, which is 

dynamically and compositionally distinct from vaccination. SARS-CoV-2 natural infection 

results in activation of mucosal immunity with clonal expansion in IgM and IgA isotypes and 

an increase in VH1-24. SARS-CoV-2 vaccination induces very different isotype changes to 

natural infection, results in clonal expansion of IgM and IgG and appears to focus the 

immune response to the RBD.  

 

We recognize that a limitation of the study is that neither the antigenic specificity nor 

neutralising capacity of antibodies encoded by identified BCR sequences was determined 

experimentally. Instead, function was inferred by similarity to sequences deposited in the 

COV-AbDab database. While this is an excellent and growing resource, this approach is 

limited in breadth, with a particular bias towards the identification of RBD-binding clones, 

and likely results in the under reporting of SARS-CoV2 specific clones in our dataset. Future 

work would include generating monoclonal antibodies from convergent IGH sequences to 

allow further characterisation. In addition, the analysis of the BCR repertoire of flow sorted 

B cell subsets would have enabled a more granular delineation of how SARS-CoV-2 infection 

impacts the BCR repertoire. 
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5. B cell receptor Repertoire in Crohn’s Disease 
 
5.1 The gastrointestinal immune system  
 
5.1.1 Introduction 
 
Immune cells are present in defined anatomical compartments as well as being scattered 

throughout in the gastrointestinal tract. The gut associated lymphoid tissues include Peyer’s 

patches which are present in the small intestine, lymphoid tissue of the appendix and 

lymphoid follicles which reside in the intestinal wall312. There are 100-200 Peyer’s patches in 

the small intestine, and these contain a larger number of B cell follicles compared with 

peripheral lymphoid organs. Outside lymphoid organs, lymphocytes can be found in two 

compartments, the epithelium and the lamina propria which is the connective tissue that 

underlies the epithelium2. Mesenteric lymph nodes are the largest lymph nodes in the body 

and receive drainage from Peyer’s patches and the lamina propria312 (Fig 5.1) 

 

 
Fig 5.1 Gastrointestinal Immune system illustrating Peyer’s patches and scattered lymphocytes.2 

 

The gastrointestinal immune system can be divided functionally into inductive and effector 

sites312. The inductive sites are where antigen is sampled and results in activation of naïve 

and memory cells. This includes Peyer’s patches, lymphoid follicles and mesenteric lymph 

nodes. The effector site is where post differentiation, effector cells perform their function 

and includes the epithelium and lamina propria. 
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5.1.2 Intestinal epithelial cells 
 
Mucosal surfaces contain a single layer of intestinal epithelial cells. These cells along with a 

mucosal layer form the first barrier to pathogen entry313. Cells present in this layer include 

goblet cells which secrete mucus, paneth cells and microfold cells (M cells)314. Goblet cells, 

another specialized epithelial cell produce mucus which forms a barrier to invasion and in 

addition acts as a scaffold, retaining IgA antibodies and antimicrobial peptides313. Paneth 

cells express toll like receptors (TLR) and Nucleotide-binding and oligomerization domain-

like receptors (NOD), are highly autophagic and produce anti-microbial peptides including 

RegIIIy and defensins. M cells do not produce digestive enzymes or mucus and therefore 

allow direct passage of microbes from the lumen. The basal cell membrane is extensively 

folded forming a pocket enclosing lymphocytes. Thus, when microbes translocate, 

macrophages and dendritic cells are poised for uptake and subsequent presentation to the 

adaptive immune system2.  

 

Lymphocytes in the epithelium (intraepithelial lymphocytes) of the small intestine are 

predominantly CD8ab T cells and bind to E-cadherin on epithelial cells via integrin CD103315. 

These activated CD8 T cells contain perforin and granzyme granules and are oligoclonal with 

restricted VDJ gene segments2.  

 

5.1.3 Lamina Propria 
 
The lamina propria contains IgA-plasma cells, CD4 and CD8 memory and effector cells, 

innate lymphoid cells, dendritic cells, macrophages and mast cells316. These lymphocyte 

express integrin α4:β72. CD4 T cells predominate in the lamina propria312. CD4 T cells are 

heterogeneous and differentiate depending on the cytokine milieu. Interleukin-12 causes 

the up-regulation of the transcription factor T-bet which leads to the differentiation to type 

1 helper T (Th1) cells317. These cells are pro-inflammatory, secreting interferon-γ and TNF-α 

and recruit macrophages, natural killer cells, and CD8+ T cells312. Whereas, interleukin-6, 

TGF-β, and interleukin-1 cause the up-regulation of interleukin-23R and transcription factors 

including retinoic acid–related orphan receptor gamma t (RORγt). This makes the T cell 

more responsive to interleukin-23 and thus differentiate to Th17 cells318. Th17 cells recruit 

neutrophils, secrete IL-17 and IL-22.  This pro-inflammatory state is balanced by presence of 
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Treg cells which produce IL-10 and modulate the expression of RORγt319. CD103+ dendritic 

cells are tolerogenic and play an important role in promoting tolerance by promoting the 

expansion and differentiation of Tregs320. 

 

5.1.4 Peyer’s Patches 
 

Peyer’s patches are specialised immune niches formed in anatomical regions known as the 

subepithelial dome. B and T cells activated in Peyer’s patches do not directly migrate to the 

adjacent lamina propria but rather drain into the mesenteric lymph nodes followed by the 

thoracic duct and into the circulation. The expression of CCR9 on their cell surface allows 

homing to the lamina propria via chemokine CCL25 produced by gut epithelial cells. α4:β7 

binds to MAdCAM-1 expressed on endothelial cells of the blood vessels in mucosal tissues 

enabling emigration into the lamina propria321 (Fig 5.2). Isotype switching to IgA occurs in 

Peyer’s patches but do not differentiate fully into plasma cells until return back into the 

lamina propria322. 

 
Fig 5.2 Passage of immune cells in the gut323.  
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5.1.5 Immunoglobulin 
 

IgA is the dominant mucosal antibody. In blood, IgA takes on a monomeric form whilst in 

mucosal tissues, IgA forms a dimer. Naïve B cells are activated in Peyer’s patches and 

mesenteric lymph nodes. TGF-β stimulates class-switching to IgA and is TFH cell dependent 

and IL-5, IL-6, IL-10 and IL-21 promotes expansion of the population322. B cells do not 

differentiate into plasma cells in the Peyer’s patches but rather IgA lymphoblasts enter the 

circulation and then return to the intestinal lamina propria where they terminally 

differentiate.  

 

For IgA and IgM antibodies to reach the luminal surface where antigen is present, they bind 

polymeric immunoglobulin receptor (pIgR) which transports them across to the luminal 

surface. pIgR is expressed constitutively in epithelial cells at the basolateral surface. pIgR 

binds to the J-chain of dimeric IgA and polymeric IgM and transports the antibody via 

endocytosis to the luminal surface. To release the antibody, proteolytic cleavage occurs and 

part of the cleaved pIgR remains bound to IgA, this is known as the “secretory component” 

(Fig 5.3)2,324. 

 

 

Fig 5.3 Passage of IgA and IgM to mucosal surfaces2. 
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5.1.6 Tolerance 
 
The human gastrointestinal tract houses more than 1000 species of microbes and the 

majority can be grouped into two broad categories, Bacteroidetes (gram negative) and 

Firmicutes (gram positive)325. The microbiota is imperative in maintaining gut health326. The 

microbiota assists in metabolizing dietary components such as cellulose and produce key 

vitamins such as vitamin K. Short-chain fatty acids are produced and act as an important 

source of energy for colonic enterocytes. The microbiota out competes pathogenic 

organisms and is non-invasive thus not causing tissue injury. 75% of commensal organisms 

are coated by IgA. The microbiota also strongly influences the host immune system327. A 

reduction in ab and gd intraepithelial lymphocytes and IgA antibodies occurs in germ-free 

mice which is reversed on colonization328,329. 

 

Germinal centres arise in a homeostatic manner in the gut and are highly influenced by the 

microbiota. Chen et al, show that in mice, there is a large overlap in repertoire across 

multiple mice in keeping with the presence of a “public repertoire”330. Public repertories are 

generated through common microbial antigens. Chronic germinal centres in Peyer’s patches 

require the presence of antigen as illustrated by the lack of them in germ-free mice and the 

restoration of them post vaccination and colonisation of commensals.  

 

The mucosal system needs to mount a response against infectious pathogens whilst 

remaining tolerant towards harmless antigens such as food and commensals.  

Pathogens are sampled in multiple ways, including via M cells, dendritic cells which extend 

their dendrites through tight junctions and translocation of gut antigens through 

enterocytes313.  

 

Epithelial cells play an important role in preventing infection. They contain TLRs on their 

basolateral and apical surfaces as well as in intracellular vesicles which recognize PAMPs and 

DAMPs on invading bacteria. NOD1 and NOD2 recognise bacteria cell wall peptides, 

diaminopimelic-acid containing peptide and muramyl dipeptide respectively. Activation of 

TLR and NODs results in downstream activation of NFKB. This leads to epithelial cells 

releasing proinflammatory cytokines IL-1 and IL-6 and chemo-attractants CXCL8, CXCL1, 
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CCL1 and CCL2 which attract neutrophils and macrophages and CCL20 which attracts 

dendritic cells. The inflammasome is activated resulting in the release of caspase1 which 

cleaves pro-IL-1 and pro-IL-18 to produce IL-1 and IL-18. Bacteria that enter the epithelial 

cell cytoplasm may be ubiquinated which attracts the phagophore, forming an 

autophagosome. Fusion with the lysosome leads to its destruction. NOD-1 and NOD-2 

promote autophagy331. 

 

IgA plays an important role in balancing host response to the microbiota. IgA binds to 

microbials preventing adherence to the cell epithelium and neutralizes toxins324. Once 

microbials have entered the epithelium, IgA can bind them in the endosome and the 

complex is subsequently re-exported into the gut lumen. IgA bound antigen can bind to 

Dectin-1 on M cells. The complex is subsequently taken up by DC- SIGN receptor on 

dendritic cells resulting in the production of anti-inflammatory cytokine IL-10. IgA’s inability 

to fix complement also prevents inflammation2. 
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5.2 Crohn’s disease 
 
Inflammatory bowel disease (IBD) affects 1 in 200 individuals with its global prevalence 

increasing since 2000332. It can be further broken up into two distinct disorders, Crohn’s 

disease (CD) and Ulcerative colitis (UC). CD is characterised by intestinal skip lesions with are 

transmural in nature and can affect any region of the gastro-intestinal tract. Intestinal 

complications of CD include strictures, fistulas and abscess. UC on the other hand, affects 

only the colon and causes superficial, continuous regions of inflammation that extend 

proximally in a contiguous manner333. The combination of environmental factors coupled 

with host susceptibility and an aberrant immune response to the microbiome results in IBD 

(Fig 5.4). 

 
 

 
Fig 5.4 Immunopathology of Crohn’s disease323 

 

5.2.1 Genetic Factors 
 
There is a 50% concordance of CD in monozygotic twins.  Over 200 loci have been identified 

as CD risk loci but individually only modestly increase risk with odds ratios of 1.1-1.2334. Key 

at risk loci in Caucasian populations are NOD2335,336 which decreases ability to kill bacteria, 
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ATG16L1 an autophagy gene and IL23R. However, in Asian populations, TNFSF15 is the 

predominant risk locus337. 

 

5.2.2 Intestinal barrier 
 

The intestinal barrier is the first line of defence as stated above. The small intestine contains 

a single layer of epithelial cells covered by a mucus biofilm which is secreted by goblet cells. 

It further is protected by antibacterial mediators and IgA. This is in contrast to the colon 

where the mucus layer is thicker and can be further divided into an inner layer which is 

impenetrable to bacteria and an outer layer which serves as a reservoir for distinct 

bacteria338. Comparisons of mucus gene expression derived from healthy individuals and 

patients with CD ileal disease reveals a decrease in MUC1 mRNA and comparisons between 

inflamed and uninflamed regions revealed a decrease in MUC3, MUC4 and MUC5B339.  

 

A defect in barrier components including junctional proteins, production of antimicrobial 

peptides and mucin increases permeability and the translocation of luminal antigens to the 

lamina propria. In CD, a decrease in claudin 5 and 8 which are sealing tight junctional 

proteins and an increase in pore-forming claudin 2 is observed340. Polymorphisms in 

NOD2(nucleotide-binding oligomerization domain 2), ATG16L1, IRGM and LRRK2 cause 

abnormalities in the secretory ability of Paneth cells341. 300T→A variant of the ATG16L1 

results in fewer and functionally impaired granules secreted by Paneth cells. Autophagy 

gene ATG16L1 plays an important role in determining the tolerance of endoplasmic 

reticulum stress in intra-epithelial cells. Endoplasmic stress elicits a pathological unfolded 

protein response. ATG16L1 determines the activation level of inositol-requiring enzyme 1α 

(IRE1α), an unfolded protein response sensor. Hyperactivation of IRE1α leads to 

spontaneous ileitis in mice342. NOD2 senses conserved motifs on bacterial peptidoglycans 

and regulates the secretion of AMPs. NOD2 polymorphisms are strongly associated with 

Crohn’s disease secondary to impaired ability to respond appropriately to microbial 

products 341.  
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5.2.3 Microbial dysbiosis 
 
In CD there is a reduction in the number, diversity and richness of microbial species343. In 

particular, a decrease in Bacteriodetes such as Bacteroides thetaiotaomicron and the 

Clostridia class of Firmicutes and a concurrent increase in Gamma proteobacteria and 

Actinobacteria is reported 344. A direct causal relationship between dysbiosis and IBD has 

not been proven and fecal transplants have had varying results332. However, in support of 

dysbiosis causing pathology, it has been shown that fecal material from patients with IBD 

resulted in an increased susceptibility to colitis in germ-free mice when compared with mice 

receiving fecal material from healthy donors with an increase in Th17 and a decrease in Treg 

cells being observed345. Adherent–invasive Escherichia coli (AIEC) have been implicated as a 

pathogenic bacterium in Crohn’s disease. AIEC enter intra-epithelial cells by binding to 

carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) and subsequently 

reside in host macrophages driving production of pro-inflammatory cytokines and 

contribute to granuloma formation346.  

 
5.2.4 Adaptive immune response 
 
An imbalance is present between effector T cells (controlled by transcription factor RORyT) 

and regulatory T cells (FOXP3)(Baumgart and Sandborn, 2012). Effector CD4 T cells are 

implicated in the pathology of IBD with excessive T helper 1 (Th1) and Th17 cell responses 

post stimulation by antigen presenting cells (presenting microbiota)347. IL-12 secreted by 

antigen presenting cells promotes differentiation into Th1 cells via STAT4348 whilst IL-23 

enhances Th17 differentiation349. Th1 and 17 cells in response secrete pro-inflammatory 

cytokines IFN-y, IL-17, TNFa and IL-22. 

 

IL-12 is comprised of interleukin-12p35 and interleukin-12p40 subunits whilst IL-23 is 

comprised of interleukin-23p19 and interleukin-12p40 subunits349. Antibodies targeting 

anti–interleukin-12p40 allows dual blockage of both cytokines and are used in IBD. JAK 

inhibitors block downstream signalling of IL-12 and IL-23350. Blockage of IL-17 have not been 

effective in CD347. Tregs secrete IL-10, TGFB and IL-35. Studies are underway to upregulate 

Treg cells via IL-2333. 
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The healthy gut mucosa is dominated by IgA which acts to limit microbial infiltration351. A 

dysregulated humoral response in inflammatory bowel disease (IBD) is supported by 

findings of increased IgG B cells352,353 and anti-commensal antibodies354. An IgG+ plasma cell 

module was identified in patients refractory to anti-TNF therapy on scRNAseq of ileal 

biopsies in Crohn’s disease352. IgG is potentially pro-inflammatory with the ability to fix 

complement and activate immune cells via Fcy receptors. FCGR2A-R131 variant is protective 

against ulcerative colitis (UC), where the amino acid substitution lowers IgG binding 

affinity355. Furthermore, there is an increase in the activating to inhibitory ratio of FcgR 

mucosal immune cells in UC, lowering the threshold for activation by IgG which induces 

production of IL-1B in macrophages, a Th17 polarising cytokine354. In IBD, there is increased 

agalactosylated IgG in the serum which favour binding to activating FcγR and correlates with 

disease severity whilst serum IgG sialylation which is anti-inflammatory is reduced in 

Crohn’s disease356. B cell clonal expansion with heightened use of auto-reactive heavy chain 

VH4-34 is evident in Crohn’s disease278. Thus multiple lines of evidence suggest that B cells 

play a prominent role in the pathology of IBD. However, how B cells and their receptors may 

differ and contribute to IBD pathology remains unknown.  

 

The BCR denotes the unique clonal identity of a B cell. Generation of the BCR first occurs 

during B cell development in the bone marrow with rearrangement of the immunoglobulin 

receptor genes, and then undergoes further diversification via somatic hypermutation 

(SHM) and class-switching recombination (CSR) in secondary lymphoid organs. The BCR 

repertoire refers to the range of individual BCRs that collectively provide the diversity of 

antigen receptors required by B cells to recognise antigens. The hypervariable 

complementarity-determining region 3 (CDR3) of the BCR is formed by the combination of 

V, D and J genes and is a key antigen binding determinant and thus informative when 

assessing for a shared antigen driven response. Using high resolution analysis of the BCR 

repertoire from blood and lymph nodes (LN) we identified clonal B cell populations unique 

to Crohn’s disease LNs, local to sites of inflammation. 
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5.3 Results 
 
5.3.1 Sample overview 
 
We analysed the BCR repertoire from five independent cohorts.  

 

Lymph Nodes 

BCR repertoires were generated from 24 individuals with active Crohn’s disease requiring 

small bowel resection. Samples were taken from mesenteric lymph nodes adjacent to areas 

of inflamed regions of bowel. 

 

Post-mortem samples 

A publicly available BCR dataset of 8 post-mortem individuals from 4 sites including the 

mediastinal LN (MDLN), spleen (SPL), mesenteric LN (MSLN) and peripheral blood (PBMC) 

was accessed 269. 

 

PBMC 

BCR repertoires were generated from the PBMCs of 24 individuals with active Crohn’s 

disease who were off medications and 29 healthy controls. 

 

Plasmablasts 

BCR repertoires were generated from circulating plasmablasts of 24 individuals with active 

Crohn’s disease who were off medications, 26 individuals with active UC who were off 

medications and 29 healthy controls.  

 
 
5.3.2 Convergent Clones 
 
We wished to assess for the presence of public clones indicative of shared antigen in 

Crohn’s disease. Clones were considered “convergent” across patients if there was sharing 

of V and J genes with an identical CDR-H3 region length and an 85% amino acid CDR-H3 

sequence homology (Fig 5.5A).  We calculated the number of shared clones pairwise within 

a group where a high level of overlap is suggestive of a shared epitope (Fig 5.5B). In keeping 

with the expected high diversity of naive B cells there was minimal clonal sharing in blood. 
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However, there was considerable clonal sharing amongst repertoires generated from LN 

localised to areas of inflammation in Crohn’s disease. This suggested Crohn’s specific 

antigens generated from inflamed bowel are common amongst Crohn’s disease patients and 

may contribute to B cell mediated disease pathology. To further assess the nature of these 

clones, we selected clones present in two or more Crohn’s disease LN that were absent in 

post-mortem mesenteric LN (MSLN) (Fig 5.5A). The top ten most frequently identified clones 

were common to at least seven patients (Fig 5.5C). These “Crohn’s specific clones” were 

enriched in all immunoglobulin isotypes, but with a greater proportion of class-switched 

isotypes suggesting that antigen-specific germinal centre derived B cell maturation has 

occurred (Fig 5.5D).  

 

Antibody secreting cells generated in Peyer’s patches and the MSLN do not immediately 

localise to gut tissue but systemically recirculate before homing back to the gut via 

expression of gut-specific addressins and lymphocyte receptors including MAdCAM and 

CCR9 and the a4b7 integrin respectively321. We were able to identify “Crohn’s specific 

clones” derived from the LN in the peripheral blood mononuclear cells (PBMCs) BCR 

repertoire in an independent cohort with significant enrichment in class-switched Crohn’s 

disease samples (Fig 5.5E).  
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Fig 5.5 Public Clones in Crohn’s disease in LN A. Schematic of convergent clones. Peripheral blood mononuclear cells 
(PBMC), Lymph nodes (LN), Healthy Controls (HC), mediastinal lymph nodes (MDLN), mesenteric lymph nodes (MSLN), post-
mortem (PM) B. Assessment of clonal convergence. Randomly selected 8 patients per group and 1500 unique clones per 
patient (200 iterations). Boxplots of number of clones shared in at least two patients split according to group.  Each dot 
represents an iteration C. Identified potentially Crohn’s specific LN clones. Clones were identified based on presence in two 
or more Crohn’s inflamed LN samples and absence in MSLN from the post-mortem cohort. Boxplot of convergence in IGHM-
IGHD and class-switched clones in Crohn’s LN BCR repertoire. Each dot represents a sample. Unpaired wilcox test. D. 
Dominant clones: Ten most frequent Crohn’s clones identified in LN E. Validation of Crohn’s specific LN clones:  Boxplots of 
enrichment. Each dot represents a sample. One-sided wilcox test.  
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 “Crohn’s specific clones” were independently derived from PBMCS. They were defined as 

being present in 2 or more Crohn’s samples and absent in HC. Similar to the LN, these clones 

were enriched in the class-switched clones (Fig 5.6A). Overall, the top ten clones were less 

frequent to that seen in the lymph nodes as predicted (Fig 5.6B).  We validated the “Crohn’s 

specific clones” identified from the PBMC BCR repertoire in the LN BCR repertoire with 

significant enrichment in the class-switched Crohn’s LN BCR compared with the post-

mortem MSLN BCR (Fig 5.6C).  

 

 
Fig 5.6 Public Clones in Crohn’s disease in PBMCs A. Identified potentially Crohn’s specific PBMC clones. Clones were 
identified based on presence in two or more Crohn’s PBMC samples and absence in health.  Boxplot of convergence in 
IGHM-IGHD and class-switched clones in Crohn’s LN BCR repertoire. Unpaired wilcox test.B. Dominant clones: Ten most 
frequent Crohn’s clones identified in PBMC. C. Validated of Crohn’s specific PBMC clones: Boxplots of enrichment of “Crohn’s 
specific clones” in LN dataset split according to isotype. Unpaired wilcox test. 
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In CD patients, an increase in both serum IgA and IgG1 immunoglobulin titres relative to 

health were present (Fig. 5.7A). To determine whether this might be driven by shared 

antigens, we generated BCR repertoires from plasmablasts isolated during active disease in 

another independent cohort of patients. Plasmablasts are short-lived and therefore are 

expected to be enriched for clones/sequences that are relevant to the current inflammatory 

response. We found that the CD-specific clones were uniquely found in CD plasmablasts, 

were more enriched compared to CD PBMCs, and were not present in either health or in an 

additional cohort of UC patients, confirming the CD specificity of the clones (Fig. 5.7B). 

While no single clone was shared between all CD patients, CD-specific clones were shared 

between multiple cases with convergence in IGHM, IGHA1/A2 and IGHG2 isotypes (Fig. 

5.7C). Using the same clustering technique, we demonstrated shared clones in the UC 

plasmablast repertoire in keeping with recent findings357. These clones were not enriched in 

CD patients any more than in idiopathic pulmonary fibrosis, a disease control. This further 

highlights the difference in B cell antigenic responses in CD and UC (Fig. 5.7D).  

 

In IBD, a global reduction in SHM was present across all class-switched isotypes when 

compared to healthy controls (Fig. 5.7E), as has been reported following infection237,358. This 

decrease in SHM may be attributable to an extrafollicular response secondary to pathogen-

associated molecular pattern recognition and/or recently recruited clones from the naïve 

repertoire expanding in the germinal centre. When comparing SHM of CD-specific clones 

with that of healthy-clones defined by their presence in >7 HC, within the CD plasmablast 

repertoire, CD-specific clones had increased SHM across all isotypes (Fig. 5.7F) providing 

further evidence of antigen-targetted immunity given the occurrence of affinity maturation.   
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Fig 5.7 Plasmablast BCR repertoire in IBD A. Immunoglobulin titres: Boxplot of immunoglobulin titres split according to 
isotype and disease. Immunoglobulin titres in healthy individuals (n = 4), patients with CD (n = 20). Unpaired t test. B. 
Validation of CD specific clones: Assessed clonal convergence of CD specific clones derived from LN in plasmablasts. Boxplot 
representing convergence split according to isotype and disease. Each dot represents a sample. Unpaired one-tailed wilcox 
test. C. Validation of CD specific clones per isotype: Assessed clonal convergence of CD specific clones derived from LN in 
plasmablasts. Boxplot representing convergence split according to sub-isotype and disease. Each dot represents a sample. 
Unpaired one-tailed wilcox test. D. Shared clones in UC: Clones were identified based on presence in two or more UC 
plasmablast samples and absent in health. Boxplot of convergence in IGHM and class-switched clones in HC, UC, CD and 
Idiopathic pulmonary fibrosis (IPF) BCR repertoire. Each dot represents a sample. Unpaired wilcox test. E. SHM in 
plasmablasts: BCR repertoire in plasmablasts (CD19+IgD-CD27+CD24-CD38+). Boxplot of SHM split according to isotype and 
disease. Each dot represents a sample. Unpaired wilcox test. F. SHM of shared clones: Boxplot of SHM comparing HC clones 
and CD specific clones in CD patients split according to isotype. HC clones defined as being present in >7 HC. Each dot 
represents a unique clone per patient. Unpaired wilcox test. For b-f, n = 46 for healthy individuals and n = 20, n = 26 and n = 
19, for patients with CD, UC and IPF respectively. 
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This study of the BCR repertoire in intestinal LNs and blood demonstrates the presence of 

CD-specific clones that are shared between multiple patients and present in both LNs and 

circulating plasmablasts during active disease. These clones are not seen in either healthy 

controls or during active UC. Their sharing between multiple patients suggests the presence 

of common, disease-specific antigens as opposed to a non-specific polyclonal activation of B 

cells. This not only provides further support for the role of pathogenic B cells in CD but 

provides the opportunity – providing epitope-specific antibodies can be fully elucidated – 

for a diagnostic antibody test for CD. 
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6. Future Directions  
 
6.1 B cell receptor repertoire 
 
BCR analysis of whole blood provides an understanding of the global changes in the 

repertoire including changes in isotype and V gene use, SHM and diversity. To gain an 

understanding on a disease specific level, we used clustering methods to identify shared 

sequences and used publicly available databases to functionally annotate sequences.  

 

Our key findings on analysis of the BCR repertoire in SARS-CoV-2 infected individuals were, 

- An increase in the proportion of BCRs bearing IgG1/3 and IgA1 isotypes;  

- A decrease in SHM in class-switched isotypes whilst an increase occurred in IGHD 

and IGHM; 

- A decrease in diversity; 

- The generation of a broad distribution of SARS-CoV-2-specific clones predicted to 

target the spike protein.  

 

Our key findings on analysis of the BCR repertoire in Crohn’s disease were, 

- Greater sharing of clones amongst Crohn’s patients in inflamed LN compared with 

post-mortem LNs suggesting the presence of public clones; 

-  “Crohn’s specific clones” were mostly class-switched in the LN and in PBMCs; 

- Raised IgA and IgG immunoglobulin titres in Crohn’s, further suggesting involvement 

of the humoral arm; 

- Disease specificity with minimal enrichment in UC on assessment of plasmablasts; 

- A global decrease in SHM occurred in class-switched plasmablasts clones in Crohn’s; 

- IgG2 and IgM “Crohn’s specific clones” were highly mutated compared with clones 

that were shared with health.  

 

Future work would involve the following: 

- Performing BCR on antigen specific B cell subpopulations 

- Performing single cell analysis to obtain paired light and heavy chain information of 

clones 

- Functionally working up antibodies using techniques such as, 
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o Cloning 

o Phage display 

 
6.2 Functional assessment 
 
6.2.1 Cloning 
 

Cloning involves synthesizing double-stranded DNA fragments from heavy and light chain 

sequences and cloning these sequences into an expression vector. Antibody supernatants 

are harvested, and antibody purified. The antibody can be tested for binding to a specific 

antigen of interest such as SARS-CoV-2 RBD.  

 
 
6.2.2 Phage display 
 

Phage display is a technique that can be used to screen multiple antibodies against an 

antigen of interest. Lysogenic filamentous bacteriophages are modified to display 

polypeptides on their surface. This is achieved by the insertion of the DNA fragment of 

interest into the filamentous phage coat protein gene. The M13 Bacteriophage is commonly 

used. It infects Escherichia coli expressing the F pilus. This is because the phage coat protein 

needs to bind with the tip of the F pilus to enter the cell. Once it has entered the host cell, it 

continuously releases new phages. 

 

The M13 phage genome is 6407 base pairs long and is coded by a single strand of DNA. M13 

infects E.Coli through the binding of its G3P-N2 domain coat protein to the tip of a F pilus. 

Upon binding, a conformational change occurs facilitating binding of co-receptor G3P-N1 

domain to TolA. This leads to injection of the phage genome into the bacterium. The single 

stranded DNA of the M13 phage is converted into double stranded DNA and takes on a 

super coiled structure known as the replicative form.  Further replication occurs. With 

sufficient G5P, a DNA-binding protein is formed and the replicative formation is prevented. 

G5P then binds with the ssDNA changing the confirmation from a circular form to a rod-

shaped form. G5P coats the entire sequence except for hairpin ends. A pore is formed in the 

membrane and the phage genome exits whilst its coat is assembled359. 
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The M13 Phage is used to display antibody on its coat and enables the simultaneous linkage 

of protein and genomic sequence. This is achieved by incorporating the gene encoding the 

protein of interest in the M13 Phage genome abutting gene pIII(encodes G3P). This leads to 

the expression of the protein along with the phage coat protein. Antibody sequences are 

cloned in “recombinant antibody formats” as smaller fragments are more amenable to cell 

wall expression and can include segments from both the heavy and light chains. A modified 

form of the M13 phage is used to increase efficiency. The modified M13 phage does not 

contain all the required genomic sequences and co-infection of E.Coli with a “helper phage” 

is necessary.  

 

Once the antibody phage display library is generated, a process of “phage biopanning” 

occurs to identify antigen binding. Purified antigens need to be immobilised on a solid 

surface such as beads, column matrices etc.  Blocking agents are then used to block the 

remaining sites on the solid surface, thus preventing non-specific binding. The phage library 

is exposed to the immobilized antigens and unbound antibody is washed away and the high 

affinity-phage antibodies finally eluted. Antigen specific binding is confirmed with ELISA. 

Positive clone sequences can be derived from sequencing359,360.  

 

6.3 Future work 
 
6.3.1 SARS-CoV-2 
 
Extensive work has been performed on the humoral response to SARS-CoV-2. An interesting 

finding that goes beyond COVID-19 is the findings of increased SHM post infection with 

SARS-CoV-2 and vaccination with Influenza in IGHD. Enriching for IGHD positive cells on flow 

sorting and performing single cell analysis with concurrent cell surface labelling (CITEseq) 

would allow further characterisation of these cells of interest.  

 
6.3.2 Public clones in Crohn’s disease 
 
Using cloning and phage display, sequences identified as public clones can be expressed as 

antibodies and antigen binding determined. Extensive work has already been performed 

showing the pathogenic role of anti-commensal IgG361.  
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6.4 Future of BCR repertoire 
 
Bulk BCR repertoire analysis is the ideal tool to study SHM, class-switching and diversity. We 

can generate sequences of such quality to confidently attribute deviations from the 

germline to mutations rather than sequencing error. The use of UMIs allows us to correct 

not only for PCR bias but also generate a consensus sequence adding confidence to the 

sequence generated. Class-switching requires identifying sequencing with shared VDJ 

sequences but different constant regions. This requires accuracy in sequencing calling and 

sufficient depth. To increase the accuracy, generating isotype specific libraries rather than 

pooling all isotype primers together would reduce barcode switching and over calling of 

class-switching. Diversity metrics are similar to class-switching requiring accurate VDJ calling 

and depth.       

  

A limitation of BCR repertoire analysis is the quantification of isotype and V gene usage. As 

we need to correct for library depth, all metrics are proportions. In BCR repertoire analysis, 

if there is an uneven expansion in absolute numbers this will appear as a proportional 

reduction of the less expanded group. For example, in a healthy lymph node, is there were a 

total of 32 IgA cells and 16 IgG cells and if we sampled 21 cells, we would expect that 14 

would be IgA, and 7 would be IgG. Assuming that there is an equal amount of mRNA 

produced by each cell, the BCR repertoire isotype usage would be 66% IgA and 33% IgG. If in 

an inflamed lymph node, there were a total of 48 IgA cells and 36 IgG cells and if we once 

again sampled 21 cells, we would expect 12 cells would be IgA and 9 cells would be IgG. 

Thus, the BCR isotype usage would be 57% IgA and 43% IgG. On comparing the two samples, 

an increase in IgG and a decrease in IgA appears to occur despite both being increased. This 

highlights the importance of not over interpreting repertoire proportions and instead using 

methods such as qPCR. Both bulk RNAseq and single cell sequencing are plagued with the 

same issue of correcting for library depth and thus each gene expression value not being 

independent of the other. To overcome this, normalisation techniques are used beyond 

correcting for library depth such as DESeq2. A similar technique needs to be adopted by the 

BCR community in analysis of V gene and isotype. 
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A further limitation in BCR repertoire analysis is library depth when identifying specific 

clones of interest. In our analysis, we achieved sequencing depths ranging from 5000-20000 

unique clones. In the setting of acute infection where clones of interest are expanded, this 

depth appears adequate. However, when trying to track clones over time once disease 

recovery has occurred this proved to be difficult due to contraction in size. Sequencing 

methods need to be developed that allows larger depths at low cost whilst allowing long 

reads at 250-300 base pairs.  

 

Bulk BCR repertoire analysis needs to be tailored to the correct scientific question. Using 

bulk BCR repertoire analysis on an unsorted population where the antigen is unknown is 

where it is best suited. However, where the antigen is known, such as is SARS-CoV-2 an 

antigen sorted population is more informative especially where longitudinal analysis is 

desirable.  
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Appendix A The impact of hypoxia on B cells in COVID-19 
 

Introduction 

The B cell response is a vital component of immune defence against SARS-CoV-2; 

neutralising antibodies contribute to protection from infection(Cao et al., 2020), monoclonal 

antibodies may be of benefit(Katz, 2021) and antibody deficiency predisposes to viral 

persistence(Buckland et al., 2020). Early and often persistent changes in B cell numbers are 

prominent in symptomatic COVID-19: increased plasmablasts and reduced memory B cells 

correlate with disease severity, and germinal centre (GC) responses, somatic hypermutation, 

and T follicular helper (TFH) cells may be reduced(Bergamaschi et al., 2021; Kaneko et al., 

2020; Nielsen et al., 2020; Stephenson et al., 2021b).  

The reduction in B cell subsets in COVID-19 was reminiscent of the phenotype of mice with 

VHL-deficient B cells, which exhibit constitutive activation of Hypoxia-Inducible Factors 

(HIFs)(Burrows et al., 2020; Cho et al., 2016). These models had a Cre-mediated deletion of 

Vhl, targeted specifically to the B cell lineage, with Cre expression being driven by the B cell-

specific promoter Mb-1, which deletes at the earliest Pro-B cell stage. A model of 

permanent Cre expression was used to assess developmental effects(Burrows et al., 2020) 

and a tamoxifen-inducible model used (Mb1-CreERT2)(Cho et al., 2016) to assess the effect 

on B cell immune responses. 

 

This raised the possibility that hypoxia might contribute to B cell dysregulation in COVID-19.  

Hypoxemia is prominent in COVID-19, often occurring “silently”, with many patients 

presenting to hospital with profoundly low blood oxygen saturations(Couzin-Frankel, 2020).  
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The B cell abnormalities characteristic of COVID-19 might limit the efficiency of the anti-

SARS-CoV-2 response(Kemp et al., 2021), predispose to secondary infection(Ripa et al., 

2021), or contribute to sequelae such as autoimmunity(Wang et al., 2020a). Understanding 

if and how hypoxia impacts upon them could therefore inform management strategies.  

 

Methods 

Participant recruitment and clinical data collection 

This cohort has been previously described by Bergamaschi et al(Bergamaschi et al., 2021). 

Briefly, study participants were recruited between 31/3/2020 and 20/7/2020 from patients 

attending Addenbrooke’s Hospital, Royal Papworth Hospital NHS Foundation Trust or 

Cambridge and Peterborough Foundation Trust with a confirmed diagnosis of COVID-19, 

together with Health Care Workers identified through staff screening as PCR positive for 

SARS-CoV-2(Rivett et al., 2020). Controls were recruited among hospital staff attending 

Addenbrooke’s for SARS-CoV-2 serology screening programme and having a negative 

serology result. All participants provided informed consent. 

Inpatients were sampled at study entry, and then at regular intervals as long as they 

remained admitted to hospital (approximately weekly up to 4 weeks, and then every 2 

weeks up to 12 weeks). Discharged patients were invited to provide a follow-up sample 4-8 

weeks after study enrolment. Health care workers were sampled at study entry, and 

subsequently after approximately 2 and 4 weeks.  

Clinical data were retrospectively collected by review of medical charts and extraction of 

data (laboratory test results, vital signs, medications) from Epic electronic health records 

(Addenbrooke’s Hospital) and from MetaVision ICU (Royal Papworth Hospital).  

Study volunteers were classified in 5 groups: 
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- Group A: health care workers who were asymptomatic at the time of positive SARS-

CoV-2 testing. This group included 10 volunteers who had possible COVID-19 

symptoms before PCR testing (median time from symptoms to COVID-19 PCR test 26 

days, range 9-42 days).  

- Group B: health care workers who had possible COVID-19 symptoms at the time of 

PCR testing.  

- Group C: patients in hospital who did not receive any supplemental oxygen for 

COVID-19. Five patients were discharged soon after initial diagnosis and assessment 

but followed up as part of the study. 

- Group D: patients in hospital who received supplemental oxygen using low flow 

nasal prongs, simple face mask, Venturi mask or non re-breather face mask 

- Group E: patients in hospital who received any of non-invasive ventilation (NIV), 

mechanical ventilation or ECMO. Patients who received supplemental oxygen (but 

no ventilation) and deceased in hospital were also assigned to group E. 

Study results were analysed according to time since onset of COVID-19 symptoms, or 

otherwise time since positive SARS-CoV-2 testing (in group A and in 4 asymptomatic 

patients in group C).  

 

Peripheral blood mononuclear cell preparation and flow cytometry immunophenotyping 

For direct enumeration of T, B and NK cells, an aliquot of whole blood EDTA (50µl) was 

added to BD TruCountä tubes with 20µl BD Multitestä 6-colour TBNK reagent (BD 

Biosciences) and processed as per the manufacturer’s instructions. 

Peripheral venous blood (up to 27 ml per sample) for isolation of Peripheral Blood 

Mononuclear Cells (PBMCs) was collected into 10% sodium citrate tubes. PBMCs were 
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isolated using Leucosep tubes (Greiner Bio-One) with Histopaque 1077 (Sigma) by 

centrifugation at 800x g for 15 minutes at room temperature. PBMCs at the interface were 

collected, rinsed twice with autoMACS running buffer (Miltenyi Biotech) and cryopreserved 

in FBS with 10% DMSO. All samples were processed within 4 hours of collection. 

Approximately 106 cells have been stained with: anti-human IgM (clone: G20-127, BD), CD19 

(clone: SJ25C1, BD),  CD38 (clone: HIT2, BD), IgD (clone: IA6-2, BD), CD20 (clone: 2H7, BD), 

CD3 (clone: UCHT1, BioLegend), CD14 (clone: 63D3, BioLegend), CD15 (clone: W6D3, 

BioLegend), CD193 (clone: 5E8, BioLegend), CD27 (clone: O323, BioLegend), CD56 (clone: 

MEM188, Thermo), CD24 (clone: ML5, BD),  IgA (polyclonal goat IgG, Jackson), IgG (clone: 

G18-145, BD), and Zombie Yellow (BioLegend) as described in detail by Bergamaschi et 

al(Bergamaschi et al., 2021),  Samples were stored at 4°C and acquired within 4 hours using 

a 5-laser BD Symphony X-50 flow cytometer. Single colour compensation tubes (BD 

CompBeads) or cells were prepared for each of the fluorophores used and acquired at the 

start of each flow cytometer run. 

Samples were gated in FlowJo v10.2 and number of cells falling within each gate was 

recorded. For analysis, these were expressed as an absolute concentration of cells per µl 

using the BD TruCountä system. Some previously reported data, detailed by Bergamaschi et 

al is represented for comparison. 

 

CRP, complement components and cytokines 

As detailed in Bergamaschi et al(Bergamaschi et al., 2021), concentrations of complement 

components were measured in EDTA plasma using commercially available enzyme-linked 

immunosorbent assays (ELISA) kits. High sensitivity CRP and cytokines (IL-6, IL-10, IL-1b, 

TNFa and IFNg) were assayed in serum using standard laboratory assays. 
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Total Immunoglobulin levels 

Serum immunoglobulin levels were measured for 186 COVID-19 patients and 45 healthy 

controls at the time of enrolment using the standard assay by the Immunology Department 

at Peterborough City hospital.  

 

Whole blood bulk RNA-Seq 

Whole blood RNA was extracted from PAXgene Blood RNA tubes (BD Biosciences) of 188 

COVID-19 patients at up to 2 time points and 42 healthy volunteers. RNA-Sequencing 

libraries were generated using the SMARTer® Stranded Total RNA-Seq v2 - Pico Input 

Mammalian kit (Takara) using 10ng RNA as input following the manufacturer’s protocol. 

Libraries were pooled together (n = 96) and sequenced using 75bp paired-end chemistry 

across 4 lanes of a Hiseq4000 instrument (Illumina) to achieve 10 million reads per sample. 

Read quality was assessed using FastQC v.0.11.8 (Babraham Bioinformatics, UK), and 

SMARTer adaptors trimmed and residual rRNA reads depleted in silico using Trim galore 

v.0.6.4 (Babraham Bioinformatics, UK) and BBSplit (BBMap v.38.67(BBMap - Bushnell B. - 

sourceforge.net/projects/bbmap/)), respectively. Alignment was performed using HISAT2 

v.2.1.0 (Kim et al., 2019) against the GRCh38 genome achieving a greater than 95% 

alignment rate. Count matrices were generated using featureCounts (Rsubreads 

package)(Liao et al., 2019) and stored as a DGEList object (EdgeR package)(Robinson et al., 

2009) for further analysis. 

 

All downstream data handling was performed in R (R Core Team, 2015). Counts were 

filtered using filterByExpr (EdgeR) with a gene count threshold of 10 CPM and the minimum 

number of samples set at the size of the smallest disease group. Library counts were 
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normalised using calcNormFactors (EdgeR) using the method ‘weighted trimmed mean of 

M-values’. The function ‘voom’(Law et al., 2014) was applied to the data to estimate the 

mean-variance relationship, allowing adjustment for heteroscedasticity. 

The analyses were carried out splitting the samples in 12 days bins post screening (group A) 

or symptom onset (groups B-E). 

 

Single cell RNA-seq 

CITE-seq data were generated from frozen PBMCs of 36 COVID-19 patients and 11 healthy 

controls as described by Stephenson et al.(Stephenson et al., 2021b) Briefly, after thawing, 

pools of 4 samples were generated by combined 500,000 viable cells per individual (total of 

2 million cells per pool). TotalSeq-C™ antibody cocktail (BioLegend 99813) was used to 

perform cell surface marker staining on 500,000 cells per pool. 50,000 live cells (up to a 

maximum of 60,000 total cells) for each pool were processed using Single Cell V(D)J 5’ 

version 1.1 (1000020) together with Single Cell 5’ Feature Barcode library kit (1000080), 

Single Cell V(D)J Enrichment Kit, Human B Cells (1000016) and Single Cell V(D)J Enrichment 

Kit, Human T Cells (1000005) (10xGenomics) according to the manufacturer’s protocols. 

Samples were sequenced on NovaSeq 6000 (Illumina) using S1 flowcells. Droplet libraries 

were processed using Cellranger v4.0. Reads were aligned to the GRCh38 human genome 

concatenated to the SARS-Cov-2 genome (NCBI SARS-CoV-2 isolate Wuhan-Hu-1) using 

STAR(Dobin et al., 2013) and unique molecular identifiers (UMIs) deduplicated. CITE-seq 

UMIs were counted for GEX and ADT libraries simultaneously to generate feature X droplet 

UMI count matrices. 
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Statistics 

All statistical analyses were conducted using custom scripts in R (R Core Team, 2015). 

Appropriately age matched healthy controls were included in all analyses. Absolute cell 

counts (cells/uL) were offset by +1 to allow subsequent log2 transformation of zero counts. 

Unless otherwise specified, longitudinally collected data was grouped by bins of 12 days 

from symptom onset or first positive SARS-CoV2 swab. Pairwise statistical comparisons of 

absolute cell counts and proportions and immunoglobulin levels between individuals in a 

given severity group at a given time bin and HCs, or between severity groups, was 

conducted by Wilcoxon test unless otherwise specified. For analyses involving repeated 

measures, false discovery rate corrected (Benjamini & Hochberg) p values were reported. 

For individuals sampled more than once within a given time bin, data from the earliest 

blood collection was used.  

 

Gene set enrichment analysis (GSEA)(Subramanian et al., 2005) was used to identify 

biological pathways enriched in COVID-19 severity groups relative to healthy controls. 

Briefly, a list of ranked genes, determined by Signal-To-Noise ratio was generated. An 

enrichment score was calculated, determined by how often genes from the geneset of 

interest appeared at the top or the bottom of the pre-ranked set of genes with the 

enrichment score representing the maximum deviation from zero. To assess statistical 

significance, an empirical phenotype- based permutation test was run, where a collection of 

enrichment scores was generated from the random assignment of phenotype to samples 

and used to generate a null distribution. To account for multiple testing, an FDR rate q < 
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0.20 was deemed significant. HALLMARK gene sets from the Molecular Signatures Database 

(http://www.broadinstitute.org/gsea/msigdb) were used in analysis. 

The relationships between immunological parameters and transcriptional data in the form 

of gene expression modules were assessed using Pearson’s correlation (Hmisc package) and 

visualized with corrplot. 

 

B Cell Receptor Repertoire  

Library Preparation 

B cell receptor repertoire libraries have been generated for 119 COVID-19 patients and 71 

healthy controls using the protocol describe by Bashford-Rogers et al.278Briefly, 200ng of 

total RNA from PAXgenes (14ul volume) was combined with 1uL 10mM dNTP and 10uM 

reverse primer mix (2uL) and incubated for 5 min at 70°C. The mixture was immediately 

placed on ice for 1 minute and then subsequently combined with 1uL DTT (0.1 M), 1uL 

SuperScriptIV (Thermo Fisher Scientific), 4ul SSIV Buffer (Thermo Fisher Scientific) and 1uL 

RNAse inhibitor. The solution was incubated at 50 °C for 60 min followed by 15 min 

inactivation at 70 °C. cDNA was cleaned with AMPure XP beads and PCR-amplified with a 5ʹ 

V-gene multiplex primer mix and 3ʹ universal reverse primer using the KAPA protocol and 

the following thermal cycling conditions: 1cycle (95°C, 5min); 5cycles (98°C, 20s; 72°C, 30s); 

5cycles (98°C, 15s; 65°C, 30s; 72°C, 30s); 19cycles (98 °C, 15s; 60°C, 30s; 72°C, 30s); 1 step 

(72°C, 5 min). Sequencing libraries were prepared using Illumina protocols and sequenced 

using 300-bp paired-end sequencing on a MiSeq.   

 

Sequence analysis 
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Raw reads were filtered for base quality using a median Phred score of >32 

(http://sourceforge.net/projects/quasr/). Forward and reverse reads were merged where a 

minimum 20bp identical overlapping region was present. Sequences were retained where 

over 80% base sequence similarity was present between all sequences with the same 

barcode. The constant-region allele with highest sequence similarity was identified by 10-

mer matching to the reference constant-region genes from the IMGT database. Sequences 

without complete reading frames and non-immunoglobulin sequences were removed and 

only reads with significant similarity to reference IGHV and J genes from the IMGT database 

using BLAST were retained. Immunoglobulin gene use and sequence annotation were 

performed in IMGT V-QUEST, and repertoire differences were performed by custom scripts 

in Python.  

 

Murine Models 

Vhl−/− mice(Haase et al., 2001) were crossed with Cd79a-cre (Mb1-cre)(Hobeika et al., 2006) 

or Cd19-cre (JAX, stock no. 004126) to delete Vhl in the B cell lineage. All mice with loxP-

flanked alleles were hemizygous for Cre. Deletion efficiency was determined via real-time 

PCR of genomic DNA. The degree of excision was calculated by comparison of Vhl intact 

DNA relative to an unexcised gene Actb. The primers and probes used were Vhl forward 5ʹ-

GCTTGCGAATCCGAGGG, Vhl reverse 5ʹ-TCCTCTGGACTGGCTGCC, Vhl Probe 5ʹ-E6-

FAM−CCCGTTCCAATAATGCCCCGG (Life Technologies) and Actb (mouse assay ID: 

Mm00607939_s1; Life Technologies). The deletion efficiency for mature B cells was 52% 

(95% CI 30-75%) in Vhl-/-Cd19-cre mice and 98% (95% CI, 97–99%) in Vhl-/-Mb1-cre 

mice(Burrows et al., 2020). The mice were backcrossed for at least eight generations and 

maintained on a C57BL/6J background. These mice, along with C57BL/6J mice (JAX, stock no. 
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000664) were housed in specific pathogen-free animal facilities (at 20–23 °C, with 40–60% 

humidity, 12-h light:12-h dark cycle). All experiments included age- and litter-matched mice 

that were not selected for gender. Where possible, the resource equation was used to 

determine sample size for experiments. Randomization was genetic and, where possible, 

investigators were blinded to the genetic status. For hypoxic exposure studies, a 

randomization algorithm was used (Excel) to allocate mice into experimental groups. Mice 

were immunised with 100µg 4-hydroxy-3-nitrophenylaceyl-keyhole limpet hemocyanine 

(NP-KLH, loading 31-33) (Biosearch Technologies) adjuvanted with Alum (Thermo Scientific) 

via intraperitoneal injection. C57BL/6J mice were exposed to 10% O2 in a hypoxic chamber 

for 1 day, then immunised. Mice remained in the hypoxic chamber for 10-, 14- or 20-days 

post immunisation. Normoxic (21% O2) mice were treated the same way and were kept in 

standard conditions. The reoxygenation groups were removed from the hypoxic chamber on 

day 10 post immunisation to standard conditions for 4 or 10 days.  

Tissue processing and immunophenotyping of murine cells by flow cytometry was 

performed as described(Burrows et al., 2020). B cells were gated as total B cells (B220+), FO 

(B220+CD93–CD23+CD21+), MZ (B220+CD93−CD23−CD21+), GC (B220+CD95highGL-7high), PCs 

(B220-CD138+), early memory (B220+IgDneg/loCD95+GL7-CD38+CD73+), T cells (CD3+) and Tfh 

cells (CD3+CD4+PD-1highCXCR5highFoxP3-). Antibodies are listed in Supplementary table 1. 

 

Murine total Immunoglobulin (Ig) and NP-specific ELISAs 

Detection of total IgM and NP-specific IgG1 was performed as described(Brownlie et al., 

2008). 

 

Confocal microscopy 
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10µm sections were mounted on Superfrost Plus slides and air dried at RT for 1h. Samples 

were then fixed in -20°C acetone for 10 minutes and air dried again at RT for 1h before 

blocking in 0.1M Tris containing 1% BSA, 1% normal mouse serum and 1% normal rat serum. 

Samples were stained in a wet chamber at RT for 1h30 with the appropriate antibodies, 

washed 3 times in PBS and mounted in Fluoromount-G. Images were acquired using a TCS 

SP8 inverted confocal microscope on a 40x oil immersion objective. Raw imaging data were 

processed using Imaris.  

 

Murine BCR amplification and sequencing 

BCR amplification and sequencing was performed as described in Burrows et al.(Burrows et 

al., 2020) Data are available at the Sequence Research Archive (SRA) database (BioProject 

accession nos. PRJNA574931, PRJNA574906 and PRJNA574628). Briefly, total RNA was 

extracted from isolated plasma cells (B220-CD138+). Reverse transcription (RT) was 

performed using constant region-specific primers (including unique molecular identifiers 

(UMIs)), followed by cDNA cleanup and PCR amplification using V gene specific primers.  

Sequencing libraries were prepared using Illumina protocols and sequenced using 300bp 

paired-ended MiSeq (Illumina). Raw reads were filtered as Burrows et al.(Burrows et al., 2020) 

Ig gene sequence annotations were performed in IMGT V-QUEST, where somatic 

hypermutation repertoire and isotype usage differences were performed by custom scripts in 

python, and statistics were performed in R using Wilcoxon tests for significance (non-

parametric test of differences between distributions).  

 

Role of funding source 
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Financial support from CVC Capital Partners, the Evelyn Trust (20/75), Addenbrooke’s 

Charitable Trust (12/20A), the UKRI/NIHR through the UK Coronavirus Immunology 

Consortium (UK-CIC) and NIHR Cambridge BioResource centre (Grant codes: RG85445 and 

RG94028) funded sample collection and processing. The Wellcome Trust (no. 19710) for 

supporting murine studies. Funders had no role in study design, data collection, data analyses, 

interpretation, or writing of report.     

 

Ethics 

Ethical approval was obtained from the East of England – Cambridge Central Research Ethics 

Committee (“NIHR BioResource” REC ref 17/EE/0025, and “Genetic variation AND Altered 

Leucocyte Function in health and disease - GANDALF” REC ref 08/H0308/176).  

All procedures were ethically approved by the University of Cambridge Animal Welfare and 

Ethical Review Body and complied with the Animals (Scientific Procedures) Act 1986 

Amendment Regulations 2012, under the authority of a UK Home Office Licence. The 

ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines 

(https://arriveguidelines.org/arrive-guidelines) were used for planning, conducting and 

reporting experiments.  

 

Results 

 

SARS-CoV-2 PCR-positive subjects were recruited between March and July 2020 and 

categorized by peak clinical severity(Bergamaschi et al., 2021) (Fig 1a and Supp Fig 1a):  

A) asymptomatic healthcare workers (HCWs) recruited from routine screening (n=18). 
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B) HCWs either still working with mild symptoms, or symptomatic and self-isolating 

(n=40). 

C) patients who presented to hospital but never required oxygen supplementation 

(n=46). 

D) admitted patients whose maximal respiratory support was supplemental oxygen 

(n=37). 

E) patients who required assisted ventilation (57 of 60) or died without ventilation (3 of 

60). 

We compared absolute B cell subset numbers in COVID-19 patients to 45 healthy controls 

(Fig 1b)(Bergamaschi et al., 2021). In more severe groups C-E, profound reductions in TFH-

like cells and many B cell subsets were seen at the first bleed, including memory and 

marginal zone like (MZL) B cells. Most then showed some recovery. Changes were far less 

pronounced in groups A and B (Fig 1b).  Single-cell RNA-sequencing coupled with analysis of 

surface proteins on a subset of patients confirmed proportional differences (Fig S1b). We 

also explored cell kinetics in groups C–E, assigning patients to two categories based on 

whether their CRP concentrations remained elevated above 10 mg/L (“persisting CRP”) or 

fell below 10 mg/L (“resolving CRP”) by their final bleed within 3 months post symptom 

onset. The latter group included both individuals with early high CRP that then fell, together 

with those for which CRP remained low (10 mg/L) throughout (see Fig 6, Bergamaschi et 

al.6). B cell derangements including low transitional B cells and elevated plasmablasts 

persisted regardless of CRP, while MZ, memory and naïve B cell reductions recovered as the 

CRP did (Fig S1). 
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Total serum IgM fell as disease severity increased, with many patients in groups C-E having 

IgM levels below the normal range, while IgG and IgA were less impacted (Figs 1c and S1d). 

Anti- SARS-CoV-2 spike antibodies rose over time in all severity groups, reaching highest 

titres in the more severe groups(Bergamaschi et al., 2021). BCR sequencing showed reduced 

somatic mutation in COVID-19 patients, most prominent in IgA and IgG1/2 (Figs 1d and S1e), 

consistent with previous reports(Nielsen et al., 2020). 

Having noted a similarity in B cell phenotype in COVID-19 and mice with constitutively active 

HIF(Fig 1e) (Burrows et al., 2020; Cho et al., 2016), we hypothesised that B cell loss might 

relate to hypoxia in vivo. The effects of acute hypoxia on immune responses in mice and 

humans have not been assessed.  Immunised Vhl-/-Cd19-cre mice (in which VHL is deleted at 

the pre-B cell stage) were studied to allow more granular comparison with the B cell 

pathology in COVID-19: they showed reductions in follicular (FO), MZ and GC B cells and 

increased plasma cell (PC) to B cell ratio (Fig S2a). Findings were confirmed in Vhl-/-Mb1-cre 

mice (VHL deleted in pro-B cells) immunised with NP-KLH, in which reduced NP-specific GC 

and memory B cells, and TFH cells were also observed (Fig S2b-c). Serum IgM, but not IgG 

and IgA, was reduced, as was affinity maturation and somatic hypermutation (SHM) in some 

isotypes (Fig S2d-f). Reduced GC and memory B cells, along with defects in affinity 

maturation, were similar to those observed in an inducible model of B cell specific Vhl 

deletion(Cho et al., 2016). Thus, HIF activation in multiple mouse models produces similar 

changes to those in patients with moderate to severe COVID-19 (Fig 1e), supporting the 

possibility that hypoxia could be implicated in COVID-19 B cell pathology.  

 

Hypoxia in COVID-19 patients, as determined by monitoring peripheral oxygen saturation 

(SpO2), was common early in disease and tended to improve with recovery, or with 
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ventilation or ECMO in intensive care (group E) (Fig S1f), but was hard to correlate directly 

with immune changes, as recorded SpO2 is usually taken on oxygen replacement, which is 

commonly administered in the ambulance or immediately on arrival in hospital. Thus these 

data will underestimate the real hypoxia on admission, which is likely to have been 

sustained for hours or days before the patient presented. Furthermore, SpO2 is not reliably 

reflective of tissue hypoxia, which may persist in severe pneumonia and acute lung injury. 

We therefore instead measured the impact of hypoxia on the transcriptome in COVID-19 

blood samples. An eigengene representative of the curated Hallmark hypoxia signature in 

whole blood was associated with disease severity (Fig 2a). Hallmark hypoxia gene set 

enrichment in single-cell RNA-sequencing data(Stephenson et al., 2021b) showed 

enrichment in almost all B cell subsets in groups C, D and E but in only plasma cells in A and 

B (Fig 2b).  

The “Hallmark hypoxia” signature was enriched for genes regulated by HIF, and could 

therefore be activated by reduced oxygen-tension and/or inflammatory stimuli. We 

therefore compared Hallmark signatures of hypoxia with inflammation in whole blood - the 

hypoxia signature was prominent in early severe disease (groups C-E) before declining, 

perhaps due to recovering disease and effective oxygen supplementation, but was not 

enriched in mild disease (A and B). In contrast inflammation-related signatures were often 

seen in these mild groups (Fig 2c). The differential enrichment of hypoxic and inflammatory 

signatures in asymptomatic and mild disease suggests a specific role for hypoxia, but an 

additional role for inflammation cannot be excluded. Finally the hypoxia eigengene 

correlated inversely with B cell number across most subsets, with the exception of plasma 

cells (see discussion) (Fig 2d). 
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To differentiate inflammatory-driven from hypoxia-driven HIF-mediated effects, we studied 

mice in hypoxic conditions (10% O2) after immunisation with NP-KLH. After 11 days of 

hypoxia we observed reduced transitional, FO, MZ and GC B cells, whilst PCs were normal 

(Fig S3a). These defects persisted when hypoxia was prolonged (20 days; Fig 3a and S3b). 

Little effect was observed on B cell development in the bone marrow (Fig S3c) and as FO 

and MZ B cells turn over every 7-8 weeks(B et al., 2005; Sprent and Basten, 1973), it is 

unlikely these early reductions are due to a developmental defect. In hypoxic mice there 

was a tendency to reduced early memory B cells (Fig 3a and S3d) and serum Ig was normal 

but antigen-specific IgG1 was reduced (Fig 3b and S3e). Histological analysis revealed that, 

in hypoxic conditions, B cells were almost absent from the MZ, which appeared otherwise 

structurally intact (Fig 4a and S3f). Some mice were removed from the hypoxic chamber 

after 11 days: B cell subsets generally recovered following this reoxygenation. MZ and GC B 

cells were most prominently affected by hypoxia, continuing to decline under hypoxic 

conditions, and recovering more slowly following reoxygenation, than other subsets (Fig 

4b). Hypoxia induced only minor reductions in T cells and NK cells, and no changes in 

macrophage numbers, indicating that B cells seem particularly sensitivity to perturbations in 

oxygenation and HIF (Fig S4 and data not shown). Thus while it is likely that hypoxia will 

have other effects that will warrant more detailed examination, B cells seem particularly 

sensitivity to perturbations in oxygenation and HIF activity.  

 

Discussion 

We demonstrate profound B cell abnormalities in severe COVID-19 and provide evidence 

they may be the result of hypoxia. B cell lymphopenia extends across all subsets, is present 

soon after symptom onset, and is often persistent. There is an associated reduction in total 
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serum IgM and in somatic hypermutation in switched B cells. Despite this, patients in all 

groups develop neutralising anti-SARS-CoV-2 antibodies(Bergamaschi et al., 2021), known 

not to require affinity maturation(Clark et al., 2021). It nonetheless seems likely that these 

profound B cell deficits could have an impact on disease. As we have suggested for 

bystander CD8 T cell responses(Bergamaschi et al., 2021),  early B cell defects may increase 

COVID-19 severity through non-antigen-specific mechanisms, perhaps reducing early 

antigen localisation, transport or presentation, or cytokine or “natural” antibody 

production(Hernandez and Holodick, 2017). Later, B cell defects may predispose to 

problematic secondary bacterial infection(Ripa et al., 2021). MZ B cells are key players in 

early defence against blood-borne bacterial infection (Nemazee, 2021), and MZL cells are 

profoundly reduced in COVID-19, and hypoxia almost ablates MZ B cells in mice. This may 

also predispose to re-infection by new variants, as affinity maturation might generate a 

broader spectrum of neutralizing antibodies and B cell memory(Clark et al., 2021). B cell 

dysregulation might also play a part in driving COVID-19-associated autoimmunity(Wang et 

al., 2020a). 

 

Three HIF-α isoforms are known, with HIF-1α and HIF-2α providing the main transcriptional 

response to oxygen gradients. HIF-1a is ubiquitously expressed but HIF-2a is restricted to 

specific cell types, including B cells(Burrows et al., 2020). Both HIF-1a and HIF-2a are 

regulated by prolyl hydroxylation and VHL-mediated protein degradation, although the 

kinetics of their stabilisation in oxygen gradients differ, with a more prolonged HIF-2 

response compared to HIF-1. HIF-1 and HIF-2 also share a number of target genes and are 

sometimes expressed in the same cells(Ratcliffe, 2007). How these distinct HIF isoforms 

regulate gene expression is an important area of ongoing study, but the hypoxic signature 
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we observe is entirely consistent with activation of HIF target genes. These findings are also 

supported by studies in mice with B cell-specific VHL deletion, and thus constitutively active 

HIF, which show abnormal B cell development and reduced GC B cells, antibody class-

switching and affinity-maturation. Deleting HIF-1 or both HIF-1 and HIF-2 in these models 

rescued the defects, confirming a HIF-1/-2-dependent effect(Burrows et al., 2020; Cho et al., 

2016) and suggesting that hypoxia-induced HIF stabilization might be physiologically 

important in B cell biology. 

Hypoxia might drive transcriptional and cellular changes independently of HIFs via 

epigenetic modifications involving DNA/histone demethylation. These occur through the 

oxygen-dependence of several lysine demethylases (KDMs)(Barbarash et al., 1986; 

Chakraborty et al., 2019) or through impaired DNA methylcytosine hydroxylation via the 

oxygen-sensitive TET enzymes(Thienpont et al., 2016). The oxygen affinity of KDMs and TETs 

are higher than the HIF prolyl hydroxylases. Therefore HIF transcriptional responses will 

occur first, and epigenetic changes may only be observed in severe tissue hypoxia. The role 

of KDMs and TETs in hypoxic immune regulation have yet to be studied, but they could 

contribute to the longer-term defects observed on B cells once hypoxia has resolved.  

While inflammation can contribute to activate HIF-1a, our demonstration that hypoxia 

alone can induce profound, reversible B cell abnormalities supports a major role for hypoxia 

in driving the B cell abnormalities in COVID-19. Hypoxia exerts its major effect on HIF-1α by 

preventing its degradation, while the main inflammatory impact is through enhancing HIF 

transcription, making a synergistic impact of hypoxia and inflammation on HIF function 

plausible(Burrows and Maxwell, 2017; Watts and Walmsley, 2019). While it is impossible to 

conclusively separate the two impacts in humans with COVID-19, the fact that a tighter 

correlation is seen between disease severity and hypoxia than with inflammatory 
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signatures, together with the demonstration that hypoxia alone can induce profound, 

reversible B cell abnormalities in mice, and supports a role for hypoxia in driving B cell 

abnormalities in COVID-19. Only plasmablasts showed HIF activation in the absence of 

hypoxia and these were the only B cell subset in which cell numbers do not correlate with 

the hypoxia signature, nor fall in mice subject to hypoxia, raising the possibility that HIF is 

constitutively active in these cells. This is consistent with a growing literature demonstrating 

that HIF-1α is active in multiple myeloma(Martin et al., 2011). Given this aspect of COVID-19 

B cell pathology does not appear impacted by hypoxia, therapeutic approaches to plasma 

cell control may need to involve pharmacological antagonism of HIF rather than increased 

oxygenation.  

Supplemental oxygen in established COVID-19 may not correct localised areas of hypoxia 

following acute lung injury/ARDS and could account for a persistent hypoxic transcriptional 

signal. Inflammation will exacerbate these transcriptional changes, and it is not possible to 

distinguish the relative contribution of hypoxia versus inflammation in severe disease. 

However, our corroboratory observations in mice clearly demonstrate that hypoxia is 

sufficient to drive these B cell changes, irrespective of inflammation, and the observation 

that hypoxia perturbs B cell immunity has implications in a wide range of clinical settings. In 

COVID-19, appropriate early oxygen therapy may lead to improved immune responsiveness, 

impacting on both the short-term and long-term outcomes of the disease, and this could be 

tested in clinical studies. 
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Fig 1.  B cells in COVID-19 and VHL-deficient mice. 

a, Cohort details. Time post positive swab (group A) or symptom onset (groups B-E). b, 

Median absolute cell counts (left) or proportions relative to total B cells (right) (log2 fold 

change relative to healthy controls). (Wilcoxon test FDR adjusted p-value (q)): *<0.05, 

**<0.005, ***<0.0005.  c, Serum IgG and IgM (g/L) at enrolment. Grey band: 5-95th centiles 

of healthy reference range (see methods). Significant P values listed. d, Somatic 

hypermutation frequency in IgA and IgG within 0-12 days post symptom onset, calculated 

over the CDR1/CDR2 regions using BCR sequencing of whole blood. (Wilcoxon test). c,d, 

Circles represent individual donors. e, Phenotype comparison: COVID-19 patients versus 

mice with Vhl-deficient B cells. 
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Fig 2.  Hypoxia-related transcription signatures in COVID-19  

a, Eigenvalues of Hallmark Hypoxia geneset grouped by severity at 0-12 days post symptom 

onset, (unpaired, two-sided Student’s t-test). Circles represent individual donors.  b, B cell 

subpopulations identified using CITEseq with Gene set enrichment analysis (GSEA) of 

Hallmark hypoxia geneset assessed on a single cell level comparing HC to COVID-19, 

grouped by severity (A/B n=8, C/D/E n =20), within 24 days of symptom onset (B-E)/positive 

swab(A). c, GSEA of Hallmark genesets in COVID-19 versus HC grouped by severity and time. 

Outlined circles: nominal P value <0.05 and FDR adjusted P <0.2. Mean hsCRP represented. 

d, Correlation between Hallmark hypoxia geneset eigengenes and parameters shown at 0-

12 days post symptom onset in COVID-19 patients. Boxes coloured by strength of 

correlation, Pearson correlation.  
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Fig 3.  The response of mouse B cells to hypoxia in vivo.  

a, WT mice exposed to 21% or 10% O2, were immunized with NP-KLH at day 1, then absolute 

spleen B cells enumerated at day 21. (Unpaired, two-sided Student’s t-test). FO, (Unpaired, 

two-sided Mann-Whitney U-test). Gating in methods, mean ± s.e.m, circles represent 

individual mice (n=8 per group), data pooled from two experiments, results confirmed in a 

third. b, Serum NP-specific antibodies after NP-KLH immunization, (unpaired, two-sided 

Student’s t-test). mean ± s.e.m, circles represent individual mice, (n=8 per group), data 

pooled from two experiments, confirmed in a third. *P < 0.05,**P < 0.01,***P < 0.001,**** 

P < 0.0001 
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Fig 4.   The response of mouse B cells to re-oxygenation in vivo.  

a, Spleen confocal images from immunised mice (Fig 3a), MZ B cells (magenta, B220+CD23-), 

FO B cells (yellow, B220+CD23+) and MZ metallophilic macrophages (blue, CD169+). B cell 

area, circles represent individual follicles from one spleen per condition, mean ± s.e.m. b, 

Experiment outline and absolute spleen B cells, (two-way ANOVA with Tukey’s multiple 

comparisons test). Gating in methods. Mean ± s.e.m, data pooled from two experiments. 

*P < 0.05,**P < 0.01,***P < 0.001,**** P < 0.0001. 
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Fig S1. B cell changes, clinical severity and hypoxia in COVID-19 patients 

a, Distribution of participant age and gender across severity categories. b, UMAP of B cell 

populations according to disease severity and days from symptom onset. Bar plot of the 

mean proportion of B cell populations. c, Heatmap showing the log2 fold change in median 

absolute cell count between COVID-19 cases in groups C, D, and E, split according to 

persisting or resolving CRP, and HCs. 12-day time bins. (Wilcoxon test FDR adjusted p 

value), ∗p < 0.05, ∗∗p < 0.005, ∗∗∗p < 0.0005. d, Level of total IgA (g/L) detected in serum of 

COVID-19 cases at the time of enrolment divided into < 45 and >45 years old age groups. 

Grey band correspond to 5-95th centile ranges based on UK Caucasian population published 

in the Protein Reference Unit handbook (9th Edn). e, Somatic hypermutation frequency 

calculated over the CDR1/CDR2 regions using BCR sequencing of whole blood, comparing 

COVID-19 cases and HCs, according to isotype, at 0-12 days post symptom onset (Wilcoxon 

test FDR adjusted p-value). f, Median Oxygen saturations of patients with COVID according 

to days from symptom onset and level of oxygen supplementation.  d,e Circles represent 

individual donors. 
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Fig S2. Constitutive HIF activation in mice leads to reduced antigen-specific B cells, TFH cells 

and SHM. 

a, B cell flow cytometric data from Vhl+/-Cd19-cre and Vhl-/-Cd19-cre mice 10 days post sheep 

red blood cell (SRBC) immunization; Spleen B cells, Transitional, FO, MZ, GC B cells and PCs. 

*P < 0.05,**P < 0.01,***P < 0.001 (unpaired, two-sided Student’s t-test). B cell flow 

cytometric data from Vhl+/-Mb1-cre and Vhl-/-Mb1-cre mice 21 days post NP-KLH 

immunization in b, inguinal lymph node (ILN); total, GC, NP+ GC, PC, NP+ PC and PC:B cell 

ratio displayed.  PCs were not increased in absolute number, but the PC:B cell ratio was 

consistently increased. *P < 0.05,**P < 0.01 (unpaired, two-sided Student’s t-test); GC B cells 
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**P < 0.01 (two-sided Mann-Whitney test), c, mesenteric lymph node (MLN) total and NP+ 

early memory B cells,  T cells and T follicular helper (TFH) cells, displayed. *P < 0.05 

(unpaired, two-sided Student’s t-test). d, Serum IgM, IgG and IgA in naïve Vhl+/-Mb1-cre and 

Vhl-/-Mb1-cre mice, by ELISA (A.U., arbitrary units). ****P < 0.0001 unpaired, two-sided 

Student’s t-test. e, Serum NP-specific antibody titres after NP-KLH immunization in Vhl+/-

Mb1-cre and Vhl-/-Mb1-cre mice, by ELISA. *P < 0.05,**P < 0.01 (two-way ANOVA with 

Sidak’s multiple comparisons test). f, Mean base-pair mutations per unique BCR per isotype 

(relative to reference germline IGHV gene) in naïve Vhl+/-Mb1-cre and Vhl-/-Mb1-cre mice. 

*P < 0.05,**P < 0.01 (unpaired, two-sided Student’s t-test). (a-e) Gating in methods, 

mean ± s.e.m, circles represent individual mice. a, n= 5 Vhl+/-Cd19-cre and 6 Vhl-/-Cd19-cre 

mice, b, n= 7 Vhl+/-Mb1-cre and n= 6 Vhl-/-Mb1-cre mice, c,e, n= 4 per genotype d, n= 6 per 

genotype, f, n= 4 Vhl+/-Mb1-cre and n= 3 Vhl-/-Mb1-cre mice. a,c,f, from one experiment, b, 

data are pooled from two independent experiments, d, data represent three independent 

experiments, e, data represent two independent experiments. 
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Fig S3. In vivo hypoxia leads to marked and persistent B cell defects in mice.  
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a, WT mice were exposed to 21% O2 (normoxia) or 10% O2 (hypoxia), were immunized with 

NP-KLH at d 1, then at d 11 splenic B cell subsets were enumerated by flow cytometry. Total, 

transitional, FO, MZ, GC, NP+ GC B cells, PCs, NP+ PCs and PC: B cell ratio is displayed. b, 

MLN; total, GC, NP+ GC, PC, NP+ PC and PC:B cell ratio displayed. c, bone marrow B cell 

subsets from normoxic and hypoxic mice immunised with NP-KLH on d 1 , then enumerated 

by flow cytometry on d 11 and d 21. Pro-/Pre-B, immature and mature B cells displayed. d, 

ILN; total and NP+ early memory B cells displayed. e, Serum IgM, IgG and IgA in normoxic 

and hypoxic mice immunised with NP-KLH on d 1 then harvested on d 11 or 21, by ELISA 

(A.U., arbitrary units). f, Representative spleen confocal images from normoxic and hypoxic 

mice immunised with NP-KLH on d 1 and harvested on d 11. MZ B cells (pink, B220+CD23-), 

FO B cells (yellow, B220+CD23+) and MZ metallophillic macrophages (blue, CD169+). B cell 

area, circles represent individual follicles from one spleen per condition, mean ± s.e.m. 

a,b,d-f, *P < 0.05,**P < 0.01,***P < 0.001, ****P < 0.0001 (unpaired, two-sided Student’s t-

test). c, **P < 0.01 (two-way ANOVA with Sidak’s multiple comparisons test).  (a-d,f) n = 8 

21% O2 and 8 10% O2, (e) n = 7 21% O2, 7 10% O2, individual mice. (a-d,f) Data pooled from 

two independent experiments, results confirmed in a third. (e) Data, represents three 

independent experiments. (a-e) Circles represent individual mice, mean ± s.e.m. 
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Fig S4. In vivo hypoxia has minor effects on T cells after 11 or 21 day exposures in mice 

T cells and Tfh cells from normoxic and hypoxic mice immunised with NP-KLH on d 1 then 

harvested on d 11 or 21, gating in methods. *P < 0.05,**P < 0.01 (unpaired, two-sided 

Student’s t-test). n = 8 21% O2 and 8 10% O2. Data pooled from two independent 

experiments. Circles represent individual mice, mean ± s.e.m. 
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