Figure S1. Full Forest Plots

CD4						
Subgroup	Number of studies	Sample Size	Study authors	Random effects model	Mean	95\% CI
Total						
Normal	3	13	Edwards 1995 Bell 2000 Adurthi 2008 Pooled	-	99.96	64.20-135.72
		17			550.80	453.83-647.77
		37			12.00	9.42-14.58
					209.39	43.80-374.98
Low grade	3	16	Edwards 1995	--1	196.86	156.13-237.59
		7	Bontkes 1997		21.86	-5.12-48.83
		15	Jaafar 2009 Pooled		202.30	144.95-259.65
					139.00	6.52-271.47
High grade	6	20	Edwards 1995	\mapsto	267.24	213.82-320.66
		7	Bontkes 1997	*	29.43	-8.56-6.43
		10	Bontkes 1997		25.14	-21.39-71.67
		30	Adurthi 2008		206.00	192.76-219.24
		15	Jaafar 2009	-	163.20	130.70-195.70
		20	Jaafar 2009	-	164.90	135.10-194.70
			Pooled	$\longmapsto \sim$	142.80	79.25-206.36
Cancer	8	16	Edwards 1995	\mapsto	245.31	192.33-298.29
		14	Bontkes 1997		31.86	-37.42-101.14
		22	Hachisuga 2001		575.28	451.04-699.52
		12	Hachisuga 2001		696.66	440.71-952.61
		30	Adurthi 2008		312.00	300.55-323.45
		7	Jaafar 2009	\longmapsto	333.20	274.43-391.97
		15	Jaafar 2009	\cdots	229.50	183.62-275.38
		67	Wang 2014	1	112.40	96.08-128.73
			Pooled	$\longmapsto \longrightarrow$	286.85	191.14-382.55
				${ }_{500}$		

Stromal								
Normal	4	2510	Al-Saleh 1998	--1			24.00	18.90-29.10
			Kobayashi 2004				215.00	117.69-312.31
		4	Monnier-Benoit 2006				322.33	247.56-397.10
		9	Nedergaard 2007				72.67	39.76-105.57
			Pooled				149.43	52.44-246.42
Low grade	5	14	Al-Saleh 1998				27.00	18.62-35.38
		9	Monnier-Benoit 2006	\cdots			360.00	271.92-448.08
		5	Monnier-Benoit 2006	--			360.67	296.39-424.94
		115	Woo 2014	-			85.94	30.73-141.14
		26	Bedoya 2013				30.52	23.21-37.83
			Pooled	\cdots			142.00	94.33-189.67
High grade	7	12	Al-Saleh 1998	-			29.00	20.51-37.49
		14	Kobayashi 2004				1083.00	722.09-1443.91
		13	Monnier-Benoit 2006	\longmapsto			317.67	182.77-452.56
		59	Woo 2014	-			60.08	60.04-60.12
		10	Loddenkemper 2009				379.10	180.08-578.12
		21	Bedoya 2013				9.45	6.69-12.21
		25	Bedoya 2013	-			20.62	13.92-27.32
			Pooled	!			59.81	27.30-92.32
Cancer	8	11	Monnier-Benoit 2006	$\mapsto-$			306.33	213.97-398.70
		102	Nedergaard 2007	-1			265.00	213.68-316.32
		20	Nedergaard 2007	ط			722.67	490.23 - 955.11
		12	Loddenkemper 2009				391.00	220.00-562.00
		10	Shah 2011	\cdots			114.95	77.43-152.47
		30	Shah 2011	-			103.63	62.75-144.51
		24	Bedoya 2013	\vdots			29.71	19.89-39.53
		57	Qinfeng 2013	\%			48.96	28.32-69.60
			Pooled	-			185.06	121.50-248.61
				1	$\underset{1000}{T}$	$\underset{1500}{T}$		

Epithelial						
Normal	11	29	Poppe 1995	\longmapsto	283.67	194.43-372.90
		9	Poppe 1995	\cdots	321.00	73.71-568.29
		150	Szarewski 2001	*	126.33	115.78-136.88
		11	Kobayashi 2004	\longmapsto.	408.00	77.07-738.93
		15	Pudney 2005	*	180.00	167.75-192.25
		4	Monnier-Benoit 2006	${ }^{-1}$	50.00	23.87-76.13
		9	Piersma 2007	\cdots	75.00	42.33-107.67
		9	Nedergaard 2007	--1	94.00	64.00-124.00
		115	Jordanova 2008		7.31	6.15-8.47
		9	Jaafar 2009	\cdots	187.00	145.04-228.96
		15	Jaafar 2009	\cdots	125.80	89.48-162.12
			Pooled	\longmapsto	137.48	75.87-199.09
Low grade	4	9	Monnier-Benoit 2006		24.33	17.07-31.59
		5	Monnier-Benoit 2006	*	64.67	54.28-75.06
		115	Woo 2008	*	41.72	32.91-50.53
		26	Bedoya 2013		19.71	14.42-25.00
			Pooled		37.21	19.33-55.10
High grade	6	13	Kobayashi 2004		434.00	259.51-608.49
		13	Monnier-Benoit 2006	-	47.33	41.70-52.97
		59	Woo 2008	\cdots	37.59	25.83-49.34
		10	Loddenkemper 2009	-1	93.50	70.09-116.91
		21	Bedoya 2013		15.95	7.58-24.32
		25	Bedoya 2013		17.70	8.98-26.42
			Pooled	-1	45.55	25.07-66.04
Cancer	12	11	Monnier-Benoit 2006	\longmapsto	146.33	76.29-216.37
		59	Piersma 2007	\cdots	135.00	95.45-174.55
		102	Nedergaard 2007	-	496.00	401.99-590.01
		20	Nedergaard 2007		620.33	403.48-837.19
		115	Jordanova 2008	-	17.34	11.98-22.70
		12	Loddenkemper 2009	\cdots	115.60	21.55-209.65
		10	Shah 2011	\longmapsto	152.59	84.00-221.18
		30	Shah 2011	\longmapsto	179.62	126.68-232.56
		24	Bedoya 2013	-	15.42	10.58-20.26
		57	Qinfeng 2013	1	20.83	4.92-36.74
		31	Heeren 2018	\longmapsto	249.50	153.40-345.60
		137	Liang 2018	1	108.77	90.79-126.76
			Pooled	+-1	125.96	97.32-154.60
				500		

Stromal						
Normal	3	10	Kobayashi 2004	$\longmapsto \quad$.	0.65	0.21-1.09
		4	Monnier-Benoit 2006	1 :	0.75	0.66-0.85
		9	Nedergaard 2007	\cdots	0.48	0.18-0.78
			Pooled	--	0.68	0.51-0.85
Low grade	3	9	Monnier-Benoit 2006	$\stackrel{ }{ }$	1.27	1.14-1.41
		5	Monnier-Benoit 2006	-	0.96	0.87-1.05
		26	Bedoya 2013	\bullet	0.53	0.41-0.65
			Pooled	\div	0.92	0.54-1.30
High grade	5	13	Kobayashi 2004	-	1.27	0.63-1.92
		13	Monnier-Benoit 2006		0.91	0.85-0.97
		10	Loddenkemper 2009		1.34	0.57-2.10
		21	Bedoya 2013		0.62	0.50-0.74
		25	Bedoya 2013		3.59	3.12-4.06
			Pooled		1.50	0.98-2.03
Cancer	8	11	Monnier-Benoit 2006	-	0.37	0.23-0.52
		102	Nedergaard 2007	:	0.33	0.25-0.41
		20	Nedergaard 2007	\rightarrow	0.56	0.32-0.81
		12	Loddenkemper 2009		1.04	0.40-1.68
		10	Shah 2011		1.68	0.88-2.48
		30	Shah 2011	\cdots	1.25	0.82-1.68
		24	Bedoya 2013	\cdots	1.50	1.15-1.85
		57	Qinfeng 2013		1.26	0.53-1.99
			Pooled	\longmapsto	0.90	0.60-1.20
				$\begin{aligned} & T \\ & 2 \end{aligned}$		

Figure S1. Full Forest Plots. Forest plots of each population subset included in the quantitative meta-analysis of infiltrating CD3, CD4, CD8, the CD4:CD8 ratio, and FoxP3 in normal cervix, low grade cervical intraepithelial neoplasia (CIN), high grade CIN, and cervical cancer tissue. Abbreviations: Cl, confidence interval.

Figure S2. Tests of Variance

Kruskal Wallis

Kruskal Wallis
$p=0.5571$

ANOVA
$p=0.5783$

Figure S2. Tests of Variance. Pairwise nonparametric (Kruskal Wallis) and parametric (ANOVA) tests of variance showed comparable results for each T-cell subset and ratio. Only CD8 total was nominally significant ($p<0.05$) for both tests. Pairwise nonparametric Mann-Whitney tests reveal that this result was driven by significant differences between cancer and each other disease stage.

First Author	Year PMID	Disease level					Tissue type			Markers of interest							Age		${ }_{\text {IHC/IF }} \text { Method }$
		Normal	LGcin	hgilin	Cancer	Other	Epithelial	Stromal	Total	cD4	cD8	CD3	CD4:CD8	CD56	Foxp3	CD25	Years	Reporting metric	
Abdulhaqq	201626555708	13					x			x							21	Minimum	IF
Adurthi	200818593438	37		30	30	37			x	x	x	1	1		x	x	26-76	Range	Інс
Ahmed	200111439171	10					x	x		I	x	1	x				28-33	Range	$1 F$
al-Saleh	19989614381	34	14	12				x		x							NR	NR	Iнс
Ancuta	200919942961				61		Unk	UNK	Unk			x					36.4	Mean	Інс
Bedoya	201322290207		26	46	24		x	x		x	x	1	x		x	\times	33.7/33.6/47/47.2	Mean (CIN1/CIN2/CIN3/cancer)	IHC
Bell	200010684703	17				6			x	x	x	1	x				39.3/27.3/26.1	Mean (Normal/CIN HIV-/CIN HIV+)	H\%
Bethwaite	19969007950				64		x	x				x					43.7	Mean	IHC
Bontkes	19979374883		7	17	14				x	1	x	x	1				NR	NR	Інс
Brustmann	201525675190	54	25	44	64		x	x			x						NR	NR	Інс
Carrero	201525661067	7	45	10			x	x				x					NR	NR	1 F
Chen	200616681759				55		x	x			x						NR	NR	Інс
Coleman	19948314316			16			x	x				x					NR	NR	IHC
Dietl	19911671375				10		x	x		x	x	\times					48	Median	Інс
Edwards	19958620416	13	16	20	16				x	x	x	1	1				NR	NR; 15 years older in cancer than CIN	Інс
Enwere	201728059093				111				x		x						44	Median	$\mathrm{IHC}^{\text {c }}$
Ferguson	19852415145	13			10		x			x	x	x					31-77	Range	HC
Ferrandina	200616609015				27			x		x	x	x				x	51/58	Median (treated/untreated)	${ }^{\text {He }}$
Gey	200312628838				12				x			x					NR	NR	$\mathrm{IHC}^{\text {c }}$
Hachisuga	200111549855				34				x	x	x	1	1				53	Mean	H\%
Heeren	201830050535				35		x	x			x						4.9	NR	IHC and IF
Hilders	19938264228				30		x	x		x	x	x		x			NR	NR	Інс
Hirbod	201324006463	20					x			x							42/38/42	Median (HIV+ FSW/HIV-/HIV- FSW)	${ }^{\text {HC }}$
Hou	201222820395	18		28	46				x						x		45/39/46	Median (cancer/[IN3/normal)	Інс
Hu	201525885042			13					x			x					38.2/36.9	Median (HPV+/HPV-)	${ }^{\text {He }}$
Jaafar	200919808652	9	15	35	22	6	x		x	x	x	x	1		x		NR	NR	1 F
Jordanova	200818381941	115			115		x			x	1	1	x				48.5/46	Mean (patients)/median (controls)	1F (CD8); 'HC (FoxP3)
Kobayshi	200415374995	21		14			x	x		x	x	1	1	x			51/33/32	Mean (HIV- norma//HIV CIIN/HV+ ${ }^{\text {CIN }}$)	Інс
Kuppers	199825951354	6	5	17	9				x	x	x		x				NR	NR	$\mathrm{IHC}^{\text {c }}$
Li	201425423704	24	28	50	24				\times	x							NR	NR	HC
Liang	201830474571				137		x	x			x				x		NR	NR	H\%
Loddenkemper	200919514119			10	12		x	x		x	x	1	1		x		NR	NR	Інс
Lucena	201626545568		6	31			Unk	Unk	Unk	x	x	x		x			32.8/35.3	Mean	Інс
Maldonado	201424477000	12					x	x			x				x		29	Mean	Інс
Maluf	200818343936			35				x			x	x					34.9	Mean	${ }^{\text {HC }}$
Monnier-Benoit	200616427684	4	14	13	11		x	x		x	x	1	x				44/35/44	Median (normal/CIN/cancer)	$\mathrm{IHC}^{\text {c }}$
Munk	201223017821					162		x		x							25-40	Range	${ }^{\text {HC }}$
Nakamura	200717433037	24		31	28	13	x	x							x	x	NR	NR	\|HC/IF
Nedergaard	200717940503				102		x	x		x	x	x	1				NR	NR	$\mathrm{IHC}^{\text {c }}$
Nedergaard	200718184401	9			20		x	\times		x	x	x	1				31.5	Median	${ }^{\text {HC }}$
Olaitan	19968805867	5							\times				x				37	Mean	Інс
Origoni	201324455729			34			x	x		x	x						NR	NR	${ }^{\text {He }}$
Ovestad	201121421698			55			x	x			x					x	35.2/48.6	Mean (CIN-cancer/normal)	Інс
Peghini	201222749886		21	34	8					x						x	44/46	Median (cancer/normal)	IF/IHC
Piersma	200717210718	9			59		x	x			x	x			x		36/43	Mean (nonsmokers/smokers)	Інс
Poppe	19957890250	38					x			x	x	1	1				49/3/41/45/45	Mean (normal/CIN1/CIN2/CIN3/cancer)	${ }^{\text {HC }}$
Prata	201526059395	5	21	36	22				x						x		43	Mean	HC
Pudney	200516093359	16					x			x	x	1	1				40	Median	${ }^{\text {IF }}$
Punt	201525795131				67		x	x				x			x		51	Median	${ }^{\text {HC }}$
Qinfeng	201323510275				57		x	x		x	x	1	1				44	Mean	$\mathrm{IHC}^{\text {c }}$
Roncalli	19882448545					18	x	x		x	x	1	1				31.2/32.3/33.4	Mean (HIV-/HV+ high CD4/HIV+ low CD4)	${ }^{\text {HC }}$
Rosini	19968760019	5	19	19	7		x	x				x					47	Mean	${ }^{\text {HC }}$
Shah	201121200385				40		x	x		x	x	1	x		x		47	Median	${ }^{\text {HC }}$
Silva	201020613932	20		19	19		x	x			x	-					43.9/35.5/50	Mean (normal/CIN3/cancer)	IHC
Srivani	200312801265	3	6	13	32	2			x	x	x	x					42,3-55.4	Range of mean ages listed for 8 disease stages	1 HC
Szarewski	200111281472	150					x			x	x	1	1				35	Mean	${ }^{\text {HC }}$
Varynen	19852989155	166	62	32	3				x	x	x	x	x				25-29	Median	1 HC
Viac	19902168858	5		18			x	x		x	x						20-60	Range (hgcin)	IF
Wang	201425446402				67				x	x	x	1	1		x		43	Mean	IF
White	19979138451	29							\times			x					NR	NR	${ }_{1 F}$
Woo	200819035938		59	115			x	x		x	x	+	x	x	x		20-30	Range	${ }_{\text {IHC }}$

Table S1. Studies Included in Quantitative Meta-Analysis. Studies included in the quantitative meta-analyses are listed, including record identification information. The numbers of patient samples at each disease stage and which markers and tissues types were included are also indicated. One sample per patient was included from studies that took multiple samples. Directly reported measurements are indicated with an "XX", imputed measurements are indicated with an "1," and studies with unknown tissue type are indicated with "UNK." In the meta-analysis unknown tissue type was assumed to be total
(see methods). Abbreviations: PMID, pubMed identification number; LG, low grade; cIN, cervical intraepithelial neoplasia; HG, high grade; UNK, unknown; II imputed; NR, not reported; IHC, immunohistochemistry; IF, immunofluorescence

Hachisuga 200111549855 Heeren 201830050535 Hellberg 200918976801	Cohort baseline Cohort baseline Cohort	u	Possible confounding by HIV status Possible confounding by HIV status Adjusted for clinical stage, other markers; HIV less of a concern in this time range	u	Insufficient details provided to evaluate All qualifying patients in range selected Insufficient details provided about selection to determine likelihood of bias	u	Insufficient details on cell counting methods Possible bias in selection of imaging areas Pathologist blinded to clinical details	10	Minimum	Yes Yes	Yes
Hilders 19938264228	Cross-sectional	u	Difficult to assess with details provided Controlled for or excluded based on potential	L	All patients with available tissue were selected; controls appropriate	u	Possible non-random areas assesed; also not stated whether cell counters were blinded Blinded assessment of tissue, full sections			Yes	
Hirbod 201324006463	Cross-sectional	L	Appropriate exclusions for potential	เ	Two appropriate control groups Consecutive patients enrolled; normal control	L	"Randomly se not truly random, not stated whether reviewer			Yes	
Hou 201222820395	Cross-sectional	L	confounders	L	specimens from comparable population	u	was blinded to outcome "Randomly selected" areas may not be truly			Yes	
Hu 201525885042	Cross-sectional	เ	Excluded based on likely confounders	${ }^{\text {L }}$	Insufficient details on patient selectino provided	u	"Representative areas" selected for study and "randomly selected fields" possibly not truly			Yes	
Jaafar 200919808652	Cross-sectional	${ }^{\sim}$	No details provided to evaluate No data on HIV status; did not control for cancer	u	to determine	u	random introduce possibility of bias Cells counted in "ramdomly selected" fields likely not truly chosen at random; automated			Yes	
Jordanova 200818381941	Cohort		stage, type, etc. Not controlled for prior chemotherapy, HIV	เ	All eligible cases in time range included Possible selection bias into randomized trial	u	cell counting	${ }^{5}$	Maximum	Yes	Yes
Karageorgopoulou 201728659181	Clinical trial	H	status, primary vs recurrant cancer Comparing HIV+ and HIV- patients from three different studies makes unmeasured	u	from which cases were drawn Hospital controls used as normal tissue source,		Path reviewers blinded to clinical characteristics	0.02-6.75	Range		Yes
Kobayashi 200415374995	Cross-sectional	H	confounding likely No details provided; likely confounding by HIV	u	may not be representative	u	and fields not selected at random Blinded investigators, areas to evaluate selected			Yes	
Kuppers 199825951354	Cross-sectional	н	status or other unconsidered factors	\checkmark	Insufficient details provided to evaluate Insufficient details provided to evaluate; use of	เ	randomly No stated whether cell counters were blinded;			Yes	
Li 201425423704	Cross-sectional	u	Insufficient details to evaluate	u	hospital controls for normal tissue Consecutive patients recruited; patients likely representative of cancer patient population	u	sections not selected randomly			Yes	
Liang 201830474571	RCT baseline	$\stackrel{ }{ }$		เ	overall	H	randomly Random selection of fields to count, counters			Yes	
Loddenkemper 200919514119	Cross-sectional	เ	Stratified by HIV status, controlled for other	เ	Random selection of archived tissues	เ	blinded to outcomes Scoring system subjective but examiner blinded			Yes	
Lucena 201626545568 Maldonado 201424477000	Cros-s-sectional Clinical trial baseline	$\stackrel{1}{\text { L }}$	Excluded based on likikely confounders	${ }_{\text {u }}$	Insufficient details to evaluate	เ	so any bias not likely differential			Yes Yes	
					Several exclusion reasons likely associated with						
Maluf 200818343936	Cohort		Possible HIV confounding but unlikely given time period	н	T cell counts (surgical margains requiring hysterectomy, lesions too small for IHC)	u	Not stated whether cell counting was performed in a blind manner	4	Minim	Yes	Yes
					Controls from same cohort as CIN cases; cancers						
Monnier-Benoit 200616427684	Cohort baseline	L	All patients immunocompetent		separate which is not ideal but unavoidable	u	Unclear whether cell counters were blinded Cell counting possibly not at random, difficult to			Yes	
unk 201223017821	Cohort baseline	เ	Excluded based on likely confounders		All eligibile patients in range asked to participate	u	No indication that high power fields selected			Yes	
Nakamura 200717433037	Cross-sectional	u	No details provided on probably confounders	u	Insufficient details to evaluate	u	randomly or that cell counters were blinded Fields of view selected randomly; can't tell if			Yes	
Nedergaard 200717940503	Cross-sectional	u	Possible HIV confounding		Probably selected all cancers that met inclusion criteria but didn't explicitly state this in methods	u	counting procedure introduced possible information bias			Yes	
					Consecutive patients recruited; possible bias in that patients with less advanced cancer may be more likely not to have tumor tissue in archival blocks but our analysis did not distinguish		Random selection of tissue blocks and areas				
Nedergaard 200718184401	Cross-sectional	u	Possible HIV confounding		between stages so likely not relevant here		within tissues, systematic cell counting protocols Fields of view selected systematically, unclear			Yes	
Nedergard 200817945335	Cohort	u	Possible HIV confounding	L	Consecutive eligible patients included	u	whether reviewers were blinded	5	Exactly		Yes
Olaitan 19968805867	Cross-sectional		Careful screening of participants for likely confounders Exclusions based on all likely confounding		No details on HIV- controls (the group included in this analysis)		Unclear how randomly sections were chosen for counting or whether reviewers were blinded			Yes	
Origoni 201324455729	Cohort		No discussion of potential confounders, difficult	L	Consecutive patients enrolled	เ	Path reviewer blinded Highly unrepresentative areas selected for	2	Exactly	Yes	Yes
Ovestad* 201020512116	Cross-sectional	u	to evaluate	u	Insufficient details provided to evaluate	н	counting				
Ovestad 201121421698	Cohort	u	No discussion of potential confounding factors, difficult to evaluate bias likelihood	u	- Insufficient details to determine likelihood of selection bias	H	Unclear whether reviewers were blinded; only most severely dysplastic area was evaluated	0.23	Median	Yes	Yes
Peghini 201222749886	Cross-sectional	เ	Excluded for likely confounders	u	Unclear whether normal controls from same population as $\mathrm{CIN} /$ cancer patients Unclear whether normal controls from same	u	Unclear whether reviewers we blinded; subjective scoring system			Yes	
Piersma 200717210718	Cross-sectional	u	Possible HIV confounding	u	Unclear whether normal controls from same population as cancer patients	u	Unclear whether reviewers blinded			Yes	

					Hysterectomy patients for noncervical benign						
Poppe 19957890250		L	Excluded based on likely confounders		pathology as normal tissue source; may not be		Entire epithelium evaluated by blinded				
			,		Convenience samples possibly not		Random, blinded selection of tissue areas to				
Prata 201526059395	Cross-sectional	u	No discussion of potential confounders	u	representative	L	count			Yes	
			Some "normal" patients had cervical		Hysterectomy patients for noncervical benign						
Pudney 200516093359	Cross-sectional	U	inflammation; can't tell whether these were included in analytic population	u	pathology as normal tissue source; may not be	u	Unclear whether cell counters were blinded or regions selected randomly			Yes	
					All cases in range included but 20 year span						
			Possible HIV confounding, other unknown		raises issues of changing clinical practices, populations over time						
Punt 201525795131	cohort	u	factors due to long time range	u	populations over time	L	Five fields selected "randomly" possibly not truly	5	Maximum	Yes	Yes
			No discussion of potential confounders, dificicult		Seem to have selected all eligible patients but		random, also unclear if reviewers blinded to				
Qinfeng 201323510275	Clinical trial baseline	u	to evaluate	u	didn't state this explicitly No details provided on patient selection other	u	clinical characteristics			Yes	
Roncalli 19882448545	Cross-sectional	L	No likely confounders for this population (prewidespread HIV)	L	than hysterectomy for non-cervical reasons; seems a reasonable cross-section	u	Sections counted possibly not representative, cell counters not blinded			Yes	
			Matched on likely confounders; stratified by HIV		No details provided on subject selection so		Not stated whether pathologists were blinded				
Rosini 19968760019	Cross-sectional	L	status	u	impossible to evaluate	u	to HIV status or how fields were selected Random regions of interest selected "under the			Yes	
			No details about patients makes possible				random, also tissue samples taken from most				
Saglam 201931274701	cohort	u	confounding impossible to ascertain	u	No details on patient selection	H	invasive portion of tumor	9.4	Mean		Yes
Shah 201121200385	cohort	u	Insufficient details to evaluate	u	Insufficient details to evaluate	เ	Whole slides counted Nonrandom areas were counted; unclear	5	Minimum	Yes	yes
					Probably a random selection of eligible cases		whether reviewers were blinded; insufficient				
Silva 201020613932	Cross-sectional	เ	Excluded based on likely confounders	u	but did not specify this	u	slides possibly not at random Nonrandom and probably non blinded cell			Yes	
Srivani 200312801265	Cross-sectional	u	Insufficient details to evaluate	u	Insufficient details to evaluate	u	Cells counted not likely truly random, although			Yes	
Syrianen 19853002294	cohort	เ	Dates reduce possibility of HIV confoudning	L	Prospective study	u	cell counting was blinded	1.7	Mean		Yes
Syrianen 19873032634	cohort	L	Dates reduce possibility of HIV confoudning	เ	Prospective study Unclear whether cohort representative of	u	Cell counted not likely truly random	2.1	Mean		Yes
Szarewski 200111281472	Cohort baseline	เ	Excluded based on likely confounders	u	normal population	ᄂ	Blinded, systematic cell counting			Yes	
Trimble 201021037100	Cohort	L	Exclusions based on likely confounding factors Potential HIV confounding but well done study,	u	Prospective study; HPV16 only could have an unknown effect vs other HPV types Consecutive women enrolled; unclear enrollmet	u	Unclear how regions of interest were selected whether selectors were blinded to outcomes	0.29	Exactly		Yes
Vayrynen 1985 2989155 Viac 1990 216858	Cohort cross-sectional	$\stackrel{\llcorner }{\square}$	series in 1980 makes unlikely Insufficient details to evaluate	u	Insufficient details to criluate	U	Cell counter blinded to specimen identity	1.3	Mean	Yes Yes	Yes
Viac 19902168858	Cross-sectional	U	Insufficient details to evaluate	u	Insufficient details to evaluate	u	No details on high power field selection			Yes	
Wang 201425446402	Cross-sectional	u	Insufficient details to evaluate Insufficient details to evaluate; not confident that a rural population is sufficient to rule out	L	Seem to have selected all eligible patients; appropriate normal controls Elective hysterectomy patients; insufficient details provided to evaluate potential selection		No details on high power field selection or indication of whether cell counters were blinded No indication whether cell counters blinded or			Yes	
White 19979138451		U	HIV confounding	u	bias	u	how areas selected for evaluation			Yes	
Woo 200819035938	cohort	\cup	Potential HIV confounding	\cup	No details provided	\llcorner	Pathologist blinded to clinical information Systematic, random field selection and blinded	1	Exactly	Yes	Yes
Wu 201121930068		U	Insufficient details to evaluate	u	Insufficient details to evaluate	L	reviewers				

Table S2. Quality Review. A quality review was conducted for each of the studies included in the the quantitative meta-analysis, qualitative CD25 analysis, and/or longitudinal analysis to record the likelihood of confounding, selection bias, and information bias. Abbreviations: PMID, PubMed ID; NR, not reported; L, low; $\mathrm{U}:$ unknown; H , high

Table S3. Sensitivity Analysis Results
A. Exclusion of cancer-adjacent normal, exclusion of unknown cancer type, or inclusion of all cancers (mean (95\% CI))*

	Normal		LGCIN ${ }^{+}$	HGCIN \dagger	Cancer		
	All ${ }^{\text {+ }}$	Excluding canceradjacent			Squamous and unreported/ unknown ${ }^{\dagger}$	Squamous only	All including known adenocarcinomas
Total CD3 CD4 CD8 CD4:CD8 Ratio FoxP3	$\begin{aligned} & 341(81,601) \\ & 209(44,375) \\ & 127(7,248) \\ & 0.93(0.61,1.24) \\ & 107(-104,318) \end{aligned}$	$\begin{aligned} & 341(81,601) \\ & 209(44,375) \\ & 127(7,248) \\ & 0.93(0.61,1.24) \\ & 107(-104,318) \\ & \hline \end{aligned}$	$\begin{aligned} & 164(29,298) \\ & 139(7,271) \\ & 141(43,238) \\ & 0.75(0.33,1.18) \\ & 4(1,7) \\ & \hline \end{aligned}$	$\begin{aligned} & 214(77,352) \\ & 143(79,206) \\ & 173(120,225) \\ & 0.70(0.51,0.88) \\ & 52(41,63) \end{aligned}$	$\begin{aligned} & 712(447,977) \\ & 287(191,383) \\ & 552(394,710) \\ & 0.80(0.47,1.13) \\ & 391(282,500) \\ & \hline \end{aligned}$	$\begin{aligned} & 620(342,898) \\ & 305(223,387) \\ & 443(312,574) \\ & 0.65(0.46,0.85) \\ & 183(33,332) \\ & \hline \end{aligned}$	$638(368,908)$ $262(172,353)$ $498(365,631)$ $0.76(0.46,1.06)$ $323(235,412)$
Epithelial CD3 CD4 CD8 CD4:CD8 Ratio FoxP3	$146(104,187)$ $94(63,125)$ $137(76,199)$ $0.81(0.53,1.10)$ $19(3,36)$	$\begin{aligned} & 149(105,193) \\ & 106(65,148) \\ & 143(77,209) \\ & 0.89(0.58,1.19) \\ & 19(3,36) \\ & \hline \end{aligned}$	$\begin{aligned} & 65(36,94) \\ & 19(11,27) \\ & 37(19,55) \\ & 1.17(0.71,1.63) \\ & 0.4(0.3,0.4) \ddagger \\ & \hline \end{aligned}$	$\begin{aligned} & 137(103,170) \\ & 16(6,27) \\ & 46(25,66) \\ & 0.75(0.37,1.12) \\ & 7(0,15) \\ & \hline \end{aligned}$	$\begin{aligned} & 247(178,317) \\ & 52(38,67) \\ & 126(97,155) \\ & 0.66(0.42,0.91) \\ & 8(6,10) \\ & \hline \end{aligned}$	$\begin{aligned} & 383(210,557) \\ & 93(28,157) \\ & 223(142,305) \\ & 0.46(0.28,0.64) \\ & 59(32,85) \\ & \hline \end{aligned}$	$\begin{aligned} & 264(196,332) \\ & 52(38,67) \\ & 97(75,119) \\ & 0.66(0.42,0.91) \\ & 11(9,13) \\ & \hline \end{aligned}$
Stromal CD3 CD4 CD8 CD4:CD8 Ratio FoxP3	$\begin{aligned} & 381(130,632) \\ & 149(52,246) \\ & 247(136,358) \\ & 0.68(0.51,0.85) \\ & --\quad \\ & \hline \end{aligned}$	$\begin{aligned} & 397(109,685) \\ & 273(169,378) \\ & 293(246,341) \\ & 0.75(0.66,0.84) \\ & -- \end{aligned}$	$\begin{aligned} & 303(193,413) \\ & 142(94,190) \\ & 157(50,264) \\ & 0.92(0.54,1.30) \\ & 7(6,8) \\ & \hline \end{aligned}$	$\begin{aligned} & 458(358,557) \\ & 60(27,92) \\ & 174(108,240) \\ & 1.50(0.98,2.03) \\ & 9(3,15) \end{aligned}$	$838(560,1117)$ $185(122,249)$ $395(274,517)$ $0.90(0.60,1.20)$ $56(45,67)$	$\begin{aligned} & 954(492,1415) \\ & 187(88,286) \\ & 448(286,610) \\ & 1.00(0.50,1.51) \\ & 103(-9,216) \\ & \hline \end{aligned}$	$\begin{aligned} & 1029(738,1320) \\ & 185(122,249) \\ & 395(274,517) \\ & 0.90(0.60,1.20) \\ & 56(45,67) \\ & \hline \end{aligned}$

B. Stratification by quantification metric, cells per unit area or cells per HPF (mean (95\% CI))*

	Normal	LGCIN	HGCIN	Cancer
Cells per unit area				
Total				
CD3	$28(24,32)^{\ddagger}$	--	$441(424,458)^{\ddagger}$	$699(685,713)^{\ddagger}$
CD4	$12(9,15)^{\ddagger}$	--	$206(193,219)^{\ddagger}$	$312(301,323)^{\ddagger}$
CD8	$16(13,19)^{\ddagger}$	--	$235(224,246)^{\ddagger}$	$387(379,395)^{\ddagger}$
CD4:CD8 Ratio	$0.75(0.53,0.97)^{\ddagger}$	--	$0.88(0.81,0.95)^{\ddagger}$	$0.81(0.77,0.84)^{\ddagger}$
FoxP3	$0.1(-0.1,0.4)^{\ddagger}$	$2(0,5)$	$9(5,12)$	$59(38,81)$
Epithelial				
CD3	$232(131,334)$	$65(29,101)$	$132(89,175)$	$283(189,376)$
CD4	$86(53,119)$	$22(3,41)$	$8(2,13)$	$49(28,70)$
CD8	$132(64,201)$	$36(13,59)$	$35(10,61)$	$135(100,170)$
CD4:CD8 Ratio	0.81 (0.49, 1.13)	0.57 (0.27, 0.87)	0.54 (0.15, 0.94)	0.55 (0.27, 0.83)
FoxP3	--	$0.4(0.3,0.4)^{\ddagger}$	2.1 (1.9, 2.2)	5.6 (3.6, 7.6)
Stromal				
CD3	$455(333,577)$	$388(161,615)$	$627(448,806)$	1170 (366, 1973)
CD4	$149(52,246)$	$155(102,209)$	$29(9,50)$	$302(105,499)$
CD8	$247(136,358)$	$178(57,300)$	$196(93,299)$	$630(339,920)$
CD4:CD8 Ratio	0.68 (0.51, 0.85)	0.92 (0.54, 1.30)	1.54 (0.96, 2.12)	0.65 (0.33, 0.96)
FoxP3	--	$6.8(5.6,7.9)^{\ddagger}$	6.6 (-0.3, 13.4)	20.8 (11.8, 29.7)
Cells per HPF				
Total				
CD3	508 (-183, 1199)	$164(29,298)$	$161(98,223)$	713 (431, 996)
CD4	323 (-119, 765)	$139(7,271)$	$129(52,207)$	$282(180,385)$
CD8	$184(-65,433)$	$141(43,238)$	$160(108,211)$	$586(299,872)$
CD4:CD8 Ratio	1.04 (0.56, 1.53)	0.75 (0.33, 1.18)	0.66 (0.46, 0.86)	0.85 (0.46, 1.24)
FoxP3	$216(174,257)^{\ddagger}$	$53(35,70)^{\ddagger}$	$302(15,589)$	$589(140,1037)$
Epithelial				
CD3	$29(18,40)$	$66(53,80)^{\ddagger}$	$144(63,225)$	$202(50,354)$
CD4	$116(91,140)$	$16(15,17)^{\ddagger}$	$56(-27,140)$	$79(24,135)$
CD8	$155(96,215)$	$42(33,51)^{\ddagger}$	$65(10,119)$	$115(17,213)$
CD4:CD8 Ratio	0.84 (0.61, 1.07)	$4.30(3.53,5.07)^{\ddagger}$	2.23 (-0.24, 4.69)	0.80 (0.59, 1.01)
FoxP3	$19(3,36)$	--	$12(0,23)$	$18(9,26)$
Stromal				
CD3	$15(8,23)^{\ddagger}$	$51(44,58)^{\ddagger}$	$384(137,631)$	$259(134,384)$
CD4	--	$86(31,141)^{\ddagger}$	$203(-108,514)$	$116(55,178)$
CD8	--	$64(-97,225)^{\ddagger}$	$180(-19,379)$	$117(51,182)$

CD4:CD8 Ratio	--	-	$1.34(0.57,2.10)^{\ddagger}$	$1.27(0.97,1.56)$
FoxP3	--	--	$45(-10,99)$	$82(38,126)$

C. Restriction to explicitly reported values for CD3, CD4, CD8 and the CD4:CD8 ratio (mean ($95 \% \mathrm{CII}$)**

	Normal	LGCIN	HGCIN	Cancer
Total	--	$76(60,93)$	$93(59,128)$	$147(115,178)$
CD3	$209(44,375)$	$199(165,232)$	$196(161,230)$	$324(224,425)$
CD4	$127(7,248)$	$141(43,238)$	$173(120,225)$	$552(394,710)$
CD8	$0.86(0.38,1.34)$	$0.42(0.31,0.53)^{\ddagger}$	$0.50(0.41,0.60)$	$0.11(0.02,0.20)^{\ddagger}$
CD4:CD8 Ratio				
Epithelial		$74(57,91)$	$210(127,293)$	$554(322,786)$
CD3	$94(63,125)$	$19(11,27)$	$16(6,27)$	$52(38,67)$
CD4	$138(103,174)$	$37(19,55)$	$46(25,66)$	$166(117,215)$
CD8	$1.80(-0.94,4.53)$	$1.17(0.71,1.63)$	$0.79(0.31,1.27)$	$0.98(0.50,1.46)$
CD4:CD8 Ratio				
Stromal		$153(-50,356)$	$619(349,890)$	$1450(543,2356)$
CD3	$283(29,536)$	$142(94,190)$	$60(27,92)$	$185(122,249)$
CD4	$84(52,117)$	$142(50,264)$	$174(108,240)$	$395(274,517)$
CD8	$247(136,358)$	157		
CD4:CD8 Ratio	$0.75(0.66,0.85)^{\ddagger}$	$0.92(0.54,1.30)$	$1.61(0.95,2.27)$	$1.16(0.44,1.89)$

* All results are in cells $/ \mathrm{mm}^{2}$
\dagger Reported in main manuscript
\ddagger Categories with a single study. Narrow Cl should not be interpreted as high
-- Categories with no studies

Table S3. Sensitivity Analysis Results. Meta-analysis results including means and 95% confidence intervals for the following sensitivity analyses: A. exclusion of cancer-adjacent normal, exclusion of unknown cancer type, and inclusion of all cancers B. stratification by quantification metric, cells $/ \mathrm{mm}^{2}$ or cells per high power field (HPF), and C. restriction to explicitly reported values for CD3, CD4, CD8, and the CD4:CD8 ratio. Abbreviations: Abbreviations: HPF, high power field; Cl , confidence interval; LG, low-grade; CIN, cervical intraepithelial neoplasia; HG, high-grade

Table S4. Studies Included in CD25 Analysis

First Author	Year	PMID	Disease level					Tissue type		
			Normal	LGCIN	HGCIN	Cancer	Other	Epithelial	Stromal	Total
Adurthi	2008	18593438	37		30	30	37			X
Bedoya	2013	22290207		26	46	24		X	x	
Ferrandina	2006	16609015				27			X	
Goncalves	2009	19689792	4	13	30			X	X	
Nakamura	2007	17433037	24		31	28	13	X	X	
Ovestad*	2010	20512116			55			X	X	
Ovestad*	2011	21421698			55			X	X	
Peghini	2012	22749886		21	34	8				
Wu	2011	21930068				10	8	X		

* These are the same 55 cases reported twice in the literature

Table S4. Studies Included in CD25 Analysis. Studies included in the CD25 analysis are listed, including record identification information and an indication of sample size at each disease stage as well as which tissues types were measured. Not all studies included quantified results for CD25. Abbreviations: PMID, PubMed identification number; LG, low grade; CIN, cervical intraepithelial neoplasia; HG, high grade.

